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This dissertation presents a set of econometric tools to uncover the mechanism

of credit and financial contagion. First, a nonparametric Granger causality test

for continuous time point process data is proposed. The test delivers inference

results that are robust to model misspecifications. Applying the test to the point

process data of Chapter 11 filings by U.S. corporations and negative shocks

of major stock indices, the dissertation provides evidence for credit contagion

across different sectors of the economy, as well as financial contagion across

international stock markets. Second, a diagnostic checking procedure for para-

metric multivariate point process models is studied. The metholodogy equips

empirical researchers with a portmanteau test in the crucial step of model vali-

dation after estimating a proposed parametric model.



BIOGRAPHICAL SKETCH

Simon Kwok had been a graduate student at the Economics department of Cor-

nell University since August 2006. Before going to Cornell University, he fin-

ished the Master in Philosophy in Statistics under the supervision of Professor

Wai Keung Li in July 2006 and the Bachelor of Science in Actuarial Science in

May 2004, both with the Department of Statistics and Actuarial Science at the

University of Hong Kong. His main research interests are econometrics, finance

and time series analysis.

iii



To my parents and Carol.

iv



ACKNOWLEDGEMENTS

I am greatly indebted to my advisor, Professor Yongmiao Hong, who provided

me with invaluable guidance and constant encouragement. My heartfelt thank

also goes to my special committee members, Professor Nicholas Kiefer, Profes-

sor Robert Jarrow and Professor Robert Strawderman. Their useful feedback

and sharp criticisms have been crucual in shaping my final thesis. I am also

thankful for the feedback from the audience of my presentations in conferences

and seminars over the past year, and my fellow colleagues would be remem-

bered for their support and tolerance over my numerous presentation practices.

Last but not least, I have to thank my wife, Carol Xu, for staying by my side

throughout the difficult periods and for showing her understanding, without

which this dissertation would be non-existent.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 A Nonparametric Test of Granger Causality in Continuous Time 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The Need for Continuous Time Causality Test . . . . . . . 8
2.1.2 The Need for Nonparametric Causality Test . . . . . . . . 11
2.1.3 Point Processes in High Frequency Finance . . . . . . . . . 13
2.1.4 Point Processes in Counterparty Risk Modeling . . . . . . 16
2.1.5 Test of Dependence between two stochastic processes . . . 18

2.2 Bivariate Point Process . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Granger Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 The statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Nonparametric cross-covariance estimator . . . . . . . . . 33
2.4.2 The statistic as L2 norm . . . . . . . . . . . . . . . . . . . . 35
2.4.3 Weighting function . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.4 Conditional intensity estimator . . . . . . . . . . . . . . . . 37
2.4.5 Computation of γ̂H(`) . . . . . . . . . . . . . . . . . . . . . . 39
2.4.6 Consistency of conditional intensity estimator . . . . . . . 39
2.4.7 Simplified Statistic . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Asymptotic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Asymptotic Normality under the Null . . . . . . . . . . . . 48
2.5.2 Effect of Estimation . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.3 Asymptotic Local Power . . . . . . . . . . . . . . . . . . . . 51

2.6 Bandwidth Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.1 Case 1: B� H � T . . . . . . . . . . . . . . . . . . . . . . . 53
2.6.2 Case 2: H � B� T . . . . . . . . . . . . . . . . . . . . . . . 53
2.6.3 Optimal Bandwidths . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7.1 Size and Power of Q . . . . . . . . . . . . . . . . . . . . . . 55
2.7.2 Size and Power of Qs . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.8.1 Trades and Quotes . . . . . . . . . . . . . . . . . . . . . . . 60
2.8.2 Credit Contagion . . . . . . . . . . . . . . . . . . . . . . . . 64
2.8.3 International Financial Contagion . . . . . . . . . . . . . . 67

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



3 Credit Contagion from Wall Street to Main Street: An Empirical Study
of US Corporate Bankruptcies 72
3.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 VAR(1) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.1 Spurious causality . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.2 Spurious non-causality . . . . . . . . . . . . . . . . . . . . . 83

3.3 Bivariate ACI model . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4 Nonparametric Granger causality test . . . . . . . . . . . . . . . . 85
3.5 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.1 Bankruptcy Contagion: upstream vs downstream . . . . . 86
3.5.2 Bankruptcy Contagion: Wall Street vs Main Street . . . . . 87

4 Diagnostic Checks for Multivariate Parametric Intensity Models 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Parametric multivariate point process models . . . . . . . . . . . . 92
4.3 Random Time Change and Characterization of Multivariate In-

tensity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Generalized Residual Autocorrelations Test . . . . . . . . . 99

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Conclusion 109

A Chapter 2 appendix 111
A.1 List of Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.4 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.5 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.6 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.7 Proof of (2.21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.8 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.8.1 Asymptotic Mean of Q . . . . . . . . . . . . . . . . . . . . . 143
A.8.2 Asymptotic Variance of Q Under the Null . . . . . . . . . . 145
A.8.3 Asymptotic normality of Q̃ . . . . . . . . . . . . . . . . . . 154

A.9 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.10 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.11 Proof of Corollary 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.12 Proof of Corollary 12 . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.13 Summary of Jarrow and Yu (2001) Model . . . . . . . . . . . . . . 170
A.14 Q Test for Non-stationary Point Processes . . . . . . . . . . . . . . 172

B Chapter 3 appendix 175

vii



C Chapter 4 appendix 188
C.1 Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography 194

viii



LIST OF TABLES

A.1 The asymptotic mechanisms of the two schemes. . . . . . . . . . 126
A.2 Significant day counts (out of 41 days) of PG, 9:45am – 10:15am. 127
A.3 Significant day counts (out of 41 days) of PG, 11:45am – 12:45pm. 127
A.4 Significant day counts (out of 41 days) of PG, 3:30pm – 4:00pm. . 128
A.5 Significant day counts (out of 41 days) of PG over various trad-

ing hours of a day. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.6 Significant day counts (out of 41 days) of GM over various trad-

ing hours of a day. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.7 Q tests on bankruptcy data, Sep96 – Jul03. . . . . . . . . . . . . . 130
A.8 Q test on bankruptcy data, Aug03 – Aug07. . . . . . . . . . . . . . 130
A.9 Q tests on bankruptcy data, Sep07 – Jun10. . . . . . . . . . . . . . 131
A.10 Qs test on bankruptcy data, September 1996 – June 2010. . . . . . 132
A.11 Trading hours, Greenwich mean time and start dates of the sam-

pling periods of major stock indices. . . . . . . . . . . . . . . . . . 132
A.12 Qs test applied to extreme negative shocks of DJI and HSI. . . . . 133
A.13 Qs test applied to extreme negative shocks of DJI and NIK. . . . . 133
A.14 Qs test applied to extreme negative shocks of DJI and FTSE. . . . 133
A.15 Qs test applied to extreme negative shocks of DJI and AOI. . . . . 134

B.1 Estimated bivariate ACI(1,1) models on point process data of
bankruptcy filings over recessions and crises. . . . . . . . . . . . 176

B.2 Estimated bivariate ACI(1,1) models on point process data of
bankruptcy filings over non-recession periods. . . . . . . . . . . . 177

B.3 Estimated VAR(1) model on the time series of bankruptcy counts
over Dec 2007 - June 2009 with varying sampling frequencies. . . 178

B.4 Estimated VAR(1) model on the time series of bankruptcy counts
over March 2001 - November 2002 with varying sampling fre-
quencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.5 Estimated VAR(1) model on the time series of bankruptcy counts
over July 1990 - March 1991 with varying sampling frequencies. . 180

B.6 Estimated VAR(1) model on the time series of bankruptcy counts
over April 1990 - March 1991 with varying sampling frequencies. 181

B.7 Estimated VAR(1) model on the time series of bankruptcy counts
over December 2002 - November, 2007 with varying sampling
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.8 Estimated VAR(1) model on the time series of bankruptcy counts
over July, 2009 - November, 2011 with varying sampling frequen-
cies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

ix



LIST OF FIGURES

4.1 The empirical sizes of various portmanteau tests. DGP: ACI(1,1),
df= M, n = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 The empirical sizes of various portmanteau tests. DGP: ACI(1,1),
df= M, n = 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 The empirical sizes of various portmanteau tests. DGP: ACI(1,1),
df= M − 2, n = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 The empirical sizes of various portmanteau tests. DGP: ACI(1,1),
df= M − 2, n = 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 The empirical sizes of various portmanteau tests. DGP: Cox
model, df= M, n = 100. . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 The empirical sizes of various portmanteau tests. DGP: Cox
model, df= M, n = 400. . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 The empirical sizes of Box-Pierce and Ljung-Box tests. DGP: bi-
variate ACI(1,1) model, df= M, n = 100. . . . . . . . . . . . . . . . 107

4.8 The empirical sizes of Box-Pierce and Ljung-Box tests. DGP: bi-
variate ACI(1,1) model, df= M, n = 400. . . . . . . . . . . . . . . . 107

4.9 The empirical power of Box-Pierce and Ljung-Box tests. DGP:
bivariate ACI(1,1) model, df= M, n = 100. . . . . . . . . . . . . . . 108

4.10 The empirical power of Box-Pierce and Ljung-Box tests. DGP:
bivariate ACI(1,1) model, df= M, n = 400. . . . . . . . . . . . . . . 108

A.1 The statistic Q aggregates the squared contributions of residual
products dε̂a

s dε̂b
t for all s < t. The lines join all pairs of type a and

type b events (shocks) at their event times (τa
i , τ

a
j) for all τa

i < τ
a
j . . 113

A.2 Size experiment of Q test, bivariate Poisson process. . . . . . . . . 114
A.3 Size and power experiment of Q test, bivariate exponential

Hawkes process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.4 Size experiment 1 of Qs test. . . . . . . . . . . . . . . . . . . . . . . 116
A.5 Size experiment 2 of Qs test. . . . . . . . . . . . . . . . . . . . . . . 117
A.6 Size experiment 3 of Qs test. . . . . . . . . . . . . . . . . . . . . . . 118
A.7 Size experiment 4 of Qs test. . . . . . . . . . . . . . . . . . . . . . . 119
A.8 Size experiment 5 of Qs test. . . . . . . . . . . . . . . . . . . . . . . 120
A.9 Power experiment of Qs test. . . . . . . . . . . . . . . . . . . . . . 121
A.10 Size experiment R-S1 of Qs test. . . . . . . . . . . . . . . . . . . . . 122
A.11 Size experiment R-S2 of Qs test. . . . . . . . . . . . . . . . . . . . . 123
A.12 Power experiment R-P1 of Qs test. . . . . . . . . . . . . . . . . . . 124
A.13 Power experiment R-P2 of Qs test. . . . . . . . . . . . . . . . . . . 125
A.14 Histogram of bankruptcies of U.S. firms, 1980–2010. . . . . . . . . 125
A.15 Raw counts of bankruptcies in manufacturing and financial re-

lated sectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.1 Qs test between upstream and downstream of a supply chain
during crises and recessions. . . . . . . . . . . . . . . . . . . . . . 184

x



B.2 Qs test between upstream and downstream of a supply chain
during non-recession periods. . . . . . . . . . . . . . . . . . . . . 185

B.3 Qs test between Wall Street and Main Street during crises and
recessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.4 Qs test between Wall Street and Main Street during non-recession
periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xi



CHAPTER 1

INTRODUCTION

Credit and financial crises refer to the breakdown of the credit and financial

markets due to their fragility. Rare and random as they are, the impact to the

economy is often devastating and widespread once they start. However, it is

often difficult to identify a single cause for a crisis. Credit contagion results when

credit risk, taking the form of such credit events as individual defaults and

bankruptcies, spreads across different sectors of the economy in an uncontrol-

lable manner. Similarly, financial contagion occurs when a significant negative

shock to a financial market creates panic that transmits across different sectors

and financial markets. The distinctive characteristics include the the infectious

nature and the severity of the impact.

From the statistical point of view, the sequences of credit events and nega-

tive shocks are random and irregular-spaced events over time. They are point

processes that evolve in continuous time and display certain stylized facts such

as self-excitation (or clustering of events of the same type) and mutual-excitation

(or feedback from a cluster of events of one type to a cluster of events of another

type). These stylzed facts can be measured and analyzed in a parametric or a

nonparametric set-up. To this end, I am going to consider a set of tools that are

useful for the analysis of credit and financial crises.

In Chapter 2, I consider a nonparametric Granger causality test for con-

tinuous time point process data. Unlike popular Granger causality tests with

strong parametric assumptions on discrete time series, the test applies directly

to strictly increasing raw event time sequences sampled from a bivariate tem-

poral point process satisfying mild stationarity and moment conditions, thus
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eliminating the sensitivity of the test to model assumptions and data sampling

frequency. Taking the form of an L2-norm, the test statistic delivers a consistent

test against all alternatives with pairwise causal feedback from one component

process to another, and can simultaneously detect multiple causal relationship

over variable ranges up to the sample length. The test enjoys asymptotic nor-

mality under the null of no Granger causality and exhibits reasonable empirical

size and power performance. Its usefulness is illustrated in three applications.

In the first application on the study of market microstructure hypotheses, the

test confirms the existence of a significant causal relationship from the dynam-

ics of trades to quote revisions in high frequency financial datasets. The next

application on credit contagion reveals that corporate bankruptcies in financial

related sectors tend to Granger-cause those in manufacturing related sectors

during crises and recessions. Lastly, the test is applied to study the extent to

which an extreme negative shock of a major stock index transmits across inter-

national financial markets. The test confirms the presence of contagion, with US

and European stock indices being the major sources of contagion.

In Chapter 3, I investigate empirically the contagious relationship of US cor-

porate bankruptcies from the upstream and downstream of a supply chain. The

data span from 1980 to 2011. The observed lead-lag pattern can be thought of as

the aggregated result of a complex web of mutual dependence between coun-

terparties in the two sectors. Applying a nonparametric Granger causality test

in continuous time, I provided empirical evidence of credit contagion spreading

from the bottom to the top of a typical supply chain around recession periods. It

is believed that such empirical results would shed light on investors who main-

tain portfolios consisting of credit derivatives, and help the government to tailor

its monetary and fiscal policies to avoid a major breakdown of the economy.
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In Chapter 4, I turn to the problem of diagnostic checking multivariate para-

metric intensity models, which are useful for the empirical study of high fre-

quency finance and credit risk. Since they were often proposed for a particular

application without much theoretical justification, specification tests are crucial

for ensuring model adequacy and the validity of statistical inference. However,

unlike traditional discrete time series models which are equipped with well-

studied portmanteau tests, there are neither theoretical results nor empirical

performance analyses of such tests applied to an estimated multivariate inten-

sity model with parameter uncertainty. This chapter aims at filling this gap by

deriving a large sample distribution for the generalized residual autocorrela-

tions and proposing a portmanteau test that checks for model adequacy. The

test procedures are theoretically justified for a wide class of multivariate para-

metric recurrent-event intensity models.
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CHAPTER 2

A NONPARAMETRIC TEST OF GRANGER CAUSALITY IN

CONTINUOUS TIME

2.1 Introduction

The concept of Granger causality was first introduced to econometrics in the

ground-breaking work of Granger (1969) and Sims (1972). Since then it has

generated an extensive line of research and quickly became a standard topic in

econometrics and time series analysis textbooks. The idea is straightforward: a

process Xt does not strongly (weakly) Granger cause another process Yt if, at all

time t, the conditional distribution (expectation) of Yt given its own history is

the same as that given the histories of both Xt and Yt almost surely. Intuitively, it

means that the history of process Xt does not affect the prediction of process Yt.

Granger causality tests are abundant in economics and finance. Instead of

giving a general overview on Granger causality tests, I will focus on some of

the shortfalls of popular causality tests. Currently, most Granger causality tests

in empirical applications rely on parametric assumptions, most notably the dis-

crete time vector autoregressive (VAR) models. Although it is convenient to

base the tests on discrete time parametric models, there are a couple of issues

that can potentially invalidate this approach:

(1) Model uncertainty. If the data generating process (DGP) is far from the

parametric model, the econometrician will run the risk of model misspecifica-

tion. The conclusion of a Granger causality test drawn from a wrong model can

be misleading. A series of studies attempts to reduce the effect of model un-
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certainty by relaxing or eliminating the reliance on strong parametric assump-

tions.1

(2) Sampling frequency uncertainty. Existing tests of Granger causality in

discrete time often assume that the time difference between consecutive obser-

vations is constant and prespecified. However, it is important to realize that

the conclusion of a Granger causality test can be sensitive to the sampling fre-

quency of the time series. As implied by the results of Sims (1971) and argued

by Engle and Liu (1972), the test would potentially be biased if we estimated a

discretized time series model with temporally aggregated data which are from

a continuous time DGP (see section 2.1.1).

To address the above shortcomings, I consider a nonparametric Granger

causality test in continuous time. The test is independent of any parametric

model and thus the first problem is eliminated. Unlike discrete time Granger

causality tests, the test applies to data sampled in continuous time - the highest

sampling frequency possible - and can simultaneously and consistently detect

causal relationships of various durations spanning up to the sample length. The

DGP is taken to be a pure-jump process known as bivariate temporal point process.

A temporal point process is one of the simplest kinds of stochastic process

and is the central object of this chapter. It is a pure-jump process consisting

of a sequence of events represented by jumps that occur over a continuum, and

the observations are event occurrence times (called event times).2 Apart from

1One line of research extends the test to nonlinear Granger causality test. To relax the
strong linear assumption in VAR models, Hiemstra and Jones (1994) developed a nonparamet-
ric Granger causality tests on discrete time series without imposing any parametric structures
on the DGP except some mild ones such as stationarity and Markovian dynamics. In the appli-
cation of their test, they found that volume Granger causes stock return.

2The trajectory of a counting process, an equivalent representation constructed from point
process observations, is a stepwise increasing and right-continuous function with a jump at each
event time. An important example is the Poisson process in which events occur independently
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their simplicity, point processes are indispensable building blocks of other more

complicated stochastic processes (e.g. Lévy processes, subordinated diffusion

processes). In this chapter, I study the testing of Granger causality in the con-

text of a simple3 bivariate point process, which consists of a strictly monotonic

sequence of event times originated from two event types with possible interac-

tions among them. The problem of testing Granger causality consistently and

nonparametrically in a continuous time set-up for a simple bivariate point pro-

cess is non-trivial: all interactive relationship of event times over the continuum

of the sample period needs to be summarized in a test statistic, and continuous

time martingale theory is necessary to analyze its asymptotic properties. It is

hoped that the results reported in this chapter will shed light on a similar test

for more general types of stochastic processes.

To examine the causal relation between two point processes, I first construct

event counts (as a function of time) of the two types of events from the observed

event times. The functions of event counts, also known as counting processes,

are monotone increasing functions by construction. To remove the increasing

trends, I consider the differentials of the two counting processes. After subtract-

ing their respective conditional means (estimated nonparametrically), I obtain

the innovation processes that contain the surprise components of the point pro-

cesses. It is possible to check, from the cross-covariance between the innovation

processes, if there is a significant feedback from one counting process to another.

As detailed in section 2.2, such a feedback relationship is linked to the Granger

causality concept that was defined for general continuous time processes (in-

cluding counting processes as a particular case) in the extant literature. More

surprisingly, if the raw event times are strictly monotonic, then all pairwise cross-

of each other.
3The simple property will be formally defined in assumption (A1) in section 2.2.
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dependence can be sufficiently captured by the cross-covariance between the in-

novation processes. This insight comes from the Bernoulli nature of the jump

increments of the associated counting processes, and will greatly facilitate the

development and implementation of the test.

The chapter is organized as follows. Empirical applications of point pro-

cesses are described in sections 2.1.3 and 2.1.4. The relevant concepts and prop-

erties of a simple bivariate point process is introduced in section 2.2, while the

concept of Granger causality is discussed and adapted to the context of point

processes in section 2.3. The test statistic is constructed in section 2.4 as a

weighted integral of the squared cross-covariance between the innovation pro-

cesses. and the key results on its asymptotic behaviors are presented in section

2.5. Variants of the test statistic under different bandwidth choices are discussed

in section 2.6. In the simulation experiments in section 2.7, I show that the non-

parametric test has reasonable size performance under the null hypothesis of no

Granger causality and nontrivial power against different alternatives. In section

2.8, I demonstrate the usefulness of the nonparametric Granger causality test in

a series of three empirical applications. In the first application on the study of

market microstructure hypotheses (section 2.8.1), we see that the test confirms

the existence of a significant causal relationship from trades to quote revisions in

high frequency financial datasets. Next, I turn to the application in credit conta-

gion (section 2.8.2) and provide the first empirical evidence that bankruptcies in

financial-related sectors tend to Granger-cause those in manufacturing-related

sectors during crises and recessions. In the last application on international

financial contagion (section 2.8.3), I examine the extent to which an extreme

negative shock of a major stock index is transmitted across international finan-

cial markets. The test reveals the presence of financial contagion, with U.S. and
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European stock indices being the sources of contagion. Finally, the chapter con-

cludes in section 2.9. Proofs and derivations are collected in Appendix A.

2.1.1 The Need for Continuous Time Causality Test

The original definition of Granger causality is not only confined to discrete time

series but also applicable to continuous time stochastic processes. However, an

overwhelming majority of research work on Granger causality tests, be it theo-

retical or empirical, has focused on a discrete time framework. One key reason

for this is the limited availability of (near) continuous time data. However, with

much improved computing power and storage capacity, economic and financial

data sampled at increasingly high frequencies have become more accessible.4

This calls for more sophisticated techniques for analyzing these datasets. To

this end, continuous time models provide a better approximation to frequently

observed data than discrete time series models with very short time lags and

many time steps. Indeed, even though the data are observed and recorded in

discrete time, it is sometimes more natural to think of the DGP as evolving in

continuous time, because economic agents do not necessarily make decisions at

the same time when the data are sampled. The advantages of continuous time

analyses are more pronounced when the observations are sampled (or available)

at random time points. Imposing a fixed discrete time grid on highly irregularly

spaced time data may lead to too many observations in frequently sampled pe-

riods and/or excessive null intervals with no observations in sparsely sampled

periods.5

4For example, trade and quote data now include records of trade and quote timestamps in
unit of milliseconds.

5Continuous time models are more parsimonious for modeling high frequency observations
and are more capable of endogenizing irregular and possibly random observation times. See,
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Furthermore, discretization in time dimension can result in the loss of time

point data and spurious (non)causality. The latter problem often arises when “the

finite time delay between cause and effect is small compared to the time inter-

val over which data is collected”, as pointed out by Granger (1988, p.205). A

Granger causality test applied to coarsely sampled data can deliver very mis-

leading results: while the DGP implies a unidirectional causality from process Xt

to process Yt, the test may indicate (i) a significant bidirectional causality between

Xt and Yt, or (ii) insignificant causality between Xt and Yt in either one or both

directions.6 The intuitive reason is that the causality of the discretized series is

the aggregate result of the causal effects in each sampling intervals, amplified

or diminished by the autocorrelations of the marginal processes. The severity

of these problems depends on prespecified sampling intervals: the wider they

are relative to the causal durations (the actual time durations in which causality

effect transmits), the more serious the problems.7 With increasingly accessible

high frequency and irregularly spaced data, it is necessary to develop theories

and techniques tailored to the continuous time framework to uncover any inter-

active patterns between stochastic processes. Analyzing (near) continuous time

data with inappropriate discrete time techniques is often the culprit of mislead-

ing conclusions.

To remedy the above problems, there have been theoretical attempts to ex-

tend discrete time causality analyses to fully continuous time settings. For

for instance, Duffie and Glynn (2004), Aı̈t-Sahalia and Mykland (2003), Li, Mykland, Renault,
Zhang, Zheng (2010).

6Sims (1971) provided the first theoretical explanation in the context of distributed lag model
(a continuous time analog of autoregressive model). See also Geweke (1978), Christiano and
Eichenbaum (1987), Marcet (1991) and, for a more recent survey, McCrorie and Chambers (2006).

7For instance, suppose the DGP implies a causal relationship between two economic vari-
ables which typically lasts for less than a month. A Granger causality test applied to the two
variables sampled weekly can potentially reveal a significant causal relationship, but the test
result may turn insignificant if applied to the same variables sampled monthly.

9



example, Florens and Fougere (1996) examined the relationship between dif-

ferent definitions of Granger non-causality for general continuous time mod-

els. Comte and Renault (1996) studied a continuous time version of ARMA

model and provided conditions on parameters that characterize when there

is no Granger causality, while Renault, Sekkat and Szafarz (1998) gave corre-

sponding characterizations for parametric Markov processes. All of the above

work, however, did not elaborate further on the implementation of the tests, let

alone any formal test statistic and empirical applications.

Due to a lack of continuous time testing tools for high-frequency data, prac-

titioners generally rely on parametric discrete time series methodology or mul-

tivariate parametric point process models. Traditionally, time series econome-

tricians have little choice but to adhere to a fixed sampling frequency of the

available dataset, even though they have been making an effort to obtain more

accurate inference by using the highest sampling frequency that the data allow

(Engle, 2000). The need to relax the rigid sampling frequency is addressed by

the literature on mixed frequency time series analyses.8 On the other hand, in-

ferring causal relationships from parametric point process models may address

some of these problems as this approach respects the irregular nature of event

times.

It is important to reiterate that correct inference about the directions of

Granger causality stems from an appropriate choice of sampling grid. The ac-

tual causal durations, however, are often unknown or even random over time

(as is the case for high-frequency financial data). In light of this reality, it is more

8Ghysels (2012) extends the previous mixed frequency regression to VAR models with a mix-
ture of two sampling frequencies. Chiu, Eraker, Foerster, Kim and Seoane (2011) proposed a
Bayesian mixed frequency VAR models which are suitable for irregularly sampled data. This
kind of models has power for DGPs in which Granger causality acts over varying horizons.
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appealing to carry out Granger causality tests on continuous time processes in

a way that is independent of the choice of sampling intervals and allows for

simultaneous testing of causal relationships with variable ranges.

2.1.2 The Need for Nonparametric Causality Test

Often times, the modelers adopt a pragmatic approach when choosing a para-

metric model in order to match the model features to the observed stylized facts

of the data. In the study of empirical market microstructure, there exist para-

metric bivariate point process models that explain trade and quote sequences.

For example, Russell (1999) proposed the flexible multivariate autoregressive

conditional intensity (MACI) model, in which the intensity takes a log-ARMA

structure that explains the clustered nature of tick events (trades and quotes).

More recently, Bowsher (2007) generalized the Hawkes model (gHawkes), for-

merly applied to clustered processes such as earthquakes and neural spikes, to

accommodate intraday seasonality and interday dependence features of high

frequency TAQ data. Even though structural models exist that predict the ex-

istence of Granger causality between trade and quote sequences, the functional

forms of the intensity functions are hardly justified by economic theories. Apart

from their lack of theoretical foundation, MACI and gHawkes models were of-

ten inadequate for explaining all the observed clustering in high frequency data,

as evidenced by unsatisfatory goodness-of-fit test results. Model misspecifica-

tion may potentially bias the result of causal inference. Hence, it would be ideal

to have a nonparametric test that provides robust and model-free results on the

causal dynamics of the data.
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In this chapter, I pursue an alternative approach by considering a nonpara-

metric test of Granger causality that does not rely on any parametric assump-

tion and thus is free from the risk of model misspecification. Since I assume

no parametric assumptions and only impose standard requirements on kernel

functions and smoothing parameters, the conclusion of the test is expected to be

more robust than existing techniques. In addition, the nonparametric test in this

chapter can be regarded as a measure of the strength of Granger causality over

different spans as the bandwidth of the weight function varies. Such ”impulse

response” profile is an indispensible tool in the quest for suitable parametric

models.

More importantly, the conclusions from any statistical inference exercise are

model specific and have to be interpreted with care. In other words, all inter-

pretations from an estimated model are valid only under the assumption that

the parametric model represents the true DGP. For example, in the credit risk

literature, there has been ongoing discussion on whether the conditional inde-

pendence model or the self-exciting clustering model provides a better descrip-

tion of the stylized facts of default data. This is certainly a valid goodness-of-fit

problem from the statistical point of view, but it is dangerous to infer that the

preferred model represents the true DGP. There may be more than one point

process model that can generate the same dataset.9 The conclusion can entail

substantial economic consequences: under a doubly stochastic model, credit

contagion is believed to spread through information channels (Bayesian learn-

ing on common factors); while under a clustering model, credit contagion is

transmitted through direct business links (i.e. counterparty risk exposure). The

9An example is provided by Barlett (1964), which showed that it is mathematically impos-
sible to distinguish a linear doubly stochastic model and a clustering model with a Poisson
parent process and one generation of offsprings (each of which is independently and identically
distributed around each parent), as their characteristic functions are identical.
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two families of DGPs are very different in both model forms and economic

contents, but they can generate virtually indistinguishable data (Barlett, 1964).

Without further assumptions, we are unable to differentiate the two schools of

belief solely based on empirical analyses of Granger causality. It is precisely

the untestability and non-uniqueness of model assumptions that necessitate a

model-free way of uncovering the causal dynamics of a point process.

2.1.3 Point Processes in High Frequency Finance

Point process models are prevalent in modeling trade and quote tick sequences

in high frequency finance. The theoretical motivation comes from the semi-

nal work by Easley and O’hara (1992), who suggested that transaction time

is endogenous to stock return dynamics and plays a crucial role in the forma-

tion of a dealer’s belief in the fundamental stock price. Extending Glosten and

Milgrom’s (1985) static sequential trade model, their dynamic Bayesian model

yields testable implications regarding the relation between trade frequency and

the amount of information disseminated to the market, as reflected in the spread

and bid/ask quotes set by dealers.

In one of the first empirical analyses, Hasbrouck (1991) applied a discrete

vector autoregressive (VAR) model to examine the interaction between trades

and quote revisions. Dufour and Engle (2000) extended Hasbrouck’s work by

considering time duration between consecutive trades as an additional regres-

sor of quote change. They found a negative correlation between a trade-to-trade

duration and the next trade-to-quote duration, thus confirming that trade inten-

sity has an impact on the updating of beliefs on fundamental prices.10

10See Hasbrouck (2007, p.53) for more details.
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Given the conjecture of Easley and O’hara (1992) and the empirical evidence

of Dufour and Engle (2000), it is important to have a way to extract and model

transaction time, which may contain valuable information about the dynamics

of quote prices. To this end, Engle and Russell (1998) proposed the Autoregres-

sive Conditional Duration (ACD) model, which became popular for modeling

tick data in high frequency finance. It is well known that stock transactions on

the tick level tend to cluster over time, and time durations between consecutive

trades exhibit strong and persistent autocorrelations. The ACD model is capa-

ble of capturing these stylized facts by imposing an autoregressive structure on

the time series of trade durations.11

A problem with duration models is the lack of a natural multivariate exten-

sion due to the unsynchronized nature of trade and quote durations by con-

struction (i.e. a trade duration always starts and ends in the middle of some

other quote durations). At the time a trade occurs, the econometrician’s infor-

mation set would be updated to reflect the new trade arrival, but it is difficult

to transmit the updated information to the dynamic equation for quote dura-

tions, because the current quote duration has not ended yet. The same difficulty

arises when information from a new quote arrival needs to be transmitted in

the opposite direction to the trade dynamics. Indeed, as argued by Granger

(1988, p.206), the problem stems from the fact that durations are flow variables.

As a result, it is impossible to identify clearly the causal direction between two

flow variable sequences when the flow variables overlap one another in time

dimension.12 Nevertheless, there exist a number of methods that attempt to get

11Existing applications of ACD model to trade and quote data are widespread, including (but
not limited to) estimation of price volatility from tick data, testing of market microstructure
hypotheses regarding spread and volume and intraday value-at-risk estimation. See Pacurar
(2008) for a survey on ACD models.

12As another example, Renault and Werker (2011) tested for a causal relationship between
quote durations and price volatility. They assume that tick-by-tick stock returns are sam-
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around this problem, such as transforming the tick data to event counts over a

prespecified time grid (Heinen and Rengifo, 2007) and redefining trade/quote

durations in an asymmetric manner to avoid overlapping of durations (Engle

and Lunde, 2003). They are not perfect solutions either.13

It is possible to mitigate the information transmission problem in a system-

atic manner, but this requires a change of viewpoint: we may characterize a

multivariate point process from the point of view of intensities rather than dura-

tion sequences. The intensity function of a point process, which is better known

as hazard function or hazard rate for more specific types of point processes in bio-

statistics, quantifies the event arrival rate at every time instant. Technically, it is

the probability that at least one event occurs. While duration is a flow concept,

event arrival rate is a stock concept and thus not susceptible to the information

transmission problem. To specify a complete dynamic model for event times,

it is necessary to introduce the concept of conditional intensity function: the con-

ditional probability of having at least one event at the next instant given the

history of the entire multivariate point process up to the present. The dynamics

of different type events can be fully characterized by the corresponding con-

ditional intensity functions. Russell (1999), Hautsch and Bauwens (2006), and

Bowsher (2007) proposed some prominent examples of intensity models.14 The

pled from a continuous time Lévy process. Based on the moment conditions implied from
the assumptions, they uncovered instantaneous causality from quote update dynamics to price
volatility calculated from tick-by-tick returns. Similar criticism on Engle and Lunde (2003) ap-
plies to this work as well because trade durations over which volatility is computed overlap
with quote durations.

13Information about durations is lost under the event count model of Heinen and Rengifo.
Data loss problem occurs in the Engle and Lunde model when there are multiple consecutive
quote revisions, as only the quote revision immediately after a trade is used. Moreover, the
asymmetry of the Engle and Lunde model only allows the detection of trade-to-quote causality
but not vice versa.

14Russell (1999) estimated a bivariate ACI model to uncover the causal relationship between
transaction and limit order arrivals of FedEx from November 1990 to January 1991. With the
gHawkes model, Bowsher (2007) provided empirical evidence of significant two-way Granger
causality between trade arrivals and mid-quote updates of GM traded on the NYSE over a 40
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objective is to infer the direction and strength of the lead-lag dependence among

the marginal point processes from the proposed parametric model.

2.1.4 Point Processes in Counterparty Risk Modeling

The Granger causality test can be useful to test for the existence of counterparty

risk in credit risk analysis. Counterparty risk was first analyzed in a bivariate

reduced form model in Jarrow and Yu (2001) and was then extended to multi-

variate setting by Yu (2007). Under this model, the default likelihood of a firm

is directly affected by the default status of other firms. See Appendix A.13 for a

summary of the counterparty risk model.

In a related empirical study, Chava and Jarrow (2004) examined if industry

effect plays a role in predicting the probability of a firm’s bankruptcy. They di-

vided the firms into four industrial groups according to SIC codes, and ran a

logistic regression on each group of firms. Apart from a better in-sample fit, in-

troducing the industrial factor significantly improves their out-of-sample fore-

cast of bankruptcy events.

A robust line of research uses panel data techniques to study the default risk

of firms. The default probabilities of firms are modeled by individual condi-

tional intensity functions. A common way to model dependence of defaults

among firms is to include exogenous factors that enter the default intensities of

all firms. This type of conditional independence models, also known as Cox models

or doubly stochastic models, is straightforward to estimate because the defaults of

firms are independent of each other after controlling for exogenous factors. In

day span from July 5 to August 29, 2000.
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a log-linear regression, Das, Duffie, Kapadia and Saita (2006, DDKS hereafter)

estimate the default probabilities of U.S. firms over a 25 year time span (January

1979 to October 2004) with exogenous factors15. However, a series of diagnostic

checks unanimously rejects the estimated DDKS model. A potential reason is

an incorrect conditional independence assumption, but it could also be due to

missing covariates. Their work stimulated future research effort in the pursuit

of a more adequate default risk model. As a follow-up, Duffie, Eckners, Horel

and Saita (2009) attempt to extend the DDKS model by including additional la-

tent variables. Lando and Nielsen (2010) validate the conditional independence

assumption by identifying another exogenous variable (industrial productivity

index) and showing that the DDKS model with this additional covariate cannot

be rejected.

In view of the inadequacy of conditional independence models, Azizpour,

Giesecke and Schwenkler (2008) advocate a top-down approach to modeling

corporate bankruptcies: rather than focusing on firm-specific default intensi-

ties, they directly model the aggregate default intensity for all firms over time.

This approach offers a macroscopic view of default pattern of a portfolio of 6,048

issuers of corporate debts in the U.S.. A key advantage of this approach is that it

provides a parsimonious way to model self-exciting dynamics which is hard to in-

corporate in the DDKS model. The authors showed that the self-exciting mech-

anism effectively explains a larger portion of default clustering. Idiosyncratic

components such as firm-specific variables may indirectly drive the dynamics

of the default process through the self-exciting mechanism.

15They include macroeconomic variables such as three-year Treasury yields and trailing one
year return of S&P500 index, and firm-specific variables such as distance to default and trailing
one year stock return.
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2.1.5 Test of Dependence between two stochastic processes

Various techniques that test for the dependence between two stochastic pro-

cesses are available. They are particularly well studied when the processes are

time series in discrete time. Inspired by the seminal work of Box and Pierce

(1970), Haugh (1976) derives the asymptotic distribution of the residual cross-

correlations between two independent covariance-stationary ARMA models. A

chi-squared test of no cross-correlation up to a fixed lag is constructed in the

form of a sum of squared cross-correlations over a finite number of lags. Hong

(1996b) generalizes Haugh’s test by considering a weighted sum of squared

cross-correlations over all possible lags, thereby ensuring consistency against all

linear alternatives with significant cross-correlation at any lag. A similar test of

serial dependence is developed for dynamic regression models with unknown

forms of serial correlations (Hong, 1996a).

In the point process literature, there exist similar tests of no cross-correlation.

Cox (1965) proposes an estimator of the second-order intensity function of a

univariate stationary point process and derived the first two moments of the

estimator when the process is a Poisson process. Cox and Lewis (1972) ex-

tend the estimator to a bivariate stationary point process framework. Brillinger

(1976) derives the pointwise asymptotic distribution of the second-order inten-

sity function estimator when the bivariate process exhibits no cross-correlation

and satisfies certain mixing conditions. Based on these theoretical results, one

can construct a test statistic in the form of a (weighted) summation of the

second-order intensity estimator over a countable number of lags. Under the

null of no cross-correlations, the test statistic has an asymptotic standard nor-

mal distribution. Doss (1991) considers the same testing problem but proposes
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using the distribution function analog to the second-order intensity function as a

test statistic. Under a different set of moment and mixing conditions, he shows

that this test is more efficient than Brillinger’s test while retaining asymptotic

normality. Similar to the work of Brillinger, Doss’ asymptotic normality result

holds in a pointwise sense only. The users of these tests are left with the task

of determining the grid of lags to evaluate the intensity function estimator. The

grid of lags must be sparse enough to ensure independence so that central limit

theorem is applicable, but not too sparse as to leave out too many alternatives.

For the test considered in this chapter, such concern is removed because the test

statistic is in the form of a weighted integration over a continuum of lags up to

the sample length. The concept of Granger causality for point process is also

related to independent censoring in the survival analysis literature.16

2.2 Bivariate Point Process

The bivariate point process Π consists of two sequences of event time 0 < τk
1 ≤

τk
2 ≤ . . . < ∞ (k = a, b) on the positive real line R+, where τk

i represents the time

at which the ith event of type k occurs. Another representation of the event time

sequences is the bivariate counting process N = (Na,Nb)′, with the marginal

counting process for type k events defined by Nk(B) =
∑∞

i=1 1{τk
i ∈ B}, k = a, b, for

any set B on R+. Let Nk
t = Nk((0, t]) for all t > 0 and Nk

0 = 0, k = a, b. It is clear

that both representations are equivalent - from a trajectory of N one can recover

16Independent censoring occurs when censoring times are independent of event times. If the
bivariate point process is composed of censoring times and event times which are both observ-
able, then we may check for pairwise independent censoring by means of the nonparametric
Granger causality test to be studied in Section 2.4. A rejection of Granger non-causality between
event and censoring times would then imply a rejection of pairwise independent censoring (as
independence is a stronger assumption than Granger non-causality). Thanks to Robert Straw-
derman for pointing this out.
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that of Π and vice versa; hence, for notational simplicity, the probability space

for both Π and N is denoted by (Ω, P).

First, I suppose that the bivariate counting process N satisfies the following

assumption:

Assumption (A1) The pooled counting process N ≡ Na + Nb is simple, that is

P(N({t}) = 0 or 1 for all t) = 1.

Essentially, assumption (A1) means that, almost surely, there is at most one

event happening at any time point, and if an event happens, it can either be a

type a or type b event, but not both. In other words, the pooled counting pro-

cess N, which counts the number of events over time regardless of event types,

is a monotonic increasing piecewise constant random function which jumps by

exactly one at countable number of time points or otherwise stays constant at in-

teger values. As it turns out, this simple property imposed on the pooled count-

ing process plays a crucial role in simplifying the computation of moments of

the test statistic. More importantly, the Bernoulli nature of the increments dNt

(which is either zero or one almost surely) of N at time t implies that if two in-

crements dNs and dNt (s , t) are uncorrelated, then they must be independent.17

Therefore, a statistical test that checks for zero cross correlation between any

pair of increments of Na and Nb is sufficient for testing for pairwise indepen-

dence between the increments.

In theory, assumption (A1) is mild enough to include a wide range of bivari-

ate point process models. It is certainly satisfied if events happen randomly and

17If two random variables X and Y are uncorrelated, it does not follow in general that they
are statistically independent. However, there are two exceptions: one is when (X,Y) follows a
bivariate normal distribution, another is when X and Y are Bernoulli distributed.
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independently of each other over a continuum (i.e. when the pooled point pro-

cess is a Poisson process). Also, the assumption is often imposed on the pooled

process of many other bivariate point process models that are capable of gener-

ating dependent events (e.g. doubly stochastic models, bivariate Hawkes mod-

els, bivariate autoregressive conditional intensity models). In practice, however,

it is not uncommon to have events happening at exactly the same time point. In

many cases, this is the artifact of recording or collecting point process data over

a discrete time grid that is too coarse.18 In some other cases, multiple events

really happen at the same time. Given a fixed time resolution, it is impossible

to tell the difference between the two cases.19 There are two ways to get around

this conundrum: I may either drop assumption (A1) and include a bigger fam-

ily of models (e.g. compound Poisson processes), or keep the assumption but

lump multiple events at the same time point into a single event. In this chap-

ter, I would adopt the latter approach by keeping assumption (A1) and treating

multiple events at the same time point as a single event, so that an occurrence

of a type k event is interpreted as an occurrence of at least one type k event at

that time point. In the datasets of empirical applications, the proportions that

events of different types occur simultaneously turn out to be small or even zero

by construction.20

18For instance, in a typical TAQ dataset, timestamps for trades and quote revisions are accu-
rate up to a second. There is a considerable chance that more than two transactions or quote
revisions happen within a second. This is at odds with assumption (A1).

19TAQ datasets recorded with millisecond timestamps are available more recently. The im-
provement in resolution of timestamps mitigates the conflict with assumption (A1) by a large
extent. A comparison with the TAQ datasets with timestamps in seconds can reveal whether a
lump of events in the latter datasets is indeed the case or due to discrete time recording.

20Among all trades and quote revisions of PG (GM) from 1997/8/4 to 1997/9/30 in the TAQ
data, 3.6% (2.6%) of them occur within the same second. In the bankruptcy data ranging from
January 1980 to June 2010, the proportion of cases in which bankruptcies of a manufacturing re-
lated firm and a financial related firm occur on the same date is 4.9% (out of a total of 892 cases).
In the international financial contagion data, the proportions are all 0% because I intentionally
pair up the leading indices of different stock markets which are in different time zones.
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I can as well replace assumption (A1) by the assumption:

Assumption (A1b) the pooled counting process N ≡ Na + Nb is orderly, that is

P(N((0, s]) ≥ 2) = o(s) as s ↓ 0.

It can be shown that with the second-order stationarity of N (see assumption

(A2) to be stated later), assumptions (A1) and (A1b) are equivalent (Daley and

Vere-Jones, 2003).

It is worth noting that assumptions (A1) and (A1b) are imposed on the

pooled counting process N, and thus stronger than if they were imposed on

the marginal processes Na and Nb instead, because simple (or orderly) property

of marginal counting processes does not carry over to the pooled counting pro-

cess. For instance, if Na is simple (or orderly) and Nb ≡ Na for each trajectory,

then N = Na + Nb = 2Na is not.

To make statistical inference possible, some sort of time homogeneity (i.e.

stationarity) condition is necessary. Before discussing stationarity, let us define

the second-order factorial moment measure as

Gi j(B1 × B2) = E
[∫

B2

∫
B1

1{t1,t2}dN i
t1dN j

t2

]
,

for i, j = a, b (see Daley and Vere-Jones, 2003, section 8.1). Note that the indica-

tor 1{t1,t2} is redundant if the pooled process of N is simple (assumption (A1)).

The concept of second-order stationarity can then be expressed in terms of the

second-order factorial moment measure Gi j (·, ·).

Definition 1 A bivariate counting process N = (Na,Nb)′ is second-order stationary if

(i) Gi j((0, 1]2) = E
[
N i((0, 1])N j((0, 1])

]
< ∞ for all i, j = a, b; and
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(ii) Gi j((B1 + t)× (B2 + t)) = Gi j(B1×B2) for all bounded Borel sets B1, B2 in R+ and

t ∈ R+.

The analogy to the stationarity concept in time series is clear from the above

definition, which requires that the second-order (auto- and cross-) moments ex-

ist and that the second-order factorial moment measure is shift-invariant. By

the shift-invariance property, the measure Gi j (·, ·) can be reduced to a function

of one argument, say Ği j(·), as it depends only on the time difference of the com-

ponent point process increments. If ` (·) denotes the Lebesgue measure, then

second-order stationarity of N implies that, for any bounded measurable func-

tions f with bounded support, the following decomposition is valid:∫
R2

f (s, t)Gi j (ds, dt) =

∫
R

∫
R

f (x, x + u)` (dx) Ği j(du).

From the moment condition in Definition 1 (i), second-order stationarity im-

plies that the first-order moments exist by Cauchy-Schwarz inequality, so that

λk ≡ E
[
Nk((0, 1])

]
< ∞ (2.1)

for k = a, b. This is an integrability condition on Nk which ensures that events

are not too closely packed together. Often known as hazard rate or unconditional

intensity, the quantity λk gives the mean number of events from the component

process Nk over a unit interval. Given stationarity, the unconditional intensity

defined in (2.1) also satisfies λk = lim∆t↓0 (∆t)−1 P(Nk((t, t + ∆t]) > 0). If I further

assume that Nk is simple, then λ = lim∆t↓0 (∆t)−1 P(Nk((t, t + ∆t]) = 1) = E(dNk
t /dt),

which is the mean occurrence rate of events at any time instant t, thus justifying

the name intensity.

Furthermore, if the reduced measure Ği j(·) is absolutely continuous, then

the reduced form factorial product densities ϕi j (·) (i, j = a, b) exist, so that, in
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differential form, Ği j(d`) = ϕi j (`) d`. It is important to note that the factorial

product density function ϕi j (`) is not symmetric about zero unless i = j. Also,

the reduced form auto-covariance (when i = j) and cross-covariance (when i ,

j) density functions of N are well-defined:

ci j (`) ≡ ϕi j (`) − λiλ j (2.2)

for i, j = a, b.

The assumptions are summarized as follows:

Assumption (A2) The bivariate counting process N =(Na,Nb) is second-order sta-

tionary and that the second-order reduced product densities ϕi j (·) (i, j = a, b)

exist.

Analogous to time series modeling, there is a strict stationarity concept:

a bivariate process N =(Na,Nb) is strictly stationary if the joint distribution of

{N(B1 + u), . . . ,N(Br + u)} does not depend on u, for all bounded Borel sets Bi

on R2, u ∈ R2 and integers r ≥ 1. Provided that the second-order moments exist,

strict stationarity is stronger than second-order stationarity.

While the simple property is imposed on the pooled point process in as-

sumption (A1), second-order stationarity is required for the bivariate process

in assumption (A2). Suppose instead that only the pooled counting process is

assumed second-order stationary. It does not follow that the marginal counting

processes are second-order stationary too.21

21For instance, if N = Na + Nb is second-order stationary, and if we define Na
t =

N (∪i≥0(2i, 2i + 1] ∩ (0, t]) and Nb
t = Nt − Na

t , then Na and Nb are clearly not second-order sta-
tionary. The statement is still valid if second-order stationarity is replaced by strict stationarity.
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The assumption of second-order stationarity on N ensures that the mean and

variance of the test statistic (to be introduced in (2.13)) are finite under the null

hypothesis of no causality (in (2.11)). Nevertheless, it is possible to accommo-

date non-stationary point processes with time-varying unconditional intensities

by relaxing assumption (A2). See Appendix A.14 for the asymptotic theory of

the test for this case.

In order to show asymptotic normality I need to assume the existence of

fourth-order moments for each component process, as follows:

Assumption (A6) E
[
{Nk(B1)Nk(B2)Nk(B3)Nk(B4)}

]
< ∞ for k = a, b and for all

bounded Borel sets Bi on R+, i = 1, 2, 3, 4.

Fourth-order moment condition is typical for invoking central limit theo-

rems. In a related work, David (2008) imposes a much stronger assumption of

Brillinger-mixing, which essentially requires the existence of all moments of the

point process over bounded intervals.

Before proceeding, let me introduce another important concept: the condi-

tional intensity of a counting process:

Definition 2 Given a filtration22 G = (Gt)t≥0, the G−conditional intensity λ(t|Gt−) of

a univariate counting process N̆ =
(
N̆t

)
t≥0

is any G-measurable stochastic process such

that for any Borel set B and any Gt-measurable function Ct, the following condition is

satisfied:

E
[∫

B
CtdN̆t

]
= E

[∫
B

Ctλ(t|Gt−)dt
]
. (2.3)

22All filtrations in this chapter satisfy the usual conditions in Protter (2004).

25



It can be shown (Brémaud, 1981) that the G-conditional intensity λ(t|Gt−)

is unique almost surely if those λ(t|Gt−) that satisfy (2.3) are required to be G-

predictable. In the rest of the chapter, I will assume predictability for all condi-

tional intensity functions (see assumption (A3) at the end of this section).

Similar to unconditional intensity, we can interpret the conditional intensity

at time t of a simple counting process N̆ as the mean occurrence rate of events

given the history G just before time t, as λ(t|Gt−) = lim∆t↓0 (∆t)−1 P(N̆((t, t + ∆t]) >

0|Gt−) = lim∆t↓0 (∆t)−1 P(N̆((t, t + ∆t]) = 1|Gt−) = E(dN̆t/dt|Gt−), P-almost surely23,

where the second equality follows from (A1).

Let F = (F t)t≥0 be the natural filtration of the bivariate counting process N,

i.e. , and F k = (F k
t )t≥0 (k = a, b) be the natural filtration of Nk, so that Ft and

F k
t are the sigma fields generated by the processes N and Nk on [0, t], i.e. Ft =

σ{(Na
s ,N

b
s ), 0 ≤ s ≤ t} and F k

t = σ{Nk
s : s ∈ [0, t]}. Clearly, F = F a

∨ Fb. Let λk(t|Ft−)

be the F -conditional intensity of Nk
t , and define the error process by

ek
t := Nk

t −

∫ t

0
λk(s|Fs−)ds (2.4)

for k = a, b.

By Doob-Meyer decomposition, the error process ek
t is an F -martingale pro-

cess, in the sense that E
(
ek

t |Fs

)
= ek

s for all t > s ≥ 0. The integral Λt =∫ t

0
λk(s|Fs−)ds as a process is called the F -compensator of Nk

t which always ex-

ists by Doob-Meyer decomposition, but the existence of F -conditional intensity

λk(t|Ft−) is not guaranteed unless the compensator is absolutely continuous. For

later analyses, I will assume the existence of λk(t|Ft−) (see assumption (A3) at the

end of this section).
23In the rest of the chapter, all equalities involving conditional expectations hold in an almost

surely sense.
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I can express (2.4) in differential form:

dek
t = dNk

t − λ
k(t|Ft−)dt = dNk

t − E(dNk
t |Ft−)

for k = a, b. From the martingale property of ek
t , it is then clear that the differ-

ential dek
t is a mean-zero martingale process. In particular, E

(
dek

t |Ft−
)

= 0 for all

t > 0. In other words, based on the bivariate process historyFt− just before time t,

an econometrician can obtain the F -conditional intensities λa(t|Ft−) and λb(t|Ft−)

which are computable just before time t (recall that λk(t|Ft−) is F -predictable)

and give the best prediction of the bivariate counting process N at time t. Since

by (A1) the term λk(t|Ft−)dt becomes the conditional mean of dNk
t , the prediction

is the best in the mean square sense.

One may wonder whether it is possible to achieve equally accurate pre-

diction of Π with a reduced information set. For instance, can we predict

dNb
t equally well with its F b-conditional intensity λb(t|F b

t−), where λb(t|F b
t−)dt =

E(dNb
t |F

b
t−), instead of its F -conditional intensity λb(t|Ft−)? Through computing

the F b-conditional intensity, we attempt to predict the value of Nb solely based

on the history of Nb. Without using the history of Na, the prediction λb(t|F b
t−)dt

ignores the feedback or causal effect that shocks to Na in the past may have on

the future dynamics of Nb. One would thus expect the answer to the previous

question is no in general. Indeed, given thatΠ is in the filtered probability space

(Ω, P,F ), the error process

εb
t := Nb

t −

∫ t

0
λb(s|F b

s−)ds (2.5)

is no longer an F -martingale. However, εb
t is an F -martingale under one special

circumstance: when the F b- and F -conditional intensities

λb(t|F b
t−) = λb(t|Ft−)
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are the same for all t > 0. I am going to discuss this circumstance in depth in the

next section.

Let me summarize the assumptions in this section:

Assumption (A3) The F -conditional intensity λk(t|Ft−) and F k-conditional in-

tensity λk
t ≡ λ

k(t|F k
t−) of the counting process Nk

t exist and are predictable.

2.3 Granger Causality

In this section, I am going to discuss the concept of Granger causality in the

bivariate counting process set-up described in the previous section. Assume

(A1), (A2) and (A3) and the notations in the previous section. Then, for two

distinct marginal counting processes Na and Nb, we say that Na does not Granger-

cause Nb if the F -conditional intensity of Nb is identical to the F b-conditional

intensity of Nb. That is, for all t > s ≥ 0, P-almost surely,

E[dNb
t |Fs] = E[dNb

t |F
b
s ] (2.6)

A remarkable result, as proven by Florens and Fougere (1996, section 4, exam-

ple I), is the following equivalence statement in the context of simple counting

processes.

Theorem 3 If Na and Nb are simple counting processes, then the following four defini-

tions of Granger noncausality are equivalent:

1. Na does not weakly globally cause Nb, i.e. E[dNb
t |Fs] = E[dNb

t |F
b
s ], P-a.s. for all

s, t.
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2. Na does not strongly globally cause Nb, i.e. F b
t ⊥ Fs|F

b
s for all s, t.

3. Na does not weakly instantaneously cause Nb, i.e. Nb, which is an F b-semi-

martingale with decomposition dNb
t = dεb

t + E[dNb
t |F

b
t−], remains an F -semi-

martingale with the same decomposition.

4. Na does not strongly instantaneously cause Nb, i.e. any F b-semi-martingale with

decomposition remains an F -semi-martingale with the same decomposition.

According to the theorem, weakly global noncausality is equivalent to

weakly instantaneous noncausality, and hence testing for (2.6) is equivalent to

checking εb
t defined in (2.5) is an F -martingale process, or, checking dεb

t is an

F -martingale difference process:

E[dεb
t |Fs] = 0 (2.7)

for all 0 ≤ s < t.

If one is interested in testing for pairwise dependence only, then (2.7) implies

E
[
f
(
dεa

s
)

dεb
t

]
= 0 (2.8)

and

E
[
f
(
dεb

s

)
dεb

t

]
= 0 (2.9)

for all 0 ≤ s < t and any F a-measurable function f (·). However, since εb
t is

an F b-martingale by construction, condition (2.9) is automatically satisfied and

thus is not interesting from testing’s point of view as long as the conditional

intensity λb(t|F b
t−) is computed correctly.

There is a loss of generality to base a statistical test on (2.8) instead of (2.7), as

it would miss the alternatives in which a type b event is not Granger-caused by
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the occurrence (or non-occurrence) of any single type a event at a past instant,

but is Granger-caused by the occurrence (or non-occurrence) of multiple type a

events jointly at multiple past instants or over some past intervals.24

I can simplify the test condition (2.8) further. Due to the dichotomous nature

of dεa
t , it suffices to test

E
[
dεa

s dεb
t

]
= 0 (2.10)

for all 0 ≤ s < t, as justified by the following lemma.

Lemma 4 If Na and Nb are simple counting processes, then (2.8) and (2.10) are equiv-

alent.

Proof. The implication from (2.8) to (2.10) is trivial by taking f (·) to be the iden-

tity function. Now assuming that (2.10) holds, i.e. Cov(dεa
s , dε

b
t ) = 0. Given

that Na and Nb are simple, dNa
s |F

a
s− and dNb

t |F
b

t− are Bernoulli random variables

(with means λa(s|F a
s−)ds and λb(t|F b

t−)dt, respectively), and hence zero correlation

implies independence, i.e. for all measurable functions f (·) and g(·), we have

Cov
[
f (dεa

s ), g(dεb
t )

]
= 0. We thus obtain (2.8) by taking g(·) to be the identity

function.

Thanks to the simple property of point process assumed in (A1), two in-

novations dεa
s and dεb

t are pairwise cross-independent if they are not pairwise

cross-correlated by Lemma 4. In other words, a suitable linear measure of cross-

correlation between the residuals from two component processes would suffice
24One hypothetical example in default risk application is given as follows. Suppose I want to

detect whether corporate bankruptcies in industry a Granger-cause bankruptcies in industry b.
Suppose also that there were three consecutive bankruptcies in industry a at times s1, s2 and s3,
followed by a bankruptcy in industry b at time t (s1 < s2 < s3 < t). Each bankruptcy in industry a
alone would not be significant enough to influence the well-being of the companies in industry
b, but three industry a bankruptcies may jointly trigger an industry b bankruptcy. It is possible
that a test based on (2.8) can still pick up such a scenario, depending on the way the statistic
summarizes the information of (2.8) for all 0 ≤ si < t.
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to test for their pairwise cross-independence (both linear and nonlinear), as each

infinitesimal increment takes one out of two values almost surely. From test-

ing’s point of view, a continuous time framework justifies the simple property

of point processes (assumption (A1)) and hence allows for a simpler treatment

on the nonlinearity issue, as assumption (A1) gets rid of the possibility of non-

linear dependence on the infinitesimal level. Indeed, if a point process N̆ is

simple, then dN̆t can only take values zero (no jump at time t) or one (a jump

at time t), and so
(
dN̆t

)p
= dN̆t for any positive integers p. Without assumption

(A1), the test procedure would still be valid (to be introduced in section 2.4,

with appropriate adjustments to the mean and variance of the test statistic), but

it would just check for an implication of pairwise Granger noncausality, as the

equivalence of (2.8) and (2.10) would be lost.

Making sense of condition (2.10) requires a thorough understanding of the

conditional intensity concept and its relation to Granger causality. From Defini-

tion 2, it is crucial to specify the filtration with respect to which the conditional

intensity is adapted. The G-conditional intensity can be different depending

on the choice of the filtration G. If G = F = F a
∨ Fb, then the G-conditional in-

tensity is evaluated with respect to the history of the whole bivariate counting

process N. If instead G = F k, then it is evaluated with respect to the history of

the marginal point process Nk only.

From the definition of weakly instantaneous noncausality in Theorem 3,

Granger-noncausality for point processes is the property that the conditional

intensity is invariant to an enlargement of the conditioning set from the natural

filtration of the marginal process to that of the bivariate process. More specifi-
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cally, if the counting process Na does not Granger-cause Nb, then we have

E[dNb
t |Ft−] = E[dNb

t |F
b

t−]

for all t > 0, which conforms to the intuition of Granger causality that the pre-

dicted value of Nb
t given its history remains unchanged with or without the

additional information of the history of Na by time t. Condition (2.10), on the

other hand, means that any past innovation dεa
s = dNa

s − E[dNa
s |F

a
s−] of Na is in-

dependent of (not merely uncorrelated with, due to the Bernoulli nature of jump

sizes for simple point processes according to Lemma 4) the future innovation

dεb
t = dNb

t − E[dNb
t |F

b
t−] of Nb (t > s). This is exactly the implication of Granger

noncausality from Na to Nb, and except for those loss-of-generality cases dis-

cussed underneath (2.9), the two statements are equivalent.

Assuming (A2) and (A3), the reduced form cross covariance density function of

the innovations dεa
t and dεb

t is then well-defined, and is denoted by γ (`) dtd` =

E
(
dεa

t dεb
t+`

)
. The null hypothesis of interest can thus be written down formally

as follows:

H0 : γ (`) = 0 for all ` > 0 vs (2.11)

H1 : γ (`) , 0 for some ` > 0.

It is important to distinguish the reduced form cross-covariance density

function γ (`) of the innovations dεa
t and dεb

t from the cross-covariance density

function cab (`) of the counting process N = (Na,Nb), defined earlier in (2.2). The

key difference rests on the way the jumps are demeaned: the increment dNk
t

at time t is compared against the conditional mean λk(t|F k
t−)dt in γ (`), but it is

compared against the unconditional mean λkdt in cab (`). In this sense, the for-

mer γ (`) captures the dynamic feedback effect as reflected in the shocks of the
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component processes, but the latter cab (`) merely summarizes the static corre-

lation relationship between the jumps of component processes. Indeed, valu-

able information of Granger causality between component processes is only

contained in γ (`) (as argued earlier in this section) but not in cab (`). Previ-

ous research focused mostly on the large sample properties of estimators of the

static auto-covariance density function ckk (`) or cross-covariance density func-

tion cab (`). This chapter, however, is devoted to the analysis of the dynamic

cross-covariance density function γ (`). As we will see, the approach in getting

asymptotic properties of γ (`) is quite different. I will apply the martingale cen-

tral limit theorem - a dynamic version of the ordinary central limit theorem - to

derive the sampling distribution of a test statistic involving estimators of γ (`).

2.4 The statistic

The econometrician observes two event time sequences of a simple bivariate

stationary point process Π over the time horizon [0,T ], namely, 0 < τk
1 < τk

2 <

· · · < τk
Nk(T ) for k = a, b. This is the dataset required to calculate the test statistic

to be constructed in this section.

2.4.1 Nonparametric cross-covariance estimator

In this section, I am going to construct a statistic for testing condition (2.10)

from the data. One candidate for the lag ` sample cross-covariance γ (`) of the

innovations dεa
t and dεb

t is given by

Ĉ(`)d` =
1
T

∫ T

0
dε̂a

t dε̂b
t+`
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where dε̂k
t = dNk

t − λ̂
k
t dt (k = a, b) is the residual and λ̂k

t is some local estimator

of the F k-conditional intensity λk
t in (A3) (to be discussed in section 2.4.4). The

integration is done with respect to t. However, if the jumps of Nk are finite or

countable (which is the case for point processes satisfying (A2)), the product of

increments dNa
t dNb

t+` is zero almost everywhere except over a set of P-measure

zero, so that Ĉ(`) is inconsistent for γ (`). This suggests that some form of local

smoothing is necessary. The problem is analogous to the probability density

function estimation in which the empirical density estimator would be zero al-

most everywhere over the support if there were no smoothing. This motivates

the use of a kernel function K(·), with a bandwidth H which controls the degree

of smoothing applied to the sample cross-covariance estimator Ĉ(`) above. To

simplify notation, let KH(x) = K(x/H)/H. The corresponding kernel estimator is

given by

γ̂H(`) =
1
T

∫ T

0

∫ T

0
KH (t − s − `) dε̂a

s dε̂b
t (2.12)

=
1
T

∫ T

0

∫ T

0
KH (t − s − `)

(
dNa

s − λ̂
a
sds

) (
dNb

t − λ̂
b
t dt

)
.

The kernel estimator is the result of averaging the weighted products of in-

novations dε̂a
s and dε̂b

t over all possible pairs of time points (s, t). The kernel

KH(·) gives the heaviest weight to the product of innovations at the time differ-

ence t − s = `, and the weight becomes lighter as the time difference is further

away from `. The following integrability conditions are imposed on the kernel:

Assumption (A4a) The kernel function K(·) is symmetric around zero and sat-

isfies κ1 ≡
∫ ∞
−∞

K(u)du = 1, κ2 ≡
∫ ∞
−∞

K2(u)du < ∞, κ4 ≡
#

(−∞,∞) K(u)K(v)K(u +

w)K(v + w)dudvdw < ∞ and
∫ ∞
−∞

u2K(u)du < ∞.
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2.4.2 The statistic as L2 norm

An ideal test statistic for testing (2.11) would summarize appropriately all the

cross-covariances of residuals dε̂a
s and dε̂b

t over all 0 ≤ s < t. This problem is

similar to that of Haugh (1976) when he checked the independence of two time

series, but there are two important departures: here I am working with two

continuous time point processes instead of discrete time series, and I do not

assume any parametric models on the conditional means. To this end, I propose

a weighted integral of the squared sample cross-covariance function, defined as

follows:

Q ≡ ‖γ̂H‖2 ≡

∫
I
w(`)γ̂2

H(`)d`. (2.13)

where I ⊆ [−T,T ]. To test the null hypothesis in (2.11), the integration range is

set to be I = [0,T ].

Applying anL2 norm rather than anL1 norm on the sample cross-covariance

function γ̂H(`) is standard in the literature of discrete time serial correlation test.

If I decided to test (2.11) based on

‖γ̂H‖1 ≡

∫
I
w(`)γ̂H(`)d`

instead, it would lead to excessive type II error - the test would fail to reject

those DGP’s in which the true cross-covariance function γ (`) is significantly

away from zero for certain ` ∈ I but the weighted integral ‖γ̂H‖1 is close to zero

due to cancellation.

A test based on the test statistic Q in (2.13) is on the conservative side as

Q is an L2 norm.25 More specifically, the total causality effect from Na to Nb is

25In addition, the Q test has zero power against alternatives in which γ (`) , 0 for ` in some
sets of measure zero.
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the aggregate of the weighted squared contribution from each individual type

a-type b event pair (see Figure A.2). However, less conservative test can be

constructed with other choices of norms (e.g. Hellinger and Kullback-Leibler

distance) as in Hong (1996a), and the methodology in this chapter is still valid

with appropriate adjustment.

2.4.3 Weighting function

I assume that

Assumption (A5) The weighting function w(`) is integrable over (−∞,∞):∫ ∞

−∞

w(`)d` < ∞.

The motivations behind the introduction of the weighting function w(`) on

lags are in a similar spirit as the test of serial correlation proposed by Hong

(1996a) in the discrete time series context. The economic motivation is that the

contagious effect from one process to another diminishes over time, as mani-

fested by the property that the weighting function discounts more heavily the

sample cross covariance as the time lag increases. From the econometric point

of view, by choosing a weighting function whose support covers all possible

lags in I ⊆ [−T,T ] , the statistic Q can deliver a consistent test to (2.11) against

all pairwise cross dependence of the two processes as it summarizes their cross

covariances over all lags in an L2 norm, whereas the statistic with a truncated

weighting function over a fixed lag window I = [c1, c2] cannot. From the sta-

tistical point of view, a weighting function that satisfies (A5) is a crucial device

for controlling the variation of the integrated squared cross-covariance function
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over an expanding lag interval I = [0,T ], so that Q enjoys asymptotic normal-

ity. It can be shown that the asymptotic normality property would break down

without an appropriate weighting function w(`) that satisfies (A5).

2.4.4 Conditional intensity estimator

In this section, I will discuss how to estimate the time-varying F k-conditional

intensity nonparametrically. I employ the following Nadaraya-Watson estimator

for the F k-conditional intensity λk
t ≡ λ

k(t|F k
t−),

λ̂k
t =

∫ T

0
K̊M (t − u) dNk

u . (2.14)

While the cross-covariance estimator γ̂H(`) is smoothed by the kernel K(·) with

bandwidth H, the conditional intensity estimator is smoothed by the kernel K̊(·)

with bandwidth M. The kernel K̊(·) is assumed to satisfy the following:

Assumption (A4b) The kernel function K̊(·) is symmetric around zero and sat-

isfies κ̊1 ≡
∫ ∞
−∞

K̊(u)du = 1, κ̊2 ≡
∫ ∞
−∞

K̊2(u)du < ∞, κ̊4 ≡
#

(−∞,∞) K̊(u)K̊(v)K̊(u +

w)K̊(v + w)dudvdw < ∞ and
∫ ∞
−∞

u2K̊(u)du < ∞.

The motivation of (2.14) comes from estimating the conditional mean of dNk
t

by a nonparametric local regression. Indeed, the Nadaraya-Watson estimator is

the local constant least square estimator of E(dNk
t |F

k
t−) around time t weighted

by K̊M(·). (As usual, I denote K̊M(`) = K̊(`/M)/M.) By (A4b) it follows that∫ T

0
K̊M (t − u) du = 1 + o(1) as M/T → 0 and thus the Nadaraya-Watson estimator

becomes (2.14). The estimator (2.14) implies that the conditional intensity takes

a constant value over a local window, but one may readily extend it to a local
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linear or local polynomial estimator. Some candidates for regressors include the

backward recurrence time t − tk
Nk

t
of the marginal process Nk, and the backward

recurrence time t − tNt of the pooled process N.

Another way to estimate the F k-conditional intensity is by fitting a paramet-

ric conditional intensity model on each component point process. For k = a, b,

let θk ∈ Rdk be the vector of parameters of the F k-conditional intensity λk
t , which

is modeled by

λk
t ≡ λ

k
(
t; θk

)
for t ∈ [0,∞). Each component model is estimated by some parametric model

estimation techniques (e.g. MLE, GMM). The estimator θk converges to θk at the

typical parametric convergence rate of T−1/2 (or equivalently
(
nk

)−1/2
=

(
Nk

T

)−1/2
),

which is faster than the nonparametric rate of M−1/2.

An advantage of parametric modeling is that a-priori dependence structure

across the marginal point processes may be imposed. With the parametric speci-

fications of the conditional intensities, the result of the nonparametric test based

on Q in (2.13) would then detect the Granger causal feedback that is not ex-

plained by the parametric model. For instance, common seasonality S (t) (de-

terministic) and covariates X(t) (random and observable) may be introduced,

as well as instantaneous latent factors η(t) (random but unobservable) affecting

both point processes, by setting λk
(
t; θk

)
= exp{S (t) + X(t) + η(t)}. This approach

can be readily extended to a semi-parametric setting (in Cox’s sense) by cou-

pling a parametric conditional intensity model with a nonparametric estimator.
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2.4.5 Computation of γ̂H(`)

To implement the test, it is important to compute the test statistic Q efficiently.

From the definition, there are three layers of integrations to be computed: the

first layer is the weighted integration with respect to different lags `, a second

layer involves two integrations with respect to the component point processes

in the cross-covariance function estimator γ̂H(`), and a third layer is a single

integration with respect to each component process inside the F k-conditional

intensity estimator λ̂k
t . The first layer of integration will be evaluated numer-

ically, but it is possible to reduce the second and third layers of integrations

to summations over marked event times in the case of Gaussian kernels, thus

simplifying a lot the computation of γ̂H(`) and hence Q. Therefore, I make the

following assumption:

Assumption (A4d) The kernels K(x), K̊(x) and K̈(x) are all standard Gaussian

kernels. That is: K(x) = K̊(x) = K̈(x) = (2π)−1/2 exp
(
−x2/2

)
.

Theorem 5 Under assumptions (A1-3, 4a, 4b, 4d), the cross-covariance function esti-

mator γ̂H(`) defined in (2.12) and (2.14) is given by

γ̂H(`) = 1
T

∑Na
T

i=1

∑Nb
T

j=1

[
1
H K

(
tbj−tai −`

H

)
− 2
√

H2+M2
K

(
tbj−tai −`
√

H2+M2

)
+ 1
√

H2+2M2
K

(
tbj−tai −`
√

H2+2M2

)]
.

2.4.6 Consistency of conditional intensity estimator

Unlike traditional time series asymptotic theories in which data points are sep-

arated by a fixed (but possibly irregular) time lag in an expanding observation

window [0,T ] (scheme 1), consistent estimation of moments of point processes

39



requires a fixed observation window [0,T0] in which events grow in number

and are increasingly packed (scheme 2). The details of the two schemes are laid

out in Table A.1.

As we will see shortly, the asymptotic mechanism of scheme 2 is crucial for

consistent estimation of the first and second order moments, including the F k-

conditional intensity functions λk
t for k = a, b, the auto- and cross-covariance

density functions ci j (·) of N (for i, j = a, b), as well as the cross-covariance den-

sity function γ (·) of the innovation processes dεk
t for k = a, b. However, the lim-

iting processes of scheme 2 would inadvertently distort various moments of N.

For instance, the F k-conditional intensity λk
t will diverge to infinity as the num-

ber of observed events nk = Nk(T0) in a finite observation window [0,T0] goes

to infinity. In contrast, under traditional time series asymptotics (scheme 1) as

T → ∞, the moment features of N are maintained as the event times are fixed

with respect to T , but all moment estimators are doomed to be pointwise incon-

sistent since new information is only added to the right of the process (rather

than everywhere over the observation window) as T → ∞.

Let us take the estimation of F k-conditional intensity function λk
t as an ex-

ample. At first sight, scheme 1 is preferable because the spacing between events

is fixed relative to the sample size and we want the conditional intensity λk
t at

time t to be invariant to the sample size in the limit. However, the estimated

F k-conditional intensity is not pointwise consistent under scheme 1’s asymp-

totics since there are only a fixed and finite number of observations around time

t. On the other hand, under scheme 2’s asymptotics, the number of observa-

tions around any time t increases as the sample grows, thus ensuring consistent

estimation of λk
t , but as events get more and more crowded in a local window
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around time t, the F k-conditional intensity λk
t diverges to infinity. 26

How can we solve the above dilemma? Knowing that there is no hope to

estimate λk
t consistently at each time t, let us stick to scheme 2, and estimate the

moment properties of a rescaled counting process Ñv = (Ña
v , Ñ

b
v ),where

Ñk
v :=

Nk
Tv

T
(2.15)

for k = a, b and v ∈ [0, 1] (a fixed interval, with T0 = 1). The stationarity property

of Ñ and the Bernoulli nature of the increments of the pooled process Ñ = Ña+Ñb

are preserved.27 The time change acts as a bridge between the two schemes -

the asymptotics of original process N is governed by scheme 1, while that of the

rescaled process Ñ is governed by scheme 2; and the two schemes are equivalent

to one another after rescaling by 1/T . Indeed, it is easily seen, by a change of

variable t = Tv, that the conditional intensities of Ñk
v and Nk

Tv are identical:

λk
Tv = lim

∆t↓0

1
∆t

E
(
Nk

Tv+∆t − Nk
Tv|F

k
Tv−

)
= lim

∆v↓0

1
T∆v

E
(
Nk

T (v+∆v) − Nk
Tv|F

k
Tv−

)
= lim

∆v↓0

1
∆v

E
(
Ñk

v+∆v − Ñk
v |F̃

k
v−

)
=: λ̃k

v, (2.16)

where I denoted the natural filtration of Ñk by F̃ k and the F̃ k-conditional inten-

sity function of Ñk
v by λ̃k

v on the last line.

If the conditional intensity λ̃k
v of the rescaled point process Ñk

v is continuous

and is an unknown but deterministic function, then it can be consistently esti-

mated for each v ∈ [0, 1]. In the same vein, other second-order moments of Ñ are

well-defined and can be consistently estimated, including the (auto- and cross-)
26Note the similarity of the problem to probability density function estimation on a bounded

support.
27Strictly speaking, the pooled process Ñ of Ñ is no longer simple because the increment dÑt

takes values of either zero or 1/T (instead of 1) almost surely, but the asymptotic theory of the
test statistic on Ñ only requires that the increments dÑk

t are Bernoulli distributed with mean λk
t dt.
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covariance density functions c̃i j (·) of Ñ (for i, j = a, b) and the cross-covariance

density function γ̃ (·) of the innovation processes dε̃k
v := dÑk

v − λ̃
k
vdv for k = a, b.

Specifically, it can be shown that

γ̃ (σ) = γ (Tσ) (2.17)

and c̃i j (σ) = ci j (Tσ) for i, j = a, b, and consistent estimation is possible for fixed

σ ∈ [0, 1].

To show the consistency and asymptotic normality of the conditional inten-

sity kernel estimator λ̂k
Tv, the following assumption is imposed:

Assumption (A7) The rescaled counting process Ñk
u ≡ Nk

Tu/T (with natural fil-

tration F̃ k) has an F̃ k-conditional intensity function λ̃k
u, which is twice con-

tinuously differentiable with respect to u, and is unobservable but deter-

ministic.

Theorem 6 Given that a bivariate counting process N satisfies assumptions (A1-

3,4a,4b,7) and is observed over [0,T ]. Let λ̂k
t (k = a, b) be the F k-conditional in-

tensity kernel estimator of the component process Nk defined in (2.14). Assume that

M5/T 4 → 0 as T → ∞, M → ∞ and M/T → 0. Then, for any fixed v ∈ [0, 1], the

kernel estimator λ̂k
Tv converges in mean squares to the conditional intensity λk

Tv, i.e.

E[
(
λ̂k

Tv − λ
k
Tv

)2
]→ 0,

and the normalized difference

ξk
v :=

√
M

 λ̂
k
Tv − λ

k
Tv√

λk
Tv

 (2.18)

converges to a normal distribution with mean 0 and variance κ̊2 =
∫ ∞
−∞

K̊(x)dx, as T →

∞, M → ∞ and M/T → 0.
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By Theorem 6, it follows that λ̂k
Tv is mean-squared consistent and that in the

limit λ̂k
Tv − λ

k
Tv = OP(M−1/2) for k = a, b.

There is a corresponding kernel estimator of the cross-covariance function

γ̃h (·) of the innovations of the rescaled point process defined in (2.15). With an

appropriate adjustment to the bandwidth, by setting the new bandwidth after

rescaling H to h = H/T , I can reduce it to γ̂H(`). For a fixed σ ∈ [0, 1],

γ̂H(Tσ) =
1
T

∫ T

0

∫ T

0
KH (t − s − Tσ)

(
dNa

s − λ̂
a
sds

) (
dNb

t − λ̂
b
t dt

)
=

1
T

∫ 1

0

∫ 1

0
KH (T (v − u − σ))

(
dNa

Tu − λ̂
a
TuTdu

) (
dNb

Tv − λ̂
b
TvTdv

)
=

T 2

T

∫ 1

0

∫ 1

0

1
H

K
(
v − u − σ

H/T

) (
dÑa

u −
̂̃λa

udu
) (

dÑb
v −

̂̃λb

vdv
)

=

∫ 1

0

∫ 1

0
Kh (v − u − σ) d̂ε̃

a
ud̂ε̃

b
v =: ̂̃γh (σ) .

For a fixed lagσ ∈ [0, 1], the kernel cross-covariance estimator ̂̃γh (σ) consistently

estimates γ̃ (σ) as nk = Ñk(1)→ ∞, h→ 0 and nkh→ ∞ for k = a, b.

The statistic Q can thus be expressed in terms of the squared sample cross-

covariance function of the rescaled point process defined in (2.15) with rescaled

bandwidths. Assuming that the weighting function is another kernel with

bandwidth B, i.e. w(`) = wB (`), I can rewrite Q into

Q =

∫
I
wB(`)γ̂2

H(`)d`

= T
∫

I/T
wB(Tσ)γ̂2

H(Tσ)dσ

=

∫
I/T

wb(σ)̂γ̃
2
h(σ)dσ,

where b = B/T and h = H/T .
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2.4.7 Simplified Statistic

Another statistic that deserves our study is

Qs =
1

T 2

∫
I

∫
J

wB (`) dNa
s dNb

s+`.

where I ⊆ [−T,T ] and J = [−`,T − `] ∩ [0,T ] are the ranges of integration with

respect to ` and s, respectively. In fact, this statistic is the continuous version of

the statistic of Cox and Lewis (1972), whose asymptotic distribution was derived

by Brillinger (1976). Both statistics find their root in the serial correlation statistic

for univariate stationary point process (Cox, 1965). Instead of the continuous

weighting function w (`), they essentially considered a discrete set of weights on

the product increments of the counting processes at a prespecified grid of lags,

which are separated wide enough to guarantee the independence of the product

increments when summed together.

To quantify how much we lose with the simplified statistic, let us do a com-

parison between Qs and Q. If the pooled point process is simple (assumption

(A1)), then the statistic Qs is equal to, almost surely,

Qs =
1

T 2

∫
I

∫
J

wB (`)
(
dε̂a

s
)2

(
dε̂b

s+`

)2
,

which is the weighted integral of the squared product of residuals.28 On the

other hand, observe that there are two levels of smoothing in Q: the sample

cross covariance γ̂H(`) with kernel function KH(·) which smooths the cross prod-

uct increments dε̂a
s dε̂b

t around the time difference t − s = `, as well as the weight-

ing function wB(`) which smooths the squared sample cross-covariance function

around lag ` = 0. Suppose that B is large relative to H in the limit, such that

28This follows from (A.5) in the Appendix.
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H = o(B) as B → ∞. Then, the smoothing effect is dominated by wB(`). Indeed,

as B→ ∞, the following approximation holds

wB(`)KH (t1 − s1 − `) KH (t2 − s2 − `) = wB(`)δ`(t1 − s1)δ`(t2 − s2) + o(1)

where δ`(·) is the Dirac delta function at `. Hence, the difference Q−Qs becomes

Q − Qs =

∫
I
wB(`)γ̂2

H(`)d` − Qs

= 1
T 2H2

∫
I

&
(0,T ]4

wB(`)K
(

t1−s1−`
H

)
K

(
t2−s2−`

H

)
dε̂a

s1
dε̂a

s2
dε̂b

t1dε̂
b
t2d` − Qs

= 1
T 2

∫
I

"
(0,T ]4

wB(`)dε̂a
s1

dε̂a
s2

dε̂b
s1+`dε̂

b
s2+`d` − Qs + oP (1)

= 1
T 2

∫
I

"
(0,T ]2,s1,s2

wB(`)dε̂a
s1

dε̂a
s2

dε̂b
s1+`dε̂

b
s2+`d` + oP (1) . (2.19)

where in getting the second-to-last line, the quadruple integrations over

{(s1, s2, t1, t2) ∈ (0,T ]4} collapse to the double integrations over {(s1, s2, s1 + `, s2 +

`) : s1, s2 ∈ (0,T ]}.

Indeed, computing Qs is a lot simpler than Q because there is no need to esti-

mate conditional intensities. However, if I test the hypothesis (2.11) based on the

statistic Qs instead of Q, I will have to pay the price of potentially missing some

alternatives - for example, those cases in which the cross correlations alternate

in signs as the lag increases, in such a way that the integrated cross-correlation∫
I
γ (`) d` is close to zero, but the individual γ (`) are not. Nevertheless, such

kind of alternatives is not very common at least in our applications in default

risk and high frequency finance, where the feedback from one marginal process

to another is usually observed to be positively persistent, and the positive cross

correlation gradually dies down as the time lag increases. In terms of computa-

tion, the statistic Qs is much less complicated than Q since it is not necessary to

estimate the sample cross covariance function γ̂H (`) and the conditional inten-

sities of the marginal processes λ̂k
t ; thus two bandwidths (M and H) are saved.
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The benefit of this simplification is highlighted in the simulation study where

the size performance of Qs stands out from its counterpart Q.29

The mean and variance of Qs are given in the following theorem. The tech-

niques involved in the derivation are similar to those for Q.

Let us recall that in section 2.2, the second-order reduced form factorial

product density of Nk (assumed to exist in assumption (A2)) was defined by

ϕkk(u)dtdu := E
(
dNk

t dNk
t+u

)
for u , 0 and ϕkk(0)dt = E

(
dNk

t

)2
= E

(
dNk

t

)
= λkdt.

Note that there is a discontinuity point at u = 0 as limu→0 ϕ
kk(u) =

(
λk

)2
, ϕkk(0).

The reduced unconditional auto-covariance density function can then be ex-

pressed into ckk(u)dtdu := E
(
dNk

t − λ
kdt)(dNk

t+u − λ
kdu

)
= [ϕkk(u) −

(
λk

)2
]dtdu.

Theorem 7 Let I ⊆ [−T,T ] and Ji = [−`i,T − `i] ∩ [0,T ] for i = 1, 2. Under assump-

tions (A1-3, 4a,b and 4d) and the null hypothesis,

E(Qs) =
λaλb

T

∫
I
wB (`)

(
1 −
|`|

T

)
d`.

With no autocorrelations:

Var(Qs) =
λaλb

T 3

∫
I
w2

B (`)
(
1 −
|`|

T

)
d`.

29There are two bandwidths for the simplified statistic: one for the weighting function and
the other for the nonparametric estimator of the autocovariance function. We will show in
simulations that for simple bivariate Poisson process and for bivariate point process showing
mild autocorrelations, the empirical rejection rate (size) of the nonparametric test is stable over
a wide range of bandwidths that satisfy the assumptions stipulated in the asymptotic theory of
the statistic. When autocorrelation is high, the size is still close to the nominal level for some
combinations of the bandwidths of the weighting function and the autocovariance estimators.
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With autocorrelations:

Var(Qs) = 1
T 4

"
I2

∫
J2

∫
J1

wB (`1) wB (`2) caa(s2 − s1)cbb(s2 − s1 + `2 − `1)ds1ds2d`1d`2

+
(λb)2

T 4

"
I2

∫
J2

∫
J1

wB (`1) wB (`2) caa(s2 − s1)ds1ds2d`1d`2

+
(λa)2

T 4

"
I2

∫
J2

∫
J1

wB (`1) wB (`2) cbb(s2 − s1 + `2 − `1)ds1ds2d`1d`2.

If I = [0,T ] and B = o(T ) as T → ∞, then (with autocorrelations)

Var(Qs) ≈ 2
T 3

[∫ T

0
W2(u)du

∫ T

−T
caa (v) cbb (v + u) dv +

(
λb

)2
ω1

∫ T

0
caa(v)dv

+ (λa)2 ω1

∫ T

0
cbb(v)dv

]
, (2.20)

where ω1 =
∫ T

0
w (`)

(
1 − `

T

)
d` andW2(u) =

∫ T

u
w (` − u) w (`)

(
1 − `

T

)
d`.

In practice, the mean and variance can be consistently estimated with the

following replacements. For k = a, b:

(i) replace the unconditional intensity λk by the estimator λ̂k = Nk/T , and

(ii) replace the unconditional auto-covariance density ckk(`) by the kernel es-

timator:

ĉkk
Rk(`) =

1
T

∫ T

0

∫ T

0
K̈Rk (t − s − `)

(
dNk

s − λ̂
kds

) (
dNk

t − λ̂
kdt

)
= 1

T

∑Nk
T

i=1

∑Nk
T

j=1K̈Rk

(
tk

j − tk
i − `

)
−

(
1 − |`|T

) (
λ̂k

)2
+ o(1), (2.21)

where the last equality holds if Rk/T → 0 as T → ∞. The proof of (2.21) will be

given in Appendix A.7, which requires that K̈(·) satisfy the following assump-

tion:

Assumption (A4c) The kernel function K̈(·) is symmetric around zero and sat-

isfies κ̈1 ≡
∫ ∞
−∞

K̈(u)du = 1, κ̈2 ≡
∫ ∞
−∞

K̈2(u)du < ∞, κ̈4 ≡
#

(−∞,∞) K̈(u)K̈(v)K̈(u +

w)K̈(v + w)dudvdw < ∞ and
∫ ∞
−∞

u2K̈(u)du < ∞.
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2.5 Asymptotic Theory

2.5.1 Asymptotic Normality under the Null

Recall from the definition that the test statistic Q is the weighted integral of

squared sample cross-covariance function between the residuals of the compo-

nent processes. However, the residuals dε̂k
t do not form a martingale difference

process as the counting process increment dNk
t is demeaned by its estimated

conditional mean λ̂k
t dt instead of the true conditional mean λk

t dt. According to

the definition of εk
t , the innovations dεk

t = dNk
t −λ

k
t dt form a martingale difference

process, but not the residuals dε̂k
t = dNk

t − λ̂
k
t dt.

To facilitate the proof, it is more convenient to separate the analysis of the

estimation error of conditional intensity estimators λ̂k
t from that of asymptotic

distribution of the test statistic. To this end, I define the hypothetical version of

Q as follows

Q̃ =

∫
I
wB(`)γ2

H(`)d`,

where γH(`) is the hypothetical cross-covariance kernel estimator between the

innovations dεa
s and dεb

t :

γH(`) =
1
T

∫ T

0

∫ T

0
KH (t − s − `) dεa

s dεb
t

=
1
T

∫ T

0

∫ T

0
KH (t − s − `)

(
dNa

s − λ
a
sds

) (
dNb

t − λ
b
t dt

)
.

In the first stage of the proof, I will prove the asymptotic normality of the hy-

pothetical test statistic Q̃. In the second stage (to be covered in section 2.5.2),

I will examine the conditions under which the approximation of Q̃ by Q yields

an asymptotically negligible error, so that Q is also asymptotically normally dis-

tributed.

48



Theorem 8 Under assumptions (A1-3,4a,5,6) and the null hypothesis (2.11), the nor-

malized test statistic

J =
Q̃ − E(Q̃)√

Var(Q̃)
(2.22)

converges in distribution to a standard normal random variable as T → ∞, H → ∞

and H/T → 0, where the mean and variance of Q̃ are given as follows:

E(Q̃) = 1
T Hλ

aλbκ2

∫
I
wB(`)

(
1 − |`|T

)
d` + o

(
1

T H

)
,

Var(Q̃)

= 2
T 2H κ4

∫
I
w2

B(`)
∫ T−|`|

−(T−|`|)

(
1 − |r|T −

|`|
T

) [(
λa)2

+ caa (r)
] [(
λb

)2
+ caa (r)

]
drd` + o

(
1

T 2H

)
=

2(λaλb)2

T 2H κ4

∫
I
w2

B(`)
(
1 − |`|T

)2
d`

+ 2
T 2H κ4

∫
I
w2

B(`)
∫ T−|`|

−(T−|`|)

(
1 − |r|T −

|`|
T

)
f (r) drd` + o

(
1

T 2H

)
,

where f (x) = (λa)2 cbb (r) +
(
λb

)2
caa (r) dr + caa (r) cbb (r).

If Na and Nb do not exhibit auto-correlations, then ckk(u) ≡ 0 for k = a, b and

hence the variance reduces to the first term in the last equality.

2.5.2 Effect of Estimation

In this section, I discuss the effect of estimating the unconditional and the F k-

conditional intensities on the asymptotic distribution of the statistic J. I want to

argue that, with the right convergence rates of the bandwidths, the asymptotic

distribution of J is unaffected by both estimations.

In practice, the statistic J is infeasible because (i) Q̃ is a function of the con-

ditional intensities λa
t and λb

t ; and (ii) both E(Q) = E(Q̃) and Var(Q) = Var(Q̃)
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contain the unconditional intensities λa and λb. As discussed in section 2.4.4,

one way to estimate the unknown conditional intensities λk
t (for k = a, b) is by

means of the nonparametric kernel estimator

λ̂k
t =

∫ T

0

1
M K̊

(
t−u
M

)
dNk

u ,

On the other hand, by stationarity of N (assumption (A2)) the unconditional

intensities λk (for k = a, b) are consistently estimated by

λ̂k =
Nk

T
T .

Recall that Q is the same as Q̃ after replacing λk
t by λ̂k

t . Let Ê(Q) and ̂Var(Q) be

the same as E(Q) and Var(Q) after replacing λk by λ̂k and ckk(`) by ĉkk
Rk(`).

Theorem 9 Suppose that H = o(M) as M → ∞, and that M5/T 4 → 0 and
(
Rk

)5
/T 4 →

0 as T → ∞. Then, under assumptions (A4b,4c) and the assumptions in Theorems 6

and 8, the statistic Ĵ defined by

Ĵ =
Q − Ê(Q)√
̂Var(Q)

converges in distribution to a standard normal random variable as T → ∞, H → ∞

and H/T → 0.

As discussed in section 2.4.4, the conditional intensity λk
t of each component

process Nk can also be modeled by a parametric model. Since the estimator

of the parameter vector has the typical parametric convergence rate of T−1/2 or(
Nk

T

)−1/2
(which is faster than the nonparametric rate of M−1/2), the asymptotic

bandwidth condition in Theorem 9, i.e. H = o(M) as M → ∞ becomes redun-

dant, and thus the result of Theorem 9 is still valid even without such condition.

Similar remark applies to the auto-covariance density function ckk(`).
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2.5.3 Asymptotic Local Power

To evaluate the local power of the Q test, I consider the following sequence of

alternative hypotheses

HaT : γ(`) = aT

√
λaλbρ(`),

where aTρ(`) is the cross-correlation function between dεa
s and dεb

s+`, and aT is a

sequence of numbers so that aT → ∞ and aT = o(T ) as T → ∞. The function

ρ(`), the cross-correlation function before inflated by the factor aT , is required to

be square-integrable over R. The goal is to determine the correct rate a∗T with

which the test based on Q has asymptotic local power. For notational simplicity,

I only discuss the case where Na and Nb do not exhibit auto-correlations. The

result corresponding to autocorrelated point processes can be stated similarly.

The following assumption is needed:

Assumption (A8) The joint cumulant c22(`1, `2, `3) of {dεa
s , dε

a
s+`1

, dεb
s+`2

, dεb
s+`3
} is

of order o(a2
T ).

Theorem 10 Suppose that assumption (A8) and the assumptions in Theorem 8 hold.

Suppose further that H = o(B) as B→ ∞. Then, under Ha∗T with a∗T = H1/4, the statistic

J−µ(K,wB) (J as defined in (A.20)) converges in distribution to N(0, 1) as H → ∞ and

H = o(T ) as T → ∞, where

µ(K,wB) =
κ2

∫
I
wB(`)

(
1 − |`|T

)
ρ̆2(`)d`√

2κ4

∫
I
w2

B(`)
(
1 − |`|T

)2
d`

and

ρ̆2(`) := ρ2(`) +

∫ T

−T

(
1 − |u|T

)
ρ
(
` + u

T

)
ρ
(
` − u

T

)
du.
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According to Theorem 10, a test based on Q picks up equivalent asymp-

totic efficiency against the sequence of Pitman’s alternatives in which the cross-

correlation of innovations (for each lag `) grows at the rate of a∗T = H1/4 as the

sample size T tends to infinity. It is important to note, after mapping the sam-

pling period from [0,T ] to [0, 1] as in (2.15), that the cross-covariance under HaT

becomes γ̃(σ) = γ(Tσ) = aT

√
λaλbρ(Tσ) = ãT

√
λaλbρ̃(σ) by (2.17), where ãT and

ρ̃(σ) are the rate and cross-correlation of innovations after rescaling. As a result,

the corresponding rate that maintains the asymptotic efficiency of the test un-

der the new scale is ã∗T = H1/4/T ν, where ν is the rate of decay of the uninflated

cross-correlation function ρ: ρ(`) = O(`−v) as ` → ∞. The rate ã∗T generally goes

to zero for bivariate point processes exhibiting short and long memory cross-

correlation dynamics, as long as ν ≥ 1/4.

2.6 Bandwidth Choices

According to assumption (A5), the weighting function w(`) in the test statistic

Q is required to be integrable. In practice, it is natural to choose a function

that decreases with the absolute time lag |`| to reflect the decaying economic

significance of the feedback relationship over time (as discussed in section 2.4.3).

Having this economic motivation in mind, I suppose in this section, without loss

of generality, that the weighting function is a kernel function with bandwidth B,

i.e. w (`) ≡ wB (`) = w (`/B) /B. The bandwidth B is responsible for discounting

the importance of the feedback strength as represented by the squared cross-

covariance of innovations: the further away the time lag ` is from zero, the

smaller is the weight wB (`).
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2.6.1 Case 1: B� H � T

Suppose B = o(H) as H → ∞. This happens when B is kept fixed, or when

B → ∞ but B/H → 0. Since w(`) has been assumed to be a fixed function before

this section, the asymptotic result in Theorem 8 remains valid. Nevertheless, I

can simplify the result which is summarized in the following corollary.

Corollary 11 Let QG ≡ T H
λaλb Q. Suppose that B = o(H) as H → ∞. Suppose further

that I = [0,T ]. Then, with the assumptions in Theorem 8 and under the null hypothesis

(2.11), the statistic

MG ≡
QG −CG
√

2DG

converges in distribution to a standard normal random variable as T → ∞, and H/T →

0 as H → ∞, where

CG = κ2

and

DG = 3κ4.

2.6.2 Case 2: H � B� T

Suppose instead that B → ∞ and H = o(B) as H → ∞. In this case, the smooth-

ing behavior of the covariance estimator is dominated by that of the weighting

function w (`). As it turns out, the normalized statistic (denoted by MH in the

following corollary) is equivalent to the continuous analog of Hong’s (1996a)

test applied to testing for cross-correlation between two time series.
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Corollary 12 Let QH ≡ T B
λaλb Q. Suppose that B → ∞ and that H = o(B) as H → ∞.

Suppose further that I = [0,T ]. Then, with the assumptions in Theorem 8 and under

the null hypothesis (2.11), the statistic

MH ≡
QH −CH
√

2DH

converges in distribution to a standard normal random variable as T → ∞, and B/T →

0 as B→ ∞, where

CH =

∫ T

0
w

(
`
B

) (
1 − `

T

)
d`

and

DH =

∫ T

0
w2

(
`
B

) (
1 − `

T

)2
d`.

2.6.3 Optimal Bandwidths

Choosing optimal bandwidths is an important and challenging task in non-

parametric analyses. For nonparametric estimation problems, optimal band-

widths are chosen to minimize the mean squared error (MSE), and automated

procedures that yield data-driven bandwidths are available and well-studied

for numerous statistical models. However, optimal bandwidth selection re-

mains a relatively unknown territory for nonparametric hypothesis testing

problems. In the first in-depth analysis of how to choose the optimal bandwidth

of the heteroskedasticity-autocorrelation consistent estimator for testing pur-

pose, Sun, Phillips and Jin (2008) proposed to minimize a loss function which

is a weighted average of the probabilities of type I and II error. Their theoret-

ical comparison revealed that the bandwidth optimal for testing has a smaller

asymptotic order (O(T 1/3)) than the MSE-optimal bandwidth, which is typically

O(T 1/5). Although the focus is on statistical inference of the simple location
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model, their result could serve as a guide to the present problem of nonpara-

metric testing for Granger causality.

2.7 Simulations

2.7.1 Size and Power of Q

In the first set of size experiments, the data generating process (DGP) is set to be

a bivariate Poisson process which consists of two independent marginal Poisson

processes with rate 0.1. The number of simulation runs is 5000. The weighting

function of Q is chosen to be a Gaussian kernel with bandwidth B = 10. I con-

sider four different sample lengths (T = 500, 1000, 1500, 2000) with correspond-

ing bandwidths (M = 60, 75, 100, 120) for the nonparametric conditional inten-

sity estimators in such a way that the ratio M/T gradually diminishes. Figure 2

shows the plots of the empirical rejection rates against different bandwidths H

of the sample cross-covariance estimator for the four different sample lengths

we considered. The simulation result reveals that in finite sample the test is

generally undersized at the 0.1 nominal level and oversized at the 0.05 nominal

level, but the performance improves with sample length.

In the second set of experiments, the DGP is set to a more realistic one: a

bivariate exponential Hawkes model (see section 2.1.4) with parameters

µ=

(
0.0277

0.0512

)
,α=

(
0.0086 0.0017

0 or 0.0182 0.0896

)
, β=

(
0.0254 0.0507

0.0254 0.1473

)
, (2.23)

which were estimated by fitting the model to a high frequency TAQ dataset of

PG traded in NYSE on a randomly chosen day (1997/8/8) and period (9:45am
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to 10:15am). For the size experiments, the parameter α21 was intentionally set to

zero so that there is no causal relation from the first process to the second under

the DGP, and we are interested in testing the existence of causality from the first

process to the second only (i.e. by setting the integration range of the statistic Q

to I = [0,T ]). The number of simulation runs is 10000 with a fixed sample length

1800 (in seconds). The bandwidth of the sample cross covariance estimator is

fixed at H = 3. A Gaussian kernel with bandwidths B = 2 and 20 respectively

is chosen for the weighting function. For the power experiments, I set α21 back

to the original estimate 0.0182. There is an increase, albeit mild, in the rejection

rate compared to the size experiments. Figure 3 shows the plots of the rejection

rates against different bandwidths M of the nonparametric conditional intensity

estimators. A first observation, after comparing Figures 3(a) and 3(c), is that the

empirical sizes of the test are more stable over various M when B is small. A

second observation, after comparing Figures 3(b) and 3(d), is that the test seems

to be more powerful when B is small. This indicates that, while a more slowly

decaying weighting function gives a more consistent test against alternatives

with longer causal lags, this is done at the expense of a lower power and more

sensitive size to bandwidth choices.

2.7.2 Size and Power of Qs

To investigate the finite sample performance of the simplified statistic Qs, I con-

duct four size experiments with different parameter combinations of a bivari-

ate exponential Hawkes model. Recall that there are only three bandwidths to

choose for Qs, namely the bandwidth B of the weighting function wB(`) and the

bandwidths Rk of the autocorrelation function estimator ĉkk
Rk(`) for k = a, b. In
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each of the following experiments, I generate four sets of 5000 samples of vari-

ous sizes (T = 300, 600, 900, 1200) from a DGP and carry out a Qs test for Granger

causality from Na to Nb on each of the samples. The DGP’s of the four size exper-

iments and one power experiment are all bivariate exponential Hawkes models

with the following features:

• Size experiment 1: Na and Nb are independent and have the same uncon-

ditional intensities with comparable and moderate self-excitatory (autore-

gressive) strength (Figure 4).

• Size experiment 2: Na and Nb are independent and have the same uncon-

ditional intensities, but Nb exhibits stronger self-excitation than Na (Figure

5).

• Size experiment 3: Nb Granger causes Na, and both have the same uncon-

ditional intensities and self-excitatory strength (Figure 6).

• Size experiment 4: Na and Nb are independent and have the same self-

excitatory strength, but unconditional intensity of Nb doubles that of Na

(Figure 7).

• Size experiment 5: Na and Nb are independent and have the same uncon-

ditional intensities with comparable and highly persistent self-excitatory

(autoregressive) strength (Figure 8).

• Power experiment: Na Granger causes Nb, and both have the same uncon-

ditional intensities and self-excitatory strength (Figure 9).

The nominal rejection rates are plotted against different weighting function

bandwidths B (small relative to T ). The bandwidths Rk of the autocovariance

57



function estimators are set proportional to B (Rk = cB where c = 0.5 for size

experiment 5 and c = 1 for all other experiments).

Under those DGP’s that satisfies the null hypothesis of no Granger causality

(all size experiments), the empirical rejection rates of the test based on Qs are

reasonably close to the nominal rates over a certain range of B that grows with

T , as shown in Figures 4-8. According to Theorem 7, I need B = o(T ) so that

the variance can be computed by (2.20) in the theorem. In general, the empirical

size becomes more accurate as the sample length T increases. On the other hand,

the Qs test is powerful against the alternative of a bivariate exponential Hawkes

model exhibiting Granger causality from Na to Nb, and the power increases with

sample length T , as shown in Figure 9.

To study the test performance under more realistic settings, I set the DGPs

to some bivariate ACI(1,1) models estimated from bankruptcy contagion data

over different periods. The models are estimated in Chapter 3 and the results

are displayed in Tables B.1 and B.2. The estimated models reveal some traces of

non-stationarity in the data (as the persistence parameters sum up to over one

in magnitude). The data consist of the bankruptcy times of upstream (group

U)30 and downstream (group D)31 over two sampling periods. In the first pe-

riod, from March 2001 to Nov 2001, the estimated model (see Table B.1) re-

veals a stronger bankruptcy contagion spreading from downstream to upstream

(β̂ab = 1.91, α̂ba = −17.84) than in the opposite direction β̂ba = 0.08, α̂ab = 0.51).

Therefore, the nonparametric Qs test for the direction U → D (D → U) approx-

imately constitutes a size (power) experiment. The story is opposite in the sec-

ond period (from July 2009 to November 2011), in which the estimated model

30SIC division codes: A, B, C, D and E.
31SIC division codes: F, G, H and I.
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(see Table B.2) reveals a mild bankruptcy contagion spreading from upstream to

downstream (β̂ba = 1.01, α̂ab = −25.42), and small feedback in the opposite direc-

tion (β̂ab = 0.02, α̂ba = 0.74). Hence, the nonparametric Qs test for the direction

D→ U (U → D) approximately constitutes a size (power) experiment.

In summary, we have the following size and power experiments:

• Size experiment R-S1: Qs test for the direction U → D. DGP: estimated

bivariate ACI(1,1) model over March 2001 to November 2001.

• Size experiment R-S2: Qs test for the direction D → U. DGP: estimated

bivariate ACI(1,1) model over July 2009 to November 2011.

• Power experiment R-P1: Qs test for the direction D → U. DGP: estimated

bivariate ACI(1,1) model over March 2001 to November 2001.

• Power experiment R-P2: Qs test for the direction U → D. DGP: estimated

bivariate ACI(1,1) model over July 2009 to November 2011.

The simulation results are presented from Figures A.10 to A.13, in which the

empirical rejection rates are plotted against the ratio of the weighting function

bandwidth to the sample length, B/T . In the size experiments, the rejection

rates of the Qs test are reasonably close to the nominal levels over a range of

the B/T ratios that are consistent with the rates governed by the asymptotic

theory.32 The size of the test becomes more accurate while the power grows

as the sample size N(T ) increases. The size and power performance seems to be

robust to the non-stationary nature of the DGPs under study, providing support

to the empirical applications of the nonparametric Qs test in Chapter 3.

32The inflated rejection rates for small B/T in the size experiment R-S2 may be contributed by
the short-lived feedback from the innovation of downstream bankruptcy point process to the
upstream process (α̂ba = 0.74).
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2.8 Applications

2.8.1 Trades and Quotes

In the market microstructure literature, there are various theories that attempt

to explain the trades and quotes dynamics of stocks traded in stock exchanges.

In the seminal study, Diamond and Verrecchia (1987) propose that the speed of

price adjustment can be asymmetric due to short sale constraints. As a result,

a lack of trades signals bad news because informed traders cannot leverage on

their insights and short-sell the stock. Alternatively, Easley and O’hara (1992)

argue that trade arrival is related to the existence of new information. Trade

arrival affects the belief on the fundamental stock price held by dealers, who

learn about the direction of new information from the observed trade sequence

and adjust their bid and/or ask quotes in a Bayesian manner. It is believed that

a high trade intensity is followed by more quote revisions, while a low trade

intensity means a lack of new information transmitted to the market and hence

leads to fewer quote revisions. As discussed in 2.1.3, much existing research is

devoted to the testing of these market microstructure hypotheses, but the tests

are generally conducted through statistical inference under strong parametric

assumptions (e.g. VAR model in Hasbrouck, 1991 and Dufour and Engle, 2000;

the bivariate duration model in Engle and Lunde, 2003). This problem offers

an interesting opportunity to apply the nonparametric test in this chapter. With

minimal assumptions on the trade and quote revision dynamics, the following

empirical results indicate the direction and strength of causal effect in support

of the conjecture of Easley and O’hara (1992): more trade arrivals predict more

quote revisions.
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I obtain the data from TAQ database available in the Wharton Research Data

Services. The dataset consists of all the transaction and quote revision times-

tamps of the stocks of Proctor and Gamble (NYSE:PG) in the 41 trading days

from 1997/8/4 to 1997/9/30, the same time span as the dataset of Engle and

Lunde (2003). Then, following the standard data cleaning procedures (e.g. En-

gle and Russell, 1998) to prepare the dataset for further analyses,

1. I employ the five-second rule when combining the transaction and quote

time sequences into a bivariate point process by adding five seconds to all

the recorded quote timestamps. This is to reduce unwanted effects from

the fact that transactions were usually recorded with a time delay.

2. I eliminate all transaction and quote records before 9:45am on every trad-

ing day. Stock trades in the opening period of a trading day are generated

from open auctions and are thus believed to follow different dynamics.

3. Since the TAQ timestamps are accurate up to a second, this introduces a

limitation to the causal inference in that there is no way to tell the causal

direction among those events happening within the same second. The

sampled data also constitutes a violation of assumption (A1). I treat mul-

tiple trades and quotes occurring at the same second as one event, so that

an event actually indicates the occurrence of at least one event within the

same second. 33

33For PG, 5.6% of trades, 28.1% of quote revisions and 3.6% of trades and quotes were
recorded with identical timestamps (in seconds). The corresponding proportions for GM are
5.7%, 19.9% and 2.6%, respectively. Admittedly, the exceedingly number of quote revisions
recorded at the same time invalidates assumption (A1), but given the low proportions for trades
and trade-quote pairs with same timestamps, the distortion to the empirical results is on the con-
servative side. That is, if there exists a more sophisticated Granger causality test that takes into
account the possibility of simultaneous quote events, the support for trade-to-quote causality
would be even stronger than the support Q and Qs tests provide, as we shall see later in Tables
A.2-A.6.
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After carrying out the data cleaning procedures, I split the data into different

trading periods and conduct the nonparametric causality test for each trading

day. Then, I count the number of trading days with significant causality from

trade to quote (or quote to trade) dynamics. For each sampling period, let N t

and Nq be the counting processes of trade and quote revisions, respectively. The

hypotheses of interest are

H0 : there is no Granger causality from Na to Nb; vs

H1 : there is Granger causality from Na to Nb.

where a, b ∈ {t, q} and a , b.

The results are summarized in Tables A.2 to A.4. In each case, I present the

significant day count for different combinations of bandwidths (all in seconds).

For each (H, B) pair, the bandwidth M of the conditional intensity estimator is

determined from simulations so that the rejection rate matches the nominal size.

Some key observations are in order. First, there are more days with signif-

icant causation from trade to quote update dynamics than from quote update

to trade dynamics for most bandwidth combinations. This suppports the find-

ings of Engle and Lunde (2003). Second, for most bandwidth combinations,

there are more days with significant causations (in either direction) during the

middle of a trading day (11:45am – 12:45pm) than in the opening and closing

trading periods (9:45am – 10:15am and 3:30pm – 4:00pm). One possible expla-

nation is that there are more confounding factors (e.g. news arrival, trading

strategies) that trigger a quote revision around the time when the market opens

and closes. When the market is relatively quiet, investors have less sources to

rely on but update their belief on the fundamental stock price by observing the

recent transactions. Third, the contrast between the two causation directions be-
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comes sharper in general when the weighting function, a Gaussian kernel, de-

cays more slowly (larger B), and it becomes the sharpest in most cases when B is

10 seconds (when the day counts with significant causation from trade to quote

is the maximum). This may suggest that most causal dynamics from trades to

quotes occur and finish over a time span of about 3B = 30 seconds.

Next, I employ the simplified statistic Qs to test the data. I am interested to

see whether it implies the same causal relation from trades to quotes as found

earlier, given that a test based on Qs is only consistent against a smaller set of

alternatives (as discussed in section 2.4.7). The result of the Qs test on trade

and quote revision sequences of PG is presented in Table A.5. The result shows

stronger support for the causal direction from trades to quote revisions across

various trading periods of a day (compare Table A.5 to Tables A.2-A.4: the Qs

test uncovers more significant days with trade-to-quote causality than the Q

test does). I also conduct the Qs test on trades and quotes of GM, and obtain

similar result that trades Granger-cause quote revisions. (See Table A.6 for the

test results on General Motors. Test results of other stocks considered by Engle

and Lunde (2003) are similar and available upon request.) The stronger support

by the Qs test for the trade-to-quote causality suggests indirectly that the actual

feedback resulting from a shock in trade dynamics to quote revision dynamics

is persistent rather than alternating in signs over the time range covered by the

weighting function w(`). Given that I am testing against the alternatives with

persistent feedback effect from trades to quote revisions, it is natural that the

Q test is less powerful than the Qs test. This is the price for being consistent

against a wider set of alternatives34.

34This includes those alternatives in which excitatory and inhibitory feedback effect from
trades to quotes alternate as time lag increases.
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2.8.2 Credit Contagion

Credit contagion occurs when a credit event (e.g. default, bankruptcy) of a firm

leads to a cascade of credit events of other firms (see, for example, Jorion and

Zhang, 2009). This phenomenon is manifested as a cluster of firm failures in a

short time period. As discussed in section 2.1.4, a number of reduced-form mod-

els, including conditional independence and self-exciting models, are available

to explain the dependence of these credit events over time, with varying level

of success. Conditional independence model assumes that the probabilities of

a credit events of a cross section of firms depend on some observed common

factors (Das, Duffie, Kapadia and Saita, 2008; DDKS hereafter). This modeling

approach easily induces cross-sectional dependence among firms, but is often

inadequate to explain all the observed clustering of credit events unless a good

set of common factors is discovered. One way to mitigate the model inade-

quacy is to introduce latent factors into the model (Duffie, Eckners, Horel and

Saita, 2010; DEHS hereafter). Counterparty risk model, on the other hand, offers

an appealing alternative: the occurrence of credit events of firms are directly de-

pendent on each other (Jarrow and Yu, 2001). This approach captures directly

the mutual-excitatory (or serial correlation) nature of credit events that is ne-

glected by the cross-sectional approach of conditional independence models. In

a series of empirical studies, Jorion and Zhang (2007, 2009) provided the first

evidence that a significant channel of credit contagion is through counterparty

risk exposure. The rationale behind their arguments is that the failure of a firm

can affect the financial health of other firms which have business ties to the fail-

ing firm. This empirical evidence highlights the importance of counterparty risk

model as an indispensable tool for credit contagion analysis.
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All the aforementioned credit risk models cannot avoid the imposition of ad-

hoc parametric assumptions which are not justified by any structural models.

For instance, the conditional independence models of DDKS and DEHS rely on

strong log-linear assumption35 on default probabilities, while the counterparty

risk model of Jarrow and Yu adopt a convenient linear configuration. Also, the

empirical work of Jorion and Zhang is based on the linear regression model.

The conclusions drawn from these parametric models have to be interpreted

with care as they may be sensitive to the model assumptions. Indeed, as warned

by DDKS, a rejection of their model in goodness-of-fit tests can indicate either a

wrong log-linear model specification or an incorrect conditional independence

assumption of the default intensities, and it is impossible to distinguish between

them from their test results. Hence, it is intriguing to investigate the extent of

credit contagion with as few interference from model assumptions as possible.

The nonparametric Granger causality tests make this model-free investigation a

reality.

I use the “Bankruptcies of U.S. firms, 1980–2010” dataset to study credit con-

tagion. The dataset is maintained by Professor Lynn LoPucki of UCLA School of

Law. The dataset records, among other entries, the filing dates of Chapter 11 and

the Standard Industrial Classification (SIC) codes of big bankrupting firms36. In

this analysis, a credit event is defined as the occurrence of bankruptcy event(s).

To be consistent with assumption (A1), I treat multiple bankruptcies on the same

date as one bankruptcy event. Figure 14 shows the histogram of bankruptcy oc-

35In the appendix of their paper, DEHS evaluates the robustness of their conclusion by con-
sidering the marginal nonlinear dependence of default probabilities on the distance-to-default.
Nevertheless, the default probability is still assumed to link to other common factors in a log-
linear fashion.

36The database includes those debtor firms with assets worth $100 million or more at the time
of Chapter 11 filing (measured in 1980 dollars) and which are required to file 10-ks with the
SEC. However, it may have excluded some interesting bankruptcies.
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currences in 1980–2010.

I classify the bankrupting firms according to the industrial sector. More

specifically, I assume that a bankruptcy belongs to manufacturing related sec-

tors if the SIC code of the bankrupting firm is from A to E, and financial related

sectors if the SIC code is from F to I. The rationale behind the classification is

that the two industrial groups represent firms at the top and bottom of a typical

supply chain, respectively. The manufacturing related sectors consist of agri-

cultural, mining, construction, manufacturing, transportation, communications

and utility companies, while the financial related sectors consist of wholeselling,

retailing, financial, insurance, real estate and service provision companies.37 Let

Nm and N f be the counting processes of bankruptcies from manufacturing and

financial related sectors, respectively. Figure 15 plots the counting processes of

the two types of bankruptcies. The hypotheses of interest are

H0 : there is no Granger causality from Na to Nb; vs

H1 : there is Granger causality from Na to Nb.

where a, b ∈ {m, f } and a , b.

Similar to the TAQ application, I carry out the Q test for different combi-

nations of bandwidths (in days). The bandwidths M (for conditional intensity

estimators) and B (for weighting function) are set equal to 365, 548 and 730

days (corresponding to 1, 1.5 and 2 years), while the bandwidth H (for cross-

covariance estimator) ranges from 2 to 14 days.38 The test results are displayed

in Tables A.7-A.9. For most bandwidth combinations, the Q test detects a signif-

37The industrial composition of bankruptcies in manufacturing related sectors are A: 0.2%; B:
6.3%; C: 4.5%; D: 58.6%; E: 30.5%. The composition in financial related sectors are F: 8.4%; G:
29.4%; H: 32.8%; I: 29.4%.

38It turns out that the Q test is more sensitive to the choice of M than B. The choice of band-
width H is guided by the restriction H = o(M) from Theorem 9.
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icant credit contagion (at 5% significance level) from financial to manufacturing

related sectors in periods that contain crises and recession (Asian financial crisis

and 9/11 in September 1996 – July 2003; subprime mortgage crisis in September

2007 – June 2010) but not in periods of economic growth (August 2003 – Au-

gust 2007). The reverse contagion becomes statistically significant too during

the subprime mortgage crisis.

I also conduct the Qs test over the period September 1996 – June 2010 that

spans the financial crises and the boom in the middle. During this period, there

are 350 and 247 bankruptcies in the manufacturing and financial related sec-

tors. The normalized test statistic values (together with p-values) are presented

in Table A.10. The bandwidth B of the weighting function ranges from 30 to

300 days, while the bandwidths Rk of the unconditional autocorrelation ker-

nel estimators ĉkk
Rk(`) (for k = m and f ) are both fixed at 300 days. All kernels

involved are chosen to be Gaussian. Over the period of interest, there is signif-

icant (at 5% significance level) credit contagion in both directions up to B = 90

days, but the financial-to-manufacturing contagion dominates manufacturing-

to-financial contagion in the long run.

2.8.3 International Financial Contagion

The Granger causality test developed in this chapter can be used to uncover fi-

nancial contagion that spreads across international stock markets. An adverse

shock felt by one financial market (as reflected by very negative stock returns)

often propagates quickly to other markets in a contagious manner. There is

no agreement in the concept of financial contagion in the literature39. For in-
39See Forbes and Rigobon (2002) and the references therein for a literature review.
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stance, Forbes and Rigobon (2002; hereafter FR) defined financial contagion as a

significant increase in cross-market linkages after a shock. To measure and com-

pare the extent of contagion over different stock market pairs, FR used a bias-

corrected cross-correlation statistic for index returns. However, whether the

increased cross-correlation represents a causal relationship (in Granger sense)

is unclear. More recently, Aı̈t-Sahalia, Cacho-Diaz and Laeven (2010; here-

after ACL) provided evidence of financial contagion by estimating a parametric

Hawkes jump-diffusion model to a cross-section of index returns. The conta-

gion concept ACL adopted is in a wider sense than that of FR in that contagion

can take place in both “good” and “bad” times (see footnote 2 of ACL). Based

on the dynamic model of ACL, it is possible to infer the causal direction of con-

tagion from one market to another. Nevertheless, their reduced-form Hawkes

jump-diffusion model imposes a fair amount of structure on both the auto- and

cross-correlation dynamics of the jumps of index returns without any guidance

from structural models. The conclusion drawn from ACL regarding causal di-

rection of contagion is model-specific and, even if the model is correct, sensitive

to model estimation error. To robustify the conclusion, it is preferred to test for

Granger causality of shock propagations in a nonparametric manner.

To this end, I collect daily values of the major market indices from fi-

nance.yahoo.com and compute daily log-returns from adjusted closing values.

The indices in my data are picked from representative stock markets world-

wide covering various time zones, including the American (Dow Jones), Euro-

pean (FTSE, DAX, CAC 40), Asian Pacific (Hang Seng, Straits Times, Taiwan,

Nikkei), and Australian (All Ordinary) regions. The data frame, trading hours

and number of observations are summarized in Table A.11.
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To define the days with negative shocks, I use the empirical 90%, 95% and

99% value-at-risk (VaR) for the corresponding stock indices. An event is defined

as a negative shock when the daily return exceeds the VaR return. In each test,

I pair up two point processes of events from two indices of different time zone,

with a sampling period equal to the shorter of the two sample lengths of the

two indices. The event timestamps are adjusted by the time difference between

the two time zones of the two markets. Define the counting processes of shock

events for indices a and b by Na and Nb, respectively. The hypotheses of interest

are

H0 : there is no Granger causality from Na to Nb; vs

H1 : there is Granger causality from Na to Nb.

The results of the Qs test applied to the pairs HSI-DJI, NIK-DJI, FTSE-DJI and

AOI-DJI are shown in Tables A.12-A.1540. There are a few observations. First,

days with extreme negative returns exceeding 99% VaR have a much stronger

contagious effect than those days with less negative returns (exceeding 95% or

90% VaR). This phenomenon is commonly found for all pairs of markets. Sec-

ond, except for European stock indices, the U.S. stock market, as represented

by DJI, plays a dominant role in infecting other major international stock mar-

kets. It is not hard to understand why the daily returns of European stock in-

dices (FTSE, DAX, CAC 40) Granger-cause DJI’s daily returns given the over-

lap of the trading hours of European stock markets and the U.S. stock market.

Nonetheless, the causality from the American to European markets remains sig-

nificant (for B ≤ 3 with 95% VaR as the cutoff). Third, the test statistic values
40The Qs test results for pairs involving DAX and CAC are qualitatively the same as that

involving FTSE (all of them are in the European time zones), while the test results for pairs
involving STI and TWI are qualitatively the same as that involving HSI (all of them are in the
same Asian-Pacific time zone). I do not present these results here to reserve space, but they are
available upon request.
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are pretty stable over different choices of B and Rk (k = a, b). I used different

functions of Rk = M(B), such as a constant Rk = 10 and Rk = 24B0.25, and found

that, qualitatively, the dominating indices / markets remain the same as before

(when Rk = 10.5B0.3). Fourth, the shorter is the testing window (bandwidth B of

the weighting function w(`)), the stronger is the contagious effect. For instance,

with 95% value-at-risk as cutoff, DJI has significant Granger causality to HSI

and NIK when B ≤ 3 (in days) and to AOI when B ≤ 5. This implies that conta-

gious effect, once it starts, is most significant on the first few days, but usually

dampens quickly within a week.

2.9 Conclusion

With growing availability of multivariate high frequency and/or irregularly

spaced point process data in economics and finance, it becomes more and more

of a challenge to examine the predictive relationship among the component pro-

cesses of the system. One important example of such relationship is Granger

causality. Most of the existing tests for Granger causality in the traditional dis-

crete time series setting are inadequate for the irregularity of these data. Tests

based on parametric continuous time models can better preserve the salient fea-

tures of the data, but they often impose strong and questionable parametric

assumptions (e.g. conditional independence as in doubly stochastic models,

constant feedback effect as in Hawkes models) that are seldom supported by

economic theories and, more seriously, distort the test results. This calls for a

need to test for Granger causality (i) in a continuous time framework and (ii)

without strong parametric assumptions. In this chapter, I study a nonparamet-

ric approach to Granger causality testing on a continuous time bivariate point
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process that satisfies mild assumptions. The test enjoys asymptotic normality

under the null hypothesis of no Granger causality, is consistent, and exhibits

nontrivial power against departure from the null. It performs reasonably well

in simulation experiments and shows its usefulness in three empirical applica-

tions: market microstructure hypothesis testing, checking the existence of credit

contagion between different industrial sectors, and testing for financial conta-

gion across international stock exchanges.

In the first application on the study of market microstructure hypotheses,

the test confirms the existence of a significant causal relationship from the dy-

namics of trades to quote revisions in high frequency financial datasets. The

next application on credit contagion reveals that U.S. corporate bankruptcies in

financial related sectors Granger-cause those in manufacturing related sectors

during crises and recessions. Lastly, the test is applied to study the extent to

which an extreme negative shock of a major stock index transmits across inter-

national financial markets. The test confirms the presence of contagion, with

U.S. and European stock indices being the major sources of contagion.
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CHAPTER 3

CREDIT CONTAGION FROM WALL STREET TO MAIN STREET: AN

EMPIRICAL STUDY OF US CORPORATE BANKRUPTCIES

3.1 introduction

The recent subprime mortgage crisis originated from the financial and mort-

gage sector, but its disastrous effect rippled across almost all other sectors of the

economy at an unprecedented scale. From the points of view of policy makers,

regulators and portfolio investors, it is paramount to understand the causes and

mechanisms of credit contagion across different sectors of an economy.

There are a number of channels through which credit risk transmits from one

sector of the economy to another. They may be classified into two categories:

1. Credit risk may spread through information channels. Under this hypoth-

esis, a negative shock in one sector (in the form of a stock price decline

or a bankruptcy of a firm in that sector) reveals the weak fundamentals of

that sector or the whole economy. Through Bayesian learning, economic

agents adjust their beliefs on the prospect of other sectors accordingly.

2. Credit risk may spread through direct interconnections (or business ties)

among firms in different sectors of an economy. The interconnections con-

stitute a complex network of firms which are bound by contractual agree-

ments. Some examples include a supply chain and a line of credit with a

bank extending loans to a business owner. A natural consequence is that

all parties in the same network are exposed to some counterparty risk.

When one party fails to meet the obligation in the contractual agreement,
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the other party bears the brunt by suffering a financial loss or even go-

ing default or bankrupt. As a result, counterparty risk spreads across the

interconnected business network that may span multiple sectors.

Both channels of contagion are well studied from the theoretical points of

view. The first channel (information contagion) is illustrated by Acharya and

Yorulmazer (2008) in the context of a bank run: the bad performance of a bank

conveys negative signals of unfavorable loan returns in the banking industry to

risk-averse depositors, who will update the belief and require a higher rate of

return from other banks. The second channel (contagion by direct interconnec-

tions) is motivated by the seminar work of Jarrow and Yu (2001) on the model-

ing of counterparty risk. Allen and Gale (2000) explain how financial contagion

naturally occurs in equilibrium and how it spreads from one bank to another.

There has been no consensus on the definition of contagion. In the litera-

ture of international financial contagion, Forbes and Rigobon (2002) give a def-

inition in terms of increased co-movement of stock markets, although it is not

clear how to pin down on the sources of contagion or at least the direction in

which contagion spreads. In general, there is no hope to identify the direction

of contagion without using frequently sampled data. More recently, using daily

stock market indices, Ait-Sahalia, et al. (2011) are able to unveil the direction

of financial contagion among major international financial markets. Their jump

diffusion model contains a jump component characterized by a Hawkes pro-

cess, and can be estimated by GMM. There are some limitations to the model,

however. First, the conclusion of the test is sensitive to the parametric model

specification. Second, even though the model works well for stationary data,

the results of inference are questionable when the data exhibit non-stationarity,
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a common feature for data that span across periods with contagion.

The direction and intensity of contagion transmission during financial crises

and economic recessions provide useful hints for identifying the source and

severity of the underlying contagion. With well-defined concepts of credit

contagion and economic sectors, we are able to measure and analyze the phe-

nomenon objectively. To this end, we define a credit contagion as follows:

Definition 13 A credit contagion from sector A to sector B occurs if past occurrences

of credit events in sector A Granger cause future occurrences of credit events in sector

B.

Definition 14 A credit contagion in sector A occurs if past occurrences of credit events

in sector A Granger cause future occurrences of credit events in sector A.

In general, a credit event can be a default, a bankruptcy (Chapter 11 filing).

In the empirical analysis of this chapter, we will focus on bankruptcy contagion

in which the credit events are solely Chapter 11 filings.1 Specifically, we are

interested in whether and how the bankruptcies in one sector Granger cause

the bankruptcies in another sector.

Two remarks regarding the empirical study of bankruptcy contagion are in

order. First, to identify the direction of contagion, we employ a fully continu-

ous time set-up to analyze finely collected bankruptcy times. In contrast to the

monthly counts of credit events used by many previous research (Das, et al.,

1Although Chapter 11 filings are often preceded by other indicators such as significant stock
price decline and sharp increase in the price of credit derivatives, the dates on which they occur
are objectively available. There is no evidence that a Chapter 11 filing in one sector takes less
time than those in another sector.
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2007; Duffie et al., 2009), the bankruptcy times in our dataset are accurate up to

a day. The time difference between bankruptcy occurrences contains valuable

information of Granger causal dynamics, which in turn provides evidence for

inferring the direction and relative magnitude of bankruptcy contagion.

Second, to get rid of the unwanted effect of parametric assumptions on in-

ference, we nonparametrically estimate the marginal conditional intensities that

capture the bankruptcy contagion within a sector. The magnitude of bankruptcy

contagion across two sectors can be measured by the cross correlation of the

residuals obtained after filtering away the same-sector contagion from the ob-

served bankruptcy sequences. It can be shown that the cross correlation func-

tion of residuals fully characterizes the Granger causality between any pair of

bankruptcies originating from both sectors (see Chapter two).

There are two families of credit risk models:

1. Common factor models. Some examples are Cox’s doubly stochastic

model (i.e. conditional independence model) as in Das, et al. (2007) and

frailty model as in Duffie, et al. (2009).

2. Counterparty risk models. Some examples include the mutually exciting

model of Jarrow and Yu (2001) and top-down cluster model as in Az-

izpour, et al. (2011).

There are two kinds of directions in which a credit contagion may spread:

1. Contagion may spread among firms within the same industry (lateral di-

rection). It may spread through information channel. For example, firms

in the same industry are exposed to similar risks or common factors. It
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may transmit through counterparty risk exposure as well: e.g. interbank

loans.

2. Contagion may spread across different industries (longitudinal direction).

If there is a lack of demand (supply), the supply (demand) side will suf-

fer. Example 1 (supply driven contagion): the bankruptcy of CIT group on

November 1, 2009 led to a drop in the supply of affordable loans to small

to mid-sized businesses. The retailers, factories and other business owners

who previously relied on CIT’s lines of credit would have a hard time get-

ting affordable financing solutions (see the NY Times report “CIT’s Trou-

bles Are Small Business’s Troubles” on July 13, 2009). As a result, their

liquidity position was at risk, and they might be forced to go bankrupt.

Example 2(demand driven contagion): In economic recessions, demands

for goods and services drop. As a result, retailers and services providers

(e.g. restaurant chains, shops, department stores) suffer loss and close

down. They are followed by the failure of manufacturers and then raw

material suppliers.

There exists related theoretical work on the causes and mechanisms of credit

contagion. Drawing upon the network theory, Battiston, et al. (2007) provided

a theoretical explanation of the domino effect of bankruptcy. The bankruptcy

of one firm increases the probability of bankruptcy of other closely connected

firms through production and/or credit relationships, and hence may eventu-

ally trigger an avalanche of bankruptcies of firms along a supply chain and/or

over a counterparty network. In fact, liquidity shortage and deterioration is a

noteworthy source of credit contagion. He and Xiong (2012) argue theoretically

that firms may suffer from increased “credit risk” if the debt market liquidity

deteriorates. A common theme reverberates in all of the above work: credit
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contagion exists naturally in an incomplete market in a rational setting.

Empirical studies on credit contagion across sectors are scarce. Hertzel, et

al (2008) found empirical evidence that bankruptcy filing of a firm can have

significant wealth effect (in the form of abnormal stock returns) on not just its

competitors in the same industry but also its suppliers/customers on the same

supply chain.

Das, et al. (2007) reject their proposed doubly stochastic model and admit

that their model cannot explain all the observed default clustering in the data.

Indeed, their test is a joint test of the specification of the default intensity and the

conditional independence assumption, so a rejection can be due to the wrong

log-linear functional form, the missing of important covariates, apart from the

conditional independence assumption. In fact, Lando and Nielsen (2011) fail to

reject the doubly stochastic model after including an additional covariate (in-

dustrial productivity index). Duffie, et al. (2009) propose a frailty model that

includes unobserved factors, and it boosts up the explanatory and predictive

power of its predecessor in Das, et al. Azizpour, et al. (2011) estimate a mixed

cluster-frailty model and show that both the self-exciting and frailty aspects are

important for explaining the stylized fact.

In all the above empirical work, the statistical inference is valid only up to

the assumed parametric model. No questions were raised on the validity of

the model. A more serious question, from the statistical point of view, is that

there is no way to test empirically whether a conditional independence model

or a cluster model is the true DGP. Barlett (1964) shows that both the doubly

stochastic model and the cluster model can generate identical data. Suppose

the DGP of a sequence of bankruptcy occurrences is a doubly stochastic model
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with a significant common factor. If the modeler proposed to estimate a cluster

model for the data, the fitted model would reveal a significant clustering effect.

It would be incorrect for the modeler to infer from the estimated model that

clustering effect dominates.

This is why it is important to have a model-free way to characterize credit

contagion. It turns out that it is meaningful to discuss the directions of credit

contagion. We will see that the tools developed in Chapter 2 are indispensable

for this purpose.

Traditionally, VAR models provide a popular parametric framework to test

for Granger causality, but it relies on fixed sampling intervals. However,

bankruptcies occur irregularly over time. Inferring from an estimated VAR

model on bankruptcy count data may lead to erroneous conclusion. In particu-

lar, spurious causality and/or non-causality may occur when the time duration

in which the causal dynamics is transmitted is shorter than the sampling inter-

val. In section 3.2, we will show that VAR model is not a suitable model for

testing for Granger causality for irregularly spaced bankruptcy times. For dif-

ferent choices of sampling intervals, VAR models can give contradictory results

on the feedback effect from one counting process to another. This is attributable

to the temporal aggregation of random event data when forming the time series

of counts with fixed sampling intervals that are too wide relative to the actual

causal durations. In general, any parametric time series models based on such

coarsely sampled count sequences would inevitably yield unreliable statistical

inference regarding the Granger causal dynamics of the original point process,

as there is a loss of information during the discretization process. Even though a

parametric multivariate Poisson autoregressive model on count sequences (e.g.
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Heinen and Rengifo, 2007) surpasses VAR models in that it is designed for the

count data, they would still fail to capture the causal dynamics if the sampling

frequency is not high enough.

This highlights the remarks by Sims (1971) and Granger (1988) which sug-

gest that there is no hope of disentangling the Granger causal directions unless

the sampling intervals are shrunk to be shorter than the Granger causal dura-

tion. However, the highly irregular and random nature of event times implies

that no discrete time series model with fixed-width sampling intervals would

pick up all Granger causal dynamics while still maintaining parsimony. There

are at least two approaches that can circumvent the problem: parametric mul-

tivariate intensity modeling; and nonparametric Granger causality testing on

point process data.

A prominent example of the first approach is represented by the Multivari-

ate Autoregressive Conditional Intensity (MACI) model of Russell (1999). The

model imposes a log-linear vector autoregressive dynamics on the vector of con-

ditional intensities of the multivariate point process and is thus capable of mod-

eling the clustering of events of the same types (self-excitation), as well as the

feedback effect transmitting from the previous cluster of events of one type to

the future occurrence of events of a different type (mutual excitation). Another

example is the Generalized Hawkes model of Bowsher (2007). Rather than im-

plied from an economic model, the model specifications are often proposed on a

pragmatic ground, so that the model predictions would match well with the ob-

served stylized facts of the data. Nevertheless, this approach offers a convenient

parametric platform for testing Granger causality.

The second approach was developed and briefly illustrated in Chapter two.
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It is more favorable than the first approach in that the test conclusion is indepen-

dent of parametric assumptions. In section 3.4, we will apply the methodology

to the study of bankruptcy contagion.

3.2 VAR(1) model

Before converting bivariate point process data into discrete time series of counts,

we need to first fix a sampling frequency. We then form a group k count se-

quence {xk
t } by counting the number of group k events falling in each sampling

interval. The two count sequences associated with groups a and b events con-

stitute a bivariate time series of counts xt = {xa
t , x

b
t }. Unlike the raw point process

data, the two count sequences are synchronized in time as the sampling fre-

quency is chosen to be common across all types of events.

Under the vector autoregression of order one (VAR(1) model), the bivariate

time series of counts xt follows an autoregressive dynamics below:

xt = Bxt−1 + εt

where B =

β
aa βab

βba βbb

 and the error vector εt is a white noise sequence with mean

(0, 0)′ and covariance matrix Σ =

σ
aa σab

σab σbb

.
The autoregressive parameter βaa (βbb) captures the persistence of the count

sequence xa
t (xb

t ). On the other hand, the feedback parameter βab (βba) picks up

the one-lag Granger causal effect from xb
t−1 to xa

t (from xa
t−1 to xb

t ). It is obvious

that the feedback parameters do not account for all Granger causal dynamics
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exhibited by the data. For instance, the VAR(1) model is unable to account for

possible Granger causal dynamics spanning beyond one lag. Besides, the dis-

creteness of the count sequences artificially introduces instantaneous Granger

causality, which is reflected by the instantaneous correlation ρab = σab/
√
σaaσbb

of the error. It is thus possible that statistical inference on Granger causality in

the VAR model framework is sensitive to the model specification (lag order, link

function) and the length of a sampling interval.

3.2.1 Spurious causality

In general, spurious causality may arise when the sampling interval is coarser

than the actual feedback dynamics. In a bivariate time series context, we will

demonstrate the possibility of spurious causality, i.e. the process observed at

a lower frequency displays Granger causality while the DGP does not exhibit

Granger causality. Suppose the DGP is:

xt = axt−1 + ut,

yt = byt−1 + cxt + vt, (3.1)

where ut and vt are two independent sequences of iid noises. Assume that a

and c are not zeros, and that a + b , 0. Under this model, the process xt does

not Granger cause yt, although there is contemporaneous correlation between xt

and yt. In matrix form, the system becomes 1 0

−c 1


(
xt

yt

)
=

 a 0

0 b


xt−1

yt−1

 +

ut

vt

 .
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Let zt = (xt, yt)′ and εt = (ut, cut + vt)′. We can then express the bivariate system

in reduced form,

(I −ΦL) zt = εt. (3.2)

Here, Φ =

 a 0

ac b

 and L is the lag operator (so that Lzt = zt−1).

Now, let us introduce the temporally aggregated series z∗t = zt + zt−1 and

ε∗t = εt + εt−1 Then, multiply T (L) := (I + L) (I +ΦL) to both sides of (3.2), we

obtain (
I −Φ2L2

)
z∗t = (I +ΦL) ε∗t .

At the lower sampling frequency, it can be shown (Marcellino, 1999) that the

right hand side has a moving average representation of order 1. Specifically,

there exists an innovation et such that

(
I −Φ2L2

)
z∗t =

(
I − Λ2L2

)
et. (3.3)

There are two consequences of temporal aggregation: first, the VAR(1)

model specification in (3.2) is no longer adequate for the temporally aggregated

series z∗t , which now follows a VARMA(1,1) structure; second, the autoregres-

sive coefficient matrix is changed from Φ to Φ2. The latter change is the source

of spurious Granger causality. Since

Φ2=

 a2 0

ac(a + b) b2

 ,
we note that β(2) := ac(a + b) , 0 in general (if a + b , 0), in which case the

aggregated model (3.3) indicates feedback from x∗t−2 to y∗t , even though the DGP

(3.1) does not suggest any causality from past values of xt to yt. From the ex-

pression of β(2), we see that the autocorrelation of xt (a), the contemporaneous
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cross-correlation of xt and yt (c) and the way the autocorrelations of xt and yt

interact with one another (a + b) all contribute to spurious Granger causality.

3.2.2 Spurious non-causality

Spurious non-causality may also arise when the sampling interval is coarser

than the actual feedback dynamics. Spurious non-causality occurs when the pro-

cess observed at a lower frequency displays no Granger causality while the DGP

exhibits Granger causality. Suppose the DGP is instead:

xt = axt−1 + ut,

yt = byt−1 + dxt−1 + vt. (3.4)

Let zt = (xt, yt)′, εt = (ut, vt)′ and Φ =

a 0

d b

, with a, b, d , 0. The DGP (3.4)

can then be expressed as (3.2). The temporally aggregated series is thus given

by (3.3), with

Φ2=

 a2 0

d(a + b) b2

 .
It is possible that γ(2) := d(a + b) = 0. In other words, spurious Granger non-

causality occurs in the temporally aggregated model for z∗t when the autore-

gressive coefficients of xt and yt cancel one another (a + b = 0).

3.3 Bivariate ACI model

Point process models offer a better alternatives that respect the raw event times.

Suppose we are given with the point process data (ti, yi). The specification of a
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bivariate ACI model with constant baseline intensity function is given below.

For k = a, b, the conditional intensity function given as

λk(t) = exp(ωk + φk
N(t−)).

The process φi = (φa
i , φ

b
i )′ is assumed to follow an autoregressive structure which

is updated at each event time. Specifically, for a bivariate ACI(1,1) model, we

have

φi =
∑
k=a,b

akεk
i 1(yi = k) + Bφi−1

where ak = (αka, αkb)′, B = (β j j′) j, j′∈{a,b} and

εk
i = 1 −

∫
Uk

i

λk(t)dt.

The second term of the error is obtained by integrating the conditional intensity

for group k bankruptcies over the most recent group k bankruptcy time duration

Uk
i = [tk

Nk(ti)−1, t
k
Nk(ti)

].

The MACI(1,1) model offers one of the many possible parametric model

specifications on the conditional intensities of a multivariate point process. Al-

though there exists considerable generalization to the model specifications (e.g.

more lags, more general baseline intensity functional form), the family of MACI

models is still quite restrictive in the sense that a log-linear autoregressive de-

pendence structure (with exponentially decaying auto- and cross-correlations)

is imposed on the conditional intensities. Such model specification may not fit

well to realized point process data. It is difficult to find an MACI model specifi-

cation that adequately fits (in terms of goodness-of-fit test results) the observed

high-frequency tick data (Russell, 1999).
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3.4 Nonparametric Granger causality test

The nonparametric Granger causality test does not depend on a strong model

specification and any particular sampling frequency. In its most general form,

the test is able to detect all kinds of pairwise dependence between the resid-

ual processes of the two marginal simple point processes. There is a simplified

and more powerful Q test that is sensitive to persistent pairwise dependence

between the residual processes. The latter test is more useful and powerful

because credit events are usually observed to cluster together over time. For

instance, during economic recessions, the default/failure of a company is often

followed by defaults/failures of other companies in a short time period. Such

credit contagion may be confined to a particular industry that bears the brunt of

a recession, but it may well spread from one sector to another. The Q test works

by summarizing all cross correlations of the residual components over all possi-

ble lags, meanwhile controlling for the autocorrelations of each marginal point

process. It can be shown that, for bivariate simple point process, the existence

of pairwise Granger causality is equivalent to non-zero cross correlations of the

residual processes.

3.5 Empirical results

We want to show that, during economic recessions, credit contagion spreads

from the bottom to the top of a typical supply chain. When determining the

periods of economic recession, we refer to the National Bureau of Economic

Research (NBER)’s published list of U.S. Business Cycle Expansions and Con-

tractions. According to NBER’s classification, our bankruptcy data contain three
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periods of recession: July 1990 to March 1991, March 2001 to November 2001,

and December 2007 to June 2009. The NBER’s definition of economic recession

depends on macroeconomic indicators such as real GDP and unemployment

rate2, but we believe that chapter 11 filings usually occur with a time delay - the

impact of recession may only be felt by companies after some time and even-

tually result in bankruptcies of invulnerable ones with a time lag. We therefore

carry out our empirical analysis over sampling windows that are expanded to

the right by different extents

Limitations: We only focus on the analysis of timing of Chapter 11 filing

cases for large firm. I use the “bankruptcies of U.S. firms, 1980–2010” dataset to

study credit contagion. The dataset is maintained by Professor Lynn LoPucki

of UCLA School of Law. The dataset records, among other entries, the filing

dates of Chapter 11 and the Standard Industrial Classification (SIC) codes of big

bankrupting firms. In this analysis, a credit event is defined as the occurrence of

bankruptcy event(s). Other events (default, firm exit, merger and acquisition)

are not considered in this empirical study.

3.5.1 Bankruptcy Contagion: upstream vs downstream

To test for bankruptcy contagion along a supply chain, we make use of the SIC

division codes to classify the bankrupting firms into two groups. The ordering

of SIC division codes naturally reflects the hierarchy of a typical supply chain.

Hence, we divide all bankrupting firms into two groups according to their SIC

codes: the first group (upstream) consists of five groups of industries: agricul-
2A recession is defined by NBER as “a significant decline in economic activity spread across

the economy, lasting more than a few months, normally visible in real GDP, real income, em-
ployment, industrial production, and wholesale-retail sales”.
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tural (A), mining (B), construction (C), manufacturing (D), and transportation,

communications, electric, gas (E); while the second group (downstream) con-

sists of four groups of industries: wholesale (F), retail (G), finance, insurance

and real estate (H), and services (I).

The results in Tables B.3 to B.8 show conflicting Granger causal directions

for VAR(1) models3 with different sampling frequencies (Tables B.3 to B.5 for

recessions and crises; Tables B.6 to B.8 for recoveries and expansions). Due to the

continuous time feature, the ACI(1,1) model is powerful in picking up Granger

causality, although the estimates suggest that the DGP exhibits non-stationarity

(see Table B.1 for recessions and crises, and Table B.2 for non-recession periods).

Figures B.1 and B.2 display the results of the nonparametric Qs test which are

in agreement with those of the ACI(1,1) models. The results show that there

is significant Granger causality from the bottom to the top of a supply chain,

which indicates that bankruptcy contagion is demand-driven.

3.5.2 Bankruptcy Contagion: Wall Street vs Main Street

It is well believed that the financial industry affects other sectors of the econ-

omy during the subprime mortgage crisis. To check the proposition that

bankruptcy contagion spreads from financial to non-financial sectors, we di-

vide the bankrupting firms into two groups according as the SIC division is H

(Wall Street) and not H (Main Street). We conducted the nonparametric Granger

causality test over both the recession and expansionary/non-recession periods.

The 1990 recession only contains four bankruptcy filings from the financial sec-

3Vector autoregressions with higher lag orders were also estimated (results are available
upon request). They still give conflicting results.
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tor, so the test is not reliable. According to Figure B.3, we found marginally

significant (at 5%, for bandwidths B between 90 and 120 days) Granger causal-

ity from Wall Street bankruptcies to Main Street bankruptcies during the sub-

prime mortgage crisis. We also run the test over the 2001 recession (March 2001

to November 2002, extended), and found no evidence of a Wall-Street-to-Main-

Street bankruptcy contagion in the control sample periods. However, we doc-

umented very significant Wall-Street-to-Main-Street bankruptcy contagion dur-

ing the brief period after the subprime mortgage crisis (July 2009 to November

2011) over all bandwidths B, as well as during the recovery period from Decem-

ber 2001 to November 2007 over shorter time spans (at 5%, for B ≤ 90 days),

according to Figure B.4. This is possibly due to the slight delay in bankruptcy

occurrences relative to the business cycle.
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CHAPTER 4

DIAGNOSTIC CHECKS FOR MULTIVARIATE PARAMETRIC

INTENSITY MODELS

4.1 Introduction

Various events occur in the economy stochastically. No matter it is a single

transaction of stocks in a stock exchange, the onset of unemployment of an in-

dividual, the change of interest rate, or the bankruptcy of a corporation, the

occurrences of events are, more often than not, uncertain. With the hope of

gaining a better understanding of how and why events occur, economists de-

vise counting process models for datasets containing irregularly spaced event

times that are often associated with other attributes at those instances. A model

that is adequate for the data can potentially provide an explanation to the pat-

terns of event occurrences observed in the past, and even shed light on possible

trends in the future.

Counting process models have a deep root in biostatistics (see Andersen et

al, 1993 for an introduction). The datasets are often a panel of subjects under

study with different start and end times (sometimes truncated or censored) of

durations of various lengths. Statisticians find it most natural to specify a count-

ing process model by associating each subject with a conditional intensity func-

tion, which gives the probability of events happening in the next instance con-

ditional on past history. It takes the more well-known name of hazard function

if the counting process is a renewal process. Proportional hazard models and

accelerated failure time models are two important classes of models in this cate-

gory. Estimation and validation of parametric models on panel data are well de-
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veloped in biostatistics and econometics. Applications in economics and finance

are abundant too - some examples include: duration models of unemployment

spells in labor economics (Lancaster, 1979; see Kiefer, 1988 for a survey) and

reduced-form intensity models of defaults in credit risk analysis (Jarrow and

Turnbull, 1995; see Lando, 2004, Chapter 5 for an introduction).

Sometimes, instead of taking a panel approach, it is more convenient to look

at the data from a time series perspective. Events of the same type may occur re-

currently over time and it is far more parsimonious to have a single conditional

intensity function that governs the evolution of multiple homogeneous events

over time. These recurrent event counting process models can also be found in

economics and finance. The autoregressive conditional duration (ACD) model

(Engle and Russell, 1998) and its variants are particularly useful in capturing the

stylized fact of duration clustering usually exhibited in high-frequency trade

and quote datasets. From a modeler’s point of view, they are appealing be-

cause the dynamic structure is directly imposed on conditional durations, and

interarrival event durations are observable from the data. The autoregressive

conditional intensity (ACI) model (Russell, 1999) takes an alternative approach

by modeling the conditional intensity of events. Although less concrete than

conditional duration as it seems, conditional intensity can be a more convenient

building block in multivariate extensions of a counting process model. Another

example is the generalized Hawkes model (Bowsher, 2007) which finds its use in

multivariate trade and quote arrivals. In credit risk literature, Giesecke (2008)

proposed a top-down approach to model the defaults of a portfolio of firms.

Parametric models are often estimated by practitioners by typical techniques

such as maximum likelihood estimation (MLE) and evaluated by standard time

series diagnostics tools such as Box-Pierce or Ljung-Box tests applied on gener-
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alized residual series out of an estimated intensity model. This chapter focuses

on the model validation of intensity models for recurrent events.

Empirical researchers in econometrics and finance have been relying on

handy time series diagnostic tests to check for model adequacy of intensity

models. Engle and Russell (1998) tested for serial correlations of the residual

sequence by Ljung-Box test which, together with the excess dispersion test, in-

dicates whether an ACD model is adequate for the data. To capture the stylized

fact of default clustering, Das, Duffie, Kapadia and Saita (2007) estimated a Cox

model and conducted statistical tests on the time transformed counting process,

which should be a standard Poisson process if the intensity model is adequate

for the default data. One of the tests is to test for serial correlations by fitting

an AR model to the sequence of numbers of defaults in equal-sized windows

after time transformation. The properties of the popular portmanteau tests are

of course well known for standard time series models with fixed and discrete

time intervals such as vector ARMA and GARCH models and their variants.

However, there are not many theoretical results on the asymptotic distribution

of these test statistics, nor any empirical performance analysis of these tests,

applied on a general multivariate parametric continuous-time intensity model

with parameter uncertainty. (Kwok and Li, 2008 discussed these topics but was

mainly confined to univariate autoregressive conditional intensity models only.)

This chapter aims at filling this gap in the literature, by deriving a large-sample

distribution theory for generalized residual autocorrelations and proposing sta-

tistical test procedures that check for model adequacy. The test procedures thus

derived are theoretically justified for a wide class of multivariate parametric

recurrent-event intensity models.
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4.2 Parametric multivariate point process models

We are given a multivariate point process N with the following details:

Event time, event type pairs: {(T1,M1), (T2,M2), . . .}. Set t0 = 0.

Event types: 1, . . . ,K. E.g. Mi = 1 if the ith event is of type 1.

Pooled counting process: N(t) =
∑∞

i=1 1(ti ≤ t)

Marginal counting processes: Nk(t) =
∑∞

i=1 1(ti ≤ t)1(ki = k), k ∈ {1, . . . ,K}

Natural filtration: F = (F t) with Ft = σ{(t1, k1), (t2, k2), . . . , (tN(t), kN(t))}, t ≥ 0.

Assume that Ft is right continuous.

Probability space: (Ω,F ,P)

Conditional intensity function: λ(t|Ft−) =
(
λ1(t|Ft−), λ2(t|Ft−), . . . , λK(t|Ft−)

)′1
Time horizon with observations: [0,T ]

Let n = N(T ). We assume that n→ ∞ as T → ∞.

Assume that N is orderly and integrable, so that there is at most one event

occurring at any instant almost surely, and that Γ does not explode, so that

E [N(t)] < ∞ for any finite t.

Suppose that Γ is generated by a parametric model which can be specified in

1A conditional (or stochastic) intensity process λ(t|Ft− ) is a nonnegative, Ft-progressive
process such that for all t ≥ 0,

∫ t
0 λ(r|Fr− )dr < ∞ and for all Ft-predictable processes C(t),

E
[∫ ∞

0 C(t)dN(t)
]

= E
[∫ ∞

0 C(t)λ(t|Ft− )dt
]

holds.
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terms of its conditional intensity. For some θ = θ0 in the parameter space Θ ∈ RD,

λ(t|Ft−) = λ(t|Ft−; θ0) (4.1)

=
(
λ1(t|Ft−; θ0), λ2(t|Ft−; θ0), . . . , λK(t|Ft−; θ0)

)′
.

4.3 Random Time Change and Characterization of Multivariate

Intensity Models

For a general marked point process the joint distribution of (t, k) given Ft can be

characterized by the following composite function:

λ∗(t, k|Ft−) = h(t|Ft−) f (k|Ft− , t),

where h(t|Ft−) is the intensity function of the pooled process and f (k|Ft− , t) is the

density function of the mark given the event location and the process history

(Daley, Vere-Jones, 2002, p.249). For a multivariate point process with finite

mark space {1, . . . ,K},

h(t|Ft−) =

K∑
j=1

λ j(t|Ft−)

and

f (k|Ft− , t) =
λk(t|Ft−)∑K
j=1 λ

j(t|Ft−)
.

Here, the conditional density function f (k|Ft− , t) should be understood as a con-

ditional probability mass function. Therefore, for a multivariate point process

model, there are two aspects of model adequacy which a comprehensive diag-

nostic procedure should check for:
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1. The intensity function of the pooled process should model the timing of

all events (regardless of event type) adequately, i.e. h(t|Ft−; θ) = h(t|Ft−; θ0)

for some θ ∈ Θ; and

2. Given that an event occurs at time t, the conditional distribution of event

types should model the observed event types adequately, i.e. f (k|Ft− , t; θ) =

f (k|Ft− , t; θ0) for some θ ∈ Θ.

Let us recall the random time change theorem which is the basis for statistical

tests on intensity models.

Theorem 15 (Meyer, 1971) Suppose that the K sequences of arrival times {T 1
i }
∞
i=1,

{T 2
i }
∞
i=1, . . ., {T K

i }
∞
i=1 (where T j

i is the time when the ith event of type j occurs) are

generated by a multivariate point process Γ = {N1(t),N2(t), . . . ,NK(t)}t≥0 with abso-

lutely continuous compensator Λ = {Λ1(t),Λ2(t), . . . ,ΛK(t)}t≥0, such that Λ j(t) →

∞ as t → ∞ for all j = 1, 2, . . . ,K. Then, the time transformed process Γ̃ =

{N1(Λ−1
1 (t)),N2(Λ−1

2 (t)), . . . ,NK(Λ−1
K (t))}t≥0 is a multivariate standard Poisson process,

i.e. each N j(Λ−1
j (·)) is a univariate Poisson process with rate 1, and the K component

processes N j(Λ−1
j (·)) are independent over event types j = 1, 2, . . . ,K.

As an easy consequence of the above theorem, the time durations between

consecutive events of the same type from the time transformed process Γ̃ are

iid exponential distributed with rate 1. This is stated formally in the corollary

below:

Corollary 16 Suppose that the absolutely continuous marked compensator Λ j of the

point process defined in the above theorem admits a predictable intensity process λ j(t)
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as its density. Then, the time duration between the (i − 1)th and ith events of type j

x j
i = T̃ j

i − T̃ j
i−1 = Λ j(T

j
i ) − Λ j(T

j
i−1) =

∫ T j
i

T j
i−1

λ j(t)dt

follows iid exponential(1) distribution. Note that x j
i are independent over all i and j.

In the context of parametric intensity models (4.1), by defining ε j
i = 1− x j

i , we

then get a sequence {ε j
i : i = 1, 2, . . . ; j = 1, . . . ,K} of innovations that drives the

dynamics of the intensity model. From corollary 16, we learn that ε j
i (i = 1, 2, . . .;

j = 1, . . . ,K) are iid with mean 0 and a distribution that is a reflected and shifted

exponential(1). This provides the basis of goodness-of-fit diagnostics.

The following theorem gives an equivalent characterization of a multivariate

standard Poisson process. By focusing on the pooled point process, the alterna-

tive perspective the theorem provides simplifies the goodness-of-fit problem of

a multivariate intensity model to that of a univariate one with marks. First, we

need a lemma that reiterates the memoryless property of Poisson process.

Lemma 17 Let Ui (i = 1, 2, . . .) be the ith event time of a univariate standard Poisson

process. Suppose we know that Ui ≤ c < Ui+1 for a fixed time point c. Then, the

distribution of (Ui+1 − c) is exponential(1).

Proof. Given that Ui ≤ c < Ui+1, there are no events in [c,Ui+1), and so by

stationarity of Poisson process, P(Ui+1−c > t|Ui ≤ c < Ui+1) = P(Ui+1 > c+ t|Ui+1 >

c) = P(U1 > t) = e−t.

Theorem 18 The following three statements are equivalent:

1. The process Φ with type j event times {U j
i }
∞
i=1 and time origin U j

0 = 0 ( j =

1, 2, . . . ,K) is a multivariate standard Poisson process of dimension K;
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2. The time duration Y j
i = U j

i − U j
i−1 (i = 1, 2, . . . ; j = 1, 2, . . . ,K) between the

(i − 1)th and ith events of type j follows iid exponential(1) distribution;

3. Let Yi = Ui − Ui−1 (i = 1, 2, . . .) be the ith duration of the pooled process Φ̃ =

{N(t)} = {
∑K

j=1 N j(t)} of Φ and Wi be the mark of the ith event. Then,

(a) Yi follows iid exponential(K) distribution;

(b) Wi follows iid discrete uniform distribution, taking values 1, 2, . . . ,K with

probability 1
K each; and

(c) Yi and Wi are independent for all i = 1, 2, . . ..

Proof. (1) ⇐⇒ (2) is standard. It follows from the independent and stationary

increment properties of a Poisson process.

(2) ⇒ (3): To show (3a), it suffices to show that, for all j = 1, 2, . . . ,K, the

conditional distribution of U j
N j(Ui)+1 − Ui given Ui follows exponential(1), since

then the unconditional distribution of U j
N j(Ui)+1 − Ui follows exponential(1) too

and hence Yi+1 = min{t − Ui : N(t) > N(Ui)} = min{U j
N j(Ui)+1 − Ui : j = 1, 2, . . . ,K}

follows exponential(K). Without loss of generality, suppose Wi = 1. If Wi+1 =

Wi−1 = 1, then (U j
N j(Ui)+1 − Ui)|Ui = Y1

N1(Ui)+1|Ui = Y1
N1(Ui)+1˜ exp(1). If Wi+1 = j , 1,

then by the memoryless property of Poisson process (see the above lemma),

(U j
N j(Ui)+1 − Ui)|Ui˜ exp(1) as well. (3b) follows from symmetry: given Yi, the

probability that Wi = j is exp(−YiK)
K exp(−YiK) = 1

K for all j = 1, 2, . . . ,K, and (3c) follows

from the fact that the conditional distribution of Wi given Yi is independent of Yi

as seen from the proof of (3b).
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(3)⇒ (2): Without loss of generality, suppose Wi = 1. Then, given (Ui,Wi = 1),

Y1
N1(Ui)

=



Ui+1 with prob. 1
K

Ui+1 + Ui+2 with prob. K−1
K

1
K

Ui+1 + Ui+2 + Ui+3 with prob.
(

K−1
K

)2 1
K

...
...

By (3a), Ui+1 +Ui+2 + · · ·+Ui+r follows a gamma distribution with parameters r

(shape) and K (scale). The moment generating function of Y1
N1(Ui)

given (Ui,Wi =

1) is:

E
(
exp(tY1

N1(Ui)
)
∣∣∣∣ Ui,Wi = 1

)
=

K
K − t

1
K

+

( K
K − t

)2 K − 1
K

1
K

+

( K
K − t

)3 (
K − 1

K

)2 1
K

+ · · ·

=

K
K−t

1
K

1 − K
K−t

K−1
K

=
1

1 − t
.

Similarly, Y j
N j(Ui)

given (Ui,Wi = j) follows iid exponential(1) for all j = 1, 2, . . . ,K

and all Ui. Since the conditional distribution is independent of Ui and Wi, the

unconditional distribution of Y j
k also follows iid exponential(1).

Because of the above characterization theorem, it is sufficient to base the

goodness-of-fit problem of model (1) on checking the following three aspects:

1. The durations xi between the (i−1)th and ith events of the pooled time trans-

formed point process, defined by

xi = T̃i − T̃i−1 =

∫ Ti

Ti−1

K∑
j=1

λ j(t)dt,

are iid exponential(K).
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2. The marks mi of the pooled time transformed point process are iid discrete

uniform over 1, 2, . . . ,K.

3. xi and mi are independent for all i = 1, 2, . . ..

One may instead approach the goodness-of-fit problem by examining the

iid property of the marked durations x j
i from an estimated model after time

transformation. However, there are at least two advantages of our three-step

procedure over this approach. First, unlike traditional time series analysis, the

K sequences of marked durations x j
i from a multivariate point process are asyn-

chronously observed by nature. For instance, there is no straightforward way,

if there is any, of defining a lag-one cross correlation of the two sequences {x1
i }

and {x2
i }, because the realized ith marked duration between events of type 1 may

be observed before or after, and can be very far away in time from, that between

events of type 2. The total numbers of realized x1
i and x2

i can be very different

too, which may introduce problems that compromise the asymptotic property

of the corresponding test statistic that is a function of the realized marked du-

rations. The three-step approach does not have this problem. Second, it is not

clear what alternative hypothesis a test statistic based on realized marked dura-

tions is testing against. At best, a tailor-made test statistic has to be considered

if, for instance, the alternative hypothesis is that occurrence of event 1 excites

the occurrence of event 3, but this can be more systematically tested against by

a multiple runs test (step 2) on the sequence of marks M̃i under the three-step

approach without the need for a tailor-made test statistic. Moreover, against

the special alternative hypothesis of a two-state dependent first order station-

ary Markov chain, runs test can be shown to be the most powerful unbiased test

for randomness of an ordinal-valued sequence (Lehmann and Romano, 1971,

p.146).
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4.3.1 Generalized Residual Autocorrelations Test

The purpose of step one is to check that the time transformed durations from

the pooled process of an estimated intensity model has the iid exponential(1)

properties. Now, let us concentrate on testing for serial correlations. To this end,

we need to derive the asymptotic distributions of a vector of autocorrelations of

generalized residuals from an estimated intensity model.

By Meyer’s (1971) random time change theorem,

xi(θ0) =

∫ Ti

Ti−1

K∑
j=1

λ j(t|Ft−; θ0)dt,

i = 1, . . . , n follow iid exponential distribution with rate K. After replacing all xi

by xi(θ0), we can apply the above tests for a Poisson process as tools of checking

model adequacy of a general parametric multivariate point process, provided

that the true value of parameter θ0 is known.

In reality, however, θ0 is unknown and has to be estimated by, say, maximum

likelihood estimation, from the data. Let θ̂ be an estimator of θ0. Because of

parameter uncertainty, xi(θ̂), i = 1, . . . , n are no longer iid standard exponential,

and the asymptotic distributions of all the test statistics considered above are no

longer the same. For notational simplicity, let εi = 1− Kxi(θ0) and ε̂i = 1− Kxi(θ̂).

The sample mean is ε̂ = 1
n

∑n
i=1 ε̂i.

Let us impose the following assumptions on the parametric model λ(t|Ft−; θ):

Assumption 1: The pooled point process is stationary and ergodic with ab-

solutely continuous compensator.

Assumption 2: θ̂ is the maximum likelihood estimator of θ0 that maximizes
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the log-likelihood function

`(θ) =

K∑
j=1

−∫ T

0
λ j(t|Ft−; θ)dt +

n∑
i=1

log λ j(ti|Ft−; θ)

 . (4.2)

Moreover, the regularity conditions in Ogata (1978) that guarantee the existence

and uniqueness of θ̂ are assumed on the pooled process with intensity h(t; θ) =∑K
j=1 λ

j(t|Ft; θ).

Assumption 3: The fourth moment E(ε̂4
i ) exists and is finite.

Let us consider the serial autocorrelations test with parameter uncertainty.

We are interested in testing

H0 : ε̂i, i = 1, . . . , n, are serially uncorrelated vs

H1 : ε̂i, i = 1, . . . , n, are serially correlated.

To this end, we construct a portmanteau test statistic which is composed of a

sequence of lag m sample autocorrelations of ε̂i for m = 1, . . . ,M, defined by

ρ̂m =

∑n−m
i=1 (ε̂i − ε̂)(ε̂i+m − ε̂)∑n

i=1(ε̂i − ε̂)2
.

Under the null hypothesis, the sample mean ε̂ converges in probability to

E(εi) = 0 and the sample variance
∑n

i=1(ε̂i − ε̂)2/n converges in probability to

Var(εi) = 1 as n→ ∞. Hence, ρ̂m − r̂m
P
→ 0 as n→ ∞, where

r̂m =

∑n−m
i=1 ε̂iε̂i+m

n
.

Therefore, it suffices to investigate the joint distribution of the sample autoco-

variances r̂m for m = 1, . . . ,M. Define r̂ = (r̂1, r̂2, . . . , r̂M)′ and its population coun-

terpart r = (r1, r2, . . . , rM)′, where rm =
∑n−m

i=1 εiεi+m/n. Then, a Taylor expansion

around the true parameter θ0 yields:

r̂ = r +
∂r
∂θ

(
θ̂ − θ0

)
+ Op(n−1).
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Denote the probability limit of −∂r/∂θ by X, i.e. X = −E [∂r/∂θ]. Then, as n→ ∞,

we have

r̂
P
→ r − X

(
θ̂ − θ0

)
.

First, note that
√

nr converges in distribution to N(0, IM), where IM is the (M×

M) identity matrix (Hannan, 1967). Second, by assumption 2 and the property of

maximum likelihood estimator for point process models (Ogata, 1978),
√

n(θ̂−θ0)

converges in distribution to N(0,G−1) as n → ∞, where G = −E
[
n−1∂2`/∂θ∂θ′

]
is

the information matrix. By the martingale central limit theorem,
√

nr̂ has an

asymptotic normal distribution. The result is stated in the following theorem.

Theorem 19 Under Assumptions 1-3,
√

nr̂
d
→N(0,V) where

V = IM − XG−1X′, (4.3)

X = −E [∂r/∂θ] is an (M × D) matrix with the (m, d) entry given by

xmd = −
1
n

n∑
i=m+1

E

[
εi−m

∂

∂θd
log h(Ti; θ0)

]
, (4.4)

and G = −E
[
n−1∂2`(θ0)/∂θ∂θ′

]
is a (D×D) invertible matrix with the (p, q) entry given

by

gpq =
1
n

n∑
i=1

E

[
∂

∂θp
log h(Ti; θ)

∂

∂θq
log h(Ti; θ)

]
. (4.5)

Corollary 20 The portmanteau test statistic Q1(M) = nρ̂′V−1ρ̂ converges to a chi-

squared distribution with M degrees of freedom.

To implement the tests, it is necessary to estimate the asymptotic variance V

from the data. The following theorem provides a consistent estimator for V.
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Theorem 21 Define V̂ = IM − X̂Ĝ
−1

X̂′, where X̂ is an (M × D) matrix with the (m, d)

entry given by

x̂md = −
1
n

n∑
i=m+1

ε̂i−m
∂

∂θd
log h(ti; θ̂),

and Ĝ is a (D × D) matrix with the (p, q) entry given by

ĝpq =
1
n

n∑
i=1

∂

∂θp
log h(ti; θ̂)

∂

∂θq
log h(ti; θ̂).

Then, V̂
P
→ V.

A couple of remarks on the estimation of the asymptotic covariance matrix

V are in order. First, note that Ĝ is readily available from maximization routines

as it is also the hessian matrix of the log-likelihood function evaluated at θ̂. To

obtain X̂, we need the derivatives of the log conditional intensity function eval-

uated at ti and θ̂. For Cox models, they are simply equal to the corresponding

covariates. Another important particular case is where the log conditional in-

tensity function admits an ARMA representation as in the univariate ACI(p, q)

models. Then, it can be shown along the same arguments as in Box and Pierce

(1970) that, by choosing M = O
(√

n
)
, G = X′X asymptotically and hence V is

idempotent with p + q degrees of sigularity in the limit. The asymptotic idem-

potence property saves us from evaluating V and implies that the distribution

of nρ̂′ρ̂ converges to a chi-square distribution with M − p − q degrees of free-

dom. A third possibility is that the conditional intensity function is modeled by

a Markov process such as jump diffusion, then by Markov property it is clear

from (C.1) that X = 0, so that V = IM and hence the portmanteau test statistics

are distributed as if there is no parameter uncertainty.
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4.4 Simulations

To examine the performance of the autocorrelations test proposed in the last

section, we conduct simulations to get empirical sizes of the test under different

situations. The models of interest are as follows.

Cox model:

h(t; θ) = exp{a0 + a1X(t) + a2Y(t)}

where θ = (a0, a1, a2); X(t) and Y(t) are independent, exogenous AR processes:

for all integers i:

X(i) = bX(i − 1) + V(i)

Y(i) = cY(i − 1) + W(i)

with iid normal innovations V(i) and W(i).

Univariate ACI(1, 1) model:

h(t; θ) = exp{ω + φi−1}, for t ∈ (ti−1, ti]

φi = αφi−1 + βεi

εi = 1 −
∫ ti

ti−1

h(t; θ)dt

where θ = (ω, α, β);
∫ ti

ti−1
h(t; θ)dt are iid exponential(1).

Bivariate ACI(1, 1) model defined in section 3.3.

For the size experiments, we consider the following data generating pro-

cesses.

DGP1: Univariate ACI(1,1) model with θ = (0.5, 0.9, 0.1). DGP2: Cox model

with θ = (0.5, 0.2, 0.3) and AR coefficients b = 0.5, c = 0.6.DGP3: Bivariate
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ACI(1,1) model with (ωa, ωb) = (−10, 10), aa = ab = (0.1, 0.1)′ and B =

 0.5 0.1

0.0 0.7


We present the empirical size results of the various portmanteau test ob-

tained after 1000 simulations. The nominal size of the tests is set to be 0.05. The

empirical sizes of various tests are plotted against the maximum number of lags,

M, when the DGP is the ACI(1,1) model and Cox model, respectively. We see

that the portmanteau test Q1(M) considered in this chapter comes close to the

nominal level after adjusting the degrees of freedom of its chi-square distribu-

tion to M−2 for ACI(1,1) model. Its performance becomes even more promising

as the sample length increases to n = 400. Similar results hold for Cox model

except that the degree of freedom of the chi-square distribution for the Q1(M)

test remains at M. For the bivariate ACI(1,1) model, we conduct Box-Pierce and

Ljung-Box tests on the residual sequence from the pooled point process (regard-

less of event types) as well as the residual sequence of each of the two marginal

point prcesses. The plots show that the empirical rejection rates of the Ljung-

Box test are close to the nominal level at M degrees of freedom of the chi-square

distribution, while the Box-Pierce test tends to be increasingly undersized as

M increases. The satisfactory size performance of the Ljung-Box test suggests

that the parameter uncertainty correction of Q1(M) on the estimated bivariate

ACI(1,1) model seems to be minor and not worth the effort.

To study the power of the portmanteau test, we now assume the DGP to

be a bivariate ACI(1,1) model with strong two-way feedback, having param-

eters (ωa, ωb) = (−1, 1), aa = ab = (0.1, 0.1)′ and B =

 0.5 0.8

−0.8 0.7

. We then

intentionally estimate a univariate ACI(1,1) model to each of the marginal point

processes without accounting for the two-way feedback. Both the Ljung-Box
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and Box-Pierce tests display power when they are applied on the residuals of

the pooled point process and the marginal process of type-b events, although

the power of the latter test dies down as the maximum lag M increases.

Figure 4.1: The empirical sizes of various portmanteau tests. DGP:
ACI(1,1), df= M, n = 100.

Figure 4.2: The empirical sizes of various portmanteau tests. DGP:
ACI(1,1), df= M, n = 400.

Figure 4.3: The empirical sizes of various portmanteau tests. DGP:
ACI(1,1), df= M − 2, n = 100.
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Figure 4.4: The empirical sizes of various portmanteau tests. DGP:
ACI(1,1), df= M − 2, n = 400.

Figure 4.5: The empirical sizes of various portmanteau tests. DGP: Cox
model, df= M, n = 100.

Figure 4.6: The empirical sizes of various portmanteau tests. DGP: Cox
model, df= M, n = 400.
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Empirical Size of Autocorrelations Test

# of events = 100,  # of sims = 1000,  DGP: bivariate ACI(1,1) 
 w=[−10.0 −10.0], a=[0.1 0.1], b=[0.5 0.1; 0.0 0.7]            
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Figure 4.7: The empirical sizes of Box-Pierce and Ljung-Box tests. DGP:
bivariate ACI(1,1) model, df= M, n = 100.
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Figure 4.8: The empirical sizes of Box-Pierce and Ljung-Box tests. DGP:
bivariate ACI(1,1) model, df= M, n = 400.
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Empirical Size of Autocorrelations Test

# of events = 100,  # of sims = 1000,  DGP: bivariate ACI(1,1) 
 w=[−1.0 −1.0], a=[0.1 0.1], b=[0.5 0.8; −0.8 0.7]             
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Figure 4.9: The empirical power of Box-Pierce and Ljung-Box tests. DGP:
bivariate ACI(1,1) model, df= M, n = 100.
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Figure 4.10: The empirical power of Box-Pierce and Ljung-Box tests. DGP:
bivariate ACI(1,1) model, df= M, n = 400.
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CHAPTER 5

CONCLUSION

Credit and financial contagion has been intriguing economists especially after

the recent subprime mortgage crisis. Despite numerous studies surrounding

this topic, the cause and mechanism of contagion are not yet clear to economists.

This dissertation contributes to the literature by considering a number of econo-

metric techniques to uncover the dynamics of credit and financial contagion. By

transforming the problem into a meaningful Granger causality test, we can in-

vestigate the direction and magnitude of a contagion based on the observed

point process data of credit events and negative shocks to financial markets. In

particular, the nonparametric Granger causality test introduced in Chapter 2 of-

fers a model-free approach for this purpose. For various bandwidth choice of

the weighting function, this nonparametric test produces a profile of impulse re-

sponse without the interference of a parametric model, and hence can be treated

as a first-step analysis that facilitates the modelers to propose a parametric spec-

ification. After estimating the parametric model proposed by the modeler, a di-

agnostic checking procedure is necessary to evaluate the adequacy of the model.

The portmanteau test considered in Chapter 4, the first of its kind for parametric

multivariate conditional intensity models, is an indispensable technique in the

model evaluation stage.

Applying these methodologies to the empirical study of Chapter 11 filings

in the U.S., Chapter 3 provides empirical evidence that bankruptcy occurrences

are contagious not only among firms in the same sector but also across dif-

ferent industries. Bankruptcy contagion tends to be the strongest and spread

upstream along a typical supply chain near economic recessions and financial

109



crises. During the subprime mortgage crisis and its aftermath, there is a persis-

tent spread of bankruptcy contagion from the financial sector to other sectors of

the economy. This empirical evidence allows a more complete understanding of

the nature of credit contagion and may facilitate policy makers, regulators and

portfolio investors to make better decisions in preparation of the next financial

crisis.
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APPENDIX A

CHAPTER 2 APPENDIX

A.1 List of Assumptions

(A1) The pooled counting process N ≡ Na + Nb is simple, i.e. P(N({t}) = 0 or 1 for

all t) = 1.

(A2) The bivariate counting process N =(Na,Nb) is second-order stationary and

that the second-order reduced product densities ϕi j (·) (i, j = a, b) exist.

(A3) The F -conditional intensity λk(t|Ft−) and F k-conditional intensity λk
t ≡

λk(t|F k
t−) of the counting process Nk

t exist and are predictable.

(A4a) The kernel function K(·) is symmetric around zero and satisfies κ1 ≡∫ ∞
−∞

K(u)du = 1, κ2 ≡
∫ ∞
−∞

K2(u)du < ∞, κ4 ≡
#

(−∞,∞) K(u)K(v)K(u + w)K(v +

w)dudvdw < ∞ and
∫ ∞
−∞

u2K(u)du < ∞.

(A4b) The kernel function K̊(·) is symmetric around zero and satisfies κ̊1 ≡∫ ∞
−∞

K̊(u)du = 1, κ̊2 ≡
∫ ∞
−∞

K̊2(u)du < ∞, κ̊4 ≡
#

(−∞,∞) K̊(u)K̊(v)K̊(u + w)K̊(v +

w)dudvdw < ∞ and
∫ ∞
−∞

u2K̊(u)du < ∞.

(A4c) The kernel function K̈(·) is symmetric around zero and satisfies κ̈1 ≡∫ ∞
−∞

K̈(u)du = 1, κ̈2 ≡
∫ ∞
−∞

K̈2(u)du < ∞, κ̈4 ≡
#

(−∞,∞) K̈(u)K̈(v)K̈(u + w)K̈(v +

w)dudvdw < ∞ and
∫ ∞
−∞

u2K̈(u)du < ∞.

(A4d) The kernels K(x), K̊(x) and K̈(x) are all standard Gaussian kernels. That

is: K(x) = K̊(x) = K̈(x) = (2π)−1/2 exp
(
−x2/2

)
.

(A5) The weighting function w(`) is integrable over (−∞,∞): i.e.
∫ ∞
−∞

w(`)d` < ∞.

(A6) E
[
{Nk(B1)Nk(B2)Nk(B3)Nk(B4)}

]
< ∞ for k = a, b and for all bounded Borel

sets Bi on R, i = 1, 2, 3, 4.
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(A7) The rescaled counting process Ñk
u ≡ Nk

Tu/T (with natural filtration F̃ k) has

an F̃ k-conditional intensity function λ̃k
u, which is twice continuously dif-

ferentiable with respect to u, and is unobservable but deterministic.

(A8) The joint cumulant c22(`1, `2, `3) of {dεa
s , dε

a
s+`1

, dεb
s+`2

, dεb
s+`3
} is of order o(a2

T ).
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A.2 Figures

Figure A.1: The statistic Q aggregates the squared contributions of resid-
ual products dε̂a

s dε̂b
t for all s < t. The lines join all pairs of type

a and type b events (shocks) at their event times (τa
i , τ

a
j) for all

τa
i < τ

a
j .
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(a) T = 500, B = 10,M = 60 (b) T = 1000, B = 10,M = 75

(c) T = 1500, B = 10,M = 100 (d) T = 2000, B = 10,M = 120

Plots of empirical rejection rates against B. Runs=5000, DGP= bivariate Poisson process (two independent Poisson

processes with rate 0.1). Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.2: Size experiment of Q test, bivariate Poisson process.
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(a) size: H = 3, B = 2 (b) power: H = 3, B = 2

(c) size: H = 3, B = 20 (d) power: H = 3, B = 20 Plots of em-

pirical rejection rates against B. Runs=10000, T=1800, DGP= bivariate exponential Hawkes model in (2.23). Nominal

size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.3: Size and power experiment of Q test, bivariate exponential
Hawkes process.
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(a) T = 300 (b) T = 600
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(c) T = 900 (d) T = 1200
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Plots of empirical rejection rates against B. Runs=5000, DGP=bivariate exponential Hawkes: µ=

 0.1
0.1

, α=

 0.3 0
0 0.4

,
β=

 1 0
0 1

 . Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.4: Size experiment 1 of Qs test.
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(a) T = 300 (b) T = 600
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(c) T = 900 (d) T = 1200
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Plots of empirical rejection rates against B. Runs=5000, DGP= bivariate exponential Hawkes: µ=

 0.1
0.1

, α=

 0.3 0
0 0.6

,
β=

 1 0
0 1

 . Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.5: Size experiment 2 of Qs test.
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(a) T = 300 (b) T = 600
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(c) T = 900 (d) T = 1200
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Plots of empirical rejection rates against B. Runs=5000, DGP= bivariate exponential Hawkes: µ=

 0.1
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, α=
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,
β=
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0 1

 . Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.6: Size experiment 3 of Qs test.
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(a) T = 300 (b) T = 600
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, α=

 0.3 0
0 0.3

,
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 . Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.7: Size experiment 4 of Qs test.
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(a) T = 300 (b) T = 600
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Figure A.8: Size experiment 5 of Qs test.
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(a) T = 300 (b) T = 600
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Figure A.9: Power experiment of Qs test.
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(a) N(T ) = 50 (b) N(T ) = 100
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Plots of empirical rejection rates against B/T . Runs=1000, N(T ) = total number of events in the pooled point process,

DGP = bivariate ACI(1,1) model estimated from bankruptcy data (upstream and downstream, Mar 2001 - Nov 2001).

Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.10: Size experiment R-S1 of Qs test.
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(a) N(T ) = 50 (b) N(T ) = 100
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Plots of empirical rejection rates against B/T . Runs=1000, N(T ) = total number of events in the pooled point process,

DGP = bivariate ACI(1,1) model estimated from bankruptcy data (upstream and downstream, Jul 2009 - Nov 2011).

Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.11: Size experiment R-S2 of Qs test.
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(a) N(T ) = 50 (b) N(T ) = 100
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Plots of empirical rejection rates against B/T . Runs=1000, N(T ) = total number of events in the pooled point process,

DGP = bivariate ACI(1,1) model estimated from bankruptcy data (upstream and downstream, Mar 2001 - Nov 2001).

Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.12: Power experiment R-P1 of Qs test.
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(a) N(T ) = 50 (b) N(T ) = 100
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Plots of empirical rejection rates against B/T . Runs=1000, N(T ) = total number of events in the pooled point process,

DGP = bivariate ACI(1,1) model estimated from bankruptcy data (upstream and downstream, Jul 2009 - Nov 2011).

Nominal size: blue=0.1; red=0.05; green=0.025; black=0.01.

Figure A.13: Power experiment R-P2 of Qs test.

Figure A.14: Histogram of bankruptcies of U.S. firms, 1980–2010.
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Nm
t (Blue): A: Agricultural; B: Mining; C: Construction; D: Manufacturing; E: Transportation, Communications, Electric,

Gas; N f
t (Red): F: Wholesale; G: Retail; H: Finance, Insurance, Real Estate; I: Services

Figure A.15: Raw counts of bankruptcies in manufacturing and financial
related sectors.

A.3 Tables

Scheme Observation window Sample size Limit Duration
1 [0,T ] n = N(T ) T → ∞⇒ n→ ∞ τi − τi−1 fixed
2 [0,T0] n = N(T0) n→ ∞, T0 fixed τi − τi−1 ↓ 0

Table A.1: The asymptotic mechanisms of the two schemes.
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H B M Trade→ Quote Quote→ Trade
sig. levels: 0.1 0.05 0.01 0.1 0.05 0.01
0.6 2 20 3 1 1 4 2 1
0.6 4 17 4 3 2 4 2 1
0.6 10 15 7 5 3 1 1 0
0.6 20 10 4 2 1 1 1 1
1 2 38 8 7 3 6 6 3
1 4 35 9 6 3 4 3 3
1 10 30 15 15 15 4 3 2
1 20 27 16 15 11 3 2 2
3 2 40 8 6 5 7 6 3
3 4 35 13 11 6 8 7 2
3 10 33 19 16 11 7 5 4
3 20 30 15 12 11 4 2 2

Mean number of trades=88.8, quotes=325.1. The bandwidth combinations give right sizes in simulations (with an

estimated bivariate Hawkes model to PG data as DGP). Bandwidths (in days) of (i) cross-covariance function: H; (ii)

weighting function: B; (iii) conditional intensity: M. All kernels are Gaussian.

Table A.2: Significant day counts (out of 41 days) of PG, 9:45am – 10:15am.

H B M Trade→ Quote Quote→ Trade
sig. levels: 0.1 0.05 0.01 0.1 0.05 0.01
0.6 2 20 11 8 6 8 6 4
0.6 4 17 16 15 11 9 7 4
0.6 10 15 17 16 15 8 6 5
0.6 20 10 9 6 6 7 5 3
1 2 38 6 5 4 8 8 6
1 4 35 20 18 13 10 8 7
1 10 30 17 16 13 11 10 8
1 20 27 17 16 14 13 11 9
3 2 40 14 9 4 17 12 6
3 4 35 24 20 18 19 14 11
3 10 33 26 25 22 24 20 18
3 20 30 25 23 18 26 25 16

Mean number of trades=103.8, quotes=403.73. The bandwidth combinations give right sizes in simulations (with an

estimated bivariate Hawkes model to PG data as DGP). Bandwidths (in days) of (i) cross-covariance function: H; (ii)

weighting function: B; (iii) conditional intensity: M. All kernels are Gaussian.

Table A.3: Significant day counts (out of 41 days) of PG, 11:45am –
12:45pm.
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H B M Trade→ Quote Quote→ Trade
sig. levels: 0.1 0.05 0.01 0.1 0.05 0.01
0.6 2 20 1 0 0 2 1 1
0.6 4 17 7 5 3 1 1 0
0.6 10 15 8 7 7 0 0 0
0.6 20 10 6 5 3 1 1 0
1 2 38 4 3 2 4 3 1
1 4 35 5 5 4 2 2 1
1 10 30 18 18 16 6 5 2
1 20 27 13 13 13 2 2 0
3 2 40 5 5 3 6 4 3
3 4 35 10 9 7 6 6 4
3 10 33 14 13 12 7 7 5
3 20 30 10 10 9 8 6 2

Mean number of trades=93.7, quotes=361.56. The bandwidth combinations give right sizes in simulations (with an

estimated bivariate Hawkes model to PG data as DGP). Bandwidths (in days) of (i) cross-covariance function: H; (ii)

weighting function: B; (iii) conditional intensity: M. All kernels are Gaussian.

Table A.4: Significant day counts (out of 41 days) of PG, 3:30pm – 4:00pm.
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PG B Trade→ Quote Quote→ Trade
periods sig.: 0.1 0.05 0.01 0.1 0.05 0.01
09:45-10:15 10 13 8 0 1 0 0

20 24 13 4 3 1 0
µt = 88.8 30 23 14 4 2 1 0
µq = 325.1 40 21 16 4 1 1 0
11:45-12:45 10 32 28 16 2 0 0

20 35 34 21 3 0 0
µt = 103.8 30 34 34 16 5 0 0
µq = 403.7 40 33 30 14 6 0 0
15:30-16:00 10 26 12 3 0 0 0

20 30 21 3 1 0 0
µt = 93.7 30 26 16 6 3 1 0
µq = 361.6 40 20 11 4 3 0 0

µt=mean number of trades, µq=mean number of quotes. The bandwidths Rk of unconditional autocorrelation estimators

ĉkk
Rk (θ) (for k = trade and quote) are set equal to B, the bandwidth of the weighting function wB(θ).

Table A.5: Significant day counts (out of 41 days) of PG over various trad-
ing hours of a day.

GM B Trade→ Quote Quote→ Trade
periods sig.: 0.1 0.05 0.01 0.1 0.05 0.01
09:45-10:15 10 6 1 0 0 0 0

20 13 8 0 1 1 0
µt = 65.4 30 15 11 1 2 2 0
µq = 191.9 40 17 11 4 2 2 0
11:45-12:45 10 26 16 6 9 2 1

20 28 19 10 10 4 0
µt = 80.5 30 26 18 8 7 2 0
µq = 217.3 40 24 20 7 9 2 0
15:30-16:00 10 8 4 0 2 1 0

20 12 7 1 4 1 0
µt = 65.1 30 11 5 0 5 3 0
µq = 188.9 40 10 5 0 6 2 1

µt=mean number of trades, µq=mean number of quotes. The bandwidths Rk of unconditional autocorrelation estimators

ĉkk
Rk (θ) (for k = trade and quote) are set equal to B, the bandwidth of the weighting function wB(θ).

Table A.6: Significant day counts (out of 41 days) of GM over various trad-
ing hours of a day.
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B = M = 365 B = M = 548 B = M = 730
H Jm→ f J f→m Jm→ f J f→m Jm→ f J f→m

2 2.32 3.56 0.09 12.66 -0.90 31.81
4 -3.85 5.87 -4.01 17.58 0.90 43.21
6 -3.14 -0.45 -2.21 10.87 5.97 49.86
8 -2.21 0.86 -0.82 15.22 9.21 49.06
10 -1.53 1.93 0.15 18.63 11.52 57.37
12 -1.06 2.62 0.86 21.12 13.32 63.88
14 -0.67 3.04 1.41 22.93 14.73 69.04

Sample sizes: (nm, nm) = (209, 149). m → f ( f → m) denotes bankruptcy contagion from manufacturing related to

financial related firms (and vice versa). One-sided critical values: z0.05 = 1.64 ; z0.01 = 2.33. Bandwidths (in days) of (i)

cross-covariance function: H; (ii) weighting function: B; (iii) conditional intensity: M. All kernels are Gaussian.

Table A.7: Q tests on bankruptcy data, Sep96 – Jul03.

B = M = 365 B = M = 548 B = M = 730
H Jm→ f J f→m Jm→ f J f→m Jm→ f J f→m

2 -5.12 0.55 -4.56 -1.21 -2.98 -1.77
4 -3.13 1.77 -2.24 -0.24 0.01 -0.71
6 -2.70 1.17 -1.38 -0.34 1.46 -0.21
8 -1.96 0.32 -0.21 -0.68 3.17 0.04
10 -1.14 -0.07 0.96 -0.78 4.77 0.35
12 -0.46 -0.09 1.88 -0.65 5.95 0.75
14 0.04 0.10 2.53 -0.41 6.72 1.17

Sample sizes: (nm, nm) = (65, 29). m→ f ( f → m) denotes bankruptcy contagion from manufacturing related to financial

related firms (and vice versa). One-sided critical values: z0.05 = 1.64 ; z0.01 = 2.33. Bandwidths (in days) of (i) cross-

covariance function: H; (ii) weighting function: B; (iii) conditional intensity: M. All kernels are Gaussian.

Table A.8: Q test on bankruptcy data, Aug03 – Aug07.
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B = M = 365 B = M = 548 B = M = 730
H Jm→ f J f→m Jm→ f J f→m Jm→ f J f→m

2 19.37 7.58 50.42 28.11 83.53 52.44
4 10.25 14.67 46.67 39.19 89.14 73.09
6 12.80 17.67 56.57 56.38 108.40 100.61
8 15.37 20.86 65.69 65.72 125.76 117.12
10 22.14 23.29 73.90 73.13 141.37 130.41
12 23.24 25.23 81.46 79.42 155.63 141.87
14 24.43 26.87 93.37 85.00 175.19 152.16

Sample sizes: (nm, nm) = (78, 71). m→ f ( f → m) denotes bankruptcy contagion from manufacturing related to financial

related firms (and vice versa). One-sided critical values: z0.05 = 1.64 ; z0.01 = 2.33. Bandwidths (in days) of (i) cross-

covariance function: H; (ii) weighting function: B; (iii) conditional intensity: M. All kernels are Gaussian.

Table A.9: Q tests on bankruptcy data, Sep07 – Jun10.
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B m→ f p-value f → m p-value
30 1.79 0.037 1.78 0.038
60 1.74 0.041 1.93 0.027
90 1.66 0.049 1.99 0.024
120 1.58 0.057 1.99 0.024
150 1.51 0.066 1.96 0.025
180 1.43 0.076 1.93 0.027
210 1.35 0.088 1.89 0.029
240 1.27 0.103 1.86 0.032
270 1.18 0.119 1.82 0.034
300 1.09 0.138 1.79 0.037

m → f ( f → m) denotes bankruptcy contagion from manufacturing related to financial related firms (and vice versa).

One-sided critical values: z0.05 = 1.64 ; z0.01 = 2.33. Bandwidth (in days) of the weighting function: B. Bandwidths Rk of

autocovariance function estimators are set equal to 300. All kernels are Gaussian.

Table A.10: Qs test on bankruptcy data, September 1996 – June 2010.

Index Trading hours (local time) GMT Start date
DJI 09:30 - 16:00 -5 10/1/1928
FTSE 08:00 - 16:30 +0 4/2/1984
DAX 09:00 - 17:30 +1 11/26/1990
CAC 09:00 - 17:30 +1 3/1/1990
HSI 10:00 - 12:30, 14:30 - 16:001 +8 12/31/1986
STI 09:00 - 12:30, 2:00 - 5:00 +8 12/28/1987
TWI 09:00 - 13:30 +8 7/2/1997
NIK 09:00 - 11:00, 12:30 - 15:00 +9 1/4/1984
AOI 10:00 - 16:00 +10 8/3/1984

Adjusted daily index values were collected from Yahoo! Finance. The end date of all the time series is 8/19/2011. Each

time, a Granger causality test is performed on the event sequences of a pair of indices, with the sampling period equal

to the shorter of the two sampling periods of the two indices.

Table A.11: Trading hours, Greenwich mean time and start dates of the
sampling periods of major stock indices.
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90% VaR 95% VaR 99% VaR
B HSI→DJI DJI→HSI HSI→DJI DJI→HSI HSI→DJI DJI→HSI
1 0.92 1.69 1.28 3.00 7.35 9.61
2 0.75 1.17 1.04 2.16 5.98 7.92
3 0.67 0.95 0.98 1.81 5.23 6.99
5 0.60 0.76 0.96 1.49 4.63 6.44
10 0.53 0.60 0.96 1.19 4.06 5.85
(n1, n2) (608,620) (304,310) (61,62)

The bandwidths of the autocovariance functions are chosen to be Rk = 10.5B0.3.

Table A.12: Qs test applied to extreme negative shocks of DJI and HSI.

90% VaR 95% VaR 99% VaR
B NIK→DJI DJI→NIK NIK→DJI DJI→NIK NIK→DJI DJI→NIK
1 0.56 1.64 1.23 2.87 5.70 10.62
2 0.46 1.13 1.00 2.05 5.21 7.84
3 0.43 0.93 0.90 1.72 5.12 7.01
5 0.41 0.74 0.82 1.42 4.93 6.52
10 0.38 0.57 0.74 1.11 4.49 6.18
(n1, n2) (604,614) (303,306) (63,59)

The bandwidths of the autocovariance functions are chosen to be Rk = 10.5B0.3.

Table A.13: Qs test applied to extreme negative shocks of DJI and NIK.

90% VaR 95% VaR 99% VaR
B FTS→DJI DJI→FTS FTS→DJI DJI→FTS FTS→DJI DJI→FTS
1 2.88 0.88 4.93 1.76 18.53 5.81
2 1.82 0.86 3.18 1.74 13.25 6.35
3 1.46 0.81 2.59 1.68 11.25 6.38
5 1.16 0.76 2.07 1.62 9.16 6.46
10 0.90 0.68 1.65 1.45 7.31 6.56
(n1, n2) (621,620) (311,310) (63,62)

The bandwidths of the autocovariance functions are chosen to be Rk = 10.5B0.3.

Table A.14: Qs test applied to extreme negative shocks of DJI and FTSE.
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90% VaR 95% VaR 99% VaR
B AOI→DJI DJI→AOI AOI→DJI DJI→AOI AOI→DJI DJI→AOI
1 0.59 2.32 1.37 4.72 7.10 14.28
2 0.60 1.48 1.29 3.19 6.80 10.82
3 0.60 1.16 1.25 2.56 6.39 9.58
5 0.57 0.89 1.17 1.98 5.57 8.59
10 0.50 0.67 1.08 1.47 4.74 7.82
(n1, n2) (679,680) (340,341) (68,69)

The bandwidths of the autocovariance functions are chosen to be Rk = 10.5B0.3.

Table A.15: Qs test applied to extreme negative shocks of DJI and AOI.
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A.4 Proof of Theorem 5

I first expand (2.12) into

γ̂H(`) = 1
T H

∫ T

0

∫ T

0
K

(
t−s−`

H

) (
dNa

s − λ̂
a
sds

) (
dNb

t − λ̂
b
t dt

)
= 1

T H

∫ T

0

∫ T

0
K

(
t−s−`

H

) [
dNa

s dNb
t − λ̂

a
sdsdNb

t − dNa
s λ̂

b
t dt + λ̂a

s λ̂
b
t dsdt

]
= A1 + A2 + A3 + A4. (A.1)

The first term is

A1 = 1
T H

∑Na
T

i=1

∑Nb
T

j=1K
(

tbj−tai −`

H

)
.

The second term, after substituting λ̂b
t by (2.14), becomes

A2 = − 1
T HM

∑Na
T

i=1

∑Nb
T

j=1

∫ T

0
K

(
tbj−s−`

H

)
K̊

( s−tai
M

)
ds.

Similarly, the third term is

A3 = − 1
T HM

∑Na
T

i=1

∑Nb
T

j=1

∫ T

0
K

( t−tai −`
H

)
K̊

(
tbj−t

M

)
dt,

and the fourth one is

A4 = 1
T HM2

∑Na
T

i=1

∑Nb
T

j=1
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0

∫ T

0
K

(
t−s−`
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)
K̊

( s−tai
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)
K̊

(
tbj−t

M

)
dsdt.

Note that the last three terms involve the convolution of the kernels K(·) and

K̊(·) (twice for A4).

Under assumption (A4d), I can simplify the expressions further, as it is well

known that Gaussian kernels are invariant under convolution: for any H1,H2 >

0, the Gaussian kernel K(·) enjoys the property that

1
H1H2

∫ ∞

−∞

K
(

x−z
H1

)
K

(
z

H2

)
dz = 1√

H2
1+H2

2

K
(

x√
H2

1+H2
2

)
.
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Using this invariance property and a change of variables, I can simplify the

integrations and rewrite (A.1) as

γ̂H(`) = 1
T

∑Na
T

i=1

∑Nb
T

j=1

[
1
H K

(
tbj−tai −`

H

)
− 2
√

H2+M2
K

(
tbj−tai −`
√

H2+M2

)
+ 1
√

H2+2M2
K

(
tbj−tai −`
√

H2+2M2

)]
.

A.5 Proof of Theorem 6

Let us prove asymptotic normality first. For notational convenience, I drop

the superscript k of Nk
t , λk

t and their rescaled version in this proof. Let λ∗t =∫ T

0
1
M K̊

(
t−s
M

)
λsds, then I can rewrite (2.18) into

√
M

 λ̂Tv − λ
∗
Tv

√
λTv

 +
√

M
(
λ∗Tv − λTv
√
λTv

)
=: X1 + X2. (A.2)

Suppose F̃ k denotes the natural filtration of the rescaled counting process

Ñk. Then, it follows from (2.16) that λ̃u = λTu.

With a change of variables t = Tv and s = Tu, the first term of (A.2) becomes

X1 =

∫ 1

0

1
√

M
K̊

(
v − u
M/T

) (
dNTu − λTuTdu

√
λTv

)
=

∫ 1

0

1
√

M
K̊

(
v − u
M/T

) dÑu − λ̃udu√
λ̃v/T

 .
The multiplicative model in Ramlau-Hansen (R-H, 1983) assumes that λ̃u ≡

λ̃(n)
u = Y (n)

u αu for each n ≡ Ñ(1) = N(T ).2 Let J(n)
u = 1{Y (n)

u > 0} and bn = M/T .
2The superscript (n) indicates the dependence of the relevant quantity on the sample size n.
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Then, following the last line above, I obtain

X1 =

∫ 1

0

1
√

bnT
J(n)

u K̊
(
v − u

bn

) dÑ(n)
u − Y (n)

u αudu√
Y (n)

v αv/T


=

∫ 1

0

1
√

bn
J(n)

u

√
Y (n)

u K̊
(
v − u

bn

) (
dÑ(n)

u /Y (n)
u − αudu
√
αv

)

=
√

nbn

∫ 1

0

1
bn

J(n)
u

√
Y (n)

u

n
K̊

(
v − u

bn

) (
dÑ(n)

u /Y (n)
u − αudu
√
αv

)
. (A.3)

Theorem 4.2.2 of R-H states that if (i) nJ(n)/Y (n) →P 1/ς uniformly around v as

n→ ∞; and (ii) α and ς are continuous at v, then

√
nbn

∫ 1

0

1
bn

J(n)
u K̊

(
v − u

bn

) (
dÑ(n)

u

Y (n)
u

− αudu
)
→d N

(
0,
κ̊2αv

ςv

)
(A.4)

as n → ∞, bn → 0 and nbn → ∞. By picking Y (n)
u ≡ T and noting the twice

continuous differentiability of λ̃u assumed by the theorem, assumptions (i) and

(ii) are automatically satisfied. This implies that X1 →
d N (0, κ̊2) as T → ∞,

M → ∞ and M/T → ∞.

To complete the proof, it suffices to show that the second term X2 of (A.2) is

asymptotically negligible relative to the first term, which was just shown to be

OP(1). Indeed, by symmetry of the kernel K̊() and the twice continuous differ-

entiability of λ̃u, I obtain

λ∗Tv − λTv =
1
T

∫ 1

0

T
M

K̊
(
v − u
M/T

)
λTuTdu − λTv

=

∫ 1

0

1
m

K̊
(v − u

m

)
λ̃udu − λTv

=

∫ 1

0
K̊ (x) λ̃v−mxdx − λTv

= λ̃v − λTv + mλ̃′v

∫ 1

0
xK̊ (x) dx + OP(m2)

= OP

((M
T

)2)
.
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If M5/T 4 → 0 (which corresponds to nb5
n → 0), then X2 =

√
M

(
λ∗Tv − λTv

)
/
√
λTv =

OP

(
M2.5/T 2

)
= oP(1), and thus is asymptotically negligible relative to X1.

For mean-squared consistency of λ̂Tv, simply apply Proposition 3.2.2 of R-H.

A.6 Proof of Theorem 7

For notational simplicity, I only treat the case where I = [0,T ]. Under the null

hypothesis, the innovations from the two processes are uncorrelated, which im-

plies that E
(
dNa

s dNb
s+`

)
= E

(
dNa

s
)

E
(
dNb

s+`

)
= λaλbdsd`, so that

E (Qs) =
1

T 2

∫
I

∫
J

wB (`) E
(
dNa

s dNb
s+`

)
=
λaλb

T 2

∫
I

∫
J

wB (`) dsd`

=
λaλb

T

∫
I
wB (`)

(
1 − |`|T

)
d`.

Before computing the variance, let us recall that the second-order reduced

product density of Nk (which exists by assumption (A2)) was defined by

ϕkk(u)dtdu = E
(
dNk

t dNk
t+u

)
for u , 0, and the unconditional autocovariance den-

sity function can thus be expressed as ckk(u)dtdu = E
(
dNk

t − λ
kdt)(dNk

t+u − λ
kdu

)
=[

ϕkk(u) −
(
λk

)2
]

dtdu for u , 0. Then, under the null hypothesis, I obtain

E((Qs)2) =
1

T 4

"
I2

"
J2

wB (`1) wB (`2) E
(
dNa

s1
dNa

s2
dNb

s1+`1
dNb

s2+`2

)
=

1
T 4

"
I2

"
J2

wB (`1) wB (`2) E
(
dNa

s1
dNa

s2

)
E

(
dNb

s1+`1
dNb

s2+`2

)
.
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I can decompose the differential as follows:

E
(
dNa

s1
dNa

s2
dNb

s1+`1
dNb

s2+`2

)
= E

(
dNa

s1
dNa

s2

)
E

(
dNb

s1+`1
dNb

s2+`2

)
=

[
E

(
dNa

s1
dNa

s2

)
− (λa)2 ds1ds2

] [
E

(
dNb

s1+`1
dNb

s2+`2

)
−

(
λb

)2
d`1d`2

]
+

(
λb

)2 [
E

(
dNa

s1
dNa

s2

)
− (λa)2 ds1ds2

]
d`1d`2

+ (λa)2
[
E

(
dNb

s1+`1
dNb

s2+`2

)
−

(
λb

)2
d`1d`2

]
ds1ds2

+ (λa)2
(
λb

)2
ds1ds2d`1d`2

= caa(s2 − s1)cbb(s2 − s1 + `2 − `1)ds1ds2d`1d`2

+
(
λb

)2
caa(s2 − s1)ds1ds2d`1d`2

+ (λa)2 cbb(s2 − s1 + `2 − `1)ds1ds2d`1d`2

+ (λa)2
(
λb

)2
ds1ds2d`1d`2.

Note that the integral term associated with the last differential is [E(Qs)]2, so

that

Var(Qs) =
1

T 4

"
I2

"
J2

wB (`1) wB (`2) caa(s2 − s1)cbb(s2 − s1 + `2 − `1)ds1ds2d`1d`2

+
1

T 4

"
I2

"
J2

wB (`1) wB (`2)
(
λb

)2
caa(s2 − s1)ds1ds2d`1d`2

+
1

T 4

"
I2

"
J2

wB (`1) wB (`2) (λa)2 cbb(s2 − s1 + `2 − `1)ds1ds2d`1d`2

= A1 + A2 + A3.

Suppose I = [0,T ]. I evaluate the three terms individually as follows.

(i) the first term becomes

A1 =
2

T 4

∫ T

0

∫ `2

0

∫
J2

∫
J1

wB (`1) wB (`2) caa (s2 − s1) cbb (s2 − s1 + `2 − `1) ds1ds2d`1d`2.
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where Ji = [0,T − `i] for i = 1, 2. With a change of variables

(s1, s2, `1, `2) 7→ (v = s2 − s1, s2, u = `2 − `1, `2) ,

I can rewrite A1 into

A1 = 2
T 4

∫ T

0

∫ T

u

∫ T−`2

−T

∫ T−`2

0
wB (`2 − u) wB (`2) caa (v) cbb (v + u) ds2dvd`2du

= 2
T 3

∫ T

0

∫ T

u
wB (`2 − u) wB (`2)

(
1 − `2

T

) ∫ T−`2

−T
caa (v) cbb (v + u) dvd`2du.

To simplify further, I rely on the assumption that the bandwidth

of w (`) ≡ wB (`) is small relative to T , i.e. B = o(T ). Then,

the integral
∫ T−`2

−T
caa (v) cbb (v + u) dv can be well approximated by Γ(u) :=∫ T

−T
caa (v) cbb (v + u) dv, and hence

A1 ≈
2

T 3

∫ T

0
W2(u)Γ (u) du.

where we defined a new weighting function byW2(u) :=
∫ T

u
wB (` − u) wB (`)

(
1 − `

T

)
d`.

Figure 12 gives a plot ofW2(u) when w (·) is a standard normal density function

and T is large (T � 3).

(ii) With a change of variables (s1, s2) 7−→ (v = s2 − s1, s2), the second term

becomes

A2 =
(λb)2

T 4

"
I2

"
J2

wB (`1) wB (`2) γa(s2 − s1)ds1ds2d`1d`2

=
(λb)2

T 4

∫ T

0

∫ T

0
wB (`1) wB (`2)

∫ T−`2

−(T−`1)

∫ v+T−`1

v
caa(v)ds2dvd`1d`2

=
(λb)2

T 3

∫ T

0

∫ T

0
wB (`1) wB (`2)

(
1 − `1

T

) ∫ T−`2

−(T−`1)
caa(v)dvd`1d`2.

To simplify further, I rely on the assumption that the bandwidth B of the weight-

ing function wB (·) is small relative to T , i.e. B = o(T ). Then, the following holds

approximately: ∫ T−`2

−(T−`1)
caa(v)dv ≈

∫ T

−T
caa(v)dv.
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As a result, we obtain

A2 ≈
2(λb)2

T 3 ω1

∫ T

0
caa(v)dv

where I defined the constant ω1 :=
∫ T

0
wB (`)

(
1 − `

T

)
d` =

∫ T/B

0
w (u)

(
1 − Bu

T

)
du.

(iii) With a change of variables (s1, s2) 7−→ (x = s2 − s1 + `2 − `1, s2), the third

term becomes

A3 =
(λa)2

T 4

"
I2

"
J2

wB (`1) wB (`2) cbb(s2 − s1 + `2 − `1)ds1ds2d`1d`2

=
(λa)2

T 4

∫ T

0

∫ T

0
wB (`1) wB (`2)

∫ T−`1

−(T−`2)

∫ x+T−`1+`2−`1

x+`2−`1

cbb(x)ds2dxd`1d`2

=
(λa)2

T 3

∫ T

0

∫ T

0
wB (`1) wB (`2)

(
1 − `1

T

) ∫ T−`1

−(T−`2)
cbb(x)dxd`1d`2.

To simplify further, I rely on the assumption that the bandwidth B of the weight-

ing function wB (·) is small relative to T , i.e. B = o(T ). Then, the following holds

approximately: ∫ T−`1

−(T−`2)
cbb(v)dv ≈

∫ T

−T
cbb(v)dv.

As a result, I obtain

A3 ≈
2(λa)2

T 3 ω1

∫ T

0
cbb(v)dv.

Combining the above three terms Ai for i = 1, 2, 3, I obtain an approximation

to the variance of Qs:

Var(Qs) ≈ 2
T 3

[∫ T

0
W2(u)Γ (u) du +

(
λb

)2
ω1

∫ T

0
caa(v)dv + (λa)2 ω1

∫ T

0
cbb(v)dv

]
.

A.7 Proof of (2.21)

For notational convenience, I drop the superscript k from all relevant symbols

throughout this proof. Let R/T → 0 as T → ∞. I start by decomposing ĉR(`) ≡
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ĉkk
Rk(`) as follows:

ĉR(`) = 1
TR

∫ T

0

∫ T

0
K̈

(
t−s−`

R

) (
dNs −

NT
T ds

) (
dNt −

NT
T dt

)
= 1

TR

∫ T

0

∫ T

0
K̈

(
t−s−`

R

)
dNsdNt −

1
TR

NT
T

∫ T

0

∫ T

0
K̈

(
t−s−`

R

)
dsdNt

− 1
TR

NT
T

∫ T

0

∫ T

0
K̈

(
t−s−`

R

)
dNa

s dt + 1
TR

NT
T

NT
T

∫ T

0

∫ T

0
K̈

(
t−s−`

R

)
dsdt

=: C1 + C2 + C3 + C4.

Now, the second term is

C2 = − 1
TR

NT
T

∫ T

0

∫ T

0
K̈

(
t−s−`

R

)
dsdNb

t

= −NT
T 2

∑NT
j=1

∫ T

0

1
R K̈

( t j−s−`
R

)
ds = −NT

T 2

∑NT
j=1

∫ (tbj−`)/R

(tbj−T−`)/R
K̈ (x) dx

= −NT
T 2

∑NT
j=1

[
1{`<t j<T+`}∩[0,T ] + o(1)

]
= −NT

T 2

[
NT∧(T+`) − N`∨0

]
+ o(1),

where the third equality made use of assumption (A4c). By stationarity of Nk, I

observe that NT∧(T+`) − N`∨0 =
T−|`|

T NT . Therefore, up to the leading term,

C2 = −
N2

T
T 2

(
1 − |`|T

)
.

Similarly, by stationarity of Nb, the third term is, up to the leading term,

C3 = −
N2

T
T 2

(
1 − |`|T

)
= C2.

The last term is

C4 = 1
T

NT
T

NT
T

∫ T

0

∫ T

0

1
R K̈

(
t−s−`

R

)
dsdt

=
N2

T
T 2

1
T

∫ T

0

∫ (t−`)/R

(t−T−`)/R
K̈ (x) dxdt

=
N2

T
T 2

1
T

∫ T

0

[
1{0<t−`<T }∩[0,T ] + o(1)

]
dt

=
N2

T
T 2

(
1 − |`|T

)
+ o(1),
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which is −C2 (neglecting the o(1) terms). As a result, except for the o(1) terms, I

obtain

ĉR(`) = 1
TR

∑NT
i=1

∑NT
j=1K̈

( t j−ti−`
R

)
−

N2
T

T 2

(
1 − |`|T

)
,

which is (2.21).

A.8 Proof of Theorem 8

Let dε̂k
t = dNk

t − λ̂
k
t dt for k = a, b. Then,

Q =

∫
I
wB(`)γ̂2

H(`)d`

=

∫
I
wB(`) 1

(T H)2

&
(0,T ]4

K
(

t1−s1−`
H

)
K

(
t2−s2−`

H

)
dε̂a

s1
dε̂a

s2
dε̂b

t1dε̂
b
t2d`

= 1
T 2

&
(0,T ]4

∫
I
w(`) 1

H2 K
(

t1−s1−`
H

)
K

(
t2−s2−`

H

)
d`dε̂a

s1
dε̂a

s2
dε̂b

t1dε̂
b
t2

A.8.1 Asymptotic Mean of Q

By Fubini’s theorem, the expectation of Q becomes an multiple integration with

respect to E[dε̂a
s1

dε̂a
s2

dε̂b
s1+udε̂b

s2+u], which, under the null hypothesis (2.11), can be

split into E[dε̂a
s1

dε̂a
s2

]E
[
dε̂b

s1+udε̂b
s2+u

]
. By the law of iterated expectations and the

martingale property of the innovations dε̂k
u , it follows that E[dε̂k

u1
dε̂k

u2
] = 0 unless

u1 = u2 = u when it is equal to E[
(
dε̂k

u

)2
]. Then, I can simplify the differential
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(
dε̂k

u

)2
as follows:

(
dε̂k

u

)2
=

(
dNk

u − λ̂
k
udu

)2

=
(
dNk

u − λ
k
udu + λk

udu − λ̂k
udu

)2

=
(
dNk

u − λ
k
udu

)2
+

(
λk

udu − λ̂k
udu

)2
+ 2

(
dNk

u − λ
k
udu

) (
λk

udu − λ̂k
udu

)
=

(
dNk

u − λ
k
udu

)2
+ oP(du)

= dNk
u − 2dNk

uλ
k
udu +

(
λk

udu
)2

+ oP(du)

= dNk
u + oP(du). (A.5)

The second-to-last equality holds because of assumption (A1), which implies

that
(
dNk

u

)2
= dNk

u almost surely; hence the second order differential
(
dε̂k

u

)2
has

a dominating first-order increment dNk
u . It is therefore true, up to OP(du), that

E[
(
dε̂k

u

)2
] = E[dNk

u] = λkdu.

Now, letting b = B/T and h = H/T , the expected value of Q is evaluated as

follows:

E (Q) = 1
T 2H2

"
(0,T ]2

∫
I
wB(`)K2

(
t−s−`

H

)
d`λaλbdsdt

= T 3

T 2H2

"
(0,1]2

∫
I/T

wB(Tσ)K2
(

v−u−σ
H/T

)
dσλaλbdudv

= 1
T 2h2

"
(0,1]2

∫
I/T

wb(σ)K2
(

v−u−σ
h

)
dσλaλbdudv

Then, as h→ 0, "
(0,1]2

1
h2 K2

(
v−u−σ

h

)
dudv

= 1
h

∫ 1

0

∫ (v−σ)/h

(v−1−σ)/h
K2 (x) dxdv

= 1
h

∫ 1

0
1{0<v−σ<1}∩[0,1]dv

∫ ∞

−∞

K2(x)dx + o
(

1
h

)
= 1

h (1 − |σ|) κ2 + o
(

1
h

)
.
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where κ2 =
∫ ∞
−∞

K2(x)dx (from assumption (A4a)). As a result, as T → ∞, Th =

H → ∞ and h = H/T → 0, the asymptotic mean of Q under the null hypothesis

is given by

E (Q) = 1
T 2hλ

aλbκ2

∫
I/T

wb(σ) (1 − |σ|) dσ + o
(

1
T 2h

)
= 1

T 2hλ
aλbκ2

∫
I

1
bw( `

bT )
(
1 − |`|T

)
1
T d` + o

(
1

T 2h

)
= 1

T Hλ
aλbκ2

∫
I
wB(`)

(
1 − |`|T

)
d` + o

(
1

T H

)
. (A.6)

From (A.5), I also observe that
(
dε̂k

u

)2
=

(
dεk

u

)2
+ oP(du), which entails that

E(Q) = E(Q̃).

A.8.2 Asymptotic Variance of Q Under the Null

The Case Without Autocorrelations

Now, I derive the asymptotic variance of Q as T → ∞, and H/T → 0 as H → ∞.

Let I ≡ [c1, c2] ⊆ [−T,T ], where c1 < c2. Consider

E
(
Q2

)
= 1

(T H)4

"
I2

w(`1)w(`2)
(

(0,T ]8
K

(
t11−s11−`1

H

)
K

(
t21−s21−`1

H

)
K

(
t12−s12−`2

H

)
K

(
t22−s22−`2

H

)
E

[
dε̂a

s11
dε̂a

s12
dε̂b

t11
dε̂b

t12
dε̂a

s21
dε̂a

s22
dε̂b

t21
dε̂b

t22

]
d`1d`2.

Assume that (i) there is no cross-correlation between the two innovation pro-

cesses, i.e. γ(u) = 0; and (ii) there is no auto-correlation for each component

process, i.e. caa(u) = cbb(u) = 0. I will relax the second assumption in the next

subsection.

A key observation is that E
(
Q2

)
, 0 only in the following cases (in all cases

s1 , s2 , t1 , t2 and s , t):
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1. R1 = {s11 = s12 = s1, s21 = s22 = s2 , t11 = t12 = t1, t21 = t22 = t2};

2. R2 = {s11 = s12 = s1, s21 = s22 = s2 , t11 = t21 = t1, t12 = t22 = t2};

3. R3 = {s11 = s12 = s1, s21 = s22 = s2 , t11 = t22 = t1, t12 = t21 = t2};

4. R4 = {s11 = s21 = s1, s12 = s22 = s2 , t11 = t12 = t1, t21 = t22 = t2};

5. R5 = {s11 = s21 = s1, s12 = s22 = s2 , t11 = t21 = t1, t12 = t22 = t2};

6. R6 = {s11 = s21 = s1, s12 = s22 = s2 , t11 = t22 = t1, t12 = t21 = t2};

7. R7 = {s11 = s22 = s1, s12 = s21 = s2 , t11 = t12 = t1, t21 = t22 = t2};

8. R8 = {s11 = s22 = s1, s12 = s21 = s2 , t11 = t21 = t1, t12 = t22 = t2};

9. R9 = {s11 = s22 = s1, s12 = s21 = s2 , t11 = t22 = t1, t12 = t21 = t2};

10. R10 = {s11 = s12 = s21 = s22 = s and t11 = t12 = t21 = t22 = t}.

Under the null of no cross-correlation, for cases 1 to 9, we have, up to

O(ds1ds2dt1dt2),

E
[
dε̂a

s11
dε̂a

s12
dε̂b

t11
dε̂b

t12
dε̂a

s21
dε̂a

s22
dε̂b

t21
dε̂b

t22

]
= E

[(
dε̂a

s1

)2 (
dε̂a

s2

)2 (
dε̂b

t1

)2 (
dε̂b

t2

)2
]

= E
[(

dε̂a
s1

)2 (
dε̂a

s2

)2
]

E
[(

dε̂b
t1

)2 (
dε̂b

t2

)2
]

= E
[
dNa

s1
dNa

s2

]
E

[
dNb

t1dNb
t2

]
=

{
(λa)2 ds1ds2 + E

[(
dNa

s1
− λads1

) (
dNa

s2
− λads2

)]}
{(
λb

)2
dt1dt2 + E

[(
dNb

t1 − λ
bdt1

) (
dNb

t2 − λ
bdt2

)]}
=

[
(λa)2 + caa(s2 − s1)

] [(
λb

)2
+ cbb(t2 − t1)

]
ds1ds2dt1dt2;
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while for case 10, I have, up to O(dsdt),

E
[
dε̂a

s11
dε̂a

s12
dε̂b

t11
dε̂b

t12
dε̂a

s21
dε̂a

s22
dε̂b

t21
dε̂b

t22

]
= E

[(
dε̂a

s
)4

(
dε̂b

t

)4
]

= E
[
dNa

s
]

E
[
dNb

t

]
= λaλbdsdt.

Cases 1 and 9: the innermost eight inner integrals reduce to four integrals,

so that

E
(
Q2

)
=

(λaλb)2

(T H)4

"
I2

wB(`1)wB(`2)
&

(0,T ]4

K
(

t1−s1−`1
H

)
K

(
t2−s2−`1

H

)
K

(
t1−s1−`2

H

)
K

(
t2−s2−`2

H

)
ds1ds2dt1dt2d`1d`2

=
(λaλb)2

T 4

(T H)4

"
(I/T )2

T 2

B2 w( σ1
B/T )w( σ2

B/T )
"
(0,1]2

∫ v2

v2−1

∫ v1

v1−1
K

(
u−σ1
H/T

)
K

(
v−σ1
H/T

)
K

(
u−σ2
H/T

)
K

(
v−σ2
H/T

)
dudvdv1dv2dσ1dσ2

=
(λaλb)2

T 4h

∫ c2/T

c1/T
wb(σ1)wb(σ1 − zh)"

(0,1]2

∫ σ1−c1/T
h

σ1−c2/T
h

∫ v2−σ1
h

v2−1−σ1
h

∫ v1−σ1
h

v1−1−σ1
h

K (x) K (y) K (x + z) K (y + z) dxdydzdv1dv2dσ1

=
(λaλb)2

T 4h

∫ c2/T

c1/T
wb(σ1)

[
wb(σ1) − zhw′b(σ̈1)

]"
(0,1]2

1{(v1,v2):0∨σ1<vi<(1+σ1)∧1}dv1dv2dσ1

$
R3

K (x) K (y) K (x + z) K (y + z) dxdydz + o
(

1
T 3h

)
=

(λaλb)2

T 2H κ4

∫
I
w2

B(`1)
(
1 − |`1 |

T

)2
d`1 + o

(
1

T 2H

)
I applied the change of variables: (s1, s2, t1, t2) 7−→ (u = t1−s1

T , v = t2−s2
T , v1 = t1

T , v2 =

t2
T ) in the second equality, and (u, v, `2) 7−→

(
x = u−σ1

h , y = v−σ1
h , z = σ1−σ2

h

)
in the
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third equality. To get the fourth equality, I did a first-order Taylor expansion of

wb(σ1 − zh) around σ1, with σ̈1 ∈ [σ1 − zh, σ1].

Cases 2, 4, 6 and 8:

E
(
Q2

)
=

(λaλb)2

(T H)4

"
I2

wB(`1)wB(`2)
(

(0,T ]4

K
(

t1−s1−`1
H

)
K

(
t1−s2−`1

H

)
K

(
t2−s1−`2

H

)
K

(
t2−s2−`2

H

)
ds1ds2dt1dt2d`1d`2

=
(λaλb)2

T 4h

$
(0,1]3

∫ u1
h

u1−1
h

∫ v2−u1−c1/T
h

v2−u1−c2/T
h

∫ v1−u1−c1/T
h

v1−u1−c2/T
h

wb(v1 − u1 − xh)wb(v2 − u1 − yh)

K (x) K (x + z) K (y) K (y + z) dxdydzdu1dv1dv2

=
(λaλb)2

T 4h κ4

$
(0,1]3

wb(v1 − u1)wb(v2 − u1)1{v1−u1∈I/T }1{v2−u1∈I/T }du1dv1dv2 + o
(

1
T 4h

)
=

(λaλb)2

T 4h κ4

∫ 1

0

∫ 1−s

−s

∫ 1−s

−s
wb(u)wb(v)1{u∈I/T }1{v∈I/T }dudvds + o

(
1

T 4h

)
= O

(
1

T 3H

)
.

I applied the change of variables: (`1, `2, s2) 7−→
(
x = v1−u1−σ1

H/T , y = v2−u1−σ2
H/T , z = u1−u2

H/T

)
in the second equality, and (u1, v1, v2) 7−→ (s, u = v1 − u1, v = v2 − u1) in the fourth

equality, and the fact that
∫ 1

0

∫ 1−s

−s

∫ 1−s

−s
wb(u)wb(v)dudvds = O(1) in the last equality.

148



Cases 3 and 7:

E
(
Q2

)
=

(λaλb)2

(T H)4

"
I2

wB(`1)wB(`2)
(

(0,T ]4

K
(

t1−s1−`1
H

)
K

(
t2−s1−`1

H

)
K

(
t1−s2−`2

H

)
K

(
t2−s2−`2

H

)
ds1ds2dt1dt2d`1d`2

=
(λaλb)2

T 4h

$
(0,1]3

∫ v1−u2−c1/T
h

v1−u2−c2/T
h

∫ v2−σ1
h

v2−1−σ1
h

∫ v1−u1−c1/T
h

v1−u1−c2/T
h

wb(v1 − u1 − xh)wb(v1 − u2 − yh)

K (x) K (x + z) K (y) K (y + z) dxdydzdu1du2dv1

=
(λaλb)2

T 4h κ4

$
(0,1]3

wb(v1 − u1)wb(v1 − u2)1{v1−u1∈I/T }1{v1−u2∈I/T }du1du2dv1 + o
(

1
T 4h

)
=

(λaλb)2

T 4h κ4

∫ 1

0

∫ t

t−1

∫ t

t−1
wb(u)wb(v)1{u∈I/T }1{v∈I/T }dudvdt + o

(
1

T 4h

)
= O

(
1

T 3H

)
.

I applied the change of variables: (`1, `2, s2) 7−→
(
x = v1−u1−σ1

H/T , y = v1−u2−σ2
H/T , z = v2−v1

H/T

)
in the second equality, and (v1, u1, u2) 7−→ (t, u = v1 − u1, v = v1 − u2) in the fourth

equality, and the fact that
∫ 1

0

∫ t

t−1

∫ t

t−1
wb(u)wb(v)dudvdt = O(1) in the last equality.
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Case 5:

E
(
Q2

)
=

(λaλb)2

(T H)4

"
I2

wB(`1)wB(`2)
(

(0,T ]4

K2
(

t1−s1−`1
H

)
K2

(
t2−s2−`2

H

)
ds1ds2dt1dt2d`1d`2

=
(λaλb)2

T 4h2

$
(0,1]3

∫ v2−u1−c1/T
h

v2−u1−c2/T
h

∫ v1−u1−c1/T
h

v1−u1−c2/T
h

wb(v1 − u1 − xh)w(v2 − u2 − yh)

K2 (x) K2 (y) dxdydu1du2dv1dv2

=
(λaλb)2

T 4h2 κ2
2

$
(0,1]3

wb(v1 − u1)wb(v2 − u2)1{v1−u1∈I/T }1{v2−u2∈I/T }du1du2dv1dv2 + o
(

1
T 2h2

)
=

(λaλb)2

T 4h2 κ2
2

∫ 1

0

∫ 1

0

∫ 1−u2

−u2

∫ 1−u1

−u1

wb(u)wb(v)1{u∈I/T }1{v∈I/T }dudvdu1du2 + o
(

1
T 2h2

)
=

(λaλb)2

T 4h2 κ2
2

(∫ 1

0

∫ 1−s

−s
wb(u)1{u∈I/T }duds

)2

+ o
(

1
T 4h2

)
= [E (Q)]2 + o

(
1

T 2H2

)
.

I applied the change of variables: (`1, `2) 7−→
(
x = v1−u1−σ1

H/T , y = v2−u2−σ2
H/T

)
in the sec-

ond equality, and (u1, u2, v1, v2) 7−→ (u1, u2, u = v1 − u1, v = v2 − u2) in the fourth

equality. The last equality follows from Fubini’s theorem, which gives∫ 1

0

∫ 1−s

−s
wb(u)1{u∈I/T }duds =

(∫ 0

−1

∫ 1

−u
+

∫ 1

0

∫ 1−u

0

) [
wb(u)1{u∈I/T }

]
dsdu

=

∫ c2/T

c1/T
(1 − |u|) wb(u)du.

=

∫ c2

c1

(
1 − |`|T

)
wB(`)d` = E(Q)
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Case 10:

E
(
Q2

)
= λaλb

(T H)4

"
I2

wB(`1)wB(`2)
"

(0,T ]2

K2
(

t−s−`1
H

)
K2

(
t−s−`2

H

)
dsdtd`1d`2

= λaλb

T 4h2

"
(0,1]2

∫ v−u−c1/T
h

v−u−c2/T
h

∫ v−u−c1/T
h

v−u−c2/T
h

wb(v − u − xh)wb(v − u − yh)K2 (x) K2 (y) dxdydudv

= λaλb

T 4h2 κ
2
2

∫ 1

0

∫ 1−u

−u
w2

b(r)1{r∈I/T }drdu + o
(

1
T 5h2

)
= λaλb

T 4h2 κ
2
2

∫
I/T

(1 − |r|) w2
b(r)dr + o

(
1

T 5h2

)
= λaλb

T 5h2 κ
2
2

∫
I

(
1 − |`|T

)
w2

B(`)d` + o
(

1
T 5h2

)
= O

(
1

T 3H2

)
.

I applied the change of variables: (`1, `2) 7−→
(
x = v−u−σ1

H/T , y = v−u−σ2
H/T

)
in the second

equality, and (u, v) 7−→ (u, r = v − u) in the third equality. The second-to-last

equality follows from Fubini’s theorem.

We observe that the leading terms of the asymptotic variance come from

cases 1 and 9 only, thus we conclude that, as T → ∞ and H/T → 0 as H → ∞,

Var(Q) = E(Q2) − [E(Q)]2

= 2(λaλb)2

T 2H κ4

∫
I
w2

B(`2)
(
1 − |`2 |

T

)2
d`2 + o

(
1

T 2H

)
. (A.7)

The Case With Autocorrelations

Suppose the two point processes Na and Nb exhibit autocorrelations, i.e. caa(u)

and cbb(u) are not identically zero. Then, it is necessary to modify the asymptotic
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variance of Q. I start by noting that, up to O(ds1ds2dt1dt2),

E
[(

dε̂a
s1

)2 (
dε̂a

s2

)2
]

E
[(

dε̂b
t1

)2 (
dε̂b

t2

)2
]

= E
[
dNa

s1
dNa

s2

]
E

[
dNb

t1dNb
t2

]
=

{
(λa)2 ds1ds2 + E

[(
dNa

s1
− λads1

) (
dNa

s2
− λads2

)]}
{(
λb

)2
dt1dt2 + E

[(
dNb

t1 − λ
bdt1

) (
dNb

t2 − λ
bdt2

)]}
=

[
(λa)2 + caa(s2 − s1)

] [(
λb

)2
+ cbb(t2 − t1)

]
ds1ds2dt1dt2.

As before, I split the computation into 10 separate cases. Since the compu-

tation techniques are analogous to the case without autocorrelations, let’s focus

on cases 1 and 9 which yield the dominating terms for Var(Q). Under cases 1

and 9:

152



E
(
Q2

)
= 1

(T H)4

"
I2

wB(`1)wB(`2)
&

(0,T ]4

K
(

t1−s1−`1
H

)
K

(
t2−s2−`1

H

)
K

(
t1−s1−`2

H

)
K

(
t2−s2−`2

H

)
[
(λa)2 + caa(s2 − s1)

] [(
λb

)2
+ cbb(t2 − t1)

]
ds1ds2dt1dt2d`1d`2

= T 4

(T H)4

"
(I/T )2

T 2

B2 w( σ1
B/T )w( σ2

B/T )
"
(0,1]2

∫ v2

v2−1

∫ v1

v1−1
K

(
u−σ1
H/T

)
K

(
v−σ1
H/T

)
K

(
u−σ2
H/T

)
K

(
v−σ2
H/T

)
[
(λa)2 + caa(T (u − v + v2 − v1))

] [(
λb

)2
+ cbb(T (v2 − v1))

]
dudvdv1dv2dσ1dσ2

= 1
T 4h

∫ c2/T

c1/T
wb(σ1)wb(σ1 − zh)

"
(0,1]2

∫ σ1−c1/T
h

σ1−c2/T
h

∫ v2−σ1
h

v2−1−σ1
h

∫ v1−σ1
h

v1−1−σ1
h

K (x) K (y) K (x + z) K (y + z)

[
(λa)2 + caa(Th (x − y) + T (v2 − v1))

] [(
λb

)2
+ cbb(T (v2 − v1))

]
dxdydzdv1dv2dσ1

= 1
T 4h

∫ c2/T

c1/T
w2

b(σ1)
$

R3
K (x) K (y) K (x + z) K (y + z) dxdydz

"
(0,1]2

1{(v1,v2):0∨σ1<vi<(1+σ1)∧1}

[
(λa)2 + caa(T (v2 − v1))

] [(
λb

)2
+ cbb(T (v2 − v1))

]
dv1dv2dσ1 + o

(
1

T 3h

)
= 1

T 2Hκ4

∫
I
w2

B(`1)
∫ T−|`1 |

−(T−|`1 |)

(
1 − |r|T −

|`1 |

T

) [
(λa)2 + caa (r)

] [(
λb

)2
+ caa (r)

]
drd`1 + o

(
1

T 2H

)
.

I applied the change of variables: (s1, s2, t1, t2) 7−→ (u = t1−s1
T , v = t2−s2

T , v1 =

t1
T , v2 = t2

T ), b = B/T and h = H/T in the second equality, and (u, v, `2) 7−→(
x = u−σ1

h , y = v−σ1
h , z = σ1−σ2

h

)
in the third equality. To get the fourth equality, I did

a first-order Taylor expansion of wb(σ1 − zh) around σ1, with σ̈1 ∈ [σ1 − zh, σ1].

To get the last equality, I let g(x) =
[
(λa)2 + caa(T x)

] [(
λb

)2
+ cbb(T x)

]
, and let

r = v2 − v1. Suppose σ1 > 0. Then, by Fubini’s theorem, the innermost double

integration (with respect to v1 and v2) becomes
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∫ 1

σ1

∫ 1−v1

−v1

g(r)drdv1

=

(∫ −σ1

−(1−σ1)

∫ 1

−r
+

∫ 0

−σ1

∫ 1

σ1

+

∫ 1−σ1

0

∫ 1−r

σ1

)
g(r)dv1dr

=

∫ −σ1

−1
(1 + r) g(r)dr −

∫ −(1−σ1)

−1
(1 + r) g(r)dr +

∫ 0

−σ1

(1 − σ1) g(r)dr

+

∫ 1−σ1

0
(1 − r − σ1) g(r)dr.

The first integral can be simplified to∫ −σ1

−1
(1 + r) g(r)dr =

∫ 0

−(1−σ1)
(1 + r − σ1) g(r − σ1)dr

=

∫ 0

−(1−σ1)
(1 + r − σ1)

[
g(r) − σ̇1g′(r)

]
dr

for some σ̇1 ∈ [0, σ1]. The second and third integrals are negligible for small σ1

(as they are both O(σ1) by Taylor’s expansion). Combining the first and fourth

integrals, I obtain∫ 1

σ1

∫ 1−v1

−v1

g(r)drdv1 =

∫ 1−|σ1 |

−(1−|σ1 |)
(1 − |σ1| − |r|) g(r)dr + O(σ1)

and hence (by switching back to `1 = Tσ1)∫ T−|`1 |

−(T−|`1 |)

(
1 −
|r|
T
−
|`1|

T

)
g
( r
T

)
dr + O

(
1
T

)
.

The conclusion of the theorem follows as a result.

Similar to the mean calculation, the result in (A.5) implies that
(
dε̂k

u

)2
=(

dεk
u

)2
+ oP(du), so it follows that Var(Q) = Var(Q̃).

A.8.3 Asymptotic normality of Q̃

The main tool for deriving asymptotic normality of Q̃ is Brown’s martingale

central limit theorem (see, for instance, Hall and Heyde, 1980). The proof thus
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boils down to three parts: (i) expressing Q̃ − E(Q̃) as a sum of mean zero mar-

tingales, i.e. Q̃ − E(Q̃) =
∑n

i=1 Yi where E(Yi|Fτi−1) = 0, n = NT , and τ1, . . . , τn are

the event times of the pooled process Nt = Na
t + Nb

t ; (ii) showing asymptotic negli-

gibility, i.e. s−4 ∑n
i=1 E(Y4

i ) → 0 where s2 = Var(Q̃); and (iii) showing asymptotic

determinism, i.e. s−4E(V2
n − s2)2 → 0, where V2

n =
∑n

i=1 E(Y2
i |Fτi−1).

Martingale Decomposition

Recall that the statistic Q̃ is defined as

Q̃ =

∫
I
w(`)γ2

H(`)d`

=

∫
I
w(`) 1

(T H)2

&
(0,T ]4

K
(

t1−s1−`
H

)
K

(
t2−s2−`

H

)
dεa

s1
dεa

s2
dεb

t1dε
b
t2d`

= 1
T 2

&
(0,T ]4

∫
I
w(`) 1

H2 K
(

t1−s1−`
H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεa

s2
dεb

t1dε
b
t2

I start by decomposing Q̃ into four terms, corresponding to four different

regions of integrations: (i) s1 = s2 = s, t1 = t2 = t; (ii) s1 , s2, t1 , t2; (iii) s1 , s2,

t1 = t2 = t; and (iv) s1 = s2 = s, t1 , t2. In all cases, integrations over regions

where si = t j for i, j = 1, 2 are of measure zero because of assumption (A1): the

pooled point process is simple, which implies that type a and b events cannot

occur at the same time almost surely. Therefore,

Q̃ = Q1 + Q2 + Q3 + Q4 a.s.,
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where

Q1 = 1
(T H)2

"
(0,T ]2

∫
I
1{s,t}w(`)K2

(
t−s−`

H

)
d`

(
dεa

s
)2

(
dεb

t

)2
,

Q2 = 1
(T H)2

&
(0,T ]4

∫
I
1{s1,s2,t1,t2}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεa

s2
dεb

t1dε
b
t2 ,

Q3 = 1
(T H)2

$
(0,T ]3

∫
I
1{s1,s2,t}w(`)K

(
t−s1−`

H

)
K

(
t−s2−`

H

)
d`dεa

s1
dεa

s2

(
dεb

t

)2
,

Q4 = 1
(T H)2

$
(0,T ]3

∫
I
1{s,t1,t2}w(`)K

(
t1−s−`

H

)
K

(
t2−s−`

H

)
d`

(
dεa

s
)2 dεb

t1dε
b
t2 .

I will show that (i) Q1 contributes to the mean of Q̃; (ii) Q2 contributes to the

variance of Q̃; and (iii) Q3 and Q4 are of smaller order than Q2 and hence asymp-

totically negligible.

(i) As we saw in (A.6), Q1 is of order OP

(
1

T H

)
which is the largest among the

four terms. I decompose Q1 to retrieve the mean:

Q1 = 1
(T H)2

"
(0,T ]2

∫
I
w(`)K2

(
t−s−`

H

)
d`

(
dεa

s
)2

(
dεb

t

)2

= 1
(T H)2

"
(0,T ]2

∫
I
w(`)K2

(
t−s−`

H

)
d`

(
dεa

s
)2

[(
dεb

t

)2
− λb

t dt
]

+ 1
(T H)2

"
(0,T ]2

∫
I
w(`)K2

(
t−s−`

H

)
d`

[(
dεa

s
)2
− λa

sds
]
λb

t dt

+ 1
(T H)2

"
(0,T ]2

∫
I
w(`)K2

(
t−s−`

H

)
d`λa

sλ
b
t dsdt (A.8)

≡ Q11 + Q12 + E(Q̃).

The last line is obtained by (A.6).

Lemma 22 Q11 = OP

(
1

T 3/2H1/2

)
and Q12 = OP

(
1

T 3/2H1/2

)
as T → ∞ and H/T → 0 as

H → ∞.

Proof. Note that Q2
11 contains 5 integrals. By applying a change of variables (on
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two variables inside the kernels), I deduce that E(Q2
11) = O

(
1

T 3H

)
and hence the

result. The proof for Q12 is similar.

(ii) I decompose Q2 into Q2 = Q21 + Q22 + Q23 + Q24, where

Q21 = 1
(T H)2

∫ T

0+

∫ t−2

0+

∫ t−2

0+

∫ t−2

0+

∫
I
1{s1,s2,t1}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεa

s2
dεb

t1dε
b
t2

Q22 = 1
(T H)2

∫ T

0+

∫ t−1

0+

∫ t−1

0+

∫ t−1

0+

∫
I
1{s1,s2,t2}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεa

s2
dεb

t2dε
b
t1

Q23 = 1
(T H)2

∫ T

0+

∫ s−2

0+

∫ s−2

0+

∫ s−2

0+

∫
I
1{t1,t2,s1}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεb

t1dε
b
t2dε

a
s1

dεa
s2

Q24 = 1
(T H)2

∫ T

0+

∫ s−1

0+

∫ s−1

0+

∫ s−1

0+

∫
I
1{t1,t2,s2}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεb

t1dε
b
t2dε

a
s2

dεa
s1

Lemma 23 Q2 = OP

(
1

T H

)
+ OP

(
1

T H1/2

)
as T → ∞ and H/T → 0 as H → ∞.

Proof. Indeed, the asymptotic variance of Q̃ in (A.7) comes from Q2.

(iii) It turns out that Q3 and Q4 are asymptotically negligible compared to Q2.

Lemma 24 Q3 = OP

(
1

T 3/2H1/2

)
and Q4 = OP

(
1

T 3/2H1/2

)
as T → ∞ and H/T → 0 as

H → ∞.

Proof. Note that Q2
3 contains 5 integrals. By applying a change of variables (on

three variables inside the kernels) and combining w(`1) and w(`2) into w2(`) in

the process, we deduce that E(Q2
3) = O

(
1

T 3H

)
and hence the result. The proof for

Q4 is similar.

As a result,

Q̃ − E(Q̃) = Q2 + OP

(
1

T 3/2H1/2

)
.
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Now, I want to show that Q2, the leading term of the demeaned statistic, can

be expressed into the sum of a martingale difference sequence (m.d.s.).

Lemma 25 Let n = N(T ) be the total event counts of the pooled process N = Na + Nb.

Then, as T → ∞ and H/T → 0 as H → ∞.

Q̃ − E(Q̃) =

n∑
i=1

Yi + OP

(
1

T 3/2H1/2

)
where Yi =

∑4
j=1 Y ji and E(Y ji|F

ab
τi−1

) = 0 for all i = 1, . . . , n and for j = 1, 2, 3, 4 (i.e.

{Y ji}
n
i=1 are m.d.s. for j = 1, 2, 3, 4).

Proof. The result follows by defining

Y1i = 1
(T H)2

∫ τi

τ+
i−1

∫ t−2

0

∫ t−2

0

∫ t−2

0

∫
I
1{s1,s2,t1}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεa

s2
dεb

t1dε
b
t2 ,

Y2i = 1
(T H)2

∫ τi

τ+
i−1

∫ t−1

0

∫ t−1

0

∫ t−1

0

∫
I
1{s1,s2,t2}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεa

s2
dεb

t2dε
b
t1 ,

Y3i = 1
(T H)2

∫ τi

τ+
i−1

∫ s−2

0

∫ s−2

0

∫ s−2

0

∫
I
1{s1,t1,t2}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεb

t2dε
b
t1dε

a
s2
,

Y4i = 1
(T H)2

∫ τi

τ+
i−1

∫ s−1

0

∫ s−1

0

∫ s−1

0

∫
I
1{s2,t1,t2}w(`)K

(
t1−s1−`

H

)
K

(
t2−s2−`

H

)
d`dεa

s2
dεb

t2dε
b
t1dε

a
s1
.

and noting that E(Y ji|F
ab
τi−1

) = 0 for all i = 1, . . . , n.

Asymptotic Negligibility

Next, I want to show that the summation
∑n

i=1 Y4
i is asymptotically negligible

compared to
[
Var(Q̃)

]2
.

Lemma 26 s−4 ∑n
i=1 E(Y4

i ) → 0 as T → ∞ and H/T → 0 as H → ∞, where s2 =

Var(Q̃).
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Proof. Consider

Y4
1i = 1

T 8H8

&
(τi−1,τi]4

(
(0,t2)12

&
I4

w (`1) . . .w (`4) K
(

t111−s111−`1
H

)
. . .

K
(

t222−s222−`4
H

)
d`1 . . . d`4dεa

s111
. . . dεa

s222
dεb

t111
. . . dεb

t222
.

A key observation is that t211 = t212 = t221 = t222 ≡ t2 because there is at most

one event of type b in the interval (τi−1, τi] (one event if τi is a type b event time,

zero events if τi is a type a event time). This reduces the four outermost inte-

grations to just one over t2 ∈ (τi−1, τi]. Let us focus on extracting the dominating

terms. Then, to maximize the order of magnitude of E
(
Y4

1i

)
, the next 12 integra-

tions can be reduced to six integrations after grouping dεa
i jl and dεb

1 jl into six pairs

(if they were not paired, then the corresponding contribution to E
(
Y4

1i

)
would be

zero by iterated expectations). Together with the four innermost integrations,

there are 11 integrations for Y4
11i, with the outermost integration running over

(τi−1, τi]. Therefore, there are 11 integrations in
∑n

i=1 E
(
Y4

1i

)
and its outermost in-

tegration with respect to t2 runs over (0,T ]. As six new variables are sufficient to

represent all 12 arguments in the 12 kernels, a change of variables yields a factor

of T H6κ2
4.3 As a result,

∑n
i=1 E

(
Y4

1i

)
= O

(
1

T 7H2

)
, and since s2 = O

(
1

T 2H

)
from (A.7),

we have s−4 ∑n
i=1 E(Y4

1i) = O
(

1
T 3

)
. The same argument applies to Y ji for j = 2, 3, 4.

By Minkowski’s inequality s−4 ∑n
i=1 E(Y4

i ) = O
(

1
T 3

)
.

Asymptotic Determinism

Lastly, I want to show that the variance of V2
n =

∑n
i=1 E(Y2

i |Fτi−1) is of a smaller

order than s4.
311 integrations - 6 d.f. - 4 w() = 1 free integration with respect to t.
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Lemma 27 s−4E(V2
n − s2)2 → 0 as T → ∞ and H/T → 0 as H → ∞.

Proof. To prove that s−4E(V2
n − s2)2 → 0, it suffices to show that

E(V2
n − s2)2 = o

(
1

T 4H2

)
. (A.9)

(i) Recall from lemma 25 that the ith term of the martingale difference se-

quence in the demeaned statistic Q̃ − E(Q̃) represents the innovation in the time

interval (τi−1, τi] and is given by Yi = Y1i + Y2i + Y3i + Y4i, for i = 1, 2, . . . , n = N(T ).

Now, note that

Y2
i = Y2

1i + Y2
2i + Y2

3i + Y2
4i + 2Y1iY2i + 2Y3iY4i (A.10)

almost surely. The terms Y1iY3i, Y1iY4i, Y2iY3i and Y2iY4i are almost surely zero

because of assumption (A1): the pooled process N = Na + Nb is simple, which

implies that type a and b events will not occur at the same time τi almost surely.

(ii) Define

S 1 = S 2 ≡
1

T 4H4

∫ T

0+

$
(0,t2)3

"
I2

w (`1) w (`2) K
(

t1−s11−`1
H

)
K

(
t1−s12−`2

H

)
K

(
t2−s21−`1

H

)
K

(
t2−s22−`2

H

)
1R1∪R4∪R7d`1d`2λ

a
s1
λa

s2
λb

t1λ
b
t2ds1ds2dt1dt2,

S 3 = S 4 ≡
1

T 4H4

∫ T

0+

$
(0,s2)3

"
I2

w (`1) w (`2) K
(

t11−s1−`1
H

)
K

(
t12−s1−`2

H

)
K

(
t21−s2−`1

H

)
K

(
t22−s2−`2

H

)
1R1∪R2∪R3d`1d`2λ

a
s1
λa

s2
λb

t1λ
b
t2ds1dt1dt2ds2,

S 12 ≡
1

T 4H4

∫ T

0+

$
(0,t2)3

"
I2

w (`1) w (`2) K
(

t1−s11−`1
H

)
K

(
t1−s22−`2

H

)
K

(
t2−s21−`1

H

)
K

(
t2−s12−`2

H

)
1R3∪R6∪R9d`1d`2λ

a
s1
λa

s2
λb

t1λ
b
t2ds1ds2dt1dt2,
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and

S 34 ≡
1

T 4H4

∫ T

0+

$
(0,s2)3

"
I2

w (`1) w (`2) K
(

t11−s1−`1
H

)
K

(
t22−s1−`2

H

)
K

(
t21−s2−`1

H

)
K

(
t12−s2−`2

H

)
1R7∪R8∪R9d`1d`2λ

a
s1
λa

s2
λb

t1λ
b
t2dt1dt2ds1ds2,

where Ri were defined in section A.8.2. It is easy to verify from the definitions

that

s2 = S 1 + S 2 + S 3 + S 4 + 2S 12 + 2S 34 + op

(
1

T 2H

)
. (A.11)

(iii) Define for k = 1, 2, 3, 4

V2
nk ≡

n∑
i=1

E(Y2
ki|Fτi−1),

and for (k, j) = (1, 2) and (3, 4)

Vnk j ≡

n∑
i=1

E(YkiY ji|Fτi−1).

It follows from (A.10) that

V2
n = V2

1n + V2
2n + V2

3n + V2
4n + 2V12n + 2V34n. (A.12)

(iv) I claim (see the proof below) that, for k = 1, 2, 3, 4,

V2
nk − S k = op

(
1

T 2H

)
(A.13)

and, for (k, j) = (1, 2) and (3, 4),

V2
nk j − S k j = op

(
1

T 2H

)
. (A.14)

(v) It follows from (A.10)-(A.14) that (A.9) holds.

It remains to show the claims in (iv). Since the asymptotic orders of the

six differences in (A.13) and (A.14) can be derived by similar techniques, let us

focus on proving the first one.

161



To this end, I first compute E(Y2
1i|Fτi−1). Now,

Y2
1i = 1

T 4H4

"
(τi−1,τi]2

(
(0,t2)6

"
I2

w (`1) w (`2) K
(

t11−s11−`1
H

)
K

(
t12−s12−`2

H

)
K

(
t2−s21−`1

H

)
K

(
t2−s22−`2

H

)
d`1d`2dεa

s11
dεa

s12
dεa

s21
dεa

s22
dεb

t11
dεb

t12
dεb

t21
dεb

t22
.

Observe that there is at most one event of type b in the interval (τi−1, τi] (one

event if τi is a type b event time, zero events if τi is a type a event time). This

entails that t21 = t22 ≡ t2 and thus saves one integration. I can then rewrite

Y2
1i = 1

T 4H4

∫
(τi−1,τi]

(
(0,t2)6

"
I2

w (`1) w (`2) K
(

t11−s11−`1
H

)
K

(
t12−s12−`2

H

)
K

(
t2−s21−`1

H

)
K

(
t2−s22−`2

H

)
d`1d`2dεa

s11
dεa

s12
dεa

s21
dεa

s22
dεb

t11
dεb

t12

(
dεb

t2

)2

≡

∫
(τi−1,τi]

H11(t−2 )
(
dεb

t2

)2
,

where I define H11(u) by

H11(u−) ≡
(

(0,u)6

"
I2

w (`1) w (`2) K
(

t11−s11−`1
H

)
K

(
t12−s12−`2

H

)
K

(
u−s21−`1

H

)
K

(
u−s22−`2

H

)
d`1d`2dεa

s11
dεa

s12
dεa

s21
dεa

s22
dεb

t11
dεb

t12
.

Note that H11(u−) is F -predictable. Now, by iterated expectations, lemma 1, and

the fact that {u ∈ (τi−1, τi]} ∈ Fu− , I have

E(Y2
1i|Fτi−1) = E


∫ τi

τ+
i−1

H11(u−)
(
dε̂b

u

)2
∣∣∣∣∣∣Fτi−1


= E


∫ τi

τ+
i−1

H11(u−)λb
udu

∣∣∣∣∣∣Fτi−1


= E


∫ τi

τ+
i−1

H11(u−)
λb

u

λa
u + λb

u
dNu

∣∣∣∣∣∣Fτi−1


= H11(τi−1)E

 λb
τi

λa
τi

+ λb
τi

∣∣∣∣∣∣Fτi−1

 .
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Note that I used the property H11(τ−i ) = H11(τi−1) in the last line. Summing over

i gives

V2
n1 ≡

n∑
i=1

E(Y2
1i|Fτi−1)

=

n∑
i=1

H11(τi−1)E
 λb

τi

λa
τi

+ λb
τi

∣∣∣∣∣∣Fτi−1


=

∫ T

0
H11(u−)E

{
λb

u

λa
u + λb

u

∣∣∣∣∣∣Fu−

}
dNu

=

∫ T

0
H11(u−)

λb
u

λa
u + λb

u
dNu.

The third equality made use of the property that for u ∈ (τi−1, τi], Nu− = Nτi−1

and hence Fu− = σ{(τi, yi) : 0 ≤ i ≤ tNu−
} = Fτi−1 , and the last line follows from

Ft-predictability of conditional intensities λa
t and λb

t .

Let πb
u =

λb
u

λa
u+λb

u
. Apart from the terms with t11 , t12 and/or si j , skl for

(i, j) , (k, l) which can be shown to be Op

(
1

T 6H2

)
= op

(
1

T 4H2

)
. the integral

V2
n1 =

∫ T

0
H11(t−2 )πb

t2dNt2 can be decomposed by the same demeaning technique

as we used for decomposing Q1 in (A.8). The decomposition is represented by

differentials for simplicity:

d`1d`2

(
dεa

s1

)2 (
dεa

s2

)2 (
dεb

t1

)2
πb

t2dNt2

= d`1d`2

(
dεa

s1

)2 (
dεa

s2

)2 (
dεb

t1

)2
πb

t2

[
dNt2 −

(
λa

t2 + λb
t2

)
dt2

]
+ d`1d`2

(
dεa

s1

)2 (
dεa

s2

)2
[(

dεb
t1

)2
− λb

t1dt1

]
λb

t2dt2

+ d`1d`2

(
dεa

s1

)2
[(

dεa
s2

)2
− λa

s2
ds2

]
λb

t1λ
b
t2dt1dt2

+ d`1d`2

[(
dεa

s1

)2
− λa

s1
ds1

]
λa

s2
λb

t1λ
b
t2ds2dt1dt2

+ d`1d`2λ
a
s1
λa

s2
λb

t1λ
b
t2ds1ds2dt1dt2.

The first four integrals above are dominated by the first term, which can be

shown to be of size Op

(
1

(T 5H2)1/2

)
= op

(
1

(T 4H2)1/2

)
. The last integral is S 1 which
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contributes to s2 = Var(Q̃) and was proven to be Op

(
1

(T 4H2)1/2

)
in Theorem 8.

Hence, V2
n1 − S 1 = op

(
1

T 2H

)
.

A.9 Proof of Theorem 10

First, recall that

Q̃ = 1
T 2

&
(0,T ]4

∫
I
w(`) 1

H2 K
(

t1−s1−`
H

)
K

(
t2−s2−`

H

)
d`dεa

s1
dεa

s2
dεb

t1dε
b
t2 .

From the property of the joint cumulant of the innovations, all of which have

mean zero, I can express

E[dεa
s1

dεa
s2

dεb
t1dε

b
t2] = E[dεa

s1
dεa

s2
]E[dεb

t1dε
b
t2] + E[dεa

s1
dεb

t1]E[dεa
s2

dεb
t2]

+ E[dεa
s1

dεb
t2]E[dεa

s2
dεb

t1] + c22(s2 − s1, t1 − s1, t2 − s1)

= 0 + γ(t1 − s1)γ(t2 − s2) + γ(t2 − s1)γ(t1 − s2)

+ c22(s2 − s1, t1 − s1, t2 − s1)

= a2
Tλ

aλb [
ρ(t1 − s1)ρ(t2 − s2) + ρ(t2 − s1)ρ(t1 − s2)

]
+ o(a2

T ),

where the last line utilizes assumption (A8).

Since H = o(B), the asymptotic bias of Q̃ becomes

bias(Q̃) =
a2

Tλ
aλb

T H κ2

∫
I
wB(`)

(
1 − |`|T

)
ρ̆2(`)d` + o

(
a2

T
T H

)
.

The asymptotic variance of Q̃ under HaT is the same as that under H0 and was

given in Theorem 8. If I set a∗T = H1/4, then the normalized statistic J converges

in distribution to N(µ(K,wB), 1).
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A.10 Proof of Theorem 9

I will only prove the case with no autocorrelations, i.e. ckk(`) ≡ 0 for k = a, b, as

the error of estimating auto-covariances by their estimators can be made negli-

gible by similar techniques as in the case for conditional intensities.

First, assuming the setup in section 2.4.4, the conditional intensity λk
t can be

approximated by λ̂k
t − λ

k
t = OP(M−1/2) by Theorem 6.

Next, by Theorem 6, it follows that λ̂k
t − λ

k
t = OP(M−1/2) for k = a, b. By lemma

28 (see below), it is true that T
(
Q − Q̃

)
= OP(M−1/2). By the assumption H = o(M),

I thus obtain T
(
Q − Q̃

)
= oP(H−1/2), and hence, with Var(T Q) = O(H−1/2),

T
(
Q − Q̃

)
/
√

Var(T Q) = oP(1). (A.15)

Besides, note that the approximation error of the unconditional intensity λ̂k−

λk is diminishing at the parametric rate of OP(T−1/2) = oP(1) as T → ∞. Also,

note that Ê(T Q) is a function of unconditional intensities, so (A.6) implies that

Ê(T Q) − E(T Q) = o(H−1), or

[
Ê(T Q) − E(T Q)

]
/
√

Var(T Q) = o(H−1/2) = o(1). (A.16)

Furthermore, the estimated variance ̂Var(T Q) is a function of unconditional in-

tensities too, so (A.7) implies that ̂Var(T Q) − Var(T Q) = o(H−1), or

Var(T Q)/ ̂Var(T Q) = 1 + o(1). (A.17)

Lastly, the result follows from the decomposition below with an application

165



of Slutsky’s theorem, meanwhile making use of (A.15), (A.16) and (A.17):

Ĵ =
T Q − Ê(T Q)√

̂Var(T Q)

=

√
Var(T Q)
̂Var(T Q)

T Q̃ − E(T Q)
√

Var(T Q)
+

T
(
Q − Q̃

)
√

Var(T Q)
+

Ê(T Q) − E(T Q)
√

Var(T Q)


= J + oP(1).

Lemma 28 T
(
Q − Q̃

)
= OP(M−1/2).

Proof. Recall the statistic Q =
∫

I/T
wb (σ)̂̃γ2

h(σ)dσ and its hypothetical counter-

part Q̃ =
∫

I/T
wb (σ) γ̃2

h (σ) dσ.

To evaluate the asymptotic order of Q − Q̃, I apply a change of variable s =

Tu and t = Tv as described in section 2.4.6. From Theorem 6, we know that

ˆ̃λk
v − λ̃

k
v = λ̂k

Tv − λ
k
Tv = OP

(
M−1/2

)
for k = a, b (u and v fixed). It follows that

ˆ̃λa
u
ˆ̃λb

v − λ̃
a
uλ̃

b
v =

( ˆ̃λa
u − λ̃

a
u

) ˆ̃λb
v +

( ˆ̃λb
v − λ̃

b
v

)
λ̃a

u = OP

(
M−1/2

)
, and hence

d ˆ̃εa
ud ˆ̃εb

v − dε̃a
udε̃b

v =
(
dÑa

u −
ˆ̃λa

udu
) (

dÑb
v −

ˆ̃λb
vdv

)
−

(
dÑa

u − λ̃
a
udu

) (
dÑb

v − λ̃
b
vdv

)
= −dÑa

u

( ˆ̃λb
v − λ̃

b
v

)
dv − dÑb

v

( ˆ̃λa
u − λ̃

a
u

)
du +

( ˆ̃λa
u
ˆ̃λb

v − λ̃
a
uλ̃

b
v

)
dudv

= OP

(
M−1/2

)
.

As a result, ̂̃γh(σ) − γ̃h (σ) =
∫ 1

0

∫ 1

0
Kh (v − u − σ)

[
d̂ε̃

a
ud̂ε̃

b
v − dε̃a

udε̃b
v

]
= OP

(
M−1/2

)
.

Since ̂̃γh(σ) + γ̃h (σ) = OP (1), I deduce that

̂̃γ2
h(σ) − γ̃2

h (σ) =
(̂
γ̃h(σ) + γ̃h (σ)

) (̂
γ̃h(σ) − γ̃h (σ)

)
= OP

(
M−1/2

)
,

and thus conclude that Q − Q̃ =
∫

I/T
wb (σ)

[̂
γ̃

2
h(σ) − γ̃2

h (σ)
]

dσ = OP

(
T−1M−1/2

)
,

which implies that T
(
Q − Q̃

)
= OP(M−1/2).
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A.11 Proof of Corollary 11

It suffices to show that the mean and variance are as given in the corollary.

Denote the delta function by δ (·). Since B = o(H) as H → ∞, the following

approximation is valid:

1
Bw

(
`
B

)
1

H2 K
(

u−`
H

)
K

(
v−`
H

)
= δ` (0) 1

H2 K
(

u−`
H

)
K

(
v−`
H

)
+ o(1).

Therefore,

Q =

∫
I
wB(`)γ̂2

H(`)d`

= 1
T 2

&
(0,T ]4

∫ T

0

1
Bw

(
`
B

)
1

H2 K
(

t1−s1−`
H

)
K

(
t2−s2−`

H

)
d`dε̂a

s1
dε̂a

s2
dε̂b

t1dε̂
b
t2

= 1
T 2

"
(0,T ]2

∫ t2

t2−T

∫ t1

t1−T

∫ T

0

1
Bw

(
`
B

)
1

H2 K
(

u−`
H

)
K

(
v−`
H

)
d`dε̂a

t1−udε̂a
t2−vdε̂

b
t1dε̂

b
t2

= 1
T 2

"
(0,T ]2

∫ t2

t2−T

∫ t1

t1−T

[
1

H2 K
(

u
H

)
K

(
v
H

)
+ o(1)

]
dε̂a

t1−udε̂a
t2−vdε̂

b
t1dε̂

b
t2 .

Under the null hypothesis (2.11), I compute the mean (up to the leading term)

as follows:

E(Q) = 1
T 2

"
(0,T ]2

∫ t2

t2−T

∫ t1

t1−T

1
H2 K

(
u
H

)
K

(
v
H

)
E

(
dε̂a

t1−udε̂a
t2−v

)
E

(
dε̂b

t1dε̂
b
t2

)
= λaλb

T 2

∫ T

0

∫ t

t−T

1
H2 K2

(
u
H

)
dudt.

By Fubini’s theorem, the last line becomes

E(Q) = λaλb

T

∫ T

−T

1
H2 K2

(
u
H

) (
1 − |u|T

)
du

= λaλb

T H

∫ T/h

−T/h
K2 (v)

(
1 − |v|HT

)
dv

= λaλb

T H [κ2 + o(1)] .
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so that E(QG) = CG + o(1). By similar techniques as I obtained (A.7), I compute

the second moment (up to the leading term) as follows.

E(Q2) = 1
(T H)4 E

 ∏
i, j=1,2

∫ T

0

∫ ti j

ti j−T
K

(ui j

H

)
dε̂a

ti j−ui j
dε̂b

ti j


The leading order terms of E(Q2) are obtained when:

(1) t11 = t12, t21 = t22, t11 − u11 = t21 − u21, t12 − u12 = t22 − u22;

(2) t11 = t12, t21 = t22, t11 − u11 = t22 − u22, t12 − u12 = t21 − u21;

(3) t11 = t21, t12 = t22, t11 − u11 = t12 − u12, t21 − u21 = t22 − u22;

(4) t11 = t21, t12 = t22, t11 − u11 = t22 − u22, t12 − u12 = t21 − u21;

(5) t11 = t22, t12 = t21, t11 − u11 = t12 − u12, t21 − u21 = t22 − u22;

(6) t11 = t22, t12 = t21, t11 − u11 = t21 − u21, t12 − u12 = t22 − u22.

Their contributions add up to

6(λaλb)2

(T H)4

"
(0,T ]2

∫ t2

t2−T

∫ t1

t1−T

∫
A

K
(

u1
H

)
K

(
u2
H

)
K

(
u1+v

H

)
K

(
u2+v

H

)
dvdu1du2dt1dt2

where A = ∩2
i=1[ti−T −ui, ti−ui]. After a change of variables, the last line reduces

to
6(λaλb)2

T 2H [κ4 + o(1)] ,

which dominates [E(Q)]2. As a result, Var(QG) = 2DG + o(1).
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A.12 Proof of Corollary 12

It suffices to show that the mean and variance are as given in the corollary.

Denote the Dirac delta function at ` by δ` (·). Since H = o(B) as B → ∞, the

following approximation is valid:

1
Bw

(
`
B

)
1

H2 K
(

u−`
H

)
K

(
v−`
H

)
= δ` (u) δ` (v) 1

Bw
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)
+ o(1).

Therefore,

Q =
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(
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H
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H

)
d`dε̂a
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b
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"
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H2 K
(
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)
K

(
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H

)
d`dε̂a

t1−udε̂a
t2−vdε̂

b
t1dε̂

b
t2

= 1
T 2

"
(0,T ]2

∫ T

0
1{`∈∩2

i=1[ti−T,ti]}

[
1
Bw

(
`
B

)
+ o(1)

]
dε̂a

t1−`dε̂
a
t2−`d`dε̂

b
t1dε̂

b
t2 .

Under the null hypothesis (2.11), I compute the mean (up to the leading term)

as follows:

E(Q) = 1
T 2

"
(0,T ]2

∫ T

0
1{`∈∩2

i=1[ti−T,ti]}

[
1
Bw

(
`
B

)
+ o(1)

]
E

(
dε̂a

t1−`dε̂
a
t2−`

)
d`E

(
dε̂b

t1dε̂
b
t2

)
= λaλb

T 2

∫ T

0

∫ t

t−T

1
Bw

(
`
B

)
d`dt.

By Fubini’s theorem, the last line becomes

E(Q) = λaλb

T

∫ T

0

1
Bw

(
`
B

) (
1 − `

T

)
d`,

so that E(QH ) = CH + o(1). By similar techniques as I obtained (A.7), I compute

the variance (up to the leading term) as follows:

Var(Q) = 2(λaλb)2

T 2

∫ T

0

1
B2 w2

(
`
B

) (
1 − `

T

)2
d`,

so that Var(QH ) = 2DH + o(1).
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A.13 Summary of Jarrow and Yu (2001) Model

Suppose that there are two parties (e.g. firms), a and b, whose assets are subject

to the risk of default. Apart from its own idiosyncratic risk, the probability of

default of each party depends on the default status of the other party. The dis-

tribution of τk (k = a, b), the time to default by party k, can be fully characterized

by the conditional intensity function, λk(t|Ft−) = lim∆t↓0 (∆t)−1 P(τk ∈ [t, t + ∆t)|Ft−)

where F = (F t) is the natural filtration generated by the processes 1{τa ≤ t} and

1{τb ≤ t}, i.e. Ft = σ{1{τa ≤ t}, 1{τb ≤ t}}. Intuitively, it is the conditional probabil-

ity that party k will default at time t given the history of the default status of both

parties. A simple reduced form counterparty risk model is given as follows:

for party a: λa(t|Ft−) = µa + αab1{τb≤t} for t ≤ τa,

for party b: λb(t|Ft−) = µb + αba1{τa≤t} for t ≤ τb.

This is probably the simplest bivariate default risk model with counterparty

risk features represented by the parameters αab and αba. For instance, if αab is

positive, then the default by party b increases the chance of default by party a,

thus suggesting the existence of counterparty risk from party b to party a.

The above counterparty risk model involving two parties can be readily ex-

tended to one involving two portfolios, a and b. (e.g. two industries of firms).

Each portfolio contains a large number of homogeneous parties whose individ-

ual conditional intensities of defaults take the same piecewise constant form.

For k = a, b, let τk
i be the time of the ith default in portfolio k, and define

Nk
t =

∑∞
i=1 1{τk

i ≤ t} which counts the number of default events in portfolio k

up to time t. Now, denote the natural filtration of (Na,Nb) by F = (F t) where

Ft = σ{(Na
s ,N

b
s ) : s ≤ t}, and the conditional intensity of default in portfolio
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k at time t by λk(t|Ft−) = lim∆t↓0 (∆t)−1 P(Nk
t+∆t − Nk

t > 0|Ft−). Analogous to the

counterparty risk model with two parties, a counterparty risk model with two

portfolios a and b is defined as follows:

for portfolio a: λa(t|Ft−) = µa + αaa
∞∑

q=1

1{τa
q≤t} + αab

∞∑
j=1

1{τb
j≤t}, (A.18)

for portfolio b: λb(t|Ft−) = µb + αba
∞∑

i=1

1{τa
i ≤t} + αbb

∞∑
q=1

1{τb
q≤t}. (A.19)

We can rewrite (A.18) and (A.19) in terms of the counting processes Nk
t :

λa(t|Ft−) = µa + αaaNa
t + αabNb

t for t ≤ τa
i ,

λb(t|Ft−) = µb + αbaNa
t + αbbNb

t for t ≤ τb
j .

With an additional exponential function (or other discount factors) to

dampen the feedback effect of each earlier default event, the system of condi-

tional intensities constitutes an bivariate exponential (or generalized) Hawkes model

for (Na,Nb):

λa(t|Ft−) = µa + αaa
na∑
i=1

1{τa
i ≤t}e−β

aa(t−τa
i ) + αab

nb∑
j=1

1{τb
j≤t}e

−βab(t−τb
j )

= µa + αaa
∫ t

0
e−β

aa(t−s)dNa
s + αab

∫ t

0
e−β

ab(t−u)dNb
u ,

λb(t|Ft−) = µb + αba
na∑
i=1

1{τa
i ≤t}e−β

ba(t−τa
i ) + αbb

nb∑
j=1

1{τb
j≤t}e

−βbb(t−τb
j )

= µb + αba
∫ t

0
e−β

ba(t−s)dNa
s + αbb

∫ t

0
e−β

bb(t−u)dNb
u .

To test for the existence of Granger causality based on this model, we can

estimate the parameters αab and αba and test if they are significant. However,

this parametric bivariate model is only one of the many possible ways that the
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conditional intensities of default from two portfolios can interact with one an-

other. The nonparametric test in this chapter can detect Granger causality with-

out making a strong parametric assumption on the bivariate point process of

defaults.

A.14 Q Test for Non-stationary Point Processes

There is room for relaxing the stationary assumption on N = (Na,Nb), as the

asymptotic theory of the test statistic Q relies on the stationarity of only the cross

covariance of the innovations dεa
t and dεb

t from the two marginal processes. First

order stationarity of each marginal point process was imposed to merely facili-

tate (unconditional) moment calculations of Q, and was not necessary if one has

a model for the time-varying marginal intensities. To this end, assumption (A2)

is replaced by the following weaker assumption:

Assumption (A2b) The cross covariance density function of the innovations dεa
t

and dεb
t from the two marginal processes is a function of the time difference

only, i.e. E
(
dεa

s dεb
t

)
= γ (t − s) dsdt.

Recall that γ(·) is the reduced form cross covariance density function of the inno-

vations dεa
t and dεb

t , which is well-defined under Assumption (A2b).

Assumption (A2b) encompasses the case that Nk is non-stationary in mean,

i.e. E(dNk
t ) is time-varying. Suppose the conditional intensity λk

t is specified by

a deterministic parametric model, so that λk
t ≡ E(dNk

t |F
k

t−) ≡ λ
k(t; θk). By iterated

expectations, we have E(dNk
t ) = E(λk(t; θk)) = λk(t; θk) = λk

t .
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Theorem 29 Suppose that the conditional intensities λk
t (k = a, b) are deterministic.

Under assumptions (A1,2b,3,4a,5,6) and the null hypothesis (2.11), the normalized test

statistic

J =
Q̃ − E(Q̃)√

Var(Q̃)
(A.20)

converges in distribution to a standard normal random variable as T → ∞, H → ∞

and H/T → 0, where the mean and variance of Q̃ are given as follows:

E(Q̃) = 1
T Hκ2

∫
I
wB(`)

(
1
T

∫ T∧(T+`)

0∨`
λa

t−`λ
b
t dt

)
d` + o

(
1

T H

)
,

Var(Q̃) = 2
T 2H κ4

∫
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w2

B(`)
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T

∫ T∧(T+`)
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t dt

)2

d` + o
(

1
T 2H

)
.

Proof. It suffices to verify the mean and the variance of Q as the asymptotic

theory is the same as that in the second-order stationary case. Now, the mean of

Q is

E (Q) = 1
T 2H2

"
(0,T ]2
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I
wB(`)K2

(
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)
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,
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where κ2 =
∫ ∞
−∞

K2(x)dx (from assumption (A4a)). As T → ∞, Th = H → ∞ and

h = H/T → 0, the asymptotic mean of Q under the null hypothesis is given by

E (Q) = 1
T 2hκ2

∫
I/T

wb(σ)
∫ 1∧(1+σ)

0∨σ
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On the other hand, the dominating term of the variance is
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periods Jul90—Mar91 Mar01—Nov02 Mar01—Nov01 Dec07—Jun09
θ̂ t stat θ̂ t stat θ̂ t stat θ̂ t stat

ωa -7.65 -72.14 -8.37 -25.18 -9.54 -16.80 -9.32 -39.78
ωb -9.14 -27.15 -9.53 -25.43 -10.15 -17.35 -10.71 -27.27
βaa 0.83 6.53 0.04 0.96 0.66 3.93 0.25 7.12
βab 0.10 6.37 1.72 7.82 1.91 2.64 0.82 38.91
βba 1.11 1.82 0.02 0.99 0.08 2.76 0.29 8.26
βbb 0.49 2.35 0.92 19.49 0.31 1.97 0.60 23.07
αaa 0.30 0.26 -0.14 -1.43 0.78 10.20 1.32 20.98
αab -4.07 -1.73 0.29 5.60 0.51 3.03 0.75 17.26
αba 1.12 2.23 -120.96 -0.95 -17.84 -1.82 -5.92 -8.46
αbb 4.20 14.92 3.53 7.76 6.38 7.18 4.05 121.17(

na, nb
)

(17,11) (106,56) (44,32) (59,42)
L -99.98 -0.50×103 -239.41 -313.46

stat p-val stat p-val stat p-val stat p-val
LB3 1.36 0.243 1.42 0.234 0.75 0.388 10.42 0.001
LB5 2.10 0.552 5.88 0.118 9.48 0.024 11.26 0.010

LB10 6.75 0.564 6.71 0.568 16.91 0.031 14.46 0.071
LB20 16.00 0.592 10.55 0.912 27.11 0.077 29.59 0.042

LB13 0.52 0.470 0.31 0.579 3.81 0.051 1.93 0.165
LB15 1.56 0.670 1.44 0.696 4.58 0.206 2.41 0.492

LB110 2.49 0.962 4.54 0.806 10.97 0.204 3.48 0.900
LB120 - - 10.86 0.900 21.45 0.257 11.43 0.875

LB23 0.65 0.422 0.02 0.889 0.01 0.933 0.44 0.507
LB25 1.41 0.703 0.02 0.999 0.01 1.000 0.45 0.929

LB210 - - 0.04 1.000 0.03 1.000 0.59 1.000
LB220 - - 0.08 1.000 0.04 1.000 0.90 1.000

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC di-

visions of the filing companies, with groups a and b (sample sizes na and nb) corresponding to SIC divisions {A,B,C,D,E}

and {F,G,H,I}, respectively. The sampling windows are measured in days around the reference point. The estimates

of the parameters in the ACI(1,1) model were presented along with the t statistics. L is the log-likelihood value. LBM ,

LB1M and LB2M are the statistic values of the Ljung-Box test (with maximum lag M) on the residuals of the pooled point

process, the first and the second marginal point processes, respectively.

Table B.1: Estimated bivariate ACI(1,1) models on point process data of
bankruptcy filings over recessions and crises.
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periods Apr91-Feb01 Dec01-Nov07 Dec02-Nov07 Jul09-Nov11
θ̂ t stat θ̂ t stat θ̂ t stat θ̂ t stat

ωa -9.27 -16.13 -8.24 -21.90 -8.68 -21.68 -10.85 -15.99
ωb -7.94 -4.85 -9.92 -22.75 -10.37 -18.36 -9.29 -6.54
βaa 0.32 3.10 0.72 13.88 0.66 9.17 0.87 7.58
βab 0.54 2.60 0.77 6.43 0.77 5.75 0.02 0.15
βba 0.68 6.26 0.25 4.60 0.29 4.58 1.01 1.58
βbb 0.35 1.75 0.19 3.75 0.23 3.25 0.05 0.25
αaa 2.67 5.28 0.33 4.34 0.55 5.29 2.99 2.83
αab -1.87 -1.33 0.22 2.00 0.32 2.99 -25.42 -0.15
αba 0.27 0.60 -4.41 -3.91 -4.68 -3.31 0.74 0.96
αbb 0.97 0.70 5.27 16.32 5.24 13.43 0.26 1.23(

na, nb
)

(151,162) (160,70) (105,50) (36,51)
L -1.26×103 -0.84×103 -0.62×103 -339.64

stat p-val stat p-val stat p-val stat p-val
LB3 3.21 0.073 1.53 0.216 2.32 0.128 3.92 0.048
LB5 6.72 0.081 3.39 0.336 3.35 0.340 3.93 0.270

LB10 8.14 0.420 5.28 0.727 6.14 0.631 18.15 0.020
LB20 14.27 0.712 24.63 0.135 18.79 0.405 37.92 0.004

LB13 0.82 0.367 1.83 0.176 2.27 0.132 0.25 0.614
LB15 0.90 0.826 2.46 0.483 4.52 0.210 0.29 0.962

LB110 1.07 0.998 7.73 0.460 7.94 0.439 0.32 1.000
LB120 1.33 1.000 19.82 0.343 18.28 0.438 0.70 1.000

LB23 5.32 0.021 0.02 0.892 0.02 0.876 6.47 0.011
LB25 6.05 0.109 0.02 0.999 0.03 0.999 9.19 0.027

LB210 8.13 0.421 0.03 1.000 0.04 1.000 16.88 0.031
LB220 19.42 0.367 0.03 1.000 0.05 1.000 19.76 0.346

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC di-

visions of the filing companies, with groups a and b (sample sizes na and nb) corresponding to SIC divisions {A,B,C,D,E}

and {F,G,H,I}, respectively. The sampling windows are measured in days around the reference point. The estimates

of the parameters in the ACI(1,1) model were presented along with the t statistics. L is the log-likelihood value. LBM ,

LB1M and LB2M are the statistic values of the Ljung-Box test (with maximum lag M) on the residuals of the pooled point

process, the first and the second marginal point processes, respectively.

Table B.2: Estimated bivariate ACI(1,1) models on point process data of
bankruptcy filings over non-recession periods.
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quarterly monthly biweekly weekly
θ̂ t stat θ̂ t stat θ̂ t stat θ̂ t stat

ωa -0.14 -0.05 0.39 0.43 0.57 2.17 0.43 3.47
ωb 1.65 1.87 1.20 2.12 0.74 3.01 0.38 3.73
βaa -0.78 -2.05 0.42 1.97 0.68 4.94 0.37 3.42
βab 2.95 3.78 0.72 1.66 -0.12 -0.69 -0.00 -0.02
βba -0.28 -2.30 0.21 1.57 0.28 2.19 0.19 2.17
βbb 1.37 5.38 0.18 0.66 -0.13 -0.78 -0.03 -0.30
ρab -0.74 0.21 0.26 0.25
σaa 13.76 4.67 1.23 0.69
σab -3.34 0.61 0.30 0.14
σbb 1.46 1.85 1.07 0.46

stat p-val stat p-val stat p-val stat p-val
H3 13.54 0.09 9.67 0.29 11.24 0.19 23.74 0.00

JBa 0.62 0.74 7.22 0.03 0.73 0.70 34.68 0.00
JBb 0.77 0.68 1.09 0.58 15.90 0.00 10.54 0.01

DWa 1.75 2.19 2.37 2.30
DWb 2.54 2.20 2.06 2.12

n 7 19 42 84

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC

divisions of the filing companies, with groups a and b corresponding to SIC divisions {A,B,C,D,E} and {F,G,H,I},

respectively. The estimates of the parameters in the VAR(1) model were presented along with the t statistics. ρab =

σab/
√
σaaσbb. n = sample length of the count sequences. H3 = Hosking’s (1980) multivariate portmanteau test on

residuals. JBk = univariate Jarque-Bera normality test on group k residuals. DWk = univariate Durbin-Watson test on

group k residuals.

Table B.3: Estimated VAR(1) model on the time series of bankruptcy
counts over Dec 2007 - June 2009 with varying sampling fre-
quencies.
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quarterly monthly biweekly weekly
θ̂ t stat θ̂ t stat θ̂ t stat θ̂ t stat

ωa 10.46 1.92 1.97 1.51 1.79 3.96 1.18 6.32
ωb 5.95 2.97 2.10 2.13 1.29 4.12 0.59 4.36
βaa -0.42 -1.11 0.30 1.46 0.02 0.14 0.01 0.12
βab 1.44 1.90 0.63 2.05 0.43 1.99 -0.04 -0.26
βba -0.39 -2.80 -0.05 -0.33 -0.12 -1.17 -0.04 -0.55
βbb 0.93 3.36 0.24 1.02 0.12 0.81 0.07 0.63
ρab -0.30 0.07 0.09 0.05
σaa 30.09 4.92 2.42 1.24
σab -3.31 0.27 0.16 0.04
σbb 4.06 2.82 1.16 0.66

stat p-val stat p-val stat p-val stat p-val
H3 15.79 0.05 7.27 0.51 8.78 0.36 14.25 0.08

JBa 0.93 0.63 0.98 0.61 1.16 0.56 11.94 0.00
JBb 0.71 0.70 0.65 0.72 3.73 0.15 30.01 0.00

DWa 2.03 1.49 1.98 1.99
DWb 1.14 2.16 1.89 1.82

n 8 21 47 92

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC

divisions of the filing companies, with groups a and b corresponding to SIC divisions {A,B,C,D,E} and {F,G,H,I},

respectively. The estimates of the parameters in the VAR(1) model were presented along with the t statistics. ρab =

σab/
√
σaaσbb. n = sample length of the count sequences. H3 = Hosking’s (1980) multivariate portmanteau test on

residuals. JBk = univariate Jarque-Bera normality test on group k residuals. DWk = univariate Durbin-Watson test on

group k residuals.

Table B.4: Estimated VAR(1) model on the time series of bankruptcy
counts over March 2001 - November 2002 with varying sam-
pling frequencies.
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monthly biweekly weekly
θ̂ t stat θ̂ t stat θ̂ t stat

ωa 1.00 0.89 0.50 1.65 0.30 2.45
ωb 1.26 1.62 0.60 1.99 0.27 2.16
βaa 0.38 0.79 0.22 0.94 0.01 0.06
βab 0.13 0.17 0.29 1.16 0.39 2.40
βba 0.18 0.55 0.10 0.44 0.05 0.33
βbb -0.16 -0.32 -0.18 -0.72 -0.01 -0.08
ρab 0.51 0.15 0.11
σaa 3.10 0.89 0.37
σab 1.10 0.13 0.04
σbb 1.49 0.88 0.38

stat p-val stat p-val stat p-val
H3 7.22 0.51 11.30 0.19 2.72 0.95

JBa 1.73 0.42 1.35 0.51 7.29 0.03
JBb 0.79 0.67 3.82 0.15 36.89 0.00

DWa 1.63 1.98 1.94
DWb 1.92 2.09 2.00

n 9 20 40

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC

divisions of the filing companies, with groups a and b corresponding to SIC divisions {A,B,C,D,E} and {F,G,H,I},

respectively. The estimates of the parameters in the VAR(1) model were presented along with the t statistics. ρab =

σab/
√
σaaσbb. n = sample length of the count sequences. H3 = Hosking’s (1980) multivariate portmanteau test on

residuals. JBk = univariate Jarque-Bera normality test on group k residuals. DWk = univariate Durbin-Watson test on

group k residuals.

Table B.5: Estimated VAR(1) model on the time series of bankruptcy
counts over July 1990 - March 1991 with varying sampling fre-
quencies.
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quarterly monthly biweekly weekly
θ̂ t stat θ̂ t stat θ̂ t stat θ̂ t stat

ωa 1.10 1.84 0.59 3.41 0.39 5.55 0.24 8.01
ωb 1.20 1.44 0.57 3.02 0.41 5.44 0.24 7.29
βaa 0.59 3.88 0.33 3.77 0.12 1.97 0.13 3.03
βab 0.12 1.08 0.18 2.27 0.18 3.14 0.03 0.72
βba 0.61 2.87 0.47 4.95 0.16 2.37 0.14 2.85
βbb 0.15 0.91 0.14 1.71 0.20 3.26 0.10 2.39
ρab 0.25 0.05 0.04 0.02
σaa 4.37 1.51 0.69 0.31
σab 1.51 0.08 0.03 0.01
σbb 8.55 1.81 0.79 0.38

stat p-val stat p-val stat p-val stat p-val
H3 16.86 0.03 8.80 0.36 35.89 0.00 27.53 0.00

JBa 1.62 0.44 5.12 0.08 411.95 0.00 675.32 0.00
JBb 18.74 0.00 55.88 0.00 292.46 0.00 885.48 0.00

DWa 2.49 2.03 2.07 2.01
DWb 2.05 2.04 2.13 2.04

n 40 119 259 518

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC

divisions of the filing companies, with groups a and b corresponding to SIC divisions {A,B,C,D,E} and {F,G,H,I},

respectively. The estimates of the parameters in the VAR(1) model were presented along with the t statistics. ρab =

σab/
√
σaaσbb. n = sample length of the count sequences. H3 = Hosking’s (1980) multivariate portmanteau test on

residuals. JBk = univariate Jarque-Bera normality test on group k residuals. DWk = univariate Durbin-Watson test on

group k residuals.

Table B.6: Estimated VAR(1) model on the time series of bankruptcy
counts over April 1990 - March 1991 with varying sampling fre-
quencies.
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quarterly monthly biweekly weekly
θ̂ t stat θ̂ t stat θ̂ t stat θ̂ t stat

ωa 1.11 0.93 0.59 2.06 0.56 4.73 0.31 6.30
ωb 1.38 1.80 0.38 2.21 0.31 4.10 0.13 4.19
βaa 0.46 2.26 0.36 3.14 0.18 2.13 0.15 2.50
βab 0.64 1.59 0.55 2.58 0.16 1.19 0.06 0.62
βba 0.02 0.19 0.15 2.16 0.07 1.24 0.05 1.31
βbb 0.30 1.14 0.13 1.01 -0.06 -0.64 0.11 1.76
ρab 0.39 0.06 0.09 0.01
σaa 9.45 2.13 1.06 0.42
σab 2.39 0.08 0.06 0.00
σbb 3.94 0.78 0.45 0.18

stat p-val stat p-val stat p-val stat p-val
H3 5.50 0.70 5.84 0.67 14.34 0.07 18.98 0.02

JBa 0.66 0.72 6.42 0.04 232.15 0.00 271.27 0.00
JBb 2.26 0.32 47.64 0.00 206.82 0.00 530.21 0.00

DWa 2.08 2.12 1.98 2.14
DWb 1.69 2.01 1.93 1.99

n 21 60 131 262

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC

divisions of the filing companies, with groups a and b corresponding to SIC divisions {A,B,C,D,E} and {F,G,H,I},

respectively. The estimates of the parameters in the VAR(1) model were presented along with the t statistics. ρab =

σab/
√
σaaσbb. n = sample length of the count sequences. H3 = Hosking’s (1980) multivariate portmanteau test on

residuals. JBk = univariate Jarque-Bera normality test on group k residuals. DWk = univariate Durbin-Watson test on

group k residuals.

Table B.7: Estimated VAR(1) model on the time series of bankruptcy
counts over December 2002 - November, 2007 with varying sam-
pling frequencies.
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quarterly monthly biweekly weekly
θ̂ t stat θ̂ t stat θ̂ t stat θ̂ t stat

ωa -0.29 -0.27 0.22 0.90 0.13 1.49 0.13 3.14
ωb 0.20 0.18 0.22 0.91 0.25 2.06 0.16 2.80
βaa 0.17 0.40 0.58 2.95 0.21 1.78 0.21 2.25
βab 0.57 1.46 0.04 0.28 0.32 3.48 0.04 0.61
βba 0.44 1.01 0.92 4.61 0.57 3.54 0.36 2.78
βbb 0.27 0.67 -0.05 -0.30 -0.00 -0.02 0.02 0.21
ρab 0.66 0.26 0.30 0.32
σaa 6.16 1.08 0.36 0.17
σab 4.18 0.29 0.15 0.07
σbb 6.51 1.12 0.66 0.32

stat p-val stat p-val stat p-val stat p-val
H3 16.65 0.03 9.97 0.27 17.08 0.03 33.29 0.00

JBa 0.48 0.79 116.64 0.00 63.06 0.00 159.84 0.00
JBb 0.37 0.83 11.24 0.00 69.44 0.00 246.14 0.00

DWa 1.53 2.27 1.93 2.06
DWb 3.18 1.91 2.34 2.17

n 10 29 64 127

Bankruptcies are classified into two categories (upper and lower ends of a typical supply chain) according to the SIC

divisions of the filing companies, with groups a and b corresponding to SIC divisions {A,B,C,D,E} and {F,G,H,I},

respectively. The estimates of the parameters in the VAR(1) model were presented along with the t statistics. ρab =

σab/
√
σaaσbb. n = sample length of the count sequences. H3 = Hosking’s (1980) multivariate portmanteau test on

residuals. JBk = univariate Jarque-Bera normality test on group k residuals. DWk = univariate Durbin-Watson test on

group k residuals.

Table B.8: Estimated VAR(1) model on the time series of bankruptcy
counts over July, 2009 - November, 2011 with varying sampling
frequencies.
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Qs test over crises and recessions
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[A,B,C,D,E] → [F,G,H,I]

[A,B,C,D,E] ← [F,G,H,I]

One-sided critical values: z0.05 = 1.64; z0.01 = 2.33. B = bandwidth for weight function. The bandwidths Rk for autocor-

relation functions are both set to 100 (days). All kernels are Gaussian.

Figure B.1: Qs test between upstream and downstream of a supply chain
during crises and recessions.
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Qs test over recoveries and expansions
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[A,B,C,D,E] → [F,G,H,I]

[A,B,C,D,E] ← [F,G,H,I]

One-sided critical values: z0.05 = 1.64; z0.01 = 2.33. B = bandwidth for weight function. The bandwidths Rk for autocor-

relation functions are both set to 100 (days). All kernels are Gaussian.

Figure B.2: Qs test between upstream and downstream of a supply chain
during non-recession periods.
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Qs test over crises and recessions
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[A,B,C,D,E,F,G,I] → [H]

[A,B,C,D,E,F,G,I] ← [H]

One-sided critical values: z0.05 = 1.64; z0.01 = 2.33. B = bandwidth for weight function. The bandwidths Rk for autocor-

relation functions are both set to 100 (days). All kernels are Gaussian.

Figure B.3: Qs test between Wall Street and Main Street during crises and
recessions.
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Qs test over recoveries and expansions
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[A,B,C,D,E,F,G,I] → [H]

[A,B,C,D,E,F,G,I] ← [H]

One-sided critical values: z0.05 = 1.64; z0.01 = 2.33. B = bandwidth for weight function. The bandwidths Rk for autocor-

relation functions are both set to 100 (days). All kernels are Gaussian.

Figure B.4: Qs test between Wall Street and Main Street during non-
recession periods.
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APPENDIX C

CHAPTER 4 APPENDIX

C.1 Proof of Theorem 19

Recall that at the true parameter value θ0, the generalized innovations εi = 1 −∫ Ti

Ti−1
h(t; θ0)dt are iid with mean 0. Let the vector of M autocovariances of the

generalized innovations be r = (r1, r2, . . . , rM)′, where rm = 1
n

∑n
i=m+1 εiεi−m. Let

X = −E [∂r/∂θ] be an (M × D) matrix. Its (m, d) entry is then given by

xm j = −
1
n
E

(
∂rm

∂θ j

)
= −

1
n

n∑
i=m+1

[
E

(
εi
∂εi−m

∂θ j

)
+ E

(
εi−m

∂εi

∂θ j

)]
(C.1)

but by iterated expectations, the first expectation is equal to zero, while the sec-

ond expectation can be simplified as:

E

(
εi−m

∂εi

∂θ j

)
= E

(
−εi−m

∫ Ti

Ti−1

∂

∂θ j
h(t; θ0)dt

)
= −E

[
εi−m

∫ Ti

Ti−1

(
∂

∂θ j
log h(t; θ0)

)
h(t; θ0)dt

]
= −E

[
εi−m

∂

∂θ j
log h(Ti; θ0)

]
,

where the first equality follows from Leibniz theorem that allows for interchang-

ing the order of integration and differentiation, and the last equality follows

from lemma 30. Therefore, X is as given in (4.4) in the theorem.

Let Y = E
[
∂`(θ0)/∂θ · r′

]
be an (D × M) matrix. Our goal is to show that

X = Y′. (C.2)
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Let the total number of observed times be n = N(T ). Recall that the log-

likelihood function evaluated at the true parameter is

`(θ0) = −Λ(T ) +

n∑
i=1

log h(Ti; θ0)

=

n∑
i=1

[
−

∫ Ti

Ti−1

h(t; θ0)dt + log h(Ti; θ0)
]

=

n∑
i=1

[
(εi − 1) + log h(Ti; θ0)

]
.

Hence,

y jm = E

[
∂`(θ0)
∂θ j

rm

]
= E

 n∑
i=1

[
∂εi

∂θ j
+

∂

∂θ j
log h(Ti; θ0)

]
·

1
n

n∑
k=m+1

εkεk−m


=

1
n
E

 n∑
i=1

[
∂εi

∂θ j
+

∂

∂θ j
log h(Ti; θ0)

] i∑
k=m+1

εkεk−m


=

1
n

n∑
i=1

i∑
k=m+1

[
E

(
∂εi

∂θ j
εkεk−m

)
+ E

(
∂

∂θ j
log h(Ti; θ0)εkεk−m

)]
,

where the second equality follows by iterated expectations and by noting that

the square bracketed term is measurable with respect to FTi . Now, the first ex-

pectation becomes:

E

(
∂εi

∂θ j
εkεk−m

)
= E

[
−

∫ Ti

Ti−1

∂

∂θ j
h(t; θ0)dt · εkεk−m

]
= −E

[∫ Ti

Ti−1

(
∂

∂θ j
log h(t; θ0)

)
h(t; θ0)dt · εkεk−m

]

=


−E

[(
∂
∂θ j

log h(Ti; θ0)
)
· εkεk−m

]
+ E

[(
∂
∂θ j

log h(Ti; θ0)
)
· εi−m

]
if k = i;

−E
[(

∂
∂θ j

log h(Ti; θ0)
)
· εkεk−m

]
if k < i;

,

where the last line follows from lemma 31 (for k = i) and iterative expectations

(for k < i). Therefore, the ( j,m) entry of Y is given by

y jm =
1
n

n∑
i=1

E

[(
∂

∂θ j
log h(Ti; θ0)

)
· εi−m

]
= xm j
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and hence X = Y′. This, together with the result from expanding ∂`(θ̂)
∂θ

around θ0:

0 =
∂`(θ̂)
∂θ

=
∂`(θ0)
∂θ

+
(
θ̂ − θ0

) ∂2`(θ0)
∂θ∂θ′

+ op

(
1
√

n

)
⇒

(
θ̂ − θ0

)
= G−1∂`(θ0)

∂θ
+ op

(
1
√

n

)
,

proves that

Var
(√

nr̂
)

= Var
(√

n
[
r − X

(
θ̂ − θ0

)])
+ o(1)

= Var
(√

nr
)

+ XVar
[√

n
(
θ̂ − θ0

)]
X′

− XCov
[√

n
(
θ̂ − θ0

)
, r

]
−Cov

[√
n
(
θ̂ − θ0

)
, r

]
X′ + o(1)

= IM + XG−1X′ − XG−1Y − Y′G−1X′+o(1)

= IM − XG−1X′ + o(1).

= V + o(1),

as in (4.3).

To show (4.5), we differentiate the log-likelihood function (4.2) twice. The

( j, k) entry of the resultant hessian matrix is

∂2`(θ)
∂θ j∂θk

=

n∑
i=1

[
−

∫ Ti

Ti−1

∂2

∂θ j∂θk
h(t; θ)dt +

∂2

∂θ j∂θk
log h(Ti; θ)

]
.

Note that
∂

∂θ j
h(t; θ) =

[
∂

∂θ j
log h(t; θ)

]
h(t; θ)

and

∂2

∂θ j∂θk
h(t; θ) =

[
∂

∂θ j
log h(t; θ)

] [
∂

∂θk
log h(t; θ)

]
h(t; θ)

+

[
∂2

∂θ j∂θk
log h(t; θ)

]
h(t; θ).
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As a result,

E

(
∂2`(θ)
∂θ j∂θk

)
=

n∑
i=1

{
−E

[
∂

∂θ j
log h(Ti; θ)

∂

∂θk
log h(Ti; θ)

]
−E

[
∂2

∂θ j∂θk
log h(Ti; θ)

]
+ E

[
∂2

∂θ j∂θk
log h(Ti; θ)

]}
=

n∑
i=1

−E

[
∂

∂θ j
log h(Ti; θ)

∂

∂θk
log h(Ti; θ)

]
.

In getting the first equality above, the integration is simplified by lemma 30

below. Equation (4.5) follows.

Lemma 30 Suppose h(t) is the conditional intensity function associated with the event

times {Ti}
∞
i=0 and f (t) is an FTi−1-measurable function such that

E

(∫ Ti

Ti−1

| f (t)h(t)| dt

∣∣∣∣∣∣FTi−1

)
< ∞.

Then we have

E

(∫ Ti

Ti−1

f (t)h(t)dt

∣∣∣∣∣∣FTi−1

)
= E

(
f (Ti)| FTi−1

)
.

Proof. See Lemma A1 in the Appendix of Kwok and Li (2008), which proves the special

case where f (t) = f (t − Ti−1).

Applying iterated expectations and the above lemma, we conclude that

E

(∫ Ti

Ti−1

f (t)h(t)dt · εi−m

)
= E ( f (Ti−1)εi−m) .

The advantages of this result are twofold: it avoids numerical integrations, and

leads to the equality X = Y′ in (C.2), which simplifies the variance of generalized

residual autocovariances to (4.3).

Lemma 31 With the notations in lemma 30, we have

E

(∫ Ti

Ti−1

f (t)h(t)dt · εiεi−m

)
= E ( f (Ti)εiεi−m) − E ( f (Ti)εi−m) . (C.3)
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Proof. This is an application of Lemma 30 and Fubini’s theorem. First, we

observe that

E
[
(1 − εi) 1 (Ti > t)| FTi−1

]
= E

[∫ Ti

Ti−1

h(s)ds · 1 (Ti > t)

∣∣∣∣∣∣FTi−1

]
= E

[∫ ∞

Ti−1

h(s)1 (Ti > s) ds · 1 (Ti > t)

∣∣∣∣∣∣FTi−1

]
=

∫ ∞

Ti−1

h(s)E
[
1 (Ti > s ∨ t)| FTi−1

]
ds (C.4)

where the last line is obtained by Fubini’s theorem and the fact that the condi-

tional intensity function h(s) over s ∈ (Ti−1,∞) is FTi−1-measurable (see (C.5) be-

low for the explicit form). Using the notations of Chapter 3 of Brémaud (1981),

we denote the conditional distribution and density functions of Ti − Ti−1 given

Ti−1 by G(i)(·) and g(i)(·), respectively. The conditional intensity function h(s) over

s ∈ (Ti−1,∞) can then be expressed as

h(s) =
g(i)(s − Ti−1)

1 −G(i)(s − Ti−1)
. (C.5)

Therefore,

E
[
1 (Ti > s ∨ t)| FTi−1

]
=


1 −G(i)(t − Ti−1) if Ti−1 < s ≤ t;

1 −G(i)(s − Ti−1) if s > t.

Continuing from (C.4), we obtain

E
[
(1 − εi) 1 (Ti > t)| FTi−1

]
=

∫ t

Ti−1

h(s)
[
1 −G(i)(t − Ti−1)

]
ds +

∫ ∞

t
h(s)

[
1 −G(i)(s − Ti−1)

]
ds

=
[
1 −G(i)(t − Ti−1)

] ∫ t

Ti−1

h(s)ds +

∫ ∞

t

g(i)(s − Ti−1)
1 −G(i)(s − Ti−1)

[
1 −G(i)(s − Ti−1)

]
ds

=
[
1 −G(i)(t − Ti−1)

] ∫ t

Ti−1

h(s)ds +
[
1 −G(i)(t − Ti−1)

]
=

[
1 −G(i)(t − Ti−1)

] (∫ t

Ti−1

h(s)ds + 1
)
.
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As a result,

E

(∫ Ti

Ti−1

(1 − εi) f (t)h(t)dt

∣∣∣∣∣∣FTi−1

)
=

∫ ∞

Ti−1

f (t)h(t)E
[
(1 − εi) 1 (Ti > t)| FTi−1

]
dt

=

∫ ∞

Ti−1

f (t)
g(i)(t − Ti−1)

1 −G(i)(t − Ti−1)

[
1 −G(i)(t − Ti−1)

] (∫ t

Ti−1

h(s)ds + 1
)

dt

=

∫ ∞

Ti−1

f (t)
(∫ t

Ti−1

h(s)ds + 1
)

g(i)(t − Ti−1)dt

= E

[
f (Ti)

(∫ Ti

Ti−1

h(s)ds + 1
)∣∣∣∣∣∣FTi−1

]
= E

[
f (Ti) (2 − εi)| FTi−1

]
where the second to last equality comes from the definition of g(i)(·), and the

last one comes from the definition of generalized innovation εi = 1 −
∫ Ti

Ti−1
h(s)ds.

Lastly, by lemma 30 and iterated expectations,

E

(∫ Ti

Ti−1

f (t)h(t)dt · εiεi−m

)
= E

(∫ Ti

Ti−1

f (t)h(t)dt · εi−m

)
− E

(∫ Ti

Ti−1

f (t)h(t)dt · (1 − εi) εi−m

)
= E ( f (Ti)εi−m) − E

[
E

(∫ Ti

Ti−1

(1 − εi) f (t)h(t)dt

∣∣∣∣∣∣FTi−1

)
εi−m

]
= E ( f (Ti)εi−m) − E

[
f (Ti) (2 − εi) εi−m

]
= E ( f (Ti)εiεi−m) − E ( f (Ti)εi−m) .
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