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ABSTRACT

I will introduce a group lasso algorithm for complex variables and demonstrate

its application to a novel time series model called tensor autoregression (T-AR).

T-AR utilizes the t-product tensor operation on 3-dimensional tensors and mod-

els time series exhibiting seasonality and geometric trend. The tensor structure

of T-AR enables historical information from a selection of lag durations to simul-

taneously affect the prediction of a single series. I will first introduce the topic

of tensor computations and motivate the t-product and T-SVD manipulations.

Then, I will derive the T-AR model from the t-product definition and discuss

its properties and interpretation. Next, I will adapt a group lasso algorithm

to complex-valued problems and derive the fast algorithm for lag selection in

T-AR. Finally, I will conclude with simulation results.
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CHAPTER 1

INTRODUCTION

Decisions on how to represent information can profoundly impact a model and

lead to a variety of data structures and operations suited to applications where

relational structure is crucial to the analysis. In this thesis, we will explore the

theme of data representation through the concrete examples of our two novel

contributions. Our first contribution is a tensor autoregressive model that ma-

nipulates tensor data structures into a time series model for seasonality and

geometric trend. Our second contribution is a general group lasso algorithm for

complex-valued variables. At the end of our discussion on methodology, we

will unite these two contributions into a single framework incorporating com-

plex group lasso regularization into tensor autoregression.

In higher dimensions, tensor computations often reduce to structured ma-

trix computations bearing meaningful interpretations. The tensor autoregres-

sive (T-AR) model is our example of how an interpretation of a particular tensor

operation, the t-product [12], can bridge a gap between distinct modes of think-

ing. We will show how the t-product can be utilized to construct a time series

model which, by virtue of its tensor structure, is amenable to feature selection

techniques originally designed for ordinary linear regression models. The T-AR

framework models a specific time series phenomenon, possibly characteristic

of web traffic volume data [15], where the series exhibits seasonality and geo-

metric rates of change. The t-product tensor operation enables T-AR to capture

these characteristics exactly.

Just as tensor representations reflect structure in scientific problems, com-

plex analogues to real-valued phenomena can expose useful structures in the
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complex domain that are difficult to exploit in the real domain. Many of these

useful complex analogues can be exposed by the discrete Fourier transform

(DFT), which has wide applications in signal processing, data compression,

and polynomial multiplication where analysis often simplifies in the complex-

valued Fourier space. In the work relevant to this thesis, the DFT is used to

simplify the implementation of T-AR by transforming the block-circulant struc-

ture of the t-product into a complex-valued block-diagonal structure.

Thus, the t-product is an example of a real matrix problem that is solved

optimally in a complex space, and therefore the T-AR implementation moti-

vates the need for complex-valued feature selection methods. To address this

need, we present a complex group lasso algorithm for feature selection in gen-

eral complex-valued settings. The contribution of this algorithm is independent

of T-AR and applies to any complex-valued regression problem, not necessarily

time series. Complex datasets arise in many areas of natural science, but they

arise in T-AR due to the design of the methodology rather than the phenomenon

under study. We hope this application demonstrates that it may be worthwhile

to search for complex analogues to real data analysis problems if opportunities

arise in the complex domain. In the case of T-AR, considering a complex repre-

sentation presents the opportunity to implement a group lasso algorithm using

simplified derivations that are more efficient in terms of memory and speed

than the general, naı̈ve implementation.

The thesis will proceed as follows. First, we will briefly review background

on tensors, focusing on a few of the most common tensor decompositions. Hav-

ing discussed this foundational work, we then compare the t-product to these

existing methods in order to highlight the t-product’s innovation in the tensor
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literature. Next, we incorporate the t-product into our novel T-AR time series

model, derive a general group lasso algorithm in complex variables, and show

how the T-AR model structure leads to a natural optimization of the general al-

gorithm. Finally, we conclude with experimental results, all produced using the

R statistical language, to justify the correctness of our methodology.
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CHAPTER 2

BACKGROUND ON TENSORS

2.1 Tensors and Tensor Decompositions

As structured data becomes more abundant, people have utilized higher order

tensors to represent the structural relationships within data [13, 14, 16, 12]. We

define a tensor to be a multi-dimensional (multi-mode) array, consistent with

the definition by Kilmer et al. [12]. We do not mean tensors in the phys-

ical sense that carries directional connotations; our tensors are simply multi-

dimensional arrangements of data. A vector is a 1-tensor, a matrix is a 2-tensor,

and data structures with 3 or more modes are higher-order tensors. In this

thesis, we restrict our attention to 3-mode tensors. There are many tensor de-

compositions, and the most appropriate often depends on the nature of the ap-

plication. We summarize two popular decompositions, Tucker and CANDE-

COMP/PARAFAC (CP), and briefly describe a statistical application of each.

Often, tensor operations do not manipulate the entirety of a tensor, but parts

of a tensor. For example, a tensor operation may manipulate “slices” or “tubes”

of a tensor, where a slice is the matrix obtained by allowing two modes to vary

and a tube is the vector obtained by allowing one mode to vary. One of the

most commonly used tensor operations is the n-mode product, which defines

the multiplication of an n-mode tensor with either a matrix or a vector.

Definition 1. Let X ∈ Rm1×m2×...×mN be a tensor and V ∈ Rp×mn be a matrix. The

n-mode product of X with V is denoted X ×n V and has each tube along the nth mode

of X multiplied by V . If Y = X ×n V , then the nth tube of Y is Y(n) = V X(n), and Y

has dimensions m1 ×m2 × . . .×mn−1 × p×mn+1 × . . .×mN .
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The n-mode product leads to two widely used tensor decompositions,

Tucker and CANDECOMP/PARAFAC (CP), which we will explain for the three

dimensional case.

The Tucker decomposition factors a tensor into a core tensor with each mode

transformed by a matrix. Suppose we have a tensor X ∈ RI×J×K . According to

the Tucker decomposition, there exists the factorization

X = G ×1 A×2 B ×3 C (2.1)

=
P∑

p=1

Q∑
q=1

R∑
r=1

Gpqrap ◦ bq ◦ cr, (2.2)

where ◦ denotes the vector outer product, ap is the pth column of A ∈ RI×P , bq

is the qth column of B ∈ RJ×Q, and cr is the rth column of C ∈ RK×R. In the

forecasting domain, authors have used Tucker decomposition and the n-mode

product for tensor-matrix multiplication to derive a multilinear dynamical sys-

tem to predict future realizations of a tensor-valued sequence [20].

The CP decomposition can be seen as a special case of the Tucker decomposi-

tion where G is diagonal and the second mode dimensions of the outer matrices

are equal, or P = Q = R. The CP decomposition factorizes a tensor into a sum of

rank one components so that, given an N-mode tensorX , the CP decomposition

is

X =
R∑

r=1

λra
(1)
r ◦ a(2)r ◦ . . . ◦ a(N)

r . (2.3)

The challenge in computing either of these decompositions is determining the

number of components R in the factorization. Given R, both the Tucker and

CP decompositions can be computed using alternating least squares (ALS). The

CP decomposition has been applied recently in neuroimaging analysis [24] for
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methodology that combines the Kronecker product and a CP decomposition-

based rank definition to form a multilinear regression model with matrix input

and scalar response. The authors’ multilinear model fits far fewer parameters

than an ordinary linear model would, yet their method achieves promising ac-

curacy as the reduction exploits the two-dimensional structure of the data in its

original matrix format.

2.2 T-product

Unlike previous tensor operations and decompositions that are motivated by

specific applications, Kilmer and Martin [12] devised their t-product to exhibit

familiar linear algebraic properties. The t-product is a linear operation that leads

to the existence of tensor inverse, identity, and transpose. The t-product defini-

tion also leads to the authors’ novel tensor decomposition called the T-SVD,

which has been applied to image compression [12, 11, 10, 18, 7].

The t-product is composed of two sub-operations: matrix vectorization and

block circulant. Matrix vectorization can be imagined as stacking the slices

along the third mode (Xk ∈ Rn×p×1) of a 3-tensor into a block matrix vector.

Definition 2. For X ∈ Rn×p×t, the matrix vectorization of X , denoted matvec(X ),

is defined as

matvec(X ) =


X1

...

Xt

 ∈ Rnt×p.

Matrix vectorization is undone by

fold(matvec(X )) = X .
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The block circulant of a tensor X creates a block circulant matrix by down-

shifting the matrix vectorization of X (per Definition 2) at each new column.

Definition 3. For X ∈ Rn×p×t, the block circulant of X , denoted bcirc(X ), is defined

as

bcirc(X ) =



X1 Xt . . . X2

X2 X1 . . . X3

...
... . . . ...

Xt Xt−1 . . . X1


∈ Rnt×pt.

Using the operations given by Definitions 2 and 3, we can now define the

t-product.

Definition 4. For 3-tensors A ∈ Rn×p×t and B ∈ Rp×`×t, the t-product of A and

B is written A ∗ B ∈ Rn×`×t, where matvec(A ∗ B) entails matrix multiplication of

bcirc(A) with matvec(B). Thus,

A ∗ B = fold





A1 At . . . A2

A2 A1 . . . A3

...
... . . . ...

At At−1 . . . A1


·



B1

B2

...

Bt




∈ Rnt×`, (2.4)

where {Ak}tk=1 and {Bk}tk=1 are the slices along the third mode of A and of B, respec-

tively.

The t-product definition leads to definitions of identity, inverse, and trans-

pose that are reminiscent of the definitions in matrix algebra.
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Definition 5. The identity tensor, I ∈ Rn×n×t, has In in the first slice and 0 in the

others. Straightforward computation verifies that, for A ∈ Rn×p×t, A ∗ I = A where ∗

denotes the t-product.

Definition 6. If n = p, then A ∈ Rn×p×t is invertible if and only if there exists some

A−1 ∈ Rn×n×t such that

A−1 ∗ A = I

and

A ∗ A−1 = I.

Definition 7. For A ∈ Rn×p×t, the transpose of A is

AT := fold





AT
1

AT
t

...

AT
2




∈ Rp×n×t.

A is orthogonal if AT = A−1.

The generalized inverse of A ∈ Rn×p×t is defined as

A† := fold(A†1:n) ∈ Rp×n×t, (2.5)

where A†1:n denotes the first n columns of A† ∈ Rpt×nt, which is the matrix

Moore-Penrose Inverse of A = bcirc(A). For any given A, A† uniquely exists

(due to the uniqueness of Moore-Penrose Inverse) and satisfies the following

pseudo-inverse properties:

1. A ∗ A† ∗ A = A,

2. A† ∗ A ∗ A† = A†,
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3. (A ∗ A†)T = A ∗ A†, and

4. (A† ∗ A)T = A† ∗ A.

The t-product given in Definition 4 entails redundant calculations due to the

data-sparse block-circulant matricization of A. Hence, the authors implement

the t-product by utilizing the block-diagonalization of a block-circulant matrix

through discrete Fourier transformation. Let Fn3 be the n3-by-n3 square DFT

matrix and FH
n3

its conjugate transpose. Then, a block circulant matrix bcirc(X )

may be block-diagonalized by

(Fn3 ⊗ In1) · bcirc(X ) · (FH
n3
⊗ In2) =



X̃1

X̃2

. . .

X̃n3


(2.6)

= X̃. (2.7)

Using this diagonalization strategy, it is more efficient to implement the t-

product between tensors X and Y by

X ∗ Y = fold((FH
n3
⊗ In1) · X̃ · (Fn3 ⊗ In2) ·matvec(Y)) (2.8)

= fold


(FH

n3
⊗ In1) ·



X̃1

X̃2

. . .

X̃n3





Ỹ1

Ỹ2
...

Ỹn3




, (2.9)

giving us the entry-sparse complex analog to the data-sparse real matrix multi-

plication.
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2.3 T-SVD

The block-diagonalized complex representation of the t-product leads naturally

to the authors’ derivation of the T-SVD, an analog of matrix singular value de-

composition for tensors. Given a 3-tensor A ∈ Rn1×n2×n3 , the authors show that

there exist U , S, and V such that U and V are orthogonal and A = U ∗ S ∗ VT ,

S being a tensor with tubes along a diagonal. Their proof is constructive and

invokes the existence of ordinary matrix SVD’s in the block-diagonal setting.

Suppose A can be diagonalized by

(Fn3 ⊗ In1) · bcirc(A) · (FH
n3
⊗ In2) =



D1

D2

. . .

Dn3


. (2.10)

Then,

D1

D2

. . .

Dn3


=



U1

U2

. . .

Un3





Σ1

Σ2

. . .

Σn3





V T
1

V T
2

. . .

V T
n3


.

(2.11)

Orthogonality of U and V can be shown through explicit computation. Thus, we

see that the complex representation of the t-product greatly simplifies analysis

as well as improves computational efficiency.
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CHAPTER 3

TENSOR AUTOREGRESSION (T-AR)

Having established the definition and properties of the t-product, we now in-

troduce the tensor autoregressive (T-AR) time series model with the motivation

of modeling the characteristics of time series exhibiting seasonality and geomet-

ric trend. The model we introduce combines the sequential aspect of univari-

ate autoregression with the multi-feature framework of multivariate regression.

While the time series literature has offered methods for learning between re-

lated series in a multivariate forecasting setting [6, 2, 21], the literature on mul-

tivariate input frameworks for the univariate forecasting setting is limited to

autoregressive exogenous (ARX) models.

T-AR introduces this multivariate input context to univariate forecasting so

that forecasts for a single target series are formed using the information from

various lagged periods. This modeling framework bridges the gap between di-

mension reduction techniques for regression and univariate time series forecast-

ing, enabling our time series application of structured regularization methods

formulated for regression problems. We begin with explanations of our model

assumptions and how these assumptions lead to the T-AR formulation. We will

state the specific time series characteristics that T-AR is most suited to capture

and analyze how T-AR achieves its accuracy. In relation to this analysis, we give

our interpretation of the T-AR parameters and argue that the parameters can of-

fer insight into the extent to which data conforms to model assumptions. The

basic formulation leads to a closed-form solution for the parameter that mini-

mizes the Frobenius norm of estimation error. Although this solution is deter-

mined in the complex Fourier domain, we can show that real-valued parameter
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coefficients are always recovered. We conclude the chapter with implementa-

tion analysis and a proof to guarantee real parameter coefficients.

3.1 Model Formulation

T-AR is structured to predict one period forward at a time, using history from

the current period and a number of previous periods as training data. The

working principle of T-AR is that changes in the series of interest occur over

the course of periods rather than individual time points. This understanding

implies that the unit of observation is one period, so we consider our training

data to be a collection of periods observed in the series. Let y be the time series

of interest consisting of n periods, each of length t. We structure the response

Y ∈ Rn×1×t as a slice along the second mode, where the ith tube of Y (a tube

of Y is indexed along its first mode and has length t) contains data from the

ith most recent period of y. The first tube contains the most recent period of y,

the second tube contains the second most recent period, and so on. An order p

tensor autoregressive model captures the additive effects on Y from data lagged

p = [`1, `2, . . . , `p] periods behind Y .

According to these specifications, we construct the input tensor X with di-

mensions Rn×p×t. The first slice ofX consists of the `1 period-lag ofY , the second

slice of X consists of the `2 period-lag of Y , and so on. Overall, this formulation

induces the following parameterization of the T-AR model, which is illustrated

in Figure 3.1:

Y = X ∗ B + E , (3.1)
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Figure 3.1: Diagram of the Tensor Autoregressive model.

where

Y ∈ Rn×1×t is the response slice,

X ∈ Rn×p×t is the input tensor,

B ∈ Rp×1×t is the parameter slice, and

E ∈ Rn×1×t is the residual slice.

Thus, T-AR organizes a time series into a structure resembling an ordinary

linear regression model. We treat the first mode of the data tensor X as the

sample size dimension, where periods of data accumulate. In principle, if the

time series were truly periodic, then a single parameter B would generate every

period in the sample. This assumption imposes a restriction that, in order to

stay consistent with the interpretation of B, any features along the second mode

of X must also be periodic. However, treating T-AR as an extension of ordinary

autoregression, this is not a problem if the features are simply lagged periods of

the series itself. The third mode simply accommodates the temporal aspect of

13



the problem.

3.2 Parameter Estimation and Interpretation

We now derive the closed-form solution of the T-AR model parameter and

prove its optimality in terms of least Frobenius norm of error.

Theorem 1. Let Ỹ and X̃ be Fourier domain representations of Y and X respectively,

and let B̃ be the T-AR parameter in the Fourier domain. Let † be the generalized inverse

provided in Equation (2.5), and let k index a block. Then

̂̃Bk = (X̃T
k X̃k)†X̃T

k Ỹk

is the kth complex slice of the least Frobenius norm estimator of B, and B minimizes

||E||2F .

Proof. We first show how ||E2F || decouples along the third mode.

‖Y − X ∗ B‖2F = ‖matvec(Y − X ∗ B)‖2F (3.2)

= ‖(Fn ⊗ It)matvec(Y − X ∗ B)‖2F (3.3)

= ‖(Fn ⊗ It)(matvec(Y)− bcirc(X )matvec(B))‖2F (3.4)

=
∥∥∥matvec(Ỹ)− diag(X̃1, . . . , X̃t)matvec(B̃)

∥∥∥2
F

(3.5)

=
t∑

k=1

∥∥∥Ỹ [:, :, k]− X̃kB̃[:, :, k]
∥∥∥2
F
, (3.6)

where Equation (3.4) follows from the definition of the t-product and Equation

(3.5) follows from

bcirc(X )matvec(B) = (FH
n3
⊗ In2) · diag(X̃1, . . . , X̃t) · (Fn3 ⊗ In1) ·matvec(B),

(3.7)
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which implies that

(Fn3 ⊗ In1) · bcirc(X )matvec(B) = diag(X̃1, . . . , X̃t) · (Fn3 ⊗ In1) ·matvec(B)

(3.8)

= diag(X̃1, . . . , X̃t)matvec(B̃). (3.9)

We see that minimizing the criterion in Equation (3.6) amounts to minimizing

each term of the sum, but each term in Equation (3.6) is a matrix least squares

criterion, for which we know the optimal solutions to be

̂̃B[:, :, k] = (X̃T
k X̃k)−1X̃T

k Ỹ [:, :, k], k = 1, . . . , t. (3.10)

Taking inverse FFT’s, we get

B̂[i, j, :] = iFFT(
̂̃B[i, j, :]), (3.11)

which give us the solution to the real T-AR estimation problem and are the

quantities we use for forecasting.

To discuss the interpretation of the coefficients in B, we consider the matrix

vectorization of Equation (3.1),

Ŷ1

Ŷ2
...

Ŷt


=



X1 Xt . . . X2

X2 X1 . . . X3

...
...

...
...

Xt Xt−1 . . . X1


·



B1

B2

...

Bt


, (3.12)

where

Ŷ1 = X1B1 +XtB2 + . . .+X2Bt

Ŷ2 = X2B1 +X1B2 + . . .+X3Bt

...

Ŷt = XtB1 +Xt−1B2 + . . .+X1Bt,
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Bk = [β0k, β1k, . . . , βpk], k = 1, . . . , t.

Our interpretation hinges on the periodicity of the series, which implies that

the value indexed by Xt is both t − 1 time steps ahead as well as one time step

behind X1. For concreteness (and alluding to our application), let t range from

1 to 7, indexing the days of week from Sunday to Saturday. Then, we interpret

the first column of bcirc(X ) to be the same days of week as Y lagged p weeks

behind, the second column to be one day prior and lagged p weeks behind, and

so on.

In order to more clearly convey how T-AR operates, in the following discus-

sion we analyze the simplest case of regressing the current period against one

period prior. In this simplification, each variable in Equation (3.12) would be

scalar. The t-product imposes the restriction that each column of the input cir-

culant matrix in Equation (3.12) is multiplied by the same parameter value. This

restriction prevents overfitting whenever the data strongly exhibits patterns that

T-AR is designed to model.

Now, suppose the previous period’s observations are X1, X2, . . . , Xt. If the

series were seasonal, then the current observations would be Y1 = X1, Y2 =

X2, . . . , Yt = Xt, and the solution to the regression problem given in Equation

(3.12) is exactly determined to be B1 = 1, B2 = . . . = Bt = 0. Next, suppose a

geometric trend begins in the previous period. Assume, without loss of gener-

ality, that X1 = 1 and that X1 is compounded at rate c > 0 so that the previous

period is X1 = 1, X2 = c,X3 = c2, . . . , Xt = ct−1. If the trend continues into the

current period, then we would observe Y1 = ct, Y2 = ct+1, . . . , Yt = c2t−1, and

B1 = ct, B2 = . . . = Bt = 0 would capture the geometric trend exactly.

The first row of plots in Figure 3.2 illustrates how this parameterization can
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Figure 3.2: T-AR demonstrates advantages over ARIMA and STL.

outperform the autoregressive integrated moving average (ARIMA) model. In

all of our experiments, we use the forecast R package’s implementation of

ARIMA [9], which optimizes ARIMA parameters automatically. In Figure 3.2,

we see that the generality of ARIMA fails to capture the seasonality and geo-

metric trend that T-AR captures precisely through the restriction in its parame-

terization. We also compare T-AR against an implementation of seasonal trend

decomposition by Loess (STL) [4] that uses ARIMA as its forecasting model. The

plots in the second row of Figure 3.2 show that STL is competitive with T-AR

in modeling seasonality but still cannot capture geometric trend. T-AR captures

both patterns exactly without any modification.

The role of the other circulant columns corresponding to B2, . . . , Bt in Equa-

tion (3.12) is to stabilize T-AR’s forecasting accuracy when the model frequency
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Figure 3.3: T-AR is more resistant to frequency misspecification than STL.

(the value set for t) is misspecified, or when the data’s periodicity is irregular.

Simulation results in Figure 3.3 demonstrate that this stabilizing effect enables

T-AR to outperform STL on synthetic seasonal data at varying degrees of model

misspecification. The titles of the plots in Figure 3.3 indicate average percentage

error after the corresponding model name. We simulated a periodic series that

repeats every 15 time points and compared the forecasting behaviors of T-AR

and STL at various frequency settings, correctly and incorrectly specified. Fig-

ure 3.3 (center) shows that at the correct frequency specification, both T-AR and

STL forecast properly. However, as the frequency is incrementally misspecified,

T-AR retains more accuracy than STL does.

By plotting the mean magnitudes of the entries of T-AR parameter estimates

in Figure 3.4, we see that the magnitudes of the parameter entries justify our an-

alytical understanding of the T-AR parameters. In the ideal situation where the
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Figure 3.4: Colored bar indicates the circulant column providing most accuracy.

data is perfectly periodic and the model frequency is correctly specified (cen-

ter of Figure 3.4), the first entry of the parameter is dominant while the rest

are nearly zero. As the frequency specification varies, the dominant entry shifts

along the indexes of the parameter, decreasing in magnitude as the specification

moves further from the true frequency. Thus, the magnitude of the dominant

entry and the asymmetry of its size relative to the other entries are indications

of how well the data conforms to model assumptions. In addition, since the

dominant entry shifts by one for each incremental misspecification, the location

of the dominant entry relative to the first index also suggests how to correct the

frequency misspecification.
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As an aside, we also briefly discuss the “intercept” T-AR feature, which we

find improves prediction performance in real data applications. The intercept is

designed to compensate the T-AR forecasting model for systematic departures

from T-AR assumptions (for this reason, we find the intercept overparameter-

izes the model in simulation studies). The intercept is constant throughout an

application; hence, it may be treated as a periodic feature. Our analysis of the

T-AR intercept slice begins with the matrix vectorization of Equation (3.1),

Y1

Y2
...

Yt


=



X1 Xt . . . X2

X2 X1 . . . X3

...
...

...
...

Xt Xt−1 . . . X1


·



B1

B2

...

Bt


+ matvec(E), (3.13)

and highlights the residual term matvec(E). If matvec(E) exhibits a predictable

pattern, we attempt to model the residual behavior using a substitution for

matvec(E) that leads to

Y1

Y2
...

Yt


=



X1 Xt . . . X2

X2 X1 . . . X3

...
...

...
...

Xt Xt−1 . . . X1


·



β1,1

β1,2
...

β1,t


+



1 0 . . . 0

0 1 . . . 0

...
... . . . ...

0 0 . . . 1


·



β0,1

β0,2
...

β0,t


.

(3.14)

Putting Bk = [β0k, β1k]T , we derive the intercept T-AR model with the matrix
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vectorized expression

Y1

Y2
...

Yt


=



[1, X1] [0, Xt] . . . [0, X2]

[0, X2] [1, X1] . . . [0, X3]

...
...

...
...

[0, Xt] [0, Xt−1] . . . [1, X1]


·



B1

B2

...

Bt


. (3.15)

Thus, we implement the intercept slice by writing the vector [1, 0, 0, . . . , 0] ∈ Rt

into each index along the first mode of the first second-mode slice of X , which

is convolved via circ([1, 0, 0, . . . , 0]T ) into the intercept slice.

3.3 Implementation and Scalability

Our implementations of T-AR algorithms are based on Fourier block-

diagonalization of the block-circulant structure, as given in Equation (3.7). This

transformation circumvents explicit construction of the block-circulant matrix.

Algorithm 1 states the procedure for estimating B̂ given X and Y , where p

is the number of entries in the vector of period-lag specifications p. Assuming

that Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (iFFT)

execute inO(t log t) time and that the Moore-Penrose pseudo-inverse executes in

O(p3) time, the first outer loop executes in O(npt log t+nt log t) time, the second

inO(t(p3 +2np2 +np)) time, and the third inO(pt log t) time. The prediction step

is essentially a t-product between the estimated parameter and the most recent

period of the data. The runtime complexity of prediction, whose procedure is

stated in Algorithm 2, is O(2pt log t+ pt+ nt log t). The memory complexities of

these algorithms come predominantly from allocating space for the data arrays.
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Input: X ∈ Rn×p×t, Y ∈ Rn×1×t

for i = 1, . . . , n do
for j = 1, . . . , p do
X̃ [i, j, :] = FFT(X [i, j, :])

end
Ỹ [i, 1, :] = FFT(Y [i, 1, :])

end
for k = 1, . . . , t do
B̃[:, 1, k] = (X̃T

k X̃k)†X̃T
k Ỹk

end
for j = 1, . . . , p do
B̂[j, 1, :] = iFFT(B̃[j, 1, :])

end
Output: B̂ ∈ Rp×1×t

Algorithm 1: Estimating B̂ given X and Y .

Input: X ∈ R1×p×t, B̂ ∈ Rp×1×t

for j = 1, . . . , p do
X̃ [1, j, :] = FFT(X [1, j, :])

end
for j = 1, . . . , p do˜̂B[j, 1, :] = FFT(B̂[j, 1, :])
end
for k = 1, . . . , t do

Ỹ [:, 1, k] = X̃k
˜̂
Bk

end
for i = 1, . . . , n do
Ŷ [i, 1, :] = iFFT(Ỹ [i, 1, :])

end
Output: Ŷ ∈ R1×1×t

Algorithm 2: Predicting Ŷ using B̂ and the current period.
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3.4 Proof of Real Estimation

Although we solve the T-AR problem in the Fourier space, we can prove that

closed-form solutions for T-AR are always real-valued. The proof will exploit

symmetries in the conjugacy patterns within the DFT matrix. In order to illus-

trate the intuition, we first give the proof for the simple one period training

window, one lag, frequency = t case, and then we extend to the general case

with no restriction on the number of periods in the training window, denoted n,

or number of lags in the feature mode, denoted p.

In the simple setting, our data are the input x ∈ Rt and response y ∈ Rt

from two distinct periods in a single univariate time series. The T-AR algorithm

treats the vectors x and y as tubes of R1×1×t tensors and transforms the input

and response by

x̃ = Ftx (3.16)

ỹ = Fty, (3.17)

where the DFT matrix Ft is defined as

Ft =



1 1 1 1 . . . 1

1 ωt ω2
t ω3

t . . . ωt−1
t

1 ω2
t ω4

t ω6
t . . . ω

2(t−1)
t

1 ω3
t ω6

t ω9
t . . . ω

3(t−1)
t

...
...

...
... . . .

...

1 ωt−1
t ω

2(t−1)
t ω

3(t−1)
t . . . ω

(t−1)2
t


(3.18)

and where ωt = exp(−2πi/t) = cos(2π/t)− i sin(2π/t). From here on, we will let

Fj denote the jth row of the DFT matrix in Equation (3.18).

Before deriving results, we first state some useful facts:
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1. ωt
t = 1. When t is even, ω

t
2
t = −1.

Proof. Follows from definition.

2. If m+ n = t, then ωm
t = ωn

t .

Proof. Putting n = t−m, we see

ωn
t = exp(−2πi(t−m)/t) (3.19)

= cos(2π(t−m)/t)− i sin(2π(t−m)/t) (3.20)

= cos(2π − 2πm/t)− i sin(2π − 2πm/t) (3.21)

= cos(2πm/t) + i sin(2πm/t) (3.22)

= ωm
t . (3.23)

3. x y = xy.

Proof. Let x = a+ ib and y = c+ id. Then,

x y = (a− ib)(c− id) (3.24)

= ac− i(bc+ ad)− bd (3.25)

= (ac− bd)− i(bc+ ad) (3.26)

= (a+ ib)(c+ id) (3.27)

= xy. (3.28)

4. If x = y, then x−1 = y−1.
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Proof. Let x = a+ ib and y = a− ib. Then, we have

x−1 =
1

a+ ib

a− ib
a− ib

(3.29)

=
a− ib
a2 + b2

, (3.30)

y−1 =
1

a− ib
a+ ib

a+ ib
(3.31)

=
a+ ib

a2 + b2
(3.32)

=⇒ x−1 = y−1. (3.33)

With these facts available, we proceed to derive the results on the T-AR estima-

tion outcome.

Lemma 1. F T
j x is conjugate to F T

t−j+2x for all x ∈ Rt, for j = 2, . . . , b t
2
c.

Proof. First, write

F T
j x = x1 +

t−1∑
k=1

ω
k(j−1)
t xk+1, (3.34)

F T
t−j+2x = x1 +

t−1∑
k=1

ω
k(t−j+1)
t xk+1. (3.35)

The real parts of Equations (3.34) and Equations (3.35) are equal by the following

argument,

Re(F T
j x) = x1 +

t−1∑
k=1

cos(
2πk(j − 1)

t
)xk+1 (3.36)

= x1 +
t−1∑
k=1

cos(−2πk(j − 1)

t
)xk+1 (3.37)

= x1 +
t−1∑
k=1

cos(
2πk(t− j + 1)

t
)xk+1 (3.38)

= Re(F T
t−j+2x). (3.39)
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Likewise, the imaginary parts of Equations (3.34) and Equations (3.35) are op-

posites by a similar argument,

Im(F T
j x) =

t−1∑
k=1

sin(
2πk(j − 1)

t
)xk+1 (3.40)

=
t−1∑
k=1

− sin(−2πk(j − 1)

t
)xk+1 (3.41)

= −
t−1∑
k=1

sin(
2πk(t− j + 1)

t
)xk+1 (3.42)

= −Im(F T
t−j+2x). (3.43)

Using this result, we prove the next result.

Lemma 2. For all x, y ∈ Rt, xTFjF
T
j y = xTFt−j+2F T

t−j+2y.

Proof. Using Lemma 1 and Fact 3, we have

xTFjF
T
j y = (xTFt−j+2)(F T

t−j+2y) (3.44)

= xTFt−j+2F T
t−j+2y. (3.45)

The least squares problem is solved independently for each slice along the

third mode. According to Algorithm 1, we have that the Fourier representation
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of the parameter is

B̃ =



(xTF1F
T
1 x)−1xTF1F

T
1 y

(xTF2F
T
2 x)−1xTF2F

T
2 y

(xTF3F
T
3 x)−1xTF3F

T
3 y

(xTF4F
T
4 x)−1xTF4F

T
4 y

...

(xTFtF
T
t x)−1xTFtF

T
t y


. (3.46)

Thus, the transformed parameter vector has conjugate pairs at indices j and

t− j + 2 for for j = 2, . . . , b t
2
c (notice the first entry is always real). Now, we can

summarize all the results.

Theorem 2. For input x ∈ R1×1×t and response y ∈ R1×1×t, the estimated T-AR

parameter coefficients are real-valued.

Proof. With the parameter stated in Equation (3.46), it remains to show that ap-

plying the inverse DFT to the complex parameter results in a real solution. Ac-

cording to the algorithm, we have

iFFT(B̃) ∝ FHB̃ (3.47)

=



1 1 1 1 . . . 1

1 ωt ω2
t ω3

t . . . ωt−1
t

1 ω2
t ω4

t ω6
t . . . ω

2(t−1)
t

1 ω3
t ω6

t ω9
t . . . ω

3(t−1)
t

...
...

...
... . . .

...

1 ωt−1
t ω

2(t−1)
t ω

3(t−1)
t . . . ω

(t−1)2
t





(xTF1F
T
1 x)−1xTF1F

T
1 y

(xTF2F
T
2 x)−1xTF2F

T
2 y

(xTF3F
T
3 x)−1xTF3F

T
3 y

(xTF4F
T
4 x)−1xTF4F

T
4 y

...

(xTFtF
T
t x)−1xTFtF

T
t y


.

(3.48)

We know the parameter has conjugate pairs at j and t−j+2, so call themBj and

Bj . Bj is multiplied with ω(k−1)(j−1)
t and Bj with ω(k−1)(t−j+1)

t , where k is the row
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of the inverse Fourier matrix, FH . But from Fact 2, ω(k−1)(j−1)
t and ω(k−1)(t−j+1)

t are

a conjugate pair, and using Fact 3, Bj · ω(k−1)(j−1)
t and Bj · ω(k−1)(t−j+1)

t are conju-

gate. Therefore, the inner product between every row of the inverse Fourier ma-

trix with the Fourier-domain coefficient vector is a sum of real values and con-

jugate pairs. The imaginary components cancel, and the end result is real.

The extension of Theorem 2 to the general case begins with an inspection of

the ordinary least squares subproblem for the kth slice. According to Algorithm

(1), the real data are Yi ∈ R1×1×t and xi,j ∈ R1×1×t, for i = 1, . . . , n and j =

1, . . . , p. The complex transformations are

Ỹk =


F T
k Y1
...

F T
k Yn

 (3.49)

and

X̃k =



xT1,1Fk xT1,2Fk . . . xT1,pFk

xT2,1Fk xT2,2Fk . . . xT2,pFk

...
...

...
...

xTn,1Fk xTn,2Fk . . . xTn,pFk


. (3.50)

For each slice k, T-AR estimates the parameter for each of p features at the kth

index by solving the normal equation

B̃k = (X̃T
k X̃k)−1X̃T

k Ỹk. (3.51)

Now, each entry of every matrix in the right-hand side of Equation (3.51) is

an expression of form xTFkF
T
k y as in Lemma 2. Hence, B̃k is either real or is

conjugate with B̃t−k+2. Using the similar reasoning as in the proof of Theorem

2, the proof of real estimation in the general matrix case follows as well.
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CHAPTER 4

COMPLEX GROUP LASSO

Extending the group lasso [23] to T-AR illustrates how the t-product can provide

a natural mechanism by which regression thinking can flow into a time series

modeling framework. Indeed, structured regularization for time series model-

ing is currently an active area of research aimed at solving problems of overpa-

rameterization in conventional time series models [1, 3]. Recent regularization

methods for time series have almost exclusively addressed real-valued prob-

lems, and complex-valued regularization is less studied as it normally arises

due to the complex-valued phenomena under study [17]. Unlike previous work

on complex-valued regression methodology, our complex-valued problem is an

outcome of the T-AR implementation and not an outcome of the time series

phenomenon.

In this chapter, we contribute our adaptation of the group lasso framework

to complex-valued problems by extending a block-coordinate descent algorithm

for group lasso to complex variables. Our complex group lasso (CGL) algorithm

imposes structured sparsity regularization to any complex-valued regression

problem, and our T-AR model is one application. Our work utilizes a unique

type of derivative called the Wirtinger derivative, and we begin this chapter

with an introduction to Wirtinger differentiation. Then, we derive a block-

coordinate descent algorithm for our complex group lasso problem and show

how the T-AR model structure simplifies the derivations of the general algo-

rithm.

29



4.1 Relevant Background from Wirtinger Differentiation

The complex group lasso unconstrained objective function, despite being a func-

tion of complex variables, is real-valued. To extend the group lasso to complex

variables, we therefore first discuss differentiation of real functions of complex

variables, which differs from complex differentiation. Complex differentiabil-

ity is a strong condition, requiring the function of interest to satisfy Cauchy-

Riemann equations that pose restrictions on partial derivatives of the function’s

real and imaginary components. However, for real functions of complex vari-

ables, both real and imaginary components of the variable contribute to the real

part of the function. The appropriate differential operator for these functions

is the Wirtinger derivative, named after Wilhelm Wirtinger who introduced the

ideas in 1927.

Consider, for example, a complex variable z = a+ ib, whose norm is defined

to be

f(z) = ‖z‖2 (4.1)

= z · z. (4.2)

The function f(z) does not have a complex derivative because it does not sat-

isfy the Cauchy-Riemann equations. However, the Wirtinger derivatives of f(z)

with respect to z and to z are defined by partial derivatives of f (as opposed to

partial derivatives of real and imaginary components of f as for the complex

derivative),

∂f

∂z
=

1

2
·
(∂f
∂a
− i∂f

∂b

)
, (4.3)
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and

∂f

∂z
=

1

2
·
(∂f
∂a

+ i
∂f

∂b

)
. (4.4)

Furthermore, the following important functions can be shown to have gradients

with Wirtinger derivatives [5].

f(z) ∂f
∂z

∂f
∂z

cT z = zT c c 0

cT z = zHc 0 c

zHz = zT z z z

zHMz = zTMT z MT z Mz

We will use the results from this table for the derivations to follow.

4.2 Block Coordinate Descent for Complex Variables

The following derivations extend the BCD-GL algorithm of Qin et al. [19] to

complex variables. We begin our derivation with the original group lasso un-

constrained problem

min
x

1

2
‖Ax− b‖2 + λ

J∑
j=1

‖xj‖ , (4.5)

whereA is the data, x is the parameter, and b is the response from a least squares

setting. The complex analog to Equation (4.5) is

min
x

1

2
(Ax− b)H(Ax− b) + λ

J∑
j=1

√
xHj xj. (4.6)
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Looking at the jth subiteration, we solve

min
xj

1

2

(
xHj Mjxj +

(∑
i 6=j

xHi A
H
i − bH

)
Ajxj + xHj A

H
j

(∑
i 6=j

Aixi − b
))

+ λ
√
xHj xj,

(4.7)

where Mj = AH
j Aj . Notice Equation (4.7) is again a real-valued objective, so

it is amenable to Wirtinger differentiation. Put pj =
[(∑

i 6=j x
H
i A

H
i − bH

)
Aj

]T
.

Taking the Wirtinger derivative of Equation (4.7) with respect to xj and setting

to zero, we get that the first order optimality condition implies

(
Mj +

λ

‖xj‖
I
)
xj = −pj. (4.8)

Next, we convert Equation (4.6) into the trust-region subproblem

minimize
x

1

2

(
xHj Mjxj + pTj xj

)
subject to ‖xj‖ ≤ ∆,

where the minimizer x∗j satisfies
∥∥x∗j∥∥ = ∆ and has the form

x∗j = −
(
Mj +

λ

∆
I
)−1

pj (4.9)

= ∆yj(∆). (4.10)

Thus, yj(∆) has the form

yj(∆) = −
(
∆Mj + λI

)−1
pj. (4.11)

Now, the task is to search for ∆ such that ‖yj(∆)‖ = 1. Mj is Hermitian, so the

Schur decomposition Mj = QΓQH yields a diagonal Γ and unitary Q, leading to
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the derivation

‖yj(∆)‖2 =
∥∥∥(∆Mj + λI

)−1
pj

∥∥∥2 (4.12)

=
∥∥∥(∆Mj + λI

)−1
pj

∥∥∥2 (4.13)

=
∥∥∥(∆QΓQH + λI

)−1
pj

∥∥∥2 (4.14)

=
∥∥∥Q(∆Γ + λI

)−1
QHpj

∥∥∥2 (4.15)

=
∥∥∥(∆Γ + λI

)−1
QHpj

∥∥∥2 (4.16)

=

∥∥∥∥∥∑
i

qHi pj
∆γi + λ

∥∥∥∥∥
2

(4.17)

=
∑
i

( qHi pj
∆γi + λ

) qHi pj
∆γi + λ

. (4.18)

We apply Newton’s method to

φ(∆) = 1− 1

‖yj(∆)‖
, (4.19)

using the following derivations,

d

d∆

( 1

‖yj(∆)‖

)
=

d

d∆

(
‖yj(∆)‖2

)− 1
2 (4.20)

= −1

2

(
‖yj(∆)‖2

)− 3
2
d

d∆
‖yj(∆)‖2 (4.21)

and, letting γi = αi + iβi,

d

d∆
‖yj(∆)‖2 =

d

d∆

∑
i

(qHi pj)(q
H
i pj)

(∆αi + λ)2 + ∆2β2
i

(4.22)

= −
∑
i

(qHi pj)(q
H
i pj)[

(∆αi + λ)2 + ∆2β2
i

]2 (2αi(∆αi + λ) + 2∆β2
i

)
. (4.23)

Note that this process finds yj(∆), so we conjugate once more before substitut-

ing xj = ∆yj(∆). We now summarize the results into Algorithm 3, a general

block-coordinate descent algorithm for complex variables.
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Input: A ∈ Cn×p, b ∈ Cn×1, x ∈ Cp×1 randomly initialized, λ ∈ R, J group
labels

while x not converged do
for j = 1, . . . , J do

Aj = columns of A belonging to group j
Compute Schur decomposition of Mj = AH

j Aj

d =
∑

i 6=j(x
H
i A

H
i − bH)

pj = (dAj)
T

if ‖pj‖ ≤ λ then
xj = 0

else
Compute solution to equation (4.11) and substitute
xj = ∆yj(∆).

end
end

end
Output: x̂ ∈ Cp×1, the complex group lasso parameter estimate

Algorithm 3: Complex BCD-GL

4.3 Optimizing Complex BCD-GL for T-AR

For T-AR, the complex block-coordinate descent algorithm can be accelerated

by exploiting the block-diagonal structure of the t-product’s implementation in

the Fourier domain. The jth sub-iteration given by Equation (4.7) involves a

data matrix of form

Aj =



a1,j

a2,j

. . .

at,j


(4.24)

where ak,j are column vectors in Cn×1. Thus, Mj = AH
j Aj is a real diagonal

matrix for all T-AR problems and we do not need to compute the Schur form

of Mj (an O(n3) computation) at every iteration through J groups. Instead,

letting mj be the column vector of Mj’s diagonal elements, we simplify the T-

34



AR calculation of yj(∆) by using

∥∥yT-AR
j (∆)

∥∥2 =
∥∥∥(∆Mj + λI

)−1
pj

∥∥∥2 (4.25)

=
∥∥∥(∆mT

j I + λI
)−1

pj

∥∥∥2 (4.26)

=
∑
i

‖[pj]i‖2

(∆[mj]i + λ)2
(4.27)

with

d

d∆

∥∥yT-AR
j (∆)

∥∥2 = −2
∑
i

‖[pj]i‖2 [mj]i
(∆[mj]i + λ)3

(4.28)

and proceed with Newton’s method to search for the appropriate ∆ in Equation

(4.27). Test results show a noticeable speedup from the naı̈ve implementation

by using these simplified derivations; comparing implementations in the R sta-

tistical language, we generally notice the fast method computes the same result

in about 90% of the time of the general algorithm. However, the simplified

derivation replaces a Fortran implementation of the Schur decomposition, the

gqz function of the geigen package on CRAN, which is already much faster

than the R code that wraps it.
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CHAPTER 5

EXPERIMENTS AND APPLICATIONS

The simulation results of this chapter are intended to substantiate the effective-

ness of T-AR forecasting in ideal settings as well as the correctness of complex

group lasso on both general complex regression problems and T-AR problems.

First, we show that T-AR demonstrates an obvious competitive advantage for

time series simulated in the conditions for which T-AR was designed. Then,

we show that CGL works for general complex-valued regression problems with

no time series context. Next, we combine CGL with T-AR to demonstrate how

CGL can improve the prediction performance of the basic T-AR implementa-

tion. Finally, we demonstrate a simple application of T-AR to stock price data as

a case study of the model’s use in practice. All results are computed using the

R statistical language.

5.1 Simulation Study of T-AR

In our first simulation study, we illustrate the ideal circumstances in which T-

AR has a significant advantage over its competitors. Our synthetic dataset con-

sists of time series generated by a seasonality component that is compounded

to form a geometric trend. We specify a period length of 7 and a total series

length of 104 periods to emulate a weekly forecasting problem across the du-

ration of two years. We generated different series by varying a rate parameter

from -0.3 to 0.3 in steps of 0.01. When the rate is non-negative, we generate a

series by compounding each previous week by (1 + rate) and then adding daily

noise from N(µ = 0, σ = 0.1), achieving a nondecreasing trend. When the rate
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Figure 5.1: Nine example simulated series.

is negative, we reverse the series generated by compounding with (1 − rate) so

that the result is a nonincreasing trend. The examples in Figure 5.1 show that

this approach generates a representative set of noisy, quasi-seasonal series with

geometric trends varying from fast decrease to fast increase.

For each series, we slide a window forward week by week until reaching one

week prior to the end of the series. This window is the training data available for

all competing models, and the task is to forecast the next week’s values using

the information in the current window. The window sizes we tested were 4

weeks, 13 weeks, 18 weeks, and 26 weeks. For each model and each window

size, we report the average Mean Average Percentage Error (MAPE) across all
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MAPE n = 4 n = 13 n = 18 n = 26
T-AR([1]) 0.05 0.07 0.07 0.04
T-AR([1, 2]) 0.16 0.11 0.10 0.16
ARIMA 2.20 4.44 4.52 4.12
STL 0.55 4.48 5.23 20.49
HW 0.22 0.37 0.21 0.27

Table 5.1: Simulation average MAPE results.

forecasts, across all series. MAPE is defined as

MAPE =
1

n

n∑
i=1

∣∣∣Actuali − Forecasti
Actuali

∣∣∣. (5.1)

The simulation results in Table 5.1 show that T-AR models on average outper-

form the competition on synthetic time series that simultaneously exhibit sea-

sonality and geometric trend patterns. ARIMA and STL struggle to adapt to

the geometric curvature of our boundary cases. However, we notice that the

performance of Holt-Winters comes close to that of T-AR; indeed, the original

motivation of the Holt-Winters method was to adapt quickly to changes in the

trend and seasonality patterns of sales [8, 22].

5.2 Evaluation of Complex Group Lasso

Next, we give simulation evidence that CGL is correct and discuss to what ex-

tent the behavior meets our expectations. The simulation involves generating a

random complex data matrix complex parameter x ∈ Cp×1, and complex noise

ε ∈ Cn×1 all with real and imaginary components sampled from N(0, 1). The

response vector b ∈ Cn×1 is generated by

b = Ax+ ε. (5.2)
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CMSE p = 4 p = 16 p = 64
n = 200 0.084 1.122 27.829
n = 500 0.033 0.425 4.524
n = 1000 0.015 0.209 1.958
n = 2000 0.010 0.094 0.955

Table 5.2: Squared error of complex block coordinate descent.

For the following evaluations, we consider two metrics of correctness. The first

metric is an extension of mean squared error; we define the complex mean

squared error (CMSE) to be

CMSE =
1

2n

n∑
i=1

Re(bi − A(i, :)x̂)2 + Im(bi − A(i, :)x̂)2. (5.3)

However, CMSE will naturally degrade as the problem size increases. To control

for growing dimensionality, we also consider proportional error,

Errorprop =
‖b− Ax̂‖2

‖b‖2
, (5.4)

which we will see is more stable as the problem size grows.

Setting λ = 0 and ε = 0 tests the algorithm’s ability to recover exact solutions

for ordinary, unpenalized least squares problems. We ran tests on problems of

various dimensions, testing n = 200, 500, 1000, 2000 and p = 4, 16, 64. For each

combination of n and p, we ran 100 tests and recorded the mean of the metrics

for that combination over 100 simulations. Complex MSE and proportional er-

ror results are summarized in Tables 5.2 and 5.3 respectively. Observations of

the average number of iterations until convergence are shown in Table 5.4. The

tables show an intuitive outcome that CGL results degrade as the dimensional-

ity p increases and improve as sample size n increases. This pattern is consistent

for all three metrics.

We also test the group-wise sparsity-inducing facility of CGL in order to

ensure that the sparsity is induced at the right locations. To set up this test, we
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Errorprop p = 4 p = 16 p = 64
n = 200 0.011 0.035 0.226
n = 500 0.004 0.013 0.036
n = 1000 0.002 0.006 0.015
n = 2000 0.001 0.003 0.007

Table 5.3: Proportional error of complex block coordinate descent.

Iterations p = 4 p = 16 p = 64
n = 200 9.0 28.4 275.2
n = 500 8.5 22.1 78.6
n = 1000 7.6 21.0 57.6
n = 2000 7.1 18.4 49.0

Table 5.4: Average number of iterations until convergence.

fix n = 1000 and p = 16 with a parameter structured into four groups of four

indexed [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]. We simulate three variations

where each involves a ground-truth combination of relevant and extraneous

groups of variables. The first ground-truth is that only group 1 is relevant, and

the test is whether group 1 is the last to be eliminated by CGL process. The

second ground-truth is that only group 1 is extraneous, and the test is whether

group 1 is eliminated first. The third ground-truth involves two extraneous

groups. To challenge the algorithm, we corrupt the response vector b with noise

simulated from N(0, 0.5) for all three testing variations.

We simulate 100 such scenarios allowing λ to vary from 0 to 100 in steps

of 0.25. For both the first and second ground-truths, CGL passed 100 out of

100 times. However, when we simulated two extraneous feature groups, CGL

passed 97 out of 100 times. Figure 5.2 shows trace plots of the extraneous CGL

coefficients shrinking as the penalty λ increases. Trace plots are common diag-

nostics in conventional group lasso software and show that the CGL is indeed

functioning as expected for general complex-valued regression problems.
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Figure 5.2: Simultaneous shrinkage within extraneous CGL groups.

5.3 Complex Group Lasso with T-AR

Whereas the simulations in Section 5.1 illustrate the advantages of T-AR over

conventional time series benchmarks, in this section we demonstrate the ad-

vantages of T-AR’s multi-lag facility along with the efficacy of its group lasso

regularization. We simulate a random weekwise lag-l series with frequency t

starting with l seed random periods, Xn ∈ Rt for weeks n = 1 . . . l and then gen-

erate a set of l coefficients that sum to 1, α1+ . . .+αl = 1. All subsequent periods

(weeks) are a convex combination of the l periods prior, so the weekwise (T-AR)

autoregressive process is generated by

Xn+1 = α1Xn + α2Xn−1 + . . .+ αlXn−l + ε, (5.5)

where ε is distributed N(0, 0.1). In these tests, we let t = 7 and training window

n = 26 to replicate the setting of forecasting weekly data using two quarters

(26 weeks) of history. Figure 5.3 shows an example of a series generated by a

weekwise autoregressive process when l = 2.

We consider the setup with two weeks of lag, setting α1 = 0.1 and α2 = 0.9
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Figure 5.3: Synthetic series generated by a lag-2 T-AR process.

MAPE λ = 0 λ = 0.25 λ = 0.5 λ = 1 λ = 10
T-AR([1]) 0.5279 0.5299 0.5319 0.5360 0.6096
T-AR([1, 2]) 0.2362 0.2383 0.2405 0.2449 0.3570
T-AR([1, 2, 3]) 0.2399 0.2377 0.2384 0.2424 0.3596
T-AR([1, 2, 3, 4]) 0.2466 0.2374 0.2382 0.2426 0.3883

Table 5.5: Regularized T-AR performance in simulation.

in order to emphasize the influence of two weeks ago. This simulation is anal-

ogous to an AR(2) process except that the “2” is in units of weeks, each with

7 days. We simulate 104 periods of data for 728 total time points. Our metric

of accuracy is, again, the MAPE metric. We run T-AR with the following lag

parameterizations: [1], [1, 2], [1, 2, 3], and [1, 2, 3, 4], and we test CGL at vari-

ous settings of λ to see how MAPE improves with regularization. Note that in

this simulation, lags 1 and 2 are relevant and lags 3 and 4 are extraneous. We

see that the regularization results agree with the ground-truth that unpenalized

TAR([1, 2]) is the underlying model. In Table 5.5, the MAPE result for TAR([1, 2])

and λ = 0 is the lowest in the MAPE table. Notice also that regularization does

not improve the MAPE score of a model incorporating only relevant lags. In-

stead, regularization improves prediction accuracy whenever the model incor-
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Timing: Fast CGL in R λ = 0 λ = 0.25 λ = 0.5 λ = 1 λ = 10
T-AR([1]) 0.215s 0.239s 0.248s 0.247s 0.269s
T-AR([1, 2]) 22.275s 26.917s 26.215s 25.883s 352.347s
T-AR([1, 2, 3]) 68.862s 82.362s 89.335s 124.569s 794.376s
T-AR([1, 2, 3, 4]) 138.970s 168.960s 146.938s 231.521s 972.705s

Table 5.6: Profiling the fast CGL implementation for T-AR.

Fast/Naı̈ve λ = 0 λ = 0.25 λ = 0.5 λ = 1 λ = 10
T-AR([1]) 0.919 0.912 0.936 0.915 0.947
T-AR([1, 2]) 0.823 0.873 0.875 0.891 1.061
T-AR([1, 2, 3]) 0.819 0.874 0.948 0.854 0.962
T-AR([1, 2, 3, 4]) 0.822 0.876 0.832 1.324 0.947

Table 5.7: Speedup from using simplified CGL derivations for T-AR.

porates extraneous lags. Notice that the second best MAPE score belongs to the

overparameterized T-AR([1, 2, 3, 4]) model subjected to λ = 0.25 regularization.

We also measured the runtimes of T-AR using CGL lag selection. Table 5.6

shows that lag selection is a slow process. However, Table 5.7 shows that the

fast CGL algorithm for T-AR gives a consistent, albeit moderate, speedup over

the naı̈ve algorithm.

5.4 Application to Stock Price Data

Finally, we explore an application of T-AR to historical stock price data obtained

from Yahoo Finance. We use this opportunity to demonstrate T-AR’s diagnostic

parameter interpretation as well as comment on some observed characteristics

of T-AR forecasts. We focus specifically on the closing prices of Apple (AAPL)

stock from December 22nd, 1983 to February 19th, 1986. The data was chosen

to be evaluated in this time interval due to its volatility. Every seven days, T-AR

forecasts AAPL closing prices for the next seven days using a range of historical
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Figure 5.4: T-AR forecasts of AAPL closing prices.

data as training input. In Figure 5.4, we present forecasted closing prices from

T-AR([1]) using training window size 26, performing with average daily MAPE

equal to 0.0504. Figure 5.4 shows how the T-AR weekwise forecasts compare to

actual closing prices.

Notice, however, that the 26-week window T-AR series exhibits some iner-

tia, as if the forecasts would be better if one could slide the red line slightly to

the left. This “inertia” can be manipulated by adjusting the size of the train-

ing window. In general, increasing window size increases forecasting inertia

but also increases forecasting smoothness. The ideal window size depends on

the specific application, and Figure 5.5 shows an example where, by reducing

training window size to 4 weeks, the decrease in inertia is not worth the loss of

smoothness (MAPE = 0.0594).

The diagnostic chart in Figure 5.6 give insights into the T-AR behavior on
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Figure 5.5: Smaller window size decreases inertia but also decreases smooth-
ness.

the AAPL stock data. According to the parameter interpretation in Section 3.2

(see, in particular, Figure 3.4), the prominent skew in the distribution of the pro-

portional magnitudes of the coefficient indicates that AAPL price data exhibits

some degree of seasonality and geometric trend and, therefore, can be tracked

by T-AR to an extent. However, the fact that there are no clearly dominant co-

efficients explains the limitation of using T-AR to forecast closing prices of this

stock.
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Figure 5.6: AAPL forecasting coefficients.
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CHAPTER 6

CONCLUSIONS

In this thesis, we have presented the novel tensor autoregressive model that uti-

lizes the t-product tensor operation to extend the ordinary linear model into the

temporal dimension, transforming the ordinary linear model into a time series

autoregressive model for periodic time series data. The regression-like frame-

work of the T-AR connects regression methodology to a time series application,

and we showed how to incorporate structured regularization for our time series

problem by devising a complex-valued group lasso algorithm compatible with

the implementation of T-AR’s tensor operations.

We now conclude the thesis by addressing some possibilities of further work

based on our explorations. First, we notice that the T-AR model assumes two

specific and quantifiable time series traits, seasonality and geometric trend, and

that the proportional magnitudes of the parameter coefficients indicate how

prominent these traits are in the data. Therefore, one possible direction in which

to extend this work is to form a rigorous null hypothesis statement for the T-AR

time series condition. The T-AR parameters’ proportional magnitudes suggest

a test statistic that may be connected to the Dirichlet prior to the Multinomial

distribution. A concrete application of a successful theory would be in anomaly

detection, detection of a “T-AR condition”, and could lead to an additional di-

agnostic facility that quantifies the reliability of T-AR on specific applications.

Furthermore, in connection with T-AR feature selection, an alternative ap-

proach to determining the ideal model specification is to interpret some partial

autocorrelation function in tensor format. Indeed, the partial autocorrelation

function (PACF) plays an important role in order determination of autoregres-

47



sive models, and a tensor extension of PACF would narrow the gap between

T-AR and conventional AR while addressing the practical issue of determining

a T-AR model.
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