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This thesis presents a framework for using explicit memory management to

improve the communication performance of JavaTM cluster applications. The

framework allows programmers to explicitly manage Java communication

buffers, called jbufs, which are directly accessed by the DMA engines of high-

performance network interfaces and by Java programs as primitive-typed ar-

rays. The central idea is to remove the hard separation between Java’s gar-

bage-collected heap and the non-collected memory region in which DMA

buffers must normally be allocated. The programmer controls when a jbuf is

part of the garbage-collected heap so that the garbage collector can ensure it is

safely re-used or de-allocated, and when it is not so it can be used for DMA

transfers. Unlike other techniques, jbufs preserve Java’s storage- and type-

safety and do not depend on a particular garbage collection scheme.

The safety, efficiency, and programmability of jbufs are demonstrated

throughout this thesis with implementations of an interface to the Virtual In-

terface Architecture, of an Active Messages communication layer, and of Java

Remote Method Invocation (RMI). The impact on applications is also evalu-



ated using an implementation of cluster matrix multiplication as well as a

publicly available RMI benchmark suite.

The thesis proposes in-place object de-serialization—de-serialization with-

out allocation and copying of objects—to further enhance the performance of

RMI on homogeneous clusters. This optimization takes advantage of the zero-

copy capabilities of network devices to reduce the per-object de-serialization

costs to a constant irrespective of object size, which is particularly beneficial

for large objects such as arrays. In-place de-serialization is realized using

jstreams, an extension of jbufs with object I/O streams. Jstreams use the ex-

plicit memory management offered by jbufs to incorporate de-serialized ob-

jects into the receiving Java virtual machine without compromising its

integrity, without restricting the usage of those objects, and without making

assumptions about the underlying garbage collection scheme. The perform-

ance impact of jstreams on Java RMI and the benchmark suite is evaluated.
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1    Introduction

Until recently, the performance of JavaTM networking has not been a major

concern. To begin with, Java programs run more slowly than comparable C or

C++ programs, suggesting that the performance bottleneck of most applica-

tions may not yet be communication, but computation. Furthermore, distrib-

uted computing is largely based on Java Remote Method Invocation, which is

designed first for flexibility and interoperability in heterogeneous environ-

ments and only second for performance. Because Java has been mainly used

for applications running on wide-area networks (i.e. the Internet), the level of

performance delivered by high-speed networks has not been particularly in-

teresting.

The growing interest in using Java for high-performance cluster appli-

cations [JG98] has sparked the need for improving its communication per-

formance on a cluster of workstations. These clusters are typically composed

of homogeneous, off-the-shelf PCs equipped with high-performance network

interfaces [Via97, Gig98] and connected by low-cost network fabrics with over

1Gbps of bandwidth. Recent research in just-in-time and static compilers, vir-

tual machine implementations, and garbage collectors for Java have delivered
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promising results, reducing the performance gap between Java and C pro-

grams [ACL+98, ADM+98, BKM+98, FKR+99, MMG98].

Many attribute Java’s success to its being a “better C++”: not only is it

object-oriented but it is also a safe language. By a safe language we mean one

that is storage and type safe. Storage safety guarantees that no storage will be

prematurely disposed of, whether at the explicit request of the programmer or

implicitly by the runtime system [Ten81]1. Storage safety spares the program-

mer from de-allocating objects explicitly and tracking object references: inac-

cessible objects are automatically searched for and de-allocated by a garbage

collector whenever more storage is needed. Type safety ensures that references

to Java objects cannot be forged, so that a program can access an object only as

specified by the object’s type and only if a reference to that object is explicitly

obtained. Type safety is enforced by a combination of compile-time and run-

time checks2.

The goal of this thesis is to address two inefficiencies that arise when

interfacing Java to the underlying networking hardware. First, storage safety

in Java creates a hard separation between Java’s heap, which is garbage-

collected, and the native heap3, which is not. In modern clusters of PCs, net-

work interfaces make the raw performance of high-speed network fabrics—

low message latency and high bandwidth— available to applications. The key

advance is that data transfers between the network and application memory

are performed by the DMA engines of network devices, offloading the host

                                                
1Another aspect of storage safety is to ensure that the contents of a location are never accessed before its initializa-
tion (Sections 12.4 and 12.5 [LY97]).
2 Java virtual machines perform various runtime safety checks such as array bounds, array stores, null pointer, and
down-casting checks.
3 Native code (i.e. C, C++, or assembler code) is needed to interact with hardware devices directly or through na-
tive libraries.
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processor. Memory pages in which data resides must be present in (or

“pinned onto”) the physical memory so they can be directly accessed by those

DMA engines. This is ill matched to a garbage-collected system, where objects

can be moved around without the application and the device’s knowledge.

Objects must be copied into memory regions in a native, non-collected heap.

The result is that the performance benefits of direct DMA access are reduced

substantially: 10% to 40% of the raw bandwidth can be lost.

Second, Java objects must be serialized and de-serialized across the

network. Because type safety cannot be entirely enforced at compile-time,

even the simplest objects such as arrays carry meta-data for runtime safety

checks4. Meta-data complicates the in-memory layout of objects and calls for

serialization of objects across the network. Serialization is an expensive opera-

tion since the entire object and its typing information must be copied onto the

wire. De-serialization is equally expensive because types must be checked,

new storage allocated, and data must be copied from the wire and into the

newly allocated storage. Due to high serialization costs, the performance of

popular communication paradigms such as RMI is over an order of magni-

tude worse in Java than in an unsafe language like C.

Recent efforts for improving the performance of Java communication

have fallen into what will call “top-down” and “front-end” categories. The

top-down approach consists of implementing a high-level Java communica-

tion abstraction (e.g. RMI) on top of a native communication library [BDV+98,

MNV+99]. The front-end approach consists of providing “glue-code” to high-

level native communication libraries (e.g. MPI), making them accessible from

                                                
4 Incidentally, storage safety also generates meta-data, such as information for type-accurate garbage collection.
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Java [GFH+98]. Both approaches in general yield reasonable performance, but

generally lead to solutions that are specific to a particular abstraction, Java vir-

tual machine implementation, and/or communication library.

This thesis pursues a “ bottom-up”  approach: Java is interfaced directly

to the underlying network devices and higher level communications are built

in Java on top of the low-level interface. By cutting through layers of abstrac-

tions, this thesis focuses on the inefficiencies in the data path that are inherent

to the interaction between safe languages and hardware. Overheads in the

control transfer path— context switching, scheduling, and software inter-

rupts— are not fundamental to the language. Rather, they are associated to a

particular communication model (e.g. RMI) and depend on the host operating

system as well as the machine load.

1.1   Thesis Contribution

The main contribution is the thesis is a framework for using explicit memory

management to improve the communication performance in Java. The frame-

work is motivated by recent trends in network interface design, where appli-

cations, rather than devices, have full control over communication buffers and

control structures. Because certain management operations (such as mapping

user memory onto physical memory) can be very costly, the ability to re-use

those data structures becomes paramount: programmers can amortize the

high costs using application-specific information.

1.1.1   Jbufs: Safe and Explicit Management of Buffers

Jbufs are Java-level communication buffers that are directly accessed by the

DMA engines of network interfaces and by Java programs as primitive-typed

arrays. The central idea is to remove the hard separation between Java’s gar-
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bage-collected heap and the non-collected memory region in which DMA

buffers must normally be allocated. The programmer controls when a jbuf is

part of the garbage-collected heap so that the garbage collector can ensure it is

safely re-used or de-allocated, and when it is not, so it can be used for DMA

transfers. Unlike other techniques, jbufs preserve Java’s storage- and type-

safety and do not depend on a particular garbage collection scheme.

The safety, efficiency, and programmability of jbufs are demonstrated

throughout this thesis with implementations of an interface to the Virtual In-

terface architecture [Via97], of an Active Messages communication layer

[MC95], and of Java Remote Method Invocation (RMI) [Rmi99]. The impact on

applications is also evaluated using an implementation of cluster matrix mul-

tiplication as well as a publicly available RMI benchmark suite [NMB+99].

The impact of jbufs in basic, point-to-point communication perform-

ance is substantial: almost 100% of the raw performance of a commercial net-

work interface is made available from Java. Results show that explicit memory

management (i) outperforms conventional techniques in a cluster matrix mul-

tiplication application by at least 10%, and (ii) helps an active messages layer

attain nearly 95% of the raw network capacity.

1.1.2 Jstreams: Optimizing Serialization for Cluster Applications

To further enhance the performance of RMI on homogeneous clusters, the the-

sis proposes in-place object de-serialization: de-serialization without allocation

and copying of objects. This optimization takes advantage of the zero-copy

capabilities of network devices to reduce the per-object de-serialization to a

constant cost irrespective of object size, which is particularly beneficial for

large objects such as arrays. In-place de-serialization is realized using jstreams,
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an extension of jbufs with object I/O streams. Jstreams use the explicit mem-

ory management offered by jbufs to incorporate de-serialized objects into the

receiving Java virtual machine without compromising its integrity, without

restricting the usage of those objects, and without making assumptions about

the underlying garbage collection scheme.

The performance impact of jstreams on Java RMI and the benchmark

suite is evaluated. Results show that jstreams improve the point-to-point per-

formance of RMI by an order of magnitude, within a factor of two of the raw

performance. This translates to an improvement of 2% to as much as 10% in

the overall performance of several Java cluster applications.

1.1.3   Overview of Related Approaches

Several projects have recognized the importance of accessing non-collected

memory regions from Java for enhanced performance. One common approach

is to allocate specially annotated Java objects outside of the garbage-collected

heap [Jd97]: these objects can be passed between Java and C programs by ref-

erence (without copy). Efficient implementations of this approach [WC99]

achieve the same level of performance as that attained by jbufs when used for

high-performance communication. However, these “ external”  or “ pinned”

objects require special annotation and are typically restricted in some way or

another (e.g. they cannot contain pointers to other objects). Another approach

is to integrate high-performance communication directly into custom Java vir-

tual machines [MNV+99] with non-copying garbage collectors. Jbufs and

jstreams impose no restrictions on the type or usage of Java objects, and can be

implemented with both non-copying and copying garbage collectors.
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The poor performance of Java object serialization and RMI is well

known [Jg99] and is in part attributed to inefficient implementations in pub-

licly available Java systems [NPH99]. The in-place object de-serialization pre-

sented in this thesis attempts to aggressively optimize this operation for the

common case: homogeneous clusters of workstations equipped with zero-

copy network devices.

Most proposals for using explicit memory management are largely

aimed at improving the data locality and cache behavior of applications

[Ros67, Han90, BZ93, Sto97, GA98]. Some projects also consider safe aspects of

explicit memory management (e.g. safe regions [GA98] and mark-and-sweep

zones [Sto97]) and rely on reference counting and non-copying garbage collec-

tors. The framework proposed in this thesis considers explicit memory man-

agement in the presence of copying collectors as well.

1.2   Thesis Overview

Chapter 2 discusses the performance issues that arise when interfacing Java

with the user-level network interfaces. First, it gives the necessary background

on the Virtual Interface architecture, an industry standard of network inter-

faces, focusing on the features that are critical to high performance and the

programming language requirements for applications to capitalize on these

features. Second, it looks at conventional mechanisms for interfacing Java with

native code. It contrasts two central issues— the hard separation between the

garbage-collected and native heaps and the tension between efficiency and

portability— and argues that the former is inherent to the language/hardware

interaction. To motivate explicit buffer management, the chapter concludes
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with an evaluation a Java interface to the VI architecture (Javia-I) that respects

the heap separation.

Chapter 3 introduces jbufs and provides an in-depth look at their safety

properties and the interaction with the garbage collector. It justifies the need

for explicit de-allocation and describes an implementation in the Marmot sys-

tem with a copying collector. To demonstrate the use of jbufs as a framework

for communication, the chapter presents implementations of Javia-II (an im-

provement over Javia-I), of a cluster matrix multiplication program, and of a

messaging layer based on the Active Messages protocol. It concludes with a

discussion on our experiences in using jbufs and on their limitations.

Chapter 4 makes a case for specializing object serialization for homoge-

neous cluster computing. It presents an evaluation of several implementations

of the standard serialization protocol (Java Object Serialization) and analyses

the impact of Marmot’s static Java compiler on the costs of serialization. It

studies the effect of these costs in the performance of a Java RMI system over

Javia-I/II and of a benchmark suite consisting of six applications.

Chapter 5 introduces the in-place de-serialization technique and shows

how it can be realized using jstreams. It describes additional safety constraints

that must be met in order not to violate the integrity of the Java system on

which de-serialization is taking place. It evaluates a prototype implementation

of jstreams in Marmot and their impact in the performance of Java RMI and

several applications. The chapter concludes with a discussion on our experi-

ences in using jstreams.

Chapter 6 concludes the thesis with a summary and a discussion of

some open-ended issues.



9

2   Interfacing Java to Network In-
terfaces

This chapter focuses on the performance issues that arise when interfacing

Java to the underlying network devices. The chapter starts with an introduc-

tion to the Virtual Interface architecture [Via97], the de-facto standard of user-

level network interfaces. It points out the features of the architecture that are

critical to high performance and the language requirements (or lack of thereof)

for applications to capitalize on these features. As these requirements— in par-

ticular, the ability to manage buffers explicitly— are ill matched to the founda-

tions of Java, direct access to hardware resources must be carried out in native

code. This results in a hard separation between Java’s garbage-collected heap

and the native, non-collected heap.

Existing Java-native interfaces cope with this separation in different

ways. A common theme in their design is the tension between efficiency and

portability5, a perennial issue in computer system design. On one hand, Java

can interact with native modules through a custom interface that is efficient

                                                
5 This is best exemplified by the ongoing lawsuit between Microsoft Corporation and Sun Microsystems regarding
Microsoft’s Java-native interface technologies, namely the Raw Native Interface (RNI) and J/Direct. On November
17, 1998, the district court ordered, among other things, that Microsoft implement Sun’s JNI in jview, its publicly
available JVM [Mic98].
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but not portable across different Java platforms, as in the case of the Marmot

[FKR+99] and J/Direct [Jd97]. On the other hand, this interaction can take

place through a well-defined, standardized interface such as the Java Native

Interface (JNI), which sacrifices performance for native code portability. The

second part of this chapter takes a deep look at these three points in the design

spectrum, and provides a qualitative evaluation of the tradeoffs through mi-

cro-benchmarks. Not surprisingly, the costs of copying data between the Java

and native heaps are a significant factor across the efficiency/portability spec-

trum. This suggests that the heap separation imposed by garbage collection is

an inherent performance bottleneck.

The last part of this chapter presents Javia-I [CvE99b], a Java interface

to the VI Architecture that respects the hard separation between Java and na-

tive heaps. Javia-I provides a front-end API to Java programmers that closely

resembles the one proposed by the VI architecture specification and manipu-

lates key data structures (user-level buffers and VI control structures) in native

code. The performance impact of Java/native crossings in Javia-I is studied in

the context of Marmot and JNI. Even in the case where the native interface is

highly tuned for performance, results show that the overheads incurred by the

hard heap separation still manifests itself in the overall performance of Javia-I.

2.1 Background

2.1.1   The Virtual Interface Architecture

The Virtual Interface (VI) architecture defines a standard interface between the

network interface hardware and applications. The specification of the VI archi-

tecture is a joint effort between Microsoft, Intel and Compaq, and encom-

passes ideas that have appeared in various prototype implementations of
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user-level network interfaces [vEBB+95, PLC95, DBC+98, CMC98]. The target

application space is cluster computing in system-area networks (SAN).

The VI architecture is connection-oriented. To access the network, an

application opens a virtual interface (VI), which forms the endpoint of the con-

nection to a remote VI. In each VI, the main data structures are user-level buff-

ers, their corresponding descriptors, and a pair of message queues (Figure

2.1). User-level buffers are located in the application’s virtual memory space

and used to compose messages. Descriptors store information about the mes-

sage, such as its base virtual address and length, and can be linked to other

descriptors to form composite messages. The in-memory layout of the descrip-

tors is completely exposed to the application. Each VI has two associated

queues— a send queue and a receive queue— that are thread-safe. The imple-

recvQsendQ

Adapter

DoorbellsDMA

Application Memory

LibraryBuffers

descr

Figure 2.1   Virtual Interface data structures. Shaded structures

must be pinned onto the physical memory so they can be accessed

by DMA engines.
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mentation of enqueue and dequeue operations is not exposed to the applica-

tion, and thus must take place through API calls.

To send a message, an application composes the message in a buffer,

builds a buffer descriptor, and adds it to the end of the send queue. The net-

work interface fetches the descriptor, transmits the message using DMA, and

sets a bit in the descriptor to signal completion. An application eventually

checks the descriptors for completion (e.g. by polling) and dequeues them.

Similarly, for reception, an application adds descriptors for free buffers to the

end of the receive queue, and checks (polls) the descriptors for completion.

The network interface fills these buffers as messages arrive and sets comple-

tion bits. Incoming packets that arrive at an empty receive queue are dis-

carded. An application is permitted to poll at multiple receive queues at a time

using VI completion queues. Apart from polling, the architecture also sup-

ports for interrupt-driven reception by posting notification handlers on com-

pletion queues.

The VI architecture also provides support for remote, direct memory

access (RDMA) operations. A RDMA send descriptor specifies a virtual ad-

dress at the remote end to which data will be written (RDMA-write) or from

which data will be read (RDMA-read). Completion of RDMA-read operations

may not respect the FIFO order imposed by the send queue. In addition,

RDMA-reads do not consume receive descriptors at the remote end while

RDMA-writes can if explicitly asked to. RDMA requires that the sender and

receive exchange information about the virtual address prior to communica-

tion.
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2.1.2   Giganet cLANTM GNN-1000 Cluster

The network interface used throughout this thesis is the commercially avail-

able cLANTM GNN-1000 adapter from Giganet [Gig98] for Windows2000TM

beta 3. The GNN-1000 can have up to 1024 virtual interfaces opened at a given

time and a maximum of 1023 descriptors per send/receive queue. The vir-

tual/physical translation table can hold over 229,000 entries. The maximum

amount of pinned memory at any given time is over 930MBytes. The maxi-

mum transfer unit is 64Kbytes. The GNN-1000 does not support interrupt-

driven message reception.

The cluster used consists of eight 450Mhz Pentium-IITM PCs with

128MBytes of RAM, 512KBytes second level cache (data and instruction) and

running Windows2000 beta 3. A Giganet GNX-5000 (version A) switch con-

nects all the nodes in a star-like formation. The network has a bi-directional

bandwidth of 1.25 Gbps and interfaces with the nodes through the GNN-1000

adapter. Basic end-to-end round-trip latency is around 14µs (16µs without the

switch) and the effective bandwidth is 85MBytes/s (100MBytes/s without the

switch) for 4KByte messages.

2.1.3   Explicit Buffer Mapping: A Case for Buffer Re-Use

An essential advance made by modern network interfaces is zero-copy com-

munication: network DMA engines read from and write into user buffers and

descriptors without host processor intervention. Zero-copy requires that:

1. pages on which buffers and descriptors reside must be physically resi-

dent (e.g. pinned onto physical memory) during communication, and
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2. the virtual to physical address mappings must be known to the net-

work interface (pointers are specified as virtual addresses but the DMA

engines must use physical address to access main memory).

Protection is enforced by the operating system and by the virtual mem-

ory system. All buffers and descriptors used by the application are located in

pages mapped into that application’s address space. Other applications cannot

interfere with communication because they do not have those buffers and de-

scriptors mapped into their address spaces.

The approaches pursued by several network-interface designs have

generally fallen into two categories: implicit and explicit memory mapping. In

implicit memory mapping, these two operations are performed automatically

by the network-interface without application intervention. In systems such as

StarT [ACR+96], FLASH [KOH+94], and Typhoon [RLW94], the network in-

terface is attached to the memory bus and shares the translation look-aside buffer

(TLB) with the host processor. The aggressive approach pursued in these sys-

tems suffers from poor cost-effectiveness since it requires special hardware

support.

The Meiko CS-2 [HM93a] multi-computer incorporates a less aggres-

sive design: the TLB is implemented on the adapter’s on-board processor and

coordinates with the host operating system (SunOS) running on SuperSparc

processors. U-Net/MM [WBvE97] generalizes this approach for off-the-shelf

operating systems and networks. The TLB is also integrated into the network

interface and can be implemented entirely in the kernel, as in the

DC21140/NT implementation, or partly in the network adapter, as in the

PCA200/Linux implementation). Keeping the network-interface TLB consis-

tent with that of the OS is no simple task. During a TLB miss, the network in-
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terface interrupts the host processor, which pins or pages-in a virtual page.

Pinning pages in an interrupt context is non-standard and complicated. For

example, the Linux implementation of U-Net/MM provides custom pin-

ning/unpinning routines because the standard kernel ones cannot be used in

the context of an interrupt handler. U-Net/MM also has to implement a page-

in thread for pages that are temporarily swapped out to the disk. Another

drawback is that the OS intervention during a page miss can be costly: around

50µs on 133Mhz Pentium with 33Mhz PCI bus if the page is present in the host

TLB, and as high as 20ms if the page is not. This overhead is so critical that U-

Net/MM can choose to drop the message if the page is not present. Further-

more, the user is unable to take advantage of application-specific optimization

to “ keep”  the pages mapped in since it has no control over the paging behav-

ior of the host machine.

The VI architecture adopts an explicit memory mapping approach that

was first pursued by the Hamlyn [BJM+96] project and later by the

Shrimp/VMMC [DBC+98] project. Applications are responsible for “ register-

ing”  (VipRegisterMemory) and “ de-registering”  (VipDeregisterMemory)

memory regions (in which user buffers and descriptors reside) with the VI ar-

chitecture. The registration is initiated by the user and performed by the oper-

ating system, which pins the pages underlying the region and communicates

the physical addresses to the network interface. The latter stores the transla-

tion in a table indexed by a region number. While all addresses in descriptors

are virtual, the application is required to indicate the number of the region

with each address (in effect all addresses are 64 bits consisting of a 32-bit re-

gion number and a 32-bit virtual address) so that the network interface can

translate the addresses using its mapping table. De-registration undoes the
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above process: buffer and descriptor pages can be paged out and the vir-

tual/physical mapping is dropped by the VI architecture.

By pushing the burden of pinning and unpinning buffers to applica-

tions, explicit buffer mapping greatly simplifies the design of network inter-

faces. Most importantly, buffer re-use based on application-specific

information amortizes the costs of mapping (unmapping) memory onto (from)

physical memory, which essentially eliminates the OS from the critical path.

These costs can be high6: for example, Giganet’s implementations of

VipRegisterMemory and VipDeregisterMemory for Windows2000 beta3

have a combined cost of 20µs (i.e. over 10,000 machine cycles) on a 450Mhz

Pentium-II. For comparison, the basic communication overheads are typically

less than 1,000 machine cycles on the same platform.

A drawback of explicit buffer mapping is that system scalability is lim-

ited by the size of the translation table in the network interface, which in turn

may depend on the host operating system.

Unfortunately, requiring applications to manage buffers in this manner

is ill matched to the foundations of a Java.

2.1.4   Java: A Safe Language

While user-level network interfaces are revolutionizing the networking archi-

tecture on PCs, building portable, robust, and high-performance cluster appli-

cations remains a daunting task. Programmers are increasingly relying on

language support in order to make this task easier. Modern object-oriented

programming languages such as Java [AG97] provide a high degree of port-

                                                
6 At the time of this writing, the performance numbers of Berkeley’ s VIA implementation [BGC98] (for Myricom’ s
Myrinet M2F [BCF+95] with LANai 4.x-based adapters on a 167Mhz SunUltra1 running Solaris 2.6) of Vi-
pRegisterMemory and VipDeregisterMemory were not available [Buo99].
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ability, strong support for concurrent and distributed programming, and a

safe programming environment:

• Portability is achieved by compiling the Java source program into an in-

termediate byte-code representation that can run on any Java Virtual

Machine (JVM) platform.

• For multi-processor shared memory machines, Java offers standard

multi-threading. For distributed machines, Java supports Remote

Method Invocation (RMI), which is an object-oriented version of tradi-

tional remote procedure calls.

• By a safe programming environment we mean one that is storage and

type safe.

Storage safety in Java, enforced by a garbage collector, guarantees that

no storage will be prematurely disposed of whether at the explicit request of

the programmer or implicitly by the virtual machine. This spares the pro-

grammer from having to track and de-allocate objects. However, the pro-

grammer has no control over object placement and little control over object

de-allocation and lifetime. For example, consider the following Java code:

1 class Buffer {
2   byte[] data;
3   Buffer (int n) { data = new byte[n]; }
4 }
5 Buffer b = new Buffer(1024); /* allocation */
6 b = null; /* dropping the reference */

A Buffer is defined as a Java object with a pointer to a Java byte array.

After allocation (line 5), the programmer knows that buffer and the byte array

is in the garbage-collected heap, but cannot pinpoint their exact location be-

cause the garbage collector can move them around the heap7. By dropping the

                                                
7 This is not the case if a non-copying garbage collector is used. However, Java programmers can make no assump-
tions about the garbage collection scheme of the underlying JVM.
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reference to the buffer (line 6), the programmer only makes the buffer and the

byte array eligible for garbage collection but does not actually free any storage.

Type safety ensures that references to Java objects cannot be forged, so

that a program can access an object only as specified by the object’s type and

only if a reference to that object is explicitly obtained. Type safety is enforced

by a combination of compile-time and runtime checks. For example, data

stored in a Buffer can only be read as a byte array— accessing the data as any

other type will require copying it. In order to access data as a double array,

the following code allocates a new double array and copies the contents of

data into it:

1 double[] data_copy = new double[1024/8];
2 for (int i=0,off=0;i<1024/8;i++,off+=8) {
3   int upper = (((data[off]&0xff)<<24)+
4                ((data[off+1]&0xff)<<16)+
5                ((data[off+2]&0xff)<<8)+
6                 (data[off+3]&0xff));
7   int lower = (((data[off+4]&0xff)<<24)+
8                ((data[off+5]&0xff)<<16)+
9                ((data[off+6]&0xff)<<8)+
10                 (data[off+7]&0xff));
11   /* native call to transform a 64-bit long into a double */
12   data_copy[i] = Double.toLongBits(((long)upper)<<32)+(lower&0xffffffffL))
13 }

In addition, the runtime representation of Java objects must include

meta-data such as the method dispatch table and the object type. The latter is

used by the Java system to perform runtime safety checks (such as array-

bounds, array-stores, null pointer and down-casting checks) and to support

the reflection API. The result is that object representations are sophisticated

(Figure 2.2 shows a typical representation of a Buffer), implementation-

dependent, and hidden from programmers, all of which make object serializa-

tion expensive. An evaluation of the serialization costs on several Java systems

is presented in Chapter 4.
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2.1.5   Separation between Garbage-Collected and Native Heaps

Because of the safety features in Java, programmers are forced to rely on na-

tive code (e.g. C) to access hardware resources and legacy libraries8. Figure 2.3

depicts the separation between Java’s garbage-collected heap and the native,

non-collected memory region in which DMA buffers must normally be allo-

cated. Data has to be copied on demand between Java arrays and buffers that

are pinned onto the physical memory so they can be directly accessed by the

DMA engine (shown in diagram (a)). The garbage collector remains enabled

except for the duration of the copy.

                                                
8 The same applies to other safe languages such as ML [Hue96].

Figure 2.2   Typical in-memory representation of a Buffer object.
Each Buffer object has two words of meta-data: one for the
method dispatch table (from which the class object can be
reached), and another for the monitor object. An array object
also keeps the length of the array for runtime checks.

lock obj

Buffer vtable

lockb
byte[]
vtable

1024
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GC heap Native heap

NI

RAM

Application Memory

DMAON OFF

copy
pin

(a) Hard Separation: Copy-on-demand

NI

RAM

Application Memory

DMAOFF

pin

(b) Optimization: Pin-on-demand

GC heap Native heap

OFF

Figure 2.3   The hard separation between GC and native heaps. (a) Data has
to be copied on demand from Java arrays into pinned native buffers so they
can be accessed directly by the DMA engine. (b) GC can be disabled for a
“ short”  time so Java arrays can be pinned and made visible to the DMA on
demand. This optimization does not work well for receive operations be-
cause the GC has to be disabled indefinitely.
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The pin-on-demand optimization (shown in diagram (b)) avoids the

copying by pinning the Java array on the fly. To this end, the garbage collector

must be disabled until DMA accesses are completed. This optimization, how-

ever, does not work well for receive operations: the garbage collector has to be

disabled indefinitely, which is unacceptable.

2.2   Java-Native Interfaces

The Java language specification allows Java and C applications to inter-

act with one another through a combination of language and runtime sup-

port9. Java programs can transfer control to native libraries by invoking Java

methods that have been annotated with the native keyword. C programs not

only can transfer control to Java programs but also obtain information about

Java classes and objects at runtime via a Java-native interface.

Java-native interfaces have to cope with the separation between Java’s

and C’s heap. How should Java objects be passed into C during a native

method invocation? If they are passed by reference, how can the garbage col-

lector track them? How should Java objects be accessed in C? The central

theme behind the answers to these questions is the trade-off between effi-

ciency and portability of Java applications that rely on native code. The fol-

lowing subsections look at three data points in the design space of these

interfaces: two approaches, Marmot and J/Direct, emphasize performance

whereas a third, JNI, is geared towards portability.

                                                
9 Ideally, access to native code from Java should be prohibited: it defeats the purpose of a safe language. Once in
native code, all the safety properties can be violated. The bottom-up approach pursued in this thesis seeks to mini-
mize the amount of native code in Java communication software.
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2.2.1   The Marmot System

Marmot [FKR+99] is a research Java system developed at Microsoft. It consists

of a static, optimizing, byte-code to x86 compiler, and a runtime system with

three different types of garbage collection schemes: a conservative mark-

sweep collector, a semi-space and a two-generations copying collector10.

Marmot’s interaction with native code is very efficient. It translates Java

classes and methods into their C++ counterparts and uses the same alignment

and the “ fast-call”  calling convention as native x86 C++ compilers. C++ class

declarations corresponding to Java classes that have native methods must be

manually generated. All native methods are implemented in C++, and Java

objects are passed by reference to native code, where they can be accessed as

C++ structures.

Garbage collection is automatically disabled when any thread is run-

ning in native, but can be explicitly enabled by the native code. In case the na-

tive code must block, it can stash up to two (32-bit) Java references into the

thread object so they can be tracked by the garbage collector. During Java-

native crossings, Marmot marks the stack so the copying garbage collector

knows where the native stack starts and ends.

Despite its efficiency, it is not surprising that native code written for

Marmot is not compatible with other JVMs. JVM implementations differ in

object layouts, calling conventions, and garbage collection schemes. For Java

practitioners, the lack of native code portability severely compromises Java’s

future as a “ write once, run everywhere”  language.

                                                
10 The generational collector is not available in the Marmot distribution used in this thesis.
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2.2.2   J/Direct

J/Direct is a Java/native interface developed by Microsoft [Jd97] and is cur-

rently deployed in their latest JVM. The main motivation is to allow Java pro-

grams to interface directly with legacy C libraries, such as the Win32 API.

J/Direct shields the garbage-collected heap (which is always enabled) from

the native heap by automatically marshaling Java primitive-types and primi-

tive-typed arrays into “ equivalent”  C data structures during a native method

invocation. Arbitrary Java objects, however, are not allowed as arguments11.

J/Direct requires special compiler support to generate the marshaling

code. Native methods declarations are preceded with annotations in the form

of a comment; these annotations are recognized by Microsoft’s Java-to-byte-

code compiler (jvc), which in turn propagates the annotations through unused

byte-code attributes. The just-in-time compiler in jview generates the mar-

shaling stubs based on the byte-code annotations. Since a program with

J/Direct annotations is a valid Java program, it can be compiled and executed

unmodified by a Java compiler or JVM from a different vender as long as the

C library conforms to the native interface specification of that JVM.

2.2.3   Java Native Interface (JNI)

The definition of the JNI [Jni97] is a result of an effort by the Java community

to standardize Java native interfacing. JNI has become widely accepted and

has been deployed in several publicly available JVMs (e.g. JDK1.2 and Kaffe

OpenVM [Kaf97]). JNI hides JVM implementation details from native code in

four ways:

                                                
11 Specially annotated, “shallow” (i.e. no pointer fields) Java objects can be passed as arguments (see Section
3.6.1).
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1. By providing opaque references to Java objects, thereby hiding ob-

ject implementation from native code;

2. By placing a function table between the JVM and native code and

requiring all access to JVM data to occur through these functions;

3. By defining a set of native types to provide uniform mapping of

Java types into platform-specific types; and

4. By providing flexibility to the JVM vendor as to how object memory

is handled in cases where the user expects contiguous memory. JNI

calls that return character string or scalar array data may lock that

memory so that it is not moved by the memory management system

during its use by native code

The JNI specification contains API calls for invoking Java methods, cre-

ating Java objects, accessing class and object variables, and catching and

throwing exceptions in native code. In the presence of dynamic class loading,

the API implementation must abide by the standard “ class visibility”  rules.

2.2.4   Performance Comparison

This section compares the performance of Marmot’s custom Java/native inter-

face, J/Direct on Microsoft’s jview (build 3167), and two JNI implementations

(Sun’s JDK 1.2 and jview). Table 2.1 summarizes the differences between Mar-

mot, J/Direct, and JNI.

GC during 
native code 

(default)

GC Enable 
and Disab le

Data Copy
Pin a Java 
ob ject in C

Off Yes Manual Yes
On No Automatic No
On Yes Automatic Yes

Marmot

JNI
J/Direct

Table 2.1 Marmot, J/Direct, and JNI’s GC-related features
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Table 2.2 and 2.3 show the basic costs of transferring control from Java

to C (downcalls) and from C to Java (upcalls) respectively. The cost of a down-

call in J/Direct and JNI on jview is surprisingly high. JNI on JDK1.2 is roughly

50% faster than Marmot— Marmot spends extra cycles checking call stack

alignment and marking the Java stack for GC purposes. On the other hand,

upcalls in JNI over JDK1.2 are about 10x slower than in Marmot because of

function calls to obtain the class of the object (GetObjectClass), to obtain

the method identifier (GetMethodID), and to perform the call (CallMethod).

Table 2.4 shows that accessing fields of an object is expensive in JNI be-

cause of function calls to obtain the field identifier (GetFieldID) and to ac-

cess the field per se (GetIntField, SetIntField, etc). In Marmot, these

virtual static virtual static virtual static virtual static
0.252 0.250 N/A 4.065 0.118 0.118 3.993 4.171
0.254 0.252 N/A 4.336 0.124 0.126 4.132 4.364
0.260 0.254 N/A 4.386 0.214 0.407 4.246 4.520
0.260 0.258 N/A 4.476 0.214 0.443 4.282 4.648
0.258 0.256 N/A 5.187 0.132 0.132 4.730 5.211

JNI (jview3167)JNI (jdk 1.2)Marmot J/D (jview3167)Java/Native call 
(in us)

two ints

one object
three ints

null
one int

Table 2.2   Cost of Java-to-C downcalls

virtual static virtual static virtual static virtual static
0.276 0.272 N/A N/A 2.507 2.577 14.042 13.172
0.280 0.280 N/A N/A 2.898 2.667 13.802 13.483
0.284 0.274 N/A N/A 2.662 2.477 14.359 14.257

JNI (jview3167)JNI (jdk 1.2)

two ints

null
one int

Marmot J/D (jview3167)Native/Java call 
(in us)

Table 2.3   Cost of C-to-Java upcalls

Marmot
J/D 

(jview3167)
JNI   

(jdk 1.2)
JNI 

(jview3167)
0.012 N/A 1.215 2.335
0.018 N/A 1.272 2.463
0.018 N/A 1.724 2.473

Object Access 
(in us)

read int field

read obj field
write int field

Table 2.4   Cost of accessing Java fields from C
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costs are reduced by nearly 100-fold: roughly 5 to 8 machine cycles on a

450Mhz Pentium-II processor.

Table 2.5 shows the costs of crossing the heap separating using copy

and pin-on-demand. JNI lets native code obtain a direct pointer to the array

elements as long as pinned arrays are supported by the JVM. This pointer is

only valid in the critical section delimited by explicit calls to

GetPrimitiveArrayCritical and ReleasePrimitiveArrayCriti-

cal. Since garbage collection is disabled in the critical section, the under-

standing is that one should not run “ for too long”  or block the thread while

running in the critical section. In JDK1.2, it costs about 0.6µs to enter and exit

the critical section. (At the time of this writing, implementation of these two

JNI calls on jview is broken.) Since garbage collection in Marmot is automati-

cally disabled in native code, arrays are automatically pinned. J/Direct does

not support pinned Java arrays, although it allows programs to access C ar-

rays from Java.

If pinned arrays are not supported, then native code can only access a

copy of the Java array. The copying costs are roughly the same in both Mar-

mot and JNI, with JDK1.2 outperforming jview by nearly a factor of two.

Marmot
J/D 

(jview3167)
JNI (jdk 1.2)

JNI 
(jview3167)

0.000 N/A 0.619 broken
3.649 3.024 3.883 6.829
4.068 3.589 4.072 7.300
5.742 9.297 5.858 13.269

(in us)

pin/unpin

copy 100 bytes
copy 1000 bytes

copy 10 bytes

Table 2.5 Cost of crossing the GC/Native separation by
copy and pin-on-demand
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2.2.5   Summary

Java is not suitable for writing programs that interact directly with the un-

derlying hardware. The primary reason is the strong typing and garbage col-

lection, which gives programmers no control over objects’ lifetime, location,

and layout. Java programs can, however, call native libraries (which in turn

interface to the devices) through well-defined Java/native interfaces. Tailoring

the implementation of these interfaces to a particular JVM leads to good per-

formance, as seen in Marmot, but sacrifices the portability of the native code.

The copying overheads incurred by the hard separation between Java

and native heaps is fundamental to the language— Java programs are garbage

collected and the scheme used is shielded from programmers— and are there-

fore orthogonal to portability. The following section studies the impact of this

separation on the performance of Java communication over the VI architec-

ture.

2.3   Javia-I : Interfacing Java to the VI Architecture

2.3.1   Basic Architecture

The general Javia-I architecture consists of a set of Java classes and a native

library. The Java classes are used by applications and interface with a com-

mercial VIA implementation through the native library. The core Javia-I

classes are shown below:

1 public class Vi { /* connection to a remote VI */
2 
3   public Vi(ViAddress mach, ViAttributes attr) { … }
4 
5   /* async send */
6   public void sendPost(ViBATicket t);
7   public ViBATicket sendWait(int millisecs);
8 
9   /* async recv */
10   public void recvPost(ViBATicket t);
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11   public ViBATicket recvWait(int millisecs);
12 
13   /* sync send */
14   public void send(byte[] b,int len,int off,int tag);
15 
16   /* sync recv */
17   public ViBATicket recv(int millisecs);
18 }
19 
20 public class ViBATicket {
21   private byte[] data; private int len, off, tag;
22   private boolean status;
23   /* public methods to access fields ommited */
24 }

The class Vi represents a connection to a remote VI and borrows the

connection set-up model from the JDK sockets API. When an instance of Vi is

created a connection request is sent to the remote machine (specified by

ViAddress) with a tag. A call to ViServer.accept (not shown) accepts the

connection and returns a new Vi on the remote end. If there is no matching

accept, the Vi constructor throws an exception.

Javia-I contains methods to send and receive Java byte arrays12. The

asynchronous calls (lines 6-11) use a Java-level descriptor (ViBATicket, lines

20-24) to hold a reference to the byte array being sent or received and other

information such as the completion status, the transmission length, offset, and

a 32-bit tag. Figure 2.4 shows the Java and native data structures involved

during asynchronous sends and receives. Buffers and descriptors are managed

(pre-allocated and pre-pinned) in native code and a pair of send and receive

ticket rings is maintained in Java and used to mirror the VI queues.

To post a Java byte array transmission, Javia-I gets a free ticket from the

ring, copies the data from the byte array into a buffer and enqueues that on

the VI send queue. sendWait polls the queue and updates the ring upon

completion. To receive into a byte array, Javia-I obtains the ticket that corre-

sponds to the head of the VI receive queue, and copies the data from the

                                                
12 The complete Javia-I interface provides send and receive calls for all primitive-typed arrays.
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buffer into the byte array. This requires two additional Java/native crossings:

upon message arrival, an upcall is made in order to dequeue the ticket from

the ring, followed by a downcall to perform the actual copying. Synchronized

accesses to the ticket rings and data copying are the main overheads in the

send/receive critical path.

Javia-I provides a blocking send call (line 14) because in virtually all

cases the message is transmitted instantaneously— the extra completion check

in an asynchronous send is more expensive than blocking in the native library.

It also avoids accessing the ticket ring and enables two send variations. The

send/recv
ticket ring

send/recv
queue

descriptor

Java

C

Vi

GC heap

VIA buffer

byte array

Figure 2.4   Javia-I per-endpoint data structures.
Solid arrow indicates data copying.
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first one (send-copy) copies the data from the Java array to the buffer whereas

the second (send-pin) pins the array on the fly, avoiding the copy13.

The blocking receive call (line 17) polls the reception queue for a mes-

sage, allocates a ticket and byte array of the right size on-the-fly, copies data

into it, and returns a ticket. Blocking receive not only eliminates the need for a

ticket ring, it also fits more naturally into the Java coding style. However, it

requires an allocation for every message received, which may cause garbage

collection to be triggered more frequently.

Pinning the byte array for reception is unacceptable because it would

require the garbage collector to be disabled indefinitely.

2.3.2   Example: Ping-Pong

The following is a segment of a simplified ping-pong program using Javia-I

with asynchronous receives:

1  byte[] b = new byte[1024];
2  /* initialize b… */
3  /* create and post receive ticket */
4  ViBATicket t = new ViBATicket(b, 0);
5  vi.recvPost(t);
6  if (ping) {
7    vi.send(b, 0, 1024);
8    t = vi.recvWait(Vi.INFINITE);
9    b = t.getByteArray();
10    /* read b… */
11    /* done */
12  } else { /* pong */
13    t = vi.recvWait(Vi.INFINITE);
14    b = t.getByteArray();
15    /* read b… */
16    /* send reply */
17    vi.send(b, 0, b.length);
18    /* done */
19  }

                                                
13 The garbage collector must be disabled during the operation.
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2.3.3   Implementation Status

Javia-I consists of 1960 lines of Java and 2800 lines of C++. The C++ code per-

forms native buffer and descriptor management and provides wrapper calls to

Giganet’s implementation of the VI library. A significant fraction of that code

is attributed to JNI support.

Most of the VI architecture is implemented, including query functions

and completion queues. Unimplemented functionality includes interrupt-

driven message reception: the commercial network adapter used in the im-

plementation does not currently support the notification API in the VI archi-

tecture. This is not a prime concern in this thesis: software interrupts are

typically expensive (one order of magnitude higher than send/receive over-

heads) and depend heavily on the machine load and on the host operating

system.

2.3.4   Performance

The round-trip latency achieved between two cluster nodes (450Mhz Pentium-

II boxes) is measured by a simple ping-pong benchmark that sends a byte ar-

ray of size N back and forth. The effective bandwidth is measured by transfer-

ring 15MBytes of data using various packet sizes as fast as possible from one

node to another. A simple window-based, pipelined flow control scheme

[CCH+96] is used. Both benchmarks compare four different Vi configurations,

1. Send-copy with non-blocking receive (copy),

2. Send-copy with blocking receive (copy+alloc),

3. Send-pin with non-blocking receive (pin), and

4. Send-pin with blocking receive (pin+alloc),
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with a corresponding C version that uses Giganet’s VI library directly (raw).

Figures 2.5 and 2.6 show the round-trip and the bandwidth plots respectively,

and Table 2.6 shows the 4-byte latencies and the per-byte costs. Numbers have

been taken on both Marmot and JDK1.2/JNI (only copy and copy+alloc are re-

ported here). JDK numbers are annotated with the jdk label.

Pin’s 4-byte latency includes the pinning and unpinning costs (around

20µs) and has a per-byte cost that is closest to that of raw (the difference is due

to the fact that data is still being copied at the receive end). Copy+alloc’s 4-byte

latency is only 1.5µs above that of raw because it bypasses the ticket ring on

both send and receive ends. Its per-byte cost, however, is significantly higher

than that of copy due to allocation and garbage collection overheads. The addi-

tional Java/native crossings take a toll in JDK copy: each downcall not only in-

cludes the overhead of a native method invocation in JNI, but also a series of

calls to perform read/write operations to Java object fields. Although JDK

copy+alloc is able to bypass the ring, the per-byte cost appears to be signifi-

cantly higher, most likely due to garbage collections caused by excessive allo-

cations during benchmark executions.

Pin’s effective bandwidth is about 85% of that of raw for messages

larger than 6Kbytes. Due to the high pinning costs, copy achieves an effective

4-byte(us) per-byte(ns)
16.5 25
38.0 38
21.5 42
74.5 48
18.0 55
38.8 76

JDK copy

JDK copy+alloc
copy+alloc

raw
pin

copy

Table 2.6   Javia-I 4-byte round-trip
latencies and per-byte overhead
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bandwidth (within 70-75% of raw) that is higher than that of pin for messages

smaller than 6Kbytes. JDK copy peaks at around 65% of raw.

2.4   Summary

Javia-I provides a simple interface to the VI architecture. It respects the heap

separation by hiding all the VI architecture data structures in native code and

copying data between buffers and Java arrays. By exploiting the blocking se-

mantics of send, the pin variant replaces the copy costs on the sending side

with those of pinning and unpinning an array. While C applications can amor-

tize the high (one-time) cost of pinning by re-using buffers, Java programmers

cannot because of the lack of explicit control over object location and lifetime.
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Moreover, as mentioned before, pinning on the fly cannot be applied to the

receiving end.

While this approach does not achieve the best performance with large

messages, it is attractive for small messages and can be implemented on any

off-the-shelf Java system that supports JNI. Even in the scenario where the na-

tive interface is efficient, as in Marmot, the hard separation between Java’s

garbage collected heap and native heap forces Javia-I to copy data or pin ar-

rays on demand.

2.5   Related Work

The inefficiencies that arise during Java-native interfacing are well known.

Microsoft [Mic99] provides custom native interfaces: the Raw Native Interface

for enhanced performance, and J/Direct for convenience. The measured per-
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formance of J/Direct is far from impressive; as discussed in the next chapter,

Jaguar [WC99] improves on J/Direct by providing more flexibility and better

performance. Javasoft [Jav99] has continuously improved its JNI implementa-

tion and has shown that JNI can be implemented efficiently.

The separation between garbage-collected and native heaps is applica-

ble to other safe languages as well. Huelsbergen [Hue96] presents a portable C

interface for Standard ML/NL. An ML program uses user-supplied data types

to register a C function with the interface and to build specifications of corre-

sponding C data structures. The interface runtime system performs automatic

marshaling of data: it allocates storage for C function arguments and copies

data into the allocated storage during a native function call. In order to cope

with different data representations and garbage-collection schemes, the inter-

face does not consider pinning ML data structures.

A number of projects have adopted a “ front-end”  approach to devel-

oping communication software for Java applications: given a particular ab-

straction (e.g. sockets, RMI, MPI), they provide “ glue-code”  for interfacing

with legacy libraries in native code. For example, implementations of the

java.net package in most JVMs are typically layered on top of the sockets

(TCP/IP) API. Central Data [Cd99] offers native implementations of the

portio package for accessing serial and parallel ports from Java. [GFH+98]

makes the MPI communication library available to Java applications by pro-

viding automatic tools for generating Java-native interface stubs. [BDV+98]

deals with interoperability issues between Java RMI and HPC++, and [Fer98]

presents a simple Java front-end to PVM. All these approaches respect the

heap separation and do not address the performance penalty incurred during

Java/native interactions.
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3   Safe and Explicit Memory Man-
agement

Javia-I offers a straightforward front-end interface to the VI architecture

within the bounds of the safety properties of Java: communication buffers and

descriptors are managed entirely by a native library, which in turn interacts

with the JVM through a Java/native interface. This approach is inefficient be-

cause it incurs overheads in the communication critical path that are attrib-

uted to copying data between the garbage-collected (GC) and the native heap

as well as to pinning arrays on the fly. Javia-I results show that the hard sepa-

ration between Java and native heaps yield a 10% to 40% hit in point-to-point

performance for a range of message sizes.

This chapter addresses the shortcomings of Javia-I by first introducing

the notion of buffers, or jbufs, to Java applications. The main motivation behind

jbufs is to provide programmers with the same flexibility to manage (e.g. allo-

cate, free, re-use) buffers in Java as they have in C. Besides explicit manage-

ment, jbufs can be accessed efficiently from Java and, with the cooperation of

the GC, can be re-used or freed without violating language safety. The key

idea is to allow users to control whether a jbuf is part of the GC heap, softening
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the hard separation that plagues Javia-I. Jbufs do not require changes to the

Java source language or byte-code, and leverage most of the existing language

infrastructure, including Java compilers, library support, and GC algorithms.

The chapter moves on to show that jbufs serve as a simple, powerful,

and efficient framework for building communication software and applica-

tions in Java. Javia-II improves on Javia-I by defining communication buff-

ers— jbufs extended with explicit pinning and unpinning capabilities— that are

used directly by the VI architecture. Micro-benchmarks show that the raw per-

formance achieved by the VI architecture becomes fully available to Java ap-

plications. These results are further corroborated by our experiences with

pMM, a parallel matrix multiplication program, and Jam, an active messages

communication layer, both of which are implemented on top of Javia-I/II and

jbufs.

3.1   Jbufs

A jbuf is a region of memory that is abstracted by the Jbuf class:

1 public class Jbuf {
2 
3   /* allocates a jbuf of size bytes */
4   public final static Jbuf alloc(int bytes);
5 
6   /* attempts to free the jbuf */
7   public final void free() throws ReferencedException;
8 
9   /* attempts to obtain a <p>[] reference to the jbuf, where */
10   /* p is a primitive type. Only byte[] and int[] are shown.*/
11   public final synchronized byte[] toByteArray() throws TypedException;
12   public final synchronized int[] toIntArray() throws TypedException;
13 
14   /* claims that there are no references into the jbuf and */
15   /* waits for the GC to verify the claim. */
16   public final void unRef();
17 
18   /* cb is invoked by GC after claim is verified */
19   public final void setCallBack(CallBack cb);
20 
21   /* checks if a reference points into a jbuf */
22   public final boolean isJbuf(byte[] b);
23   public final boolean isJbuf(int[] i);
24   /* others omitted */
25 }



38

and provides users with three features:

1. Lifetime control through explicit allocation (alloc, line 4) and de-

allocation (free, line 7).

2. Efficient access through direct references to Java primitive arrays

(toByteArray, toIntArray, etc, lines 11-12).

3. Location control through interactions with the GC (unRef and

setCallBack, lines 16 and 19).

In order to achieve lifetime control, jbufs differ from traditional Java

objects in two ways. First, alloc allocates a jbuf outside of the Java heap and

does not return a Java reference into that jbuf. Instead, it returns a wrapper

object, which resides in the GC heap and contains a private C handle to the

jbuf, as seen Figure 3.1(a). An application must explicitly obtain a genuine ar-

ray reference into the allocated jbuf; it cannot access the jbuf through the

wrapper object (Figure 3.1(b)). The second difference is that jbufs are not

automatically freed— an application must invoke free on them explicitly.

Java’s storage safety is preserved by ensuring that jbufs will remain al-

located as long as they are referenced. For example, invocations of free result

in a ReferencedException if an application holds one or more references

into the jbuf. Type safety is preserved by ensuring that an application will not

obtain two differently typed array references into a single jbuf at any given

time. For example, invocations of toIntArray will fail with a

TypedException if toByteArray has been previously called on the same

jbuf.
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Figure 3.1   Typical lifetime of a jbuf in a copying GC. (a) After alloca-
tion, the jbuf resides outside of the GC heap. (b) The jbuf is accessed as
a Java array reference. (c) The jbuf is added to the GC heap. (d) Upon
callback invocation, the jbuf can be freed or re-used.

GC heap

byte [ ]

GC heap

(a)

jbuf
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Location control enables safe de-allocation and re-use of jbufs by controlling

whether or not a jbuf is part of the GC heap. The idea is to use the underlying

GC to track references into the jbufs. The application indicates its willingness

to free or re-use a jbuf by invoking its unRef method (line 9). It is thereby

claiming that it no longer holds any references into the jbuf. The effect of the

unRef call is that the jbuf becomes part of the GC heap. After at least one14 GC

occurrence, the collector verifies that there are no references into a jbuf and

notifies the application through a callback (which is set by invoking

setCallback, line 10). At this point, the jbuf is removed from the GC heap

and can be safely re-used or freed. Figure 3.1(c-d) illustrates location control in

the context of a copying collector. In essence, with location control the separa-

tion between GC and native heaps becomes soft (i.e. user-controlled).

A by-product of location control is that an array reference into a jbuf

may become stale (e.g. one that no longer points to a jbuf as seen in Figure

3.1(d)). Programmers can check whether an array reference is stale by invok-

ing the appropriate isJbuf method (lines 12-13).

3.1.1   Example: A Typical Lifetime of a Jbuf

A typical use of jbufs is as follows:

1 Jbuf buf = Jbuf.alloc(1024);   /* allocate a jbuf of 1024 bytes */
2 Byte[] b = buf.toByteArray();  /* get a byte[] reference into buf */
3 for (int i=0; i<1024; i++) b[i] = (byte)i; /* initialize b */
4 
5 /* use b: for example, send b across the network…*/
6 
7 buf.unRef(new MyCallBack());   /* intends to free or re-use buf */
8 System.out.println(isJbuf(b));
9 
10 /* callback has been invoked */
11 
12 buf.free();
13 System.out.println(isJbuf(b));

                                                
14 The required number of GC invocations depends on the GC scheme, as explained in the next section.
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The print statement in line 8 outputs true because b is still a reference

into a jbuf: the callback has not been invoked. If the underlying GC is a copy-

ing one, the statement in line 13 outputs false: b points to a regular byte array

inside the GC heap. If the GC is a non-copying one, b in line 13 must be nil; or

else line 12-13 will not have been reached because the callback will not be in-

voked.

3.1.2   Runtime Safety Checks

Safety is enforced using runtime checks and with the cooperation of the gar-

bage collector. As shown in Figure 3.2, a jbuf can be in three states:

1. unreferenced (unref), meaning that there are no Java references into the

jbuf;

2. referenced (ref<p>), meaning that there is at least one Java array refer-

ence (of primitive type p) to the buffer;

3. to-be-unreferenced (2b-unref<p>), meaning that the application claims

the jbuf has no array references of type p and waits for the garbage col-

lector to verify that claim.

A jbuf starts at unref and makes a transition to ref<p> upon an invoca-

tion of to<p>Array. The state is parameterized by a primitive type p to en-

force type safety. After an unRef invocation, jbuf goes to the 2b-unref<p> state

and becomes “ collectable”  (subsequent invocations of to<p>Array are disal-

lowed). It then returns to unref once the garbage collector verifies that the

buffer is indeed no longer referenced and invokes the callback. A buffer can

only be de-allocated if it is in the unref state and can be posted for transmission

and reception as long as it is not in the 2b-unref<p> state.
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Exactly when the transition back to the unref state will occur depends

on the type of the collector. A non-copying collector will only invoke the call-

back after the programmer has dropped all the array references to the buffer.

A copying collector, however, ensures that the transition will always occur at

the next collection since it will move the array out of the buffer and into the

Java heap. This means that, for example, the application can continue using

the data received in the array without keeping the jbuf occupied and without

performing an explicit copy.

It is important to note that no additional runtime checks are needed to

access jbufs apart from array-bounds and null-pointer checks imposed by

Java. These runtime checks are only performed during jbuf management op-

erations, which are typically not as performance critical as data access opera-

tions.

Figure 3.2   Jbufs state diagram for runtime safety checks. When the GC*
transition takes place depends on whether the GC is copying or non-
copying.
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to<p>Array
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3.1.3   Explicit de-allocation

Two important issues regarding explicit de-allocation are (i) that it appears to

violate Java’s storage safety since an application may leak memory (acciden-

tally or intentionally) by not freeing jbufs, and (ii) that it seems dispensable in

the presence of object finalization (Section 12.12.7, [LY97]). Accidental memory

leakage (e.g. an application has no array references into a jbuf but forgets to

free it) is easily prevented by maintaining jbuf wrapper objects in an internal

list and keeping track of the total jbuf-memory consumption. At some thresh-

old value, the jbuf allocation routine traverses the list and frees all jbufs that

are in the unref state. However, the Java language itself, let alone jbufs, cannot

stop an application from leaking memory maliciously. For example, a user can

consume unlimited memory by deliberately growing an unused linked-list.

Explicit de-allocation is indispensable. If the jbuf wrapper objects are

kept in that internal list, then eliminating explicit de-allocation by having

wrapper object finalizers15 free jbufs will not work as the wrapper objects

never become garbage. If wrapper objects need not be kept in that list, then

they may become garbage. However, when the finalizer of the wrapper object

is executed, the jbuf may well be in the ref<p> state in which it cannot be freed.

Given that the finalizer is only executed once, jbufs in that state will never be

freed.

3.1.4   Implementing Jbufs with a Semi-Space Copying Collector

Jbuf storage is allocated and de-allocated using Win32 malloc and free calls.

The allocated memory region has a 4-word header to store array meta-data:

                                                
15 It is not possible to overwrite the finalize methods of array objects.
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one for the dispatch table, one for synchronization structure, one for the

length, and another for padding purposes. The meta-data is (over)written

during successful to<p>Array invocations. The state of the jbuf is stored in

the wrapper object.

In order to support jbufs, the garbage collector must be able to change

the scope of its collected heap dynamically. When a jbuf is unRefed, the col-

lector must add the jbuf’s region of memory to the heap (attachToHeap),

and remove it prior to invoking the callback (detachFromHeap).

We made minor modifications to Marmot’s semi-space copying GC.

The collector is based on Cheney’s scanning algorithm [Wil92]: the collector

copies the referenced object from the from-space to the to-space. In addition to

the two semi-spaces, the augmented Marmot collector maintains a list of jbufs:

attachToHeap simply adds a jbuf to that list whereas detachFromHeap

removes it from the list. When following a reference, the from-space is always

checked first so the GC performance of programs that do not use jbufs is not

affected.

The current implementation of jbufs consists of 450 lines of Java and

390 lines of C. Fewer than 20 lines of code have been added/modified in

Marmot’s copying GC code (which is about 1000 lines of C, a third of Mar-

mot’s total GC code). Most of the C code for jbufs is for managing lists of jbuf

segments.

3.1.5   Performance

The performance of jbufs is evaluated using three simple benchmarks on

Marmot. The first one measures the overheads of alloc and free: M jbufs of

4 bytes each (excluding meta-data) are allocated and freed in separate loops,
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repeated over N iterations. The second measures the cost of invoking

toByteArray, isJbuf, and unRef. One loop invokes toByteArray on

each of the M jbufs, another that invokes isJbuf on each byte array reference,

and followed by a third loop that invokes unRef on each jbuf. The third syn-

thetic benchmark measures the performance impact of jbufs on Marmot’s

copying collector: the cost of collecting a heap16 with M unreferenced, 4-byte

jbufs is subtracted from the cost of collecting the same heap with the M jbufs

referenced.

Table 3.1 shows the micro-benchmark results for M=1000 and N=100.

The cost of alloc is about 2µs higher than that of allocating a byte array of

the same size (which is 0.7µs). The overheads in unRef include accessing two

critical sections (one to update the state of the jbuf, another to update the GC

region list) compared to one in toByteArray. The per-jbuf overhead in GC

includes tracking the reference into the jbuf, copying a 4-byte array, and in-

voking the callback method. Overall, the overall copying GC performance in

Marmot is fairly unaffected.

                                                
16 The heap includes the jbufs wrapper objects. The size of the heap is immaterial: the difference between the two
heaps is essentially the jbuf segments.

cost (us)
2.72
2.24
0.50
0.30
2.54
0.55

unRef
gc overhead (p/jbuf)

alloc

toByteArray
isJbuf

free

Table 3.1   Jbufs overheads in Marmot
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3.1.6   Implications on Other Garbage Collection Schemes

Similar modifications made to Marmot’s semi-space copying collector are also

applicable the conservative mark-sweep collector as well as the two-

generations copying collector [Tar99].

The conservative mark-sweep collector divides a large, contiguous

heap space into blocks and keeps a list of free blocks. The blocks are main-

tained by several large bit-maps, one of which is used by the mark phase. The

collector segregates objects based on size. It does not rely on per-object pointer

information except for checking if an array is an array of objects. During the

mark phase, the collector checks if a pointer points to a jbuf only after it has

determined that it does not point to the original heap. As jbufs do not contain

pointers, they need not be further scanned by the mark phase. After the sweep

phase, the list of jbufs is traversed: unmarked ones have their callbacks in-

voked and are detached from the list17.

The generational collector is a simple two-generation collector with an

allocation area and an older generation. It implements write-barriers based on

a sequential-store-buffer technique to track pointers from the older generation

into the allocation area. Jbufs added to the list are part of the allocation area18

and thus have to be checked when following a pointer into that area.

3.1.7   Proposed JNI support

An extension to the JNI can enable more portable implementations of jbufs

without revealing two JVM-specific information: the meta-data layout of ar-

                                                
17 The Boehm-Demers-Weiser [BW88, Boe93] conservative collector uses lazy sweeping for better performance:
instead of sweeping the whole heap after each collection, the collector incrementally sweeps the heap on demand
until the sweep is complete. Lazy sweeping can be implemented with jbufs without much effort.
18 In fact, jbufs should always be part of the youngest generation regardless of the number of generations.



47

rays and the GC scheme. The proposed extension consists of three functions as

follows, where <Type> is a placeholder for a primitive type:

jint get<Type>ArrayMetaDataSize(JNIEnv *env);

This function returns the storage size (in bytes) for the array meta-data.

If the array meta-data and body (in this order) are not contiguous in

memory, the function returns zero.

j<Type>Array Alloc<Type>Array(JNIEnv *env, int array_size,

char *seg, int seg_size, void *body);

This function allocates a primitive-typed array of size array_size in a

memory segment seg supplied by the user. The function fails if

seg_size is smaller than the size of array (in bytes) plus the meta-data

storage size. The function returns both a pointer to the body of the ar-

ray (body) and a reference to the array itself. If body is null, then the

array can only be accessed through JNI only (the implementation is

being very conservative here, but it is still ok). If not, then body must be

a C pointer into the memory segment.

void AttachHeap(char *seg, void (*callback )(char *));

This function attaches the memory segment seg to the GC heap along

with a callback function. It only succeeds after a successful invocation

of Alloc<type>Array associated with seg and prior to the invoca-

tion of a callback associated with the same. Attaching an already at-

tached segment results in a nop.
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3.2   Javia-II

3.2.1   Basic Architecture

Javia-II defines the ViBuffer class, which extends a jbuf with methods for

pinning (and unpinning) its memory region onto the physical memory so that

the VI architecture can DMA directly into and out of jbufs.

1 /* communication buffer */
2 public class ViBuffer extends Jbuf {
3   /* pinning and unpinning */
4   public ViBufferTicket register(Vi vi);
5   public void deregister(ViBufferTicket t);
6 }
7 
8 /* ticket is returned by register and used by deregister */
9 public class ViBufferTicket {
10   /* no public constructor */
11   ViBuffer buf; private int bytesRecvd, off, tag;
12   /* public methods to access fields ommited */
13 }
14 
15 public class Vi {
16   /* async send */
17   public void sendBufPost(ViBufferTicket t);
18   public void sendBufWait(int millisecs);
19   /* async recv */
20   public void recvBufPost(ViBufferTicket t);
21   public void recvBufWait(int millisecs);
22 }

The register method (line 4) pins the buffer to physical memory, as-

sociates it with a VI, and obtains a descriptor to the memory region, which is

represented by a ViBufferTicket (lines 9-13). At that point, the buffer can

be directly accessed by the VI architecture for communication. A jbuf can be

de-registered (line 5), which unpins it, and later re-registered with the same or

a different VI. If register is invoked multiple times on the same jbuf, the

jbuf is pinned only once; all tickets have to be de-registered before the jbuf is

unpinned.

For transmission and reception of buffers, Javia-II provides only asyn-

chronous primitives, as shown in lines 17-21. Javia-II differs from Javia-I in

that the VI descriptors point directly to the Java-level buffers instead of native
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buffers (Figure 3.3). The application composes a message in the buffer

(through array write operations) and enqueues the buffer for transmission

using the sendBufPost method. sendBufPost is asynchronous and takes a

ViBufferTicket, which is later used to signal completion. After the send

completes, the application can compose a new message in the same buffer and

enqueue it again for transmission. Reception is handled similarly— the appli-

cation posts buffers for reception with recvBufPost and uses recvBufWait

to retrieve received messages. For each message, it extracts the data through

array read operations and can choose to post the buffer again.

Javia-II provides two levels of type safety. In the first level, no type

checking is performed during message reception: for instance, data trans-

send/recv
ticket ring

send/recv
queue

descriptor

jbuf

Java

C

Vi

GC heap

array
refs

VIA

Figure 3.3   Javia-II per-endpoint data structures.
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ferred out of a jbuf referenced as a double array can be deposited into a jbuf

that is typed as an int array. In the second level, type checking is performed

by tagging19 the message with the source type before transmission and

matching that tag with the destination type during reception.

By using jbufs, Javia-II itself remains very simple: it adds about 100

lines of Java and 100 lines of C to the Javia-I implementation.

3.2.2   Example: Ping-Pong

The following is a simplified ping-pong program using Javia-II and jbufs:

1 ViBuffer buf = new ViBuffer(1024);
2 /* get send ticket */
3 ViBufferTicket sendT = buf.register(vi, attr);
4 /* get recv ticket */
5 ViBufferTicket recvT = buf.register(vi, attr);
6 byte[] b = vb.toByteArray();
7 /* initialize b… */
8 /* post recv ticket first */
9 vi.recvBufPost(recvT, 0);
10 if (ping) {
11   /* send */
12   vi.sendBufPost(sendT, 0, 1024);
13   sendT = vi.sendBufWait(Vi.INFINITE);
14   /* wait for reply */
15   recvT = vi.recvBufWait(Vi.INFINITE);
16   /* done */
17 } else { /* pong */
18   vi.recvBufPost(recvT, 0);
19   recvT = vi.recvBufWait(Vi.INFINITE);
20   /* send reply*/
21   vi.sendBufPost(sendT, recvT.off, recvT.bytesRecvd);
22   sendT = vi.sendBufWait(Vi.INFINITE);
23   /* done */
24 }
25 buf.deregister(sendT);
26 buf.deregister(recvT);
27 buf.unRef(new MyCallBack());
28 /* after callback invocation… */
29 buf.free();

3.2.3   Performance

Table 3.2 and Figure 3.4 compare the round-trip latency obtained by Javia-II

(buffer) with raw and two variants of Javia-I (pin and copy). The 4-byte round-

                                                
19 Using 32-bit message tags supported by the VI architecture.
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trip latency of Javia-II is 20.5µs and the per-byte cost is 25ns, which is the same

as that of raw because no data copying is performed in the critical path. The

effective bandwidth achieved by Javia-II (Figure 3.5) is between 1% to 3% of

that of raw, which is within the margin of error.

3.3   pMM: Parallel Matrix Multiplication in Java

pMM consists of a single program image (same set of Java class files, or same

executable in the case of Marmot) running on each node in the cluster. The

4-byte (us) per-byte(ns)
16.5 25
20.5 25
38.0 38
21.5 42

 raw

pin
copy

buffer

Table 3.2   Javia-II 4-byte round-trip laten-
cies and per-byte overhead

0

100

200

300

400

0 1 2 3 4 5 6 7 8

Kbytes

µs
raw
jbufs
copy
pin

Figure 3.4   Javia-II round-trip latencies
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program image is spawned manually on every node and runs on top of a sim-

ple parallel virtual machine called Pack. During initialization, Pack is respon-

sible for setting up a complete connection graph between the cluster nodes

and providing global synchronization primitives based on barriers.

pMM represents a matrix as an array of arrays of doubles and uses a

parallel algorithm based on message passing and block-gaxpy operations

[GvL89]. The algorithm starts with the input matrices A and B and the output

matrix C distributed across all processors in a block-column fashion so each

processor owns a “ local”  portion of each matrix. To perform a block gaxpy

procedure, each processor needs its local portion of B but the entire matrix A.

To this end, the algorithm circulates portions of A around the ring of proces-

sors in a “ merry-go-round”  fashion. At every iteration (out of p, where p is the
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total number of processors), the communication phase consists of having each

processor send its local portion of A to its right neighbor and update it with

the new data received from its left neighbor. The computation phase consists

of updating its local portion of C with the result of multiplying the local por-

tions of A and B.

The first implementation of pMM uses Javia-I to send and receive ar-

rays of doubles whereas the second implementation uses jbufs that are ac-

cessed as arrays of doubles. The jbufs are pinned throughout the program and

array references never become stale. The following code shows how jbufs are

set up for communication.

1 /* Aloc is the local portion of A: array of n/p arrays of n doubles */
2 double[][] Aloc = new double[n/p][];
3 /* n/p jbufs, each being used as an array of n doubles */
4 ViBuffer[] bA = new ViBuffer[n/p];
5 
6 /* bA’s send and receive tickets */
7 ViBufferTicket[] sentT = new ViBufferTicket[n/p];
8 ViBufferTicket[] recvT = new ViBufferTicket[n/p];
9 
10 /* initialize bA, tickets, and Aloc */
11 for (int j = 0; j < n/p; j++) {
12   bA[j] = new ViBuffer(n*SIZE_OF_DOUBLE);    /* allocate jbufs */
13   Aloc[j] = bA[j].toDoubleArray(n);          /* obtain double[] refs */
14   sendT[j] = bA[j].register(rightVi, rattr); /* pin for sends */
15   recvT[j] = bA[j].register(leftVi, lattr);  /* pin for recvs */
16   for (int i = 0; i < n; i++) {
17     /* Aloc initialization omitted */
18   }
19 }

The core of the algorithm used in pMM is as follows, using Javia-I

blocking receives:

1 int tau = myproc;
2 int stride = tau * r;
3 pvm.barrier(); /* global synchronization */
4 for (int k = 0; k < p; k++) {
5   /* comm phase: send to right, recv from left using alloc receives */
6   if (tau != myproc) {
7   for (int j = 0; j < n/p; j++)
8     rightVi.send(Aloc[j], 0, n, 0);
9   for (int j = 0; j < n/p; j++) {
10     do { Aloc[j] = leftVi.recvDoubleArray(0); } while (Aloc[j] == null);
11   }
12   /* computation phase: iterate over columns A, B, and C*/
13   for (int j = 0; j < n/p; j++) {
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14     double[] c = Cloc[j];
15     double[] b = Bloc[j];
16     /* iterate over rows */
17     for (int i = 0; i < n; i++) {
18       double sum = 0.0;
19       for (int k = 0; k < n/p; k++) {
20         double[] a = Aloc[k];
21         sum += a[i] * b[stride+k];
22       }
23       c[i] += sum;
24     }
25   }
26   tau++;
27   if (tau == p) tau = 0;
28   stride = tau * r;
29   pvm.barrier();
30 }

The computation kernel is a straightforward, triple-nested loop with

three elementary optimizations: (i) one-dimensional indexing (columns are

assigned to separate variables e.g. c[i] rather than Cloc[j][k]), (ii) scalar

replacement (e.g the sum variable hoists the accesses to c[i] out of the in-

nermost loop), and (iii) a 4-level loop unrolling (not shown above).

3.3.1   Single Processor Performance

The performance of Java matrix multiplication on a single processor is still far

from that achieved by the best numerical kernels written in Fortran or C. Rep-

resenting a matrix as an array of arrays hinders the effectiveness of traditional

block-oriented algorithms (e.g. level-2/3 BLAS found in LAPACK [ABB+92])

which rely on the contiguity of blocks for improved cache behavior. Another

major impediment is the generation of precise exception handlers for array-

bounds and null-pointer checks in Java. High-order compiler transformations,

such as blocking, often restructure loops and move code around. Because of

Java’s strict sequential semantics imposed by exceptions, these transforma-

tions are not legal in Java [MMG98].
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Figure 3.6 compares the performance of MM with different optimiza-

tions on a single cluster node. indexed implements 1-D indexing and scalar re-

placement, and unroll4 performs 4-level loop unrolling on top of indexed. On a

single cluster node, Marmot’s unroll4 achieves a peak performance of over

70Mflops for 64x64 matrices. As the data size increases, the performance drops

significantly mostly due to poor cache behavior. For 256x256 matrices, Mar-

mot achieves about 45Mflops, compared to 55Mflops and 37Mflops attained

by JDK and Jview respectively. In comparison, the performance of DGEMM

(i.e. matrix multiply) found in Intel’s Math Kernel library [Int99] is over

400Mflops for 64x64 matrices. (All the numbers are for a 450Mhz Pentium-II).

Marmot allows us to selectively turn off particular safety checks,

namely array-bounds and null-pointer checks, to determine their cost. Since

none of these checks actually fail during the execution of MM for any matrix

size, eliminating these checks does not affect the overall execution. The cost of

array-bounds checks account for 40% to 60% of the total execution time,

whereas null-pointer checks account for less than 5% (median of 3%), as seen

in Figure 3.7.

3.3.2   Cluster Performance

Figures 3.8 and 3.9 compare the absolute time pMM spends in communication

(in milliseconds) using different configurations of Javia-I and using Javia-II

(labeled jbufs). The input matrices used are 64x64 and 256x256 doubles and the

benchmark is run on eight processors. Total communication time is obtained

by commenting out the computation phase of pMM. The cost of barrier syn-

chronization is measured by skipping both communication and computation

phases. Jbufs’  communication time is consistently smaller than the rest: with
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256x256 matrices, where message payload is 2048 bytes, jbufs spent 25% less

time than copy-async in communication, as predicted by micro-benchmarks.

Figures 3.8 and 3.9 also show the percentage of the total execution time attrib-

uted to communication (on top of each bar). For an input size of 64x64, this

percentage is around 73% (median) for jdk-copy-async, with a high of near 85%

for pin-async and a low of 56% for jbufs. For 256x256, the median percentage is

around 20%, with a low of 13% for jbufs.

Figure 3.11 shows that the overall performance of pMM using 256x256

matrices correlates well with the communication performance seen in Figure

3.9. A peak performance of 320Mflops is attained by jbufs, followed by

275Mflops attained by copy-alloc on eight processors. Jbufs consistently outper-

form the other versions on two and four processors as well. However, this

“ nice”  correlation is not the case for 64x64 matrices, as shown in Figure 3.10: a

peak performance of 175Mflops goes to copy-async on four processors. In fact,

the overall performance of jbufs is inferior to those with Javia-I on two proces-

sors. These results are most likely due to cache effects. This is a clear indica-

tion that, at this point, faster communication in Java does not necessarily lead

to better overall performance of parallel, numerically-intensive applications

(in particular, those with level-3 BLAS operations).

Another interesting data point is that allocating an array on every mes-

sage reception can actually improve locality. For example, although copy-alloc

spends about 15% more time than copy-async in communication on eight proc-

essors (Figure 3.9), copy-alloc’s Mflops is 10% higher than that of copy-async

(Figure 3.11).
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3.4   Jam: Active Messages for Java

Active messages [vECS+92] are a portable instruction set for communication.

Its primitives map efficiently onto lower-level network hardware and com-

pose well into higher-level protocols and applications. The central idea of ac-

tive messages is to incorporate incoming data quickly into the ongoing

computation by invoking a handler upon a message arrival. Initially devel-

oped for the CM-5 and later ported onto many other multi-computers [SS95,

CCvE96, KSS+96], the original specification (called Generic Active Messages

[CKL+94], or Gam, version 1.0+) was inadequate for mainstream cluster com-

puting. It relied heavily on the single-program-multiple-data (SPMD) execu-

tion model supported by most parallel computers. For example, active

message users tag request messages with a destination processor id and refer

to remote handlers and memory locations by their virtual addresses.

The second version of active messages, AM-II [MC95], is more general

and better suited for cluster computing. It uses a flexible naming scheme that

is not bound to a particular execution model (e.g. SPMD or gang-scheduling),

network configuration, and name service implementation. It adopts a connec-

tion-oriented protection model that enables multiple applications to access the

network devices simultaneously and in a protected fashion. It also introduces

a descriptive error model that goes beyond the rudimentary “ all-or-nothing”

fault model and provides synchronization support for thread-safe multipro-

gramming.

The main data structure in AM-II is an endpoint. An endpoint is like a

user or kernel port with a tag and a global name associated with it. An end-

point contains send and receive message pools for small messages, a handler

table that maps integers to (local) function pointers, a translation table that



61

maps integers to remote endpoints, and a virtual memory segment for bulk

transfers. Endpoints are aggregated in bundles in order to avoid deadlock

scenarios [MC95]: incoming messages for endpoints within a bundle are serv-

iced atomically.

The following subsection provides a brief description of Jam, an im-

plementation of AM-II over Javia-I/II.

3.4.1   Basic Architecture

In Jam, endpoints are connected across the network by a pair of virtual inter-

face connections: one for small messages and another for large messages. Each

entry in the endpoint’s translation table corresponds to one such pair. End-

points need to be registered with the local name server in order for them to be

visible to remote endpoints. The name server uses a simple naming conven-

tion: <remote machine, endpoint name>. A map call initiates the setup of a con-

nection: the name of the remote endpoint is sent to the remote machine; the

connection request is accepted only if the remote endpoint is registered.

Jam provides reliable, ordered delivery of messages. While the inter-

connections between virtual interfaces and the back-end switch are highly re-

liable, a flow control mechanism (similar to the one in [CCH+96]) is still

needed to avoid message losses due to receive queue overflows or

send/receive mismatches. Sequence numbers are used to keep track of packet

losses and a sliding window is used for flow control; unacknowledged mes-

sages are saved by the sending endpoint for retransmissions. When a message

with the wrong sequence number is received, it is dropped and a negative ac-

knowledgement is returned to the sender, forcing a retransmission of the

missing as well as subsequent messages. Acknowledgements are piggybacked
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onto requests and replies whenever possible; otherwise explicit acknow-

ledgements are issued when one quarter of the window remains unacknow-

ledged.

3.4.2   Bulk Transfers: Re-Using Jbufs

A key design issue in Jam is how to provide an adequate bulk transfer inter-

face to Java programmers. In the Gam specification, the sender specifies a vir-

tual address into which data should be transferred. AM-II instead lets the

sender specify an integer offset into a “ virtual segment”  supplied by the re-

ceiver: senders no longer have to deal with remote virtual addresses. This

specification is well suited for C but is ill matched to Java. Integer offsets

would have to be offsets into Java arrays; assuming no extra copying of data,

having to operate on arrays using offsets would be inconvenient at best.

Jam exploits two bulk transfer designs. The first design, which is based

on Javia-I, does not require the receiver to supply a virtual segment— byte ar-

rays are allocated upon message arrival and are passed directly to the han-

dlers. While this design incurs allocation and copying overheads, it works

with any GC scheme and fits naturally into the Java coding style.

The second design, which is based on Javia-II and calls for a copying

collector, requires the receiver to supply a list of jbufs to an endpoint. The

endpoint manages this list as a pool of receive buffers for bulk transfers and

associates it with a separate virtual interface connection. Upon bulk data arri-

val, the dispatcher obtains a Java array reference from the receiving jbuf and

passes that reference directly to the handler. The receiving jbuf is unRefed af-

ter the handler’s execution. When the pool is (about to be) empty, the dis-

patcher reclaims jbufs in the pool by triggering a garbage collection. Jam knows
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whether the underlying GC is a copying one after the first attempt to reclaim

the jbufs: if the jbufs are still in the referenced state, Jam dynamically switches

back to the first design.

This design avoids copying data in the communication critical path and

defers copying to GC time only if it is indeed necessary. For example, consider

two types of active message handlers:

1 class First extends AM_Handler {
2   private byte first;
3   void handler(Token t, byte[] data, . . .) {
4     first = data[0];
5   }
6 }
7 class Enqueue extends AM_Handler {
8   private Queue q;
9   void handler(Token t, byte[] data, . . . ) {
10     q.enq(data);
11   }
12 }

The handler named First looks at the first element of data but does

not keep a reference to it whereas the handler named Enqueue save the refer-

ence to data for later processing. A copying garbage collector will only have

to copy data in the latter case.

3.4.3   Implementation Status

Jam consists of 1000 lines of Java code. A Jam endpoint is an abstract Java class

that can be sub-classed for a particular transport layer. Jam currently has end-

point implementations for Javia-I and Javia-II. Jam implements all of AM-II

short request (AM_RequestM) and reply (AM_ReplyM) calls, one bulk transfer

call (AM_RequestIM), message polling (AM_Poll) and most of bundle and

endpoint management functions. Unimplemented functionality includes asyn-

chronous bulk transfers (AM_RequestXferAsynchM), moving endpoints

across different bundles (AM_MoveEndpoint) and the message error model.
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3.4.4   Performance

A simple ping-pong benchmark using AM_Request0 and AM_Reply0 shows

a 0-byte round-trip latency of 31µs, about 11µs higher than that of Javia-II

(Figure 3.12). This value increases by about 0.5µs for every four additional

words. For large messages, Jam round-trip latency is within 25µs of Javia-II

and has the same per-byte cost. Additional overheads include:

• an extra pair of send/receive overheads (due to two separate VI con-

nections: one for small messages, another for bulk transfers);

• synchronized access to bundle and endpoint structures;

• handler and translation table lookup, and

• protocol processing (header parsing and flow control).
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Jam achieves an effective bandwidth of 75MBytes/s, within 5% of

Javia-II, as seen in Figure 3.13.

3.5   Summary

Jbufs are Java-level buffers that can be managed explicitly by applications

without breaking the language. By controlling whether jbufs are subject to

garbage collection, the separation between GC and native heap becomes dy-

namic. Javia-II exploits this fact to make nearly 100% of the raw network per-

formance available to Java.

The benefits of accessing jbufs via genuine array references should be

clear: it eliminates indirect access via method invocations, promotes code re-

use of large numerical kernels, and leverages optimization infrastructure for

eliminating array-related safety checks. The latter benefit is currently difficult
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to substantiate experimentally because Java compilation technology is still too

immature despite dramatic progress over the last two years. For example,

Marmot’s rudimentary schemes to eliminate array-bound checks fail to re-

move any of the checks encountered in a simple level 3 BLAS loop used by

pMM.

Unlike in pMM, where jbufs are allocated at program initialization and

de-allocated at its termination, the ability to manage jbufs explicitly has

helped in the design and implementation of Jam tremendously. In situations

where a copying collector is used, Jam is able to defer data copying to GC

time. An important concern is that a messaging layer may have to trigger a

garbage collection whenever it needs to reclaim jbufs for re-use, which could

be counter-productive. Instead of a “ one-size-fits-all”  solution, Jam lets users

decide how frequently jbuf reclamation occurs by having them supply a list of

receive jbufs to an endpoint. Users can utilize application-specific information

to fine-tune performance.

Although one can explicitly manage jbufs, our experience indicates that

jbufs are still not as flexible as C buffers. For example, during protocol proc-

essing in Jam, it would have been convenient to access different parts of a jbuf

with different array types (e.g. accessing the first 10 words of the jbuf as int

arrays, and pass the remaining to the handler as a byte array). Currently, Jam

uses two message pools, one for small messages (i.e. the entire message can be

treated as a protocol “ header” ), and another for bulk payload, so it can assign

two different jbufs to each. This leads to extra cost to active messages round-

rip latency.

Another concern is that location control may produce stale references

into jbufs. Our experience so far indicates that stale references are not an issue.
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Jbuf management has not been stressed in pMM— the main benefit of jbufs

there is the ability to transfer arrays with zero-copy. Jam has a rather central-

ized control over jbuf management since it is a communication layer. It re-

mains to be seen whether stale references will cause much headaches to Java

programmers.

3.6   Related Work

3.6.1   Pinned Java Objects

Two closely-related projects have recognized the need to access the native (i.e.

pinned) heap from Java: Microsoft’s J/Direct technology and Berkeley’s Jag-

uar project.

1.1.1.1   Microsoft J/Direct

In addition to the features introduced in Section 2.2.2, J/Direct allows Java

applications to define pinned, non-collectable objects using source-level anno-

tations (i.e. /** @dll.struct */). Programmers must manually supply the

C data type that corresponds to the annotated Java object and must allocate

them in C. After allocation, these objects can passed between Java and C by

reference (as an int handle). To use them from Java, J/Direct provides func-

tions converts a handle into a genuine Java object (dllLib.ptrToStruct).

The implementation of dllLib.ptrToStruct allocates a “ mirror”

Java object— the JIT compiler re-directs read and write operations on the mir-

ror object to the pinned object. This re-direction incurs a level of indirection

(i.e. looking up the pinned object), which is prohibitively expensive (about 10x

higher than a regular Java array access). Jbufs allows the VI architecture to ac-

cess pinned communication buffers (e.g. in the referenced state) and lets appli-
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cations read/write from/into these buffers through array references. These

accesses are only subjected to the safety checks already imposed by the Java

language.

1.1.1.2   Jaguar

The Jaguar project [WC99] essentially overcomes the level of indirection that

plagues J/Direct: extensions to the JIT compiler generate code that directly ac-

cesses a pinned object’s fields. The code generation is triggered by object typ-

ing information (i.e. external objects) rather than source-level annotations.

Unlike J/Direct, these external objects are allocated from Java. An implemen-

tation of the Berkeley/Linux VI architecture using Jaguar achieves the same

level of performance as Javia: within 1% of the raw hardware.

In spite of the high performance, extending the JIT compiler raises a se-

curity concern: whether or not the generated code actually preserves the type-

safety properties of the byte-code. For example, Jaguar would have to gener-

ate explicit array-bound checks when accessing an external array. This is not a

concern with jbufs because accesses go through genuine array references.

Another difference between the Jaguar and the Jbufs approaches is that

Jaguar trades trusted protection for the ability to access hardware control re-

sources, such as network and file descriptors, in a fine-grain manner. Instead,

Javia-I/II focuses only on large data transfers— the rationale is that control

structures are often “ small”  enough so the data to be written can be passed as

native method arguments. For example, Javia-I/II passes control information

as byte or word arguments to native methods and uses tem to update VI de-

scriptors. This would avoid fetching that data from native code— though in-

expensive in Marmot, it is rather costly in JDK.
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1.1.1.3   Other approaches based on custom JVMs

Many JVMs support in one way or another pinning of objects, mostly for per-

formance reasons. For example, Microsoft’s jview allocates large arrays (>

10Kbytes) in a pinned heap so they are not moved by its generational copying

collector. Systems like Javia can be integrated into JVMs with non-copying

GCs (such as KaffeVM [Kaf97]) with undue effort and are likely to achieve

good performance. The problem is that Java applications that interact with

network devices directly are (and should be) oblivious to the underlying GC

scheme. Jbufs incorporates user-managed buffers safely into any garbage-

collected environment: all that is required from the GC is the ability to dy-

namically change the scope of the GC heap.

It is not possible to attain safe and explicit memory management with-

out adequate GC or finalization support. Array “ factories”  that produce ar-

rays outside of the GC heap would leak memory unless there is finalization of

array objects. Explicit de-allocation of such arrays would violate memory

safety unless references are tracked appropriately.

The real motivation for explicit management in jbufs is that it provides

a clean framework for optimization de-serialization of Java objects. Neither

J/Direct nor Jaguar can provide zero-copy de-serialization without introduc-

ing certain “ restrictions”  to the de-serialized objects. Jbufs allows incoming,

arbitrary Java objects to be integrated into a JVM without violating its integ-

rity. This is the subject of Chapter 5.

3.6.2   Safe Memory Management

The central motivation for developing jbufs, namely zero-copy data transfers,

differs from that of most explicit allocation and de-allocation proposals, which

is to improve data locality. Ross [Ros67] presents a storage package that lets
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applications allocate objects in zones. Each zone has a different allocation pol-

icy and de-allocation is on a per-object basis. Vo [Vo96] introduces a similar

library named Vmalloc: objects are allocated in regions, each with a different

allocation policy. Some regions allow per-object de-allocation, while others de-

allocates them all at once (by freeing a region). None of the above approaches

attempts to provide safety along with explicit memory management. Surveys

on explicit memory management and garbage collectors can be found in

[WJN+95] and [Wil92] respectively.

Gay and Aiken [GA98] propose explicit memory management with safe

regions. Objects are allocated in regions, and de-allocating a region frees all

objects within that region. De-allocation is made safe by keeping a reference

count for each region. They rely on compiler support to generate code that

performs reference counting; jbufs, on the other hand, requires no compiler

assistance and relies on the underlying GC. Stoutamire [Sto97] defines regions

of memory (or zones) that are mapped efficiently onto hardware abstractions

such as a page or even a cache line. Zones are first-class objects in the Sather

programming language in order to enable explicit programming for locality.

Memory reclamation is on a per-object basis using a non-copying (mark-and-

sweep) GC. The authors of safe regions and zones do not consider scenarios in

which copying GC techniques might be employed. Jbufs attain explicit mem-

ory management in the presence of non-copying as well as copying GC

schemes.
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4   Object Serialization: A Case for
Specialization

The ability to send and receive primitive-type arrays efficiently is essential for

high-performance communication in Java. Jbufs enable the VI architecture to

transfer the contents of arrays in a zero-copy fashion by exploiting two facts:

primitive-type arrays are shallow objects (i.e. contain no pointers to other Java

objects) and their elements are typically contiguous in memory20. Array-based

cluster applications written in Java can take advantage of jbufs to improve

their communication performance, as demonstrated in the previous chapter.

During a remote method invocation (RMI) in Java, however, arbitrary

linked object data structures are frequently passed by copy and must be

transmitted over the wire. Since the objects forming the data structure are not

guaranteed to be contiguous in memory, they need to be serialized onto the

wire on the sending side and de-serialized from the wire on the receiving side.

Standard serialization protocols are designed first for flexibility, portability,

and interoperability of the RMI layer and only second for performance.

                                                
20 Virtually all JVM implementations lay out array elements contiguously in memory for efficiency purposes, al-
though it is not guaranteed by the JVM specification.
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This chapter argues that the costs of object serialization are prohibi-

tively high for cluster applications. It evaluates several implementations of the

JDK serialization protocol using micro-benchmarks and an RMI implementa-

tion over Javia-I/II. Although efficient array transfer improves the perform-

ance of RMI (because serialization of Java objects ultimately yields byte

arrays) the overheads of serialization are still an order of magnitude higher

than the basic send and receive overheads in Javia-II. The impact of serializa-

tion on point-to-point RMI performance is substantial: the zero-copy benefits

achieved by jbufs become negligible. For some applications in an RMI bench-

mark suite, the cost of serialization is estimated to account for up to 15% of

their total execution time.

4.1   Object Serialization

As seen in Figure 4.1, serializing an object consists of converting its in-memory

representation into a stream of bytes. This conversion makes a deep copy of

the object: all transitively reachable objects are also serialized. The resulting

Figure 4.1   Object Serialization and De-serialization.

writeObject

GC heap

readObject

NETWORK

GC heap
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stream, typically stored in a Java byte array, is sent over the network. At the

receiving end, the objects are retrieved (de-serialized) from the stream: for

each de-serialized object, data is copied from the stream into its newly allo-

cated storage.

Most publicly available JVMs implement the Java Object Serialization

(JOS) protocol [Jos99] that is designed for flexibility and extensibility. JOS in-

troduces object I/O streams (ObjectInputStream/ObjectOutputStream)

with methods to write “ serializable”  Java objects into the stream

(writeObject) and to read them from the stream (readObject). The proto-

col serializes the description of an object’s class along with the object itself. If

the class is available in the JVM during de-serialization, both the wire and the

local versions are compared using “ class compatibility”  rules. If the class is not

available or is incompatible, JOS provides a mechanism to annotate serialized

classes (via the annotateClass method) so users can send along the original

byte-code or an URL from where it can be fetched. Users can also define the

external format of an object by overriding read/writeObject methods in

object I/O stream classes with protocol-specific ones, or by providing object-

specific implementations of read/writeExternal methods.

4.1.1 Performance

This section shows that the performance of JOS is inadequate for cluster com-

puting using results from micro-benchmarks. Figures 4.2 and 4.3 show the

performance of three implementations— Marmot, JDK1.2, and Jview3167 on a

450Mhz Pentium-II— of writeObject and readObject methods respec-

tively. The types of objects used in the experiment are byte and double ar-

rays with comparable sizes (around 100 and 500 bytes), an array of Complex
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numbers (each element with a real and a imaginary field of type double), and

a linked list (each element with a int value and a “ next”  pointer). The costs

for the latter two are reported on a per-element basis. The numbers reported

are averages with standard deviation of less than 5% (maximum is 4.7% in

byte[] 500).

The results shown in Figures 4.2 and 4.3 lead to the following observa-

tions:

1. Serialization overheads are in tens of microseconds: an order of magni-

tude higher than basic send and receive overheads in Javia I/II (around

3µs). Reading a byte array of 500 elements costs around 20µs; in com-

parison, a mempcy of 500 bytes costs around 0.8µs;

2. Serialization of arrays with 16, 32, and 64-bit primitive-type elements
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Figure 4.2   Comparing the cost of serialization in three implementa-
tions of Java Object Serialization.
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into byte arrays takes a significant performance hit due to Java’s type

safety. Serializing a double array of 62 elements is nearly 50% more

expensive than a byte array of 500 elements;

3. Costs grow as a function of object size both in writeObject, due to

the deep-copy, and in readObject, due to storage allocation and data

copying. It costs about 9µs to read one linked-list element with an int

field out of the stream, and around 86µs to read one with 40 int fields.

It seems unlikely that better compilation technology will improve the per-

formance of serialization in a substantial way. Tables 4.1 and 4.2 show the per-

centage change in the cost of writeObject and readObject on Marmot in

the absence of method inlining, synchronization, and safety checks. Changes

in cost are more significant for the array of complex numbers and the linked

readObject
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Figure 4.3   Comparing the cost of de-serialization in three imple-
mentations of Java Object Serialization.
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list. Method inlining in Marmot already reduces the costs by 60%. Even if

Marmot were able to successfully eliminate all safety checks and all synchroni-

zation, performance would improve by another 30% at best.

4.2   Impact of Serialization on RMI

The high serialization costs reported in the previous section affect the per-

formance of Java RMI significantly. This section starts with an overview of

Java RMI and briefly describes an implementation over Javia-I/II. Readers

familiar with RMI can jump to the section on micro-benchmark performance

(Section 4.2.3).

4.2.1   Overview of RMI

RMI enables the creation of distributed Java applications in which methods of

remote Java objects can be invoked from other JVMs, possibly on different

hosts. A Java program can make a call on a remote object once it obtains a ref-

no 
method 
inlining

no 
lock s

no array-
bounds 
check s

no null 
pointer 
check s

no 
casts 

check s

no array-
store 

check s
24.2% -4.5% -0.4% 0.0% -2.5% -1.3%
14.1% -3.2% -1.5% 0.0% -3.3% -0.5%
56.7% -12.9% -0.7% 0.0% -0.6% -7.3%
61.7% -12.9% -0.7% 0.0% 0.0% -6.7%

Cost Difference 
(writeObject)

byte[] 500

complex[] p/elem
list p/elem

double[] 100

Table 4.1   Impact of Marmot’s optimizations in serialization.
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byte[] 500

complex[] p/elem
list p/elem

double[] 100

Table 4.2   Impact of Marmot’s optimizations in de-serialization
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erence to the remote object, either by looking up the remote object in a name

service provided by RMI, or by receiving the reference as an argument or a

return value. A client can call a remote object in a server, and that server can

also be a client of other remote objects. RMI implementations in publicly

available JVMs are based on the Java RMI specification [Rmi99].

RMI relies on JOS to serialize and de-serialize remote objects (which are

passed by reference) and regular objects (which are passed by value). RMI

takes advantage of JOS’ extensibility and class serialization protocol to sup-

port “ polymorphic” 21 method invocations: an actual parameter object can be a

subclass of the remote method’s formal parameter class. This means that the

receiver may not know the actual subclass of the argument, and may have to

fetch it from the wire or from a remote location. This flexibility makes RMI

applications potentially more tolerant to service upgrades and different ver-

sions of class files, and is the key distinction between RMI and traditional re-

mote procedure call systems.

4.2.2   An Implementation over Javia-I/II

This section describes a straightforward RMI implementation over Javia-I/II

based on the RMI specification.

Remote objects (that extend the RemoteObject class and implement

the Remote interface) are bound (i.e. exported) to a simple RMI Registry.

The registry creates corresponding stub and skeleton (i.e. server side stub)

objects for the remote object, spawns a transport-dependent server thread that

waits for incoming connections, and updates its service database. When a cli-

ent binds to an exported remote object, the registry ships the stub to the client,

                                                
21 This term is in quotes because there is no true polymorphism in Java [OW97].
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which is instantiated in the client’s JVM. During an RMI, the stub creates a

transport-dependent RemoteCall object that connects to the server thread

and initializes communication structures. The server thread spawns a new

thread to service calls from that stub upon accepting the connection. The re-

mote call object is cached by the stub for subsequent invocations to the same

remote object in order to avoid creating a new connection for every RMI.

The implementation uses JOS for serialization and de-serialization of

arguments and relies on a RMI protocol that is similar to the one described in

the specification. It also uses a simple distributed GC scheme based on refer-

ence counting [BEN+94].

The system consists of about 4000 lines of Java and currently supports

three transport layers: TCP/IP sockets, Javia-I and Javia-II. A remote call ob-

ject using Javia-I connects to the server thread through a virtual interface that

can be configured in four different send/receive combinations (Section 2.3.1).

In the case of Javia-II, a connection is composed of two virtual interfaces: one

for RMI headers (up to 40 bytes) and another for the payload. Jbufs posted on

the header VI are accessed as int arrays; those posted on the payload VI are

accessed as byte arrays by the object I/O streams.

Because of RMI’s blocking semantics, the number of jbufs posted on

each VI (which is a service parameter) essentially indicates the maximum

number of concurrent calls (e.g. client threads) the remote object can handle

for each connection. A remote call object tracks the number of outstanding

RMIs to ensure that that number is not exceeded. When waiting for an in-

coming message (either a call or a reply), the thread polls for a while (around

twice the round trip latency) before blocking.
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4.2.3   Performance

The round-trip latency of an RMI between two cluster nodes is measured by a

simple ping-pong benchmark that sends back and forth a byte array of size N

as argument using a single RMI connection. The effective bandwidth is meas-

ured by sending 10MBytes of data one-way, using various byte array sizes as

fast as possible. RMI implementations over several configurations of Javia-I

and over Javia-II (labeled as RMI jbufs) are compared on Marmot and JDK1.2.

Both experiments exclude context switch costs since unloaded machines are

used and reception takes place primarily by polling (due to the above optimi-

zation).

Figure 4.4 shows the round-trip latencies. Although jbufs yield some

improvement, the RMI performance is far from that of Javia-II. Table 4.3

shows the round-trip latencies of an RMI with an integer argument and in-

cludes the number for RMI over sockets as well. A significant fraction of the

150µs achieved by RMI jbufs goes to setting up object I/O streams for argu-

ment passing. For instance, the round-trip latency of a null RMI drops to

slightly less than 30µs, which is about the same as that achieved by Jam.

Figure 4.5 shows effective bandwidth achieved by RMI. A peak band-

width of about 22MBytes/s is attained by RMI jbufs, which is about 25% of to-

tal capacity. The bandwidth curve reaches the peak at a much slower rate than

Javia-I and Javia-II because RMIs are not pipelined (due to their blocking se-

mantics) during the experiment22.

                                                
22 Bandwidth experiments involving multiple client connections have not been carried out because the cluster
nodes have a single processor.
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4.3   Impact of Serialization on Applications

Poor RMI performance can have a significant effect on overall application per-

formance. This section reports the impact of object serialization on a bench-

mark suite consisting of six RMI-based applications. Table 4.4 provides a

summary of the applications used. A brief description of each application is

presented in the following subsection.

4.3.1   RMI Benchmark Suite

Two applications, Traveling Salesman Problem (TSP) and Iterative Deepening

A* (IDA), fall into the traditional producer-consumer model [NMB+99]. TSP

computes the shortest path to visit all cities exactly once from a starting city by

using a “ branch-and-bound”  algorithm. The algorithm prunes search sub-

spaces by ignoring partial routes that are longer than the current shortest

path. Because the amount of computation for a search sub-space is not known

a-priori, the implementation adopts the producer-consumer model for (poten-

tially) better load balancing. Workers running on cluster nodes repeatedly

fetch jobs from a centralized job queue using RMIs. During execution, each

worker keeps a local copy of the current best solution— if a worker finds a

4-byte (us)
150.4
161.9
164.5
211.8
271.0
482.3
520.1

RMI
jbufs

pin
copy

jdk  copy
sock ets

copy+alloc

jdk  sock ets

Table 4.3   RMI 4-byte
round-trip latencies.
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shorter solution, it updates the values of all other workers through RMI. The

computation terminates when there are no jobs left in the job queue. The size

of the input set used is 17 cities.

IDA solves the 15-tile puzzle using repeated depth-first searches. The

program uses a decentralized job queue model with work stealing. Each job

corresponds to a state in the search space, and each cluster node maintains a

local job queue. When a node fetches a job from its job queue, it first checks

whether the job can be pruned. If not, it expands the job by computing the

successor states (e.g. making all possible next “ moves” ) and enqueues the new

jobs. If the local job queue becomes empty, a node tries to “ steal”  jobs from

Application Origin Model Input

1 million 
points

MM Javia MM us ing RMIs
Sync 

Master 
Slave

256x256 
matrices

FFT arrays
Split-C 
Suite

1-D Fas t Fourier 
Trans form  us ing 

double[]

Sync 
Master 
Slave

FFT 
complex

Split-C 
Suite

1-D Fas t Fourier 
Trans form  us ing 

Complex[]

Sync 
Master 
Slave

1 million 
points

Description

TSP Manta
shortes t path to vis it 
all other cities  exactly 

once

W ork 
Queue

17 cities

IDA Manta solving a 15-tile puzzle 
us ing repeated DFS

W ork 
Stealing

depth of 58 
moves

SOR Manta iterative m ethod for 
Laplace equations

Sync 
Master 
Slave

1600-1600 
grid, 100 
iterations

100K 
edges/proc, 

100 iterations

EM3D 
arrays

Split-C 
Suite

s im ulation of EM wave 
propagation us ing 
RMI of double[]

Sync 
Master 
Slave

Table 4.4   Summary of RMI benchmark suite.
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other nodes. The initial state of the puzzle is obtained by making 58 moves

from the final state.

The remaining applications fall into the “ structured”  category: proc-

essing nodes have distinct computation and communication phases and are

globally synchronized using barriers (Barrier). Upon reaching barrier point,

program execution is blocked until all nodes reach a corresponding barrier

point. To reduce the network traffic, each node communicate only with a par-

ent node (if it is not the root) and (up to) two children nodes through RMIs.

Red-black Successive Over-relaxation (SOR) [NMB+99] is an iterative

method for solving discrete Laplace equations: it performs multiple passes

over a rectangular grid, updating each grid point using a stencil operation (a

function of its four neighbors). The grid is distributed across all nodes in a

row-wise fashion so each node receives several contiguous rows of the grid.

Due to the stencil operation and the row-wise distribution, at each iteration

every node (except for the first and last) needs to exchange its boundaries

rows with its left and right neighbors using RMIs before updating the points.

Each iteration has two exchange phases and two computation phases. The in-

put used is a 1600x1600 grid of double values.

EM3D is a parallel application that simulates electromagnetic wave

propagation [CDG+93]. The main data structure is a distributed graph. Half of

its nodes represent values of an electric field (E) at selected points in space,

and the other corresponds to values of the magnetic field (H). The graph is bi-

partite: no two nodes of the same type (e.g. E or H) are adjacent. Each of the

processors has the same number of nodes, and each node has the same num-

ber of neighbors. Computation consists of a sequence of identical steps: each

processor updates values of its local H- and E-nodes as a weighed sum of their
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neighbors. A naïve version of EM3D performs an RMI to fetch the value from

a remote node each time the value is needed. An optimized version uses a

simple pre-fetching scheme: a ghost-node is introduced for each a remote

node that is shared by many local nodes. During the pre-fetching phase, each

ghost node fetches the data from its corresponding remote node, eliminating

redundant RMIs. There are no remote accesses during the computation phase.

The version of EM3D used here aggregates ghost nodes on a per-

processor basis and issues a single RMI per processor. It uses a double array

as argument and explicitly copies data between the graph and the array itself.

The benchmark uses a synthetic graph of 40,000 nodes distributed across 8

processors where each node has degree 20 for a total of 800,000 edges. The

fraction of edges that cross processor boundaries is varied from 0% to 50% in

order to change the computation to communication ratio.

Fast Fourier Transform (FFT) [CcvE99] computes the n-input butterfly

algorithm for the discrete one-dimensional FFT problem using P processors.

The algorithm is divided into three phases: (i) log(n) – log(P) local FFT compu-

tation steps using a cyclic layout where the first row of the butterfly is as-

signed to processor 1, the second to processor 2, and so on; (ii) a data re-

mapping phase towards a blocked layout where the n/P rows are placed on

the first processor, the next n/P rows on the second processor, and so on; and

(iii) log(P) local FFT computation steps using the blocked layout. In the first

and third phases, each processor is responsible for transforming n/P elements.

Each processor allocates a single n/P-element vector to represent its portion of

the butterfly. Communication occurs only in the data re-mapping phase where

each processor uses RMIs to send a n/P2-element chunk of data to each remote
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processor23. The communication is staggered to avoid hot spots at the destina-

tion. Two versions— one using an array of Complex (with two double fields)

and another using two double arrays— are run with an input of one million

points.

The last application is a version of pMM (Section 3.3) where the com-

munication using Javia-I/II is replaced with RMIs. pMM is run using 256x256

matrices on 8 processors.

4.3.2   Performance

RMI performance has little impact, if any, on the two irregular applications.

Figure 4.6 shows the speedups of TSP and IDA. In TSP, the load is fairly bal-

anced though coarse-grained; in IDA, idle workers ping other workers in a

tight loop trying to steal work, congesting the network with RMIs.

The benefits of a fast transport layer are more pronounced in applica-

tions with distinct communication and computation phases. SOR (Figure 4.7)

using RMI over Javia-II attains a speedup of 6.3 on 8 processors compared to

about 1.8 if RMI over sockets are used. The per-edge cost of EM3D (Figure 4.8)

grows as the percentage of remote edge grows, as expected. The array-based

versions of FFT using RMI over Javia-I/II are able to achieve a peak 7Mflops

(Figure 4.9). In comparison, the best FFT performance by a C program re-

ported on a similar machine (a single 300Mhz Pentium-II) is about 70Mflops

[Fft99].

                                                
23 Because the FFT transfer size far exceeds the maximum transfer unit (MTU) of the RMI implementation
(32Kbytes), data has to be further segmented to fit in MTU-sized chunks.
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pMM using RMI over Javia-II (Figure 4.10) achieves a peak perform-

ance of 120Mflops, which is less than 40% of that achieved by pMM over

Javia-II. The high communication time is partly attributed to context switches

between the main and the remote object threads24.

4.3.3   Estimated Impact of Serialization

To evaluate the effect of high serialization costs more precisely, we estimate

the fraction of the communication time and of the total execution time in

which the processor spends in serialization alone. The methodology relies

heavily on the application’s structured communication pattern and exploits

two facts: (i) the cluster nodes have a single processor, and (ii) each applica-

tion invokes a single remote method during the communication phase. For

each processor, the total number of incoming RMIs during the communication

phase is multiplied by the cost of de-serializing the arguments (both type and

size are considered); the total number of outgoing RMIs25 is multiplied by the

total cost of serializing the arguments. The sum of the two resulting quantities

is an estimate of the time spent in object serialization. Table 4.5 summarizes

the communication profile of the structured applications in RMI benchmark

suite.

Table 4.6 shows that the estimated serialization and de-serialization

costs can account for as much as 15% of an application’s execution time.

                                                
24 Pipelining RMIs with multiple sender threads to hide network latency improved the communication time by less
than 10%.
25 The total number of incoming and outgoing RMIs reported in Table 4.5 have been validated by runtime RMI
profiling.
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4.4   Summary

The performance of object serialization is currently inadequate for cluster

computing. Java’s type safety causes array serialization to be over an order of

magnitude higher than basic communication overheads as well as memory-to-

memory transfer latencies. Better compiler technology will unlikely yield sub-

stantial improvements in serialization. Because of data copying, serialization

costs grow as a function of object size. This essentially nullifies the “ zero-

copy”  benefits offered by modern network interfaces.

The Java I/O model dictates that objects be serialized and de-serialized

via cascading I/O streams, which leads to inefficient data access and buffering

[NPH99]. Setting up these streams is also very costly: for example, experi-

ments with RMI over Javia-II indicate that the round-trip latency of a null, op-

timized RMI is 5x faster than that of an RMI with one integer argument.

Overall, serialization costs are estimated to account for 3% to 15% of total exe-

cution time of communication intensive applications.

4.5   Related Work

4.5.1   Java Serialization and RMI

KaRMI [NPH99] presents a ground-up implementation of object serialization

and RMI entirely in Java. Unlike Manta (see below), the authors seek to pro-

vide a portable RMI package that runs on any JVM. On an Al-

pha500/ParaStation cluster, they report a point-to-point latency of 117µs and

a throughput of over 2MBytes/s (compared to a raw throughput of

50MBytes/s). The low bandwidth is attributed to several data copies in the

critical path: on each end, data is copied between objects and byte arrays in

Java and then again between arrays and message buffers. The copying over-



91

head is so critical that the serialization improvements over JDK1.4 vanish

quickly as transfer size increases.

Several other projects [JCS+99, CFK+99] have shown that the perform-

ance of serialization is poor in the context of messaging layers such as MPI.

Breg et al. [BDV+98] recognizes the poor performance of Java RMI but

advocates a “ top-down”  solution: it designs a subset of RMI that can be lay-

ered on top of the HPC++ runtime system. Krishnaswamy et al. [KWB+98]

improves the performance of RMI over UDP with clever caching.

4.5.2 High Performance Java Dialects

Manta [MNV+99] is a “ Java-like”  language and implements Java RMI effi-

ciently over Panda, a custom communication system. Manta relies on com-

piler-support for generating marshaling and unmarshaling code in C, thereby

avoiding type checking at runtime. It communicates using both JDK’s seriali-

zation protocol for compatibility as well as a custom protocol for performance.

Manta is able to avoid array copying in the critical path by relying on a non-

copying garbage collector and scatter/gather primitives in Panda. The authors

report a RMI latency of 35µs and a throughput of 51.3MBytes/s on a PII-

200/Myrinet cluster, which is within 15% of the throughput achieved by

Panda.

Titanium [YSP+98] is a Java dialect for parallel computing that is in-

spired by Split-C [CDG+93], a parallel extension to C with split-phase opera-

tions. Titanium is designed first for high performance on large-scale

multiprocessors and clusters, and only second to safety, portability, and sup-

port for building complex data structures. Titanium supports contiguous
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multi-dimensional arrays that map efficiently onto bulk transfers in Active

Messages.

4.5.3 Compiler-Support for Serialization

More generally, previous work has demonstrated that optimizing stub com-

pilers are required to reduce the serialization overheads that plague many dis-

tributed systems for heterogeneous environments. Schmidt et al. [SHA95,

GS97] studied the performance of rpcgen and two commercial CORBA im-

plementations. They reported that traditional stub compilers produced infe-

rior code compared to hand-written stubs. The Flick IDL Compiler [EFF+97]

uses custom intermediate representations and traditional compiler optimiza-

tions to produce stub code that is superior to most stub compilers. Object seri-

alization in Java is inherently more expensive because object types (i.e. classes)

have to be serialized as well.
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5   Optimizing Object Serialization

Object serialization, with the cooperation of the RMI system, can be aggres-

sively specialized for homogeneous clusters. This chapter presents a speciali-

zation technique called in-place de-serialization— de-serialization without

allocation and copying of objects— that leverages the zero-copy capabilities of

the VI architecture during object de-serialization. The technique makes de-

serialization costs independent of object size, which can be beneficial espe-

cially when dealing with large objects such as arrays. The challenge is to in-

corporate incoming objects (in message buffers) into the receiving JVM

without compromising the JVM’s integrity, without placing any restrictions

on subsequent uses of those objects, and without making assumptions about

the garbage collector.

In-place de-serialization is realized using jstreams, an extension of jbufs

with methods to read and write objects from and into communication buffers.

The in-memory layout of objects is preserved during serialization so storage

allocation and data copying are not needed during de-serialization. By con-

trolling whether a jstream is part of the GC heap, de-serialized objects can be

cleanly and safely incorporated into the JVM. Jstreams do not require changes
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to the Java source language or byte-code and is not dependent on a particular

JVM implementation or GC scheme.

The performance of a prototype implementation in Marmot is com-

pared to standard object serialization. Results show that de-serialization costs

are comparable to Javia’s receive overheads, especially when the implementa-

tion is in native code. Jstreams have been incorporated into the RMI system

over Javia-II (presented in the previous chapter) with minor modifications to

the RMI stub compiler in order to support “ polymorphic”  remote methods. By

eliminating data copying during de-serialization, Jstreams improve the point-

to-point performance of RMI substantially, bringing it to within a factor two of

that achieved by Javia-II. For many structured applications in the RMI bench-

mark suite, this improvement reduces overall execution time by 3-10%.

5.1   In-Place Object De-serialization

A JVM-specific protocol preserves the in-memory layout of objects on the wire

during serialization. Upon message arrival, serialized objects are integrated

into the receiving JVM without having to copy the data from the receive buff-

ers into a newly allocated storage. The design requirements are:

1. The integrity of the JVM on which de-serialization takes place must be

preserved. De-serialization should not compromise the JVM and

should not corrupt its storage integrity. De-serialized objects should be

genuine Java objects as if they had been allocated by the JVM itself.

2. De-serialized objects should be arbitrary Java objects. They should not

require special annotation other than that required by standard seriali-

zation (i.e. objects must implement the Serializable interface.)
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3. The implementation of de-serialization should be independent of a par-

ticular GC scheme.

Because in-place de-serialization requires a JVM-specific protocol,

jstreams do not support user-specific extensions to the wire protocol.

The security of the wire itself is not an issue in homogeneous clusters:

to make messages truly secure on the wire, one has to resort to cryptographic

techniques that are antithetical to high performance.

5.2   Jstreams

A jstream extends a jbuf as follows:

1 public class Jstream extends Jbuf {
2 
3   /* serializes an object into the stream */
4   public final void writeObject(Object o) throws TypedException,
5     ReadModeException, EndOfStreamException;
6 
7   /* clears the stream */
8   public final void writeClear() throws TypedException, ReadModeException;
9 
10   /* de-serializes an object, makes stream visible by GC */
11   public final Object readObject() throws TypedException, UnrefException;
12 
13   /* unRef and setCallBack methods not shown */
14 
15   /* checks if an object resides in a jstream */
16   public final boolean isJstream(Object o);
17 
18 }

Jstreams replace efficient access through arrays with an object I/O

streaming interface. They inherit jbufs’ lifetime location control. As seen in

Figure 5.1, writeObject (line 4) serializes a Java object onto a jstream. If a

jstream is full, an EndOfStreamException is thrown. writeClear (line 8)

resets the stream.

readObject (line 11) de-serializes an object from a jstream— subse-

quent writeObject and writeClear invocations on the same jstream fail

with a ReadModeException so de-serialized objects are not clobbered. A

readObject will succeed even without previous writeObject invocations
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on the same jstream: the data may have been written by a network or I/O de-

vice. If no object is left in the stream, an EndOfStreamException is thrown.

A jstream becomes part of the GC heap after the first readObject in-

vocation (as seen in Figure 5.2(b)) so the GC can track references coming out of

the de-serialized objects. To free or re-use a jstream, an application has to first

explicitly invoke unRef (after which readObject will fail with an

UnrefException), and then wait until the GC invokes the corresponding

callback method, as seen in Figure 5.2(c).

As with jbufs, references to de-serialized objects can be stale (e.g. the

object has been moved out the jstream). Programmers can check whether an

object reference is stale by invoking the isJstream method line 16).

A TypedException is thrown during any of the write and read calls if

the jstream is currently being referenced as a jbuf.

Jstreams also support serialization and de-serialization of primitive

types with write/readByte, write/readInt, etc (not shown).

Figure 5.1   Serialization with jstreams. Objects in the GC heap
(a) are copied into the jstream (b).

(a)

jstream

GC heap GC heap

jstream

(b)
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Figure 5.2  Object de-serialization with jstreams. Upon mes-
sage arrival (a), the objects are de-serialized from the jstream
(b): no restrictions are imposed on those objects. After the
jstream is explicitly unrefed (c) and the callback invoked (d),
it can be de-allocated or re-used.

(c) (d)

(a) (b)

GC heap

jstream jstream

jstream jstream

GC heap

GC heap GC heap
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5.2.1 Runtime Safety Checks

Safety is enforced through runtime checks and with the cooperation of the

garbage collector. Essentially, a jstream has two modes of operation: a write

and a read mode. The state diagram of a jbuf is augmented with three states

(shown in Figure 5.3):

1. Write mode (write). The jstream contains at least one serialized object

and only permits writeObject and writeClear invocations.

2. Read mode (read). There is at least one reference to a de-serialized ob-

ject in the jstream. Note that, unlike the ref<p> state of a jbuf, this state

is not parameterized by a primitive-type. Only readObject calls are

permitted in this state.

Unref Write
Mode

to-be
unref

writeObject

writeObject, GC

unRef

readObjectGC*

Read
Mode

readObject

readObject, GC

writeClear

unRef

alloc

free

Figure 5.3   Jstreams state diagram for runtime safety checks. When
the GC* transition takes place depends on whether the GC is copying
or non-copying.
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3. To-be-unreferenced (2b-unref). The application has claimed that the

jstream has no object references and is awaiting on the GC to verify that

claim. Again, note that this state is not parameterized.

A jstream starts at unref and goes into write mode after a successful in-

vocation of writeObject. When a writeClear is invoked, the jstream re-

turns to the unref state. When a readObject is invoked, it goes into the read

mode (from either write or unref states). It makes a transition from read to the

2b-unref state after an unRef invocation, and returns to the unref state after the

callback. Note that neither read nor 2b-unref states are parameterized by a

primitive-type.

Jstreams also require the cooperation of the network interface so they

are not clobbered by the DMA engine. As stated in Section 5.2.7, receive posts

are only allowed if the jstream is in the unref state.

5.2.2   Serialization

Serialization is implemented by writeObject and is based on a JVM-specific

wire protocol. writeObject traverses the object and all transitively reach-

able ones and copies them into the stream. The in-memory layout of objects is

preserved on the wire26. Class objects are not serialized onto the wire; instead,

a 64-bit class descriptor27 is placed in the object’s meta-data fields28. Jstreams

                                                
26 To this end, serialization of object references is delayed until the serialization of the current object is completed.
27 The descriptor is a checksum with the property that, with very high probability, two classes have the same de-
scriptor only if they are structurally equivalent. A descriptor for class is obtained by invoking the static method
GetSerialVersionUID in the ObjectStreamClass class provided by JOS27 (in java.io
package).
28 Pointers to the virtual method dispatch table (vtable) and to the monitor object are mandatory meta-data fields in
an object. Dispatch table is required to support virtual methods in Java. The monitor structure is needed to support
per-object synchronization (Section 17.17.3, [LY97]). If these fields are not adjacent to each other on a particular
JVM, the type-descriptor can be truncated into 32 bits.
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require a two-way mapping between the meta-data and the corresponding 64-

bit descriptor in order to expedite serialization and to look up the corre-

sponding meta-data during de-serialization.

Pointers to objects are swizzled [Mos92]: they are replaced with offsets

to a base address. Offsets of serialized objects are temporarily recorded so

they are not re-serialized if the data structure is circular.

As an example, consider the Java class definition for an element of a

linked list of byte arrays (LBA) as seen in Figure 5.4(a). It contains an integer

field i, a reference to a byte array data, and a pointer to the next element in

(c)

LBA CD

LBA CD

1

OFF + 5

OFF+8+N

byte[ ] CD

N

byte[ ] CD

byte[0]

. . .

LBA CD

LBA CD

2

OFF:

OFF + 5:

. . .

(a)

(b)

public class LBA
implements Serializable
{
  int i;
  byte[] data;
  LBA next;
}

1

2

head

monitor
v-table

LBA

Byte
Arrays

LBA

Figure 5.4   Jstreams wire protocol in Marmot. (a) Class definition of a
linked-list of byte arrays. (b) In-memory layout of a two-element list
in Marmot. (c) The wire representation of the list on Marmot.
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the list. Figure 5.4(b) shows the in-memory layout of the list in the Marmot

system, and Figure 5.4(c) shows the contents of a jstream after the list is seri-

alized.

5.2.3   De-Serialization

De-serialization is implemented by readObject, which traverses the jstream

in a depth-first order. For each object, it reads the 64-bit class descriptor from

the wire, overwrites the descriptor with the corresponding meta-data, and

performs the same procedure recursively on objects referenced by the pointer

fields. “ Offsets”  are first bounds-checked (so as not to exceed the size of the

jstream) and then unswizzled: actual pointers are obtained by adding the

jstream’s base address to an offset.

De-serialization must protect a jstream from corrupted or malicious

data from the wire: for example, a portable pointer can point to a location that

overlaps a previously de-serialized object. To this end, readObject tracks

“ black-out”  regions in the jstream— regions that contain de-serialized ob-

jects— and rejects any “ offset”  pointing to one of those regions.

5.2.4   Implementing Jstreams in Marmot

Jstream extends the implementation of the Marmot jbufs two implementations

of writeObject and readObject, one written in C and one in Java. The C

implementation contains about 600 lines of code. Three implementation de-

tails are worth mentioning:

1. The mapping between vtable pointers and 64-bit type descriptors is

constructed during static initialization of class reflection tables (used to

support reflection).
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2. When traversing the fields of an object, the Java implementation of

writeObject uses reflection29 to obtain the object layout information

and to tell the reference fields from the non-reference ones;

readObject needs reflection for the latter reason only. The C imple-

mentation relies on the same reflection information for writeObject,

but uses a concise 32-bit pointer-tracking information that is stored in

each class object (this information is also used by the copying garbage

collector for the same purpose).

3. After the first invocation of readObject, a jstream is incorporated into

the copying GC heap as a “ pinned segment”  in Marmot. It is only pro-

moted to a “ collectable”  segment after it has been explicitly unRefed.

As a pinned segment, the contents of the jstream are visible but not

copied during the Cheney scan. The collector handles Java objects re-

siding in a pinned jstream as if they have been stack-allocated [SG98].

5.2.5   Performance

Figures 5.5 and 5.6 show the performance of the Java and C versions of

writeObject and readObject in Marmot respectively. Although the Java

version is just as expensive as JOS’ in Marmot, the C version is substantially

faster primarily because it uses memcpy. The de-serialization costs in C are

about 2.6µs for arrays and 3.3µs for list elements and are constant with respect

to object sizes. Incorporating a jstream into the copying collector as a pinned

segment incurs an additional 3.6µs at the first invocation of readObject.

                                                
29  Reflection in Marmot is augmented to provide object layout information as well: each object field has an offset
(to the vtable) and padding information associated with it. The Java Reflection API [Jav99] does not provide object
layout information.
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Figure 5.5   Serialization overheads of jstreams in Marmot.
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Figure 5.6   De-serialization overheads of jstreams in Marmot.
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5.2.6   Enhancements to Javia-II

Jstreams requires the definition of a communication stream, or ViStream. A

ViStream is analogous to a ViBuffer (Section 3.2.1) in that it extends a

jstream with methods to pin (and unpin) its memory region onto physical

memory so it can be directly access by the DMA engine.

A pair of asynchronous send (sendStreamPost/sendStreamWait)

and receive calls (recvStreamPost/recvStreamWait) are added to Javia-

II’s interface. Receive posts are only allowed if the jstream is in the unref state.

No architectural changes are made to Javia-II.

5.2.7 Proposed JNI Support

An extension to the JNI can enable more portable implementations of jstreams

without revealing two JVM-specific information: the in-memory layout of ob-

jects (including pointer-tracking information) and the GC scheme. The pro-

posed extension to JNI consists of five functions as follows:

void *createMapping(JNIEnv *env);

This function returns a two-way table that maps JVM-specific meta-

data (e.g. vtables) to 64-bit class descriptors for all classes; null if an er-

ror occurs.

void *createMappingForClass(JNIEnv *env, jobject class);

This function returns a two-way table that maps JVM-specific meta-

data (e.g. vtables) to 64-bit class descriptors for the specified class, its

super-class, and all transitively reachable classes; null if an error occurs.

This function is used to support “ polymorphic”  RMIs (Section 5.3.1).
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void writeObjectNative(JNIEnv *env, void *mapping, jobject

obj, char *seg, int seg_size);

This function makes a deep copy of obj based on a JVM-specific proto-

col that maintains the object layout in the wire. It translates obj’s class-

related meta-data to 64-bit class descriptors based on mapping.

jobject readObjectNative(JNIEnv *env, void *mapping, char

*seg, int seg_size, boolean *isCopy);

This function returns null if the de-serialization process fails. Class de-

scriptors are translated to meta-data based on mapping. If isCopy is

true, the returned reference has been copied into the GC heap, so seg

can be re-used (this is conservative: no zero-copy). If isCopy is false,

then the returned reference points to the object in seg, seg is automati-

cally added to the garbage-collected heap, and the user can access the

object through JNI access methods.

jobject readObjectNativeCheck(JNIEnv *env, void *mapping,

jobject class, char *seg, int seg_size, boolean *isCopy);

Same as above except that the class of the returned object must match

class. This function is used to support “ polymorphic”  RMIs (Section 5.3.1).

5.3   Impact on RMI and Applications

This section evaluates the effect of jstreams on the point-to-point performance

of RMI as well as on the RMI benchmark suite. The section starts with a brief

description of the modifications to the RMI implementation presented in Sec-

tion 4.2.2 and of the zero-copy optimization for arrays.
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5.3.1   “Polymorphic” RMI over Javia-I/II

In order to support polymorphic RMIs, the following method is added to the

Jstream class:

1 public class Jstream extends Jbuf {
2 
3   /* readObject checks if the descriptor of the class (or of     */
4   /* any of its super-class) is the same as that of the argument */
5   /* class. */
6   public Object readObject(Class arg) throws TypedException,
7     UnrefException, ClassMismatchException;
8 }

The method readObject checks whether the class descriptor of the

de-serialized object’s class or any of its super-classes30 match that of the argu-

ment class and throws a ClassMismatchException if no match is found.

This requires a simple modification to RMI stub compilers: each readObject

invocation must take the class of the formal parameter as argument.

A remote call object over Javia-II augmented with jstreams has been in-

corporated into the RMI implementation. A connection is also composed of

two virtual interfaces, except that the one for RMI payload is posted with

jstreams. As in Jam (Section 3.4.2), the number of jstreams posted on each re-

mote call object is a service parameter. Each incoming RMI consumes a

jstream, which in turn is reclaimed on demand by the remote call object.

Specialization is achieved by making the type of the RMI transport a

service parameter as well. A high-speed transport is used as long as it sup-

ported on both the server and the client sides; otherwise, a slower type of

transport (e.g. sockets or Javia-I) is used.

                                                
30 The list of super-class descriptors for each class is computed using reflection during static initialization.



107

5.3.2   Zero-Copy Array Serialization

Serialization of a primitive-typed array residing in a pinned jbuf is optimized:

writeObject writes the jbuf’s base address and transfer length instead of

copying the elements of the array into the stream; readObject essentially

performs a to<p>Array.

Although a jstream is a jbuf itself, the jbuf in which the array resides

and the jstream into which the array is serialized can not be the same— there is

no transition from the ref<p> state into the write state. Therefore, the Java ap-

plication has to explicitly manipulate arrays in jbufs. Jstreams are used by

automatically generated RMI stubs and are thus hidden from applications.

5.3.3   RMI Performance

Figure 5.7 shows the round trip latencies of RMI over Javia-II using jstreams

(with zero-copy array serialization, which is about 25µs above that achieved
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Figure 5.7   RMI round-trip latencies using jstreams.
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by a ping-pong program using C. This cost is fixed with respect to the transfer

size31. Figure 5.8 shows the peak effective bandwidth: about 52MBytes/s com-

pared to about 20MBytes/s attained by RMI over jbufs using JOS. The band-

width curve reaches the peak at a slower rate than Jam and Javia-II because

RMIs are not pipelined (in accordance with the blocking semantics).

5.3.4   Impact on Applications

The same set of benchmark runs as described in Section 4.3.1 are repeated us-

ing RMI over Javia-II with jstreams. The runs are taken with zero-copy array

serialization enabled. The number of jstreams for each remote object has been

chosen so that the fraction of the total time spent in GC is minimized. For

SOR, EM3D, and FFT, a pool of 100 jstreams is sufficient to bring that fraction

                                                
31 Up to MTU (32Kbytes), beyond which the payload needs to be fragmented (which incurs additional overheads).
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Figure 5.8   RMI effective bandwidth using jstreams.



109

to about 1.5%. For pMM, a pool of 1000 jstreams (each of size 2Kbytes) brings

the fraction of GC time to about 15%32.

Table 5.1 shows the effect of jstreams on the performance of the RMI

benchmark suite. Compared with the benchmark results obtained using RMI

and JOS over jbufs, the measured improvements in total execution time for all

applications but pMM— from 2% to 10%— are comparable to the estimated

values presented in Section 4.3.3. Although the communication time in pMM

improves by about 10% (about 2x higher than the estimate), the overall execu-

tion time actually takes nearly a 10% hit due to poor cache behavior.

5.4   Summary

Jstreams enable zero-copy de-serialization of arbitrary objects by leveraging

the location control provided by jbufs. Serialization of simple objects such as

primitive-typed arrays can be optimized for zero-copy as well. These optimi-

zations bring the performance of RMI to within a factor two of the raw hard-

ware performance in a homogeneous cluster environment. This translates to a

                                                
32 There are 26 GC occurrences (about 1.2ms per GC); the total amount of time spent in GC (~32ms) is less than
15% of a total execution time of 280ms.

JOS 
comm 
(secs)

JOS   
total 

(secs)

jstreams 
comm 
(secs)

jstreams 
total 

(secs)

% 
improv. 
comm

% 
improv. 

total

% improv. 
comm 
(est.)

% improv. 
total (est.)

4.59 19.78 3.99 19.08 13.20% 3.52% 11.76% 2.73%
2.20 4.60 1.99 4.37 9.50% 4.85% 10.90% 5.22%

18.30 19.03 16.16 17.26 11.70% 9.30% 14.28% 13.73%
14.82 15.36 14.29 14.83 3.57% 3.40% 1.42% 1.37%

190.58 280.00 170.91 307.80 10.32% -9.93% 7.64% 5.20%pMM

Application

SOR

FFT arrays
FFT complex
EM3D arrays

Table 5.1   Measured Impact of Jstreams on Application Performance.
All columns are measured times except for the last two, which are esti-

mated % improvements from Section 4.3.3
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2% to 10% improvement in overall execution time for most applications in

RMI benchmark suite.

The jstreams architecture assumes that optimized implementations of

readObject and writeObject should be integrated into the JVM. First, the

wire protocol is JVM-specific so as to preserve the layout of objects. Second,

implementations in native code are not only faster, but can also utilize internal

JVM support for optimizations. For example, the implementation in Marmot

takes advantage of the 32-bit pointer-tracking vector used for forwarding

pointers during a copying collection. This information would otherwise have

to be obtained through some form of reflection, which would certainly be

more expensive.

Jstreams do not currently allow for extensibility of the wire protocol, as

does JOS. Extensibility through class annotations and user-defined external

wire formats is useful for supporting many higher-level communication ab-

stractions. For example, the RMI implementation relies on custom definitions

of readExternal and writeExternal methods to serialize and de-serialize

remote objects across the network. Rather than passing remote objects,

Jstreams are only used for invoking remote methods that transfer large

amounts of data— these methods are typically invoked very frequently and

therefore are worth optimizing.

Jstreams in fact only provide limited type checking: they are incapable

of preserving type invariance [Ten81]. For example, consider a class named

SortedList, a linked list whose elements are sorted in some fashion.

Jstreams check whether the class (or any super-class) of an incoming list

matches the expected formal parameter; however, they do not check whether

the elements of the list are actually sorted. Checking for type invariance can be
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accomplished through user-defined extensions. For example, users can define

a method called CheckSorted in SortedList that is invoked by

readObject before it returns a de-serialized object.

5.5   Related Work

5.5.1   RPC Specialization

Ever since the conception of the Remote Procedure Call in 1984 [BN84], re-

search in RPC systems over the last decade has focused largely on specializing

RPC for different types of platforms.

Initial research on RPC focused on inter-machine calls on conventional

workstations connected by a regular network (e.g. Ethernet). Key features

were reliability, security, and the ability to handle a variety of argument types

and to support for multiple transport layers over local or wide-area networks.

The overhead introduced by these requirements is well understood and thor-

oughly reported by Schroeder and Burrows in the context of the DEC Firefly

OS [SB90]. In the late 80’s, mainstream research was on tuning the RPC im-

plementation for best performance across the network. In the early 90’s, focus

shifted from cross-machine RPC to cross-domain, or local RPC. Bershad et. al.

[BAL+90] argued that in micro-kernel operating systems RPC calls occur pre-

dominantly between different protection domains (i.e. processes) within the

same machine. Lightweight RPC (LRPC) [BAL+90] was motivated by this ob-

servation and specializes RPC for the local case by reducing the role of the

kernel without compromising safety on uni-processor machines. User-level

RPC (URPC) [BAL+92] generalized this idea for shared-memory multiproces-

sors.
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Just as it became necessary to optimize RPC for the local case in con-

ventional operating systems, RPC should be specialized for high performance

within a parallel machine. A great deal of research projects in the parallel

computing such as MRPC [CCvE99], Concert [KC95], and Orca [BKT92] aimed

at improving the performance of RPC on multi-computers. The main theme

was to demonstrate that RPC can be efficiently layered over standard message

passing libraries while reducing the overheads of method dispatch, multi-

threading and synchronization. MRPC specializes RPC for multiple-program-

multiple-data parallel programming on multi-computers, replacing heavy-

weight, general-purpose RPC runtime systems such as Nexus [FKT96] and

Legion [GW96]. Concert depended on special compiler support for perform-

ance, while MRPC and Orca only relied on compilers for stub generation. Be-

cause multi-computers offers parallel programs dedicated access to the

network fabric, security in general was not an issue.

5.5.2   Optimizing Data Representation

Researchers have long pointed out that inadequate data representations and

presentation layers exacerbate the cost of serialization. Clark and Tennen-

house [CT90] identified data representation conversion to be the bottleneck for

most communication protocols. They advocate the importance of optimizing

the presentation layer of a protocol stack. Hoshcka and Huitema [HH94] have

attempted to improve protocol processing of self-describing presentation lay-

ers (i.e. ASN.1) by combining compiled stub code with interpretation. Despite

these efforts, such presentation layers are rarely used by RPC systems due to

the high decoding cost. The Universal Stub Compiler [OPM94] provides the
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user with the flexibility to specify the representation of data types. It uses this

information to reduce the amount of copying during marshaling.

In-place de-serialization uses the in-memory representation of data as

their wire representation, making it possible to eliminate copying altogether.

5.5.3   Zero-Copy RPC

Many high-performance RPC systems designed and implemented for com-

modity workstations have attempted to reduce the amount of data copying to

the extent possible. In the Firefly RPC system [SB90], data representation is

negotiated at bind time and copies are avoided by direct DMA transfers from

a marshaled buffer and by receive buffers statically-mapped into all address

spaces. Amoeba’s [TvRS+91] RPC is built on top of message passing primi-

tives and does not enforce any specific data representation. In the Peregrine

system [JZ91], arguments are passed on client stub’s stack. The stub traps into

the kernel so that the DMA can transfer data directly out of the stack into the

server’s stub stack. Peregrine also supports multi-packet RPC efficiently. The

authors reported a round trip RPC overhead of 309µs on diskless Sun-3/60

connected by 10MBits/s Ethernet. About 50% of this overhead were due to

kernel traps, context switches, and receive interrupt handling.

The RPC overheads of the above systems are dominated by kernel’s in-

volvement in the critical pat. SHRIMP Fast RPC project [BF96] optimizes RPC

for commodity workstations equipped with user-level network interfaces. Fast

RPC achieves a round-trip latency of about 9.5µs, 1µs above the hardware

minimum (between two 60Mhz Pentium PCs running Linux), and uses a cus-

tom format for data streams. This is closely related to the JVM-specific wire

format required by jstreams. It is unclear whether Fast RPC is able to support
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linked C structures; jstreams not only handles linked object structures but also

incorporates typing information.

A more recent effort by the Shah et al. [SPM99] shows implementations

of legacy RPC systems on top of a Giganet GNN-1000 adapter. A user-level

implementation of RPC achieves a 4-byte round-trip latency of about 110µs on

a server system with four 400Mhz Pentium-II XeonTM processors, which is over

5x times higher than GNN-1000 raw latency.

The idea of in-place de-serialization was first adopted by J-RPC, a zero-

copy RPC system for Java [CvE98]. Object de-serialization and the interaction

with the GC are hardwired in J-RPC, making it difficult to generalize the idea

for other communication models.

5.5.4   Persistent Object Systems

The idea of unswizzling pointers before they are incorporated into the object

heap has been exploited in many systems, most notably in persistent object

systems [Kae86, Mos92, WK92, HM93b]. The problem is that persistent stores

may grow so large that they contain more objects than can be addressed di-

rectly by the available hardware. Persistent store pointers have thus to be con-

verted into virtual memory addresses when objects are read from persistent

storage much like having to convert “ offsets”  into pointers in the receiving

JVM. Unlike unswizzling on discovery (doing the conversion in a lazy fashion,

at use) [WK92], jstreams perform unswizzling all at once [Mos92].
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6   Conclusions

The networking performance in state-of-the-art Java systems is not

commensurate with that of high-performance network interfaces for cluster

computing. This thesis argues that the fundamental bottlenecks in the data-

transfer path are the (i) separation between Java’s garbage-collected heap and

the native, non-collected heap that is directly accessible to network interfaces

(Chapter 2), and (ii) the high costs of object serialization (Chapter 4). The first

bottleneck is inherent to the interaction between a storage-safe language and

the underlying networking hardware; the second is inherent to the language’s

type-safety. Although this thesis studies these bottlenecks in the context of

Java, we believe they are applicable to other safe languages.

The approach proposed in this thesis— explicit buffer management— is

motivated by state-of-the-art user-level network interfaces. The thesis is that,

in order to take advantage of zero-copy capabilities of network devices,

programmers should be able to perform buffer management tasks in Java just

as they can in C, and most importantly, without breaking the storage and type

safety in Java. To this end, the main contributions of jbufs (Chapter 3) are in (i)

recognizing the role of the garbage collector in explicit memory management,

namely the ability to verify whether a buffer can be re-used or de-allocated
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safely, in (ii) exposing this role to programmers through a simple interface

(unRef and a callback), and in (iii) identifying the essential support needed

from a garbage collector that is independent of the collection scheme, namely

the ability to change the scope of the collected heap dynamically.

Jbufs offer two key benefits for Java applications that directly interact

with network interfaces: efficient access to a non-collected region of memory

as primitive-typed arrays and the ability to re-use that region. Our experiences

with cluster matrix multiplication (Section 3.3) suggest that efficient access is

convenient, reduces communication times, but currently has limited impact on

overall performance, which is dominated by poor cache locality and by

runtime safety checks. Our experiences with an implementation of Active

Messages (Section 3.4) indicate that the buffer re-use  is useful: for example,

communication system designers can implement their own buffer

management schemes or delegate them to applications. However, our

experiences with Java RMI (Section 4.2) using standard object serialization

reveal that efficient access and buffer re-use are essentially immaterial:

overheads are dominated by high serialization costs.

Jbufs stand out from related approaches in that they can be extended to

support in-place object de-serialization in a clean, safe, and efficient manner

(Chapter 5). The resulting abstraction, jstreams, is able to cut the cost of object

de-serialization to a constant irrespective to object size on homogeneous

clusters. This translates to an order of magnitude improvement in point-to-

point RMI performance and improvements (of up to 10%) to a set of

benchmarked RMI-based applications. The re-use of jstreams allows

applications to tune the RMI system for performance; measuring the

effectiveness of this tuning, however, is beyond the scope of this thesis.
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For applications that exchange RMIs intensively, such as cluster matrix

multiplication, two variables come in play when tuning the size of the buffer

pool: data locality and garbage collection. A pool with a large number of

jstreams decreases the frequency of garbage collections, but harms the data

locality of the application. Our experiences with cluster matrix multiplication

reveal that tuning the buffer pool size is hard and that the overall application

performance with jstreams can be actually worse (by at least 10%) than with

standard object serialization. This is in part attributed to the semi-space

copying collector being used, which yields high collection costs (15% of total

execution time). A generational collector will likely reduce these costs in a

substantial way.

Jstreams employ a simple optimization during serialization: array

objects that reside in jbufs are transferred in a zero-copy fashion. While it

works well for all the RMI applications used in this thesis, achieving zero-

copy serialization of arbitrary objects in a clean fashion is still an open problem.

The fundamental difficulty is that objects can be scattered all over the heap33;

even with user cooperation (e.g. having the user allocate objects into a single

jbuf34 so they remain “ adjacent”  with one another), it is still difficult to control

the location of all Java objects35.

The ideas presented in this thesis are applicable to other kinds of high-

performance Java applications that interact with I/O devices, such as file

systems and persistent object systems. For example, a file could be memory-

                                                
33 Solutions based on DMA scatter-gather operations are vulnerable in that they do not scale well (due to resource
limitations of the underlying network interface) and that scatter-gather operations are expensive to set up
[MNV+99].
34 A jbuf can be easily extended with an object allocation interface.
35 For example, character arrays of Java strings are typically “interned” in some internal table maintained by the
JVM.
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mapped into a jbuf and accessed directly by Java file I/O streams. Also, a heap

of persistent objects could be serialized into stable storage, and later in-place

de-serialized and incorported into the JVM. It is clear that the base

performance of these systems will improve [Wel99], though substantial

improvements in overall application performance remains to be seen.
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