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This document investigates experimental and theoretical issues relating to

the detection of physics beyond the Standard Model using the Compact Muon

Solenoid (CMS).

First, the structure of the CMS detector is reviewed. Particular attention is

paid to the hardware and software components of the pixel tracking system. A

description is presented of the algorithms that are used to reconstruct physics

objects such as electrons and jets.

Next, theoretical motivations are given for seeking new physics processes in

the energy regime that is accessible by CMS. Two different theories, the Minimal

Supersymmetric Standard Model and the Littlest Higgs model with T-parity, are

introduced as extensions of the Standard Model. Their experimental signatures

are considered, and a technique for discriminating between them using CMS

observations is studied with Monte Carlo computer simulations.

The remainder of the document focuses on a search for evidence of a new

physics signature using CMS events that contain two electrons, two jets, and

large missing transverse energy. A data-driven technique for estimating the

QCD background due to fake electrons is developed, tested, and applied to this

channel. The other background estimates are obtained from Monte Carlo simu-

lations, and several sources of systematic uncertainty are surveyed. A correction

factor to the Monte Carlo backgrounds is calculated from the electron recon-



struction efficiencies in data and in simulation, which are measured using a tag

and probe procedure. A statistical model is developed for propagating all of

the background uncertainties to the calculation of the signal. Both Bayesian and

semi-frequentist measures of significance are considered. The expected value of

the signal is 〈s〉 = 0.238± 0.996 (stat)± 0.304 (sys) events, and its 95% confidence

interval is [0, 4.4].
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CHAPTER 1

INTRODUCTION

The Large Hadron Collider (LHC) is the site of the most energetic artificially

created particle collisions in the world. It was constructed to investigate the ma-

jor open questions in particle physics today, such as the existence of the Higgs

boson, and the nature of particle interactions at the 1 TeV energy scale, which is

the energy regime where theoretical and experimental arguments suggest that

physics beyond the Standard Model will be observable. This document surveys

several techniques that can be used to observe and identify a new physics sig-

nature. These techniques are applied to a sample of early data obtained from

the first ten months of LHC operation.

The Compact Muon Solenoid (CMS) is one of four particle detectors in oper-

ation at the LHC. All of the data used in this document were obtained from ob-

servations taken by CMS. Elementary particles are produced in proton-proton

collisions and interact with the different layers of the detector. The interactions

are used to reconstruct particle properties such as charge, position and momen-

tum. Chapter 2 contains an overview of the CMS detector subsystems. The pixel

tracking system, which is the innermost layer of the detector, is considered in

detail, including the hardware components and the structure of the software.

Chapter 2 also describes the algorithms through which collision events are re-

constructed.

The Standard Model is reviewed in Chapter 3, with emphasis on its use of the

Higgs mechanism of spontaneous symmetry breaking to generate mass terms

for fermions and gauge bosons. One piece of evidence for the incompleteness

of the Standard Model is the scalar Higgs boson mass, which acquires quadrat-
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ically divergent quantum corrections. To avoid fine-tuning of the bare mass pa-

rameter, a new physics theory is required that cancels these divergences above

approximately 1 TeV. Evidence of physics beyond the Standard Model should

therefore be within the reach of LHC collisions.

Several theories have been posited regarding the nature of physics beyond

the Standard Model. In Chapter 3, two potential new physics theories are de-

scribed: Supersymmetry, specifically the Minimal Supersymmetric Standard

Model (MSSM) and its simplification, Minimal Supergravity (mSUGRA); and

the Littlest Higgs model with T-Parity (LHT). These models are based on very

different theoretical underpinnings, but they lead to similar phenomenologies.

If a new physics signature is observed at CMS, a crucial question will be

whether the observation supports or excludes a particular new physics hypoth-

esis. Chapter 4 presents a study, performed on Monte Carlo simulations, of a

technique for model discrimination. This technique is shown to potentially rule

out large regions of the LHT parameter space using a set of observations that

were generated by the MSSM.

The remaining chapters present an analysis of early CMS observations.

Events are considered that contain two electrons, two jets, and large missing

transverse energy. This is the decay channel in which a search for a new physics

signal is performed. The Standard Model backgrounds in this channel are esti-

mated either from Monte Carlo simulations or by data-driven methods. Chapter

5 describes the signature of interest, and presents an overview of the observa-

tions and measurements required for the new physics search.

One set of Standard Model background events occur when hadronic jets

2



from QCD events are misidentified as electrons in the CMS detector. This ef-

fect is difficult to model in computer simulations, so the background must be

estimated using a data-driven process. A measurement of the rate at which jets

lead to fake electrons is presented in Chapter 6. The fake rate can be used to con-

struct a prediction for the number of fake electrons in a given set of data. Several

tests of the accuracy of the fake rate prediction are performed, after which it is

used to estimate the fake electron background in the multi-electron channel.

Many sources of systematic uncertainty must be considered when back-

ground estimates from Monte Carlo simulations are applied to data. One in

particular is the electron reconstruction efficiency, which may be different in

data than in simulation. The tag and probe method for measuring the electron

reconstruction efficiency is presented in the first half of Chapter 7, and the re-

sults are used to construct a correction factor to the Monte Carlo backgrounds.

Other systematic uncertainties are also evaluated.

Finally, all of the background estimates must be combined and subtracted

from the events in data to determine whether there was a nonzero signal. To

assess the statistical significance of the signal, the uncertainties on all of the

components of this calculation must be propagated. The second half of Chapter

7 presents a statistical model for performing these calculations. The observation

in the multi-electron channel is assessed in two ways: for evidence of a new

physics signal, and for compatibility with specific new physics hypotheses from

within the mSUGRA parameter space. Although a signal is not conclusively

observed, the techniques that are employed will be of continued utility in new

physics searches and model discrimination studies as more CMS observations

are accumulated.
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CHAPTER 2

THE COMPACT MUON SOLENOID DETECTOR

2.1 Detector and Collider Fundamentals

The Compact Muon Solenoid (CMS) detector is one of the general-purpose par-

ticle detectors commissioned for use at the Large Hadron Collider (LHC), which

is a proton-proton collider in operation at CERN. The LHC occupies an under-

ground tunnel, 27 km in circumference, that crosses the border between Switzer-

land and France [1]. The CMS detector is located in a cavern 100 m underground

outside the town of Cessy.

Under optimal running conditions, the LHC is designed to collide two

beams, each of which is composed of protons that have been accelerated to an

energy of 7 TeV, for a total center-of-mass energy of
√

s = 14 TeV. A beam con-

sists of 3564 bunches of protons, of which 2808 have real collisions. The bunch

crossing rate is 40.08 MHz, which corresponds to 25 ns between bunch cross-

ings. These conditions result in a total instantaneous luminosity of 1034 cm−2s−1

[2].

The data considered in this document were obtained during the first physics

runs at the LHC, which occurred from March to November 2010. The beams ran

at 3.5 TeV each, with instantaneous luminosities from 4× 1029 cm−2s−1 to 2× 1032

cm−2s−1 [3]. The total integrated luminosity obtained for this analysis is 33.84

pb−1.

The CMS detector is designed for efficient and accurate particle measure-

ments that can be applied to a wide variety of physics events. From the cen-

4



ter outward, the detector layers are the tracking system, the electromagnetic

calorimeter (ECAL), the hadron calorimeter (HCAL), and the muon system. The

tracker and the calorimetry systems are contained within the superconducting

solenoid, which is 13 m long and has a 5.9 inner diameter, and generates a 4 T

magnetic field. The muon system is outside the solenoid, alternating in layers

with the iron plates that guide the return magnetic field. Overall, the detector is

21.6 m in length, 14.6 m in diameter, and weighs 12500 tons [4].

A schematic of the detector is given in Figure 2.1. The detector design is

extensively documented in a report by the CMS collaboration, “CMS Physics

Technical Design Report, Volume 1: Detector Performance and Software” [5],

and more recently in the 2008 JINST article “The CMS Experiment at the CERN

LHC” [6]. The following descriptions of the detector subsystems and event re-

construction procedures are summaries of information compiled from these re-

ports.

The tracking volume is a cylinder that is 5.8 m in length and 2.6 m in diam-

eter. The system consists of three layers of silicon pixel detectors and ten layers

of silicon microstrip detectors. As charged particles pass through the tracker,

they interact with the silicon semiconductors. The positions and energies of

these interactions are recorded, allowing the trajectories of the particles to be

reconstructed. The fine granularity and multiple layers of the tracker allow for

precise track reconstruction and good momentum resolution. The inner layers

close to the interaction point facilitate b jet and τ tagging.

The electromagnetic calorimeter uses lead tungstate (PbWO4) crystals,

which emit blue-green scintillation light upon interaction with electrons and

photons. The light is collected by avalanche photodiodes (APDs) in the barrel,
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Figure 2.1: Schematic of the CMS detector, with the subdetector systems labeled.
Image taken from “The CMS Experiment at the CERN LHC, Section 1.1: Overall
concept” [4].

and vacuum phototriodes (VPTs) in the endcap. A preshower system composed

of alternating lead layers and silicon strip detectors is positioned in front of the

ECAL endcap for π0 rejection. The priorities of the ECAL design are to provide

wide geometric coverage, and to allow for accurate momentum resolution and

efficient photon and lepton isolation.

The hadron calorimeter consists of plastic scintillators alternating with brass

or iron absorber plates. The scintillation light is read out by wavelength-shifting

(WLS) fibers that are embedded in the scintillator tiles and spliced to clear

fibers that lead to the readout system, which is based on hybrid photodiodes

(HPDs). Coverage in the very forward region is provided by a steel/quartz fiber

calorimeter, and additional calorimetry layers outside of the magnet solenoid

serve to increase the effective thickness of the system and improve energy reso-

lution. The combined electromagnetic and hadron calorimetry systems provide
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hermeticity and energy resolution for the accurate reconstruction of jets and

missing energy.

The muon system consists of three different types of gaseous detectors. Alu-

minum drift tubes (DT) are in the barrel, and cathode strip chambers (CSCs) are

in the endcap. Resistive plate chambers (RPCs) are used in both regions, and

provide a second source of position and momentum measurements. Between

the detector layers are the iron plates that constitute the magnet return yoke.

The CMS detector is particularly well suited to muon identification, charge de-

termination, and momentum resolution.

At the maximum projected instantaneous luminosity, CMS can expect to ob-

serve approximately 109 events per second [4]. However, events can be fully

recorded at a rate of only 100 Hz. To select those events that are most likely to

contain interesting physics, a trigger system is implemented in two levels: the

Level 1 trigger and the High Level Trigger. The Level 1 (L1) trigger reduces the

event readout to 100 kHz. Because of the speed with which a decision must be

rendered, this trigger is implemented in the readout electronics of the calorime-

try and muon systems. The High Level Trigger (HLT) performs the remaining

reduction in readout to 100 Hz. Its decision is based on event analysis that is

performed by software.

The observations taken by the different subdetector systems are used to re-

construct physics objects such as muons, photons, electrons, jets and missing

energy. The reconstruction that is performed in real time by the HLT is referred

to as online. The more detailed reconstruction that is performed on archived

events is referred to as offline. The collection of software that performs these

and other tasks for CMS events is called CMSSW. The following sections pro-
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vide overviews of the detector components, and of the algorithms that result in

reconstructed physics objects.

2.2 Coordinate System and Experimental Observables

All kinematic quantities will be measured with respect to the following coor-

dinate system [7]. The origin is the nominal collision point at the center of the

CMS detector. The y-axis is directed vertically upward. The x-axis is directed

radially inward with respect to the curve of the LHC tunnel. The z-axis is tan-

gential to the beam direction. The azimuthal angle, which is measured from the

x-axis in the xy plane, is denoted φ. The polar angle, which is measured from

the z-axis, is denoted θ. The pseudorapidity η is defined by

η ≡ − ln tan (θ/2) . (2.1)

Using this definition, η → +∞ as θ → 0, and η → −∞ as θ → π. The transverse

plane has an η value of zero.

In a proton-proton collision at the LHC, the total energy of each proton is

known, but the distribution of that energy amongst the individual partons is

not. Therefore, the total energy of the interaction is not a known quantity. How-

ever, in the center-of-mass frame, if the beam is aligned correctly, then the net

momentum in the xy plane should be zero. Therefore, particular attention is

paid to the transverse components of kinematic quantities, which are computed

from x and y components. The transverse momentum of a particle is given by

pT =

√
p2

x + p2
y = p sin θ. (2.2)
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The transverse energy is defined by

ET = E sin θ =
E
p

pT , (2.3)

which suggests that x and y components of energy can be defined by

Ex =
E
p

px, (2.4)

Ey =
E
p

py. (2.5)

Using these components, one can perform a vector sum of the transverse ener-

gies of different objects. Finally, the transverse mass is defined by

mT =

√
p2

x + p2
y + m2. (2.6)

Events can be globally described by taking sums of energy or momentum

over all of the reconstructed objects in the event. Of particular interest is the

missing transverse energy. If all of the products of a particular collision event

are correctly observed and reconstructed, then the net transverse energy in the

event should be zero. However, if the event contains a particle such as a neu-

trino that is not observed by the detector, or if a particle is emitted sufficiently

close to the beamline that it does not intersect any of the subsystems, or if one or

more of the reconstructed energies are mismeasured, then the net transverse en-

ergy will not be zero. The missing transverse energy in an event, /ET , is defined

to be the negative of the net transverse energy.

2.3 Triggers

The Level 1 trigger and High Level Trigger are designed to reduce the initial

rate of inelastic events at CMS from 109 Hz to 100 Hz, which represents the
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limit of the rate at which all of the information associated with an event can be

recorded [8]. Decisions made by the trigger system must be reached quickly and

with accurate identification of potentially interesting physics processes. The

hardware and software that perform these tasks are collectively referred to as

the Trigger and Data Acquisition System (TriDAS).

The Level 1 trigger makes use of the calorimeters and the muon system.

Basic ET or pT thresholds are applied to partially reconstructed hits in these

systems, which are later used to seed muons, photons, electrons and jets. The L1

trigger also looks at global sums of ET and /ET . Its output rate is approximately

100 kHz. The L1 trigger is permitted 3.2 µs to make a decision on any given

event. During that time, the rest of the data must be held in buffers. Due to the

speed required, decisions are reached within the detector electronics.

If a Level 1 Accept (L1A) is issued, the stored data are sent to front end read-

out buffers. The Front End Drivers (FEDs), of which there are approximately

600 throughout all of CMS, read out a total of about 75M electronic channels.

These event fragments are transferred to the Data Acquisition system (DAQ) by

64-bit serial links (S-Links). The event content received from a FED includes a

header that has information identifying the subsystem and the event number.

The DAQ Event Builder then assembles all of the fragments associated with a

particular event. This information is sent to a Filter Unit upon request, which

computes the HLT decision. The Filter Units, of which there are several hun-

dred operating in parallel, are housed on a processor farm. Figure 2.2 shows the

flow of information amongst the different components of the trigger system.

There are many different HLTs that an event might satisfy, based on the pres-

ence of jets, one or more electrons, one or more photons, one or more muons,
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Figure 2.2: Schematic of the trigger system, showing the flow of information
between its components. Image taken from “CMS Physics Technical Design Re-
port, Volume 1: Detector Performance and Software, Section 2.3: Event Filter”
[9].

total energy, missing energy, or combinations of these features. For example,

the HLT Jet30U trigger requires the presence of a jet whose uncorrected pT

is above 30 GeV. The HLT Ele15 LW L1R trigger requires the presence of an

electron that has pT > 15 GeV and that passes certain basic cleaning cuts. The

decision associated with each trigger is contained in the event content.

The accepted events are forwarded to the Storage Manager. An event be-

comes part of one or more primary datasets depending on which triggers it

satisfies. The CMS data used in this document come from the jet, photon and

electron primary datasets. Once all of the event information has been read out

and archived, the offline reconstruction modules can take over. The reconstruc-

tion procedures will be described in Section 2.5, following a more detailed dis-

cussion of the detector subsystems.
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2.4 The Detector Subsystems

2.4.1 Pixel Tracker: Hardware

The pixel system is the innermost layer of CMS [10]. In the barrel, there are three

layers of pixels, which are found at 4.4, 7.3, and 10.2 cm from the beamline. In

the forward region, there are two disks in the +z direction and two disks in the

−z direction, located at z = ±34.5 cm and z = ±46.5 cm. Figure 2.3 shows the

layout of the pixel system.

Figure 2.3: Schematic of the pixel system, showing the three layers in the barrel
region and two disks in each forward region. Image taken from “CMS Physics
Technical Design Report, Volume 1: Detector Performance and Software, Sec-
tion 1.5: CMS: the overall concept” [11].

The barrel is constructed from modules, where eight modules form a ladder,

and ladders and half-ladders form a half-cylinder. Two half-cylinders form one

layer of the pixel barrel. In the forward system, seven panels are arranged into

a blade. Twenty-four blades, arranged radially as shown in Figure 2.3, form a
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disk. In both the barrel and the forward systems, the components are designed

to overlap so that charged particles will intersect at least one and probably mul-

tiple modules.

One pixel is a silicon semiconductor with an area of 100×150 µm2 [12]. There

are 66M pixels in total, giving the pixel detector a total surface area of 1 m2. The

pixels are grouped into read out chips (ROCs), where one ROC consists of 4160

pixels arranged in eighty rows and twenty-six double columns, as shown in

Figure 2.4. Each double-column has buffers in which signals are stored until

the ROC reads them out. When a charged particle intersects a part of the pixel

tracker, it induces a charge in the silicon semiconductor. The charge, the time

stamp, and the identity of the pixel that was hit are stored in the buffers as-

sociated with that double-column. Hits are read out upon receipt of a Level 1

Accept.

A Token Bit Manager (TBM) manages up to 24 ROCs, which are arranged

in a module or a panel. The TBM sends the trigger, clock and other commands

such as resets to the ROCs, and it takes in their readouts one at a time. The flow

of information between the TBM and the ROCs is illustrated in Figure 2.5, and

the layout of a panel is shown in Figure 2.6.

The output of the TBM is an analog signal in which information about the

pixel hits is encoded. For example, the pixel address is converted to base six,

and the digits are encoded using six predetermined amplitude levels. The ROC

address is similarly encoded within a sequence of amplitudes. A single pulse

encodes the energy of the observed pixel hit. A sample output from one ROC is

shown in Figure 2.7.
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Figure 2.4: A pixel read out chip (ROC), showing a double-column and the data
buffers. Image taken from pixel online software reference website [13].

The analog readout proceeds from the TBM to to a Front End Driver (FED)

via an Analog Optical Hybrid (AOH). The FED is a circuit board whose

firmware decodes all of the information from the ROCs, converts it to digital

information, and sends it through a serial link (S-Link) to the DAQ system. The

signal from each pixel is contained within a 32-bit word, formatted as follows:

6-bit link id (0-35), 5-bit ROC id (0-23), 5-bit double-column id (0-25), 8-bit pixel

ID (0-179), and 8-bit analog to digital conversion (ADC) value which represents

the pulse height. The pixel system has 36 FEDs in total, each with its own S-

Link.

The process of transmitting calibration information and commands from the

online software to the front end electronics begins with a circuit board called

the Front End Controller (FEC). It communicates with the TBMs via a pixel

Digital Optical Hybrid (pDOH). The pDOH and AOH are both hosted on a

portcard, which is responsible for maintaining the correct timing between the
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Figure 2.5: Flow of information between a token bit manager (TBM) and the
ROCs that it manages. The TBM is responsible for transmitting the clock signal,
Level 1 trigger, and reset commands. Image taken from pixel online software
reference website [13].

system clock and the transmission of signals. This timing must be calibrated;

to that end, a second set of FECs called the Tracker FECs (TKFECs) transmit

settings to the portcards via a DOH.

The other circuit boards associated with the pixel system are the Timing and

Trigger Controller (TTC) and the Local Trigger Controller (LTC). The primary

function of the TTC is to receive the Level 1 Accept from the central trigger con-

troller and pass it to the pixel system. The TTC also transmits the official clock

signal, and a set of other CMS-wide commands such as Start, Stop, and Reset

[14]. When active physics runs are not being performed, the LTC can take the

place of the central trigger and generate the same set of L1As and other com-

mands. This functionality is used to simulate physics running during certain

calibration routines.

While the system is running, the hardware is controlled by the Pixel Online

15



Figure 2.6: Layout of a panel in the forward pixel system. One TBM manages
either 21 or 24 ROCs. In the barrel, there is one TBM per module, where it
manages either 8 or 16 ROCS. Image taken from pixel online software reference
website [13].

Software, which will be described in the next section.

2.4.2 Pixel Tracker: Software and Calibrations

Pixel Online Software (POS) [15] refers to software that runs while the pixel

system is active, whether during physics runs or while performing calibrations.

POS is composed of a hierarchy of C++ applications that operate within the

Cross-platform Data Acquisition framework, XDAQ. The top-level application

is called PixelSupervisor. It receives its instructions either from the Run Con-

trol and Monitoring System (RCMS), or from user inputs via a graphical user

interface (GUI).

The level belowPixelSupervisor consists of one XDAQ application for each

type of circuit board in the pixel system. Corresponding to the FEDs, FECs

16



Figure 2.7: Example of analog output from a TBM that has only one ROC. The
ROC ID, pixel address, and pulse height of the pixel hit are contained between
the TBM header and trailer. Image taken from pixel online software reference
website [13].

and TKFECs are the PixelFEDSupervisor, PixelFECSupervisor and PixelTKFEC-

Supervisor. The TTC and LTC are operated using the CMS standard software

package, in which the XDAQ application is called TTCciControl. The front end

circuit boards are housed in VME crates, and the corresponding software appli-

cations are hosted on the CPUs that are connected to these crates. The XDAQ

framework facilitates communication amongst software that is spread over mul-

tiple CPUs. The XDAQ applications communicate with each other via a Simple

Object Access Protocol (SOAP).

During physics running, the main purpose of the online software is to main-

tain coordination with the rest of run control. When the PixelSupervisor re-

ceives the command to Configure from RCMS, it uses the pixel configuration

database to access the settings for a configuration that is appropriate to physics

running, and communicates this choice to the rest of the XDAQ applications.
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They in turn transmit the chosen settings to the front end electronics. Sim-

ilarly, PixelSupervisor receives the other standard RCMS commands such as

Start, Pause, Resume, and Halt, and disseminates them to the system compo-

nents.

More specialized software is dedicated to calibration routines, which are per-

formed prior to the commencement of physics running. Many quantities must

be calibrated in order to ensure that information from the pixel system will be

encoded and interpreted correctly. Among the necessary calibration routines

are:

• The FED address level calibration. Recall that the address of a pixel hit is

encoded in six amplitude levels within the analog TBM output. These lev-

els must be calibrated for each ROC so that the addresses can be accurately

read.

• The FED phase calibration. The FED interprets the analog signal by sam-

pling from it at a particular point within one clock cycle. This point must

be selected so that all features of the signal are observed.

• The FED baseline calibration. The baseline from which voltages are mea-

sured must be set in such a way that the entire analog signal is within the

dynamic range of the analog to digital converter.

• The PixelAlive, Gain Calibration, and SCurve. These calibrations are ex-

ecuted at the level of the individual pixel. The purpose of the PixelAlive

routine is to identify and mask dead pixels. The Gain Calibration and

SCurve routines inject a certain charge into the pixel, and measure its effi-

ciency and measured charge, respectively. This information is used to set

trim bits and gains for each pixel.
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A collection of software classes are used to run all of the calibrations. The coding

structure will be discussed in detail in the context of a specific example: the

Delay25 calibration.

The Delay25 chip is a component of the portcard, and it controls the rela-

tive timing between the system clock and a signal from the FEC to the TBM or

vice versa. There are separate delays for signals that are being sent to the TBM

and signals that are being returned from it. The settings of the Delay25 chip are

controlled by the tracker FEC. In order to calibrate the Send Data and Return

Data delays, the calibration routine must transmit Delay25 settings to the TK-

FEC, and it must instruct the FEC to test communication with a TBM. Therefore,

the code that executes this calibration requires access to the PixelFECSupervisor

and the PixelTKFECSupervisor.

There are two classes associated with the Delay25 calibration: PixelDe-

lay25Calibration and PixelTKFECDelay25Calibration. Correspondingly, two

base classes exist to facilitate the communication between the different com-

ponents of POS during this calibration: PixelSupervisorConfiguration and Pix-

elTKFECSupervisorConfiguration. These sets of classes perform parallel func-

tions for PixelSupervisor and for PixelTKFECSupervisor.

• PixelSupervisorConfiguration contains all of the addresses needed to send

SOAP commands to the Supervisors; both PixelSupervisor and PixelDe-

lay25Calibration inherit from it, and therefore both are able to communi-

cate with all of the subordinate Supervisors.

• PixelTKFECSupervisorConfiguration contains the PixelFECSupervisor

SOAP addresses, and the device addresses for the portcards; both PixelTK-

FECSupervior and PixelTKFECDelay25Calibration inherit from it, and
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therefore both are able to communicate with PixelFECSupervisor, and to

write new setting information to the portcards.

All calibration routines follow this same basic structure. A calibration has its

associated PixelCalibration class, which inherits from PixelSupervisorConfigu-

ration. Optionally, a PixelCalibration class associated with the FED or TKFEC

application may also be created, depending on the specific hardware compo-

nents involved in the calibration.

The calibration procedure begins with the PixelSupervisor GUI, where the

user selects a Delay25 calibration. The PixelSupervisor communicates the choice

of calibration to the rest of the Supervisors, which call up the associated entry in

the pixel configuration database and communicate the settings to the hardware.

The PixelSupervisor also creates an instance of the PixelDelay25Calibration

class, and the PixelTKFECSupervisor creates an instance of the PixelTKFECDe-

lay25Calibration class.

Once all of the subordinate Supervisors return messages to indicate that

configuration is complete, the PixelSupervisor enters the Configured state,

and the user has the option to start the calibration. Upon receipt of the

Start message, the PixelSupervisor enters the Running state, where it performs

the PixelDelay25Calibration::execute() command. This sends a SOAP mes-

sage to the PixelTKFECSupervisor, which in turn performs the PixelTKFECDe-

lay25Calibration::execute() command. All of the code for the Delay25 calibra-

tion routine is located within the latter member function.

The Send Data (SDa) and Return Data (RDa) delays can take on values from

0 to 127, where each step represents 0.5 ns. A delay of 128 units is equivalent to
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a delay of 0. The range of possible settings form a 2D grid. The first step in the

calibration routine is to perform a scan of the available SDa and RDa settings.

A step size of four units is found to strike a good balance between detail and

speed. The step size is part of the configuration information for this calibration.

At each test point on the grid, the PixelTKFECDelay25Calibration object

writes the SDa and RDa settings in question to the portcard. Next, the Pix-

elTKFECDelay25Calibration object sends a SOAP message to the PixelFECSu-

pervisor, instructing it to test its communication with the TBM. The PixelFEC-

Supervisor sends a signal to the TBM, and checks to see whether that infor-

mation was successfully received. If the signal is not received three times in a

row, the point is abandoned. Otherwise, ten successive tests of the communi-

cation are performed. The PixelFECSupervisor sends a return SOAP message

when the tests are complete, which includes the number of successes. The Pix-

elTKFECDelay25Calibration accumulates a list of all SDa-RDa points that have

a perfect communication record; these are the candidate points.

Next, an algorithm is applied to these points to determine the optimal set-

tings. The goal of the algorithm is to select the most stable point possible; that

is, a point in the middle of the largest continuous region of good points. The

process is complicated by the observation in certain cases of (1) good regions

that have gaps in them, or (2) good regions that consist of two discrete pieces.

Both of these cases make a simple position average impractical, as the average

of all of the good points might be a rejected point.

The final selection is made by an “expanding stable region” (ESR) algorithm.

For each candidate, the algorithm asks whether its nearest neighbors on the

grid are also good points. Neighboring good points are sought horizontally,
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vertically, and on the two diagonals from the candidate point in question. If at

least one point passes the test at a particular step, then all of the points that fail

are removed from the list of candidates.

If multiple candidate points remain that are surrounded by good neighbors,

then the procedure is repeated, now searching for good neighbors at a distance

of half of the previous grid size. Similarly, if all of the candidate points fail a

particular test, then it is repeated using a smaller step size. If a tie still remains

after the step size has been reduced to one unit, then the point is selected that is

closest to the center of the grid. Thus, the stable region surrounding the candi-

date points is pushed outward in all directions, until the point that is returned is

in the center of the largest region of good points. Figure 2.8 shows two sample

outputs from this algorithm, including the good region and the selected point.
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Figure 2.8: Two examples of the expanding stable region algorithm for portcard
SDa/RDa settings. The large blue circles represent points with perfect commu-
nication, and the red square is the point that was chosen by the algorithm. On
the left, the good region is simply connected, and the result of the ESR algo-
rithm is just the position average of all good points. On the right is an example
in which the good region might have consisted of two discrete pieces. The ESR
algorithm will always select the center of the larger piece.
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Once the algorithm has made its selection, the TKFEC updates the settings

of the portcard in question to the newly determined optimal point. Unless oth-

erwise specified, the routine is designed to loop over all portcards in the pixel

configuration database. Once all portcards have been calibrated, the PixelTK-

FECDelay25Calibration::execute() function returns. This has the effect of send-

ing a response SOAP message back to the PixelSupervisor, the receipt of which

allows the PixelDelay25Calibration::execute() function to return. The user now

has the option to send the Halt command, which writes the new settings to the

database. At this point, the POS is ready for a new calibration, or to switch to

physics running.

2.4.3 Silicon Strip Tracker

Surrounding the pixel system is the silicon strip tracking system [16]. The barrel

section has a total of ten layers, which are between 25.5 and 116 cm away from

the beam line. The endcap section has twelve disks in each of the +z and −z

sections that reach up to 280 cm from the interaction point. There are 9.6M

silicon strips in the system, and the total surface area of the detector is 200 m2.

The Tracker Inner Barrel (TIB) comprises four of the ten barrel layers. Each

layer is divided into four shells, and each shell contains modules that are ar-

ranged in strings. The TIB uses the smallest and the thinnest of the silicon strips,

with a thickness of 320 µm, and minimum dimensions of 10 cm × 80 µm. They

are arranged so that the position of hits can be resolved to within 34 µm in the

r − φ direction and 230 µm in the z direction.

The Tracker Outer Barrel (TOB) comprises the remaining six barrel layers. In
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this section, which is further from the interaction point and therefore subject to

lower radiation levels, the silicon strip sensors are 500 µm thick, and up to 25

cm × 180 µm. The resulting resolution of position measurements is within 52

µm in the r − φ direction and 530 µm in the z direction.

The Tracker End Cap (TEC) has nine disks at distances from 124 cm to 280

cm from the interaction point. Each disk is made of nine petals. Within each

petal, the modules are arranged in up to seven rings, which are centered on the

beamline. The Tracker Inner Disk (TID) fills the region between the TIB and the

TEC. It is divided into three disks, and each disk has modules arranged in three

rings. The TID and the three inner rings of the TEC use silicon strips that are

320 µm thick, and the rest of the TEC uses silicon strips that are 500 µm thick.

The electronics readout system for the silicon strips shares many features

with that of the pixel system. When a charged particle interacts with a silicon

strip, the induced charge in the semiconductor is stored, along with the address

of the strip in question. This information is transmitted via an analog signal to

one of the Front End Drivers for the tracker, where it is digitized and sent on to

the global DAQ system.

2.4.4 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) [17] is the next layer of the CMS de-

tector after the tracking system. It consists of 61200 lead tungstate (PbWO4)

crystals in the central barrel and 7324 crystals in each endcap.

Lead tungstate crystals were chosen because they are dense and they emit
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their scintillating light quickly. PbWO4 has a density of 8.28 g/cm3, a radiation

length of 0.89 cm, and a Molière radius of 2.2 cm. The crystals emit blue-green

scintillation light, with a wavelength maximum at 420 nm. They are expected to

emit 80% of their scintillation light within 25 ns. This is on the same time scale

as the bunch crossing rate, which makes these crystals appropriate for use in the

CMS environment. The crystals have a relatively low light yield (30γ/MeV), so

sensitive photodiodes are needed that will function efficiently in a high mag-

netic field.

The ECAL barrel (EB) is composed of 36 supermodules, each covering 20◦

in φ. These are further subdivided into 360 granular segments in φ, and (2 × 85)

segments in η, covering the range |η| < 1.479. The result is 61200 crystals in

total. The front face of a crystal is at a radius of 129 cm from the interaction

point, where its cross sectional area is 22 × 22 mm2. This widens to 26 × 26

mm2 at the rear face. The total length of a crystal is 230 mm, or 25.8 radiation

lengths. Scintillation light is detected by avalanche photodiodes (APDs), which

are arranged two to a crystal and have an active surface area of 5 × 5 mm2.

The ECAL endcaps (EEs) are situated 315.4 cm from the interaction point,

and cover the range 1.479 < |η| < 3.0. A group of 5 × 5 crystals is called a super-

crystal. An endcap is composed of two Dees, each of which has 3662 crystals

in 138 supercrystals and 18 partial supercrystals. The crystals and supercrystals

are arranged in a grid parallel to the xy plane. The cross section of one crystal at

the front face is 28.62× 28.62 mm2, and it widens to 30× 30 mm2 at the rear face.

One crystal is 220 mm long, or 24.7 radiation lengths. The photodetectors in this

region are vacuum phototriodes (VPTs). They are 25 mm in diameter, and one

is attached to each crystal.
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In front of each endcap is a preshower detector composed of two layers of

lead radiators, alternating with silicon strip sensors. Its main purpose is to

identify neutral pions. The lead layers cause pions to radiate electromagnetic

showers, which are then measured by the silicon layers. The endcap preshower

covers the range 1.653 < |η| < 2.6. The relative positions of barrel, endcap and

preshower are show in Figure 2.9.

Figure 2.9: The electromagnetic calorimeter, including the barrel, endcap and
preshower components, and the η ranges they cover. Image taken from “CMS
Physics Technical Design Report, Volume 1: Detector Performance and Soft-
ware, Section 4.1: Description of the ECAL” [18]

The front end electronics of the ECAL amplify and shape the signal received

from the photosensors. The position of the observed signal, the time of its ar-

rival, and the amount of energy deposited are all buffered until a Level 1 Accept

is received, at which point the data are transmitted to the DAQ system.

The ECAL is one component of the Level 1 trigger. Therefore, a portion of

the front end electronics is designed to construct trigger primitives and trans-

mit the ECAL decision to the central trigger system. A trigger primitive refers

26



to information obtained from a single tower of deposited energy. The L1 trigger

considers the summed ET in the tower, and its compactness. After this informa-

tion is transmitted, the accept signal returns in about 3 µs.

Before the ECAL was installed within CMS, its energy resolution was tested

using an electron beam. A parameterization of the resolution is(
σ

E

)2
=

(
S
√

E

)2

+

(N
E

)2

+ C2, (2.7)

where S represents the stochastic contribution, N represents the noise, and C is

a constant. Using the test beam, the values of these parameters were measured

to be S = 2.8%, N = 0.124 GeV, and C = 0.30%. The result is a resolution of less

than 0.45% for an electron with an initial energy of 120 GeV.

2.4.5 Hadron Calorimeter

The hadron calorimeter (HCAL) [19], with the ECAL, forms a complete

calorimetry system for the measurement of jet and missing transverse energy.

The HCAL surrounds the ECAL and is the outermost detector component that

is housed within the magnet solenoid. It is composed of absorber plates made

of brass alloy or stainless steel, alternating with plastic scintillator tiles.

The Hadron Barrel (HB) has an inner radius of 177 cm and an outer radius

of 295 cm, and it covers the range |η| < 1.3. It is split into two half barrels,

which are further subdivided into 18 wedges that each cover 20◦ in φ. One

wedge is composed of flat absorber plates that are parallel to the beam axis. The

innermost and outermost layers are made of stainless steel, while the rest are of

brass alloy. Between the absorber plates are 17 layers of active plastic scintillator
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tiles. The innermost tile, which is twice the thickness of the rest, is immediately

behind the ECAL. An individual tile covers a solid angle of ∆η × ∆φ = 0.087 ×

0.087.

The Hadron Endcap (HE) is tapered to overlap with the HB and to interlock

with it. It covers the range 1.3 < |η| < 3.0. Wedges in the endcap use only brass

absorber plates, and contain 19 plastic scintillator layers. They are arranged in

the same 18-fold geometry as employed in the barrel. Up to |η| = 1.74, the ∆η×∆φ

solid angle covered by one tile is 0.087×0.087, as in the barrel. Beyond that, they

become progressively wider in η and φ. The layout of the hadron calorimeter is

shown in Figure 2.10.

Figure 2.10: The barrel and endcap sections of the hadron calorimeter, showing
the relative positions and η ranges of the components. Image taken from “The
CMS Experiment at the CERN LHC, Chapter 5: Hadron calorimeter” [19].

There are additional layers of scintillator material in the Hadron Outer (HO),

which is located outside the magnet solenoid. These layers are housed in the

magnet return yoke, and therefore their geometry is similar to that of the muon

system. There are five rings, each of which is centered on the beamline and

parallel to the xy plane. A ring is divided into twelve sectors. With the exception
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of the middle ring, these sectors have single layers of 10 mm thick scintillator

tile at a radial distance of 4.07 m. In the middle ring, there are two such layers

at 3.82 m and 4.07 m, surrounding 18 cm of an iron absorber. The HO covers the

range |η| < 1.3.

Finally, the Hadron Forward (HF) section provides coverage between 3.0 <

|η| < 5.0. Its front face is 11.2 m from the interaction point. The absorber material

in this section is stainless steel, and Cerenkov light is emitted by quartz fibers

which are welded into grooves in the steel plates. Each module, one in the +z

direction and one in the −z direction, consists of 18 wedges, with the quartz

fibers arranged parallel to the beam line.

Optical signals from the barrel, outer and endcap systems are detected and

converted to electric signals by multichannel hybrid photodiodes (HPDs). In

the forward system, where the magnetic field is less intense, the optical signals

are detected by standard photomultiplier tubes.

The HCAL is another component of the Level 1 Trigger. Like in the ECAL,

a portion of the front end electronics is designed for constructing trigger primi-

tives out of the information from individual towers. This is sent to the regional

calorimeter trigger. If a Level 1 Accept is received, the front end electronics read

out the rest of the hits and transmit this information to the DAQ system.

Energy resolution in the HCAL has a complex dependence on the energy

and position of an incident particle. This topic will be discussed in Section 2.5.6,

in the context of jet reconstruction.
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2.4.6 Muon System

The muon detector system [20] is the outermost layer of CMS. It is located in the

magnet return yokes, outside the superconducting solenoid.

The muon system is composed of three different kinds of gaseous detectors.

The barrel muon detector, which covers the range |η| < 1.2, employs drift tube

(DT) chambers. The endcaps, which cover up to |η| < 2.4, have cathode strip

chambers (CSCs). Both the barrel and the endcap also use resistive plate cham-

bers (RPCs). Compared to the others, RPCs have a faster response time but

coarser position resolution.

The barrel is divided into five wheels, labeled YB-2, YB-1, YB0, YB+1, YB+2.

The number indicates the position of the wheel along the z axis. Each wheel

contains 12 sectors, where a sector covers 30◦ of azimuthal angle φ. The barrel

system has 250 drift chambers in total, which are arranged in four layers, or

stations. The two innermost stations, MB1 and MB2, consist of units of one

DT between two RPCs. The two outermost stations, MB3 and MB4, have DTs

coupled to one, two or four RPCs in a layer. In the three innermost chambers,

one DT consists of 12 layers of drift tubes in four staggered superlayers of three

each. In MB4, a DT has only two superlayers. Each superlayer is designed

to yield a measurement of the r − φ coordinates of an incident muon, with a

resolution of 100 µm.

The muon endcap contains a total of 468 CSCs. Each endcap is divided into

four stations, arranged perpendicular to the beam line. A station is composed of

either two or three concentric rings. A CSC is trapezoidal in shape and consists

of six gas gaps arranged in overlapping layers, where each layer can return a
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measurement of the (r, φ) coordinates of a muon with a resolution of 150 µm.

Figure 2.11 shows the layout of the muon system, including the distributions of

DTs, CSCs and RPCs within the barrel and endcap sections.

Figure 2.11: Layout of the muon barrel and endcap systems. The placements
of the DTs, CSCs and RPCs within the system are indicated, as are the η ranges
covered. Image taken from “CMS Physics Technical Design Report, Volume 1:
Detector Performance and Software, Section 1.5: CMS: the overall concept” [11].

The muon system is the final component to the Level 1 trigger. Each of the

three types of muon detector components contribute to the L1 decision. The

trigger electronics return one vector per muon per station, each of which is a

trigger primitive. These are combined by the global muon trigger to construct

overall muon candidates, and the results are forwarded to the global trigger.
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2.5 Event Reconstruction with CMS Software

2.5.1 Structure of CMS Software

An extensive collection of C++ software packages are employed to perform de-

tector simulation and event reconstruction [21]. This software as a whole is

referred to as CMSSW, and it encompasses many different tasks. For exam-

ple, as previously discussed, the HLT uses software to perform primary dataset

processing. After the HLT decision has been rendered and the primary datasets

have been archived, additional software is needed to perform offline reconstruc-

tion of all of the physics objects in the selected events. CMSSW is also used to

perform Monte Carlo computer simulations of all steps in the data-taking pro-

cess. Calibrations and data quality management are performed using software,

plus additional tasks that are specific to certain subdetectors.

The framework for CMSSW is the Event Data Model (EDM). Its focus is the

Event, which is accessed by the EventSetup. The Event holds all of the data

taken by the detector, or simulated to have been taken. It is run through mod-

ules which add or remove information.

Monte Carlo studies of background and signal processes are used in a variety

of ways in physics analysis. The feasibility of detecting a new physics signal in

a particular decay channel can be studied in Monte Carlo simulations, allowing

physicists to focus their attention on those channels with the greatest potential

for new discoveries. Many detection studies, such as the one that will be con-

sidered in this document, depend on Monte Carlo estimates of certain Standard

Model backgrounds. An accurate computer simulation of the CMS detector is
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essential for all of these purposes.

Monte Carlo simulations proceed in several steps. First, one requires a

physics generator such as MadGraph [22] or Pythia [23]. This step generates the

desired physics process from the initial proton-proton collision, and calculates

momentum vectors for the subsequent decay products of the particles that are

produced. The generator software typically records this information in HepMC

format [24].

The next step simulates hits in the detector. This segment of CMSSW uses the

GEANT4 simulation toolkit [25] to create a highly detailed computer model of

the geometry of the detector and the materials of which it is constructed. Based

on the output of the generation step, the interaction of the output particles with

the detector material can be modeled.

These simulated interactions become the input to the digitization step.

CMSSW models the response of the detector electronics to the hits produced

by the incident particles. The outputs contain the same digitized information

that would be transmitted to the DAQ system from the Front End Drivers.

The final step is the reconstruction of physics objects. This process is applied

to the outputs of the digitization step, whether it was performed in software as

part of a Monte Carlo simulation or by the front end electronics in the course

of physics running. Reconstruction proceeds in three phases: local, global, and

combined. Local reconstruction collects information about the amount and po-

sition of energy deposits within a given subdetector. Global reconstruction iso-

lates the best measurements from all of the different outputs of a given sub-

detector, but it does not combine information from more than one subdetector.
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Finally, combined reconstruction uses all of the information from the event to

create higher level physics objects such as muons, photons, electrons, jets or

missing energy.

The Physics Analysis Toolkit (PAT) [26] is an extra analysis layer that is per-

formed on the reconstructed objects. It stores all of the information from the

reconstruction step in an easily accessible format, and it calculates commonly

used quantities such as isolations. PAT photons, electrons, jets and /ET are the

primary software objects used in the analyses that will be detailed in this docu-

ment.

2.5.2 Muon Reconstruction

Reconstruction of muons [27] takes place both online and offline. The muon

system is part of the Level 1 Trigger, and therefore very quick online recon-

structions of muons are performed for the L1 Trigger and the HLT. Later, more

detailed muon reconstruction is performed offline, and the results are incorpo-

rated into the event content. Both types of reconstruction begin at the same

point: with hits in individual chambers in the muon system.

The Level 1 muon identification is performed using custom electronics that

are incorporated into the muon system. Different systems and trigger logics are

applied to the DTs, CSCs, and RPCs. Hits in the DTs and CSCs are analyzed for

patterns and processed into one vector per muon per station, which is referred

to as a trigger primitive. Candidates from the RPCs are reconstructed separately

based on information from all stations. Finally, the two sets of candidates are

compared, and the four best muon candidates are sent to the Global Trigger.
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Part of this assessment involves extrapolating the muon tracks to towers in the

calorimeter.

The muon candidates from the L1 muon trigger are used to seed the recon-

struction that is performed by the HLT. To save time, the HLT reconstruction

takes a very local approach. Each seed candidate defines a region of interest in

which more detailed reconstruction is performed. Hits outside these regions are

not considered. This procedure is called Level 2 or standalone reconstruction.

For offline reconstruction, in which high-speed performance is not the primary

goal, a more global approach is used. This is Level 3 or global reconstruction.

In the Level 2 phase, the vectors produced during L1 reconstruction are or-

ganized from the innermost layer outward, with observed vectors in the next

layer being compared to the momenta predicted by the previous layer. In this

fashion, a trajectory through the muon system is reconstructed and bad hits are

rejected. Another such procedure is then applied from the outermost layer of

the detector and working inward, until the track parameters that yield the best

fit can be defined at the innermost station. The reconstruction of the track is also

influenced by whether it can be extrapolated back to the interaction point.

The HLT muon candidate is used to seed the Level 3 reconstruction, which

now includes information from the tracker. The trajectory for a standalone

muon is extrapolated to the outer layer of the tracker, where a region of interest

within the tracker is defined. A χ2 track reconstruction algorithm is performed

on the hits within this region. The potential trajectories are correlated with the

muon signals in different ways in an attempt to detect bremsstrahlung or other

sources of energy loss that the muon might have experienced before reaching

the muon system.
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There also exists a separate muon identification algorithm, which starts from

the tracker and progresses outward. This procedure has the advantage of poten-

tially identifying low-pT muons that do not reach the outer layers of the muon

tracker. The initial objects are the tracks, which are then matched to energy

deposits in the calorimeters and finally to hits in the muon detectors.

2.5.3 Electromagnetic Supercluster Reconstruction

Photons and electrons are expected to deposit most of their energy in the ECAL

[28]. The difference between them is that an electron is also expected to interact

with the tracker, while a photon is not. The reconstruction algorithms for these

two objects begin with the patterns of energy deposits in the ECAL.

An electron or photon, when it is incident on the ECAL, will leave 94% of

its energy within a 3 × 3 block of calorimeter crystals, and 97% of its energy

within a 5 × 5 block. Since the particle trajectories curve in the presence of the

magnetic field, the energy deposits are spread out in φ. This spread is modeled

by assembling a supercluster, which is a cluster of clusters that are presumed to

come from the same object.

There are a variety of superclustering algorithms that are applicable to differ-

ent situations. The problem of collecting all of the energy due to a single object

is a complicated one due to the many possible trajectories and behaviors of elec-

tromagnetic objects. The distribution of energy from an electron is expected to

be broader than that from a photon. Electrons may exhibit bremsstrahlung by

emitting photons as they pass through the ECAL, and photons may convert to

a pair of electrons. Each of these scenarios requires a different approach.
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The Hybrid algorithm for reconstructing superclusters is suitable for recon-

structing high-pT electrons and unconverted photons. It uses a fixed number of

crystals in the η direction, either 3 or 5, and attempts to gather all related crys-

tals in the φ direction. Superclusters are composed of clusters that are grouped

in η. An alternative is the Island algorithm, which starts from seed crystals that

are above a certain energy threshold, and progresses alternately in the φ and η

directions to collect all related crystals into a cluster. Clusters are then grouped

into superclusters using the same procedure. Both of these algorithms have to

correct for a series of geometric issues, such as the degree to which the majority

of the energy is centered on the total area of the shower, the nearness of the su-

percluster to borders or cracks, and bremsstrahlung or photon conversion due

to the tracker material.

The position that is assigned to a particular cluster comes from an energy-

weighted mean of crystals in the cluster. Rather than a simple average, a more

accurate algorithm uses logarithms of the crystal energies. The position x is

given by

x =

∑
i xiWi∑

i Wi
, (2.8)

where xi is the position of the ith crystal and Wi is its weight, defined by

Wi = W0 + log
Ei∑
j E j

. (2.9)

The position of the supercluster then becomes the energy-weighted average of

the positions of the clusters.

The ECAL is another component of the L1 trigger. At Level 1, which does

not distinguish between photons and electrons, there are three electromagnetic

triggers: single isolated, double isolated, and double relaxed. Events pass the

L1 trigger if they contain electromagnetic objects that satisfy one of these sets
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of conditions. Electron and photon reconstruction proceeds from these seed

objects.

The HLT is composed of three steps, which are labeled Level 2, Level 2.5 and

Level 3. Like the Level 1 trigger, the Level 2 phase makes use of calorimeter

information only, and does not attempt to distinguish between electrons and

photons. It validates the L1 decision and applies ET and η cutoffs to the recon-

structed superclusters.

Level 2.5 includes pixel detector information to test the hypothesis that the

supercluster came from an electron. If hits are not found, the electron hypothesis

is rejected. Photon candidacy is retained even if pixel hits are observed, in order

to allow for the possibility that the photon was emitted by an electron.

Finally, Level 3 applies isolation requirements that incorporate information

from other subdetectors. A potential electron is required to be isolated in the

ECAL, the HCAL and the tracker. In the ECAL or HCAL, the total energy is

collected within a cone that is centered on the supercluster, and this energy is

required to be below a certain threshold. In the tracker, the scalar sum of the

pT values is calculated over all tracks that are within a cone around the electron

candidate, excluding the track that is due to the electron candidate itself. Also,

the energy of the ECAL supercluster and the momentum of the track associated

with it are required to match to within a certain fraction. Electromagnetic objects

that fail these requirements are rejected as electron candidates.

Offline photon and electron reconstruction proceeds from the candidate ob-

jects that are reconstructed by the HLT. More detailed energy correction algo-

rithms are applied, and more requirements are imposed that distinguish pho-
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tons from electrons. These procedures are discussed in the following sections.

2.5.4 Offline Photon Reconstruction

The main challenge for photon reconstruction algorithms [29] is to distinguish

between photons that arose from the primary interaction and photons that are

the decay products of particles such as the π0. An important tool for rejecting the

latter type of photon is the application of isolation requirements in the tracker,

ECAL and HCAL.

In the tracker, the isolation variables that are considered are the sum of the

pT values of track within a cone about the ECAL cluster, the number of tracks

within such a cone, and the angle between the ECAL cluster and the nearest

tracks. In the ECAL, the variables that can be considered include:

• the total ET from all clusters within a cone that do not belong to the candi-

date supercluster;

• the total ET from clusters between an inner and an outer cone around the

supercluster;

• R9, the fraction of the total supercluster energy that is located within a 3×3

array of crystals that are centered on the highest energy crystal.

In the HCAL, the isolation is assessed by calculating the sum of the ET values

of HCAL towers in a cone around the candidate, and the hadronic fraction H/E,

which is the ratio of the energy in the HCAL tower just behind the supercluster

to the energy of the supercluster. In all cases, the energy due to objects other

than the photon candidate is required to be beneath a certain threshold.
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It is common for photons that originate from the primary interaction vertex

to convert in the tracker material. Identifying such photons allows for an appro-

priate choice of energy reconstruction algorithm. Electrons from a converted

photon are tracked back to the point where they converted. This requires its

own seeding technique, followed by a track reconstruction process to determine

whether two suitable candidate electrons have convergent trajectories. Photon

conversion candidates are required to be opposite sign electron pairs.

Once a photon has been identified, its energy can be reconstructed using one

of the superclustering algorithms described in the previous section.

2.5.5 Offline Electron Reconstruction

A primary electron [30] consists of a track that originates from the primary inter-

action vertex, and that is matched to an electromagnetic supercluster. Electrons

are identified within the fiducial region of the ECAL, which is the range |η| < 2.5.

Electrons traversing the silicon tracker radiate bremsstrahlung photons. The

trajectory of the electron curves in the magnetic field, which causes the energy

to be spread out in φ. From half to as much as 95% of the initial energy of

the electron can be radiated by photons before reaching the ECAL. These sec-

ondary photons can also shower in the tracker material. Soft secondary electron-

positron pairs further complicate the energy patterns. Correct reconstruction of

electron energy must account for all of these factors.

As with photon reconstruction, the first step in reconstructing an electron

is to assemble the supercluster. The challenge that is specific to electron recon-
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struction is to collect all of the bremsstrahlung photons. Different reconstruction

algorithms are selected depending on the shape of the energy distribution.

Next, the position of the supercluster is used to locate potential seeds for

tracks in the pixel system. A seed consists of the two innermost track hits. The

matching between supercluster and seed is based on the fact that the energy-

weighted average position of the supercluster, if all of the bremsstrahlung pho-

tons are properly included, corresponds to the actual position of a non-radiating

electron of the same initial momentum.

Once a seed has been identified, the next step is to reconstruct the track. Al-

gorithms are required that are specific to electron reconstruction, because the

electron experiences non-Gaussian energy losses due to bremsstrahlung pho-

tons. The algorithm in use is a Gaussian Sum Filter (GSF) process.

The reconstructed track and the supercluster are now judged on several dif-

ferent criteria:

• Energy-momentum agreement between the supercluster and the track.

The ratio of these values is required to be Esc/pin < 3.

• Agreement between the η coordinates of the supercluster and the track,

where the track is extrapolated to the point that is closest to the superclus-

ter. These values are required to satisfy |∆ηin| < 0.1.

• Agreement between the φ coordinates of the supercluster and the track

under the same conditions. This is required to be |∆φin| < 0.1.

• Ratio of hadronic energy to electromagnetic energy. The energy in the

HCAL tower that is just behind the electromagnetic seed cluster is com-

pared to the energy of that seed cluster, and must satisfy H/E < 0.2.
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Objects that fail these cluster shape and track matching criteria are removed

from consideration as electron candidates.

Electron isolation, particularly track isolation, is an effective means of reject-

ing electron candidates that originated from jets, rather than true electrons. The

track isolation is defined to be the sum of the pT values of all tracks within a

cone about the electron candidate, except for the electron track. Similarly, the

ECAL and HCAL isolations are defined by summing the ECAL or HCAL energy

deposits within a cone about the electron, excepting those associated with the

electron. The relative isolation is calculated by dividing the absolute isolation

by the electron pT .

Other quantities that are used to identify electrons are the shower shape co-

variances σiηiη and σiφiφ. These are weighted covariances of the distributions of

ECAL energy crystals in the η and φ directions. Electron candidates are rejected

if the covariances are too large.

During electron reconstruction, relatively loose restrictions are placed on all

of the above variables. This has the effect of preserving as many electron can-

didates as possible. However, jets may also satisfy all of the identification re-

quirements, and therefore they will be erroneously reconstructed as electrons.

The phenomenon of fake electrons will be addressed in detail later in this doc-

ument.
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2.5.6 Jet Reconstruction

QCD events with high-pT jets have very large cross sections at the LHC, and so

a considerable portion of the CMS detector is devoted to jet reconstruction [31].

Accurate measurements of jet energies and momenta are necessary in order to

reliably assess the missing transverse energy, /ET , in an event.

The initial objects used in jet reconstruction are calorimeter towers, which

consist of hits in both the ECAL and the HCAL. Since the granularity in the

ECAL is finer than that in the HCAL, the energy in all of the ECAL crystals

that correspond to an individual HCAL segment are summed. This collection

constitutes a tower.

A variety of jet reconstruction algorithms are in use at CMS. There are jet-

based triggers which employ a quick and relatively simple process, the iterative

cone algorithm. For offline reconstruction, the jets that will be used in this doc-

ument are reconstructed by the anti-kT algorithm [32].

In addition to the reconstruction algorithm, which selects the input objects

that are assigned to a given jet, the reconstruction procedure also depends on

the means by which the energies and momenta of the inputs are combined.

The two options are the energy scheme, in which the components are added

as four vectors, and the result is a massive jet; or the ET scheme, where the ET

values of the components are summed as scalars, and the result is a massless

jet. In the latter scheme, the direction is chosen by either sin θ =
∑

ET/E for cone

algorithms or η =
∑

ETiηi/
∑

ET and φ =
∑

ETiφi/
∑

ET for kT algorithms.

First, consider the iterative cone algorithm. The starting point is a list of

input particles and calorimeter towers that have been ordered by ET . A cone of
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radius R in (η, φ) space is fixed around the first entry on the list, assuming that its

ET is above a certain threshold. The objects inside the cone are used to calculate

a preliminary jet direction and energy using the ET scheme. This intermediate

object is referred to as a proto-jet. The resulting direction becomes a new seed,

and the iteration is repeated until the change between steps is < 1% in energy

and < 0.01 in ∆R. All of the input objects that contribute to the final step are

then removed from the master list, and the sequence is repeated with the next

object on the list that is above the minimal threshold. The process is complete

when no more seeds above the threshold remain on the master list

A variant of this is the midpoint cone algorithm. The difference is that objects

are not removed from the master list after each proto-jet is created. Therefore,

by the end of the iterations, one input object might belong to multiple proto-

jets. For any two proto-jets that are closer together than the cone diameter, their

midpoint is used to seed another proto-jet. If the proto-jet of the highest pT does

not share any objects with other proto-jets, then it becomes a jet and is removed

from the list of proto-jets. Otherwise, the amount of energy shared with the

neighbor of next-highest ET is compared to the total energy of the proto-jet. If

the fraction is above a certain threshold, then the proto-jets are merged. Other-

wise, each shared object is assigned to the closer of the two seeds. This splitting

and merging process is repeated, beginning with the proto-jet of next highest

ET , until no more remain.

The anti-kT algorithm is one instance of a class of algorithms that can be de-

scribed as follows. As before, the starting point is a list of particles and calorime-

ter cells that are the input objects. Let them be indexed by i. For each object i
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and each pair (i, j), define the following quantities:

di = (kTi)2p R2, (2.10)

di j = min
{
k2p

Ti , k
2p
T j

}
R2

i j. (2.11)

In the above expressions, kTi is the transverse momentum of the ith object,

and R2
i j =

(
ηi − η j

)2
+

(
φi − φ j

)2
. The quantity R2 is usually set to unity, and p

parametrizes the class of algorithms. The case p = 1 is called the inclusive kT

algorithm, while the case p = −1 is the anti-kT algorithm. In all cases, the algo-

rithm proceeds as follows. The smallest value is selected out of all of the di and

di j values. If it is of the type di j, then objects i and j are removed from the list,

merged, and added as a new combined object. If the minimum value is of the

type di, then object i is designated a jet. This procedure repeats until only jets

remain.

When p = 1, the effect of the algorithm is to merge objects that have Ri j < R,

and therefore the resulting jets all have Ri j > R. When p = −1, the behavior is

less straightforward, but it still leads to reasonable jet definitions. In this case,

the value of di j is dominated by the higher-kT jet, and so soft jets will tend to be

collected by the hard jets in their vicinity before they cluster among themselves.

If two jets of roughly the same kT are within 2R of each other, they will be conical

except for a boundary between them.

It is a complex procedure to determine the precise relationship between the

response of the calorimetry system and the original energy of the hadrons that

constitute the jet. The summed energy in the calorimetry towers may not ac-

curately represent the true hadron energy. Therefore, after the jets have been

reconstructed, corrections are applied that attempt to compensate for the many

factors that can influence the absolute jet energy scale. In data, a major source
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of systematic uncertainty is the uncertainty in jet energy.

The CMS default is the combination of corrections that are referred to as L2

and L3 [33]. The goal of the L2 corrections is to flatten the jet response with

respect to η. A jet at an arbitrary η value is assigned a correction relative to jets

from the central region, |η| < 1.3. The L3 corrections are absolute corrections

aimed at the overall jet energy scale. Their goal is to flatten the jet response

with respect to pT . Both sets of corrections can be obtained either from Monte

Carlo studies or using data-driven methods. After they have been applied, the

uncertainty in jet energy scale for jets measured in data is estimated to be 10%

[34].

In Monte Carlo simulations, the jet energy resolution can be studied by com-

paring the reconstructed jet transverse energy, Erec
T , to the simulated energy

of the original parton, EMC
T . The width of the distribution of Erec

T /EMC
T can be

parametrized by

σ

(
Erec

T

EMC
T

)
=

 a
EMC

T

⊕
b√
EMC

T

⊕ c


〈

Erec
T

EMC
T

〉
, (2.12)

where a is attributed to energy fluctuations due to noise, pile-up, and the under-

lying event energy; b is attributed to the stochastic response of calorimeter mea-

surements; and c is attributed to any other non-uniformities and non-linearities.

In an early Monte Carlo simulation, the values of the parameters were found to

be a = 5.6, b = 1.25, c = 0.033 [35]. These values will be used as estimates of

the uncertainty in jet transverse energy in the Monte Carlo study performed in

Chapter 4.
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2.5.7 Missing Transverse Energy Reconstruction

The missing transverse energy [36] in an event is calculated by taking the neg-

ative of the sum of the transverse energy contributions from all individual

calorimeter towers. The calorimetry coverage is as complete as possible to facil-

itate the measurement of missing energy.

There are many issues that affect missing energy measurements. As dis-

cussed above, there is an uncertainty associated with the measured jet energies,

which is propagated to the measured /ET value. The ECAL is calibrated using

photons, and therefore its response to charged pions might not be optimized.

Particles that are emitted sufficiently close to the beamline are invariably going

to be missed. One way to parametrize the impact of these factors is to measure

the /ET on a collection of events that in principle should have no missing energy.

A distribution of /ET values will be observed. The width of this distribution

represents the resolution of the /ET measurement.

There are two sources of corrections that apply to the /ET value. First, the

energy corrections that are applied to jets must also be applied to the /ET calcu-

lation. These are seen to improve the missing energy resolution in some cases.

Second, the energy of a non-isolated muon may not be accurately reconstructed

in the detector, so a correction to its energy is applied based on a median value

obtained from Monte Carlo simulations. The muon corrections are calculated as

a function of muon pT and η.

In the same set of Monte Carlo simulations that yielded Equation 2.12, a

parameterization of the /ET resolution after corrections was found to be

σ2 = (3.8 GeV)2
+

(
0.97 GeV1/2

)2
/ET + (0.012 /ET )2 . (2.13)
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This expression will be used in Chapter 4 to estimate the uncertainty on /ET mea-

surements.

Evidence from previous experiments suggests that the /ET resolution will be

worse in data than in simulations. This effect is twofold. Centrally, the /ET distri-

bution is expected to follow a Gaussian distribution, whose width in data will

be greater than simulations predict. Also, the distribution is observed to have

a long non-Gaussian tail, which contains events in which there were large er-

rors in the missing energy measurement. This tail will be thicker in data; that

is, large errors will occur more frequently than predicted by simulations. Any

/ET distribution measured from Monte Carlo simulations will have systematic

uncertainties due to these effects when it is compared to data.
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CHAPTER 3

PHYSICS BEYOND THE STANDARD MODEL

The CMS detector was constructed for the purpose of observing new physics

processes at energies on the order of 1 TeV. There are theoretical and experi-

mental reasons to expect physics beyond the Standard Model to manifest at this

energy scale.

This chapter presents a review of the structure of the Standard Model, and

some of the evidence for believing that it is not a complete model of particle

physics. Two models are described that could extend the Standard Model and

resolve its inconsistencies: Supersymmetry, and the Littlest Higgs model with

T-Parity. The experimental signatures of these models are shown to share many

features in common, in spite of being based on very different theoretical foun-

dations.

3.1 Review of the Standard Model

The Glashow-Weinberg-Salam (GWS) theory provides a unified description of

the weak and electromagnetic forces. It employs the Higgs mechanism to gen-

erate mass terms for the W and Z gauge bosons while leaving the photon mass-

less. The vacuum expectation value (VEV) of the Higgs boson is used to gen-

erate mass terms for fermions. In this section, the structure of the GWS theory

is reviewed, with emphasis on the role of the Higgs boson. The discussion fol-

lows that in Chapter 20 of An Introduction to Quantum Field Theory by Peskin and

Schroder [37].

Electroweak interactions are modeled by a theory that has an SU(2) × U(1)
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symmetry. To incorporate the Higgs mechanism, a scalar field φ is introduced

in the spinor representation of SU(2) with a charge of +1/2 under U(1). Then the

overall gauge transformation of φ is

φ→ eiαaσa/2eiβ/2φ, (3.1)

where σa are the Pauli matrices, a = 1, 2, 3.

Assume that φ obtains a vacuum expectation value, 〈φ〉. Apply an SU(2)

rotation so that the VEV takes the form

〈φ〉 =
1
√

2

 0

v

 . (3.2)

Using this form of 〈φ〉, the combination of generators given by α1 = α2 = 0

and α3 = β leaves 〈φ〉 invariant. Since there is one unbroken combination of

generators, the corresponding combination of gauge bosons remains massless,

while the other three acquire masses.

The kinetic term for φ is
∣∣∣Dµφ

∣∣∣2, where Dµ is the covariant derivative associ-

ated with the SU(2) ×U(1) symmetry group. Dµ acts on φ by

Dµφ =

(
∂µ − igAa

µσ
a/2 −

i
2

g′Bµ

)
φ. (3.3)

In this expression, the gauge bosons associated with the SU(2) group are de-

noted Aa
µ, and the coupling constant is g. The gauge boson associated with the

U(1) group is Bµ, and the coupling constant is g′.

After spontaneous electroweak symmetry breaking (EWSB) occurs, the

scalar field φ can be redefined to take the form 〈φ〉 + φ. Mass terms for Aa
µ and

Bµ arise upon expanding the kinetic term with this new definition. These mass

terms are
1
2

v2

4

[
g2

(
A1
µ

)2
+ g2

(
A2
µ

)2
+

(
−gA3

µ + g′Bµ

)2
]
. (3.4)
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Define the usual electroweak gauge bosons by

W±
µ =

1
√

2

(
A1
µ ∓ iA2

µ

)
, (3.5)

Z0
µ =

1√
g2 + g′2

(
gA3

µ − g′Bµ

)
. (3.6)

When Equation 3.4 is rewritten with these substitutions, expressions for the

gauge boson masses can be found:

mW =
gv
2
, (3.7)

mZ =

√
g2 + g′2

v
2
. (3.8)

The orthogonal combination

Aµ =
1√

g2 + g′2

(
g′A3

µ + gBµ

)
(3.9)

is massless.

For any arbitrary state in a general SU(2) representation with generators T a

and with U(1) charge Y , the covariant derivative can be written in terms of the

W and Z bosons as

Dµ = ∂µ−i
g
√

2

(
W+

µ T + + W−
µ T−

)
−i

1√
g2 + g′2

Zµ
(
g2T 3 − g′2Y

)
−i

gg′√
g2 + g′2

Aµ

(
T 3 + Y

)
,

(3.10)

where T± =
(
T 1 ± iT 2

)
. In the final term, the coefficient of the electromagnetic

interaction is identified with the electron charge, e:

e =
gg′√

g2 + g′2
. (3.11)

The quantum number for electric charge, Q, is given by the combination of gen-

erators in this term: Q = T 3 + Y .
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The change of basis from
(
A3, B

)
to

(
Z0, A

)
can be described by the weak mix-

ing angle, θW , which is defined such that Z0

A

 =

 cos θW − sin θW

sin θW cos θW


 A3

B

 , (3.12)

This implies the relations

cos θW =
g√

g2 + g′2
, (3.13)

sin θW =
g′√

g2 + g′2
, (3.14)

g =
e

sin θW
. (3.15)

In terms of θW and g, the covariant derivative becomes

Dµ = ∂µ − i
g
√

2

(
W+

µ T + + W−
µ T−

)
− i

g
cos θW

Zµ
(
T 3 − sin2 θW Q

)
− ieAµQ, (3.16)

In addition, the W and Z masses are related by

mW = mZ cos θW . (3.17)

This reduces the model of electroweak interactions to three independent param-

eters: e, θW and mW .

In the fermion sector, the W boson only couples to left-handed helicity states

of quarks and leptons. If ψL and ψR are left-handed and right-handed Weyl

spinors, then they are assigned to different representations: ψL is an SU(2) dou-

blet and ψR is an SU(2) singlet. The forms of the generators T 3 and Y determine

the charge Q.

For right-handed particles, since the state is an SU(2) singlet, T 3 = 0 and

therefore the charge is simply Q = Y . The assigned values for the Standard

Model fermions are Y = +2/3 for up quarks, uR; Y = −1 for electrons, eR; and

Y = −1/3 for down quarks, dR.
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The left-handed particles of the Standard Model are contained within SU(2)

doublets:

EL =

 νeL

e−L

 , QL =

 uL

dL

 . (3.18)

Using T 3 = 1
2σ

3, the correct charge assignments arise upon setting Y = −1/2 for

EL and Y = +1/6 for QL.

Note that mass terms of the form m (ēLeR + ēReL) are forbidden because eL

and eR are objects from different representations. Instead, fermion masses arise

from interaction terms between fermions and the Higgs field, φ. For example,

the Higgs field couples left-handed and right-handed electrons through the La-

grangian term

∆Le = −λeĒL · φeR + h.c. (3.19)

This term is allowed because the SU(2) indices of EL and φ are contracted, and

the overall U(1) charge Y is zero. Now, replace φ by its VEV to obtain

∆Le =
1
√

2
λevēLeR + h.c. + . . . (3.20)

Thus, the mass of the electron is

me =
1
√

2
λev, (3.21)

which depends on the vacuum expectation value of φ, and on a new parameter

λe. A neutrino mass term could be introduced a similar way, but experimental

evidence suggests that a neutrino mass, if it exists at all, is extremely small. A

convenient way to forbid a neutrino mass term is to assume that right-handed

neutrinos, νeR, do not exist.

The allowed Lagrangian terms that couple φ to the quark singlets and dou-

blets are

∆Lq = −λdQ̄L · φdR − λuε
abQ̄Laφ

†

buR + h.c. (3.22)
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Here, εab is a completely antisymmetric tensor with ε12 = 1. By the same process

as before, replacing φ with 〈φ〉 leads to quark masses,

md =
1
√

2
λdv, (3.23)

mu =
1
√

2
λuv. (3.24)

All of the fermion masses obtained in this manner depend on v. The observed

differences in masses observed between electrons, down quarks and up quarks

are parameterized by the coefficients λe, λd and λu.

With multiple generations of quarks, it is always possible to transform into

a basis that diagonalizes the Higgs couplings. The consequence is to introduce

weak interactions that couple the different generations. Multiple lepton genera-

tions do not observe such mixing due to the absence of the νR states. Individual

lepton generation numbers are conserved.

Suppose the Lagrangian terms for φ take the form

∆L =
∣∣∣Dµφ

∣∣∣2 + µ2φ†φ − λ
(
φ†φ

)2
, (3.25)

which is the most general expression that is also renormalizable. Then the po-

tential energy minimum is

v =
µ
√
λ
. (3.26)

As an explicit implementation of the Higgs field, suppose φ takes the form

φ(x) = U(x)
1
√

2

 0

v + h(x)

 , (3.27)

where h(x) is a real-valued field and U(x) is a general SU(2) transformation.

Since the SU(2) symmetry is local, a gauge transformation can be applied to

54



eliminate U(x), which reduces φ to the form

φ(x) =
1
√

2

 0

v + h(x)

 . (3.28)

This choice is called the unitary gauge.

Upon substitution, the potential energy Lagrangian terms become

∆L = −µ2h2 − λvh3 −
1
4
λh4. (3.29)

Thus, the physical particle is h, which is called the Higgs boson. Its mass is

mh =
√

2µ =
√

2λv. (3.30)

As with the other masses in the theory, the size of mh depends on the vacuum

expectation value v, and on a new parameter λ.

3.2 Motivation for Physics Beyond the Standard Model

The complete Standard Model consists of the symmetry group SU(3) × SU(2) ×

U(1), where the SU(3) term describes the strong interactions amongst quarks.

In analogy with the spontaneous symmetry breaking of the electroweak theory,

theories have been put forth in which the Standard Model is embedded within

a larger symmetry group that is spontaneously broken. Such a model is referred

to as a Grand Unified Theory (GUT).

Associated with the symmetry group of a GUT is a single gauge coupling. To

determine the approximate energy at which symmetry breaking must occur, the

energy dependences of the SU(3), SU(2) and U(1) Standard Model coupling con-

stants can be extrapolated until they become approximately equal. This extrap-
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olation procedure suggests that grand unification becomes feasible at energies

above roughly 1015 GeV [38, 39, 40].

Another feature of very high energy theories is the significance of the grav-

itational force. The characteristic energy scale of gravitational interactions can

be parameterized by the Planck mass,

MPl =
1
√

GN
≈ 1.2 × 1019 GeV, (3.31)

where GN is the Newtonian gravitational constant. Thus, the grand unification

scale is also approaching the energy regime at which a model of particle inter-

actions must include the force of gravity.

These very large energy scales have an impact on the sector of the Stan-

dard Model pertaining to the Higgs boson. When evaluating one-loop quan-

tum corrections to the Higgs boson mass parameter µ, one obtains terms that

are quadratically divergent [41, 42]. An example of such a diagram involving a

fermion loop is shown in Figure 3.1. If divergences are avoided by imposing an

ultraviolet cutoff value Λ, then the one-loop corrections to µ2 are on the order of

Λ2.

Figure 3.1: Quadratically divergent one-loop correction to the Higgs mass pa-
rameter arising from the coupling between the Higgs and a fermion, f .

The vacuum expectation value of the Higgs scalar must be of an appropriate

size to generate the observed W and Z boson masses. Recalling that mh =
√

2µ =
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√
2λv, and assuming that the dimensionless parameter λ is of order unity, this

implies that µ2 ∼ (100 GeV)2. By contrast, if the ultraviolet cutoff is taken to

be the grand unification scale, then the one-loop corrections to this value are

δµ2 ∼
(
1015 GeV

)2
. The observable value of µ2 could only arise if the bare mass

parameter µ2
0 cancels the one-loop corrections with exceptional precision. This

phenomenon is called fine-tuning, and should be avoided in a viable theory.

Thus, either the Higgs mass is protected from one-loop corrections through

some additional mechanism or symmetry, or the ultraviolet cutoff scale must

be no more than Λ ∼ 1 TeV. In any case, manifestations of physics processes

beyond the Standard Model should be visible at the energy scales accessible by

the LHC.

Another piece of evidence for new physics comes from astronomical obser-

vations. The rotation curves of galaxies suggest that they are composed of more

mass than can be accounted for by their luminous objects [43]. Measurements

of the cosmic microwave background such as those performed by the Wilkinson

Microwave Anisotropy Probe (WMAP) can be fit very well by a model that in-

cludes a non-hadronic matter density [44]. This source of mass is termed Dark

Matter. It must be stable, charge neutral, and weakly interacting, and it does

not belong to the set of particles described by the Standard Model. Many can-

didate theories for physics beyond the Standard Model contain a Dark Matter

candidate.

The following sections describe two candidate theories for physics beyond

the Standard Model: Supersymmetry, and the Littlest Higgs model with T-

Parity. Using different theoretical approaches, both of these theories address

the issue of quadratically divergent Higgs mass corrections, and they both con-
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tain a weakly interacting neutral particle that could account for Dark Matter.

3.3 Supersymmetry

One of the motivations for the development of the theory of supersymmetry

comes from the quadratic divergences in one-loop corrections to the Higgs

mass. To avoid fine-tuning, naturalness dictates that the ultraviolet cutoff scale

for these quadratic divergences must be on the order of 1 TeV.

Supersymmetry posits that quadratic divergences due to fermions can be

counterbalanced by additional loop corrections due to new scalars. Likewise,

quadratic divergences due to vector bosons are counterbalanced by terms due

to new fermions. The new particles are introduced in such a way that the Higgs

is exactly massless to all orders if the theory is exactly supersymmetric; that is,

if masses and couplings are equal and there are no symmetry breaking terms.

Supersymmetry cannot be an exact symmetry in nature. The means by

which supersymmetry is broken controls the final mass of the Higgs, and of

the supersymmetric partner particles. The Minimal Supersymmetric Standard

Model (MSSM) is an extension of the Standard Model in which supersymmetry

is broken explicitly. The MSSM introduces 105 new parameters beyond those

in the Standard Model, affording a wide range of possible phenomenological

behaviors. A particular set of assumptions that constitute the theory of minimal

Supergravity (mSUGRA) reduces the number of new parameters to five. The

MSSM and mSUGRA implementations of supersymmetry are outlined in the

following sections. The discussion is based primarily on the treatment of super-

symmetry in Theory and Phenomenology of Sparticles by M. Drees, R. Godbole and
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P. Roy [45].

3.3.1 Grassmann Variables

Supersymmetric theories are constructed within a space that includes the usual

four spacetime coordinates, plus a pair of conjugate Grassmann spinor coordi-

nates [46]. The basic property of Grassmann variables is that they anticommute.

First, postulate the existence of a finite number n of Grassmann elements:

ε1, . . . , εn. These objects satisfy the anticommutation relation

εiε j = −ε jεi, (3.32)

which implies that ε2
i = 0. Grassmann elements are assumed to commute with

ordinary complex numbers. A Grassmann variable can then range over these

Grassmann elements. Define conjugate Grassmann variables θ and θ̄ by assert-

ing that they satisfy the following properties:

θθ̄ + θ̄θ = 0, (3.33)

θ2 = θ̄2 = 0, (3.34)

¯̄θ = θ. (3.35)

These variables generate the Grassmann algebra.

A function of θ takes the general form

f (θ) = f0 + f1θ, (3.36)

where f0 and f1 are complex numbers. These functions form a two-dimensional

space. The conjugate functions

f̄ (θ̄) = f̄0 + f̄1θ̄ (3.37)
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form a second two-dimensional space. A function of both variables takes the

form

f (θ, θ̄) = f0 + f1θ + f̄2θ̄ + f3θθ̄, (3.38)

and is an element of the Grassmann algebra.

3.3.2 A Supersymmetry Algebra

The Standard Model is constructed in four-dimensional Minkowski spacetime

with the metric

gµν = gµν = diag (1,−1,−1,−1) . (3.39)

The Poincaré group is a continuous spacetime symmetry that consists of transla-

tions, rotations and Lorentz boosts. The latter two by themselves constitute the

Lorentz group, which encompasses those transformations that keep the origin

constant and that preserve the lengths of four-vectors. An infinitesimal inho-

mogeneous Lorentz transformation has the form

x′µ =
(
δµν + ωµ

ν

)
xν + aµ, (3.40)

where ωµν is a second rank antisymmetric constant tensor and aµ is a constant

four vector. The associated unitary operators are

U(a) = eiaµPµ (3.41)

for translations and

U(Λ) = e−iωµνMµν/2 (3.42)

for homogeneous Lorentz transformations. The Hermitian generators Pµ and

Mµν satisfy the commutation relations[
Pµ, Pν

]
= 0, (3.43)
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[
Mµν, Pρ

]
= i

(
gνσPµ − gµρPν

)
, (3.44)[

Mµν,Mρσ

]
= −i

(
gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ

)
. (3.45)

These relations constitute the Poincaré algebra [47], while the last line alone

constitutes the Lorentz algebra.

A representation of the Poincaré group can be constructed from the 4 × 4 γµ

matrices. In the Weyl representation, these matrices can be written

γ0 =

 0 1

1 0

 , (3.46)

γi =

 0 σi

−σi 0

 . (3.47)

Then one can verify that the definitions

Σµν =
i
4

[
γµ, γν

]
, (3.48)

Mµν = −xµPν + xνPµ + Σµν (3.49)

satisfy the Poincaré algebra. This allows the identification of Pµ as the momen-

tum operator. If i and j are taken to range over spatial indices only, then Mi j is

the total angular momentum tensor, and Σi j represents the contribution due to

spin. The generators M0k generate Lorentz boosts.

The goal is to expand the Poincaré algebra to include a new generator that

represents supersymmetry. However, a result called the Coleman-Mandula the-

orem [48] presents an obstacle to doing so. This theorem considers a nontrivial

Lie algebra associated with all of the continuous symmetries of a physical sys-

tem under certain basic assumptions. It states that if such a Lie algebra contains

both the Poincaré algebra and another Lie algebra as subalgebras, where the
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second algebra is defined by a set of generators {T a} and structure constants tab
c ,

i.e. [
T a,T b

]
= itab

c T c, (3.50)

then the relationship between the two sets of generators must be[
T a, Pµ

]
=

[
T a,Mµν

]
= 0. (3.51)

In other words, the Lie algebra associated with any other symmetry group can

only interact with the Poincaré algebra in a trivial way.

In order to introduce supersymmetry as a nontrivial spacetime symmetry, a

graded Lie algebra structure is required [49]. Specifically, supersymmetry is im-

plemented using a Z2-graded structure that includes bosonic generators, which

are identified as even, and fermionic generators, which are identified as odd.

These types of generators satisfy the commutation and anticommutation rela-

tions
[even, even] = even,[

even, odd
]

= odd,

{odd, odd} = even.

(3.52)

In addition to Pµ and Mµν, the supercharge Qa can now be introduced. Qa is the

spinorial fermionic generator of supersymmetry transformations. Henceforth,

a will represent a spinor index.

Using the definitions

Ji =
1
2
εi jkM jk, (3.53)

Ki = −M0i, (3.54)

J±i =
1
2

(Ji ± iKi) , (3.55)

where Ji is the angular momentum operator, one can show that the homoge-

neous Lorentz group is homomorphic to the group SU(2)+⊗SU(2)−. Specifically,
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this result holds because J±j satisfy[
J+

i ,J
+
j

]
= iεi jkJ

+
k , (3.56)[

J−i ,J
−
j

]
= iεi jkJ

−
k , (3.57)[

J+
i ,J

−
j

]
= 0. (3.58)

Thus, the representations of the Lorentz group can be parametrized by pairs of

integers or half-integers, ( j1, j2), which correspond to the two factors of SU(2).

The most important examples of representations are:

• (0, 0) is a scalar;

•
(

1
2 , 0

)
and

(
0, 1

2

)
are the left and right chiral parts of a Dirac spinor;

•
(

1
2 , 0

)
⊕

(
0, 1

2

)
is a Dirac spinor;

•
(

1
2 ,

1
2

)
are four-vectors such as Pµ;

• (1, 0) and (0, 1) are the components of a second rank tensor.

The simplest choice for Qa is a Majorana spinor in the representation
(

1
2 , 0

)
⊕(

0, 1
2

)
. A Majorana spinor is one that is equal to its charge conjugate; that is, if C

is the charge conjugation matrix, then Qa = CabQ̄b.

Based on the general forms of the odd and even commutation relations in

Equation 3.52, one can derive the commutation and anticommutation relation-

ships satisfied by Qa and the Poincaré group generators:[
Mµν,Qa

]
= −

(
Σµν

)
ab

Qb, (3.59)[
Qa, Pµ

]
= 0. (3.60)

Further, one can show in terms of the charge conjugation matrix that

{Qa,Qb} = −2 (γµC)ab Pµ, (3.61)

63



{
Qa, Q̄b

}
= 2 (γµ)ab Pµ, (3.62){

Q̄a, Q̄b

}
= 2

(
C−1γµ

)
ab

Pµ. (3.63)

The charge conjugation, commutation and anticommuntation relations are

all invariant under a chiral rotation that acts on Q by

Qa →
(
e−iφγ5

)
ab

Qb, (3.64)

Q̄a → Q̄b

(
e−iφγ5

)
ba
, (3.65)

φ being a real constant. This invariance can be implemented using a unitary

operator eiφR, where R is a U(1) generator:

eiφRQae−iφR =
(
e−iφγ5

)
ab

Qb, (3.66)

eiφRQ̄ae−iφR = Q̄b

(
e−iφγ5

)
ba
. (3.67)

This implies the commutation relation

[Qa,R] = (γ5)ab Qb. (3.68)

which is added to the rest of the superymmetry algebra, along with the addi-

tional expressions [
R, Pµ

]
=

[
R,Mµν

]
= 0. (3.69)

The U(1) symmetry is called R-invariance. The entire collection of commutation

relations is the super-Poincaré algebra.

It is also useful to break Qa down into two Weyl spinors, and rewrite the com-

mutation relations in terms of these components. Consider a two-component

Weyl spinor ξA in the representation
(

1
2 , 0

)
, and another such spinor χ̄Ȧ in the

conjugate representation
(
0, 1

2

)
. These objects are fermionic fields, where ξ is a

two-component column vector and χ̄ is a two-component row vector. Their con-

jugates in the opposite representations are ξ̄ = ξ† and χ = χ̄†. The components
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of all of these Weyl spinors are postulated to anticommute amongst themselves.

The two Weyl spinors can be used to construct a Dirac spinor by

ψ =

 ξA

χ̄T

 (3.70)

Its conjugate is

ψ̄ = ψ†γ0 =

(
χ ξ̄

)
. (3.71)

At the same time, introduce θ and θ̄ as conjugate two-component Grass-

mann variables whose components anticommute with themselves and with the

fermion fields. Then

θθ = −2θ1θ2, (3.72)

θ̄θ̄ = 2θ̄1θ̄2, (3.73)

and any combination of three or more factors of θ or θ̄ vanishes.

A general Majorana four spinor can be written in Weyl notation as

λa =

 λA

λ̄Ȧ

 . (3.74)

Since the supercharge operator is assumed to be such an object, it can be written

Qa =

 QA

Q̄Ȧ

 . (3.75)

Using this and the charge conjugation matrix, which in the Weyl representation

is

C =

 −iσ2 0

0 iσ2

 , (3.76)
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all of the commutation and anticommutation relations can be rewritten as

{
QA, Q̄Ḃ

}
= 2σµ

AḂ
Pµ,

{
Q̄Ȧ,QB

}
= 2σ̄µȦBPµ, (3.77)

{QA,QB} =
{
Q̄Ȧ, Q̄Ḃ

}
= 0, (3.78)[

QA, Pµ

]
=

[
Q̄Ȧ, Pµ

]
= 0, (3.79)[

Mµν,QA

]
= −

(
σµν

)B

A
QB, (3.80)[

Mµν, Q̄Ȧ
]

= −
(
σ̄µν

)Ȧ

Ḃ
Q̄Ḃ, (3.81)

[QA,R] = QA, (3.82)[
Q̄Ȧ,R

]
= −Q̄Ȧ. (3.83)

One particularly important consequence is that P2 commutes with Q. These

relationships will be used extensively in the following section.

3.3.3 Supermultiplets

A supermultiplet consists of all particles that are related by the generator Q.

Since Q commutes with P2, the masses of all particles within a supermulitplet

are the same. Q also commutes with internal symmetries and quantum num-

bers. From the Weyl commutation relations, one can show that

[
Ji,QA

]
= −

1
2

(
σi

)B

A
QB (3.84)[

Ji, Q̄Ȧ
]

= −
1
2

(
σ̄i

)Ȧ

Ḃ
Q̄Ḃ, (3.85)

where Ji is the angular momentum operator. These expression will be used to

derive the relationships between the spins of the particles in a supermultiplet.

The massless and massive cases will be considered separately.
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Massless case

Given a massless particle, one can always perform a Lorentz transformation into

the frame where the four-momentum has the form Pµ = ω (1, 0, 0, 1). Then the

J3 operator measures the helicity of the particle. The supersymmetry algebra in

this reference frame simplifies to

{
Q1, Q̄1̇

}
= 0, (3.86){

Q2, Q̄2̇

}
= 4ω, (3.87){

Q1, Q̄2̇

}
=

{
Q2, Q̄1̇

}
= 0. (3.88)

The first line implies that Q1 = Q̄1̇ = 0. This leaves only Q2 and Q̄2̇, which are

rescaled as follows:

Q =
Q̄2̇

2
√
ω
, (3.89)

Q̄ =
Q2

2
√
ω
. (3.90)

Then the supersymmetry algebra becomes

{
Q, Q̄

}
= 1, (3.91)

{Q,Q} =
{
Q̄, Q̄

}
= 0. (3.92)

From the commutation relations with Ji,

[
J3,Q2

]
=

1
2

Q2, (3.93)[
J3, Q̄2̇

]
= −

1
2

Q̄2̇. (3.94)

Rewriting this in terms of the new Q and Q̄ yields

J3Q = Q
(
J3 −

1
2

)
, (3.95)

J3Q̄ = Q̄
(
J3 +

1
2

)
. (3.96)
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That is, applying Q̄ to an eigenstate of J3 increases the eigenvalue by 1/2, and

applying Q decreases it by 1/2. This implies that Q must destroy the state with

the minimum eigenvalue of J3, and Q̄ must destroy the state with the maximum

eigenvalue.

Suppose j0 is the maximum eigenvalue. Define the result of acting on this

state with Q by ∣∣∣∣∣ j0 −
1
2

〉
≡ Q | j0〉 . (3.97)

Then

Q̄
∣∣∣∣∣ j0 −

1
2

〉
= | j0〉 , (3.98)

Q
∣∣∣∣∣ j0 −

1
2

〉
= 0. (3.99)

Also, using the relationships between J3 and Q,

J3
∣∣∣ j0 −

1
2

〉
=

(
j0 −

1
2

) ∣∣∣ j0 −
1
2

〉
, (3.100)

Q̄ | j0〉 = 0, (3.101)

J3 | j0〉 = j0 | j0〉 . (3.102)

This demonstrates that the physically relevant states are | j0〉 and
∣∣∣ j0 −

1
2

〉
.

CPT symmetry dictates that, if the state | j〉 transforms in some representation

R, then there is a state |− j〉 that transforms in the conjugate representation R̄.

For example, if R and R̄ are the representations
(

1
2 , 0

)
and

(
0, 1

2

)
, then there is a

massless supermultiplet that pairs a chiral fermion (spin 1
2 , helicity +1

2 ) with a

complex scalar (spin 0, helicity 0), and another that pairs the other helicity state

of the fermion (spin 1
2 , helicity −1

2 ) with a complex scalar (spin 0, helicity 0).

Both of these are irreducible representations of the superalgebra.

If the representation R is self-conjugate, then an irreducible representation of
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the superalgebra includes particles with helicities j0, j0 −
1
2 , − j0 + 1

2 and − j0. For

example, a gauge supermultiplet consists of a gauge boson (spin 1, helicities

1 and −1) and a Majorana fermion called a gaugino (spin 1
2 , helicities 1

2 and

−1
2 ). Another example pairs a graviton (spin 2, helicities 2 and −2) with a new

fermion called a gravitino (spin 3
2 , helicities 3

2 and −3
2 ).

Massive Case

In the case of a massive particle, one can always perform a Lorentz transforma-

tion into the rest frame of the particle, where Pµ = (m, 0, 0, 0). Then the anticom-

mutation rules become

{
QA, Q̄Ḃ

}
= 2m (I)AḂ , (3.103)

{QA,QB} =
{
Q̄Ȧ, Q̄Ḃ

}
= 0. (3.104)

Given a state |m, j, λ〉, where λ is the third component of the spin j, define eigen-

states of P2 and J3 as follows:

P2 |m, j, λ〉 = m2 |m, j, λ〉 , (3.105)

J3 |m, j, λ〉 = λ |m, j, λ〉 , (3.106)

〈m, j′, λ′| m, j, λ〉 = δ j′ jδλ′λ (3.107)

There always exists a state that is annihilated by QA. For example, if |ψ〉

is annihilated by neither Q1 or Q2, then |χ〉 = Q1Q2 |ψ〉 is annihilated by both.

Similarly, if the state |ψ〉 is annihilated by one of Q1 or Q2 but not the other,

multiply it by the other to create a state that is annihilated by both. In any case,

let |χ〉 = |m, j0, λ0〉 be this state.
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From the commutation relations between P and Q, we have

[
J3, Q̄1

]
=

1
2

Q̄1 (3.108)

=⇒ J3Q̄1 = Q̄1
(
J3 +

1
2

)
, (3.109)

and similarly,

[
J3, Q̄2

]
= −

1
2

Q̄2 (3.110)

=⇒ J3Q̄2 = Q̄
(
J3 −

1
2

)
. (3.111)

These expressions imply that the state Q̄1 |m, j0, λ0〉 has λ0 + 1
2 as its eigenvalue

of J3, while the state Q̄2 |m, j0, λ0〉 has λ0 −
1
2 as its eigenvalue of J3. Finally, the

state Q̄1Q̄2 |m, j0, λ0〉 has eigenvalue λ0. Any further applications of Q̄ annihilate

the state.

Thus, given a particular pair of eigenvalues (m, j0), there is a 4 (2 j0 + 1)-

dimensional representation of the super-Poincaré group. The factor of four

comes from the original state plus the results after applying Q̄1, Q̄2, and Q̄1Q̄2.

The factor of 2 j0 + 1 comes from the number of different possible λ0 values. This

representation is composed of 2 j0+1 subspaces with four eigenvalues of J3 each,

namely λ0, λ0 + 1
2 , λ0 −

1
2 and λ0.

For example, suppose j0 = 0; that is, suppose the particle is a massive scalar.

The supermultiplet consists of four states with J3 = 0,±1/2, 0, which form a

Weyl spinor, a scalar, and a pseudoscalar. This combination is called a Wess-

Zumino supermultiplet. With two Wess-Zumino multiplets, a Dirac spinor can

be constructed out of the two Weyl spinors, while the four states with J3 = 0

can be interpreted as two complex scalars called sfermions, which are the su-

perpartners of the left and right components of the Dirac spinor.
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As another example, suppose j0 = 1/2. Then the case λ0 = 1/2 leads to J3

eigenvalues of 1/2, 1, 0, 1/2, and the case λ0 = −1/2 leads to J3 eigenvalues of

−1/2, 0,−1,−1/2. In either case, these four fields are a pseudoscalar, vector, and

two Weyl spinors that make up a Dirac fermion.

3.3.4 Superfields

The theory of supersymmetry is constructed using a coordinate system that has

been expanded to include the usual space-time coordinates and two conjugate

Grassmann spinorial coordinates:
(
xµ, θA, θ̄Ȧ

)
. A general function of these vari-

ables has the form [50]

f (θ, θ̄) = f0 + f A
1 θA + f̄2Ȧθ̄

Ȧ + f3θθ̄ + f̄4θ̄θ̄ + f A
5 θAθ̄θ̄ + f̄6Ȧθ̄

Ȧθθ + f7θθθ̄θ̄. (3.112)

An infinitesimal transformation of this space can be written

(
xµ, θ, θ̄

)
→

(
xµ − iθσµε̄ + iεσµθ̄, θ + ε, θ̄ + ε̄

)
, (3.113)

with ε and ε̄ being anticommuting spinor parameters. For a global transforma-

tion, ε and ε̄ are not functions of xµ. Then the infinitesimal transformation of f

is given by

δ f (z) = δxµ∂µ f + δθA∂A f + δθ̄Ȧ∂̄
Ȧ f . (3.114)

For a linear implementation of supersymmetry, any such transformation should

be expressable in terms of Q and Q̄ as δ f (z) = i
(
εQ + ε̄Q̄

)
f (z). This yields explicit

definitions for the operators Q and Q̄:

QA = −i
(
∂A + iσµ

AḂ
θ̄Ḃ∂µ

)
, (3.115)

Q̄Ȧ = −i
(
∂̄Ȧ + iθBσ

µ

BḂ
∂µ

)
. (3.116)
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The general form of a superfield is based on the above expression, but gen-

eralized to include bosonic and fermionic components. The general expression

that includes all Lorentz invariant Z2-even combinations of these objects is

F(z) = f (x) +
√

2θξ(x) +
√

2θ̄χ(x) + θθM(x) + θ̄θ̄N(x) (3.117)

+θσµθ̄Aµ(x) + θθθ̄λ̄(x) + θ̄θ̄θζ(x) +
1
2
θθθ̄θ̄D(x). (3.118)

This incorporates four scalar fields f (x), M(x), N(x), D(x), one vector field Aµ(x),

two left-handed Weyl spinors ξA(x), ζ(x) and two right-handed Weyl spinors

χ̄Ȧ(x), λ̄Ȧ(x). All of the above are complex. In general, a superfield of this nature

is reducible, but some examples of irreducible superfields are chiral and vector

fields, which will be defined below.

The covariant derivatives in this space are

DA = ∂A − iσµ

AḂ
θ̄Ḃ∂µ, (3.119)

D̄Ȧ = ∂̄Ȧ − iσ̄µȦBθB∂µ. (3.120)

A superfield Φ is chiral if it satisfies

D̄ȦΦ = 0, (3.121)

DAΦ† = 0, (3.122)

the two conditions being equivalent to each other. The field Φ is called left chiral,

and the field Φ† is called right chiral. With a change of variables to yµ = xµ−iθσµθ̄

and ȳµ = xµ + iθσµθ̄, these fields can be rewritten as

Φ(y, θ) = φ(y) +
√

2θξ(y) + θθF(y), (3.123)

Φ†(y, θ̄) = φ∗(ȳ) +
√

2θ̄ξ̄(ȳ) + θ̄θ̄F∗(ȳ). (3.124)

A superfield V is real if it satisfies V = V†. Such objects are also called vector
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superfields. These fields, with the choice of a particular gauge called the Wess-

Zumino gauge, can be written as

V(z) = θσµθ̄Aµ(x) + θθθ̄λ̄(x) + θ̄θ̄θλ(x) +
1
2
θθθ̄θ̄D(x). (3.125)

Of these components, Aµ(x) is a real gauge field, and λ(x) is the corresponding

gaugino. The field D(x) does not have a kinetic term and can be eliminated from

the system using the equations of motion.

Recall that R-symmetry is a global U(1) gauge invariance of the supersym-

metry algebra, in which θ → eiφθ and θ̄ → e−iφθ̄. The transformation rules for QA

and Q̄Ȧ are

QA → eiφRQAe−iφR = e−iφQA, (3.126)

Q̄Ȧ → eiφRQ̄Ȧe−iφR = eiφQ̄Ȧ. (3.127)

Thus, the R-charges of θ and Q̄ are 1 and the R-charges of θ̄ and Q are -1. For left

and right chiral superfields, an R-transformation can be defined by

Φ → Φ′(x, eiφθ, e−iφθ̄) = eiφRΦΦ(x, θ, θ̄), (3.128)

Φ† → Φ′
†(x, eiφθ, e−iφθ̄) = e−iφRΦΦ†(x, θ, θ̄) (3.129)

respectively. That is, the R-charges of Φ and Φ† are RΦ and −RΦ. The R-charges of

its individual components are R(φ) = RΦ, R(ξ) = −R(ξ̄) = RΦ−1, and R(F) = RΦ−2.

For a vector superfield, the condition of reality requires R(V) = 0. Further, the

components have R-charges R(Aµ) = 0, R(λ) = −R(λ̄) = 1, R(D) = 0.

This particular U(1) symmetry cannot be an exact symmetry of nature. For

example, the gaugino Majorana mass terms violate this symmetry, but gauginos

have to be massive particles. However, the Z2 discrete subgroup with φ = π can

be retained.
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Given any superfield, its matter parity is defined by Mp = eiπR = (−1)R.

The corresponding value for each component field is called that component’s

R-parity, Rp. Rp is positive for a vector field, and negative for its fermionic part-

ner.

Consider a chiral superfield Φ. By convention, RΦ is either ±1 or 0. Under

the transformation θ → −θ, the choice of RΦ = ±1 implies that Φ → −Φ, and

the choice of RΦ = 0 implies that Φ → Φ. Further, in this chiral superfield, the

R-parity of the scalar component is either negative or positive, and that of its

fermionic partner is either positive or negative. An initial choice of ±1 results

in a matter-like superfield; that is, its fermionic component is identified with a

known elementary particle. The corresponding scalar is a sparticle. The choice

of 0 leads to a quanta-like superfield in which the scalar component is the Stan-

dard Model particle like the Higgs or a gauge boson, and the corresponding

fermion is a Higgsino or a gaugino. These identifications are chosen so that

Standard Model particles have positive R-parity, and new particles have nega-

tive R-parity.

Let B be the baryon number of a Standard Model particle, let L be its lepton

number, and let S be the spin of the particle or its superpartner. Then the matter

parity of the associated superfield, and the R-parity of either the particle or its

superpartner, can be expressed in terms of B, L and S by

Mp = (−1)3(B−L), (3.130)

Rp = (−1)3(B−L)+2S . (3.131)

The basic assumption of the Minimal Supersymmetric Standard Model, which

is examined in the next section, is that Rp is an exact symmetry of nature.
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3.3.5 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) constitutes the minimal

extension of the Standard Model to incorporate an N = 1 global supersymme-

try; that is, a theory with one supersymmetry generator Qa [51]. In the MSSM,

every Standard Model particle acquires a superpartner whose spin differs from

it by 1/2. Fermions are partnered with sfermions, which have spin zero. Gauge

bosons are partnered with bosinos, which with spin 1/2. The Higgs boson is

partnered with a higgsino, which has spin 1/2. The gauginos and higgsinos mix

to form charginos and neutralinos.

Using Equation 3.131, the formula for the R-parity of a particle, one can show

that all Standard Model particles have Rp = +1, while the sfermions, gauginos

and higgsinos have Rp = −1. R-parity is assumed to be an exact symmetry of this

model, which implies that all superpartner particles must be pair-produced in

particle interactions where the initial states are Standard Model particles. More-

over, the lightest superpartner must be stable.

A general supersymmetric Lagrangian has the form [52]

L =
[
Φ
†

i Φi

]
D

+
[
W(Φi) + h.c.

]
F , (3.132)

where

W(Φi) = hiΦi +
1
2

mi jΦiΦ j +
1
3

fi jkΦiΦ jΦk. (3.133)

The termW is called the superpotential, and it must be an analytic function of Φ

only (and not Φ†). Its hermitian conjugate depends only on Φ†. The D subscript

refers to the general expansion of a vector superfield in Equation 3.125. The

field that multiplies 1
2θθθ̄θ̄ was called D(x), so the expression

[
Φ
†

i Φi

]
D

represents

this component of the vector superfield Φ
†

i Φi. Similarly, the general expression
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for a chiral superfield was given in Equation 3.123, where F(y) was the field

that multiplied θθ. The F superscript indicates this component ofW(Φi) + h.c.

These components are selected because they have the correct transformation

properties for a supersymmetric Lagrangian density.

A chiral superfield is introduced for every chiral fermion of the Standard

Model. The new scalars that constitute the other components of these super-

fields are

l̃1L =

 ν̃

ẽ−


L

, ẽ1R = ẽR, (3.134)

q̃1L =

 ũ

d̃


L

, ũ1R = ũR, d̃1R = d̃R. (3.135)

The superfields that are associated with the leptons are denoted

L1 =

 Lνe

Le

 , Ē1. (3.136)

The superfields associated with the quarks are

Q1 =

 Qu

Qd

 , Ū1, D̄1. (3.137)

The index 1 refers to the first generation. The second and third generation su-

perfields have the same structure.

In the gauge sector, a vector superfield is introduced for every Standard

Model gauge field. The Standard Model particles are Bµ, ~Wµ, and ga
µ, which

are the gauge bosons associated with the U(1)Y , SU(2)L and SU(3)C symmetry

groups, respectively. The corresponding Majorana gaugino fields are λ̃0, ~̃λ, and

g̃a. These are contained in the vector superfields VY , ~VW , and Va
g . Each gaugino
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field transforms in the adjoint representation of the corresponding gauge group,

as does its gauge boson partner.

The Standard Model Higgs sector contains an SU(2)L doublet field φ with

hypercharge Y = 1. However, the MSSM requires two Higgs doublets, the other

with Y = −1. The second one is designed to couple to the chiral fermions having

a weak isospin of T3L = −1/2. Call these two Higgs doublets h1 and h2, respec-

tively. Their VEVs are

〈h1〉 =
1
√

2

 v1

0

 , (3.138)

〈h2〉 =
1
√

2

 0

v2

 . (3.139)

In terms of these parameters, the Standard Model gauge boson masses mW and

mZ are given by

mW =
1
2

g2

√
v2

1 + v2
2, (3.140)

mZ =
1
2

√
g2

Y + g2
2

√
v2

1 + v2
2. (3.141)

The ratio of the VEVs is defined to be

tan β =
v2

v1
, (3.142)

which is a free parameter of the theory.

The left chiral fermionic partners to the two Higgs fields are

h̃1L =

 h̃0
1

h̃−1


L

, h̃2L =

 h̃+
2

h̃0
2


L

. (3.143)

Each individual entry is a two-component spinor field in the
(

1
2 , 0

)
representa-

tion. The Higgs fields and their partners are collectively contained within the
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superfields

H1 =

 H1
1

H2
1

 , H2 =

 H1
2

H2
2

 (3.144)

Electroweak symmetry breaking (EWSB) and explicit soft supersymmetry

breaking terms both serve to mix gauginos and higgsinos. The charged gaug-

inos and charged higgsinos mix to form the charginos, χ̃±1,2, which are num-

bered in order of increasing mass. The neutral gauginos consist of two four-

component Majorana fields, λ̃0 and λ̃3. They mix with the neutral higgsinos h̃0
1

and h̃0
2 to form four physical states, the neutralinos χ̃0

i with i = 1, . . . , 4, again

ordered by increasing mass. There are large regions of MSSM parameter space

in which the lightest neutralino, χ̃0
i , is the lightest of all superpartner particles.

Since this particle is charge neutral and stable, it is a Dark Matter candidate.

The Lagrangian for the MSSM can be broadly described as

LMSSM = LSUSY +Lsoft; (3.145)

that is, it consists of supersymmetric terms and soft supersymmetry-breaking

terms. The supersymmetric component can be further divided into

LSUSY = Lg +LM +LH, (3.146)

which are the gauge, matter, and Higgs-Yukawa terms, respectively. The pure

gauge part contains terms that involve Va, ~VW and VY . The matter part con-

tains terms that involve all of the matter superfields. The Higgs-Yukawa part

involves the superpotentialWMSSM that is defined by

WMSSM = µH1 · H2 − f e
i jH1 · LiĒ j − f d

i jH1 · QiD̄ j − f u
i jQi · H2Ū j. (3.147)

In particular, note the term µH1 ·H2, which can be thought of as analogous to the

term µh2 in the Standard Model. In MSSM, this term represents a generalization

of a higgsino mass term.
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In the soft supersymmetry-breaking sector, a general Lagrangian takes the

form [53]

LSOFT = −φ∗i
(
m2

)
i j
φ j +

(
1
3

Ai jkφiφ jφk − Bi jφiφ j + Ciφi + h.c.
)
−

1
2

(
Mλaλa + h.c.

)
(3.148)

where φi is the scalar component from some superfield Φi, and λa and λ̄a are two-

component gaugino fields. In the MSSM, there is no scalar field φi such that a

term of the form Ciφi would be invariant under the Standard Model SU(3)C ×

SU(2)L ×U(1)Y symmetry. Therefore this term is not included in the MSSM, but

all others are allowed. Explicitly writing out the MSSM superfields, the form of

the soft supersymmetry breaking Lagrangian is

−LSOFT = q̃∗iL
(
M2

q̃

)
i j

q̃ jL + ũ∗iR
(
M2

ũ

)
i j

ũ jR + d̃∗iR
(
M2

d̃

)
i j

d̃ jR + l̃∗iL
(
M2

l̃

)
i j

l̃ jL

+ẽ∗iR
(
M2

ẽ

)
i j

ẽ jR +
[
h1 · l̃iLAe

i jẽ
∗
jR + h1 · q̃iLAd

i jd̃
∗
jR

+ q̃iL · h2Au
i jũ
∗
jR + h.c.

]
+ m2

1 |h1|
2 + m2

2 |h2|
2 +

(
Bµh1 · h2 + h.c.

)
+1

2

(
M1

¯̃λ0PLλ̃0 + M∗
1
¯̃λ0PRλ̃0

)
+ 1

2

(
M2
~̃̄λPL

~̃λ + M∗
2
~̃̄λPR

~̃λ
)

+1
2

(
M3 ¯̃gaPLg̃a + M∗

3
¯̃gaPRg̃a

)
.

(3.149)

One can split this into gaugino mass terms and soft potential terms. The param-

eters so introduced are:

• M1,2,3, the complex gaugino Majorana mass parameters for λ̃0, ~̃λ and g̃ re-

spectively;

• m1,2, the real Higgs mass parameters;

• the sfermion mass matricesM2
q̃, M2

ũ, M2
d̃
, M2

l̃
andM2

ẽ , which are all 3 × 3

Hermitian matrices;

• the coefficients Ae, Ad and Au of the trilinear supersymmetry-breaking

terms, which are general 3 × 3 complex matrices;
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• the coefficient B of the bilinear breaking term, which is also complex;

• the higgsino coefficient µ.

In total, this theory involves 105 new parameters that are not present in the

Standard Model.

3.3.6 Minimal Supergravity

Supergravity refers to spontaneous breaking of a local supersymmetry, where

the breaking is mediated by gravitational-strength interactions [54]. The break-

ing occurs in a new sector of the theory, which involves only Standard Model

gauge singlet superfields. Then the effects must be transmitted back to the ob-

servable sector via a weak coupling. A particular implementation of this is Min-

imal Supergravity (mSUGRA), which incorporates certain simplifying assump-

tions that allow the number of free parameters in the model to be reduced from

105 to 5.

Recall the anticommutation relation

{
Qa, Q̄b

}
= 2 (γµ)ab Pµ. (3.150)

When supersymmetry is promoted to a local symmetry, invariance under su-

persymmetry implies invariance under local coordinate shifts. This is the basis

of general relativity; hence the appellation of supergravity.

When an ordinary symmetry is promoted from global to local, one must in-

troduce corresponding gauge bosons. Since supersymmtry is implemented in

a fermionic fashion – that is, its spacetime dependence as a local symmetry is
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parametrized by a four-component local spinor function ε(x) – one must instead

introduce a new four-component real fermionic field Ψµ. Its infinitesimal super-

symmetry transformation is

δΨµ = 2Mpl∂µε, (3.151)

where Mpl is the Planck mass. This field can be interpreted as the gravitino,

which is the superpartner of the spin-two graviton.

Now terms are required through which the superfield Ψ can couple to mat-

ter and gauge superfields. One component of these interactions is the Kähler

potential, which is written

G = M2
pl

K (
φi

Mpl
,
φ̄i

Mpl

)
− ln
|W(φi)|2

M6
pl

 . (3.152)

In this expression, φi denotes the scalar component of the left chiral superfield

Φi, and φ̄i is the scalar component of the right chiral superfield Φi. The super-

potential is W(φi), which is shorthand for W(Φi) when it has been evaluated at

θ = 0 and θ̄ = 0. W is an analytic function of Φi only. Define

Gi
j ≡

∂2G

∂φi∂φ̄ j
, (3.153)

which is the Kähler metric and is independent of W.

After spontaneous supersymmetry breaking, the gravitino acquires a mass,

denoted m3/2. The value of this mass can be evaluated by replacing the Kähler

potential with its VEV:

m3/2 = MPle−〈G〉/(2M2
Pl). (3.154)

Consider chiral superfields Zi, Z̄i with scalar components zi, z̄i. Suppose these

are in the observable sector, and suppose the hidden sector contains the chiral
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superfield Σ with a scalar component σ. Further, for demonstration purposes,

assume a particularly simple form for the Kähler potential:

G = −
∑

i

ziz̄i − H(σ, σ̄) − M2
Pl

ln |W(zi, σ)|2

M6
Pl

, (3.155)

where

W(Φi) = W0(zi) + Wh(Σ); (3.156)

that is, W is a sum of terms from the observable sector and the hidden sector. Us-

ing these assumptions, one can show that all scalar massess are given the same

value, m3/2. Further, in the limit where MPl → ∞ and m3/2 is held fixed, all the

Ai jk coefficients to the trilinear explicit soft supersymmetry-breaking terms are

equal to the same value, A0. Also, the Bi j coefficients to the bilinear symmetry-

breaking terms are equal the same value, B0. It should be noted that these are

boundary conditions, which do not take into account the evolution of the renor-

malization group with energy scale.

Suppose the assumptions about the function K are relaxed slightly, so that K

might not take the particular form given, but so that it depends only on
∑

i |zi|
2.

Then the universality of A0 and B0 are preserved, as is the universality of the

scalar masses. However, the universal scalar mass is no longer equal to m3/2.

This constant value is denoted m0. This choice of assumptions essentially im-

poses a global U(n) symmetry on the Kähler potential.

Finally, to obtain expressions for the gaugino masses, an additional bound-

ary condition is imposed: namely, that at the grand unification scale, all three

gauginos have the same mass, M1/2. One can evolve back down to accessible

scales and express masses numerically in terms of M1/2.

The above formulation is referred to as mSUGRA. So far, the theory has been
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written in terms of the parameters m0, M1/2, A0 and B0. These are sufficient to de-

termine the sfermion masses at lower energy scales, which depend on m0, M1/2

and Standard Model parameters. To this collection, one must add the parame-

ter µ from the Higgs sector term Bµh1 · h2. However, |µ| can be determined by

requiring that the Standard Model mass mZ take on its experimentally observed

value, so the only degree of freedom is in the sign of µ. B0 and tan β are also

related by expressions that involve Standard Model masses, so one may trade

B0 for tan β. Thus, the five parameters of mSUGRA are

{
m0,M1/2, A0, tan β, sign (µ)

}
. (3.157)

To summarize, every Standard Model particle acquires a partner particle

whose spin differs from the original by 1/2. The masses of the new scalar

sfermions are determined by the parameter m0, and the masses of the gauginos

are determined by the parameter M1/2. The explicit soft supersymmetry break-

ing terms have the coefficient A0, while the Higgs sector is parameterized by

tan β and sign (µ). In large regions of the mSUGRA parameter space, the lightest

supersymmetric partner particle is χ̃0
1, which is a candidate for Dark Matter.

3.4 The Littlest Higgs Model With T-Parity

The class of Little Higgs models take an alternative approach to addressing the

hierarchy problem discussed in Section 3.2. Suppose that the Higgs is a com-

posite particle. Then an appropriate value for the cutoff scale Λ is the scale at

which the new strong interaction between its components become relevant.

There are some phenomenological issues to this approach that must be ad-
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dressed. In particular, precision measurements of electroweak observables dis-

favor the existence of a new interaction below approximately 10 TeV [55], while

the cutoff scale needed for naturalness is on the scale of 1 TeV. This discrepant

factor of ten is the so-called “little” hierarchy problem. Therefore, additional

mechanisms are required to protect the Higgs mass from quadratically diver-

gent corrections above 1 TeV.

One way to preserve the relative lightness of the Higgs boson is to interpret

it as a Goldstone boson arising from the spontaneous symmetry breaking of a

larger symmetry. This new symmetry cannot be exact, or else the Higgs would

be identically massless. In the Little Higgs models, which were proposed by

Arkani-Hamed, Cohen and Georgi [56], gauge couplings and Yukawa couplings

explicitly break the global symmetry, but they do so in such a way as to prevent

quadratically divergent one-loop corrections. The approach is to embed the

Standard Model within a larger symmetry group so that multiple symmetries

must be broken collectively before quantum corrections to the Higgs mass are

generated. One-loop diagrams, which involve only one coupling, do not meet

the requirements, and therefore the problematic contributions cancel.

The Standard Model particles acquire partner particles from the larger sym-

metry group. T-parity, which is posited in analogy to the R-parity of the MSSM

[57], assigns even parity to Standard Model particles and odd parity to the ma-

jority of the new particles. This restricts the processes by which the new par-

ticles can be created, thereby relaxing electroweak precision constraints on the

model.

Comprehensive overviews of the Littlest Higgs model and the Littlest Higgs

with T-Parity have been compiled [58, 59, 60]. The present discussion summa-
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rizes results presented therein.

3.4.1 The Littlest Higgs Model

Consider a global SU(5) symmetry that is broken to SO(5) by the vacuum ex-

pectation value of a field Σ in the symmetric tensor representation. The VEV is

assumed to take the form

Σ0 =



0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0


, (3.158)

and the symmetry breaking is assumed to occur at a scale f ∼ 1 TeV. The Littlest

Higgs theory embeds the Standard Model in a non-linear sigma model describ-

ing the SU(5)/SO(5) symmetry breaking.

Since there are 24 − 10 = 14 broken generators, this model gives rise to 14

Goldstone boson fields, denoted πa(x) with a = 1, . . . , 14. Define the Π field by

Π(x) =
∑

πaXa, (3.159)

where the Xa are the broken generators. Further define the Σ field by

Σ(x) = eiΠ/ f Σ0eiΠT / f . (3.160)

Noting that XaΣ0 = Σ0XaT , this field can be rewritten as

Σ(x) = e2iΠ/ f Σ0. (3.161)
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Next, a subgroup of SU(5) is promoted to a local symmetry. The subgroup

in question is
[
SU(2) ×U(1)

]2, and its generators are

Qa
1 =


σa/2 0 0

0 0 0

0 0 0

 , (3.162)

Y1 = diag (3, 3,−2,−2,−2) /10, (3.163)

Qa
2 =


0 0 0

0 0 0

0 0 −σa∗/2

 , (3.164)

Y2 = diag (2, 2, 2,−3,−3) /10. (3.165)

In these expressions, σa represent the Pauli matrices, and the subscripts 1, 2 in-

dicate the two factors of SU(2) × U(1). Let the gauge fields corresponding to

U(1) j and SU(2) j be B j and Wa
j , and let the corresponding coupling constants be

g′j and g j. Then the derivative ∂µ must be replaced by a covariant derivative Dµ,

which acts on the sigma field by

DµΣ = ∂µ − i
2∑

j=1

[
g jWa

jµ

(
Qa

jΣ + ΣQaT
j

)
+ g′jB jµ

(
Y jΣ + ΣY j

)]
. (3.166)

There are linear combinations of gauge boson fields that acquire masses due

to the VEV Σ0, while the orthogonal combinations remain massless. Define the

following new gauge boson fields:

Wa
L =

g2√
g2

1 + g2
2

Wa
1 +

g1√
g2

1 + g2
2

Wa
2 , (3.167)

Wa
H = −

g1√
g2

1 + g2
2

W1
a +

g2√
g2

1 + g2
2

Wa
2 , (3.168)

BL =
g′2√

g′21 + g′22

B1 +
g′1√

g′21 + g′22

B2, (3.169)
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BH = −
g′1√

g′21 + g′22

B1 +
g′2√

g′21 + g′22

B2. (3.170)

Mass terms, if they are nonzero, arise from evaluating the kinetic term,

f 2

8
Tr

(
DµΣ

)
(DµΣ)† , (3.171)

using Σ0 in place of Σ. Substitution yields

iDµΣ →

2∑
j=1

[
g jWa

jµ

(
Qa

jΣ0 + Σ0QaT
j

)
+ g′jB jµ

(
Y jΣ0 + Σ0Y j

)]
=

g1g2√
g2

1 + g2
2

Wa
L

[(
Qa

1 + Qa
2
)
Σ0 + Σ0

(
QaT

1 + QaT
2

)]
+

g′1g′2√
g′21 + g′22

BL [(Y1 + Y2) Σ0 + Σ0 (Y1 + Y2)]

+
1√

g2
1 + g2

2

Wa
H

[(
g2

2Qa
2 − g2

1Qa
1

)
Σ0 + Σ0

(
g2

2QaT
2 − g2

1QaT
a

)]
+

1√
g′21 + g′22

BH

[(
g′22Y2 − g′21Y1

)
Σ0 + Σ0

(
g′22Y2 − g′21Ya

)]

(3.172)

The terms associated with Wa
L and BL vanish, indicating that the associated com-

binations of generators are not broken by Σ0. Thus, the VEV Σ0 breaks the[
SU(2) ×U(1)

]2 group down to a diagonal subgroup, denoted SU(2)L × U(1)L.

This will be identified with the electroweak group of the Standard Model. The

gauge bosons WL and BL remain massless at this stage, but they will acquire

masses through the Higgs mechanism of electroweak symmetry breaking. De-

fine the coupling constants corresponding to these gauge bosons by

g =
g1g2√
g2

1 + g2
2

, (3.173)

g′ =
g′1g′2√

g′21 + g′22

. (3.174)

Meanwhile, WH and BH obtain nonzero mass terms by absorbing some of the
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Goldstone bosons. If the mixing angles ψ and ψ′ are defined by

tanψ =
g2

g1
, (3.175)

tanψ′ =
g′2
g′1
, (3.176)

then the masses of these heavy bosons can be written

m(WH) =
g f

sin 2ψ
, (3.177)

m(BH) =
g′ f

√
5 sin 2ψ′

. (3.178)

Recall the pion field Π(x) =
∑
πaXa. The 14 Goldstone bosons can be decom-

posed into representations of the SU(2)L × U(1)L group that remains unbroken.

The representations they form are

10 ⊕ 30 ⊕ 21/2 ⊕ 31, (3.179)

where the number indicates the dimension of the representation and the sub-

script is the hypercharge. Let these four sets of fields be η, ω, H and Φ, respec-

tively. The η and ω fields are absorbed by the BH and Wa
H fields to give them

their mass. The H field is identified with the Higgs boson. The vector triplet Φ

contains new physical states. The pion field Π can be written explicitly in terms

of these fields as

Π =



−1
2ω

0 − 1
√

20
η − 1

√
2
ω+ 1

√
2
H+ −iΦ++ − i

√
2
Φ+

− 1
√

2
ω− 1

2ω
0 − 1

√
20
η 1

√
2
H0 − i

√
2
Φ+ 1

√
2

(
−iΦ0 + Φ0

P

)
1
√

2
H− 1

√
2
H0∗

√
4
5η

1
√

2
H+ 1

√
2
H0

iΦ−− i
√

2
Φ− 1

√
2
H− −1

2ω
0 − 1

√
20
η − 1

√
2
ω−

i
√

2
Φ− 1

√
2

(
iΦ0 + Φ0

P

)
1
√

2
H0∗ − 1

√
2
ω+ 1

2ω
0 − 1

√
20
η


.

(3.180)

Consider two different ways in which an SU(3) subgroup can be embed-

ded in the overall SU(5) global symmetry group: in the upper left corner of
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the 5 × 5 matrices, or in the lower right corner. The gauge generators of the[
SU(2) ×U(1)

]2 group are defined such that Qa
1 and Y1 commute with the SU(3)

group in the lower right, while Qa
2 and Y2 commute with the SU(3) group in

the upper left. If one of (g1, g′1) or (g2, g′2) is set to zero, then the Higgs is the

Goldstone boson that corresponds to a breaking of one of the aforementioned

global SU(3) symmetries to a global SU(2) symmetry. Therefore, under these

conditions, the Higgs must remain exactly massless at all orders of corrections.

Thus, we have succeeded in protecting the Higgs from quadratically diver-

gent one-loop corrections. A one-loop diagram depends on only one of the

gauge couplings. Therefore, it is part of the Higgs mass calculation in the spe-

cial case of the other set of gauge couplings being equal to zero, and thus, its

contribution is guaranteed to cancel.

3.4.2 The Fermion Sector

Because the top quark is so massive, its coupling to the Higgs boson must be

numerically large. The largest loop correction to the Higgs mass comes from

the top quark one-loop diagram. Therefore, the Yukawa coupling for the top

quark has to be modified to include the collective symmetry breaking pattern.

Introduce two Weyl fermions, UL and UR. They are weak singlets, and have

Q = +2/3. Let the Standard Model third-generation quark doublet be q3L = uL

bL

, and let the singlet be u3R. Then the new third-generation quark sector

takes the form

Ltop = −
λ1

2
fχ†Liεi jkεmnΣ jmΣknu3R − λ2 f U†LUR + h.c., (3.181)
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where χL =

 σ2q3L

UL

 is an SU(3) triplet, and where Σ jm and Σkn range over the

upper right 3 × 2 block of Σ; that is, i, j, k = 1, 2, 3 and m, n = 4, 5.

The mass eigenstates, before electroweak symmetry breaking, are

tL = uL, tR =
λ2u3R − λ1RR√

λ2
1 + λ2

2

TL = UL TR =
λ1u3R + λ2UR√

λ2
1 + λ2

2

(3.182)

The mass of the new, heavy top quark is m(T ) =

√
λ2

1 + λ2
2 f . The Standard Model

top quark t is massless at this stage.

This form for Ltop has the required collective symmetry breaking pattern. If

λ1 = 0, then the top and the Higgs are not coupled at all, so the one-loop top

diagram cannot contribute to the Higgs mass. If λ2 = 0, then the remaining

term involves χL and Σ jm. This preserves the upper-left global SU(3) because

χL transforms in its fundamental representation. Thus, the Higgs can be inter-

preted as the Goldstone boson associated with the spontaneous breaking of a

global symmetry, and as per the previous argument, it is identically massless.

Any contribution to the Higgs mass must therefore involve both λ1 and λ2, and

so the quadratically divergent terms are forbidden.

3.4.3 T-Parity

T-parity is a discrete symmetry that is analogous to the R-parity of the MSSM.

It is implemented so that the new particles in the model (with one exception)

are T-odd and the Standard Model particles are T-even. There are many phe-

90



nomenological benefits to assuming this symmetry. For example, T-parity for-

bids any of the heavy gauge bosons to contribute to electroweak observables

at tree-level. This reduces the precision electroweak constraints on the Littlest

Higgs model. Also, the lightest T-odd particle is the heavy photon, BH. It is

neutral and stable, and therefore it serves as a viable Dark Matter candidate.

In the gauge sector of the model, T-parity acts to exchange the
[
SU(2) ×U(1)

]
1

and
[
SU(2) ×U(1)

]
2 factors. The kinetic term

Lkin =
f 2

8
Tr

(
DµΣ

)
(DµΣ)† (3.183)

is invariant under this symmetry provided that

g1 = g2 ≡
√

2g, (3.184)

g′1 = g′2 ≡
√

2g′. (3.185)

Under these assumptions, many of the general expressions derived in the previ-

ous section are reduced to simpler forms. The heavy gauge bosons that acquire

mass are

Wa
H =

1
√

2

(
Wa

1 −Wa
2
)
, (3.186)

BH =
1
√

2
(B1 − B2) , (3.187)

and their masses are

m(WH) = g f , (3.188)

m(BH) =
g′ f
√

5
. (3.189)

The other combinations are

Wa
L =

1
√

2

(
Wa

1 + Wa
2
)
, (3.190)

BL =
1
√

2
(B1 + B2) , (3.191)
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which are massless before EWSB and are identified with the Standard Model

gauge bosons. Based on the action of T-parity, the H bosons are odd and the L

bosons are even.

After electroweak symmetry breaking, these masses are somewhat shifted.

The mixing angle in the heavy sector is

sin θH ≈
5gg′

4
(
5g2 − g′2

) v2

f 2 , (3.192)

which is defined in such a way that

ZH = sin θH BH + cos θHW3
H, (3.193)

AH = cos θH BH − sin θHW3
H. (3.194)

The shifted masses are given by

m2(ZH) = g2 f 2 −
g2v2

4
(3.195)

m2(AH) =
g2 f 2

5
−

g2v2

4
. (3.196)

T-parity is defined to act on the Π field by Π → −ΩΠΩ, where Ω =

diag (1, 1,−1, 1, 1). The result is that the complex Φ triplet is T-odd, while the

H doublet is even. This means that the coupling H†ΦH is forbidden, which

closes off another channel whereby the Higgs mass could acquire large correc-

tion terms.

3.4.4 Fermion Sector with T-Parity

The assumption of T-parity requires that the entire fermion sector be doubled.

Introduce two doublets, ψ1 and ψ2, where ψ1 is a doublet under SU(2)1 and ψ2 is
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a doublet under SU(2)2. T-parity acts to interchange these fields. T-odd and T-

even combinations of these objects will be defined in such a way that an f -scale

mass is only acquired by the T-odd combination.

Let Ψ1 and Ψ2 be in the vector representation of the overall SU(5) group, and

embed ψ1 and ψ2 within them such that

Ψ1 =


ψ1

0

0

 , Ψ2 =


0

0

ψ2

 . (3.197)

Now define

Ψc =


ψc

χc

ψ̃c

 , (3.198)

where χc is a singlet and ψc is a doublet under SU(2)2. This latter object is in-

troduced so that the T-odd states acquire masses. The transformation laws for

these vectors are

Ψ1 → V∗Ψ1, Ψ2 → VΨ2, (3.199)

where V is an SU(5) rotation. The action of T-parity is

Ψ1 → −Σ0Ψ2, Ψc → −Ψc. (3.200)

Then an allowed interaction term is

κ f
(
Ψ̄2ξΨ

c + Ψ̄1Σ0Ωξ
†ΣΨc

)
, (3.201)

where ξ = eiΠ/ f . This is invariant under both SU(5) and T-parity. The doublet

ψH = 1
√

2
(ψ1 + ψ2) acquires a mass κ f , while ψS M = 1

√
2

(ψ1 − ψ2) remains massless,

and is identified with a Standard Model doublet.
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The kinetic terms for Ψ1 and Ψ2 are

Ψ̄1σ̄
µD1

µΨ1 + Ψ̄2σ̄
µD2

µΨ2, (3.202)

where

D1
µ = ∂µ − i

√
2gQa

1Wa
1µ − i

√
2g′Y1B1µ − i

√
2g′Y2B2µ, (3.203)

D2
µ = ∂µ + i

√
2g

(
Qa

2
)T Wa

1µ − i
√

2g′Y1B1µ − i
√

2g′Y2B2µ. (3.204)

The values Y1 and Y2 are charges under U(1), and are defined in such a way

as to yield the expected values of the electric charge Q for the Standard Model

fermions.

After rewriting these in terms of the mass eigenstates, the kinematic terms

that arise are

ψ̄S Mσ̄
µDL

µψS M + ψ̄Hσ̄
µDL

µψH, (3.205)

which is the expected form from the Standard Model and involves the Standard

Model covariant derivative, DL
µ.

The top quark sector proceeds as described in Section 3.4.2. Define two SU(3)

multiplets,

Q1 =


q1

t′1

0

 , Q2 =


0

t′2

q2

 , (3.206)

which transform under SU(5) and T-parity in the same way as Ψ1 and Ψ2. The

quark doublets are embedded in these vectors using the definition

qi = −iσ2

 tLi

bLi

 . (3.207)
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Two additional singlets are required, t′1R and t′2R, which transform under T-parity

by t′1R ↔ −t′2R. Then the top sector contains the terms

Ltop = 1
2
√

2
λ1 f εi jkεxy

[(
Q̄1

)
i

(
Σ jx

) (
Σky

)
−

(
Q̄2Σ0

)
i

(
Σ̄ jx

) (
Σ̄ky

)]
u3R

+λ2 f
(
t̄′1t′1R + t̄′2t′2R

)
+ h.c..

(3.208)

This expression is T-invariant. The extra condition due to T-parity is that the

couplings of t′1 and t′2 are equal.

There are three particles in the top sector: the Standard Model top, and the

T-even and T-odd partner particles. Define the latter two particles by

t′± =
1
√

2

(
t′1 ∓ t′2

)
. (3.209)

When the Lagrangian terms are expanded out, the masses of these particles

found to be

m(t) =
λ1λ2v√
λ2

1 + λ2
2

, (3.210)

m(t′+) =

√
λ2

1 + λ2
2 f , (3.211)

m(t′−) = λ2 f . (3.212)

The T-even quark, which does not have to be pair-produced, is heavier than

the T-odd quark. This has the potential to open up decay channels that have

no direct analogues in the MSSM. However, this is the exception rather than

the rule, and the phenomenologies of the MSSM and the LHT share many com-

mon features. The next chapter demonstrates a technique that can be used to

distinguish between their experimental signatures.
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CHAPTER 4

A TECHNIQUE FOR MODEL DISCRIMINATION

4.1 Overview

As discussed in the previous chapter, the structures of the Minimally Super-

symmetric Standard Model (MSSM) and the Littlest Higgs with T-Parity (LHT)

theories were both influenced by the same basic theoretical and experimental

considerations. Both theories postulate that the Standard Model particles ac-

quire partners whose masses are at the 1 TeV scale. A new conserved quantum

number, either R-parity or T-parity, dictates that the new particles must be pair

produced (with the exception of the T-even top partner). Finally, the lightest

new particle is charge neutral, making it a candidate for Dark Matter.

The primary difference between the two theories is the relationship between

the spins of a given Standard Model particle and its partner. In the MSSM,

fermions are partnered with scalar bosons, while scalar and vector bosons are

partnered with fermions. By contrast, in the LHT, the new particles have the

same spins as their Standard Model partners. The following analysis investi-

gates whether this fact can be exploited to distinguish between events that were

generated by the two models.

If new particles are observed at CMS, the ultimate goal will be to measure

their spins directly. However, this is expected to be a difficult procedure that

will require large amounts of data [61]. A more realistic goal is one of model

discrimination. Given a set of observations, one can ask which of two candidate

models provides the better fit. Such a study would not be sufficiently general
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to rule out an entire class of models, such as the class of Little Higgs models;

however, it can be used to exclude regions of the parameter space for a specific

choice of model, such as the LHT.

This chapter presents the results of a Monte Carlo simulation that compares

the LHT to computer-generated data from a particular point in the parameter

space of the MSSM. The results were previously published in Physics Review D

by G. Hallenbeck, M. Perelstein, C. Spethmann, J. Thom, and J. Vaughan [62].

For simplicity, this study will only consider a single process in each model.

In the MSSM, the process in question is the pair production of first and sec-

ond generation squarks, which are the scalar superpartners of the u, d, s and

c quarks. In the LHT, the analogous process is chosen: namely, the pair pro-

duction of first and second generation tquarks, which are the fermion partner

particles to the same set of Standard Model quarks. Further, all partner parti-

cles will be assumed to decay exclusively to a Standard Model quark and the

lightest new particle; that is, q̃ → qχ̃0
1 in the MSSM and qH → qBH in the LHT.

We hypothesize that the particles produced in subsequent cascade decays still

carry information about the spins of the initial state.

The procedure is as follows. The MSSM is treated as the correct underlying

model. After fixing specific parameter values, this model is used to generate

a set of events that corresponds to 2 fb−1 of integrated luminosity. These will

be treated as though they were data from CMS. Next, a parameter space scan

of the LHT is performed in order to determine the point of best fit to the data.

This is the point that must be excluded. Ten observable kinematic quantities

are defined, and a χ2 test is performed to compare the MSSM values to the LHT

values.
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4.2 Simulation of MSSM and LHT Datasets

The following MSSM parameters are used to create the simulated data:

m(Q̃1,2
L ) = m(ũ1,2

R ) = m(d̃1,2
R ) = 500 GeV

m(Q̃3
L) = m(ũ3

R) = m(d̃3
R) = 1 TeV,

m(L̃1,2,3) = m(ẽ1,2,3
R ) = 1 TeV,

A1,2,3
Q,L = 0,

M1 = 100 GeV, M2 = 1 TeV, M3 = 3 TeV,

m1,2 = 1 TeV, µ = 1 TeV, tan β = 10.

(4.1)

The first and second generation squark masses are set to 500 GeV, while the third

generation squark masses are set to 1 TeV so that their production is suppressed.

The slepton masses are likewise set to 1 TeV. All of the trilinear coefficients Ai jk

are set to zero. The masses of the bino, wino and gluino are M1 = 100 GeV, M2 =

1 TeV and M3 = 3 TeV, respectively. The Higgs and higgsino mass parameters

are all set to 1 TeV, and the ratio of Higgs expectation values is tan β = 10.

With these parameters, squark pair production is dominated by the first two

generations, and the only available decay channel is to qχ̃0
1, as desired. Gluino

production is kinematically suppressed because of its high mass. The χ̃0
1 is es-

sentially a bino, and is the lightest R-odd particle.

In the LHT, the first and second generation tquarks are assumed to be de-

generate with mass MQ. They are only permitted to decay to qBH, where BH

is the heavy photon with mass MB. These two masses are the only parame-

ters, so a parameter space scan is computationally feasible. 125 evenly spaced

points are chosen within the region defined by MQ ∈ [500 GeV, 950 GeV] and

MB ∈
[
100 GeV,MQ

]
. At each point, a dataset with 2 fb−1of integrated luminos-
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ity is generated.

The event generation proceeds in two steps. The first step, which is per-

formed by MadGraph/MadEvent [22], includes the processes pp → q̃q̃ and

q̃ → qχ̃0
1 for the MSSM events, and the processes pp → qHqH and qH → qBH

for the LHT events. In all cases, the initial proton-proton collisions are simu-

lated to have a 10 TeV center-of-mass energy. The output is then read in by

Pythia [23], which performs the showering and hadronization of the quarks.

The output of the event generation must be sent through a simulation of the

CMS detector. Due to limitations of computer resources, it is not possible to use

the full CMSSW simulation for all points. Instead, the Pretty Good Simulation

(PGS) [63] code is used, after its jet output has been tuned to sample outputs

from CMSSW 1 6 7. The jet and /ET spectra from the PGS, after including jet

corrections, are a good match for outputs from the full simulation, as shown in

Figure 4.1

4.3 Signal and Backgrounds

The following event selection criteria are applied for this analysis:

• There are two or more jets, where the lead jet has pT > 150 GeV and the

second lead jet has pT > 100 GeV, and where both jets have |η| < 1.7.

• There are no identified leptons, be they e, µ or τ.

• The missing transverse energy satisfies /ET ≥ 300 GeV.

The Standard Model background events of relevance to this signal are:
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Figure 4.1: Comparison of jet and /ET distributions from the PGS (red) to those
from CMSSW (black). The plots on the left show the original outputs, and those
on the right show the outputs after corrections from CMSSW have been applied
to the PGS jets.

• Z + 2 jets events in which the Z decays invisibly.

• W + 2 jets events in which the W decays leptonically but the lepton is not

identified.

• W + 1 jet events in which the W decays to a τ, and the τ decays hadroni-

cally and is identified as a jet.

• tt̄ leptonic or semileptonic events in which the leptons are not identified.

For each background process, two sets of events are simulated. One set is added

to the MSSM dataset, and the other is added to the LHT dataset at each param-

eter space point. In this way, the effect of these backgrounds is included in the

results. After the event selection has been applied, the signal and background
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counts in the MSSM plus backgrounds sample are found to satisfy S/B = 1.0

and S/
√

B = 36 in a dataset corresponding to 2 fb−1.

Background events in this channel can also come from dijet QCD processes

where the amount of missing energy is incorrectly measured. As discussed in

Section 2.5.7, this effect is difficult to accurately simulate. Therefore, for the

purposes of this preliminary study, the QCD background is not included. Sub-

sequent studies should include a data-driven assessment of the effect of this

process.

4.4 Observables

This analysis uses ten different observables to compare the MSSM simulated

data to each point in LHT parameter space. The observables are either averages

or counts that have been calculated over all events that pass the event selection

criteria. They are summarized below.

• σeff is the cross section in pb of the selected events. It is found by dividing

the number of selected events by the total cross section of 2000 pb−1; that

is, σeff = Nobs/Ltot.

• 〈pT 〉 is the average transverse momentum of all jets with pT > 100 GeV in

all selected events. In the LHT models, this is seen to be tightly correlated

with MQ − MB.

• 〈|
∑
η|〉 is the average over all selected events of |η1 + η2|, where η1 and η2

are the pseudorapidities of the two leading jets.
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• 〈HT 〉 is the average over all selected events of HT =
∑

jets pT + /ET , where the

sum is a scalar sum over all jets in the event.

• 〈 /ET 〉 is the average over all selected events of the missing transverse en-

ergy.

• The beamline asymmetry is BLA = (N+ − N−) / (N+ + N−), where N+ is the

number of events with η1η2 > 0 and N− is the number of events with η1η2 <

0. The pseudorapidities are those of the two leading jets.

• The directional asymmetry is DA = (N+ − N−) / (N+ + N−), where N+ is now

the number of events with ~p1 · ~p2 > 0 and N− is the number of events with

~p1 · ~p2 < 0. The momenta are those of the two leading jets.

• The transverse momentum asymmetry is PTA = N+/N−, where N+ is the

number of jets with pT > 〈pT 〉 and N− is the number of jets with pT < 〈pT 〉.

• Let N1 be the number of jets with 100 < pT < 300 GeV, let N2 be the number

of jets with 300 < pT < 500 GeV, and let N3 be the number of jets with pT >

500 GeV. Then the jet bin ratios are defined by R1 = N2/N1 and R2 = N3/N1.

The values of these observables that are calculated from the MSSM plus

background dataset are said to be the measured values. Each point in LHT

parameter space represents a hypothesis for the underlying model that led to

these observed values. When the observables are measured on a particular LHT

plus background dataset, the results are the expected values predicted by that

hypothesis. The goal is to reject the LHT hypotheses by comparing the mea-

sured and expected values. The quality of fit is estimated using a standard χ2

technique.
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4.5 Statistical methods and systematic uncertainties

The systematic uncertainty of an individual jet pT measurement is calculated by

σpT =

 5.6
ppgs

T

+
1.25√

ppgs
T

+ 0.035

 pmeas
T , (4.2)

where ppgs
T is the original PGS output and pmeas

T is the corrected value. This ex-

pression was shown in Section 2.5.6, and reflects the remaining uncertainty in

jet momentum resolution after jet corrections have been applied.

The jet corrections also affect the /ET value in an event. The value generated

by the PGS is corrected to the final measured value using the expression

/Emeas
T = /Epgs

T +
∑
jets

(
ppgs

T − pmeas
T

)
, (4.3)

where the sum is a vector sum in the transverse plane. Then the uncertainty in

an individual /ET measurement is given by

σ2
/ET

= (3.8 GeV)2
+ (0.97)2 GeV /ET + (0.012 /ET )2 , (4.4)

as described in Section 2.5.7.

Recall that HT is the scalar sum of the /ET and jet pT values in each event.

Therefore, the total uncertainty in an individual HT measurement is the sum in

quadrature of the uncertainties of the summands.

The observables used in this study fall into one of two categories: average

values, or quantities that are calculated from counts. Different approaches are

taken to calculate their statistical and systematic uncertainties.

First, consider an average value. The following remarks apply to any of 〈pT 〉,

〈 /ET 〉, or 〈HT 〉. Suppose the quantity in question has been tabulated for all events
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that pass the event selection criteria. The observable is the mean value of this

distribution of observed values. The statistical uncertainty on the mean value is

given by

σ2
stat =

V
N
, (4.5)

where V is the variance of the distribution and N is the number of observations.

The systematic uncertainty is estimated by

σ2
sys =

ν2

N
, (4.6)

where ν is the mean value of the distribution.

For 〈|
∑
η|〉, the mean of the sum of the jet η values, the statistical uncertainty

is calculated as described above, while the systematic uncertainty is given by

σ2
sys =

w2
C

2N
, (4.7)

where wc = 0.087 is the width, in angular units, of a calorimeter cell. Recall from

Section 2.4.5 that a single scintillating tile in the HCAL covers a solid angle of

∆η × ∆φ = 0.087 × 0.087.

Now consider observables that are composed of counts. Any count N is as-

sumed to have a Poisson statistical uncertainty: that is, σN =
√

N. For variables

of the form A = (N+ − N−)/(N+ + N−), this leads to a variance of

σ2
A ≈

(
∂A
∂N+

)2

σ2
N+ +

(
∂A
∂N−

)2

σ2
N− =

4N+N−

(N+ + N−)3 . (4.8)

Variables of the form R = N+/N− have a variance of

σ2
R =

N+N− + (N+)2

(N−)3 . (4.9)

The effective cross section, which is defined by σeff = Nobs/L, is treated as a

special case. The statistical uncertainty is

σstat =
σeff
√

Nobs
(4.10)
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and the systematic uncertainty is assumed to be

σsys ≈ 0.3σeff. (4.11)

This is a conservative value that was chosen before studies of the CMS luminos-

ity measurement had been performed.

A procedure is required for estimating the covariances between the observ-

ables. This information is expected to significantly affect the overall χ2 value.

Ideally, at a given point in LHT parameter space, one would simulate some

number N of independent samples and use them to calculate the covariance

Vab =

〈
(Oa − 〈Oa〉) (Ob − 〈Ob〉)

〉
(4.12)

for all pairs of observables Oa and Ob. However, this is computationally pro-

hibitive, given that 2 fb−1 of data would be required for each of the N samples.

Instead, a bootstrap method is employed to estimate the covariances from a sin-

gle sample.

Fix a particular sample of LHT plus background events, and divide it into

Nsub disjoint subsamples. Then the values of the observables can be calculated

within each subsample. These Nsub different values of the observables Oa and

Ob can be used to calculate standard deviations σa and σb, and covariances Vab.

This procedure is repeated NR times, choosing a different set of Nsub subsamples

at each iteration. Define

Cab =
1

NR

NR∑
i=1

V (i)
ab

σ(i)
a σ

(i)
b

, (4.13)

where V (i)
ab and σ(i)

a,b are calculated in iteration i. Now let σtot
a be the total un-

certainty associated with Oa as described above, including statistical and sys-

tematic sources. The average correlation matrix elements in Equation 4.13 are
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extrapolated to the full sample by

V tot
ab = Cabσ

tot
a σ

tot
b . (4.14)

These covariance values are used in the χ2 statistical analysis.

This procedure does not yield any information concerning the effective cross

section, because the number of events that pass the selection cuts is randomized

within each subsample. Therefore, σeff is assumed to be uncorrelated with the

rest of the observables.

Given a k-dimensional Gaussian vector Y with mean vector µ and covariance

matrix V , the value

X = (Y − µ)T V−1 (Y − µ) (4.15)

is χ2 distributed with k degrees of freedom [64]. For this study, Y is the vec-

tor of observables that are measured on the MSSM plus backgrounds dataset,

these being the observed values. The vector µ contains the observables that are

measured on a given LHT plus backgrounds dataset, and V is the matrix of co-

variances that is calculated using the bootstrap method. The quality of fit of this

LHT point to the simulated data is assessed by comparing the resulting value X

to a standard χ2 table with ten degrees of freedom. Values far from 0 indicate a

poor fit, and serve to exclude that LHT point. The following section shows the

exclusion plots that are generated by these numbers.

4.6 Results and Conclusions

Figure 4.2 shows exclusion plots of the LHT parameter space for four different

luminosities: 200 pb−1, 500 pb−1, 1 fb−1 and 2 fb−1. The exclusions were calcu-
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lated using a fit to all ten observables. With 2 fb−1, all of the points chosen for

this study can be excluded to at least 3σ.

Figure 4.2: Exclusion plots in LHT parameter space using all ten observables.
The top row shows the results from luminosities of 200 pb−1 and 500 pb−1, while
the bottom row shows the results from luminosities of 1 fb−1 and 2 fb−1. When
2 fb−1 of integrated luminosity are analyzed, all points in the LHT parameter
space that were considered in the study can be excluded to at least 3σ.

As stated in the previous section, the total production cross section is as-

sumed to have a 30% systematic uncertainty. Some of the issues that could affect

the cross section are features specific to the LHT model, such as the number of
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generations of quarks, or unforeseen decay channels. These would not impact

any of the other observables. Thus, it is instructive to redo the analysis without

including the effective cross section. Figure 4.3 repeats the exclusion plot for 2

fb−1 without including the cross section. Omitting this observable has only a

small impact on the discrimination power of the method.

Figure 4.3: Exclusion plot in LHT parameter space using all observables except
the effective cross section. The results are not markedly different from the pre-
vious figure.

The /ET resolution is subject to systematic uncertainties that are difficult to

model in simulation, as discussed in Section 2.5.7. Both 〈 /ET 〉 and 〈HT 〉 depend

on missing transverse energy measurements. To determine the dependence of

the analysis on the /ET measurement, the 2 fb−1 exclusion plot is recreated once

more, this time omitting 〈 /ET 〉 and 〈HT 〉 from the list of observables. The result

is shown in Figure 4.4. In this scenario, the exclusions placed on the parameter

space are noticeably weaker. Avoiding reliance on 〈 /ET 〉 and 〈HT 〉 might make

the analysis less prone to systematic uncertainties, but it comes at the cost of

requiring more data to make a 3σ exclusion.
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Figure 4.4: Exclusion plot in LHT parameter space using all observables except
〈 /ET 〉 and 〈HT 〉. The exclusion curves are noticeably weaker when these variables
are not included.

Although this study is preliminary and contains simplifying assumptions, it

demonstrates the potential for large regions of parameter space in a new physics

model to be excluded with only 2 fb−1of data. This amount of integrated lumi-

nosity is attainable within the next few years of CMS running.

The remainder of this document is devoted to a more detailed study of the

data collected at CMS as of November 2010.
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CHAPTER 5

A SEARCH FOR SUSY IN A MULTI-LEPTONIC CHANNEL

5.1 Overview

There are many competing theories to describe physics beyond the Standard

Model. Moreover, within a given theory such as MSSM, there may be a multi-

dimensional continuous parameter space, different points of which can lead to

different phenomenologies. Using Monte Carlo simulations, one can generate

predictions due to a specific model and a specific choice of parameters, and one

can perform model discrimination studies such as that of the previous chapter.

However, for the detection of a new physics signal, an analysis is preferred that

does not depend so heavily on a particular hypothesis for new physics.

The channel in which we will search for a new physics signal is that with ex-

actly two electrons and at least two jets. A Monte Carlo study to assess the fea-

sibility of detecting new physics in this channel has been performed previously

[65]. This channel is considered to be a promising one because the expected

Standard Model backgrounds are small, and can either be estimated from Monte

Carlo simulations or measured by data-driven methods.

One feature that is common to most new physics models is the presence of

a Dark Matter candidate. Since this particle, by construction, cannot be directly

observed, new physics events are characterized in the CMS detector by large

missing energy. Therefore, the search will occur in the high- /ET region, which

we define to be /ET > 150 GeV.

This analysis is performed on CMS observations that were recorded between
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March and November 2010. Specifically, we use the electron-triggered primary

dataset, and select those events that fall within the chosen decay channel crite-

ria. The number of such events in the signal region constitutes the observation

from data.

In order to test the hypothesis that this sample contains new physics events

as well as Standard Model events, estimates are required for the numbers of

events due to each of the Standard Model processes that contribute to this chan-

nel. In cases where computer simulations are expected to be reliable, such as

electroweak processes, the estimates are taken from Monte Carlo simulations.

For events due to QCD, which are difficult to model accurately, a data-driven

method for estimating the signal region contribution is developed. These esti-

mates, taken in total, represent the background. The signal is then defined to be

the difference between data and background.

In the following sections, we list the CMS and Monte Carlo datasets used

in this analysis, and the precise event selection criteria and analysis object def-

initions. Preliminary background estimates are given for those processes that

are taken from Monte Carlo simulations. The data-driven method for estimat-

ing the QCD background in this channel is described in Chapter 6. Finally, the

overall data and background results are given in Chapter 7, including a dis-

cussion of statistical and systematic uncertainties. A statistical model is shown

for propagating the uncertainties, extracting the signal, and assessing its signif-

icance.
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5.2 Datasets and Analysis Objects

5.2.1 Datasets and Software

After events have been recorded, a JavaScript Object Notation (JSON) file is

compiled that lists the luminosity sections from different run numbers that have

been certified for physics processing. The CMS events used in this analysis

were obtained using the JSON file certified on 15 November 2010 [66], which

covers the run number range 132440 – 149442. The electron-triggered primary

datasets and their total luminosities are shown in Table 5.1. All luminosities

were obtained using the official luminosity calculation tool [67].

Table 5.1: Total luminosities for electron primary datasets.

Electron-Triggered Dataset Luminosity (pb−1)
/EG/Run2010A-Nov4ReReco v1/AOD 3.06
/Electron/Run2010B-PromptReco-v2/AOD 30.78
Total 33.84

The samples are analyzed using CMSSW 3 8 6 and privately created ntuples

that are based on PAT objects. Beam scraping events are removed by requir-

ing that at least 25% of the tracks in the event be of high purity. Each event is

required to contain a good vertex; that is, one that has a number of degrees of

freedom > 4, a longitudinal impact parameter |z| < 24 cm, and a transverse im-

pact parameter d0 < 2 cm. These are the official recommendations for early data

analysis [68].

The Monte Carlo datasets that are used to obtain Standard Model back-

ground estimates are listed in Table 5.2. Additional Monte Carlo files that are
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used in studies of systematic uncertainties and other effects are listed in Table

5.3. Each dataset is weighted in such a way as to represent 33.84 pb−1of data.

The weights are calculated using the number of simulated events and the cross

sections [69] associated with each process. Next-to-leading order (NLO) or next-

to-next-to-leading order (NNLO) values are used where available [70]. These

numbers are listed in Table 5.4.

Table 5.2: Monte Carlo datasets used to obtain Standard Model background
estimates.

Name Dataset
Zjets /DYToEE M-20 TuneZ2 7TeV-pythia6/Fall10-START38 V12-v1/AODSIM
TTjets /TTJets TuneZ2 7TeV-madgraph-tauola/Fall10-START38 V12-v3/AODSIM
WW /WWtoAnything TuneZ2 7TeV-pythia6-tauola/Fall10-START38 V12-v1/AODSIM
WZ /WZtoAnything TuneZ2 7TeV-pythia6-tauola/Fall10-START38 V12-v1/AODSIM
ZZ /ZZtoAnything TuneZ2 7TeV-pythia6-tauola/Fall10-START38 V12-v1/AODSIM

Table 5.3: Monte Carlo datasets used in systematic uncertainty studies.

Name Dataset
Wjets /WToENu TuneZ2 7TeV-pythia6/Fall10-START38 V12-v1/AODSIM
QCD01 /QCD Pt 30to50 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD02 /QCD Pt 50to80 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD03 /QCD Pt 80to120 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD04 /QCD Pt 120to170 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD05 /QCD Pt 170to300 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD06 /QCD Pt 300to470 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD07 /QCD Pt 470to600 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD08 /QCD Pt 600to800 TuneZ2 7TeV pythia6/Fall10-START38 V12-v2/AODSIM
QCD09 /QCD Pt 800to1000 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD10 /QCD Pt 1000to1400 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD11 /QCD Pt 1400to1800 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM
QCD12 /QCD Pt 1800 TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/AODSIM

5.2.2 Electron Definition

We require electrons to satisfy the official vector boson task force (VBTF) recom-

mendations [71] that correspond to 80% efficiency. Electron pT and η restrictions
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Table 5.4: Cross sections and weights for each dataset such that the end product
represents a luminosity of 33.84 pb−1. Cross sections are leading order unless
otherwise noted.

Name Cross Section (pb) # Events Weight
Zjets 1666 ± 157 (NNLO) 2127607 2.650 × 10−2

TTjets 165 ± 10 (NNLO) 1165716 4.790 × 10−3

WW 43 ± 1.5 (NLO) 2061760 7.058 × 10−4

WZ 18.2 ± 0.7 (NLO) 2194752 2.806 × 10−4

ZZ 5.9 ± 0.15 (NLO) 2113368 9.447 × 10−5

Wjets 10438 ± 900 (NNLO) 5104514 6.920 × 10−2

QCD01 5.312 × 107 3264660 550.6
QCD02 6.359 × 106 3191546 67.42
QCD03 7.843 × 105 3208299 8.273
QCD04 1.151 × 105 3045200 1.279
QCD05 24260 3220080 0.2549
QCD06 1168 3171240 1.246 × 10−2

QCD07 70.22 2019732 1.177 × 10−3

QCD08 15.55 1979055 2.659 × 10−4

QCD09 1.844 2084404 2.994 × 10−5

QCD10 0.3321 1086966 1.034 × 10−5

QCD11 0.01087 1021510 3.601 × 10−7

QCD12 3.575 × 10−4 529360 2.285 × 10−8

are also imposed. The criteria are summarized below.

• Electron ET > 20 GeV.

• Electron |η| < 1.442 or 1.560 < |η| < 2.5.

• Spikes in the ECAL are removed by applying the “swiss cross” cleaning.

Let the energy of the central ECAL energy deposit be e1, and let the sum of

the energies in the four ECAL reconstructed hits above, below, to the left

and to the right be s4. Then the quantity 1 − s4/e1 is required to be below

0.95.

• An electron is identified as being a conversion from a photon if a track

within ∆R < 0.3 of the electron can be found such that the two objects
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are close together and have parallel trajectories. Photon conversions are

rejected by applying the following criteria:

– The distance between the points at which the electron and the second

track would be parallel must be |Dist| > 0.02.

– The difference between cot θtrack and cot θele must be |∆ cot θ| > 0.02.

– The electron cannot have any missing expected hits in the tracker.

• For electrons in the barrel, define the combined relative isolation by

RelIso =

(
Trk isolation + max

(
0,ECAL isolation − 1

)
+ HCAL isolation

)
electron pT

,

(5.1)

and for electrons in the endcap, define this quantity by

RelIso =

(
Trk isolation + ECAL isolation + HCAL isolation

)
electron pT

. (5.2)

Each individual isolation refers to the total energy deposited in the asso-

ciated detector subsystem within ∆R < 0.3 of the electron, other than the

energy due to the electron itself. We require RelIso < 0.07 for the barrel

and RelIso < 0.06 for the endcap

• Electron ID criteria are applied for the shape and track-cluster matching

variables σiηiη, ∆φin, ∆ηin and hadronic fraction H/E (recall definitions in

Section 5.2.2). The upper limits imposed on barrel electrons and endcap

electrons are listed in Table 5.5.

Any electron that satisfies all of the above criteria is called a good electron.
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Table 5.5: Summary of Electron ID requirements. All values are upper limits.

Variable Barrel Endcap
σiηiη 0.01 0.03
∆φin 0.06 0.03
∆ηin 0.004 0.007
H/E 0.04 0.025

5.2.3 Jet and /ET Definitions

We use jets that are reconstructed from calorimeter towers using the anti-kT al-

gorithm with R = 0.5 (AK5). The L2L3 corrections described in Section 2.5.6 are

applied. The following kinematic requirements are imposed on the jets:

• Jet pT > 40 GeV

• Jet |η| < 3.0

• The jet is not within ∆R < 0.3 of any good electron

We use /ET that has been calculated from the sum of the energy contributions

from calorimeter towers, with jet and muon corrections applied.

5.2.4 Trigger and Event Selection

In data, we consider all those events that pass the following combination of

triggers:

HLT Ele15 LW L1R

or HLT Ele15 SW L1R

or HLT Ele15 SW CaloEleId L1R
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or HLT Ele17 SW CaloEleId L1R

or HLT Ele17 SW TightEleId L1R

or HLT Ele17 SW TighterEleIdIsol L1R

At least one of these triggers is not prescaled for every run that was analyzed.

Therefore, the results correspond to the full luminosity of the electron-triggered

primary datasets, which was given in Table 5.1 as 33.84 pb−1.

The following event selection criteria are applied to the events that pass the

trigger:

• The event must contain exactly two good electrons, as defined in Section

5.2.2.

• The event must contain at least two jets satisfying the requirements listed

in Section 5.2.3.

Any such event is referred to as a selected event. When we search for the pres-

ence of a new physics signal, we will further restrict our attention to events with

/ET > 150 GeV. Events that satisfy this additional requirement are called signal

events.

5.3 Monte Carlo Backgrounds

Monte Carlo estimates are used for the background contributions due to Zjets,

TTjets, and diboson events (WW, WZ and ZZ). The background due to Wjets

events is not considered because no such event can contain two real electrons.

Any Wjets event that passes the event selection criteria does so because of the
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presence of a fake electron due to a jet. This is the same mechanism by which

a QCD event can contribute to this channel. The background due to QCD and

Wjets events is estimated using the electron fake rate method that will be de-

scribed in the following chapter.

The results of applying the event selection criteria to the five Monte Carlo

datasets are shown in Table 5.6, including the numbers of selected events and

the numbers of signal events. When all selected events are considered, the Stan-

dard Model backgrounds are overwhelmingly dominated by Zjets events. In

the signal region, TTjets events dominate. The total number of selected events

from these backgrounds is 127.78 ± 1.72 (stat), and the total number of signal

events is 0.785 ± 0.060 (stat).

Table 5.6 also shows the observations in data, which are 181 ± 13.5 (stat)

selected events and 1 ± 1.0 (stat) signal events. The discrepancy between the

data and Monte Carlo numbers will be addressed in Chapter 7.

Table 5.6: Monte Carlo estimates for Standard Model backgrounds, separated
by process, in 33.84 pb−1. The selected events are those with exactly two good
electrons and at least two jets. The signal events also have /ET > 150 GeV. All
uncertainties are statistical. The last line shows the observations from 33.84 pb−1

of electron-triggered data.

Name Selected Events Signal Events
Zjets 108.46 ± 1.70 0.
TTjets 16.76 ± 0.28 0.762 ± 0.060
WW 0.16 ± 0.01 0.011 ± 0.003
WZ 1.41 ± 0.02 0.008 ± 0.002
ZZ 0.99 ± 0.01 0.004 ± 0.001
Total MC 127.78 ± 1.72 0.785 ± 0.060
Data 181 ± 13.5 1 ± 1.0

The backgrounds due to these five processes must be combined with the
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estimated background due to events that contain fake electrons. The latter con-

tribution includes QCD and Wjets events, and is the subject of the next chapter.

In Chapter 7, all of the backgrounds will be combined and subtracted from the

observation in data to obtain the signal.
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CHAPTER 6

THE FAKE RATE

This chapter presents a method for estimating the background due to fake

electrons that were produced by jets, where an electron is considered to be fake

when it did not originate from a W, Z or τ decay. Such a fake electron can be

created in a heavy quark decay and thrown clear of the jet so that it appears

isolated, or it can be a jet that was erroneously reconstructed as an electron in

the detector. The probability that any given jet will fake an electron is small, but

the very large cross sections of processes such as QCD that are rich in jets can

make the fake electron background a nontrivial contribution to electron-channel

analyses.

The method that we employ was developed for use in model-independent

SUSY searches in multi-electron channels, such as the one described in the pre-

vious chapter. Monte Carlo simulations of this technique have been performed

to demonstrate its potential effectiveness [72], and the present study represents

its first application to data. The study consists of several steps. First, the rate at

which jets yield fake electrons is measured. Next, the measured fake rate is used

to make testable predictions for the number of fake electrons in jet-triggered and

photon-triggered datasets. Finally, it is applied to an electron-triggered dataset

to calculate the expected number of events with two electrons, at least one of

which is fake. The datasets, triggers, and analysis object definitions used for

each of these steps are listed in Section 6.1.

The electron fake rate has to be measured in an environment that does not

contain many real electrons. A jet-triggered dataset satisfies this requirement.

However, the choice of jet trigger has an effect on the observed fake rate. A
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procedure is demonstrated for suppressing trigger bias, and the fake rates mea-

sured on three different jet triggers are shown to yield compatible predictions.

The accuracy of the predictions is tested by comparing them to the observed

numbers of electrons in the three jet-triggered datasets. This is the topic of Sec-

tion 6.2.

A photon-triggered dataset can also be used to test the fake rate. As in the

jet-triggered case, the predicted number of fake electrons can be compared to

the observed number of electrons in the sample. The fake rate prediction is

shown to be reliable for several different photon triggers. The procedure and

results are given in Section 6.3.

Finally, the fake rate is used to estimate the fake electron background in

the multi-electron channel from the previous chapter. Results for 33.84 pb−1

of electron-triggered data are shown in Section 6.4.

6.1 Datasets and Definitions

6.1.1 Datasets and Software

The events used in this analysis were obtained using the same JSON file as cited

in Section 5.2.1, and therefore correspond to the same run number range, 132440

- 149442. All of the primary datasets that are used in the various steps of the

analysis are listed in Table 6.1. The specific triggers and their effective lumi-

nosities are given in Table 6.2. Luminosities were calculated with the official

luminosity calculation tool [67].

The data samples were analyzed using CMSSW 3 8 6 and privately created
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Table 6.1: Total luminosities for jet, photon and electron primary datasets.

Jet-Triggered Dataset Luminosity (pb−1)
/JetMETTau/Run2010A-Nov4ReReco v1/AOD 0.167
/JetMET/Run2010A-Nov4ReReco v1/AOD 2.89
/Jet/Run2010B-PromptReco-v2/RECO 30.38
Total 33.44
Photon-Triggered Dataset Luminosity (pb−1)
/EG/Run2010A-Nov4ReReco v1/AOD 3.06
/Photon/Run2010B-PromptReco-v2/AOD 30.62
Total 33.68
Electron-Triggered Dataset Luminosity (pb−1)
/EG/Run2010A-Nov4ReReco v1/AOD 3.06
/Electron/Run2010B-PromptReco-v2/AOD 30.78
Total 33.84

Table 6.2: Effective luminosities for jet and photon triggers.

Abbreviation Trigger Effective Luminosity (pb−1)
30U HLT Jet30U 0.308
50U HLT Jet50U 3.30
70U HLT Jet70U 6.68
Ph10C HLT Photon10 Cleaned L1R 34.2 × 10−3

Ph15C HLT Photon15 Cleaned L1R 0.211
Ph20C HLT Photon20 Cleaned L1R 2.73
Ph30C HLT Photon30 Cleaned L1R 6.44
Ph50C HLT Photon50 Cleaned L1R 10.8
Ph70C HLT Photon70 Cleaned L1R 18.3

ntuples that are based on PAT objects. The official recommendations for good

vertex and no scraping filters [68] were applied as described in Section 5.2.1.
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6.1.2 Analysis Object Definitions

The good electron definition is the same as that listed in Section 5.2.2. We con-

tinue to use calorimeter /ET with jet and muon corrections, and AK5 calorimeter

jets with L2L3 corrections, as described in Section 5.2.3. However, a different

set of selection requirements are imposed on the jets. In this context, the jets of

interest are those that give rise to fake electrons that pass all of the good elec-

tron criteria. Therefore, the following kinematic requirements are imposed on

the jets, based on the pT and η requirements for good electrons:

• Jet pT > 25 GeV.

• Jet |η| < 1.442 or 1.560 < |η| < 2.5.

Any jet satisfying these criteria is referred to as a good jet.

When analyzing photon-triggered datasets, we require the presence of a

good photon, which satisfies the following:

• Photon ET > photon trigger threshold.

• Photon hadronic fraction < 0.05.

• ECAL isolation < 4.2+0.006pT and HCAL isolation < 2.2+0.0025pT , where

pT is the transverse momentum of the photon. Each isolation represents

the sum of the electromagnetic or hadron calorimeter reconstructed hits

within ∆R < 0.4 of the photon, excluding those due to the photon itself.

• The photon does not have a pixel seed.

The hadronic fraction and isolation requirements are the official recommenda-

tions from the Egamma Physics Object Group for identifying “isEM” photons
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[73]. The additional requirement that the photon not have a pixel seed was

found to be necessary to consistently reject electrons.

6.2 Measurement and Application of the Fake Rate

A two-dimensional fake rate is measured in bins of jet pT and η. In each bin, the

fake rate is defined to be

ri =
number of good jets in bin i that were matched to fake electrons

number of good jets in bin i
. (6.1)

A jet and an electron are matched when ∆R ≡
√

(∆η)2 + (∆φ)2 < 0.1. For conve-

nience, the single index i is taken to range over all bins.

To measure the fake rate, a sample of events is required in which the ma-

jority of good electrons are fake. A jet-triggered dataset serves this purpose.

We compare results from three different jet triggers: HLT Jet30U, HLT Jet50U

and HLT Jet70U.

After it has been measured, the fake rate can be used to predict the num-

ber of fake electrons expected in a given jet-triggered dataset. This prediction

can be compared to the number of good electrons that were observed. This is

the first test of the accuracy of the fake rate method. In the following sections,

we describe the procedures for measuring the fake rate and constructing the

predictions.
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6.2.1 Suppression of Real Electrons

Before the fake rate can be measured, there are two sources of bias that need

to be suppressed. One is contamination from real electrons. To reduce such

contamination, the following cleaning cuts are applied.

• Veto any event that contains more than one good electron. This suppresses

real electrons from Z→ ee decays.

• In events with exactly one good electron, calculate the combined trans-

verse mass of the electron and the missing energy:

mT =

√
2pT,ele 6ET

[
1 − cos

(
φele − φ /ET

)]
. (6.2)

Veto any event in which 50 GeV < mT < 100 GeV. This suppresses real

electrons from W→ eν decays.

• In events with exactly one good electron, search for a second electron that

satisfies ET > 20 GeV and |η| < 1.442 or 1.560 < |η| < 2.5, and calculate the

invariant mass of the vector sum of these two electrons:

minv =

√
(E1 + E2)2

− (px1 + px2)2
−

(
py1 + py2

)2
− (pz1 + pz2)2. (6.3)

Veto any event in which 71 GeV < minv < 111 GeV. This suppresses real

electrons from Z → ee decays in which one of the electrons is not fully

reconstructed as a good electron.

The effectiveness of these cuts can be studied using the Monte Carlo datasets

listed in Tables 5.2 and 5.3. Because the Monte Carlo files contain no trigger in-

formation, the HLT Jet30U trigger is simulated by requiring all events to con-

tain at least one jet whose uncorrected pT is above 30 GeV. The 50U and 70U
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triggers are simulated in the same manner. The Monte Carlo results are scaled

to the effective luminosities for each of these triggers, as listed in Table 6.2

Figure 6.1 shows the transverse mass of the good electron plus missing en-

ergy in events from the Wjets dataset. The electron is required to be real, and

its mother particle is required to be a W boson. Figure 6.2 shows the invariant

mass of one good electron plus a second loosely defined electron from the Zjets

dataset, where the good electron is required to be real and its mother particle is

required to be a Z boson. Based on these plots, the proposed restrictions should

remove the majority of real electrons from W→ eν and Z→ ee decays.
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Figure 6.1: Distributions of the transverse mass of the good electron plus miss-
ing energy in events from the Wjets dataset, where the electron is required to
be real and to have originated from a W boson. The plots are constructed for
the 30U (top left), 50U (top right) and 70U (bottom) jet triggers. In all cases, the
majority of such events have a transverse mass value within (50 GeV, 100 GeV).
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Figure 6.2: Distributions of the invariant mass of the good electron plus second
electron in events from the Zjets dataset, where the good electron is required
to be real and to have originated from a Z boson. The plots are constructed for
the 30U (top left), 50U (top right) and 70U (bottom) jet triggers. In all cases, the
majority of such events have an invariant mass value within (71 GeV, 111 GeV).

The fake rate is now measured on all of the Monte Carlo files. The measure-

ment procedure includes the trigger bias veto that will be described in the next

section. Table 6.3 shows the contributions to the numerator of the fake rate from

the different datasets. These values have been summed over all of the jet pT

and η bins. The real electron backgrounds due to diboson events, which are not

listed, are negligible compared to the others. Further widening of the W and Z

mass windows has almost no impact on the real electron contributions.

The results suggest that real electrons still constitute up to 43% of the elec-

trons that are used to calculate the fake rate. However, when we measure the
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fake rate on data in Section 6.2.3, we will find that the total numerators are larger

than predicted; that is, the QCD contribution is underestimated by simulation

and therefore the real electron contamination is not quite as large as this. Also,

comparisons between predicted and observed numbers of fake electrons will

suggest that the fake rate is not suffering any deleterious effects from the real

electrons that remain.

Table 6.3: Contributions to the numerator of the fake rate from Monte Carlo
datasets. The non-QCD values represent real electrons. The final set of values
for all Monte Carlo show all real and fake electrons, including the very small
numbers of fake electrons from the non-QCD files. All uncertainties are statisti-
cal.

Dataset Jet trigger Numerator contribution
Zjets 30U 3.62 ± 0.03
(real electrons) 50U 18.9 ± 0.2

70U 7.2 ± 0.2
Wjets 30U 3.68 ± 0.05
(real electrons) 50U 24.1 ± 0.4

70U 28.3 ± 0.6
TTjets 30U 0.967 ± 0.006
(real electrons) 50U 7.08 ± 0.06

70U 9.9 ± 0.1
All non-QCD 30U 8.34 ± 0.05
(real electrons) 50U 50.6 ± 0.4

70U 45.9 ± 0.6
All QCD 30U 15.6 ± 5.5

50U 77.7 ± 18.8
70U 80.3 ± 23.8

All MC 30U 24.2 ± 5.5
50U 129.6 ± 18.8
70U 127.4 ± 23.8
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6.2.2 Jet Trigger Bias

The fake rate is measured on events that pass a specific jet trigger. All of these

events contain at least one jet whose uncorrected pT is above a certain threshold.

This requirement artificially inflates the jet pT spectrum near the corrected pT

value that corresponds to the trigger threshold, as shown in Figure 6.3. The

pT spectrum for jets that yield fake electrons is also inflated in this region, as

shown in Figure 6.4. Because the trigger favors certain jets, the observed fake

rate contains an inherent trigger bias.
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Figure 6.3: Distributions of the pT values for all good jets. Note the secondary
peak that appears at a different position for each trigger.

To eliminate the bias, the jets that occur disproportionately often because of

the trigger threshold must be vetoed. When designing the veto, we take into

account the fact that most QCD events are dijet events: that is, the leading and
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Figure 6.4: Distributions of the pT values for good jets that are matched to good
electrons. The location of the maximum corresponds to the secondary peak from
the previous figure.

second leading jets are correlated. Thus, the trigger bias veto is as listed below.

• If the uncorrected pT of the leading jet is above the trigger threshold but

that of the second leading jet is not, veto the leading jet.

• If the uncorrected pT values of the leading and second leading jets are both

above the trigger threshold, but that of the third jet is not, veto the top two

jets.

All other jets are retained. The effect of this procedure on the jet pT spectra is

shown in Figures 6.5 and 6.6. In the pT distributions for all good jets, there is no

longer an excess around the trigger threshold. The corresponding peak in the
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distributions for the matched jets is also reduced.
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Figure 6.5: Distributions of the pT values for all good jets, after the trigger bias
veto has been applied. The secondary peak that was seen in Figure 6.3 has been
removed.

6.2.3 Measuring the Fake Rate

After these restrictions have been applied, the remaining good jets and good

electrons are used to measure the fake rate in bins of jet pT and η. The statistical

uncertainty can be calculated at the same time. Write the fake rate in the ith bin

as

ri =
pi

pi + fi
, (6.4)

where pi is the number of matched jets in this bin and fi is the number of un-

matched jets. The counts pi and fi are assumed to have Poisson uncertainties:
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Figure 6.6: Distributions of the pT values for good jets that are matched to good
electrons, after the trigger bias veto has been applied. The peaks associated with
the jet trigger thresholds have been suppressed.

that is, Var(pi) = pi and Var( fi) = fi. Note that pi and fi are independent, since

each jet can only contribute to one of them. Then the variance of ri is given by

Var(ri) ≈
(
∂ri

∂pi

)2

Var(pi) +

(
∂ri

∂ fi

)2

Var( fi) =
1

(pi + fi)2

[
(1 − ri)2 pi + r2

i fi

]
. (6.5)

This expression is used to construct the error bars shown on plots of the fake

rate.

Plots overlaying results from the three jet triggers are shown in Figure 6.7.

Because some of the bins are sparsely populated, the fake rates plotted in each

pT bin are summed over all η values in order to yield reasonable error bars,

and likewise the fake rates plotted in each η bin are summed over all pT values.

The summation is for visualization purposes only; all subsequent calculations
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are performed using a fully two-dimensional fake rate. Most bins show good

agreement between the fake rates.
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Figure 6.7: Comparisons of the fake rates measured on the three jet-triggered
datasets. The majority of the bins agree to within statistical uncertainty.

In Section 6.2.1, we used the Standard Model Monte Carlo datasets to es-

timate the contamination due to real electrons in the measurement of the fake

rate. Table 6.4 compares the numbers of real electrons from the Zjets, Wjets and

TTjets datasets to the total number of electrons in data that contributed to the

numerator of the fake rate. The simulations predict that up to 34% of the total

numerator consists of real electrons. This is lower than the percentage calcu-

lated using the Monte Carlo QCD files.

6.2.4 Systematic Uncertainty Due to Jet Energy Scale

Even after jet energy corrections have been applied, there can still be a signif-

icant uncertainty associated with the absolute energy scale for reconstructed

jets. Since the fake rate measurement depends on the observed jet pT values, we

would like to determine its robustness with respect to changes to the jet energy

scale.
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Table 6.4: Contributions to the numerator of the fake rate from real electrons in
the non-QCD Monte Carlo datasets, compared to the total numerators observed
in data. The predicted real electron contamination is up to 34% of the total. All
uncertainties are statistical.

Dataset Jet trigger Numerator contribution
Zjets 30U 3.62 ± 0.03
(real electrons) 50U 18.9 ± 0.2

70U 7.2 ± 0.2
Wjets 30U 3.68 ± 0.05
(real electrons) 50U 24.1 ± 0.4

70U 28.3 ± 0.6
TTjets 30U 0.967 ± 0.006
(real electrons) 50U 7.08 ± 0.06

70U 9.9 ± 0.1
All non-QCD 30U 8.34 ± 0.05
(real electrons) 50U 50.6 ± 0.4

70U 45.9 ± 0.6
Jet-triggered 30U 43 ± 6.6
data 50U 176 ± 13.3

70U 134 ± 11.6

The jet energy scale uncertainty is taken to be 10% [34]. To assess the corre-

sponding systematic uncertainty in the fake rate, the above procedure for cal-

culating the fake rate is repeated twice, once after scaling all jet pT values by a

factor of 0.9, and again after scaling them by a factor of 1.1. If the original fake

rate in bin i is ri, and if the values observed after applying the scale are r0.9
i and

r1.1
i , then the systematic uncertainty assigned to ri is the larger of

∣∣∣ri − r0.9
i

∣∣∣ and∣∣∣ri − r1.1
i

∣∣∣.
The systematic uncertainties are found to be up to twice the size of the statis-

tical uncertainties. This suggests that the fake rate measurement is dependent

on the jet energy scale, though not overwhelmingly so. The overlay plots of

the fake rates from the three jet triggers are repeated in Figure 6.8 with the er-

ror bars recalculated to include statistical and systematic uncertainties. When
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predictions are calculated using the fake rate, both the statistical and systematic

uncertainties will be propagated.
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Figure 6.8: Comparisons of the fake rates measured on the three jet-triggered
datasets, where the error bars include the statistical uncertainty and the system-
atic uncertainty due to jet energy scale.

6.2.5 Constructing Predictions

The purpose of measuring the fake rate is to predict the number of events within

a given sample that contain fake electrons. In a jet-triggered sample, once the

cuts to suppress real electrons have been applied, all of the observed good elec-

trons are presumably fake. We therefore use the fake rate to construct the pre-

dicted number of events with one fake electron, and compare it to the observed

number of electrons in the dataset.

Fix an event, and assign it the label a. Suppose this event has na jets, and

suppose that the kth jet falls into the ikth fake rate bin. Then the probability that

the kth jet produces a fake electron is rik . The probability that event a contains

zero fake electrons is

Pa(0) =

na∏
k=1

(
1 − rik

)
, (6.6)
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and the probability that it contains exactly one fake electron is

Pa(1) =

na∑
j=1

ri j

∏
k, j

(
1 − rik

)
. (6.7)

Define the weight of event a to be

Wa =
Pa(1)
Pa(0)

. (6.8)

Suppose event a is found to contain zero fake electrons. Then it corresponds

to the fraction Wa of an event with the same kinematic properties, and one fake

electron.

More generally, suppose we assemble a parent sample of events with some

fixed number R of real electrons, and no fakes. We can construct a sample with R

real electrons and one fake by weighting each parent event by its associated Wa.

In the case of the jet-triggered datasets, the parent sample consists of events with

zero electrons. Weighting these events yields the prediction for events with zero

real electrons and one fake. The total number of predicted fake electron events

is given by summing Wa over the parent sample.

Notice that we can write

Wa =

∑na
j=1 ri j

∏
k, j

(
1 − rik

)∏na
k=1

(
1 − rik

) =

na∑
j=1

ri j

1 − ri j

. (6.9)

If there are N0 events in the parent sample, then the predicted number of fake

electron events, N1, is given by

N1 =

N0∑
a=1

Wa =

N0∑
a=1

na∑
j=1

ri j

1 − ri j

. (6.10)

In other words, N1 is the sum of the expression
ri j

1 − ri j

over all good jets in all

events in the parent sample. The end result will have the form

N1 =
∑

i

mi
ri

1 − ri
, (6.11)
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where i ranges over all of the fake rate bins, and mi is the total number of good

jets in the parent sample that fall into the ith bin. A sum over events has been

reduced to a sum over fake rate bins, where each parent sample jet in bin i

represents the fraction
ri

1 − ri
of a jet that yielded a fake electron.

Writing the prediction in this form allows us to calculate its statistical un-

certainty. First, observe that the fake rates ri from different bins are indepen-

dent from each other, as are the jet counts mi. To ensure that the jet counts are

independent from the fake rates, the jet-triggered dataset is split in half. The

fake rate is measured on even-numbered events, and the good jets per bin are

counted on the odd-numbered events. The prediction that is constructed from

these numbers therefore applies to the odd-numbered sample. Each count mi is

assumed to have a Poisson statistical uncertainty, so Var(mi) = mi. The variance

of ri is the sum in quadrature of the statistical uncertainty from Equation 6.5 and

the systematic uncertainty due to jet energy scale from Section 6.2.4. In terms of

these quantities, the variance of N1 is

Var (N1) =
∑

i

Var
(
mi

ri

1 − ri

)
=

∑
i

( ri

1 − ri

)2

mi +
m2

i

(1 − ri)4 Var(ri)
 . (6.12)

This expression is the source of the uncertainties that are listed with all fake rate

predictions.

We also need to count the observed number of fake electrons in the odd-

numbered sample. Real electrons are suppressed using the same cleaning cuts

as described in Section 6.2.3. Any good electron that remains is assumed to be

fake. The observed number of fake electrons in the HLT Jet30U dataset can be

compared to the predictions from the fake rates that were measured on the 30U,

50U and 70U datasets. The same is true of the observed numbers in the 50U and

70U datasets.

137



The observed and predicted numbers of fake electron events are listed in

Table 6.5. The three different fake rates yield predictions on the same dataset

that agree with each other to within less than 1.2 standard deviations. How-

ever, a number of the predictions underestimate the observed number of fake

electrons by up to 1.5 standard deviations. Were it not for the large systematic

uncertainty due to jet energy scale, the discrepancy would be as large as 2.1

standard deviations. To explain this phenomenon, recall the discussion of trig-

ger bias from Section 6.2.3. The purpose of applying the trigger bias veto is to

combat the dependence of the fake rate on the jet trigger threshold. Therefore,

we might expect that the fake rate measured after the veto is not the same as the

effective fake rate in the original dataset. This would explain why the fake rate

prediction sometimes misrepresents the observed number of fake electrons in a

jet-triggered dataset.

Table 6.5: Observed and predicted numbers of fake electrons in jet-triggered
datasets. The predictions from the three fake rates agree with each other to
within less than 1.2 standard deviations.

HLT Jet30U HLT Jet50U
observed 223 ± 14.9 (stat) 577 ± 24.0 (stat)
pred. 30U 284.6 ± 71.8 (stat) ± 95.1 (sys) 1006 ± 290 (stat) ± 311 (sys)
pred. 50U 169.2 ± 13.8 (stat) ± 21.1 (sys) 385.9 ± 63.8 (stat) ± 87.7 (sys)
pred. 70U 177.4 ± 17.4 (stat) ± 27.8 (sys) 447.2 ± 50.8 (stat) ± 67.6 (sys)

HLT Jet70U
observed 430 ± 20.7 (stat)
pred. 30U 674.3 ± 217.0 (stat) ± 336.5 (sys)
pred. 50U 246.6 ± 65.9 (stat) ± 82.9 (sys)
pred. 70U 370.4 ± 82.0 (stat) ± 108.4 (sys)

To test this hypothesis, we also apply the trigger bias veto procedure when

calculating the predictions. While counting mi, the good jets per bin in the parent

sample, we veto any jet that fits one of the veto conditions. Similarly, when
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counting the observed fake electrons, we veto any electron if it is matched to

a jet that fits one of the veto conditions. A comparison between predicted and

observed fake electron counts under these new conditions is shown in Table

6.6. The three predictions continue to show good agreement with each other. In

addition, the agreement between prediction and observation is much improved.

For the remainder of the jet-triggered results, the trigger bias veto will also be

applied to the parent sample and the observed electrons.

Table 6.6: Observed and predicted numbers of fake electrons in jet-triggered
datasets when the trigger bias veto is also applied to the parent sample and
the observed counts. The three predictions still agree with each other to within
less than 1.2 standard deviations. In addition, the predictions agree with the
observed counts to within less than 1.0 standard deviations.

HLT Jet30U HLT Jet50U
observed 43 ± 6.6 (stat) 173 ± 13.2 (stat)
pred. 30U 43.1 ± 6.6 (stat) ± 8.8 (sys) 285.4 ± 79.4 (stat) ± 76.3 (sys)
pred. 50U 45.7 ± 4.7 (stat) ± 8.3 (sys) 176.3 ± 13.3 (stat) ± 19.4 (sys)
pred. 70U 52.1 ± 6.9 (stat) ± 11.7 (sys) 191.7 ± 18.5 (stat) ± 26.7 (sys)

HLT Jet70U
observed 159 ± 12.6 (stat)
pred. 30U 278.9 ± 80.3 (stat) ± 73.1 (sys)
pred. 50U 124.8 ± 15.4 (stat) ± 20.5 (sys)
pred. 70U 133.6 ± 11.5 (stat) ± 15.6 (sys)

6.2.6 Predicting /ET and Fake Electron pT Distributions

In addition to predicting event counts, the fake rate can be used to predict the

distributions for kinematic quantities associated with fake electron events. For

example, suppose we want to predict the number of fake electron events whose

/ET is within a certain range. This is accomplished by simply restricting the par-

ent sample events to those with a /ET value within the desired range. In this
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fashion, a prediction for the /ET distribution due to fake electron events can be

constructed one /ET bin at a time. This technique will be used to obtain the pre-

diction for fake electron events in the signal region of the multi-electron channel.

Using the fake rates measured in the previous section, we apply this proce-

dure to events from the HLT Jet30U, HLT Jet50U and HLT Jet70U triggers.

For each trigger, the predicted /ET distributions can be compared to the observed

/ET distribution from fake electron events. Figure 6.9 shows these comparisons.

As with the event counts, the three predictions show good agreement with each

other. Though the fake rate tends to underestimate the high- /ET region, many

bins are correct to within about two standard deviations.

We can also use the fake rate to predict the pT distribution of the fake elec-

trons. This is a more complicated procedure because the reconstructed pT of a

fake electron depends on, but is not equal to, the pT of the jet that produced

it. This introduces another systematic uncertainty into the predicted electron pT

distribution, in addition to the statistical and systematic uncertainties already

associated with the fake rate.

This systematic uncertainty in fake electron pT can be measured at the same

time as the fake rate. Figure 6.10 shows a scatter plot of the pT of a fake elec-

tron versus the pT of the jet to which it was matched. Within each jet pT bin,

as defined by the fake rate binning, the observed electron pT values form a dis-

tribution. The mean of this distribution is the estimate for the fake electron pT

due to a jet in this bin, and the standard deviation is the associated systematic

uncertainty. The means and standard deviations are shown in Figure 6.10, su-

perimposed on the scatter plot. The horizontal bar represents the width of the

fake rate bin, while the position and height of the vertical bar are obtained from
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Figure 6.9: Comparison between observed and predicted /ET distributions for
fake electron events in jet-triggered datasets. There is reasonable agreement
between the shapes of the observed and predicted distributions, and the predic-
tions in many of the bins agree with observation to within one or two standard
deviations.

the electron pT distribution in that bin.

To propagate all of the statistical and systematic uncertainties, we construct

a toy Monte Carlo simulation. The following inputs are required for each bin:

• ri, the measured fake rate, and its associated uncertainty, which is the sum

in quadrature of the statistical uncertainty as calculated in Section 6.2.3

and the systematic uncertainty due to jet energy scale as calculated in Sec-

tion 6.2.4.

• mi, the number of jets in the parent sample that fall within bin i. These
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Figure 6.10: Representation of the distribution of electron pT values associated
with each jet pT bin. The horizontal bar represents the width of the pT bin, while
the position and height of the vertical bar represent the mean and standard de-
viation of the electron pT distribution in this bin.

values are assumed to have Poisson statistical uncertainties.

• ei, the average electron pT value associated with the jet pT range for bin i.

Its systematic uncertainty is the observed standard deviation of the elec-

tron pT distribution associated with this bin.

For each input, the observed value and associated uncertainty are used to con-

struct a probability distribution for the expected value of this variable. Then the

uncertainties can be propagated by sampling randomly from these distributions

and averaging over many trials.

More specifically, we choose to model the inputs using Gamma distributions,
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which have the general form

P(λ) =
λα−1e−λ/β

βαΓ(α)
. (6.13)

The mean of this distribution is αβ, and the variance is αβ2, so the parameters

α and β can always be chosen such that the mean is the observed value of the

input and the standard deviation is its uncertainty. We use Gamma distributions

because they are almost indistinguishable from normal distributions when the

standard deviation is small relative to the mean, but they are also constrained

to be nonnegative. This is appropriate because all of the input variables are

nonnegative quantities.

Having constructed the Gamma distributions, we can now perform the

Monte Carlo simulation to predict the fake electron pT distribution. The out-

come of each iteration of the simulation is an electron pT histogram, which we

choose to bin in widths of 5 GeV. An iteration proceeds as follows:

• In each fake rate bin, draw random values for mi and ri from their associ-

ated distributions. These values constitute the fake rate and the jet content

of the parent sample for this trial.

• As we argued in Section 6.2.5, each parent sample jet in bin i represents the

fraction
ri

1 − ri
of a jet that yielded a fake electron. In this iteration, there are

mi such jets. Therefore, we multiply the distribution for ei by the number

of jets mi, then add it to the fake electron pT histogram with weight
ri

1 − ri
.

At the end of the simulation, take the mean and standard deviation of the simu-

lated entries within each electron pT bin. The final output is a histogram whose

bins contain these mean values, and whose assigned uncertainties are the stan-

dard deviations.
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Using this procedure, we compare results from the three measured fake

rates. The predictions are superimposed on the observed fake electron pT dis-

tributions in Figure 6.11. There is reasonable agreement among the predictions,

and between prediction and observation.

hold
Entries  30
Mean    33.45
RMS     20.18

electron pT
0 20 40 60 80 100 120 140

0

2

4

6

8

10

12

14

16

18

20

hold
Entries  30
Mean    33.45
RMS     20.18

Observed

Predicted, HLT_Jet30U

Predicted, HLT_Jet50U

Predicted, HLT_Jet70U

Observed and Predicted Electron pT, 30U hold
Entries  30
Mean     38.5
RMS      21.4

electron pT
0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

hold
Entries  30
Mean     38.5
RMS      21.4

Observed

Predicted, HLT_Jet30U

Predicted, HLT_Jet50U

Predicted, HLT_Jet70U

Observed and Predicted Electron pT, 50U

hold
Entries  30
Mean    44.38
RMS     21.04

electron pT
0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

70

80

hold
Entries  30
Mean    44.38
RMS     21.04

Observed

Predicted, HLT_Jet30U

Predicted, HLT_Jet50U

Predicted, HLT_Jet70U

Observed and Predicted Electron pT, 70U

Figure 6.11: Comparison between observed and predicted pT distributions for
fake electrons in jet-triggered datasets. All three predictions are reasonably suc-
cessful at modeling the features of the observed distributions.

6.3 Test Environment: Photon Triggers

The above studies are a good first indication that this procedure yields a fake

rate that gives reliable predictions. However, the fake rate should also be tested

outside of the jet-triggered environment. To accomplish this, fake electron pre-
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dictions are constructed for the six photon-triggered datasets that were listed in

Table 6.2. Photon-triggered datasets are not expected to contain many real elec-

trons, so the predictions can be compared to the observed fake electron counts

and distributions.

The first step is to assemble a parent sample of events that do not contain

any good electrons. Now that there is no jet trigger, there is no need to apply

the trigger bias veto procedure. Instead, the parent sample events are required

to contain at least one good photon above the threshold of the photon trigger.

The fake rate is applied to the parent sample as described in Section 6.2.5. The

result is the predicted number of events containing one fake electron.

When counting the observed number of electrons, the cleaning cuts to elim-

inate real electrons from Z and W decays are applied as described in Section

6.2.3. Fake electron events are also required to contain at least one good photon

above the photon trigger threshold. Any electron that is observed under these

conditions is assumed to be a fake electron that originated from a jet.

The observed counts are compared to the predictions in Table 6.7. For all six

photon datasets, there is agreement to within less than 1.4 standard deviations

between prediction and observation.

Using the methods described in Section 6.2.6, we can also construct the pre-

dicted /ET distribution for fake electron events, and the predicted fake electron

pT distributions. The /ET distributions are shown in Figure 6.12, and the electron

pT distributions are shown in Figure 6.13. In all cases, the three predictions are

quite successful at modeling the features of the observed distributions.
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Table 6.7: Observed and predicted numbers of fake electron events in photon-
triggered datasets. The accuracy of the predictions is comparable to that ob-
served in the jet-triggered cases.

HLT Photon10 HLT Photon15
observed 5 ± 2.2 (stat) 24 ± 4.9 (stat)
pred. 30U 3.7 ± 0.6 (stat) ± 0.7 (sys) 21.8 ± 3.7 (stat) ± 4.5 (sys)
pred. 50U 3.6 ± 0.4 (stat) ± 0.7 (sys) 23.2 ± 2.5 (stat) ± 4.8 (sys)
pred. 70U 4.1 ± 0.6 (stat) ± 0.9 (sys) 25.4 ± 3.6 (stat) ± 6.9 (sys)

HLT Photon20 HLT Photon30
observed 167 ± 12.9 (stat) 123 ± 11.1 (stat)
pred. 30U 184.7 ± 32.7 (stat) ± 41.4 (sys) 163.3 ± 45.4 (stat) ± 44.7 (sys)
pred. 50U 174.2 ± 16.4 (stat) ± 27.4 (sys) 92.2 ± 7.7 (stat) ± 11.2 (sys)
pred. 70U 185.2 ± 23.2 (stat) ± 38.2 (sys) 93.3 ± 9.4 (stat) ± 12.0 (sys)

HLT Photon50 HLT Photon70
observed 40 ± 6.5 (stat) 11 ± 3.3
pred. 30U 60.3 ± 19.3 (stat) ± 17.1 (sys) 17.0 ± 5.8 (stat) ± 4.7 (sys)
pred. 50U 21.9 ± 4.6 (stat) ± 5.6 (sys) 6.6 ± 2.0 (stat) ± 1.9 (sys)
pred. 70U 24.3 ± 2.9 (stat) ± 3.7 (sys) 10.3 ± 2.5 (stat) ± 3.0 (sys)

6.4 Application: Multi-Electron Prediction

The successful tests on jet-triggered and photon-triggered datasets give us con-

fidence in the predictions made by the fake rate. Now we apply the method

to estimate the fake rate background in the multi-electron channel described in

Chapter 5. Recall the event selection implemented for this channel:

• Exactly two good electrons, as defined in Section 5.2.2.

• At least two jets with pT > 40 GeV, |η| < 3.0, and not within ∆R < 0.3 of any

good electron.

• An electron trigger that has the lowest possible threshold, and that has not

been prescaled.
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Figure 6.12: Comparison between observed and predicted /ET distributions for
fake electrons events in photon-triggered datasets. The plots show very good
agreement between prediction and observation.

The fake electron background consists of events that satisfy the jet and trig-

ger requirements, and that contain two good electrons, at least one of which is

fake. To estimate this background, the first step is to define a parent sample.

Events are selected that pass the jet and trigger criteria, and that contain exactly

one good electron. Then the fake rate method can be applied as described in
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Figure 6.13: Comparison between observed and predicted fake electron pT dis-
tributions in photon-triggered datasets. Like it was with the /ET distributions,
the agreement between prediction and observation is good in all cases.

Section 6.2.5, with one modification. When counting mi, the number of parent

sample jets in fake rate bin i, the two jets that were required by the analysis chan-

nel definition are omitted. These jets may not be within ∆R < 0.3 of any electron,

so they cannot be responsible for producing a fake electron. The counts mi are

obtained from the remainder of the parent sample jet content.
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The results of applying the fake rate to this sample are shown in Table 6.8.

Predictions are also shown for the number of fake electron events in the signal

region, which has /ET > 150 GeV. This number is generated by restricting the

parent sample to events that have /ET > 150 GeV, as described in Section 6.2.6.

Table 6.8: Predicted fake electron background for a multi-electron analysis in
33.84 pb−1 of data from a low-threshold electron trigger. The first systematic
uncertainty in the overall prediction is due to jet energy scale, and the second
represents the variation amongst the three different predictions.

All events
Pred. 30U 1.26 ± 0.30 (stat) ± 0.27 (sys)
Pred. 50U 0.64 ± 0.07 (stat) ± 0.09 (sys)
Pred. 70U 0.77 ± 0.10 (stat) ± 0.12 (sys)
Overall 0.77 ± 0.10 (stat) ± 0.12 (sys) ± 0.49 (sys)

Events with /ET > 150 GeV
Pred. 30U 0.015 ± 0.004 (stat) ± 0.002 (sys)
Pred. 50U 0.008 ± 0.001 (stat) ± 0.001 (sys)
Pred. 70U 0.010 ± 0.001 (stat) ± 0.001 (sys)
Overall 0.010 ± 0.001 (stat) ± 0.001 (sys) ± 0.005 (stat)

Based on the three fake rate predictions, we take the total number of fake

electron events to be 0.77±0.10 (stat)±0.12 (sys)±0.49 (sys). The first systematic

uncertainty is the propagation of the uncertainty due to jet energy scale; the

second represents the variation between the predictions due to the different jet

triggers. For comparison, recall the Monte Carlo studies in the previous chapter,

which predict a total background of 127.78±1.72 (stat) events from real electron

events.

Similarly, the overall prediction for fake electron events in the signal region

is 0.010±0.001 (stat)±0.001 (sys)±0.005 (sys), while the Monte Carlo prediction

for real electron events in this region is 0.785 ± 0.060 (stat) events. Both sets of

results indicate that this channel is dominated by real electrons.
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CHAPTER 7

MULTI-ELECTRON CHANNEL RESULTS

In this chapter, we conclude the new physics search in the multi-electron

channel by calculating the observed signal and assessing its statistical signifi-

cance. First, we compare the Monte Carlo background estimates to the number

of events observed in data. The results suggest that a scale factor must be ap-

plied to the Zjets simulated numbers. Another correction factor for the Monte

Carlo backgrounds is calculated using the electron reconstruction efficiencies

that are measured in data and in the Monte Carlo datasets. Several sources of

systematic uncertainty are discussed.

The final results for the backgrounds must be subtracted from the observa-

tion in data to obtain the signal. We present a statistical model for propagating

the statistical and systematic uncertainties associated with each component of

this calculation. Both Bayesian and semi-frequentist formulations are consid-

ered.

The particular quantities of interest are the numbers of events in the signal

region. The notation that will be used to represent these quantities is listed

below.

• The number of events observed in the signal region in 33.84 pb−1of

electron-triggered data is d. Observations yield d = 1 ± 1.0 (stat).

• The estimated number of fake electron events in the signal region is q.

The value calculated in the previous chapter is q = 0.010 ± 0.001 (stat) ±

0.005 (sys), where the two systematic uncertainties have now been com-

bined.
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• A background estimate obtained from Monte Carlo simulations is written

in the form nxx, where nx is an overall normalization and x is an unscaled

event count. The variable x ranges over the five backgrounds from Zjets,

TTjets, and diboson events. The statistical and systematic uncertainties

associated with nx and x are described in the following sections.

7.1 Backgrounds from Monte Carlo Simulations

In data, the number of events that are observed to pass the event selection crite-

ria is 181± 13.5 (stat). The estimated backgrounds are compared to this value in

Table 7.1. The total real electron background obtained from Monte Carlo simu-

lations is 127.78±1.72 (stat), and the fake electron background is estimated to be

0.77±0.10 (stat)±0.50 (sys). The total estimated background is significantly lower

than the observed number of events in data. Before attributing this discrepancy

to the presence of a new physics signal, we first consider potential sources of

disagreement between observed and simulated Standard Model processes. For

the purposes of this section alone, we neglect the fake rate background.

Table 7.1: Summary of the estimated background events in the multi-electron
channel, in comparison to the observed number of events in 33.84 pb−1 of data.
The fake electron events are estimated using the fake rate method, which is a
data-driven process. The real electron events are taken from Monte Carlo sim-
ulations. This channel is dominated by real electrons, but the estimated back-
ground falls significantly short of the observation in data.

Name Selected events
Fake electron background 0.77 ± 0.10 (stat) ± 0.50 (sys)
Real electron background 127.78 ± 1.72 (stat)
Observation in data 181 ± 13.5 (stat)
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As shown in Table 5.6, the background due to real electrons is overwhelm-

ingly dominated by Zjets events. Therefore, we restrict our attention to those

selected events that are due to a Z→ ee decay. Let minv be the invariant mass of

the vector sum of the two good electrons in a selected event. Figure 7.1 shows

a comparison of the distributions of minv in data and in the Zjets Monte Carlo

dataset. The shapes of the distributions agree very well; only the total numbers

of events differ.

To calculate an appropriate scale factor, we count the numbers of events

whose invariant mass lies within a window about the Z mass. Specifically, we

require 81 GeV < minv < 101 GeV. Let the count in data be Ndata, let the count

in the Monte Carlo Zjets dataset be NMC, and let the implied correction factor be

εZ = Ndata/NMC. The measured values are

Ndata = 137 ± 11, 7 (stat), (7.1)

NMC = 91.6 ± 1.6 (stat), (7.2)

εZ = 1.50 ± 0.13 (stat). (7.3)

Figure 7.1 also shows the two invariant mass plots after the scale factor εZ has

been applied to the Monte Carlo dataset. The distributions now agree very well,

both in shape and in scale.

Figure 7.2 shows a survey of other kinematic quantities, comparing their dis-

tributions in data to those in simulation after the Zjets dataset has been scaled

by εZ. All Monte Carlo datasets are now included. In all cases, whether the

quantity in question pertains to jets, electrons or missing energy, the agreement

between the two distributions is very good. We conclude that the Monte Carlo

simulation is accurately representing the physics processes present in the data

with the exception of the overall scale, which is adequately corrected by εZ. Note
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Figure 7.1: Comparison of invariant mass plots for selected events in data and
in the Zjets dataset. On the left, the Zjets plot has been scaled to 33.84 pb−1 using
the weight from Table 5.4. On the right, the Zjets plot has also been scaled by
the correction factor in Equation 7.3.

that the Zjets background does not contribute to the signal region at all. There-

fore, this scale factor will not impact the results of a search for new physics in

the signal region.

The backgrounds, including this correction factor, are summarized in Ta-

ble 7.2. Once the Zjets dataset has been scaled up by εZ, the total estimated

background, including the fake electron contribution, is 182.36 ± 2.56 (stat) ±

0.50 (sys). This is consistent with number of selected events in data, which is

181 ± 13.5 (stat).

In the signal region, the total background is 0.795 ± 0.060 (stat) ± 0.005 (sys),

and the number of signal events in data is 1.0 ± 1.0 (stat). Again, these values

are consistent with each other.
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Figure 7.2: Comparison of various kinematic plots between data and all Monte
Carlo backgrounds, after the Zjets dataset has been rescaled. Top row: pT and
η distributions for all jets that pass the selection criteria. Middle row: pT and η
distributions for all good electrons. Bottom row: /ET distributions. There is good
agreement between data and simulation.
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Table 7.2: Monte Carlo and data-driven estimates for Standard Model back-
grounds in 33.84 pb−1, compared to the observed number of events in data. The
selected events are those with exactly two good electrons and at least two jets.
The signal events also have /ET > 150 GeV. Uncertainties are statistical unless
otherwise labeled.

Name Selected Events Signal Events
Zjets 162.25 ± 2.54 (stat) 0.
TTjets 16.76 ± 0.28 (stat) 0.762 ± 0.060 (stat)
WW 0.16 ± 0.01 (stat) 0.011 ± 0.003 (stat)
WZ 1.41 ± 0.02 (stat) 0.008 ± 0.002 (stat)
ZZ 0.99 ± 0.01 (stat) 0.004 ± 0.001 (stat)
Total MC 181.57 ± 2.56 (stat) 0.785 ± 0.060 (stat)
Fake ele 0.77 ± 0.10 (stat) ± 0.50 (sys) 0.010 ± 0.001 (stat) ± 0.005 (sys)
Total bkgd 182.36 ± 2.56 (stat) ± 0.50 (sys) 0.795 ± 0.060 (stat) ± 0.005 (sys)
Data 181 ± 13.5 (stat) 1 ± 1.0 (stat)

7.2 Systematic Uncertainties on Monte Carlo Backgrounds

7.2.1 Luminosity and cross sections

The Standard Model background estimates in the signal region depend heav-

ily on Monte Carlo simulations. In addition to the statistical uncertainties al-

ready presented, there are systematic uncertainties associated with these back-

grounds.

Let the label x range over the five physics processes that are estimated from

simulation: Zjets, TTjets, WW, WZ and ZZ. The contribution due to one of these

processes is written in the form nxx, where x is an unscaled event count and nx

is an overall normalization.

One component of nx is the weight assigned to process x. The weight is given

by
Lσx

Nx
, whereL is the luminosity,σx is the cross section associated with process
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x, and Nx is the total number of simulated events in the Monte Carlo dataset. For

the Zjets normalization, the weight also includes the factor εZ. However, this

background does not contribute to the signal region, so the above expression

is the only one required for the new physics search. The CMS convention for

the systematic uncertainty on the luminosity measurement is 11% [74]. The

uncertainty on the NLO or NNLO cross section σx is listed in Table 5.4. Since

all of the normalizations use the same value of L, there is a correlation between

the weights for different backgrounds.

7.2.2 Electron Reconstruction Efficiency

The signal region definition includes two good electrons. The number of events

observed in this channel therefore depends on the efficiency with which an elec-

tron is reconstructed, and with which a good electron fires one of the electron

triggers. These efficiencies may take a different value in data than in simula-

tion. This section presents a data-driven method for measuring the electron

reconstruction efficiency and the HLT efficiency. The results from the electron-

triggered dataset are compared to those from the complete set of Monte Carlo

files listed in Tables 5.2 and 5.3.

The efficiencies associated with the HLT and the electron identification pro-

cess are measured using a procedure known as the tag and probe method. A

Monte Carlo study of our implementation of this procedure has been previ-

ously performed [75]. For the purposes of this method, the initial objects are

superclusters with ET > 20 GeV and |η| < 1.442 or 1.560 < |η| < 2.5. The electron

identification process is then divided into stages as follows:
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• Stage 1: the supercluster is matched to an electron that also satisfies ET >

20 GeV and |η| < 1.442 or 1.560 < |η| < 2.5.

• Stage 2: the electron satisfies the combined ECAL, HCAL and track isola-

tion requirement from the good electron definition.

• Stage 3: the isolated electron satisfies the electron identification require-

ments (hadronic fraction, shower shape, cluster matching) and the photon

conversion rejection requirements (dist, dcot, number of missing recon-

structed hits) from the good electron definition. A Stage 3 electron is a

good electron.

Each stage introduces an efficiency that can be measured from data.

The tag and probe method attempts to select Z → ee events in order to ob-

tain a pure sample of electrons on which to measure the various efficiencies.

The tag electron is a good electron; or, in the case of the HLT efficiency, it is a

good electron that has fired the trigger. The probe object is a less well-identified

electron or supercluster such that the invariant mass of tag plus probe is within

(61 GeV, 121 GeV). For a given efficiency εx = nx/dx, the denominator is the

number of tag and probe pairs, while the numerator is the number of tag and

probe pairs such that the probe passes the stage of the electron identification

whose efficiency is under consideration.

We measure the efficiencies in order from Stage 1 to Stage 3, followed by the

trigger efficiency. The definition of the probe object evolves accordingly. Thus:

• The Stage 1 efficiency εele = nele/dele is the fraction of superclusters that are

matched (∆R < 0.1) to Stage 1 electrons. The probe object is a supercluster

with ET > 20 GeV and |η| < 1.442 or 1.560 < |η| < 2.5.
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• The Stage 2 efficiency εiso = niso/diso is the fraction of electrons that are track

and calorimeter isolated. The probe object is a Stage 1 electron.

• The Stage 3 efficiency εid = nid/did is the fraction of isolated electrons that

satisfy the electron identification and photon conversion rejection require-

ments. The probe object is a Stage 2 electron.

• The trigger efficiency εtrig = ntrig/dtrig is the fraction of good electrons that

fire the combination of electron triggers. The probe object is a Stage 3 elec-

tron. We consider it to have fired the trigger when it is matched (∆R < 0.1)

to one of the trigger objects for this event. For this efficiency, we impose

the additional requirement on the tag electron that it also be matched to

an HLT trigger object.

By defining the probe object in a cumulative fashion and measuring the effi-

ciencies in a fixed order, we account for the correlations between them, and the

resulting efficiencies can be multiplied as though they were independent quan-

tities [76].

As the Stage 1 efficiency εele and the Stage 2 efficiency εiso have the weakest

probe object definitions, they exhibit the greatest degree of background contam-

ination. A curve-fitting procedure is used to control the backgrounds in these

cases. For the Stage 3 efficiency εid and the trigger efficiency εtrig, the background

contribution is negligible, so we can count the numerator and denominator to-

tals directly.

The tag and probe measurements of the Stage 1 and Stage 2 efficiencies suf-

fer from substantial fake electron background contamination that affects the

denominators much more than the numerators, thereby underestimating the

true efficiency values. The two efficiencies in question are εele = nele/dele and
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εiso = niso/diso. Each numerator and denominator is a count for which we need

an estimate. Take the dele case as an example; the other three follow the same

procedure.

Whenever a tag and probe pair satisfies the denominator conditions for the

Stage 1 efficiency, we add the invariant mass of tag plus probe to a histogram

whose range is the Z mass window, (61 GeV, 121 GeV). This histogram will con-

tain a mixture of contributions from signal and background. We assume that the

signal entries follow a scaled Breit-Wigner distribution centered on the Z mass

[77], and that the background distribution can be modeled by a polynomial.

Therefore, we fit the histogram with a function of the form

F(x; p0, p1, p2, p3, p4, p5) =
p0

2π
p2

(x − p1)2 + p2
2/4

+ p3x2 + p4x + p5. (7.4)

Once the parameters have been fitted, we take the integral of the Breit-Wigner

term over the mass window to obtain a count. This is the estimate of the signal

yield for dele.

We implement the fitting process in ROOT, which returns a matrix of co-

variances for the fitted parameters. Since dele is a function of p0, p1 and p2, we

calculate its variance by

Var(dele) ≈
2∑

i=0

2∑
j=0

∂dele

∂pi

∂dele

∂p j
Cov(pi, p j). (7.5)

More specifically, if we denote the interval of integration by (A, B), then the fitted

value for dele is

dele =

∫ B

A

p0

2π
p2

(x − p1)2 + p2
2/4

dx (7.6)

=
p0

π
tan−1

[
2
p2

(x − p1)
]B

A
(7.7)
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The partial derivatives of this expression with respect to each of the three pa-

rameters are

∂dele

∂p0
=

1
π

tan−1
[

2
p2

(x − p1)
]B

A
, (7.8)

∂dele

∂p1
= −

p0 p2

2π
1

(x − p1)2 + p2
2/4

∣∣∣∣∣∣B
A

, (7.9)

∂dele

∂p2
= −

p0

2π
x − p1

(x − p1)2 + p2
2/4

∣∣∣∣∣∣B
A

. (7.10)

These expressions are the source of the systematic uncertainties quoted for dele

and the other three fitted event counts.

Figure 7.3 shows the fitted invariant mass histograms for the four event

counts. In each case, the fitted function F is superimposed on the histogram

in black. The Breit-Wigner and polynomial terms are plotted individually in

blue and red, respectively. Note: it is not necessarily our contention that the

fitted background curve is an accurate representation of the number of back-

ground events in the histogram. However, we find that the ratio of numerator

to denominator events after subtracting the background curve is a reasonably

good model for the Stage 1 and Stage 2 efficiencies.

Suppose we have now obtained some numerator and denominator counts

nx and dx for a particular efficiency εx = nx/dx, whether from the fitting process

or direct observation. Since the events in the numerator are a subset of those in

the denominator, nx and dx are not independent variables. Define fx = dx − nx;

that is, fx is the number of events that fail the numerator condition. Then nx and

fx are independent, and εx = nx/ (nx + fx). Therefore, we can express the variance

of εx as

Var(εx) ≈
(
∂εx

∂nx

)2

Var(nx) +

(
∂εx

∂ fx

)2

Var( fx) (7.11)
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Figure 7.3: Results of curve fitting procedure for the four tag and probe counts
dele and nele (top row), and diso and niso (bottom row). The overall fit function is in
black, while the Breit-Wigner and polynomial components are in blue and red,
respectively.

=
1

(nx + fx)4

[
f 2Var(nx) + n2Var( fx)

]
. (7.12)

If we note that Var(dx) = Var(nx + fx) = Var(nx) + Var( fx), then we can rewrite the

above in terms of dx and nx as

Var(εx) =
1
d2

x

[
(1 − 2εx) Var(nx) + ε2

x Var(dx)
]
. (7.13)

This expression is used to calculate the uncertainties on all of the measured

efficiencies.

Table 7.3 shows the results for numerator, denominator and efficiency for all

stages of the electron identification, and for the HLT. The statistical uncertainties

on εele and εiso arise from the tag and probe method plus fitting, while those
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on εid and εtrig arise from assigning the standard Poisson uncertainties to the

numerator and denominator. Also shown is the total efficiency per electron of

the electron identification process, which is given by ε = εele · εiso · εid. The latter

number agrees very well with that measured in an earlier study on 2.9 pb−1of

data from the HLT Ele15 SW CaloEleId L1R trigger [78].

Table 7.3: Tag and probe results for numerator, denominator and efficiency for
each of the stages of electron identification, and for the HLT efficiency, using
electron-triggered data. Statistical uncertainties are due to the background fit-
ting process for εele and εiso, and due to Poisson statistics for εid and εtrig. The final
entry is ε = εele · εiso · εid, which is the total efficiency for reconstructing a good
electron from a supercluster.

Quantity Value
Stage 1 nele 18280 ± 950

dele 18700 ± 1900
εele 0.979 ± 0.085

Stage 2 niso 21550 ± 270
diso 23280 ± 800
εiso 0.926 ± 0.022

Stage 3 nid 16440 ± 130
did 19750 ± 140
εid 0.832 ± 0.003

HLT ntrig 15880 ± 130
dtrig 16290 ± 130
εtrig 0.975 ± 0.001

Good electron ε 0.755 ± 0.070

To assess a possible systematic dependence on the width of the Z mass

window, we repeated the procedure using intervals of (66 GeV, 116 GeV) and

(71 GeV, 111 GeV). All of the efficiency values were found to agree with those in

Table 7.3 to within statistical uncertainty. Therefore, we assume that our method

is reasonably independent of the width of this interval. We choose to consider

results from (61 GeV, 121 GeV) because they have the most observations, and

therefore the smallest statistical uncertainties.
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Next, we apply this same procedure to the complete set of Standard Model

Monte Carlo files, weighted to correspond to a luminosity of 33.84 pb−1. To

distinguish them from the values measured on data, the efficiencies measured

on simulated files will be denoted ε′x = n′x/d
′
x. The results are given in Table 7.4.

Because there is no trigger information available for the Monte Carlo files, we

do not calculate ε′trig.

Table 7.4: Tag and probe Monte Carlo results for numerator, denominator and
efficiency for each of the stages of electron identification. Statistical uncer-
tainties are due to the background fitting process for ε′ele and ε′iso, and due to
Poisson statistics combined with the dataset weights for ε′id. The final entry is
ε′ = ε′ele · ε

′
iso · ε

′
id, which is the total efficiency in simulation for reconstructing a

good electron from a supercluster.

Quantity Value
Stage 1 n′ele 27090 ± 930

d′ele 29400 ± 1200
ε′ele 0.923 ± 0.026

Stage 2 n′iso 38220 ± 810
d′iso 39600 ± 1300
ε′iso 0.966 ± 0.024

Stage 3 n′id 37523 ± 32
d′id 42756 ± 35
ε′id 0.878 ± 0.002

Good electron ε′ 0.783 ± 0.029

The efficiencies ε, εtrig and ε′ can be used to construct a correction factor to

the Monte Carlo background normalizations. For example, consider a leptonic

tt̄ event. For it to pass the event selection criteria, both electrons must be re-

constructed, and at least one of them must satisfy the trigger. Therefore the

probability that this event will be selected in data is

Pele(ε) = ε2
[
1 −

(
1 − εtrig

)2
]
. (7.14)
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The probability in simulation is

Pele(ε′) = ε′2, (7.15)

since the trigger efficiency is taken to be 100%. The correction factor for the

Monte Carlo background is then Pele(ε)/Pele(ε′).

By the same reasoning, this correction factor also applies to the WW back-

ground. In principle, the correction factors for the WZ and ZZ backgrounds

should take a slightly different form that reflects the different permutations of

decay products that could give rise to two good electrons. However, since these

backgrounds are very small relative to tt̄, we disregard any such modifications

and use the same correction factor Pele(ε)/Pele(ε′) in all cases.

Combining this expression with the weight found in the previous section

yields the overall scale factor associated with process x:

nx =
Lσx

Nx

Pele(ε)
Pele(ε′)

. (7.16)

Note that the scale factors associated with different processes are correlated due

to the shared values of L and the various electron efficiencies.

7.2.3 Jet Energy Scale and Other Systematics

Other issues that might affect the comparison between Monte Carlo simulation

and data are the jet energy scale and /ET resolution. To test the dependence on

jet energy scale, we recalculate all of the five Monte Carlo backgrounds after

scaling all of the jet pT values by a factor of 1.1, and again by a factor of 0.9. In

the signal region, let x be the original unscaled count in the signal region, and
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let x1.1 and x0.9 be the new counts after rescaling. The systematic uncertainty on

x associated with jet energy scale is the larger of |x − x1.1| or |x − x0.9|. The results

are listed in Table 7.5.

Table 7.5: Effect of jet energy scale on the Monte Carlo unscaled backgrounds,
and the systematic uncertainties assigned.

Name Original unscaled ×0.9 ×1.1 Systematic
TTjets 159 148 166 ±11
WW 16 14 18 ±2
WZ 30 29 33 ±3
ZZ 38 35 41 ±3

The /ET resolution has a Gaussian distribution in the central region, and long

non-Gaussian tails. The latter feature occurs when a large /ET value is measured

for events whose true /ET is small. This is expected to happen more often in data

than in simulation. In a previous study [65], sensitivity to this effect was sim-

ulated by scaling up each Monte Carlo background by factors ranging from 1.5

to 3. In the present analysis, it is clear from the very small numbers of observed

signal region events that scaling up the Monte Carlo backgrounds would easily

remove any trace of a signal. Thus, we omit this step for the time being, but note

for future work that an understanding of the /ET resolution in data is essential

before attributing an excess of high- /ET events to a new physics signal.

7.3 Summary of Inputs and Uncertainties

The following quantities all contribute to the calculation of the signal.

• The number of events observed in the signal region in 33.84 pb−1of
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electron-triggered data is d = 1 ± 1.0 (stat).

• The number of fake electron events in the signal region is estimated to be

q = 0.010 ± 0.001 (stat) ± 0.005 (sys). The systematic uncertainty is due to

the effects of jet energy scale and trigger bias.

• The backgrounds that are estimated from Monte Carlo simulations take

the form nxx, where x ranges over the processes TTjets, WW, WZ and ZZ

(the Zjets contribution is zero). The event count x has a Poisson statistical

uncertainty and a systematic uncertainty due to jet energy scale. The coef-

ficient nx has systematic uncertainties due to the luminosity of the dataset,

the cross section of the process, and the electron reconstruction efficiencies

in data and simulation.

The total background b is then given by

b = q +
∑

x

nxx. (7.17)

We must now determine whether there is a statistically significant difference

between d and b.

7.4 A Statistical Model

The inputs to the analysis are the data event count d, the background estimates

x and q, and the components that make up the normalization coefficients nx.

Each one has an associated uncertainty, which may include both statistical and

systematic contributions. All of these quantities are used to calculate the signal

in the signal region. To assess whether this signal represents a significant devi-
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ation from the Standard Model, the statistical and systematic uncertainties on b

and d must be properly propagated.

In this section, we review Bayesian posterior probability distribution func-

tions and frequentist confidence intervals, and we describe the Monte Carlo

computer simulation used to propagate the uncertainties on the inputs.

7.4.1 Bayesian and semi-frequentist formulations

Each input to the calculation of the background is the observed value of some

variable that has an expected value and a standard deviation. Given an ob-

served value y, let the corresponding expected value be 〈y〉, and let the standard

deviation be σy.

• Bayesian formulation: Having now observed b and d in the signal re-

gion, we want to find the posterior probability distribution function (pdf)

for the expected value 〈s〉. Given expected values 〈d〉 and 〈b〉, we have

〈s〉 = 〈d〉 − 〈b〉. The observed values for the data and for the various con-

tributions to b are used to construct pdfs for 〈b〉 and 〈d〉. Then the mean

and standard deviation of the distribution for 〈s〉 are determined by inte-

grating the quantity 〈d〉 − 〈b〉 over these pdfs. A mean value of 〈s〉 that is

several standard deviations above zero indicates the presence of a signal

that is distinct from the Standard Model background.

Given an expected value 〈b〉, we can also calculate the Poisson probability

that an observation of b will equal or exceed the observed signal d. This

value, integrated over the pdf for 〈b〉, represents the probability that the
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background alone could fluctuate high enough to account for the observed

data.

• Frequentist formulation: Given a hypothesis for the expected value 〈s〉,

we want to find the probability of observing a particular value of d. Given

also the expected value 〈b〉, the expected value for d is 〈d〉 = 〈s〉+ 〈b〉. Thus,

d is modeled with a Poisson distribution that has a mean value of 〈s〉+ 〈b〉:

P(d| 〈s〉 , 〈b〉) =
(〈s〉 + 〈b〉)d e−(〈s〉+〈b〉)

d!
. (7.18)

By varying 〈s〉 and d, we can construct a two-dimensional map of the prob-

abilities of observing different d values, given different hypotheses for 〈s〉.

The particular value of d that is observed in the experiment will fall some-

where on this probability map; the range of 〈s〉 values for which this ob-

servation is likely constitute a confidence interval.

We do not have a precise value for 〈b〉, but we can construct a posterior

pdf for it out of the observed values of the various backgrounds. Then

P(d| 〈s〉 , 〈b〉) is integrated over this pdf to eliminate dependence on 〈b〉:

P(d| 〈s〉) =

∫
P(d| 〈s〉 , 〈b〉)P(〈b〉) d 〈b〉 . (7.19)

Since the posterior pdf for 〈b〉 is a necessary component of the calculation,

the confidence intervals so constructed are not fully frequentist, but semi-

Bayesian.

Thus, both approaches depend on constructing a pdf for 〈b〉 and then inte-

grating over it. In practice, this amounts to running a Monte Carlo computer

simulation over many different values of 〈b〉. We now construct the distribu-

tions that go into the simulation.
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7.4.2 Simulation of uncertainties

For each independent input, we construct a probability distribution for the ex-

pected value λ whose mean is the observed value k and whose standard de-

viation is the total uncertainty σ. Because all of the inputs – luminosity, cross

sections, efficiencies and event counts – are nonnegative quantities, we simulate

each of them using a Gamma distribution:

P(λ) =
λα−1e−λ/β

βαΓ(α)
. (7.20)

The mean of this distribution is αβ, and the variance is αβ2. Therefore, we choose

α and β such that αβ = k and αβ2 = σ2.

The appropriate distribution is constructed for each independent input to

the background calculation. For every iteration of the computer simulation, a

new random value is selected from each distribution, and these values are used

to calculate 〈b〉. If a variable occurs more than once in the calculation, the same

random value is used in every instance. Thus, the simulation correctly models

correlations between different components of the background. The resulting 〈b〉

is then used in the Bayesian and frequentist probability calculations described

above.

For the Bayesian formulation, it is straightforward to maintain running com-

putations of the mean and variance of the simulated 〈s〉 values. The construction

of confidence intervals is somewhat more involved, and is described in Section

7.4.3.
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7.4.3 Semi-frequentist confidence intervals

The Poisson probability P(d| 〈s〉 , 〈b〉) from Equation 7.19 must be numerically

integrated over the pdf for 〈b〉. In each iteration of the computer simulation,

we calculate 〈b〉, then perform a scan over a grid of 〈s〉 and d values. At each

point in the grid, we construct the expected value 〈d〉 = 〈b〉 + 〈s〉, and calculate

the Poisson probability of observing d. The probabilities at each 〈s〉 − d point

are averaged over many iterations to yield P(d| 〈s〉) at that point. Once P(d| 〈s〉)

has been constructed for the entire grid, the Feldman-Cousins recipe for unified

confidence intervals [79] can be applied as follows.

• For each value of d:

– Find the maximum value of P(d| 〈s〉) by looping over all 〈s〉. Denote

this value Pmax(d).

– Form the likelihood ratio R(d, 〈s〉) ≡ P(d| 〈s〉)/Pmax(d) for all 〈s〉 at the

given d.

• Then, for each value of 〈s〉:

– Rank the d values according to R(d, 〈s〉).

– Form the acceptance region beginning with the d of highest rank,

and successively including d values of lower rank until the summed

P(d| 〈s〉) has reached the desired confidence level.

Thus, an acceptance region is a collection of d values at a fixed 〈s〉. The union

of these acceptance regions over all 〈s〉 is the confidence belt. The frequentist

confidence interval is the range of 〈s〉 values enclosed by this belt at the observed

value of d.
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The Bayesian and semi-frequentist results will be reported and compared in

the next section.

7.5 Results

Table 7.6 lists the Bayesian and semi-frequentist results after 10000 iterations of

the toy Monte Carlo simulation. Plots of the Bayesian distributions for data,

signal and background are shown in Figure 7.4. The probability map and semi-

frequentist 95% confidence belt are shown in Figure 7.5.

The Bayesian expectation value for the signal is 〈s〉 = 0.238 ± 0.996 (stat) ±

0.304 (sys). The probability that the background alone will fluctuate high

enough to account for the observation in data is 51.6%. The semi-frequentist

analysis indicates that 〈s〉 ∈ [0, 4.4] with 95% confidence. All of these results are

in agreement with each other, and they indicate that the observation is consis-

tent with zero signal.

Table 7.6: Bayesian and semi-frequentist results in the multi-electron channel.

Quantity Result
Data 〈d〉 = 0.985 ± 0.969 (stat)
TTjets 〈ntt〉 = 0.715 ± 0.159 (stat) ± 0.107 (sys)
WW 〈nwwww〉 = 0.011 ± 0.003 (stat) ± 0.002 (sys)
WZ 〈nwzwz〉 = 0.008 ± 0.002 (stat) ± 0.001 (sys)
ZZ 〈nzzzz〉 = 0.003 ± 0.001 (stat) ± 0.001 (sys)
Fake ele 〈q〉 = 0.0100 ± 0.0001 (stat) ± 0.0001 (sys)
Background 〈b〉 = 0.747 ± 0.158 (stat) ± 0.104 (sys)
Signal 〈s〉 = 0.238 ± 0.996 (stat) ± 0.304 (sys)
prob bkg fluc 0.516 ± 0.005 (stat)
95% confidence interval [0, 4.4]
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Figure 7.4: Bayesian distributions for 〈d〉 (top left), 〈b〉 (top right), and 〈s〉 (bot-
tom). The mean of the signal distribution is within less than one standard devi-
ation of zero.

7.6 Test Points in mSUGRA Parameter Space

The above analysis was designed to be model-independent. However, the tech-

nique can be adapted to assess whether the observed events in data are con-

sistent with a given new physics hypothesis. As examples, we take two low

mass (LM) points in the minimal supergravity model for which Monte Carlo

files have been generated.

The points we consider are labeled LM0 and LM1. They are specific se-

lections from the five-dimensional parameter space
{
tan β,m0,m1/2, A, sign(µ)

}
.

Their definitions are listed in Table 7.7. Information about the correspond-
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Figure 7.5: The probability map generated by the statistics simulation. The lim-
its of the 95% confidence belt are marked in black. The observed data value is
marked in red.

ing datasets, including cross sections and weights, is shown in Tables 7.8 and

7.9. The final cross sections used in the computation of the weights are next-to-

leading order, and they were obtained by multiplying the leading order values

by the given k-factors. These particular points were chosen from a larger set of

available LM test points because they had the largest cross sections, and there-

fore they made the largest contributions to the signal region. The contributions

from these two points are shown in Table 7.10.

Table 7.7: Parameter values for the low mass (LM) mSUGRA test points.

Name tan β m0 m1/2 A0 sign(µ)
LM0 10 200 160 -400 +

LM1 10 60 250 0 +

Table 7.8: Names of LM test point datasets.

Name Dataset
LM0 /LM0 SUSY sftsht 7TeV-pythia6/Fall10-START38 V12-v1/AODSIM
LM1 /LM1 SUSY sftsht 7TeV-pythia6/Fall10-START38 V12-v1/AODSIM

To determine whether the observed number of signal region events in data
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Table 7.9: Cross sections, k-factors and weights for the LM test point datasets.
The weights were calculated using the NLO cross sections, which are (LO cross
section) × (k-factor). The cross section of the end product is 33.84 pb−1. The
systematic uncertainty on σ(NLO) is taken to be σ(NLO) − σ(LO).

Name σ(LO) (pb) k-factor σ(NLO) (pb) # Events Weight
LM0 38.93 1.41 54.89 219595 8.459 × 10−3

LM1 4.888 1.34 6.550 219190 1.011 × 10−3

favors or disfavors a particular LM hypothesis, we include the predicted num-

ber of LM events as another Monte Carlo background, and repeat the statistical

simulation. If l represents the unweighted LM event count and nl represents its

overall scale factor, then

nl =
Lσl

Nl

Pele(ε)
Pele(ε′)

, (7.21)

whereL is the total luminosity, σl is the NLO cross section of the LM point, Nl is

the number of simulated LM events, and Pele(ε) and Pele(ε′) are the measured and

simulated probabilities for an event to contain two good electrons, as discussed

in Section 7.2.2. We take the systematic uncertainty on σl to be σl(NLO)−σl(LO).

The systematic uncertainty on l due to jet energy scale is listed in Table 7.10 for

each of the candidate points. The uncertainties on the other quantities are as

discussed for the Standard Model Monte Carlo backgrounds.

Table 7.10: Numbers of events in the signal region in 33.84 pb−1for the LM test
points. Statistical uncertainty and systematic uncertainty due to jet energy scale
are both shown.

Name Signal Events
LM0 2.99 ± 0.16 (stat) ± 0.07 (sys)
LM1 1.00 ± 0.03 (stat) ± 0.01 (sys)
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The total background now takes the form

b =
∑

x

nxx + q + nll. (7.22)

With this new formulation, the difference between the predicted background

and the observation in data represents the deviation from the particular LM

hypothesis under consideration; that is, a signal of zero means that the data are

consistent with the LM point.

Table 7.11 shows the Bayesian and semi-frequentist results for the LM0 test

point. Figure 7.6 shows the Bayesian distributions for data, background and

signal. The probability map and 95% confidence belt are shown in Figure 7.7.

The expected value of the signal is 〈s〉 = −2.58± 1.24 (stat)± 1.23 (sys), which

is within about 1.5 standard deviations of zero. Since 〈b〉 > d, we reverse the

interpretation of the probability of background fluctuation: the probability for

a Poisson distribution with expected value 〈b〉 to fluctuate as low as d is about

5%. Finally, the semi-frequentist 95% confidence interval for 〈s〉 is [0, 2.82]. All

of these results indicate that we can exclude LM0 to approximately 1.5σ with

the given observations.

Since the point LM1 has an even smaller signal region contribution, it is not

surprising to find that it is also compatible with the observed data. When the

above analysis is repeated using LM1, the expected value of the signal is 〈s〉 =

−0.70 ± 1.04 (stat) ± 0.37 (sys), the probability for the background to fluctuate

as low as the observed data is about 21%, and the 95% confidence interval for

〈s〉 is [0, 3.53]. All of these figures indicate that the observation is consistent

with the LM1 prediction. Table 7.12 lists the numerical results for the statistics

simulation. Figures 7.8 and 7.9 show the Bayesian pdfs, probability map, and

95% confidence belt.
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Table 7.11: Bayesian and semi-frequentist results in the multi-electron channel
when LM0 is included in the background calculation.

Quantity Result
Data 〈d〉 = 0.997 ± 0.969 (stat)
LM0 〈nll〉 = 2.83 ± 0.59 (stat) ± 1.23 (sys)
TTjets 〈ntt〉 = 0.715 ± 0.156 (stat) ± 0.101 (sys)
WW 〈nwwww〉 = 0.011 ± 0.003 (stat) ± 0.002 (sys)
WZ 〈nwzwz〉 = 0.008 ± 0.002 (stat) ± 0.001 (sys)
ZZ 〈nzzzz〉 = 0.003 ± 0.001 (stat) ± 0.001 (sys)
Fake ele 〈q〉 = 0.0100 ± 0.0001 (stat) ± 0.0001 (sys)
Background 〈b〉 = 3.58 ± 0.73 (stat) ± 1.25 (sys)
Signal 〈s〉 = −2.58 ± 1.24 (stat) ± 1.23 (sys)
prob bkg fluc 0.950 ± 0.002 (stat)
95% confidence interval [0, 2.82]

Table 7.12: Bayesian and semi-frequentist results in the multi-electron channel
when LM1 is included in the background calculation.

Quantity Result
Data 〈d〉 = 0.990 ± 0.980 (stat)
LM1 〈nll〉 = 0.942 ± 0.189 (stat) ± 0.347 (sys)
TTjets 〈ntt〉 = 0.716 ± 0.153 (stat) ± 0.104 (sys)
WW 〈nwwww〉 = 0.011 ± 0.003 (stat) ± 0.002 (sys)
WZ 〈nwzwz〉 = 0.008 ± 0.002 (stat) ± 0.001 (sys)
ZZ 〈nzzzz〉 = 0.003 ± 0.001 (stat) ± 0.001 (sys)
Fake ele 〈q〉 = 0.0100 ± 0.0001 (stat) ± 0.0001 (sys)
Background 〈b〉 = 1.69 ± 0.34 (stat) ± 0.39 (sys)
Signal 〈s〉 = −0.70 ± 1.04 (stat) ± 0.37 (sys)
prob bkg fluc 0.792 ± 0.004 (stat)
95% confidence interval [0, 3.53]

7.7 Conclusion

This document has presented the results of a search for evidence of physics

beyond the Standard Model in a channel with two good electrons, two jets,

and /ET > 150 GeV. The total number of events observed in this channel from
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Figure 7.6: Bayesian distributions for 〈d〉 (top left), 〈b〉 (top right), and 〈s〉 (bot-
tom), when the Monte Carlo contribution from LM0 is included in the back-
ground. The mean of the signal distribution is about 1.5 standard deviations
from zero.

33.84 pb−1 of electron-triggered data is d = 1 ± 1.0 (stat).

The background in this channel due to jets that are misidentified as electrons

is estimated using a data-driven technique. The electron fake rate is measured

on a jet-triggered dataset, and a veto on certain jets is imposed to suppress trig-

ger bias. Tests of the fake rate on jet-triggered and photon-triggered datasets

yield agreement between prediction and observation to within 1.4σ or less. Us-

ing the fake rate method, the fake electron background in the multi-electron

channel is estimated to be q = 0.010 ± 0.001 (stat) ± 0.005 (sys).

The other Standard Model processes that contribute to the multi-electron
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Figure 7.7: The probability map generated by the statistics simulation when the
Monte Carlo contribution from LM0 is included in the background. The limits
of the 95% confidence belt are marked in black. The observed data value is
marked in red.

channel are due to Zjets, TTjets, WW, WZ and ZZ events. These backgrounds

are estimated from Monte Carlo simulations. A correction factor for the elec-

tron reconstruction efficiency is applied, where the efficiency is measured using

the tag and probe method. Systematic uncertainties due to the luminosity mea-

surement, the NLO or NNLO cross sections, and the jet energy scale are also

calculated.

The Standard Model and fake electron backgrounds are subtracted from the

observation in data to obtain the signal. All of the statistical and systematic un-

certainties are propagated using a toy Monte Carlo simulation. The Bayesian ex-

pected value for the signal in this channel is 〈s〉 = 0.238±0.996 (stat)±0.304 (sys).

The semi-frequentist 95% confidence interval for the signal is [0, 4.4]. These re-

sults demonstrate that the observed data events are consistent with zero signal

due to new physics processes.

The data are also compared to two low-mass points in mSUGRA parameter

space, LM0 and LM1. For LM0, the predicted number of new physics events

178



htemp
Entries  10001
Mean   0.9905
RMS    0.9802

datatot
0 1 2 3 4 5 6 7

0

100

200

300

400

500

600

700

htemp
Entries  10001
Mean   0.9905
RMS    0.9802

datatot htemp
Entries  10001
Mean    1.689
RMS    0.5131

bkgtot
1 2 3 4 5

0

50

100

150

200

250

300

350

400

450

htemp
Entries  10001
Mean    1.689
RMS    0.5131

bkgtot

htemp
Entries  10001
Mean   -0.6989
RMS     1.099

sigtot
-4 -2 0 2 4 6

0

100

200

300

400

500

600

htemp
Entries  10001
Mean   -0.6989
RMS     1.099

sigtot

Figure 7.8: Bayesian distributions for 〈d〉 (top left), 〈b〉 (top right), and 〈s〉 (bot-
tom), when the Monte Carlo contribution from LM1 is included in the back-
ground. The mean of the signal distribution is within one standard deviation of
zero.

in the signal region is l = 2.99 ± 0.16 (stat) ± 0.07 (sys). The observation in data

excludes this hypothesis to approximately 1.5σ. For LM1, the predicted number

of new physics events in the signal region is l = 1.00±0.03 (stat)±0.01 (sys). The

data are consistent with this hypothesis to within less than 1σ.

As more CMS observations are accumulated, the statistical uncertainties on

the signal region event counts will decrease. At the same time, the understand-

ing of systematic effects such as jet energy scale uncertainty will improve, so

systematic uncertainties will also decrease. The techniques presented in this

document will continue to be applicable to studies that are performed on larger

quantities of integrated luminosity, where their capacity for unambiguously
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Figure 7.9: The probability map generated by the statistics simulation when the
Monte Carlo contribution from LM1 is included in the background. The limits
of the 95% confidence belt are marked in black. The observed data value is
marked in red.

identifying new physics signals can only improve.
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