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Reinforced concrete is a common structural material since it is strong, durable

and relatively cheap. Of the various deterioration mechanisms of reinforced

concrete structures, chloride-induced corrosion of steel reinforcement is of great

importance since numerous reinforced concrete structures are exposed to chlo-

ride sources [129]. ASCE 2005 Report Card estimates a cost of $9.4 billion a year

for 20 years to eliminate deficiencies of 590,750 bridges in the United States,

almost half of which are reinforced concrete. A 1998 survey states that 9% of

the reinforced concrete bridges in the United States are structurally deficient,

primarily due to corrosion of steel reinforcement [196]. Accurate lifetime pre-

dictions are of great use for developing efficient strategies to handle the corro-

sion damage. Since chloride ingress is a transport phenomenon, it is necessary

to have an accurate representation of concrete at microscale to obtain adequate

lifetime predictions of reinforced concrete structures.

Diffusion, convection, migration and permeation are transport mechanisms

in reinforced concrete structures. Chloride ingress into concrete usually occurs

by either diffusion or diffusion coupled with another transport mechanism. Dif-

fusion is of interest to this research, since it is the most dominant chloride trans-

port mechanism.

Our objective is to predict service life of reinforced concrete structures. We

focus on the estimation of effective diffusion coefficient since it is closely re-

lated to the rate of chloride diffusion through concrete. A probability-based nu-

merical method is developed for estimating the effective diffusion coefficient of



chloride in concrete. The method has two essential steps. First, virtual concrete

specimens are constructed. Each specimen is modeled as a three-phase material

consisting of (i) aggregate, (ii) cement paste, and (iii) interfacial transition zones.

The algorithm constructing virtual specimens places virtual aggregates at ran-

dom locations. The aggregates are ellipses of random aspect ratios with noisy

boundaries defined by beta translation fields. Second, properties of Itô process

are used to estimate the effective diffusion coefficients in virtual specimens and

the chloride concentration at arbitrary points of specimens. All numerical re-

sults are limited to 2D mortar specimens.
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A.5 Deff in Mortar by Caré [31] . . . . . . . . . . . . . . . . . . . . . . 236
A.6 Deff in Cement Paste and Mortar by Tang and Nilsson [168] . . . 237
A.7 Deff (10−6 mm2/s) in HSC by Tang and Nilsson [167] . . . . . . . 238
A.8 Mix Proportions of Specimens Tested by Zhang and Gjørv [197] . 239
A.9 Deff (10−6 mm2/s) by Zhang and Gjørv [197] . . . . . . . . . . . . 239
A.10 Mix Proportions of Specimens of Zhang and Gjørv [200] . . . . . 241
A.11 D for w/c = 0.4 Mortar by Halamickova et al. [82] . . . . . . . . . 242
A.12 D for w/c = 0.5 Mortar by Halamickova et al. [82] . . . . . . . . . 243
A.13 Mix Proportions Used by Samson and Marchand [141] . . . . . . 243
A.14 Diffusion Coefficients by Samson and Marchand [141] . . . . . . 244

ix



LIST OF FIGURES

2.1 A Rate of Heat Evolution Curve During the Hydration of PC . . 12
2.2 A SEM Image by Stutzman [160] . . . . . . . . . . . . . . . . . . . 13
2.3 Another SEM Image by Stutzman [160] . . . . . . . . . . . . . . . 14
2.4 Capillary Porosity vs. α for w/c = 0.35, 0.45, 0.55, 0.65 . . . . . . . 18
2.5 Capillary Porosity vs. w/c for α = 0.25, 0.50, 0.75, 1.00 . . . . . . . 18
2.6 Capillary Porosity vs. α and w/c . . . . . . . . . . . . . . . . . . . 19
2.7 Gel/Space Ratio vs. α for w/c = 0.35, 0.45, 0.55, 0.65 . . . . . . . . 19
2.8 Gel/Space Ratio vs. w/c for α = 0.25, 0.50, 0.75, 1.00 . . . . . . . . 20
2.9 Gel/Space Ratio vs. α and w/c . . . . . . . . . . . . . . . . . . . . 20
2.10 Schematical Representation of Different Gradings . . . . . . . . . 24
2.11 Volume Changes of Pores and Hydration Products . . . . . . . . 27
2.12 Schematical View of Tortuosity and Constrictivity [150] . . . . . . 29
2.13 ITZ Between Aggregate and Cement Paste [184] . . . . . . . . . . 31
2.14 Average Porosity in ITZ [149] . . . . . . . . . . . . . . . . . . . . . 33
2.15 Volume Fraction of Unhydrated Cement in ITZ [149] . . . . . . . 33
2.16 Average Distribution of CH in ITZ [149] . . . . . . . . . . . . . . . 35
2.17 Average Distribution of Other Hydration Products [149] . . . . . 36
2.18 Concrete Intruded with Wood’s Metal [149] . . . . . . . . . . . . 37
2.19 Schematical Connectivity of ITZs (represented by white area) . . 52
2.20 Evolution of Diffusivity against Sand Volume Fraction [43] . . . . 53

3.1 FE Structure of an Arbitrarily Shaped Body . . . . . . . . . . . . . 65
3.2 FD Representation of an Arbitrarily Shaped Domain . . . . . . . 67
3.3 A Random Walk in Three Dimensions . . . . . . . . . . . . . . . . 69
3.4 Floating Random Walk at i-th Step . . . . . . . . . . . . . . . . . . 75
3.5 A Sample of Diffusivity Field . . . . . . . . . . . . . . . . . . . . . 89
3.6 Estimate of Mean of D . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.7 Estimate of Variance of D . . . . . . . . . . . . . . . . . . . . . . . 90
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Reinforced concrete is the most common structural material, since it is

strong, durable and relatively cheap. It is a composite material consisting of

concrete and steel. While steel reinforcement increases structural performance,

concrete protects steel reinforcement from environmental attacks. Concrete is

a random heterogeneous material consisting of aggregate held together by a

hardened cement paste.

The durability of a reinforced concrete structure is the capacity of its con-

stituents, i.e., concrete and steel, to maintain their physical characteristics and

mechanical performances at satisfactory levels of safety and serviceability [38].

Strength-based criteria are insufficient for the design of reinforced concrete

structures since these structures deteriorate in time. In recent years, research

focused on the mechanism of deterioration of reinforced concrete structures

to develop durability-based design criteria. Current building codes specify

durability-based design criteria as well as strength-based design criteria [110].

Reinforced concrete structures are likely to be subjected to various adverse

conditions, e.g., chemical attacks and freeze-thaw cycles. Of the various dete-

rioration mechanisms of reinforced concrete structures, chloride-induced cor-

rosion of steel reinforcement bars is of great importance since numerous rein-

forced concrete structures are exposed to chloride sources, e.g., de-icing salts or

marine environment [129]. Direct cost of corrosion in highway bridges (includ-
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ing all types), i.e., cost of maintenance, repair and rehabilitation, was estimated

as $8.29 billion annually [196]. Indirect costs due to traffic delays and lost pro-

ductivity were estimated to be more than ten times the direct cost [196]. A recent

study, ASCE 2005 Report Card, estimates a cost of $9.4 billion a year for 20 years

to eliminate deficiencies of 590,750 bridges in the United States, almost half of

which are reinforced concrete. A 1998 survey states that 9% of the reinforced

concrete bridges in the United States are structurally deficient, primarily due to

corrosion of steel reinforcement [196]. Accurate lifetime predictions are of great

use for developing efficient strategies to handle the corrosion damage. Since

chloride ingress is a transport phenomenon, it is necessary to have an accurate

representation of concrete at microscale to obtain adequate lifetime predictions

of reinforced concrete structures.

Concrete has a high alkali internal environment encouraging the develop-

ment of a passive (oxide) film around steel reinforcement bars. The alkalinity of

concrete is reduced, as more chloride penetrates concrete. When chloride con-

centration in a vicinity of a steel bar reaches a critical value, the passive film

protecting the bar is damaged. Provided that there is adequate oxygen and

moisture in the environment, corrosion of the bars initiates leading to cracking,

spalling or delamination of the concrete cover since the volume of the corrosion

products are several times larger than the volume of the steel lost by corrosion.

A secondary effect is reduction in load-carrying capacity of the steel bars, due to

loss of cross-sectional area at locations where corrosion takes place. In summary,

the concrete cover acts as both a physical and a chemical barrier protecting the

steel reinforcement in the case of chloride ingress through a reinforced concrete

structure.
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Chloride within concrete may exist in the state of either free or bound. The

free chloride is responsible for the initiation of corrosion of steel reinforcement.

Chloride ingress occurs through pores in the cement paste, mainly capillary

pores, therefore the properties of the pore structure have a major effect on the

quality of concrete cover as a physical barrier against chloride ingress. On the

other hand, solid phases of cement paste have the ability of binding chloride,

thus behaving as a chemical barrier against chloride ingress.

There are mainly four groups of chloride transport mechanisms observed

in reinforced concrete structures: (i) permeation, (ii) migration, (iii) convection,

and (iv) diffusion. For instance, chloride ingress into partially saturated con-

crete occurs by a coupled mechanism of diffusion and convection, whereas it is

the diffusion that dominates the chloride ingress into fully saturated concrete,

unless there exists a high pressure head. Diffusion is of interest to this research,

since it is the most dominant chloride transport mechanism. Chloride diffusion

through concrete is usually described by Fick’s law [42].

A critical parameter for evaluating the resistance of concrete to chloride dif-

fusion is the effective diffusion coefficient, which provides information on the

rate of chloride diffusion through concrete specimens. The effective diffusion

coefficient of chloride in concrete can be obtained experimentally, numerically

or analytically, and depends on specimen size.

Diffusion- and electrical-based methods are commonly used to find exper-

imentally the effective diffusion coefficients in concrete specimens. Diffusion

experiments can be performed under either steady-state or non-steady-state

conditions. Since diffusion experiments are time-consuming, electrical methods

have been developed. The advantage of electrical methods over diffusion ex-
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periments is that the duration of experiment can be reduced significantly due to

the accelerated chloride ingress caused by application of an electrical potential.

An alternative method to accelerate chloride ingress into a test specimen is to

apply a hydraulic pressure, but the method is infrequently used. It is important

to note that chloride diffusion coefficients obtained through different methods

are not directly comparable mainly due to the differences in the hypotheses be-

hind the methods [170].

There are few numerical methods developed for estimating the effective dif-

fusion coefficient of chloride in concrete. A well known method is a multi-scale

microstructural model developed by Garboczi and Bentz [63]. The model is

based on random walks executed in a computational concrete volume, in which

aggregate particles and interfacial transition zones are represented by spheres

and thin shells surrounding those spheres, respectively.

There are also analytical and empirical models, usually developed using an

effective medium theory [67] or a composite model [187], for estimating the

effective diffusion coefficient of chloride in concrete. Since chloride diffusion

through concrete depends on many parameters, it is difficult to calculate the

effective diffusion coefficient from simple equations.

1.2 Objective

The objective of this research is to develop a method for predicting service

life of reinforced concrete structures. Service life of a reinforced concrete struc-

ture relates to the effective diffusion coefficient of chloride in the concrete since
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it is a measure of the resistance of concrete to chloride diffusion. A probability-

based numerical method is developed for estimating the effective diffusion co-

efficient of chloride in concrete. The method has two essential steps.

First, virtual concrete specimens are constructed. A concrete specimen is

modeled as a three-phase material consisting of (i) aggregate particles with zero

diffusivity, (ii) bulk cement paste with a constant chloride diffusion coefficient,

and (iii) interfacial transition zones around aggregate particles in which the

chloride diffusion coefficient increases as the aggregate surface is approached.

The algorithm constructing virtual concrete specimens places virtual aggregates

at random locations. The aggregates are ellipses of random aspect ratios with

noisy boundaries defined by beta translation fields. Virtual specimens are con-

structed in 2D using volume fraction statistics obtained from 3D specimens.

This is an approximation and has been used to reduce calculations.

Second, properties of Itô process are used to estimate the effective diffu-

sion coefficients in virtual specimens and the chloride concentration at arbitrary

points of specimens. A probabilistic method in [80] for estimating the effective

diffusion coefficient of chloride in a virtual concrete specimen is adopted. The

effective diffusion coefficient of the virtual concrete specimen is the diffusion

coefficient of a virtual homogeneous specimen.

The proposed method is general but is only applied to estimate the effec-

tive diffusion coefficients of chloride in 2D virtual mortar specimens and the

chloride concentration at arbitrary points of these specimens. We limit calcula-

tions to this type of specimens for two reasons. First, computation time is much

smaller for 2D specimens than for 3D specimens. Second, effective properties of

mortar can be used to construct large virtual concrete specimens.
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1.3 Outline

Concrete and chloride diffusion in concrete is covered in Chapter 2. The pro-

posed method, the algorithm generating virtual specimens and the application

of the proposed method are presented in Chapters 3, 4 and 5, respectively. The

content of each chapter is briefly summarized below.

Chapter 2 consists of two parts. In the first part, the fundamentals and mi-

crostructural features of concrete with regard to its transport properties are re-

viewed. In the second part, chloride diffusion in concrete is discussed.

Chapter 3 presents the proposed method for estimating the effective diffu-

sion coefficient of chloride in a random heterogeneous medium. It starts with

a review of numerical methods for solving partial differential equations. Then

the essentials of the method chosen for solving the transport equation, a par-

tial differential equation, are given. Two examples considering steady-state

and transient-state diffusion are presented. The probabilistic method in [80]

is used to estimate the effective diffusion coefficient of chloride in a determinis-

tic/random heterogenous medium. Two examples considering a deterministic

and a random diffusivity field are presented.

Chapter 4 presents the algorithm developed for generating virtual 2D mor-

tar/concrete specimens. First, the algorithm for generating virtual 2D aggregate

particles, second, the algorithm for placing the virtual particles into a given con-

tainer, is presented. Three examples are given to illustrate the features of the

developed algorithm.

Chapter 5 starts with a review of the most common methods for obtaining
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the effective diffusion coefficient of chloride in cement paste, mortar or con-

crete. Then the parameters of the chloride diffusivity random field model are

calibrated to experiments by using the output of the proposed method. The re-

sulting parameter values are used in all subsequent calculations. The calibrated

version of the method is used to calculate effective diffusion coefficients in sev-

eral virtual specimens and these coefficients are compared with experimental

results. Also, chloride concentration is estimated at arbitrary points of virtual

specimens and the resulting estimates are compared with experimental results.

All numerical results are for 2D mortar specimens.

Chapter 6 presents the conclusions of the study and proposes future work

related to the study.
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CHAPTER 2

CHLORIDE DIFFUSION IN CONCRETE

2.1 Introduction

Concrete has been widely used as a construction material throughout the

world due to its various advantages, e.g., strength, durability and cost. It is usu-

ally used with steel reinforcement, resulting in a strong and durable composite

material, referred to as reinforced concrete. While steel reinforcement increases

structural performance, concrete protects steel reinforcement from environmen-

tal attacks. There have been numerous reinforced concrete structures built in ag-

gressive environments, and most of them are still standing in spite of the severe

environmental conditions.

Chemrouk and Attari [38] defined the durability of a reinforced concrete

structure as the ability of its constituents, i.e., concrete and steel, to keep their

physical characteristics and mechanical performances at satisfactory levels of

safety and serviceability. Then the durability of the structure is provided mainly

by the concrete since the steel reinforcement is protected by the concrete.

Reinforced concrete structures may deteriorate due to external and/or inter-

nal factors, e.g., chemical attacks and freezing-thawing cycles. Of the various

deterioration mechanisms observed in reinforced concrete structures, chloride-

induced corrosion of steel reinforcement bars is of great importance since nu-

merous reinforced concrete structures are exposed to chloride sources, e.g., de-

icing salts or marine environment [129]. In the case of chloride ingress through

a reinforced concrete structure, the concrete cover acts as both a physical and a
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chemical barrier protecting the steel reinforcement. The fundamentals of con-

crete are reviewed briefly in Section 2.2, and chloride diffusion in concrete is

discussed within the rest of the chapter.

2.2 Concrete

Concrete is a heterogeneous medium consisting of aggregate held together

by a hardened cement paste. The basic cementitious constituent of con-

crete is Portland cement. Modern concrete mixtures contain one or a few

supplementary cementitious materials, formerly referred to as mineral admix-

tures, as well as Portland cement. A brief review of the constituents of con-

crete is given below. Detailed discussions on them can be found elsewhere

[29, 109, 115, 116, 127, 128, 146].

Portland cement is a hydraulic material composed of crystalline minerals,

such as oxides of calcium, silicon, aluminium and iron. The four main min-

erals found in the Portland cement are tricalcium silicate (alite), dicalcium sili-

cate (belite), tricalcium aluminate and tetracalcium aluminoferrite. Supplemen-

tary cementitious materials are either byproducts of industrial processes or nat-

ural materials that may or may not be further processed. Typical examples of

supplementary cementitious materials are fly ash, ground granulated blast fur-

nace slag, silica fume and natural pozzolans such as metakaolin and calcined

shale or clay. The use of supplementary cementitious materials allows concrete

manufacturers to meet certain requirements on the workability, durability and

strength of concrete. There are also chemical admixtures, the major types of which

are accelerators, retarders, air-entrainers, plasticizers (water-reducing), super-
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plasticizers and corrosion inhibitors, used for enhancing certain properties of

concrete.

Water is required for the chemical reactions which produce cement paste.

Drinking water can be used safely for manufacturing cement pastes. Non-

potable water can also be used, but necessary tests should be carried out prior

to the manufacturing process. The quality of the resulting cement paste will be

low if harmful ingredients, contamination, silt, or oil, exist in the water.

Aggregates are granular materials such as sand, gravel, or crushed stone. For-

merly, aggregate had been referred to as the filler material of concrete, which

reduces the cost since it is cheaper than cement. Actually, it is an essential

constituent of concrete, affecting the strength and durability of concrete signifi-

cantly as well as reducing the cost.

2.2.1 Cement Paste

When Portland cement and water are mixed, the mixture first sets, and then

hardens through a series of chemical reactions, called hydration, between water

and minerals found in the cement. Two important parameters related to the

hydration process are heat of hydration and degree of hydration. The former is

a measure of released energy -hydration is an exothermic process- during the

hydration reactions, and the latter is the fraction of the cement particles that

have fully hydrated.
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2.2.1.1 Hydration of Portland Cement

The hydration of Portland cement is a complicated process, the details of

which can be found elsewhere [29, 56, 69, 109, 146]. Two mechanisms observed

in the hydration process of Portland cements are through-solution hydration

and topochemical (or solid-state) hydration [109]. The dissolution of anhydrous

cement compounds into their ionic constituents, which then form hydrates in

the solution, and the eventual precipitation of these hydrates from this supersat-

urated solution is called the through-solution hydration mechanism. On the other

hand, the topochemical (or solid-state) hydration mechanism consists of the reactions

taking place on the surface of anhydrous cement compounds.

The hydration starts on the surface of a cement particle, and then extends to-

wards the interior gradually. As time proceeds, a solid shell of hydrates forms

around the cement particle. The water in contact with the unhydrated part of

the cement particle either reacts with it or dissolves a portion of it. The supersat-

urated solution diffuses out towards capillary pores through very small pores

of the solid shell. The hydrates precipitate from the supersaturated solution in

air- or water-filled pores that are large enough to allow nucleation of a new solid

phase. The details of the hydration of individual phases can be found elsewhere

[29, 56, 69, 109, 146].

The rate of the hydration reactions can be studied by examining the rate of

heat evolution during the hydration process [29, 146]. Just after mixing, the

highest rate of heat evolution is observed. However, the duration of this peak

is relatively short. The period following this peak, referred to as induction or

dormant period, lasts about 3 hours [146]. The mixture starts to gain stiffness,

and loses its workability during the induction period, so the duration of the
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induction period determines the time limit for placing concrete. The induction

period ends with an increase in the rate of heat evolution. Setting occurs during

this increase. The second peak in the rate of heat evolution is observed at around

the tenth hour for ordinary Portland cements hydrated at 20◦ [29]. It depends

on the type of cement whether the third peak occurs or not. The hydration may

continue for a very long time, but the rate of the reactions decreases in time. A

rate of heat evolution curve during hydration of a typical Portland cement is

plotted in Figure 2.1.
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Figure 2.1: A Rate of Heat Evolution Curve During the Hydration of PC

2.2.1.2 Solid Phases of Cement Paste

As the hydration takes place, the hydration products develop gradually,

forming finely structured porous solids called cement gel. There are four princi-

pal solid phases, which can be resolved by scanning electron microscope (SEM),

in a hydrated cement paste [109]:
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• Calcium-silicate-hydrate (C-S-H) constitutes 50% to 60% of the volume of

the solid phases in a completely hydrated cement paste, so it is the most

important solid phase. C-S-H has a morphology varying from poorly crys-

talline fibers to a reticular network.

Figure 2.2: A SEM Image by Stutzman [160]

• The proportion of calcium hydroxide (CH), referred to as portlandite, in the

solid phases is 20% to 25%. Unlike C-S-H, it has a well-defined stoichiom-

etry. It exists in the form of massive hexagonal crystals.

• Calcium sulfoaluminates make up 15% to 20% of the volume of the solid

phases in a hydrated cement paste. In the early stages of the hydration,

the formation of trisulfate hydrate, referred to as ettringite, in the form of

needle-shaped prismatic crystals is observed.

• Unhydrated cement, in the form of partially hydrated cement particles, are

typically present in a hydrated cement paste. The amount of unhydrated
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cement depends on the cement particle size distribution and the degree of

hydration.

Figure 2.3: Another SEM Image by Stutzman [160]

2.2.1.3 Voids in Cement Paste

There exist several types of voids in a hydrated cement paste [109]:

• Capillary pores (see Section 2.2.1.5) are the void space left from initially wa-

ter filled space that is consumed as the hydration proceeds.

• Gel pores (see Section 2.2.1.5) are the void space in the cement gel remaining

from the solid hydration products. The volume fraction of gel pores in the

total cement gel is almost constant (∼27-28%).

• Air voids can be either entrapped during mixing or entrained purposely by

means of an air entraining agent. The primary objective of air entrain-
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ment is to provide resistance to freeze-thaw damage. It also improves the

workability of concrete. However, too much entrained air may reduce the

strength of concrete. The size of entrained air bubbles ranges from 0.01

mm to 1 mm. On the other hand, entrapped air voids are relatively large,

1 mm to 10 mm or more, and usually have irregular shapes rather than be-

ing spherical. The volume fraction of entrapped air in concrete is usually

1-2 %.

2.2.1.4 Water in Cement Paste

Besides the solid phases and the air voids, there exists water in a hydrated

cement paste. In addition to vapor in the empty or partially water-filled voids,

water exists in a hydrated cement paste in the following forms [109]:

• Capillary water is the water that exists in the capillary pores. The removal

of the water held by capillary tension in the small capillaries may cause

shrinkage.

• Adsorbed water is the water physically held on the surfaces of the solid

phases of cement pastes. The removal of the adsorbed water causes drying

shrinkage.

• Interlayer water is the water that exists in the gel pores. The loss of the gel

water causes the C-S-H structure to shrink.

• Chemically combined water, also known as hydrate water or bound water, is

the water which is part of the hydration products.
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2.2.1.5 Capillary Porosity and Gel/Space Ratio

Two important parameters characterizing the pore structure in a hydrated

cement paste are capillary porosity and gel/space ratio. Based on the observed

facts, complete hydration of 1 g of cement is considered below for studying the

relationship of capillary porosity and gel/space ratio with degree of hydration

α and water-to-cement ratio w/c [115, 116].

The volume of 1 g of cement is equal to 0.32 ml since the density of unhy-

drated cement is 3.15 g/ml. The mass of chemically combined water depends

on cement composition. If it is assumed as 0.25 g, the mass of the solid hydra-

tion products is 1.25 g (1 g cement + 0.25 g water). Then the volume of the solid

hydration products is 0.48 ml since the density of solid hydration products is

observed to be 2.6 g/ml. If it was a simple combination of cement and water, it

would have a density of 2.72 g/ml, therefore the resulting hydrated product is

less dense than the simple combination of cement and water. The solid hydra-

tion products occupy 73% of the volume of the cement gel, then the volume of

the cement gel is 0.66 ml, and the volume and mass of the gel water are 0.18 ml

and 0.18 g, respectively. Hence, the density of the gel, including gel pores, is 2.17

g/ml since its mass and volume are 1.43 g (1 g of cement + 0.25 g of bound water

+ 0.18 g of gel water) and 0.66 ml, respectively. Since the volumes of the cement

paste and the cement gel are 0.75 ml (0.32 ml cement + 0.43 ml water) and 0.66

ml, respectively, capillary pores occupy a volume of 0.09 ml, corresponding to a

capillary porosity of 12%.

Based on the complete hydration of 1 g of cement, a general relationship for

capillary porosity can be derived. Let mc denote the mass of cement. Then the

mass and volume of water are mc(w/c), and the volume of cement is 0.32mc.
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The total volume of resulting paste is then mc(0.32 + w/c). The volume of

hydrated and saturated gel is 0.66αmc, where αmc is the mass of cement that

has hydrated. The mass and volume of remaining unhydrated cement are

(1−α)mc and 0.32(1−α)mc, respectively. Then the volume of remaining empty

or water-filled capillary pore space is mc(0.32+w/c)−0.66αmc−0.32(1−α)mc =

mc(w/c− 0.34α), so the capillary porosity is

Capillary Porosity =
w/c− 0.34α

0.32 + w/c
. (2.1)

Gel/space ratio is the ratio of the volume of hydrated gel to the space avail-

able for gel development, i.e., the volume of gel and the capillary pore volume.

Based on the complete hydration of 1 g of cement, a general relationship for

gel/space ratio can be derived. The volume of hydrated and saturated gel

is 0.66αmc, and the volume of remaining empty or water-filled capillary pore

space is mc(w/c− 0.34α). Then the gel/space ratio is

Gel/Space Ratio =
0.66αmc

mc(w/c− 0.34α) + 0.66αmc

=
0.66α

w/c + 0.32α
. (2.2)

For a given w/c ratio, capillary porosity and gel/space ratio as a function of

degree of hydration is plotted in Figure 2.4 and Figure 2.7, respectively. Simi-

larly, for a given degree of hydration, capillary porosity and gel/space ratio as

a function of w/c ratio is plotted in Figure 2.5 and Figure 2.8, respectively. In

Figure 2.6 and Figure 2.9, the relationship of capillary porosity and gel/space

ratio with degree of hydration and w/c ratio is illustrated, respectively.
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Figure 2.4: Capillary Porosity vs. α for w/c = 0.35, 0.45, 0.55, 0.65
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Figure 2.5: Capillary Porosity vs. w/c for α = 0.25, 0.50, 0.75, 1.00
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Figure 2.6: Capillary Porosity vs. α and w/c
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Figure 2.7: Gel/Space Ratio vs. α for w/c = 0.35, 0.45, 0.55, 0.65
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Figure 2.8: Gel/Space Ratio vs. w/c for α = 0.25, 0.50, 0.75, 1.00
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Figure 2.9: Gel/Space Ratio vs. α and w/c
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Capillary porosity and gel/space ratio are functions of w/c ratio, degree of

hydration and degree of compaction. It can be clearly observed in Figure 2.4

through Figure 2.9 that: (i) with increasing degree of hydration, capillary poros-

ity decreases, while gel/space ratio increases, and (ii) with increasing w/c ratio,

capillary porosity increases, while gel/space ratio decreases. That is, a cement

paste with a high w/c ratio requires a high degree of hydration to achieve a high

gel/space ratio, while a cement paste with a low w/c ratio requires a moderate

degree of hydration to achieve a high gel/space ratio. In order to obtain a dense

cement paste, cement particles should be brought as close as possible by a low

w/c ratio and a high degree of compaction, and maximum degree of hydration

should be promoted leading to a high gel/space ratio and a low capillary poros-

ity.

Table 2.1: Curing Period for Capillary Pores to Become Segmented [131]

w/c Ratio by Mass Degree of Hydration Curing Period Required

0.40 0.50 3 days

0.45 0.60 7 days

0.50 0.70 14 days

0.60 0.92 6 months

0.70 1.00 1 year

> 0.70 1.00 Impossible

Degree of hydration is a function of time, available moisture and temper-

ature, therefore curing period and conditions are of great importance. With

continuing hydration, cement gel grows blocking capillary pores. A suitable

combination of w/c ratio and a moist curing period is needed to obtain capillary

pores interconnected by gel pores. Powers et al. [131] measured the approximate
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moist curing periods required to block capillary pores with cement gel so as to

produce impermeable cement pastes. As can be seen in Table 2.1, it would not

be possible to block capillary pores with cement gel for w/c ratios greater than

0.7, even complete hydration of cement is achieved.

During hydration of cement, specific surface area of solid phases increases

enormously (∼700 times) resulting in adsorption of a large amount of water

on the solid surfaces. If it is a closed system, i.e., there is no water in or out,

free water in the system is consumed by the hydration reactions until too little

is left to saturate the solid surfaces, therefore the relative humidity decreases.

This phenomenon is referred to as self-desiccation [115, 116, 124]. Hydration,

which is significantly retarded when relative humidity drops below 80% [130],

continues as along as there is moisture in the pores surrounding the cement

gel. For complete cement gel formation, a w/c ratio of 0.42 is required if the

system is closed. Even though complete hydration is achieved, there will be

still voids present in the resulting cement paste. A w/c ratio of 0.36 with a water

supply from an external source results in minimum voids, but hydration will be

incomplete without external water. On the other hand, for w/c ratios less than

0.36, hydration cannot be completed even under water cure.

Temperature has a significant effect on the development of the pore struc-

ture of a cement paste, since it affects the rate of the hydration reactions. In

the early life of concrete (during first two hours), higher temperature results in

a more porous cement gel. The increased rate of hydration causes retardation

of the subsequent hydration and non-uniformly distributed cement gel because

there is not enough time for the hydration products to diffuse far away from the

cement particles and for a uniform precipitation at the increased rate of hydra-
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tion [115]. Detailed discussions on curing conditions and curing duration can

be found elsewhere [115, 116, 124].

Chloride ingress into concrete occurs through the pores in the cement paste.

Since capillary pores are much larger than gel pores, chloride ingress occurs

mainly through the capillary pores. Thus the characteristics of the capillary pore

structure is of paramount importance with regard to the resistance of concrete

to chloride ingress. Based on the discussions above and studies conducted by

numerous researchers (see Appendix A), it is concluded that:

• The resistance of concrete to chloride ingress increases as the w/c ratio

decreases [43, 45, 46, 47, 82, 87, 88, 103, 126, 154, 189, 193].

• The resistance of concrete to chloride ingress increases with the degree of

hydration [175, 185].

• Increasing the curing time and/or improving the curing method increases

the degree of hydration [40, 47, 50, 185], thus the resistance of concrete to

chloride ingress. Rapid drying stops the hydration process earlier result-

ing in a coarser pore structure, thus leads to a reduced resistance to chlo-

ride ingress [185]. Elevated curing temperatures also reduce the resistance

of concrete to chloride ingress [30, 46].

2.2.2 Aggregate

Aggregate occupies 60 to 75 percent of the total volume of concrete. It affects

the strength and durability of concrete significantly. Concrete has a higher vol-

ume stability than the corresponding neat cement paste does because aggregate
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restrains the drying shrinkage that cement paste could undergo [29, 115, 116].

An increase in the aggregate content from 65 to 75 percent may decrease creep

by 10% [115, 116]. Aggregate having inadequate strength limits the strength

of concrete [115, 116]. If there exist impurities and/or contaminants in the

aggregate, the strength and durability of concrete may suffer [115, 116]. A

well-known fact about aggregate is that it reduces the cost since it is cheaper

than cement and constitutes a major part of concrete. Extensive discussions

on the physical and chemical properties of aggregates can be found elsewhere

[7, 109, 115, 116, 127, 171, 172, 173].

Figure 2.10: Schematical Representation of Different Gradings

There are several ways to classify aggregates. The one used in the design of

mixtures is the classification according to the size, which divides the aggregates

into coarse and fine aggregates. Coarse aggregate is defined such that the smallest

particle size is 4.75 mm. Fine aggregate has a size range from 150 µm to 4.75

mm. Particle size distribution, also known as grading, is an important parameter

affecting the quality of concrete. Well-graded combinations of coarse and fine

aggregates are proposed by American Society for Testing and Materials [3].
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In the early stages of the hydration of a cement paste, only the physical prop-

erties of aggregate are of importance if there are no impurities and contaminants

present within the aggregate particles. Particle size distribution, particle shape

and texture are the factors that affect the structure of the cement paste surround-

ing the aggregate particles.

The components of some of the aggregate particles may react with some

of the compounds present in the cement paste after several years. The most

detrimental reaction between aggregate particles and cement paste is known as

aggregate-alkali reaction, which produces a gel that may cause cracking of con-

crete by swelling due to the water absorbed by the gel.

2.2.3 Microstructure of Concrete

A better understanding of the transport properties of concrete can be

achieved by studying its microstructure. Concrete is considered as a three-

phase material -cement paste, aggregate and transition zone between cement

paste and aggregate- at microscale.

There exist various techniques, which can be divided into two main cate-

gories as indirect and direct [146, 147], developed to study the microstructure

of composite materials. Thermogravimetry (TG), X-ray diffraction (XRD) and

mercury intrusion porosimetry (MIP) are examples of indirect techniques. TG

and XRD are used for determining the amounts of certain phases, while MIP is

used for determining the pore size distribution. On the other hand, direct tech-

niques like scanning electron microscope (SEM) using back-scattered-electron

(BSE) imaging provide information on the arrangement of various phases.
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Scrivener [146] discussed the development of cement paste microstructure

extensively, and stated that the microstructure of a cement paste depends on:

• the composition of cement,

• the cement particle size distribution,

• the degree of hydration,

• and the w/c ratio.

2.2.3.1 Microstructure of Cement Paste

The transport properties of cement paste depends strongly upon the amount,

distribution and connectivity of pores, primarily capillary pores. Initially, there

exist only water and unhydrated cement. As the hydration proceeds, the un-

hydrated cement and the free water are consumed, producing solid hydration

products, thus reducing the amount of capillary pores (Figure 2.11). With the

increasing amount of the solid hydration products, the amount of gel pores also

increases, but its proportion in the cement gel remains almost constant (∼27-

28%).

The application of percolation theory to cement pastes provides a better un-

derstanding of the microstructural development of cement pastes. Initially, cap-

illary pores form a continuous network, while solid phases are discontinuous

[19, 63, 180]. As the hydration takes place, cement gels start to form, and then

grow gradually in a random manner. At some point, referred to as initial set

(Figure 2.1), the cement gels begin to form a weak skeletal framework. The

point at which the skeleton becomes fully established is referred to as final set
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(Figure 2.1). Beyond the final set, the cement gel still continues to grow filling

in the framework, referred to as hardening.
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Water
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Figure 2.11: Volume Changes of Pores and Hydration Products

On the other hand, the volume and size of the capillary pores decrease, and

their connectivity diminishes gradually. Depending on the w/c ratio and the

degree of hydration, the capillary pores may be blocked at some point, resulting

in isolated capillary pores. The capillary porosity at which the capillary pores

are blocked with the cement gel is called de-percolation threshold [180] or capillary

porosity percolation threshold [19, 63]. Since chloride ingress into concrete occurs

mainly through capillary pores, the connectivity of capillary pores affects the

rate of chloride ingress significantly. As more capillary pores are isolated, the

rate of chloride ingress is reduced.

A widely used experimental method to study the pore structure in a cement

paste is MIP, which is performed by putting a cement paste specimen in a cham-

ber, evacuating the chamber and filling it with mercury, and then applying a
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gradually increasing pressure on the mercury surrounding the cement paste

specimen [40]. If the pore network is continuous, mercury can pass through

the pore necks and penetrate the bulk volume. If it is not, mercury can intrude

into the specimen volume by breaking through the pore walls. A measure of the

connecting pore necks of a continuous system or a breakthrough pressure in a

discontinuous system can be obtained by monitoring the applied pressures and

the corresponding mercury intrusion volumes [40]. A measure of total porosity

can also be obtained by means of MIP, that is, by dividing the volume of the

mercury intruded at the maximum applied pressure by the bulk volume of the

unintruded specimen [40]. Threshold pore width, also known as percolation pore

width or critical pore width, is defined as the pore width corresponding to the

highest rate of mercury intrusion per change in pressure. MIP may not detect

true pore size distribution since mercury may not pass through the narrowest

pores. If there exist too small or too isolated pores to be intruded by mercury, it

will measure a porosity lower than the actual one.

Cook and Hover [40] used MIP technique to analyze 92 cement paste speci-

mens having w/c ratios ranging from 0.3 to 0.7 at curing times from 1 day to 56

days, and drew the following conclusions:

• Longer curing times and higher w/c ratios result in higher degrees of hy-

dration.

• Longer curing times and lower w/c ratios result in lower porosity and

lower threshold pore width values.

• Considering the investigated specimens, lowering the w/c ratio by 0.1 is a

more effective method to minimize the threshold pore width and the total

MIP porosity than doubling the curing time.
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Tortuosity and constrictivity affect the rate of chloride ingress as well as

the connectivity of pores. Tortuosity is the ratio of the effective travel distance

through the pores to the shortest straight flow path, and constrictivity is a mea-

sure of variations in cross-sectional area of pores (Figure 2.12). They are deter-

mined by indirect methods since they cannot be measured directly [150].

Figure 2.12: Schematical View of Tortuosity and Constrictivity [150]

Supplementary cementitious materials alters a pore structure significantly,

therefore affects the resistance of concrete to chloride ingress. Streicher and

Alexander [154] compared Portland cement mixes with 70% Portland cement

+ 30% fly ash mixes, and reported that the fly ash mixes yielded a better resis-

tance to chloride ingress. Dhir et al. [47, 48, 50] observed that the resistance of

concrete to chloride ingress increases with the fly ash content, and that the re-

sistances of air-cured and water-cured concrete specimens approach each other

with the increase in their fly ash contents. Yang et al. [189, 192] examined a

number of concrete specimens containing fly ash and slag, and obtained similar
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results. It is worthy to note that the pore structure of a fly ash concrete, which

does not necessarily have a lower total porosity than a Portland cement concrete

does, has a more discontinuous and tortuous pore network due to the ongoing

pozzolanic reactions within the existing pores [47]. Tang and Nilsson [167], and

Jensen et al. [87, 88] found out that high strength concrete blended with silica

fume has a significantly better resistance to chloride ingress than Portland ce-

ment concrete does.

2.2.3.2 Interfacial Transition Zone (ITZ)

There exist a zone around an aggregate particle in concrete, referred to as in-

terfacial transition zone (ITZ), in which the microstructure of cement paste differs

from the microstructure of bulk cement paste (Figure 2.13). It is characterized

by a relatively high porosity (Figure 2.14) and coarser pores compared to the

ones far away from the aggregate surface. Although the boundary of an ITZ is

not definite, it can be thought as a thin shell surrounding the aggregate particle

and having a thickness up to 50 µm [15, 123, 146, 147, 149]. The existence of ITZ

is attributed primarily to the so-called wall-effect [15, 58, 123, 147, 149].

The presence of aggregate disturbs the initial packing characteristics of ce-

ment particles, resulting in a looser packing of the cement particles in the im-

mediate vicinity of the aggregate particles. In other words, a gradient of w/c

ratio, where w/c ratio decreases with increasing distance from aggregate, devel-

ops in the immediate vicinity of each aggregate particle due to the constraints

imposed by the surface of an aggregate particle, i.e., wall-effect [15, 58, 123, 147].

The gradient of w/c ratio around an aggregate particle results in a gradient of

porosity around the aggregate particle (Figure 2.14).
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In addition to the wall-effect, bleeding, the accumulation of water beneath

aggregate particles during the vibration of fresh concrete, contributes to the for-

mation of ITZs by causing heterogeneity in the w/c ratio gradients around the

aggregate particles [15, 26, 37, 123].

Figure 2.13: ITZ Between Aggregate and Cement Paste [184]

Two common methods for studying ITZ are to use BSE image analysis on

polished sections of concrete and to conduct MIP measurements. SEM obser-

vations allow to determine porosity, unhydrated cement content and fraction of

hydration products as functions of distance to an aggregate surface. However,

it is not possible to obtain three-dimensional pore size distribution since the

images are two-dimensional. MIP measurements, on the other hand, provide

information about pore size distribution. MIP analyses on concrete specimens

allow to study the connectivity of ITZs as a function of aggregate volume frac-

tion and particle size distribution.

Laskar et al. [99] studied two types of concrete samples that could be used
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in MIP analyses: (i) mortar containing coarse aggregate, and (ii) mortar with-

out coarse aggregate. Both types of samples were taken from the same concrete

specimen by drilling cores. The cores were crushed, and then the chunks suit-

able for MIP analyses were selected from the crushed cores. It was observed

that mortar containing coarse aggregate was more porous than mortar without

coarse aggregate, probably due to the existence of ITZ. Kumar and Bhattachar-

jee [97] also compared two types of concrete samples that could be used for MIP

analyses: (i) concrete chunk samples obtained by crushing large-sized cores, 75

mm in diameter and 100 mm in height, drilled from concrete beams of dimen-

sions 100×200×1000 mm, and (ii) small cores, 25 mm in diameter and 15-25 mm

in height, drilled from the same concrete beams at randomly chosen locations.

Although both types of samples yielded similar results, Kumar and Bhattachar-

jee [97] suggested to use small cores for MIP analyses since they exhibited a

lower sample-to-sample variation. It was also suggested that the number of

concrete samples used in MIP analyses should be at least six, in order to achieve

a reasonable accuracy [97, 99].

Ollivier et al. [123] described the microstructure of concrete in terms of its

porous microstructure by reviewing two types of studies -SEM using BSE imag-

ing and MIP- carried out to analyze the porosity of its cement paste fraction.

The porosity gradients detected in the immediate vicinity of aggregate particles

by SEM observations, like the ones shown in Figure 2.14, were accepted as an

evidence for the existence of the wall-effect [123]. By reviewing SEM observa-

tions and MIP tests, Ollivier et al. [123] concluded that (i) the porosity is higher

in the ITZ than in the bulk, and (ii) the pores in the ITZ are coarser than the ones

in the bulk.
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Figure 2.14: Average Porosity in ITZ [149]
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Figure 2.15: Volume Fraction of Unhydrated Cement in ITZ [149]
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Scrivener et al. [149] studied ITZ in concrete specimens by examining 100

BSE images chosen randomly for each specimen. The fractions of the unhy-

drated cement and the hydration products, and the porosity were investigated

by using 30 bands of about 3 µm width around the aggregate particles. The ini-

tial distribution of the unhydrated cement back-calculated from the distribution

of the unhydrated cement at one day shows that the wall-effect is effective in a

zone of 15 µm adjacent to the aggregate surfaces (Figure 2.15), which is a value

close to the average cement particle diameter. There exist small cement particles

in the immediate vicinity of the aggregate particles, while larger cement parti-

cles are far away from the aggregate particles due to the wall-effect. The width

of the zone with a reduced amount of unhydrated cement increases with the

age of concrete (Figure 2.15) because small cement particles in the immediate

vicinity of the aggregate particles may hydrate completely, while larger cement

particles far away from the aggregate has always a greater unhydrated fraction

than the small ones do [149].

Ollivier et al. [123] and Scrivener et al. [149] described the microstructure of

concrete also in terms of the progress of hydration. Two major solid hydration

products, C-S-H and CH, dominate the microstructural development of con-

crete. Initially, the concentration of silicate ions, which have relatively low mo-

bility, is low resulting in the deposition of C-S-H around the cement particles,

while the concentration of calcium ions, which have relatively high mobility,

is high resulting in the deposition of CH in the open pores. Large areas filled

with water in the immediate vicinity of the aggregate particles due to the wall-

effect, as shown in Figure 2.14 and Figure 2.15, leads to the deposition of more

CH in the ITZ compared to the amount of CH in the bulk cement paste (Figure

2.16). Although the ITZ contains more CH than the bulk cement paste does, the
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CH deposits in the ITZ are local rather than forming a continuous layer [149].

The distribution of other hydration products -predominantly C-S-H- detected

by Scrivener et al. [149] is shown in Figure 2.17. As shown in Figure 2.14, even

though the rate of change of porosity in the ITZ as a function of distance from

aggregate surface decreases with the age of concrete, a porosity gradient can be

still observed at an age of one year. The connectivity of the pores in the ITZ can

be seen in Figure 2.18, an image of concrete intruded with Wood’s metal. There-

fore, it can be concluded that ITZ might facilitate transport of chloride through

concrete due to the relatively high porosity and the connectivity of pores in the

ITZ.
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Figure 2.16: Average Distribution of CH in ITZ [149]

Wong and Buenfeld [84, 184, 186] proposed an effective method called

Euclidean Distance Mapping (EDM) to analyze the microstructural character-

istics of ITZ. The method employs distance transformation to convert a binary

image composed of background and foreground pixels into a greyscale image,
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where each pixel has a brightness value equal to its linear distance to the near-

est background pixel. Then the porosity distribution at any distance from an

aggregate surface is obtained by converting the brightness values into the ac-

tual distance values. Wong and Buenfeld [184] used this method to examine the

microstructural features of ITZ within an ordinary Portland cement concrete

with a w/c ratio of 0.4. The porosity and the volume fraction of unhydrated

cement as a function of distance from the aggregate surface observed by Wong

and Buenfeld [184] is similar to the ones shown in Figure 2.14 and Figure 2.15,

respectively. Based on the analyses of BSE images, Wong and Buenfeld [184]

detected three types of ITZ as: (i) very porous with a sharp porosity gradient,

(ii) denser with large amounts of CH deposited on the aggregate surface, and

(iii) a mixture of both.
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Figure 2.17: Average Distribution of Other Hydration Products [149]

The microstructure of an ITZ can be altered in mainly two ways [123]: (i)

adding particles finer than Portland cement particles in order to obtain a dense
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packing in the immediate vicinity of aggregate particles, and (ii) modifying the

hydration process.

Figure 2.18: Concrete Intruded with Wood’s Metal [149]

Supplementary cementitious materials modify the characteristics of ITZs.

For instance, the use of silica fume results in a dense packing, thus a reduced

porosity, in the immediate vicinity of aggregate particles because (i) silica fume

particles fill large voids within an ITZ since they are finer than cement particles,

and (ii) they reduce the porosity by producing extra C-S-H by reacting with CH

[26]. Goldman and Bentur [73] performed a series of experiments to separate the

filler effects and the pozzolanic effects of silica fume on ITZs by replacing silica

fume with a non-reactive filler material called carbon black. It was found that

the use of silica fume lowers the porosity in the immediate vicinity of the ag-

37



gregate particles, independent of its pozzolanic effect. This effect of silica fume

was considered as a proof of the existence of the wall-effect [73, 123]. Scrivener

et al. [148] also reported that silica fume leads to a dense packing in the immedi-

ate vicinity of the aggregate particles due to its smaller size compared to cement

particles.

Chemical reactions between aggregate and cement paste may also affect the

microstructure of an ITZ [123, 171, 173]. A beneficial type of such reactions is

the one between the calcareous aggregate and the ordinary cement paste. This

reaction is limited to the ITZs since the mobility of carbonate ions is low [123].

The thickness of ITZ is related to the range of cement particle size as well

as w/c ratio. Ollivier et al. [123] had results showing that the thickness of ITZ

equals to the mean diameter of cement particles, while Bentz and Garboczi [20]

found that it is equal to the median cement particle diameter. On the other hand,

Hu and Stroeven [86] pointed out that it depends on the evaluation parameter

of interest.

In summary, there exist transition zones of thickness up to 50 µm between

aggregate and cement paste, therefore concrete is considered as a three-phase

material at microscale. Such zones result from the effect of aggregate particles

on the initial packing of cement particles in the immediate vicinity of the aggre-

gate particles. A transition zone is characterized by a relatively high porosity

and coarser pores than the ones far away from the aggregate surface. It is im-

portant to note that the gradients of porosity, unhydrated cement and solid hy-

dration products in transition zones get less pronounced as the age of concrete

increases, due to the ongoing hydration reactions. In conclusion, ITZ is the

weakest component of concrete with regard to its resistance to chloride ingress.
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2.2.3.3 Simulation of Microstructure

As an alternative to experimental methods, several researchers have devel-

oped computer simulation models to help understand the structure of cement

paste and/or concrete at microscale. Garbozci and Bentz [61] defined a material

model as a theoretical construction that can estimate the structure and the prop-

erties of a material quantitatively. The mathematical language used to construct

a material model may be in various forms, e.g., a set of deterministic empirical

equations obtained from experimental data and a set of differential equations

with coefficients obtained from experimental data. A computer simulation re-

turns numerical results for physical quantities of interest by executing the pre-

scribed computer algorithms on numerically or analytically represented system

[61].

Garbozci and Bentz [60] developed a computer simulation model, known as

the NIST model, to simulate the microstructural development of a cement paste.

Portland cement was considered to be composed entirely of C3S in the original

version, but the model was then modified to consider all major phases [16]. Ce-

ment particles are represented by circles (or spheres) in a 2D (or 3D) domain of

pixels, where each pixel is assigned to a single phase such as water-filled pore

space or cement, with periodic boundary conditions. The model executes an

iteration of several simple growth rules, which are based more on the physical

mechanism of microstructural development than on the chemical mechanism.

Each cycle of iteration consists of three steps: dissolution, diffusion and reac-

tion. In the dissolution step, some of the cement pixels in contact with a water-

filled pore space pixel start random walks according to a given probability law.

For each dissolved cement pixel, extra diffusing pixels are added at random
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positions in order to take into account the CH formation and the volume expan-

sion due to the C-S-H formation. The dissolved pixels execute random walks

throughout the pore space during the diffusion/reaction steps. When a C-S-H

pixel encounters a cement surface or a C-S-H pixel previously stuck to a cement

surface, it reacts and sticks to this surface. On the other hand, a diffusing CH

pixel can either nucleate at its present location with a nonzero probability, which

decreases exponentially as the number of diffusing CH pixels decreases, or stick

to a surface of CH cluster if it encounters one of them. Aggregate is assumed to

be nonreactive.

Garbozci and Bentz [60] observed that the distributions of porosity, C3S, CH

and C-S-H in the ITZ simulated by the NIST model have a similar trend with the

distributions in real concrete, like the ones shown in Figure 2.14 through Figure

2.17, respectively. Bentz and Garbozci [19] studied the effects of w/c ratio and

degree of hydration on the evolution of pore structure using the NIST model,

and observed a capillary porosity percolation threshold of approximately 18%

for the cement pastes simulated from cement particles having only four differ-

ent sizes. Bentz et al. [23] used the NIST model with additional rules to simu-

late the effects of supplementary cementitious materials, e.g., silica fume and fly

ash, and lightweight absorptive aggregate or cement clinker in place of normal

weight aggregate on the microstructural development of ITZ, and compared

the numerical results with experimental measurements [26]. It was observed

that the fine pozzolanic materials, particularly silica fume, improve the physical

properties of ITZ microstructure by filling large voids in the immediate vicinity

of aggregate particles and producing more C-S-H as a result of their pozzolanic

reactions with CH [23, 26]. It was also observed that the use of lightweight

absorptive aggregate or cement clinker in place of normal weight aggregate en-
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hances the physical properties of ITZ microstructure due to the rearrangement

of the cement particles around aggregate particles as a result of water absorp-

tion by the lightweight absorptive aggregate or the cement clinker [23].

Bentz [16] improved the NIST model to a three-dimensional cement hydra-

tion model, referred to as CEMHYD3D, that considers all major phases. Further-

more, it determines the heat of hydration and the volume reduction resulting

from the hydration reactions, and adjusts the densities of C-S-H, ettringite and

iron hydroxide to model the experimental data better. In the previous model, all

diffusing species have to be reacted before a new dissolution step is started, but

CEMHYD3D allows diffusing species to remain in the solution from one step

to the next [17]. The reaction rules for each diffusing species can be found else-

where [16, 17]. CEMHYD3D allows hydration products to grow with a random

morphology, but it attempts to make ettringite grow into needle-shaped struc-

tures. Bentz [17] showed that the model can predict the hydration kinetics be-

havior of a cement type with various w/c ratios once a calibration is performed

at a single w/c ratio, provided that the cement particle size distribution and the

phase distribution of the cement are known. Of the three major sources of error

in numerical models -statistical fluctuation, finite size and digital resolution-,

Garboczi and Bentz [66] identified the digital resolution as the most important

one for their model. Based on a visual comparison of two-dimensional images

and a numerical comparison of normalized correlation functions, Bentz [18] re-

ported a good agreement between the microstructures of real and simulated

cement pastes. Garboczi and Bentz [66] obtained a capillary porosity perco-

lation threshold of 20-22% with realistic cement particle size distributions by

using CEMHYD3D. Bentz et al. [21] studied the effect of cement particle size

distribution on setting time, heat release during hydration, capillary porosity
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connectivity, shrinkage, relative humidity evolution, microstructure of ITZ and

chloride diffusivity by using CEMHYD3D. Bentz et al. [25] studied the role of

silica fume in reducing the diffusivity of tritiated water and chloride in cement

pastes, and compared the simulated values obtained by CEMHYD3D with the

experimental values. Rémond et al. [134, 135] used CEMHYD3D to study the

microstructural evolution of cement pastes containing fly ash.

Breugel [177, 178, 179] developed a computer-based cement hydration

model, called HYMOSTRUC, to study the microstructural characteristics of ce-

ment pastes. In this model, cement particles are represented by spheres placed

randomly in a three-dimensional domain. These spheres grow gradually sim-

ulating the hydration of cement particles, where it is assumed that particles of

the same size hydrate at the same rate. The growing spheres become more and

more connected with the continuing hydration, and a porous microstructure is

formed eventually. Ye et al. [194] simulated two cement pastes with w/c ratios

of 0.3 and 0.4 by using the HYMOSTRUC. Then they analyzed the simulated

microstructures by using a serial sectioning method, which scans the simulated

microstructures from three orthogonal directions layer by layer. Geometrical

and topological characteristics of the simulated microstructures were derived

by performing calculations on these layers consisting of pixels representing

solid or pore phases. The trend of solid phase development obtained by the

HYMOSTRUC was similar to the one obtained by the NIST model. However,

capillary porosity percolation threshold calculated by the HYMOSTRUC was

less than that obtained by the NIST model. The difference results from the dif-

ferent digital resolutions used by the two methods and the different principles

employed by the two methods to simulate the hydration process [194].
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Gao and Stroeven [58] developed a model, called the non-placement model, to

simulate the effect of cement particle packing in the vicinity of an aggregate par-

ticle. The model assumes that a particle arch structure may be formed near the

aggregate surface such that no cement particles can be placed between the ag-

gregate surface and the arch, so that there may occur relatively large spaces near

the aggregate surface. Cement particles with random sizes are placed at random

locations, and a particle arch will be formed if certain conditions, e.g., the stabil-

ity of the arch structure, are met.

Stroeven and Stroeven [155, 157, 158, 159] analyzed the characteristics of ITZ

by using the Software Package for the Assessment of Compositional Evolution

(SPACE), which simulates the production process of composite materials based

on a dynamic concept that imitates the production stage of materials. The soft-

ware models the hydration process of a single cement particle, represented by

a sphere, by employing a growth model consisting of two subsequent stages,

the details of which can be found elsewhere [157, 158]. The hydration rate is

controlled by a phase-boundary mechanism and a diffusion mechanism in the

first and second stages, respectively. The wall-effect was simulated for different

w/c ratios by using the SPACE, and it was observed that the volume fraction of

cement particles decreases as the aggregate surface is approached, which is an

evidence for the wall-effect.

2.3 Chloride Diffusion in Concrete

Reinforced concrete structures may deteriorate due to various environmen-

tal factors, e.g., chemical attacks and freeze-thawing cycles. Of such factors,
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chloride ingress into concrete is of interest to this research, since chloride-

induced corrosion of steel reinforcement bars is one of the main causes of dete-

rioration of reinforced concrete structures built in chloride environments.

High alkali environment within concrete encourages the development of

a passive (oxide) film around steel reinforcement bars, which protects them

against corrosion. As more chloride penetrates concrete, the alkalinity of con-

crete is reduced. When chloride concentration in a vicinity of a steel bar reaches

a critical value, referred to as chloride threshold value, the passive film protecting

the bar is damaged. Provided that there is adequate oxygen and moisture in the

environment, corrosion of the bars initiates leading to cracking, spalling or de-

lamination of the concrete cover since the volume of the corrosion products are

several times (2 to 6 times) larger than the volume of the steel lost by corrosion.

A secondary effect is reduction in load-carrying capacity of the steel bars, due

to loss of cross-sectional area at locations where corrosion takes place.

The sources of chlorides to which reinforced concrete structures are exposed

are divided into two main groups [129]:

• Chlorides present in the constituents of concrete, e.g., salty aggregate, salty

mixing water and admixtures containing chlorides.

• Chlorides from environmental sources, e.g., seawater, sea spray, de-icing

salts and salty groundwater.

There are mainly four groups of chloride transport mechanisms observed in

concrete [129]: (i) permeation, (ii) migration, (iii) convection, and (iv) diffusion.

Of the four main mechanisms, diffusion is of interest to this research, since it is

the most dominant chloride transport mechanism.
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Permeation is the movement of water through concrete driven by a hydraulic

pressure gradient [129]. The movement is always towards the regions with

lower hydraulic pressure. If there exist any chlorides in the permeating wa-

ter, they are also carried into concrete within the water. Permeability coefficient

of a cement paste is determined by the size and the connectivity of pores in the

cement paste [109]. As the degree of hydration increases, the porosity of the ce-

ment paste decreases, and so does the permeability coefficient. The relationship

between the permeability coefficient and the degree of hydration is strong at the

beginning of the hydration process. As the large pores are consumed by the hy-

dration products, and the connections between the pores become tortuous, the

relationship weakens. Also, a high w/c ratio, especially at a low degree of hy-

dration, results in a high permeability coefficient. In general, the permeability

of natural aggregate is lower than the permeability of cement pastes.

Migration is the movement of chloride ions under the influence of an electri-

cal field [129]. Chloride ions always migrate towards the anode. The migration

mechanism is exploited in various test methods, which is discussed extensively

in Chapter 5, to measure the resistance of cement paste or concrete specimens

to chloride ingress.

Convection is the transport of chlorides carried within the water driven by a

moisture gradient [129]. Water always moves towards regions with lower mois-

ture content. In partially saturated concrete structures, chloride ingress occurs

by convection coupled with diffusion [8, 120]. For example, when a concrete

structure is exposed to drying-wetting cycles, e.g., a marine structure under tidal

conditions, water will penetrate into the dry regions of concrete carrying chlo-

rides within itself. It is important to note that chloride remains in the structure
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when water evaporates. A discussion on chloride accumulation in concrete dur-

ing alternating wetting-drying cycles can be found elsewhere [115, 116].

Diffusion is the movement of chlorides driven by the chloride concentration

gradient. For instance, if a concrete structure is fully submerged in seawater, it is

the diffusion that dominates the chloride ingress, unless there is a high pressure

head. Chloride diffusion through concrete is usually considered as a Fickean

diffusion [8, 129]. The mathematical representation of the Fickean diffusion is

given below.

2.3.1 Fick’s Law of Diffusion

Fick’s diffusion theory assumes that the transport of chloride through a unit

area of a section per unit time is proportional to the chloride concentration gra-

dient measured normal to this section. Let H ⊂ Rd be a bounded subset con-

taining a heterogeneous medium (e.g., concrete) with a deterministic diffusivity

field D(x) > 0, x ∈ H . Then Fick’s first general law of diffusion [42] states that

Jxk
(x, t) = −D(x)

∂C(x, t)

∂xk

, k = 1, . . . , d, x ∈ H, (2.3)

where Jxk
(x, t) and C(x, t) are the chloride flux in the xk-axis and the chloride

concentration at position x and time t, respectively. The negative sign in Eq. 2.3

shows that the diffusion occurs towards the direction along which chloride con-

centration decreases, that is, the tendency of chloride transport is to diminish

the chloride concentration gradient. The mass conservation law requires that

the change in the chloride concentration per unit time is equal to the change in
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the chloride flux per unit length [42], that is,

∂C(x, t)

∂t
+

d∑

k=1

∂Jxk
(x, t)

∂xk

= 0, x ∈ H, t ≥ 0. (2.4)

Fick’s second general law of diffusion [42] can be obtained by replacing

Jxk
(x, t) in Eq. 2.4 with Eq. 2.3 such that

∂C(x, t)

∂t
=

d∑

k=1

∂D(x)

∂xk

∂C(x, t)

∂xk

+ D(x)∆C(x, t), x ∈ H, t ≥ 0, (2.5)

where ∆ =
∑d

k=1 ∂2/∂x2
k is the Laplace operator. The chloride concentration

at position x ∈ H and time t ≥ 0 is completely defined when the initial and

boundary conditions are imposed to Eq. 2.5. The methods for solving Eq. 2.5

are discussed in Chapter 3.

2.3.2 Fick’s Law of Diffusion with Chloride Binding

Chloride within concrete may exist in the state of either free or bound. The

one dissolved in pore solution is called free chloride, whereas the one chemi-

cally bound to aluminate hydrates forming Friedel’s salt or physically bound to

cement hydrates (adsorbed by C-S-H) are called bound chloride. Only the free

chloride is responsible for the initiation of corrosion of steel reinforcement since

it is the one capable of reducing the alkalinity of concrete. Chloride binding

reduces the rate of chloride diffusion through concrete. It is important to note

that some of the bound chloride can be released in time due to various factors,

e.g., the level of alkalinity and the temperature, resulting in an increase in the

free chloride concentration, which in turn increases the risk for corrosion of steel

reinforcement [105, 129, 169].
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Chloride binding mechanism is affected by many parameters such as com-

position of pore solution, chloride concentration in pore solution, type of ce-

ment, use of supplementary cementitious material(s), type of coexisting cation,

type of aggregate and temperature [44, 48, 98, 103, 169, 174]. Delagrave et al. [44]

reported that using CaCl2 in an experiment instead of NaCl, as well as the use of

a saturated lime (CaOH2) solution instead of an alkaline (NaOH + KOH) solu-

tion, increases the amount of bound chloride. It was found that chloride binding

capacity depends strongly upon the amount of cement gel regardless of the w/c

ratio [44, 169]. Larsen [98] showed that the capacity decreases significantly with

increasing temperature, and is also reduced in the presence of aggregate.

The relationship between the free and bound chloride concentrations at a

given temperature is usually described by chloride binding isotherms. Even

though numerous researchers have shown that this relationship is non-linear

[44, 72, 105, 169], it has often been assumed as linear for simplicity [111].

The widely used non-linear chloride binding isotherms are Langmuir and Fre-

undlich isotherms, which are said to be good at low and high chloride concen-

trations, are given by

∂Cb

∂Cf

=
cα

(1 + cβCf )
2 , (2.6)

∂Cb

∂Cf

= cαcβC
cβ−1

f , (2.7)

respectively [169]. Here, Cf and Cb are the free and bound chloride concentra-

tions, respectively, and, cα and cβ are empirical constants [169].

Considering the chloride binding effect, Fick’s second law can be written as

∂Ct(x, t)

∂t
=

∂

∂x

(
D(x)

∂Cf (x, t)

∂x

)
, x ∈ H, t ≥ 0, (2.8)

where Ct and Cf are the total chloride concentration in per m3 of concrete and
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the free chloride concentration in per m3 of pore solution, respectively [105].

Since the units of Ct and Cf are different, Eq. 2.8 needs to be rewritten. The

relationship between the total, free and bound chloride concentrations is

Ct = Cb + weCf , (2.9)

where we is the evaporable water content of concrete (m3 evaporable water/m3

concrete). By applying mass conservation to Eq. 2.9 and then substituting into

Eq. 2.8, the modified equation can be written as

∂Cf (x, t)

∂t
=

∂

∂x

(
D̃(x)

∂Cf (x, t)

∂x

)
, x ∈ H, t ≥ 0, (2.10)

where

D̃(x) =
D(x)

we + ∂Cb

∂Cf

. (2.11)

2.4 Parameters Affecting Chloride Diffusivity

Chloride diffusivity in concrete depends on many parameters. Since chlo-

ride diffusion occurs mainly through capillary pores in the cement paste [59],

the properties of the pore structure have a major effect on the rate of chloride

diffusion. The presence of aggregate has two opposite effects on the chloride

diffusivity in concrete such that it promotes the resistance of concrete to chlo-

ride diffusion by increasing tortuosity and diluting cement paste, while ITZs

around the aggregate particles facilitates chloride diffusion through concrete.

Furthermore, the interactions -ion/solid interactions, ion/ion interactions and

ion/solvent interactions- affect the rate of chloride diffusion. Temperature af-

fects the chloride diffusivity in concrete by both altering the chloride binding

capacity and influencing the activation energy of the diffusion process.
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2.4.1 Pore Structure

The pore structure in a cement paste consists of capillary pores and gel pores.

Since capillary pores are much larger than gel pores, chloride diffusion in con-

crete occurs mainly through capillary pores. Then capillary porosity, connectiv-

ity of capillary pores and threshold pore diameter are of paramount importance

with regard to the resistance of concrete to chloride diffusion. The parameters

affecting a capillary pore structure, also reviewed briefly below, are discussed

in Section 2.2.1.5 and Section 2.2.3.

The resistance of concrete to chloride diffusion increases with decreasing

capillary porosity, which is a function of w/c ratio and degree of hydration

(Eq. 2.1), that is, capillary porosity increases with w/c ratio, while it decreases as

degree of hydration increases (Figure 2.6). Therefore the resistance of concrete

to chloride diffusion increases with degree of hydration, while it decreases as

w/c ratio increases. Degree of hydration is a function of time, available mois-

ture and temperature, then curing conditions and curing period affect the resis-

tance of concrete to chloride diffusion significantly. Increasing the curing period

and/or improving the curing method increase the resistance of concrete to chlo-

ride diffusion since they increase degree of hydration [40, 47, 50, 185].

The application of the percolation theory to cement pastes, which explains

the development of pore structure, is discussed in Section 2.2.3.1. As the hydra-

tion takes place, i.e., degree of hydration increases, capillary pores are blocked

with cement gel diminishing the connectivity of capillary pores, which increases

the resistance of concrete to chloride diffusion. However, it may not be possible

to block all capillary pores with cement gel for high w/c ratios (Table 2.1).
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Halamickova et al. [82] reported that threshold pore width decreases with

the ongoing hydration and it is larger for a mortar specimen than the one for

the corresponding neat cement paste specimen. A linear relationship between

the threshold pore width and the resistance of concrete to chloride diffusion has

been found by various researchers [82, 185, 190].

Supplementary cementitious materials modify pore structures significantly.

Streicher and Alexander [154], Dhir et al. [47, 48, 50] and Yang et al. [189, 192]

studied the effect of fly ash and slag on the resistance of concrete to chloride

ingress, and found that the resistance increases with the use of fly ash or slag.

Dhir et al. [47, 48, 50] observed that the chloride diffusion coefficients in both air

and moist cured concrete approach each other with increasing fly ash content.

It was reported that the use of fly ash also improves the chloride binding capac-

ity of concrete probably due to an increase in more active regions available for

binding reactions [47]. It is worthy to note that the pore structure of a fly ash

concrete, which does not necessarily have a lower total porosity than an ordi-

nary concrete does, has a more discontinuous and tortuous pore network due

to the ongoing pozzolanic reactions within the existing pores [47]. Tang and

Nilsson [167], and Jensen et al. [87, 88] found out that high strength concrete

blended with silica fume has a significantly better resistance to chloride ingress

than ordinary concrete does.

2.4.2 Presence of Aggregate

The presence of aggregate causes the existence of interfacial transition zones

(ITZ) around the aggregate particles. It is discussed in Section 2.2.3.2 that the
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microstructure of ITZ differs from the microstructure of bulk cement paste in

an ordinary concrete such that the ITZ has a more porous microstructure and

coarser pores than the bulk cement paste does. If there were no ITZ, concrete

would certainly have a lower chloride diffusivity than its cement paste frac-

tion, since aggregate particles, unless they are porous, behave as physical barri-

ers against diffusing chloride ions by increasing tortuosity and diluting cement

paste. The effect of ITZ on the diffusivity fo chloride in concrete depends on

the connectivity of ITZs and how different the microstructures of ITZ and bulk

cement paste are [24].

Figure 2.19: Schematical Connectivity of ITZs (represented by white area)

The connectivity of ITZs is a function of volume fraction of aggregate.

Winslow et al. [183] conducted pore structure analyses on a series of mortar

specimens having different sand contents, but a constant w/c ratio of 0.4, by

using the MIP technique. A significant difference was observed between the cu-

mulative mercury intrusion curves for sand volume fractions of 45% and 49%,
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thus it was concluded that the mortar specimen having a sand volume fraction

of 49% had a continuous path, consisting of ITZs, that percolates the specimen.
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Figure 2.20: Evolution of Diffusivity against Sand Volume Fraction [43]

Delagrave et al. [43] and Yang et al. [191, 193] studied the effect of ITZ on the

chloride diffusivity in mortar. The ratio of the diffusion coefficients in mortar

specimens to the ones in the corresponding neat cement pastes, obtained by De-

lagrave et al. [43], is plotted as a function of sand volume fraction in Figure 2.20.

The dotted line in Figure 2.20, calculated by Garboczi [68], is the conductivity

ratio of mortar to neat cement paste, where there is no ITZ, that is, it represents

the effects of tortuosity and dilution.

It can be observed in Figure 2.20 that, for mortar specimens tested by Dela-

grave et al. [43], even though the transport coefficient of cement paste fraction

of mortar increases with sand volume fraction probably due to the increased

connectivity of ITZs, the reduction in the transport coefficient due to the effects

of tortuosity and dilution dominates the overall behavior, resulting in a trans-
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port coefficient in mortar lower than the coefficient in the corresponding neat

cement paste. Using the numerical model developed by Bourdette et al. [27],

Delagrave et al. [43] found that almost all ITZs in the specimens having sand

volume fractions 50% and 57% were connected. Therefore, a continuous path of

ITZs percolating a specimen might not be sufficient for the transport coefficient

to be higher than the coefficient in the corresponding neat cement paste. Yang

et al. [191, 193] obtained results similar to those of Delagrave et al. [43].

On the other hand, Halamickova et al. [82] observed that the chloride dif-

fusion coefficients in mortar specimens, which have almost the same degree of

hydration and the same w/c ratio, increase with the volume fraction of sand.

The chloride diffusion coefficients in concrete specimens measured by Zhang

and Gjørv [197] were higher than the ones in mortar specimens with the same

w/c ratio of 0.5. Based on the experiments on mortar specimens with varying

sand fractions and a constant w/c ratio of 0.45, Caré [31] observed both cases,

that is, an aggregate particle size distribution resulted in a lower chloride dif-

fusivity than the one in the neat cement paste specimen, while the other two

distributions caused a higher value. Therefore, the effect of ITZ on the chloride

diffusivity in mortar/concrete depends on not only the connectivity of ITZs, but

also the ratio of the chloride diffusivity in the ITZ to the diffusivity in the bulk

cement paste. Based on their simulations on computational concrete volumes,

Garboczi et al. [68, 145] concluded that how much the chloride diffusivity in con-

crete is affected by ITZ is determined by the the ratio of the chloride diffusivity

in the ITZ to the one in the bulk cement paste.

In conclusion, there are two opposite effects of the presence of aggregate

competing with each other [31, 43, 63, 102, 193]:
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• The presence of aggregate tends to reduce the chloride diffusivity in con-

crete by increasing the tortuosity, which makes diffusing chloride ions

travel along longer paths, combined with a volumetric dilution effect.

• The connectivity of ITZs tends to increase the chloride diffusivity in con-

crete by forming a continuous path along which chloride ions can travel

faster. The effect of ITZ depends on the ratio of the chloride diffusivity in

the ITZ to that in the bulk cement paste.

An important property of aggregate that may affect the chloride diffusivity

in concrete is aggregate porosity. Price et al. [132] studied the effects of aggregate

porosity on the chloride diffusivity in concrete by testing a series of concrete

specimens manufactured from various cement types and natural aggregate with

varying water absorption capacities. It was observed that the increase in the

chloride diffusivity due to the use of high absorption aggregate in place of low

absorption aggregate at a fixed w/c ratio was higher than the increase due to a

change in w/c ratio from 0.4 to 0.5. The probable reason for the increase due

to the use of high absorption aggregate is continuous pores existing within the

aggregate particles that would provide relatively short paths for chloride ions

to travel along.

2.4.3 Surface Interactions and Characteristics of Solution

From an electrochemical point of view, chloride transport in concrete is af-

fected by various interactions such as ion/solid interactions, ion/ion interac-

tions and ion/solvent interactions, therefore, the ionic diffusivity depends on

the ionic concentration in the pore solution [199, 201].
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An electrical double layer, a common phenomenon to all solid-electrolytic so-

lution systems, forms on the capillary pore walls of the concrete whose pores are

filled up with a chloride containing electrolyte solution [103, 199]. Surface po-

tential, determined by the adsorbed ions, decreases along the direction away

from the pore wall according to the properties of pore solution. The repul-

sion/attraction forces between the electrical double layer and the ions present

in the pore solution influence the movement of the ions. For a given capillary

pore size, a minimum concentration is required for the ions to diffuse in. In

other words, for a given concentration, the ions can only diffuse in the capillary

pores over a certain size. Zhang and Gjørv [199] considered this effect of elec-

trical double layer as one of the possible reasons of the increase in the resistance

of concrete to chloride ingress due to the use of silica fume and/or blast furnace

slag.

Page et al. [118, 195] suggested that the surface interactions between pore

walls and pore solution may influence the rate of chloride diffusion in cement

pastes by observing the differences between the activation energies for chloride

diffusion in cement pastes and in simple aqueous electrolytes. In order to ex-

amine the effect of surface interactions on the rate of chloride diffusion, a series

of experiments was conducted to measure the chloride and oxygen diffusivities

in cement paste specimens [32, 118, 195]. The reason for selecting oxygen was

that it has a similar diffusion coefficient to that of chloride in infinitely dilute

solutions, and that it is not affected by surface interactions since it is a neutral

molecule. It was observed that the ratio of oxygen to chloride diffusion coeffi-

cients increases as the w/c ratio decreases, which supports their suggestion that

the surface interactions affects the rate of chloride diffusion in cement pastes

[32, 118, 195].
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Another type of interaction in pore solutions is the one between the ions

present in the solutions. During a diffusion process in an electrolytic solution,

the faster ions slow down and the slower ions accelerate due to the conservation

of electroneutrality [103, 139]. Hence, the rate of chloride diffusion is affected

by ion/ion interaction in order to preserve the local electroneutrality at any point

in the pore solution of concrete. This interaction results in retardation of drift

velocity of the chloride ions [103, 139, 199]. The effect of ion/ion interaction gets

more pronounced as the concentration in pore solution increases since the dis-

tances between the ions decrease [103, 139]. Another interaction decreasing the

ionic mobility is ion/solvent interaction, which is the tendency of ions moving

in a solution to drag numerous solvent molecules with them [139].

The chemical potential of a diffusing species, driven by the gradient of its

chemical potential, in an electrolytic solution needs a correction factor, referred

to as activity coefficient, which is equal to unity for an infinite dilute solution

[103, 139, 199], so the diffusion coefficient of the diffusing species depends on

its activity coefficient for the solution in which it diffuses. In electrolytic solu-

tions, ionic interaction is responsible for the decrease in the chemical potential of

the diffusing species, thus the decrease in its diffusion coefficient [103, 139, 199].

Therefore, the chloride diffusion coefficient in concrete decreases as the con-

centration in the pore solution of concrete increases, due to the effect of ionic

interaction. Zhang [201] noted that the various interaction mechanisms affect-

ing the chloride diffusivity lose their sensitivities to the chloride concentration

level with the increasing chloride concentration.
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2.4.4 Temperature

Temperature has two main effects on the chloride diffusivity in concrete

[88, 187]. First, it alters the chloride binding capacity of cement paste fraction,

as explained in Section 2.3.2. Second, it increases the frequency of thermal vi-

brations of the chloride ions. The second effect can be taken into account by

Arrhenius equation given as

DTc = DTr exp

[
Uact

R

(
1

Tr

− 1

Tc

)]
, (2.12)

where Tc and Tr are the current and reference absolute temperatures, respec-

tively, DTc is the chloride diffusivity at temperature Tc, DTr is the known chlo-

ride diffusivity at temperature Tr, Uact is the activation energy of the diffusion

process and R is the universal gas constant. The rate of chloride diffusion in-

creases with temperature [87, 88, 141, 187].

2.5 Summary

Reinforced concrete is the most common structural material throughout the

world since it is strong, durable and relatively cheap. Of the deterioration mech-

anisms of reinforced concrete structures, chloride ingress into concrete is of in-

terest to this research, since numerous reinforced concrete structures suffer from

chloride-induced corrosion of steel reinforcement. The resistance of a reinforced

concrete structure to chloride ingress is provided by the concrete, which behaves

as a physical and a chemical barrier protecting the steel reinforcement. Modern

concrete is made of Portland cement, supplementary cementitious material(s),

58



water and aggregate. Chemical admixtures are sometimes used to enhance cer-

tain properties of concrete.

Concrete is a random heterogeneous material. It is usually considered as

a three-phase material -cement paste, aggregate and transition zones between

cement paste and aggregate particles- at microscale. Studying the microstruc-

ture of concrete provides a better understanding of its transport properties. Re-

searches on the microstructure of concrete revealed that there may exist a zone

up to 50 µm around an aggregate particle, in which the microstructure of ce-

ment paste differs from the microstructure far away from the aggregate surface.

Such a zone, referred to as interfacial transition zone (ITZ), around an aggregate

particle has a relatively high porosity and coarser pores than the ones far away

from the aggregate surface. The primary reason of ITZ formation is wall-effect,

the effect of aggregate particles on the initial packing of cement particles in the

immediate vicinity of aggregate particles.

The two main chloride sources are the constituents of concrete, e.g., salty ag-

gregate particles and salty mixing water, and the environmental sources such

as seawater or de-icing salts. Steel reinforcement is protected against corrosion

by a passive film encouraged by the high alkali environment within concrete.

When the chloride concentration in the near vicinity of steel reinforcement bars

exceeds a certain value, the passive film is removed, and the corrosion of steel

reinforcement bars initiates, provided that there is enough oxygen and mois-

ture. Therefore, the resistance of concrete to chloride ingress is of great impor-

tance to the durability of a reinforced concrete structure.

Of the four main types of chloride transport mechanisms -permeation, mi-

gration, convection and diffusion- observed in concrete, diffusion is of interest
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to this research, since it is the most dominant mechanism. Chloride diffusion

in concrete is usually described by Fick’s laws of diffusion. Chloride exists in

concrete as either free or bound. Only the free chloride can initiate the corro-

sion of steel reinforcement bars since it is the one capable of reaching the bars.

Therefore, chloride binding capacity is of great importance with regard to the

rate of chloride ingress. The relationship between the free and bound chloride is

represented by either a linear isotherm or a non-linear isotherm, e.g., Langmuir

or Freundlich.

Chloride diffusion in concrete is affected by many factors. Since diffusion

takes place mainly through capillary pores in the cement paste, the parame-

ters characterizing a pore structure such as capillary porosity, connectivity of

capillary pores, threshold pore width, tortuosity and constrictivity, and the pa-

rameters affecting the development of a pore structure, such as w/c ratio, degree

of hydration, volume fraction of aggregate, and curing conditions, influence the

resistance of concrete to chloride diffusion. The presence of aggregate has two

opposite effects on the rate of chloride diffusion such that the connectivity of

ITZs tends to increase the rate of chloride diffusion by forming a continuous

path along which chlorides can travel faster, while the presence of aggregate

tends to reduce the rate of chloride diffusion by increasing the tortuosity, which

makes chloride ions travel along longer paths, combined with a volumetric di-

lution effect. The effect of ITZ on the chloride diffusivity in concrete depends on

the ratio of the chloride diffusivity in the ITZ to that in the bulk cement paste.

The use of porous aggregate particles results in a significant increase in the rate

of chloride diffusion. The formation of electrical double layers, ion/ion inter-

actions and ion/solvent interactions decrease the rate of chloride diffusion in

concrete, implying that the chloride diffusivity in concrete depends on the ionic
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concentration in its pore solution. Temperature increases the rate of chloride dif-

fusion within concrete by affecting both the chloride binding capacity of cement

paste and the activation energy of the chloride diffusion process.
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CHAPTER 3

LOCAL SOLUTION METHOD

3.1 Introduction

A large number of reinforced concrete structures is exposed to chlorides,

which may initiate corrosion of reinforcing steel bars in a structure, thus endan-

ger the serviceability of the structure, due to several reasons, e.g., marine envi-

ronment or de-icing salts [129]. Of the four main chloride ingress mechanisms in

concrete, i.e., diffusion, permeation, migration, and convection, chloride trans-

port by diffusion is studied in this research. Diffusion of chlorides in concrete

has been considered as a Fickean diffusion process [8, 129].

Fick’s law of diffusion that describes chloride diffusion within a bounded

subset H ⊂ Rd containing a heterogeneous medium (e.g., concrete) with a de-

terministic chloride diffusivity field D(x) > 0, x ∈ H , is given in Section 2.3.1

as

∂C(x, t)

∂t
=

d∑

k=1

∂D(x)

∂xk

∂C(x, t)

∂xk

+ D(x)∆C(x, t), x ∈ H, t ≥ 0, (2.5)

where C(x, t) is the chloride concentration at position x and time t, and ∆ =
∑d

k=1 ∂2/∂x2
k is the Laplace operator. If there exists an additional chloride source

within concrete, e.g., salty aggregates, an additional term associated with this

source is added to the right-hand-side of Eq. 2.5. Then the chloride concentra-

tion at position x ∈ H and time t ≥ 0 is defined by

∂C(x, t)

∂t
=

d∑

k=1

∂D(x)

∂xk

∂C(x, t)

∂xk

+ D(x)∆C(x, t) + γ(x, t) (3.1)
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with the initial and boundary conditions

C(x, 0) = η(x), x ∈ H, (3.2)

C(x, t) = ξ(x, t), x ∈ ∂H, t > 0, (3.3)

respectively, where γ(x, t) represents the chloride flux at (x, t) ∈ H × [0,∞)

associated with the additional chloride source, η and ξ are R-valued prescribed

functions, and ∂H denotes the boundary of H .

If γ(x, t) = γ(x) is time-invariant and Eq. 3.1 admits a steady-state solution

C(x) = limt→∞ C(x, t), then C(x) is defined by

d∑

k=1

∂D(x)

∂xk

∂C(x)

∂xk

+ D(x)∆C(x) = −γ(x), x ∈ H, (3.4)

with the boundary condition

C(x) = ξ(x), x ∈ ∂H. (3.5)

Boundary conditions can be of the Dirichlet and/or Neumann type. Eqs. 3.3

and 3.5 are the Dirichlet type of boundary conditions. In case of mixed bound-

ary conditions, Dirichlet and Neumann boundary conditions on ∂Hd and ∂Hn,

respectively, where ∂Hd ∪ ∂Hn = ∂H and ∂Hd ∩ ∂Hn = ∅, are given by

C(x, t) = ξd(x, t), x ∈ ∂Hd, t > 0, (3.6a)

∇C(x, t) · u(x, t) = ξn(x, t), x ∈ ∂Hn, t > 0, (3.6b)

for time-dependent case, where u and ξd, ξn are Rd- and R-valued prescribed

functions, respectively, and ∇ is the gradient operator. For time-independent

case, they are given as

C(x) = ξd(x), x ∈ ∂Hd, (3.7a)

∇C(x) · u(x) = ξn(x), x ∈ ∂Hn. (3.7b)
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Concrete specimens modeled in this research have either surfaces subjected

to a chloride field or sealed surfaces. A surface subjected to a chloride field is

described as the Dirichlet type boundary since the chloride concentration on this

boundary is known. On the other hand, the chloride concentration at a sealed

surface is not known, but the gradient of chloride concentration normal to this

surface is assumed to be zero. Therefore, the sealed surfaces are described as

the Neumann type boundaries.

One of the main objectives of this research is to calculate the chloride con-

centration at one or a few points in a concrete specimen, e.g., at location of steel

bars. Since it is not possible to solve Eqs. 3.1 and 3.4 analytically except for

few simple cases, numerical methods have been used to solve these equations

approximately. Two types of methods can be used to achieve this objective:

• Global methods, e.g., finite element and finite difference methods.

• Local methods, e.g., fixed and floating random walk methods.

Classical global methods are reviewed briefly below since detailed discus-

sions can be found elsewhere. Then a review of local methods is given. Next,

the essentials of the local method used in this study are given, and the applica-

tion of the local method is illustrated.

3.2 Global Methods

The methods which give a field solution, i.e., a solution over the entire do-

main of interest, are classified as global methods. The solution returned by
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global methods is always an approximation to the exact solution because of

the discretization of space and time domains. Two well-known classical global

methods are finite element method (FEM) and finite difference method (FDM).

3.2.1 Finite Element Method (FEM)

FEM discretizes the domain of interest into small pieces called finite elements,

a particular arrangement of which is called a mesh. A collection of finite ele-

ments assembled to each other at points called nodes is a finite element structure.

Figure 3.1: FE Structure of an Arbitrarily Shaped Body

Chloride concentration within a finite element is allowed to have a simple

spatial variation, generally described by polynomials. For a steady-state solu-

tion, a system of algebraic equations is derived according to a prescribed mesh.

The system of equations can be solved for values of chloride concentration at

nodes by imposing boundary conditions. Chloride concentration over a finite

65



element is completely described by the nodal values of chloride concentration

combined with the presumed variation of chloride concentration within the ele-

ment, so that the chloride concentration field over the entire domain is approx-

imated element by element. The accuracy of the approximation depends on the

quality and the number of finite elements.

If chloride concentration depends on time, a similar approach is used but a

time integration scheme is implemented. For a time-dependent solution, initial

conditions should be imposed in addition to boundary conditions. For instance,

Martı́n-Pérez et al. [104] proposed a 2D finite element formulation for solving

transport of chlorides, moisture, oxygen and heat convection through concrete,

which is a coupled boundary-initial value problem describing the corrosion of

steel reinforcement in concrete.

FEM has been widely used in engineering analyses because of its advan-

tages over the other methods [41]. First, it can be applied to any field problem.

Second, it has no restrictions on geometrical properties, boundary conditions

or loading. Third, material properties can be changed from one element to an-

other or within an element. Fourth, it allows to have different grades of mesh

at different regions that enables the use of finer mesh at critical regions. In ad-

dition to those, it can also be used in parallel computing [161]. On the other

hand, it requires relatively complex computer codes or commercial softwares.

Furthermore, a stability problem may arise unless the space and time domains

are discretized properly.
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3.2.2 Finite Difference Method (FDM)

FDM replaces derivatives of the unknown functions in governing differen-

tial equations with finite difference approximations [14, 36]. The domain of in-

terest is treated as a grid of discrete points called nodes.

x1

x
2

4x1

4x2

Figure 3.2: FD Representation of an Arbitrarily Shaped Domain

After H is transformed into a grid of nodes (Figure 3.2), finite difference

approximations based on this grid are substituted for the partial derivatives of

chloride concentration in Eqs. 3.1 and 3.4. Then a system of algebraic equations

is derived, where the unknowns are the chloride concentrations at nodes. The

nodal values of chloride concentration are obtained by solving the system of

equations for the given initial and boundary conditions. Grid spacing and type

of finite difference approximation, e.g., forward difference, central difference,

etc., affect the accuracy of the approximation significantly.

The finite difference representation of Eq. 3.1 at an arbitrary node x ∈ H ⊂
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R2 and time t > 0 is

C(x, t +4t)− C(x, t)

4t
=

∂D(x)

∂x1

C(x1 + h, x2, t)− C(x1 − h, x2, t)

2h

+
∂D(x)

∂x2

C(x1, x2 + h, t)− C(x1, x2 − h, t)

2h

+ D(x)
C(x1 + h, x2, t)− 2C(x, t) + C(x1 − h, x2, t)

h2

+ D(x)
C(x1, x2 + h, t)− 2C(x, t) + C(x1, x2 − h, t)

h2

+ γ(x, t) (3.8)

for the mesh in Figure 3.2 with grid spacing 4x1 = 4x2 = h > 0.

Similarly, the finite difference representation of Eq. 3.4 at an arbitrary node

x ∈ H ⊂ R2 is

∂D(x)

∂x1

C(x1 + h, x2)− C(x1 − h, x2)

2h
+

∂D(x)

∂x2

C(x1, x2 + h)− C(x1, x2 − h)

2h

+ D(x)
C(x1 + h, x2)− 2C(x) + C(x1 − h, x2)

h2

+ D(x)
C(x1, x2 + h)− 2C(x) + C(x1, x2 − h)

h2
= −γ(x). (3.9)

A notable difficulty with the implementation of FDM relates to boundary

conditions since the nodes of the meshed version of H may not belong to ∂H

unless H is a rectangular domain. Moreover, there might be stability issues if

grid spacing and time increment are not chosen properly.

3.3 Local Methods

Global methods provide approximate field solutions. However, it is not wor-

thy to use a global method if only a particular region of H is of interest. In such
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a case, local methods are more efficient than global methods since they are able

to provide solutions only at points of interest.

Figure 3.3: A Random Walk in Three Dimensions

Local methods generally employ Monte Carlo simulations for obtaining a

solution. The primary component of Monte Carlo algorithms is random walk.

In the simplest sense, a random walk is composed of successive steps, each of

which is taken in a random direction (Figure 3.3). The steps of a random walk

is a sequence of independent and identically distributed random variables. For

example, the path traced by a molecule while it travels in a fluid can be thought

of as a random walk.

The general idea of Monte Carlo algorithms is the following. Random walks

are started at a point where the solution is needed. The walks are terminated at

either space or time boundaries. The exit points are recorded for each random

walk. The solution can be obtained by using these exit points.
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Two types of random walk methods are reviewed. The first has a fixed step

size and its paths belong to a preset graph. The second has varying step size

and paths. Then the random walk method used in this study is presented.

For simplicity, a homogeneous medium in 2D with the Dirichlet boundary

conditions is considered in the review of random walk methods. Let H∗ ⊂ R2

be a bounded subset containing a homogeneous medium with a deterministic

chloride diffusivity field D∗ > 0 and ∂H∗ denote the boundary of H∗. Since

D∗ is constant over H∗, the partial derivatives of the chloride diffusivity field in

Eqs. 3.1 and 3.4 vanish.

3.3.1 Fixed Random Walk Method

The classical random walk moves on a grid of nodes similar to that used in

a FDM, so it has a fixed step size and its paths belong to a preset graph, and is

called fixed random walk. The Monte Carlo algorithm employing fixed random

walks is based on a finite difference representation of the partial differential

equation of interest, like the one given in Eq. 3.8 or Eq. 3.9 by the FDM [81, 92,

136].

Let chloride concentration over H∗ be dependent on time and γ(x, t) = 0,

x ∈ H∗, t ≥ 0. Then the finite difference representation of chloride concentration

at an arbitrary node x ∈ H∗ and time t +4t > 0 is given by

C(x, t +4t) =
D∗4t

h2
[C(x1 + h, x2, t) + C(x1 − h, x2, t)

+ C(x1, x2 + h, t) + C(x1, x2 − h, t)]

+

(
1− 4

D∗4t

h2

)
C(x, t), (3.10)

70



where the initial and boundary conditions are

C(x, 0) = η(x), x ∈ H∗, (3.11)

C(x, t) = ξ(x, t), x ∈ ∂H∗, t > 0, (3.12)

respectively. If D∗4t/h2 is set to 1/4, the last term in Eq. 3.10 vanishes. Then

Eq. 3.10 can be interpreted such that a random walk at node x has an equal

probability of stepping to one of the four neighboring nodes during a time 4t.

Suppose that the chloride concentration at node x0 ∈ H∗ and time t0 > 0 is

needed. The following Monte Carlo algorithm can be used to estimate the chlo-

ride concentration at (x0, t0). A random walk is started at (x0, t0), and moves to

one of the neighboring nodes according to the value of a random number drawn

from a uniform distribution on (0,1). At each step, time proceeds backwards by

an amount of 4t (see Eq. 3.23 in Section 3.3.4.2). The walk is terminated when

either it arrives at a boundary node xξ ∈ ∂H∗ at t > 0 or t = 0 before it reaches

∂H∗. If the walk is terminated at a boundary node xξ, the chloride concentration

at xξ is recorded as C(x0, t0, ω) = ξ(xξ, tξ), ω = 1, . . . , ns, where ns is the number

of random walk samples and tξ > 0 is the time that the random walk arrives at

xξ. If the walk is terminated when t = 0, it is still at an interior node xη ∈ H∗ and

the initial chloride concentration at xη is recorded as C(x0, t0, ω) = η(xη). After

ns random walks are executed, the chloride concentration at (x0, t0) is estimated

by

Ĉ(x0, t0) =
1

ns

ns∑
ω=1

C(x0, t0, ω). (3.13)

If chloride concentration over H∗ is time-invariant and γ(x) 6= 0, x ∈ H∗, the
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finite difference representation of C(x) is

C(x) =
1

4
C(x1 + h, x2) +

1

4
C(x1 − h, x2)

+
1

4
C(x1, x2 + h) +

1

4
C(x1, x2 − h) +

h2γ(x)

4D∗ , (3.14)

where the boundary condition is

C(x) = ξ(x), x ∈ ∂H∗. (3.15)

Then the chloride concentration at node x0 ∈ H∗ can be estimated by starting

ns random walks at x0. To take into account the contribution of γ(x), C(x0, ω)

is set to zero at start and updated as

C(x0, ω) = C(x0, ω) +
h2γ(x)

4D∗ , x ∈ H∗, ω = 1, . . . , ns, (3.16)

at each step. A random walk is terminated when it arrives at a boundary node

xξ ∈ ∂H∗ and C(x0, ω) is updated as C(x0, ω) = C(x0, ω) + ξ(xξ). After ns

random walks are executed, the chloride concentration at x0 is estimated by

Ĉ(x0) =
1

ns

ns∑
ω=1

C(x0, ω). (3.17)

As ns ↑ ∞, Ĉ(x0, t0) and Ĉ(x0) converge to the exact solutions of finite dif-

ference representations of C(x, t) and C(x) at (x0, t0) and x0, respectively [81].

Since the fixed random walk method is based on the finite difference represen-

tations used in the FDM, it has the same disadvantage as the FDM, that is, some

difficulties may arise from boundary conditions in case of a non-rectangular do-

main.

If the diffusivity field is space-variant, i.e., the domain of interest contains a

heterogeneous medium, the probability of a random walk’s moving from a node

to the neighboring nodes are not necessarily equal anymore. The probability of
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moving to a neighboring node depends on the diffusivity gradient along that

direction.

3.3.2 Exodus Method

The exodus method is a modified version of the fixed random walk method

[52, 136, 137, 138]. Similar to the fixed random walk method, it operates on the

nodes of the meshed version of H∗.

Let chloride concentration over H∗ be time-invariant, γ(x) = 0, x ∈ H∗, and

C(x) = ξ(x), x ∈ ∂H∗. Then the chloride concentration at an arbitrary node

x ∈ H∗ can be given in the form

C(x) =

nb∑
i=1

P (x → xξ,i)ξ(xξ,i), xξ,i ∈ ∂H∗, (3.18)

where P (x → xξ,i) is the transition probability, defined as the probability that a

random walk starting at x ends at a boundary node xξ,i, and nb is the number

of the boundary nodes except the corner nodes, since a random walk executed

on the nodes has to pass through a boundary node, where it will be stopped, in

order to arrive a corner node. The exodus method approximates the transition

probabilities in Eq. 3.18.

Suppose that the chloride concentration at node x0 ∈ H∗ is needed. For this

purpose, a large number of walks is started at x0. At each iteration step, the

walks that are not at boundary nodes are dispatched to the neighboring nodes

in proportions equal to the random walk probabilities used in the fixed random

walk method, which are equal to 1/4 in this particular case. The iteration is

carried out until a predetermined fraction of walks arrives at boundary nodes.
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Then the transition probabilities are approximated as

P̂ (x0 → xξ,i) =
nξ(i)

ns

, (3.19)

where nξ(i) is the number of walks ended at xξ,i and ns is the number of walks

started at x0. If ns ↑ ∞, h ↓ 0, and all walks were allowed to arrive at a bound-

ary node, the solution would be exact [136, 138]. It is important to note that the

walks employed by the exodus method are not random walks like the ones em-

ployed by the fixed random walk method, therefore no pseudo-random number

generator is needed in the exodus method.

In case that γ(x) 6= 0, x ∈ H∗, transient probabilities are needed in addition

to transition probabilities. Transient probability P (x
xk−→ ∂H∗) is defined as

the probability that a random walk starting at x ∈ H∗ passes through a node

xk ∈ H∗, k = 1, . . . , ni, on its way to ∂H∗, where ni is the number of interior

nodes. Then Eq. 3.18 becomes

C(x) =

nb∑
j=1

P (x → xξ,j)ξ(xξ,j) +

ni∑

k=1

P (x
xk−→ ∂H∗)

h2γ(x)

4D∗ . (3.20)

More information on transient probabilities can be found in [136].

The advantages of the exodus method over the fixed random walk method

is: (i) the former is computationally more efficient than the latter since it does

not require any pseudo-random number generator, and (ii) the former is more

accurate than the latter. Since the exodus method is similar to the fixed ran-

dom walk method such that it also operates on the nodes of the meshed ver-

sion of H∗, the difficulties related to the boundary conditions in case of a non-

rectangular domain is valid also for the exodus method.

If the diffusivity field is space-variant, the proportions of walks dispatched

to the neighboring nodes are not necessarily equal anymore.
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3.3.3 Floating Random Walk Method

Contrary to the fixed random walk method, step sizes and random walk

paths are not fixed in the floating random walk method, also known as sphere walk

method. The solution given by the floating random walk method is based on the

Green function and the mean value property [78, 81, 136]. It is worthy to note

that this method works only for space-invariant diffusivity fields, i.e., homoge-

nous media.

x1

x
2

(x1, x2)i

ri

H∗

Figure 3.4: Floating Random Walk at i-th Step

Let chloride concentration over H∗ be dependent on time and γ(x, t) = 0,

x ∈ H∗, t ≥ 0. Suppose that the chloride concentration at (x0, t0), x0 ∈ H∗,

t0 > 0, is needed. A random walk is started at point x0 and time t0. At each

step, a circle is constructed, where its center is located at the random walk’s po-

sition and its radius is equal to the shortest distance between the random walk’s

position and ∂H∗ (Figure 3.4). The size of the next step is set equal to the radius

of the circle. Two random numbers are generated to determine the orientation
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of the next step and the time to be elapsed during this step. Each angle has an

equal probability. The discussion about determination of elapsed time is avail-

able in [81]. The rest is similar to the fixed random walk method. If the random

walk reaches ∂H∗ at time t = tξ > 0, C(x0, t0, ω) = ξ(xξ, tξ). If it is still in the

interior of H∗ at time t = 0, C(x0, t0, ω) = η(xη). The chloride concentration at

(x0, t0) is estimated by Eq. 3.13 after executing ns random walks.

If chloride concentration over H∗ is time-invariant, only one random num-

ber, which determines the orientation of step, is drawn at each step. Suppose

that γ(x) = 0 and the chloride concentration at x0 is needed. Random walks

are started at x0. At each step, they move with a step size equal to the shortest

distance between the random walk’s position and ∂H∗. When a random walk

reaches ∂H∗, the chloride concentration is recorded, i.e., C(x0, ω) = ξ(xξ). The

chloride concentration at x0 is estimated by Eq. 3.17 after executing ns random

walks. As ns ↑ ∞, Ĉ(x0) converges to C(x0) [81].

As the random walks approach the boundaries, step sizes become too small

which results in a significant increase in computation time. It is usual to set a

stopping rule, e.g., a random walk is stopped if the distance distance between

the random walk’s position and ∂H∗ is less than a certain value.

3.3.4 Random Walk Method (RWM)

Since one of the main objectives of this research is to calculate chloride con-

centration at a particular region of a concrete structure, local solution meth-

ods has been of interest instead of global methods. Grigoriu [76, 77] proposed

a method for solving the heat conduction, Poisson and Laplace equations lo-
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cally, which can also be used for solving chloride diffusion problems. The

advantage of this method is that there is no need to discretize the domain as

required, e.g., by FEM or FDM. Moreover, the computer algorithm based on

this method is simple to construct, always stable, accurate and ideal for paral-

lel computing [76]. The method, denoted as RWM hereinafter, is based on an

extension of a random walk method and smooth approximations of diffusivity

field [76, 77, 78].

The essentials of RWM, that is, Brownian motion and Itô process, are re-

viewed briefly below. Then basic steps of derivation of RWM are given for both

time-dependent and time-invariant cases. Details of derivations can be found

in [78, 122]. Before the application of the method is illustrated, it is explained

how to deal with a random diffusivity field.

3.3.4.1 Brownian Motion

The Rd-valued Brownian motion B(t), t ≥ 0, consists of d independent real

valued Brownian motions Bi, i = 1, . . . , d. It is a stochastic process with the

following properties:

• B can start at any point x ∈ Rd, i.e., B(0) = x.

• The increment B(t2) − B(t1) of B in an arbitrary time interval (t1, t2),

t2 > t1, is a d-dimensional Gaussian vector with mean zero and covari-

ance matrix i(t2 − t1), where i is the (d, d)-identity matrix. The process

has stationary increments because the properties of the increments of B

depend upon only the duration of the time interval, i.e., t2 − t1.
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• The increments B(t4)−B(t3) and B(t2)−B(t1), t4 > t3 ≥ t2 > t1, of B are

independent random vectors. Hence, B has stationary and independent

increments.

• The Brownian motion samples are continuous and nondifferentiable

everywhere. The lack of differentiability is due to the rapid oscillations

of the Brownian motion samples.

3.3.4.2 The Itô Process

Assume that diffusivity field D(x) > 0 has continuous first order partial

derivatives with respect to x ∈ H and set a(x) and b(x) for all x ∈ H as

ak(x) =
∂D(x)

∂xk

, k = 1, . . . , d, (3.21)

b(x) =
√

2D(x)i, (3.22)

where the elements of the (d, 1) and (d, d) matrices a and b are real-valued func-

tions. Let X̃ = (X, Xd+1) be an Rd+1-valued stochastic process defined by the

stochastic differential equation

dX(τ) = a(X(τ))dτ + b(X(τ))dB(τ), τ ≥ 0, (3.23a)

dXd+1(τ) = −dτ. (3.23b)

The matrices a and b are called drift and diffusion coefficients, respectively.

The process is driven by Brownian motion whose magnitude is controlled by

the diffusion coefficient. If the drift and diffusion are relatively smooth func-

tions satisfying the so-called Lipschtz conditions, the solution of Eq. 3.23 exists

and is unique [78]. This solution is based on the Riemann and the Itô integrals
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∫ t

0
a(X(τ))dτ and

∫ t

0
b(X(τ))dB(τ), respectively (Eq. 3.24). The process X̃ , re-

ferred to as Itô process, is a semimartingale with continuous samples.

X̃(t) =




X(0) +
∫ t

0
a(X(τ))dτ +

∫ t

0
b(X(τ))dB(τ)

Xd+1(0)− ∫ t

0
dτ


 . (3.24)

3.3.4.3 Transient-State Diffusion

If chloride concentration over H is time-dependent, the Itô process X̃ , de-

fined by Eq. 3.23, is used to obtain the local solution at (x, t), x ∈ H , t > 0,

where X̃(0) = (x, t). Let Ã be the generator function of X̃ defined by

Ã [g(x, t)] = lim
τ↓0

E
[
g(X̃(τ))

]
− g(x, t)

τ
, (3.25)

where g is a real-valued function defined on Rd+1 with continuous second order

partial derivatives and continuous first order partial derivative with respect to

x ∈ H and τ ≥ 0, respectively. The expectation of the Itô formula applied to the

function g(X̃(τ)) is

E
[
g(X̃(τ))

]
− g(x, t) = E

[∫ τ

0

(
d∑

i=1

∂g(X̃($))

∂xi

ai(X($))− ∂g(X̃($))

∂xd+1

)
d$

+
1

2

d∑
i,j=1

∫ τ

0

(
b(X($))b(X($))T

)
ij

∂2g(X̃($))

∂xi∂xj

d$

]
. (3.26)

The term under the expectation on the right-hand-side of Eq. 3.26 divided

by a small τ > 0 can be approximated by

d∑
i=1

∂g(X̃(θ(ω)τ, ω))

∂xi

ai(X(θ(ω)τ, ω))− ∂g(X̃(θ(ω)τ, ω))

∂xd+1

+
1

2

d∑
i,j=1

(
b(X(θ(ω)τ, ω))b(X(θ(ω)τ, ω))T

)
ij

∂2g(X̃(θ(ω)τ, ω))

∂xi∂xj

(3.27)
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for each ω ∈ Ω, where θ(ω) ∈ [0, 1]. The limit of Eq. 3.27 as τ ↓ 0 is deterministic

because

• a and b are bounded functions,

• X̃ has continuous sample paths,

• and g has continuous second order partial derivatives and continuous first

order partial derivative with respect to x and τ , respectively,

so that the generator function Ã defined by Eq. 3.25 is

Ã = − ∂

∂xd+1

+
d∑

i=1

ai
∂

∂xi

+
1

2

d∑
i,j=1

(
bbT

)
ij

∂2

∂xi∂xj

, (3.28)

which coincides with the differential operator of Eq. 3.1 if the drift and diffu-

sion coefficients are defined by Eqs. 3.21 and 3.22, respectively. Then Eq. 3.26

becomes

E
[
g(X̃(τ))

]
− g(x, t) = E

[∫ τ

0

Ã
[
g(X̃($))

]
d$

]
. (3.29)

Let

T̃ = inf{τ > 0 : X̃(τ) /∈ H × (0, t)} (3.30)

be an Ft = σ(B(τ) : 0 ≤ τ ≤ t)-stopping time, that is, the time at which X̃

exits H × (0, t) for the first time, and X̃
T̃

be the process X̃ stopped at T̃ . It can

be shown that X̃
T̃

is also a semimartingale, so that Eq. 3.28 is applicable to the

function g(X̃
T̃
) [78]. Applying Eq. 3.28 to the function g(X̃

T̃
) gives

E

[
g(X̃

T̃
(τ))

]
− g(x, t) = E

[∫ τ

0

Ã
[
g(X̃

T̃
($))

]
d$

]
. (3.31)

80



By definition of X̃
T̃

, X̃
T̃
(τ) can be replaced with X̃(T̃ ∧ τ). Then Eq. 3.31

becomes

g(x, t) = E
[
g(X̃(T̃ ))

]
− E

[∫ T̃

0

Ã
[
g(X̃($))

]
d$

]
(3.32)

for τ ≥ T̃ .

If the function g is replaced with the solution C of Eq. 3.1 with the initial and

boundary conditions in Eqs. 3.2 and 3.3, respectively, Eq. 3.32 becomes

C(x, t) = E
[
C(X̃(T̃ ))

]
− E

[∫ T̃

0

Ã
[
C(X̃($))

]
d$

]
. (3.33)

Then the local solution of Eq. 3.1 is given by

C(x, t) = E
[
C(X̃(T̃ ))

]
+ E

[∫ T̃

0

γ(X̃($))d$

]

= E
[
η(X(t))

∣∣∣T̃ = t
]

P
(
T̃ = t

)
+ E

[
ξ(X̃(t− T̃ ))

∣∣∣T̃ < t
]

P
(
T̃ < t

)

+ E

[∫ T̃

0

γ(X̃($))d$

]
, (3.34)

since X̃($) ∈ H × (0, t) for $ < T̃ and X̃($) is on the boundary of H × (0, t)

for $ = T̃ , so that Ã[C(X̃($))] = −γ(X̃($)) and

C(X̃(T̃ )) =





ξ(X̃(t− T̃ )) if T̃ < t

η(X(t)) if T̃ = t
. (3.35)

In general, the expectations in Eq. 3.34 can not be calculated analytically.

Instead, they are estimated from samples of X̃ generated by Monte Carlo sim-

ulation. The local solution in Eq. 3.34 can be estimated by

Ĉ(x, t) =
n′s
ns


 1

n′s

n′s∑

ω′=1

η(X(t, ω′))


 +

n′′s
ns


 1

n′′s

n′′s∑

ω′′=1

ξ(X̃(t− T̃ (ω′′), ω′′))




+
1

ns

ns∑
ω=1

∫ T̃ (ω)

0

γ(X̃($,ω))d$, (3.36)
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where X̃(·, ω) and T̃ (ω), ω = 1, . . . , ns are samples of X̃ and T̃ , respectively, ns =

n′s + n′′s denotes the number of independent samples of X̃ , and, n′s and n′′s are

the number of samples of X̃ that exit H× (0, t) through H and ∂H , respectively.

The accuracy of the estimate given by Eq. 3.36 depends on

• the sample size, ns,

• the time step used to generate sample paths of the Itô process, 4τ ,

• the accuracy of the recurrence formula used for generating samples of the

Itô process.

The simplest way of generating the samples of an Itô process is to use finite

difference approximation. The recurrence formula given by

X(τ +4τ) ' X(τ) + a(X(τ))4τ + b(X(τ))4B(τ) (3.37)

is known as Euler’s scheme. The Euler’s scheme converges strongly with order

0.5 [93]. More advanced schemes can be used if a higher order of convergence

is required. A scheme with a higher order of convergence compared to Euler’s

scheme is Milstein’s scheme, which converges strongly with order 1.0 [93]. It has

an additional term on the right side of Eq. 3.37 such that

Xk(τ +4τ) ' Xk(τ) + ak(Xk(τ))4τ + bk,k(Xk(τ))4Bk(τ)

+
2∑

j1,j2=1

Lj1bk,j2(Xk(τ))Ij1,j2 , k = 1, 2, (3.38)

where

Lj =
2∑

p=1

bp,j
∂

∂xp

, j = 1, 2, (3.39)
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and

Ij1,j2 =

∫ τ+4τ

τ

∫ $

τ

dBj1dBj2

=





1
2
[(4Bk(τ))2 −4τ ] , for j1 = j2

0, for j1 6= j2

, j1, j2 = 1, 2, (3.40)

since B1(τ) and B2(τ) are independent. Then Eq. 3.38 becomes

Xk(τ +4τ) ' Xk(τ) + ak(Xk(τ))4τ + bk,k(Xk(τ))4Bk(τ)

+
1

2
bk,k(Xk(τ))

∂bk,k(Xk(τ))

∂xk

[
(4Bk(τ))2 −4τ

]
(3.41)

since bi1,i2(Xk(τ)) = 0, i1 6= i2, τ ≥ 0. Discussions on more advanced numerical

schemes can be found in [93].

3.3.4.4 Steady-State Diffusion

If C is time-invariant, the Itô process X , defined by Eq. 3.23a, with the initial

condition X(0) = x ∈ H , is used instead of X̃ . Let A be the generator function

of X defined by

A [g(x)] = lim
τ↓0

E [g(X(τ))]− g(x)

τ
, (3.42)

where g is a real-valued function defined on Rd with continuous second order

partial derivatives with respect to x ∈ H . The expectation of the Itô formula

applied to the function g(X(τ)) is

E [g(X(τ))]− g(x) = E

[
d∑

i=1

∫ τ

0

∂g(X($))

∂xi

ai(X($))d$

+
1

2

d∑
i,j=1

∫ τ

0

(
b(X($))b(X($))T

)
ij

∂2g(X($))

∂xi∂xj

d$

]
. (3.43)
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The term under the expectation on the right-hand-side of Eq. 3.43 divided

by a small τ > 0 can be approximated by
d∑

i=1

∂g(X(θ(ω)τ, ω))

∂xi

ai(X(θ(ω)τ, ω))

+
1

2

d∑
i,j=1

(
b(X(θ(ω)τ, ω))b(X(θ(ω)τ, ω))T

)
ij

∂2g(X(θ(ω)τ, ω))

∂xi∂xj

(3.44)

for each ω ∈ Ω where θ(ω) ∈ [0, 1]. The limit of Eq. 3.44 as τ ↓ 0 is deterministic

because

• a and b are bounded functions,

• X has continuous sample paths,

• and g has continuous second order partial derivatives with respect to x,

so that the generator function A defined by Eq. 3.42 is

A =
d∑

i=1

ai
∂

∂xi

+
1

2

d∑
i,j=1

(
bbT

)
ij

∂2

∂xi∂xj

, (3.45)

which coincides with the differential operator of Eq. 3.4 if the drift and diffu-

sion coefficients are defined by Eqs. 3.21 and 3.22, respectively. Then Eq. 3.43

becomes

E [g(X(τ))]− g(x) = E

[∫ τ

0

A [g(X($))] d$

]
. (3.46)

Let

T = inf{τ > 0 : X(τ) /∈ H)} (3.47)

be an Ft = σ(B(τ) : 0 ≤ τ ≤ t)-stopping time, that is, the time at which the

process X exits H for the first time. It can be shown that Eq. 3.46 holds with T

in place of τ [78], so that Eq. 3.46 becomes

E [g(X(T ))]− g(x) = E

[∫ T

0

A [g(X($))] d$

]
. (3.48)
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If the function g is replaced with the solution C of Eq. 3.4 with the boundary

condition in Eq. 3.5, the local solution of Eq. 3.4 is obtained as

C(x) = E [ξ(X(T ))] + E

[∫ T

0

γ(X($))d$

]
(3.49)

since X($) ∈ H for $ < T and X($) ∈ ∂H for $ = T , so that C(X(T )) =

ξ(X(T )) and A[C(X($))] = −γ(X($)).

The expectations in Eq. 3.49 can be estimated from samples of X generated

by Monte Carlo simulation, so the local solution in Eq. 3.49 can be estimated by

Ĉ(x) =
1

ns

ns∑
ω=1

ξ(X(T (ω), ω)) +
1

ns

ns∑
ω=1

∫ T (ω)

0

γ(X($,ω))d$, (3.50)

where X(·, ω) and T (ω), ω = 1, . . . , ns, are samples of X and T , respectively.

3.4 Random Diffusivity Fields

If the domain of interest contains a random diffusivity field instead of a de-

terministic one, the solutions of Eqs. 3.1 and 3.4 will be random variables, and

can be obtained by using one of the solution methods given above, either global

or local, in three steps:

(i) The solution of partial differential equation is calculated for a sample of

diffusivity field D(·, ω).

(ii) The first step is repeated for a collection of samples of diffusivity field

{D(·, ω)}.

(iii) The statistics of the solution are estimated by using the results obtained in

the second step.
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3.5 Examples

Two examples, a 1D-specimen with a deterministic diffusivity field under

steady-state conditions and a 2D-specimen with a random diffusivity field un-

der transient-state conditions, are given below to illustrate the application of the

RWM. In the third example, two numerical schemes, the Euler’s and Milstein’s

schemes, are compared.

3.5.1 1D Steady-State Diffusion

Consider a rod of unit length with the deterministic diffusivity field defined

by

D(x) = 2 + sin(10πx), x ∈ [0, 1]. (3.51)

The concentration C(x) satisfies the partial differential equation

dD(x)

dx

dC(x)

dx
+ D(x)

d2C(x)

dx2
= 0, x ∈ [0, 1] (3.52)

with the boundary conditions given as C(0) = 0 and C(1) = 1. The objective is

to estimate C(x) at x = 0.3, 0.5 and 0.7 by using the RWM.

The local solution of Eq. 3.52 is given by Eq. 3.49 as C(x) = P (X(T ) = 1),

i.e., it is equal to the probability that the R-valued Itô process X defined by

dX(τ) = a(X(τ))dτ + b(X(τ))dB(τ), τ ≥ 0, X(0) = x ∈ (0, 1), (3.53)

exists through the boundary x = 1 for the first time, where T is the stopping time

defined by Eq.3.47, a(x) and b(x) are defined by Eqs. 3.21 and 3.22, respectively,
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so

a(x) = 10π cos(10πx), (3.54)

b(x) =
√

4 + 2 sin(10πx). (3.55)

Table 3.1: Comparison of Results

x
BVP Solver

Ĉ(x)

RWM

Ĉ(x)

Rel. Err.

(%)

0.3 0.2666 0.2725 +2.2

0.5 0.4666 0.4779 +2.4

0.7 0.6666 0.6607 -0.9

Estimates of C(x) based on 10000 samples, generated by using the Euler’s

scheme with a time increment of 0.0001, for x = 0.3, 0.5 and 0.7 are shown

in Table 3.1. Also, the solution of Eq. 3.52 obtained by using the MATLAB’s

boundary-value-problem (BVP) solver and the error in Ĉ(x) obtained by using

the RWM relative to the results by the BVP solver are shown in Table 3.1.

3.5.2 2D Transient-State Diffusion

Consider a unit square, H = (0, 1) × (0, 1), with a random diffusivity field

defined by

D(x) = 0.1 + 0.9Z(x), x ∈ H, (3.56)

where Z is a beta translation field taking values in [0, 1] with shape parameters

equal to 2. Samples of Z can be obtained by

Z(x, ω) = F−1
Z ◦ Φ(Y (x, ω)), ω = 1, . . . , nd, (3.57)
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where nd is the number of samples of diffusivity field, FZ denotes a beta distri-

bution on the unit interval with shape parameters equal to 2, and Y is a zero

mean, unit variance, stationary Gaussian field with marginal distribution Φ and

covariance function c(ϕ) = exp(−ϕ), where ϕ denotes the distance between two

points.

The concentration C(x, t), x ∈ H , t ≥ 0, satisfies the partial differential

equation

∂C(x, t)

∂t
=

2∑
p=1

∂D(x)

∂xp

∂C(x, t)

∂xp

+ D(x)∆C(x, t), (3.58)

where C(x, t) = 1, x ∈ ∂H , t ≥ 0, and C(x, 0) = 0, x ∈ H . The objective is to

estimate the statistics of chloride concentration at the center of the specimen at

time t = 0.1 by using the RWM.

The following Monte Carlo algorithm has been used to analyze the speci-

men:

1. Generate samples of D by using the following procedure:

• Generate samples of Y by using its spectral representation (Section

5.3.1.2, [78]) as follows:

– Take a bounded rectangle M centered at the origin of R2 with

cutoff frequencies ν∗k , that is, M = ×2
k=1[−ν∗k , ν

∗
k ].

– Partition M into rectangles Mr, r = 1, . . . , nr, of size 4νk.

– Generate samples of independent Gaussian variables, Gr,1 and

Gr,2, with zero mean and variance

E[G2
r,1] = E[G2

r,2] =

∫

Mr

s(ν)dν ≈ s(νr)
2∏

k=1

∆νk, (3.59)
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where s(ν) is the spectral density function derived as

s(ν) =
1

2π

1

(ν2
1 + ν2

2 + 1)3/2
(3.60)

and νr = (νr,1, νr,2) denotes the center of Mr.

– Calculate Y (x, ω), ω = 1, . . . , nd, using

Y (x, ω) =
nr∑

r=1

[Gr,1 cos(νr · x) + Gr,2 sin(νr · x)] . (3.61)

• Obtain Z(x, ω) by introducing Y (x, ω) into Eq. 3.57 for each ω.

• Obtain D(x, ω) by introducing Z(x, ω) into Eq. 3.56 for each ω.

2. For each D(x, ω), calculate the corresponding chloride concentration

C(x, ω) by using the RWM and the FDM.

3. Estimate the statistics of C(x, t) and compare the results.
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Figure 3.5: A Sample of Diffusivity Field
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A sample of diffusivity field is shown in Figure 3.5. The exact mean and

variance of D are 0.55 and 0.0405, respectively. Estimates of mean and variance

of D based on 100 samples are plotted in Figure 3.6 and Figure 3.7, respectively.

Cutoff frequency ν∗k and step size ∆νk, k = 1, 2, are 100 and 1, respectively.

The local solution of Eq. 3.58, given by Eq. 3.34, is C(x, t) = P (T̃ < t), i.e., it

is equal to the probability that the R3-valued Itô process X̃ = (X, X3) defined

by

dX(τ) = a(X(τ))dτ + b(X(τ))dB(τ), τ ∈ (0, t), (3.62a)

dX3(τ) = −dτ, (3.62b)

exists through the boundary ∂H for the first time before τ = t, where a and b

are defined by Eqs. 3.21 and 3.22, respectively, and X̃(0) = (x, t).
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Figure 3.8: Histogram of Ĉ by the RWM (ns = 1000)

For each sample of diffusivity field, the corresponding chloride concentra-

tion at the center of the specimen at time t = 0.1 has been calculated based on
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1000 samples of X̃ generated by using the Euler’s scheme with a time increment

of 10−5. Histogram of Ĉ(x1 = 0.5, x2 = 0.5, t = 0.1) obtained by using the RWM

is plotted in Figure 3.8. Resulting estimates of mean and standard deviation of

Ĉ(x1 = 0.5, x2 = 0.5, t = 0.1) are 0.4239 and 0.1886, respectively.

For comparison, Eq. 3.58 has been solved by using the FDM in which for-

ward difference scheme in time domain and central difference scheme in space

domain have been used (Eq. 3.8). Grid spacing and time increment are set as

h = 0.01 and 4t = 10−5, respectively, since finer meshes result in the same solu-

tion. Histogram of Ĉ obtained by using the FDM is plotted in Figure 3.9. Result-

ing estimates of mean and standard deviation of Ĉ(x1 = 0.5, x2 = 0.5, t = 0.1)

are 0.4267 and 0.1877, respectively. Relative error in Ĉ(·, ω) is calculated as

εrel(ω) =
|ĈRWM(·, ω)− ĈFDM(·, ω)|

ĈFDM(·, ω)
× 100, ω = 1, . . . , nd, (3.63)

where ĈRWM and ĈFDM are the estimates obtained by the RWM and FDM, re-

spectively. Relative error for each sample of diffusivity field is shown in Figure

3.10. Relative errors are mostly less than 10%. In case that relative errors are

more than 10%, the values of Ĉ are very low, i.e., close to zero.

Increasing the number of samples of X̃ ten times, while the time increment is

the same, i.e., ns = 10000 and 4τ = 10−5, reduces the relative errors. Histogram

of Ĉ(x1 = 0.5, x2 = 0.5, t = 0.1) is plotted in Figure 3.11. Resulting estimates

of mean and standard deviation of Ĉ(x1 = 0.5, x2 = 0.5, t = 0.1) are 0.4239 and

0.1872, respectively. Relative errors are less than 5% for 98 samples, while they

are less than 9% for the remaining 2 samples (Figure 3.12).
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Figure 3.11: Histogram of Ĉ by the RWM (ns = 10000)

20 40 60 80 100
0

5

10

15

20

25

ω

ε
(ω

)
(%

)

Figure 3.12: Relative Error (ns = 10000)
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3.5.3 The Euler Scheme vs. The Milstein Scheme

Let X(τ), τ ≥ 0, be an R-valued Itô process defined by

dX(τ) = a(X(τ))dτ + b(X(τ))dB(τ), X(0) = x ∈ R, (3.64)

where a(x) = 3x and b(x) = 2x. The exact solution of Eq. 3.64 is

X(τ) = X(0) exp (τ + 2B(τ)) . (3.65)
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Figure 3.13: A Sample of X(τ) with the Euler approximation

A sample of X(τ), τ ∈ [0, 1], with the Euler and Milstein approximations

are plotted in Figure 3.13 and Figure 3.14, respectively. Relative error in X̂(τ) is

calculated as

εrel(τ) =
|X̂(τ)−X(τ)|

X(τ)
× 100, (3.66)

where X̂(τ), τ ∈ [0, 1], is an approximation of X(τ), τ ∈ [0, 1], obtained by either

the Euler or Milstein scheme.
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As expected, the Milstein approximation is better than the Euler approxi-

mation for the same time increment 4τ = 0.005. Maximum relative errors are

18.7% and 7.1% for the Euler and the Milstein approximations, respectively. If

4τ is reduced to 0.001, maximum relative errors decreases to 5.7% and 1.1%,

respectively.
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Figure 3.14: A Sample of X(τ) with the Milstein approximation

3.6 Effective Diffusivity

Let D(x) > 0, x ∈ H , H ⊂ Rd, be a deterministic or random function defin-

ing the chloride diffusivity of a heterogeneous material specimen and let D∗

be the chloride diffusivity of a homogeneous material specimen with the same

geometry. Let Jheter and Jhomog be the amount of chloride passing through the

heterogeneous and homogeneous specimens, respectively. Then the effective

diffusion coefficient Deff is the value of D∗ for which Jhomog is equal to Jheter. Deff
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is a number and a random variable for deterministic and random heterogeneous

materials, respectively.

3.6.1 Effective Diffusivity by the RWM

One of the objectives of this study is to propose a method to estimate the ef-

fective diffusion coefficient of chloride in a concrete specimen. For this purpose,

a method based on the RWM given in Section 3.3.4 is chosen [75, 78, 80]. The ad-

vantage of this method is its applicability to random heterogeneous media with

arbitrary number of phases and geometry. Derivation of the method, presented

by Grigoriu and Papoulia [80], is reviewed briefly below.

C = 0 C = 1

l1

l2

x2

x1

∂C

∂x2

= 0

∂C

∂x2

= 0

Figure 3.15: A 2D Heterogeneous Material Specimen

Consider a 2D rectangular specimen H = (0, l1) × (0, l2), l1 > 0, l2 > 0,

with a deterministic chloride diffusivity field D(x) > 0, x ∈ H . Suppose that

it is subjected to a unit chloride concentration field (Figure 3.15). The chloride
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concentration C(x), x ∈ H , satisfies the partial differential equation
2∑

p=1

∂D(x)

∂xp

∂C(x)

∂xp

+ D(x)∆C(x) = 0, (3.67)

with the Dirichlet boundary conditions

C(0, x2) = 0 and C(l1, x2) = 1, x2 ∈ (0, l2), (3.68)

and the Neumann boundary conditions

∂C(x)

∂x2

= 0, x ∈ (0, l1)× {0} and x ∈ (0, l1)× {l2}. (3.69)

The amount of chloride passing through the specimen in Figure 3.15 is

Jheter =

∫

x1×(0,l2)

D(x)
∂C(x)

∂x1

dx2, x1 ∈ (0, l1). (3.70)

For a fictitious homogeneous specimen with the same geometry, it is

Jhomog = D∗ l2
l1

. (3.71)

Then the effective diffusion coefficient of chloride in the heterogeneous speci-

men is

Deff =
l1
l2

∫

x1×(0,l2)

D(x)
∂C(x)

∂x1

dx2, x1 ∈ (0, l1). (3.72)

Since the effective diffusivity Deff depends on the chloride diffusivity D(x) and

the chloride concentration gradient ∂C(x)/∂x1, and Eq. 3.67 is linear, Deff is

independent of the chloride concentration field to which the specimen is sub-

jected, that is, the use of boundary conditions C(0, x2) = 0 and C(l1, x2) = 1,

x2 ∈ (0, l2), is not restrictive [80].

Alternatively, it can be calculated by averaging the expression in Eq. 3.72

over a subset (l1 − ζ, l1) × (0, l2), 0 < ζ < l1, of H or over the entire domain H ,

that is, from

Deff =
l1
ζl2

∫

(l1−ζ,l1)×(0,l2)

D(x)
∂C(x)

∂x1

dx (3.73)
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or

Deff =
1

l2

∫

H

D(x)
∂C(x)

∂x1

dx. (3.74)

Estimate of Deff given by Grigoriu and Papoulia [80] is based on Eq. 3.72,

which requires ∂C/∂x1 only on a line x1 × (0, l2). Suppose that the values of C

at a collection of equally spaced points (l1− ζ, x2,k) have been calculated, where

x2,k = (k + 1/2)4x2, k = 0, 1, . . . , n2 − 1, 4x2 = l2/n2, n2 ≥ 1 is an integer,

and 0 < ζ ¿ l1 is a constant. Then the effective diffusion coefficient can be

approximated by

Deff ' l1
l2
4x2

n2−1∑

k=0

D (l1 − ζ, x2,k)
1− C (l1 − ζ, x2,k)

ζ
. (3.75)

Since the values of C is needed only on a line (l1 − ζ, x2,k) to estimate the

effective diffusion coefficient, it is not worthy to use a global method to calculate

the values of C. Instead they can be calculated by the RWM given in Section

3.3.4.

Suppose that Dδ is an approximation to D, and let Cδ be the solution of

Eq. 3.67 with Dδ in place of D. It can be shown that Cδ approximates C satis-

factorily if Dδ satisfies some conditions and the approximate effective diffusion

coefficient Deff,δ obtained with (Dδ, Cδ) in place of (D,C) converges to Deff [80].

Let Xδ be a series of R2-valued Itô processes defined by

dXδ(τ) = aδ(Xδ(τ))dτ + bδ(Xδ(τ))dB(τ) (3.76)

and

X̃δ =
[
X̃δ,1 = Xδ,1, X̃δ,2 = r(Xδ,2)

]
(3.77)
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be the R2-valued Itô process obtained from Xδ by reflection at the Neumann

boundaries (0, l1)×{0} and (0, l1)×{l2}, where r(ε) is the periodic function with

period 2l2 coinciding with |ε| for ε ∈ [−l2, l2]. The drift and diffusion coefficients

are supposed to have the form

aδ,1(x) =
∂Dδ(x̃)

∂x̃1

, aδ,2(x) = r′(x2)
∂Dδ(x̃)

∂x̃2

, (3.78)

bδ(x) =
√

2Dδ(x̃)i, (3.79)

where x ∈ (0, l1)× R and x̃ = (x̃1 = x1, x̃2 = r(x2)) ∈ H .

The approximate chloride concentration is numerically equal to the expecta-

tion

Cδ(x) = E
{

Cδ(X̃δ (Tδ))
}

, x ∈ H, (3.80)

where X̃δ(0) = x ∈ H and

Tδ = inf
{

τ ≥ 0 : X̃δ(τ) /∈ H
}

(3.81)

is a stopping time, that is, the time at which the process X̃δ exits H for the first

time. The detailed proof of Eq. 3.80 is given by Grigoriu and Papoulia [80].

Cδ in Eq. 3.80 can be estimated by the Monte Carlo algorithm given in Section

3.3.4. First, ns independent samples of Xδ, which starts at Xδ(0, ω) = x ∈ H ,

are generated in the time intervals [0, Tδ(ω)], ω = 1, . . . , ns. The corresponding

samples X̃δ(τ, ω) of X̃δ are obtained by reflection (Eq. 3.77) with Xδ(τ, ω) in

place of Xδ. The samples X̃δ(τ, ω) do not leave H during the time interval

[0, Tδ(ω)) and reach one of the Dirichlet boundaries of H at time Tδ(ω). Second,

Cδ(x) in Eq. 3.80 is estimated by

Ĉδ(x) =
1

ns

ns∑
ω=1

Cδ

{
X̃δ (Tδ (ω) , ω)

}
, (3.82)
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which returns the fraction of samples of X̃δ exiting H through {l1} × (0, l2),

since Cδ is 0 and 1 on the Dirichlet boundaries {0} × (0, l2) and {l1} × (0, l2),

respectively. The estimator associated with the estimate in Eq. 3.80 is unbiased

and converges in probability to Cδ(x) as ns →∞ for each δ > 0 [80].

3.6.2 Examples

Two examples analyzing a material specimen with a deterministic diffusiv-

ity field and another one with a random diffusivity field are presented below to

illustrate the estimation of effective diffusion coefficient by the RWM. The es-

timates of effective diffusion coefficients and chloride concentrations are based

on Eqs. 3.75 and 3.80, respectively.

3.6.2.1 Deterministic Heterogeneous Material

Suppose that a material specimen H = (0, l1) × (0, l2), l1 = l2 = 1, has a

deterministic diffusivity field defined by

D(x) = 2 + sin (2πx1) cos (2πx2) , x ∈ H. (3.83)

Deff has been obtained as 2.0 by using the MATLAB’s PDE Toolbox in order

to compare the estimates of Deff based on the RWM. The parameters that affect

the accuracy of D̂eff are the number of points used to estimate Deff, n2, the dis-

tance between those points and the boundary x1 = l1, ζ , the time step used to

generate samples of X̃ , 4τ , and the number of samples of X̃ , ns. A series of

simulations has been performed for different values of parameters to examine

their effects on the accuracy of D̂eff. Two of the samples of X̃ are plotted in
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Figs. 3.16 and 3.17. The D̂eff calculated for different values of ζ , n2, 4τ and ns,

and the corresponding relative errors calculated as

εrel =
|D̂eff −Deff|

Deff
× 100, (3.84)

are given in Table 3.2.

Table 3.2: Effective Diffusion Coefficient by the RWM

ζ n2 4τ ns D̂eff Error (%)

0.1 2 10−3 1000 2.4900 +24.5

0.1 5 10−3 1000 2.4489 +22.4

0.1 10 10−3 1000 2.4212 +21.1

0.1 10 10−4 1000 2.1286 +6.4

0.1 10 10−5 1000 1.9260 -3.7

0.05 10 10−5 1000 2.0328 +1.6

0.05 10 10−6 1000 1.9935 -0.3

0.05 10 10−6 500 1.9729 -1.4

0.05 10 10−6 100 1.7172 -14.1

In general, the values of ζ , n2,4τ and ns are decided according to the limita-

tions imposed by the available computational power. n2 and n should be chosen

as large as possible since the accuracy of D̂eff improves as n2 and n increases. Af-

ter Ĉ at a given point is calculated for a sequence of decreasing time steps, time

step can be selected as the largest time step for which Ĉ stabilizes. Similarly, D̂eff

should be calculated for several small values of ζ in order to decide the value of

ζ making D̂eff stable.
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Figure 3.16: A Sample of X̃
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Figure 3.17: Another Sample of X̃
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3.6.2.2 Random Heterogeneous Material

Suppose that a material specimen H = (0, l1) × (0, l2), l1 = 10, l2 = 5, has a

random diffusivity field D defined by Eq. 3.56, i.e., D(x) = 0.1+0.9Z(x), x ∈ H ,

where Z is a beta translation field taking values in [0, 1] with shape parameters

equal to 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6
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µ̂
D̂eff

= 0.5369

σ̂
D̂eff

= 0.0981

C.O.V. = 0.1827

Figure 3.18: Histogram of D̂eff by the MATLAB’s PDE Toolbox

Estimates of Deff have been calculated for 15 samples of diffusivity field D

with n2 = 10 and ζ = 0.1. First, D̂eff(ω), ω = 1, . . . , 15, has been calculated

by using the MATLAB’s PDE Toolbox. Resulting estimates of mean, standard

deviation and coefficient of variation of D̂eff are 0.5369, 0.0981 and 0.1827, re-

spectively. Then D̂eff, ω = 1, . . . , 15 has been calculated by using the method

based on the RWM. Resulting estimates of mean, standard deviation and coef-

ficient of variation of D̂eff based on ns = 1000 samples of X̃δ and a time step of

4τ = 10−6 are 0.5526, 0.1068 and 0.1934, respectively.
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Figure 3.19: Histogram of D̂eff by the Local Method
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Figure 3.20: Relative error in D̂eff
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Relative error in D̂eff is calculated as

εrel(ω) =
|D̂eff,RWM(·, ω)− D̂eff(·, ω)|

D̂eff(·, ω)
× 100, ω = 1, . . . , 15, (3.85)

where D̂eff,RWM and D̂eff are the effective diffusion coefficients obtained by the

RWM and the MATLAB’s PDE Toolbox, respectively. Relative error for each sam-

ple of diffusivity field is shown in Figure 3.20. The maximum relative error is

12.1%.

3.7 Conclusion

A mathematical model for chloride diffusion in concrete is presented in the

form of a partial differential equation. Numerical methods, both global and

local, for solving this equation are reviewed. Since this research is interested in

the solution of this partial differential equation only at particular points, a local

method has been chosen as a solution method.

The local method, which is based on an extension of a random walk method,

uses samples of an Itô process for obtaining a solution. Two examples, one of

which explains how to analyze a material specimen with a random diffusivity

field, are presented to illustrate the features of the local method. It has been

observed that the computer algorithm employing the local method is simple to

develop, stable and can be easily modified for parallel computing. The accuracy

can be improved by increasing the number of samples of Itô process and/or

decreasing the time step used for generating samples of Itô process.

A simple example for comparing the Euler’s and Milstein’s schemes is pre-

sented. As expected, better results have been obtained by using the Milstein’s
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scheme, since the order of convergence of the Milstein’s scheme is higher than

that of the Euler’s scheme. However, the samples of Itô processes in the other

examples have been generated by using the Euler’s scheme in order to reduce

the computational cost. Considering the fact that small values of time step have

been chosen for generating samples of Itô processes, the use of Euler’s scheme

has not introduced a significant error.

A method based on the local method for calculating the effective diffusion

coefficient of a material specimen is also presented. The method is applicable

to random heterogeneous media with arbitrary number of phases and geome-

try. The analyses of two material specimens, one with a deterministic diffusivity

field and the other with a random diffusivity field, are presented. It has been

identified that the number of samples of Itô process, the time step used to gen-

erate samples of Itô process, the number of points used to estimate the effective

diffusion coefficient and the distance between those points and the boundary of

specimen are the parameters affecting the accuracy of the estimates.
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CHAPTER 4

VIRTUAL SPECIMENS

4.1 Introduction

Particle packing is of interest to various research fields studying granular

materials, the constituents of which are particles of any shape and size ranging

from micrometers to centimeters. Powders, a special class of granular materi-

als, refer to the granular materials with particle size in the order of microme-

ters. Numerous computer algorithms that simulate particle packing have been

developed in order to be able to assess the packing characteristics of granular

materials , particularly powders, without carrying out extensive experiments.

The algorithms have become more sophisticated with the increasing computa-

tional power.

A common simulation approach is to use a sequential random-generator

procedure. Basically, it is a static simulation method that sequentially places

particles within a container by generating random coordinates for centroids of

particles, rejects the coordinates and generates a new set of coordinates if par-

ticle overlapping occurs. The disadvantage of this approach is that, in gen-

eral, computation time increases significantly with packing density. Moreover,

it might not be possible to obtain high packing densities in some cases. In order

to obtain dense packs, a dynamic simulation, in which particles are moved and

rotated, is performed following the static simulation. Generally, the concept of

discrete element method is applied in dynamic simulation. Particles are treated

individually in discrete element method, that is, they are allowed to exhibit fi-
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nite displacements and rotations separately. Another approach to obtain dense

packs is to use a growth algorithm, where a number of points are randomly

positioned within a container and particles are allowed to grow around those

points while moving in the container. It is similar to an algorithm that gener-

ates a Voronoi tessellation. It is difficult to control particle size distributions in

growth algorithms. There have been numerous researches on particle packing

simulation methods, some of which are reviewed below.

Stroeven and Stroeven [156, 158] developed a software package, the Soft-

ware Package for the Assessment of Compositional Evolution (SPACE), to as-

sess the characteristics of random-packing in granular media. The simulation

algorithm consists of two sequential stages. First, a structured or random 3D

dilute distribution of particles is generated within a container according to a

predefined shape and size distribution, and each particle is assigned random

linear and rotational velocity vectors. Second, particles are moved and rotated

at each time step according to a Newtonian motion model. Velocity vectors

are updated when a contact occurs between particles. The size of the container

is gradually reduced in time, so that dense packs are obtained. This iterative

procedure is stopped when certain conditions, e.g., required volume fraction of

particles, are reached.

Fu and Dekelbab [55] proposed a computer simulation method, which con-

sists of kinematics and dynamics simulations, for random packing of 3D parti-

cles. In the kinematics simulation stage, a box is filled with particles to a pre-

determined height. The particles, planar coordinates of which are random, are

dropped sequentially from the top of the box. A dropping particle is allowed

to rotate around the particles existing in the box until it is stabilized. A state of
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loose random packing is obtained at the end of the kinematics simulation stage.

In the dynamics simulation stage, a denser state of packing is obtained by mov-

ing the particles in the box. An equation of motion, which involves forces on

particle due to gravity, contact and friction, is solved at every time step for each

particle. In case of packing a large amount of particles, it is suggested to divide

the entire matrix of particles into a few layers and pack each layer indepen-

dently since the number of equations to be solved increases as the number of

particles increases.

Buckmaster et al. [94, 95, 181] developed an algorithm to simulate random

packing of heterogeneous propellants which consist of ammonium perchlorate

particles imbedded randomly in a matrix called fuel binder. A number of points,

each of which is assigned a random velocity, are randomly placed in a cube that

is an element of a periodic array of cubes. Each point has a state vector con-

sisting of its location and velocity. The points are partitioned into classes, each

of which is assigned a different growing rate to produce spheres with different

sizes. As time proceeds, a sphere grows around each point at a rate assigned

to the class to which that point belongs. The spheres not only grow but also

move in the cube and therefore collide. A collision algorithm, based on conser-

vation of momentum, updates the velocity vectors of colliding spheres. Exit of

a sphere through a face of the cube and collision of spheres are defined as the

event times at which state vectors are updated. Also, the same algorithm can

be used with ellipses instead of spheres. It was shown that packing fractions

common in heterogenous propellants can be obtained by using the developed

algorithm.

The algorithms reviewed above seem to be capable of simulating real inter-
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actions between particles by use of discrete element method, but particles are

represented by spheres which is a simplification to make computations easier

and the duration of computations shorter since spheres are described by a sin-

gle parameter, i.e., radius. Deriving collision and overlap algorithms for parti-

cles of arbitrary shapes and computations by using those particles require much

more effort. Gethin et al. [70, 133] combined finite element and discrete element

methods not to generate packs but to study the deformations in a particulate

system consisting of particles with arbitrary shapes. Despite the fact that parti-

cle shape has an important effect on the packing characteristics, researches on

random packing of particles of arbitrary shapes have been limited.

Smith and Midha [151] remarked that the methods which use spherical par-

ticles with smooth surfaces for simulating powders overestimate powder pack-

ing densities since the spherical particles with smooth surfaces can be packed

closer than the ones with asperities can be done. They developed a method for

estimating powder packing densities by using a particle generation algorithm

called random sphere construction, which models a particle as a combination

of a central sphere and smaller spheres, called corner spheres, randomly lo-

cated on its surface. Corner spheres, which represent asperities on the surface

of the particles, increase the distances between particles, so that a more accurate

estimate of powder packing density is obtained. Short-range random particle

movements are performed during particle placement.

Jia et al. [89] used a digital approach to develop a particle packing software,

called DigiPac, which can handle particles of arbitrary shapes. Particles, rep-

resented by coherent collections of pixels in a digitized packing space, are ei-

ther scanned from real particles or generated within the software. At each time
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step, particles move in a random direction, where each possible direction has

an equal probability to be selected. The movement is one grid cell at a time,

on a square lattice. Upward movements are accepted with a so-called rebound-

ing probability, so that gravity effect is simulated. In addition to translation,

particles are allowed to rotate. The advantages of the digital approach are: (i)

particles of any shape and containers of any geometry can be represented, (ii)

collision/overlap detection is simple, (iii) number of pixels, i.e., storage space,

does not depend on the complexity of the particle shape, and (iv) it can be per-

formed on ordinary computers. The developed software was validated through

a number of case studies [57].

The available packing softwares using the digital approach are inadequate

for generating virtual concrete specimens because of the following reasons:

(i) Digital approach discretizes the domain of interest into pixels. However,

the solution method presented in the previous chapter does not require

discretization of domain.

(ii) Concrete is considered as a three-phase material consisting of aggregate,

cement paste and interfacial transition zones. Concrete specimens range

from centimeters to meters. Aggregate particles have a size range from

micrometers to milimeters. The thickness of transition zones between ag-

gregate particles and cement paste is in the order of micrometers. Hence,

pixels with sides of order 1 µm are needed to construct digital concrete

models. The resulting models are likely to be computationally infeasible.

For example, 2.5× 1011 pixels are required for a square specimen of size 50

cm.

The objective of the study presented in this chapter is to develop a particle

112



packing algorithm that generates 2D virtual concrete specimens, while the gen-

eration of 3D specimens is left as a further research. Concrete specimens have

been modeled as virtual aggregate particles placed randomly within given con-

tainers, where space left from virtual aggregate particles has been assumed as

cement paste. A stochastic model has been constructed to generate virtual ag-

gregate particles, where the resulting representative elements are polygons, and

a random sequential addition algorithm has been derived to pack randomly

generated virtual aggregate particles. For this purpose, a MATLAB code has

been developed to generate and to place virtual aggregate particles within a

given container.

In Section 4.2 and Section 4.3, the algorithms developed to generate and to

place a virtual aggregate particle are given, respectively. Constructing a virtual

specimen by using the algorithms presented in Section 4.2 and Section 4.3, and

input parameters of the MATLAB code are explained in Section 4.4. In Section

4.5, virtual concrete specimens generated by the developed algorithm is pre-

sented.

4.2 Particle Generation

A probabilistic model is developed for representing concrete aggregates in

2D. The model is used to implement a Monte Carlo algorithm for generating

virtual concrete aggregates. First, a mathematical model of concrete aggregates

is given. Second, an algorithm for generating virtual concrete aggregates is pre-

sented.
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4.2.1 Mathematical Model

Concrete aggregate, referred to as particle within the rest of this chapter,

is modeled by adding noise on an ellipse that has axes with random lengths.

Consider an interval I = (i1, ini+1], 0 < i1 < ini+1 < ∞, and partition I into

subintervals Ik = (ik, ik+1], i1 < i2 < . . . < ik < . . . < ini+1, k = 1, . . . , ni, where

ni is the number of subintervals. Let R1 denote the length of the semi-major axis

of an ellipse. Suppose that conditional on R1 ∈ Ik, R1 is uniformly distributed

on Ik.

p1 = p p2 = 1 − p

I1 I2

λ(I2)λ(I1)

p

λ(I1)

1−p

λ(I2)

i1 i3i2

Figure 4.1: Probability Density Function of R1 for ni = 2

Then the probability density function of R1 (Figure 4.1) is

fR1(r1) =

ni∑

k=1

1(r1 ∈ Ik)
pk

λ(Ik)
, (4.1)

where λ(Ik) is the length of Ik, that is, λ(Ik) = ik+1 − ik, and

pk = P (R1 ∈ Ik),

ni∑

k=1

pk = 1. (4.2)
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Let IΣ and R2 denote an interval (iΣ,1, iΣ,2], 0 < iΣ,1 < iΣ,2 ≤ 1, and the length

of the semi-minor axis of the ellipse, respectively. Suppose that Σ is a random

variable with a uniform distribution on IΣ and independent of R1, and R2 has

the form given by

R2 = ΣR1, (4.3)

so that R2 is dependent on R1.

R1 R1

Γ(θ)

θ

R2

R2

Figure 4.2: Schematic View of a Particle

Let FZ denote the beta distribution function with shape parameters α1 and

α2, and Y (θ), θ ∈ [0, 2π], be a Gaussian field with zero mean and unit variance,

independent of R1 and R2. Then the random field

Z(θ) = F−1
Z ◦ Φ(Y (θ)) (4.4)

is called a beta translation field taking values in [0,1], where Φ is the standard

Gaussian distribution function. The correlation function of Z is completely de-
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fined by its marginal distribution and the covariance function of the underlying

Gaussian field Y .

Since the ellipse and the noise have been defined, the equation of the particle

can be given as

Γ(θ) = R1 cos(θ) + R2 sin(θ) + g(R1)Z(θ), θ ∈ [0, 2π], (4.5)

where Γ is the distance from a point on the boundary of the particle to the cen-

troid of the ellipse, θ is the angle (counter-clockwise) with respect to the major

axis of the ellipse and g is a function of R1 which gives a positive scaling factor

and will be defined in the following section.

In digital environment, particles are stored in discretized form, so that Eq. 4.5

is replaced with

Γq = R1 cos(θq) + R2 sin(θq) + g(R1)Zq, (4.6)

where θq = (q − 1)4θ, 4θ = 2π/n, q = 1, . . . , n + 1, and Zq is a coordinate of a

(n + 1)-dimensional random vector

Z =




Z(1)

Z(2)


 =




Z2

...

Zn

Z1

Zn+1




=




Z(θ2)

...

Z(θn)

Z(θ1)

Z(θn+1)




=




F−1
Z ◦ Φ(Y (θ2))

...

F−1
Z ◦ Φ(Y (θn))

F−1
Z ◦ Φ(Y (θ1))

F−1
Z ◦ Φ(Y (θn+1))




, (4.7)
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where Y (θq) = Yq is a coordinate of a (n + 1)-dimensional Gaussian vector

Y =




Y (1)

Y (2)


 =




Y2

...

Yn

Y1

Yn+1




∼ N


 0 ,




c(1,1) c(1,2)

c(2,1) c(2,2)





 . (4.8)

Partitions of covariance matrix c of Y are defined by

c
(1,1)
i,j = ρ|i−j| i, j = 1, . . . , n− 1, (4.9a)

c
(1,2)
i,1 = ρi i = 1, . . . , n− 1, (4.9b)

c
(1,2)
i,2 = ρn−i i = 1, . . . , n− 1, (4.9c)

c(2,1) =
(
c(1,2)

)T
, (4.9d)

c
(2,2)
i,j = 1 i = j = 1, 2, (4.9e)

c
(2,2)
i,j = ρn i 6= j, (4.9f)

where ρ ∈ (0, 1). The conditional vector Ỹ = Y (1) | (Y (2) = y) is a (n − 1)-

dimensional vector with mean and covariance matrices

µ̃ = c(1,2)(c(2,2))−1y, (4.10)

c̃ = c(1,1) − c(1,2)(c(2,2))−1c(2,1), (4.11)

respectively, where

y = N(0, 1)




1

1


 . (4.12)

Then Ỹ can be given in the form

Ỹ = µ̃ + βG, (4.13)

where β is the Cholesky decomposition of c̃, i.e., ββT = c̃, and G is a standard

Gaussian vector with independent and identically distributed coordinates.
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4.2.2 Particle Generation Algorithm

Particle diameter is the maximum distance between any two points on the

boundary of particle. A particle is considered as a particle of type-k if its diame-

ter is in the interval I∗k = (dL,k, dU,k], 0 < dL,k < dU,k < ∞, where dL,k and dU,k are

the lower and upper particle diameter bounds for type-k particles, respectively

(Figure 4.3).

Particle Diameter

dL,k dU,kdU,k−2 dL,k+2
I
∗

k

I
∗

k−1 I
∗

k+1

type−k particle

dU,k−1dL,k−1 dL,k+1 dU,k+1

Figure 4.3: Particle of Type-k

Suppose that c (Eq. 4.9) is known for a given ρ, so that c̃ (Eq. 4.11) and β are

known, IΣ is given and a particle of type-k will be generated. The algorithm to

be followed is outlined below and shown as a flowchart in Figure 4.5.

• The subinterval Ik on which R1 is assumed to be uniformly distributed is

(dL,k/2, dU,k/2]. Then a semi-major axis R1(ω) ∈ Ik is generated by using

MATLAB’s rand command, which returns a pseudo-random, scalar value
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drawn from a uniform distribution on (0,1), as

R1(ω) =
dL,k

2
+ rand(1)

(
dU,k − dL,k

2

)
. (4.14)

• An axis ratio Σ(ω) ∈ IΣ = (iΣ,1, iΣ,2] is generated by using MATLAB’s rand

command as

Σ(ω) = iΣ,1 + rand(1)(iΣ,2 − iΣ,1), (4.15)

so that an ellipse with the semi-major axis of R1(ω) and the semi-minor

axis of R2(ω) = Σ(ω)R1(ω) is obtained.

R1(ω) R1(ω)

Γq(ω)

θq

R2(ω)

R2(ω)

Figure 4.4: Virtual Discretized Particle

• y(ω) is generated by using MATLAB’s randn command (Eq. 4.12), which

returns a pseudo-random, scalar value drawn from a normal distribution

with zero mean and unit variance.

• The mean vector µ̃(ω) of Ỹ (ω) is calculated by using Eq. 4.10.

• G(ω) is generated by using MATLAB’s randn command.
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• Ŷ (ω) is calculated by using Eq. 4.13.

• Y (ω) is constructed by using Eq. 4.8.

• Z(ω) is obtained by memoryless transformation Eq. 4.7.

• Scaling factor is calculated by

g(R1(ω)) =
dU,k

2
−R1(ω) ≥ 0. (4.16)

• Final shape of the particle (Figure 4.4) is obtained by using Eq. 4.6.

Generate a semi-
major axis R1(ω)

Generate an
axis ratio Σ(ω)

Generate y(ω)
Eq. 4.12

? ?
Calculate the semi-
minor axis R2(ω)

Generate G(ω)
Calculate µ̃(ω)

Eq. 4.10

-

?
Calculate Ỹ (ω)

Eq. 4.13
Construct Y (ω)

Eq. 4.8
¾

?
Transform to Z(ω)

Eq. 4.7
Calculate g(R1(ω))

Eq. 4.16

?
Calculate Γ(ω)

Eq. 4.6

Figure 4.5: Generation of a Virtual Particle

4.3 Particle Placement

Particle placement is presented below by explaining, first, the algorithm of

placing a single particle, second, the overlap detection algorithm used in par-
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ticle placing algorithm. Let H denote a bounded rectangle whose lower-left

corner coincides with the origin of R2, that is, H = (0, l1)× (0, l2), l1 > 0, l2 > 0.

Suppose that the random point field Nh is a homogenous Poisson field. Conditional

on Nh(l1, l2) = nh ≥ np, where np is the number of particles to be placed in H ,

the points of the Poisson field Nh are uniformly and independently distributed

in H (Section 3.2, [152]), that is,

Vm,1 ∼ U(0, l1) and Vm,2 ∼ U(0, l2), m = 1, . . . , nh ≥ np, (4.17)

where Vm,1 and Vm,2 denote the coordinates of point m.

Let Λj be the initial orientation angle of particle j, j = 1, . . . , np. Λj is as-

sumed to be uniformly distributed on [0, 2π] and independent of the coordinates

of point at which particle j will be placed.

4.3.1 Particle Placement Algorithm

Suppose that j − 1 particles have already been placed in H and particle j

will be placed. The algorithm to be followed is outlined below and shown as a

flowchart in Figure 4.9.

• Initial orientation angle of particle j, Λj(ω), is generated by using MAT-

LAB’s rand command as

Λj(ω) = 2π × rand(1). (4.18)

• Point m, m ≥ j, with coordinates (Vm,1(ω), Vm,2(ω)) is generated by using
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MATLAB’s rand command as

Vm,1(ω) = l1 × rand(1), (4.19a)

Vm,2(ω) = l2 × rand(1). (4.19b)

• Particle j is placed at point m in such a way that the centroid of ellipse is

positioned at the coordinates Vm,1(ω) and Vm,2(ω), then, it is rotated clock-

wise by an amount of Λj(ω) (Figure 4.6).

H

Λj(ω)

Vm,1(ω)

Vm,2(ω)

Γq,j(ω)

θq

particle j

Figure 4.6: Placing Particle j

• It is checked whether particle j is in H or not.

• If particle j is not in H , it is rotated clockwise incrementally until it does

not extend out of H . If no orientation angle is found to place particle j in

H , a new point is generated and the same procedure is followed.

• After particle j is placed in H , it is checked whether particle j overlaps

with another particle. If it does, particle j is rotated clockwise incremen-

tally until it does not overlap with any other particle. If no orientation
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angle is found to place particle j without overlapping, a new point is gen-

erated and the same procedure is followed.

If there exist points rejected during particle placement, the resulting random

point field can no longer be called a homogenous Poisson field. The random

field formed by the remaining points in H , denoted by Np, is called a Poisson

hard-core field or the Matern hard-core model [106, 152]. This type of a random

field is generated by applying dependent thinning to the primary Poisson field

Nh [152].

4.3.2 Overlap Detection Algorithm

Since the particles have random shapes, an algorithm has been developed to

check overlapping. The algorithm that checks whether particle j overlaps with

particle i, i = 1, . . . , j− 1, when the centroid of underlying ellipse of particle j is

positioned at (Vm,1(ω), Vm,2(ω)), is outlined below.

• Distance between particles i and j is calculated by

ϕi,j =

√
(Vi,1(ω)− Vm,1(ω))2 + (Vi,2(ω)− Vm,2(ω))2, (4.20)

where (Vi,1(ω), Vi,2(ω)) are the coordinates at which the centroid of under-

lying ellipse of particle i is positioned.

• Let Γq,i(ω) be distance from point q on the boundary of particle i to the

centroid of its underlying ellipse (Eq. 3.6). If the condition

ϕi,j ≤ max
1≤q≤n

(Γq,i(ω)) + max
1≤q≤n

(Γq,j(ω)) (4.21)
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is not satisfied, there is no need to proceed since particles i and j cannot

overlap.

• First, it is checked whether all points depicting particle i is outside the

region enclosed by particle j or not (Figure 4.7). For this purpose, a local

polar coordinate system is located at (Vm,1(ω), Vm,2(ω)). Let (%
(m)
i,q , ς

(m)
i,q ), q =

1, . . . , n, be the polar coordinates of points depicting particle i and %
(m)
j,q be

the radius of the point on the boundary of particle j corresponding to the

angle ς
(m)
i,q with respect to the local polar coordinate system just defined. If

%
(m)
i,q > %

(m)
j,q , ∀ q = 1, . . . , n, (4.22)

is satisfied, then all points depicting particle i is outside the region en-

closed by particle j.

• Second, it is checked whether all points depicting particle j is outside the

region enclosed by particle i or not (Figure 4.8). For this purpose, a local

polar coordinate system is located at (Vi,1(ω), Vi,2(ω)). Let (%
(i)
j,q, ς

(i)
j,q ), q =

1, . . . , n, be the polar coordinates of points depicting particle j and %
(i)
i,q be

the radius of the point on the boundary of particle i corresponding to the

angle ς
(i)
j,q with respect to the local polar coordinate system just defined. If

%
(i)
j,q > %

(i)
i,q, ∀ q = 1, . . . , n, (4.23)

is satisfied, then all points depicting particle j is outside the region en-

closed by particle i.

• If both Eqs. 4.22 and 4.23 are satisfied, then particles i and j do not overlap,

so particle j is placed.
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Figure 4.7: Local Polar Coordinate System Located at (Vm,1(ω), Vm,2(ω))
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Figure 4.8: Local Polar Coordinate System Located at (Vi,1(ω), Vi,2(ω))
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4.4 Construction of Specimen

Having built the algorithms of particle generation and placement, construc-

tion of a specimen for a given input is straightforward. Input parameters are:

• particle size distribution, that is,

– number of particle types, ni.

– lower and upper particle diameter bounds for each type, I∗k =

(dL,k, dU,k], k = 1, . . . , ni, where dU,k = dL,k+1 for k = 1, . . . , ni − 1.

– and proportion (by area) of each particle type, pk,
∑ni

k=1 pk = 1,

• area fraction of particles, Aagg,

• dimensions of specimen, l1 and l2,

• shape parameters of beta translation field, α1 and α2,

• ρ used in calculation of c,

• and interval IΣ = (iΣ,1, iΣ,2] on which Σ is uniformly distributed.

Prior to construction of specimen,

• required total area of type-k particles, Ak = pkAaggl1l2, k = 1, . . . , ni,

• intervals Ik = (dL,k/2, dU,k/2],

• covariance matrices c of Y (Eq. 4.9) and c̃ of Ỹ (Eq. 4.11),

• and β (Cholesky decomposition of c̃),

are calculated.

127



Construction of specimen is accomplished in two sequential stages. First,

all particles are generated. Second, these particles are placed within a given

rectangular container. The algorithm to be followed is outlined below:

• Particles are generated by using the algorithm given in Section 4.2. They

are numbered according to the generation sequence. It does not matter

which type of particles are generated first, but it is started with type-ni

in order to be consistent with the placing algorithm, so that the one with

lower index has a larger diameter among the two particles of different

types.

• Let Âk denote the total area of the particles that have been generated as

type-k. Initially, number of all particles that needs to be generated is not

known, so that after a type-k particle is generated, Âk is updated and it

is checked whether Âk < Ak or not. If Âk < Ak, next particle will also be

generated as type-k, otherwise, it will be type-(k−1), so that a collection of

virtual particles in proportions, p̂k, approximately equal to the given pk’s,

is obtained at the end of the particle generation stage.

• Particles are sequentially placed within the given container by using the

algorithm presented in Section 4.3 in the order of their indexes, that is,

the ones with larger diameter are placed first. If the ones with smaller

diameter were placed first, there might not be enough space left for the

ones with larger diameter after a few particles had been placed.

• While placing particle j, it is checked whether it overlaps with any of the

j − 1 particles that exist within the container. If it is found that particle j

overlaps with one of the j−1 particles, there is no need to check the others.
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• When all particles are placed, a virtual concrete specimen with area frac-

tion of particles, Âagg, approximately equal to the given Aagg, is obtained.

4.5 Examples

Three virtual concrete specimens have been generated to illustrate some of

the features of the developed algorithm. First, a specimen has been generated

to show that the developed algorithm is able to generate dense packs. Second, a

smaller specimen has been generated to examine the size effect on packing char-

acteristics. Third, a pack with coarser particles has been generated to observe

the effect of particle size distribution on packing characteristics. The common

parameters in all three examples are shape parameters of beta translation field

Z, whose probability density function is given in Figure 4.10, α1 = 2 and α2 = 7,

ρ = 0.9 and IΣ = (0.3, 0.9).
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Figure 4.10: Probability Distribution Function of Z
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4.5.1 Example 1: High Area Fraction of Particles

Particle size distribution has been characterized with ni = 7 particle types

with the corresponding particle diameter bounds, dL,k and dU,k, and propor-

tions, pk, k = 1, . . . , 7. Particle diameter bounds have been determined from

the standard sieve sizes [3]. Particle diameter bounds and proportions chosen

for this example are shown in Table 4.1. The area fraction of particles Aagg has

been selected as 0.8, which is a very high value for ordinary concretes [114].

Dimensions of specimen are l1 = l2 = 100 mm.

Table 4.1: Particle Size Distribution (Specimen 1)

Type-k
dL,k dU,k pk p̂k Rel. Err.

(mm) (mm) (by area) (by area) (%)

1 0.15 0.30 0.02 0.0199 -0.72

2 0.30 0.60 0.08 0.0794 -0.70

3 0.60 1.18 0.10 0.0993 -0.68

4 1.18 2.36 0.15 0.1490 -0.69

5 2.36 4.75 0.12 0.1191 -0.73

6 4.75 9.53 0.35 0.3483 -0.47

7 9.53 12.70 0.18 0.1849 +2.75

For the given input, 13659 particles have been generated in proportions, p̂k,

shown in the fifth column with errors in the sixth column of Table 4.1. The re-

sulting area fraction of particles is 0.8059. The generated virtual concrete spec-

imen is plotted in Figure 4.11. Even though the developed algorithm does not

have a dynamic simulation stage, the algorithm has been able to generate a

specimen with a high area fraction of particles by rotating the particles.
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Figure 4.11: Virtual Concrete Specimen 1
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Figure 4.12: A Closer View of Particles
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Figure 4.13: Histogram of Particle Diameters (Specimen 1)

4.5.2 Example 2: Size Effect

A smaller specimen, l1 = l2 = 50 mm, has been generated to examine the

effects of the dimensions of specimen on the area fraction and proportions of

generated particles. The rest of the input is the same as Example 1.

For this smaller specimen, 3412 particles have been generated in proportions

shown in the fifth column with errors in the sixth column of Table 4.2. The

resulting area fraction of particles is 0.8139. Relative error in the area fraction of

particles is 1.73%, while it is 0.73% in Example 1, where a larger specimen has

been generated. It has been observed that relative errors in the area fraction of

particles and the proportions of particles increase as the dimensions of specimen

decrease.
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Table 4.2: Particle Size Distribution (Specimen 2)

Type-k
dL,k dU,k pk p̂k Rel. Err.

(mm) (mm) (by area) (by area) (%)

1 0.15 0.30 0.02 0.0197 -1.68

2 0.30 0.60 0.08 0.0787 -1.68

3 0.60 1.18 0.10 0.0985 -1.54

4 1.18 2.36 0.15 0.1477 -1.52

5 2.36 4.75 0.12 0.1198 -0.16

6 4.75 9.53 0.35 0.3579 +2.27

7 9.53 12.70 0.18 0.1778 -1.25
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Figure 4.14: Virtual Concrete Specimen 2
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Figure 4.15: Histogram of Particle Diameters (Specimen 2)

4.5.3 Example 3: Effects of Particle Size Distribution

A specimen with l1 = l2 = 50 mm has been generated to examine the effect

of particle size distribution on the area fraction of particles. Particle size distri-

bution shown in Table 4.3 has been used. The area fraction of particles has been

chosen as 0.6.

1740 particles have been generated in proportions shown in the fifth column

with errors in the sixth column of Table 4.3. The resulting area fraction of par-

ticles is 0.6268, where relative error is 4.46%. It has been observed that relative

errors in area fraction of particles and proportions of particles increase as frac-

tion of coarser particles increases, particularly in a relatively small specimen.
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Table 4.3: Particle Size Distribution (Specimen 3)

Type-k
dL,k dU,k pk p̂k Rel. Err.

(mm) (mm) (by area) (by area) (%)

1 0.30 0.60 0.10 0.0958 -4.16

2 0.60 1.18 0.10 0.0958 -4.16

3 1.18 2.36 0.12 0.1150 -4.19

4 2.36 4.75 0.06 0.0586 -2.26

5 4.75 9.53 0.26 0.2611 +0.43

6 9.53 12.70 0.30 0.3024 +0.79

7 12.70 19.05 0.06 0.0712 +18.74
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Figure 4.16: Virtual Concrete Specimen 3
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4.6 Conclusion

A probabilistic model has been developed for representing concrete aggre-

gate particles in 2D. The aggregate particles are ellipses with random geome-

try and size whose boundaries are altered by adding beta translation fields. A

Monte Carlo algorithm has been implemented to generate virtual concrete ag-

gregate particles in given proportions using this model.

A packing algorithm has been developed for generating 2D virtual concrete

specimens. The algorithm sequentially places the virtual concrete aggregate

particles within a given container such that the centroids of particles are posi-

tioned at random coordinates. The packing algorithm does not have a dynamic

simulation stage. A dynamic simulation stage would require a collision algo-
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rithm which detects the collisions between the particles and updates the veloc-

ity of the colliding particles according to a presumed collision mechanism. If

particles had a simple and regular shape such as a sphere, it would be relatively

easy to perform a dynamic simulation. However, constructing a collision al-

gorithm for particles of arbitrary shapes and performing a dynamic simulation

using these particles require significant computational effort.

Three examples are presented to illustrate the features of the particle gener-

ation and placement algorithms. It has been shown that the developed packing

algorithm is capable of generating virtual concrete specimens with high area

fraction of particles for ordinary concretes. It has been observed that the parti-

cle size distribution and the area fraction of particles in the generated specimen

depends on specimen size. If the specimen size is relatively small with respect

to the average aggregate size, then the particle size distribution in the resulting

virtual concrete specimens can differ significantly from the target distribution.

It has been shown that the developed model enables generating 2D virtual

concrete specimens consistent with observations. The generated virtual speci-

mens will be used to estimate the transport characteristics of a given concrete

specimen by using the local method.
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CHAPTER 5

EFFECTIVE DIFFUSION COEFFICIENT

5.1 Introduction

Reinforced concrete is a widely used structural material due to its relatively

low cost and high strength. Strength-based criteria are insufficient for the design

of reinforced concrete structures since these structures deteriorate in time. In re-

cent years, research focused on the mechanism of deterioration of reinforced

concrete structures to develop durability-based design criteria. Current build-

ing codes specify durability-based design criteria as well as strength-based de-

sign criteria [110].

Reinforced concrete structures are likely to be subjected to various adverse

conditions, e.g., chemical attacks and freeze-thaw cycles. Of the various dete-

rioration mechanisms of reinforced concrete structures, chloride-induced cor-

rosion of steel reinforcement bars is of great importance since numerous rein-

forced concrete structures are exposed to chloride sources, e.g., de-icing salts or

marine environment [129].

Diffusion, convection, migration and permeation are chloride transport

mechanisms in reinforced concrete structures (Section 2.3). For example, in case

of a concrete exposed to drying-wetting cycles, e.g., tidal conditions, chloride

ingress occurs by a coupled mechanism of convection and diffusion. On the

other hand, it is the diffusion that dominates the chloride transport through a

fully saturated concrete, e.g., fully submerged into seawater, unless there ex-

ists a high pressure head. Diffusion is of interest to this research, since it is the
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most dominant chloride transport mechanism. A critical parameter for evaluat-

ing the resistance of concrete against chloride diffusion is the effective diffusion

coefficient, which provides information on the rate of chloride ingress through

concrete specimens.

The parameters affecting the diffusivity of chloride in concrete are discussed

in Section 2.4. Section 5.2, Section 5.3 and Section 5.4 reviews the most common

methods for obtaining the effective diffusion coefficient of chloride in cement

paste, mortar or concrete. The application of the proposed method is illustrated

within the rest of the chapter.

5.2 Experimental Techniques

Significant experimental work has been peformed to measure the resis-

tance of concrete against chloride diffusion. Various experimental techniques,

e.g., diffusion-based methods and electrical methods, have been developed for

this purpose. The most common ones are reviewed briefly below.

5.2.1 Diffusion-Based Methods

Diffusion-based experiments can be carried out under either steady-state or

non-steady-state conditions. The idea in the steady-state diffusion experiments

is to achieve a steady-state flow by applying a constant chloride concentration

gradient across a material specimen [13, 28, 49, 71, 74, 85, 101, 119, 126]. A mate-

rial specimen, in the shape of a thin disc, is mounted in between two reservoirs,
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an upstream reservoir of high chloride concentration and an initially chloride-

free downstream reservoir of low chloride concentration. Chloride ions diffuse

from the upstream reservoir through the specimen to the downstream reservoir.

The steady-state chloride flux is measured by monitoring the chloride concen-

tration change in the downstream reservoir. Then the effective diffusion coeffi-

cient Deff is obtained from Fick’s first law [42] as follows:

Deff = −Jdown
l1
4C

, (5.1)

where Jdown is the chloride flux measured at the downstream face of the spec-

imen, 4C is the chloride concentration difference between the upstream and

downstream reservoirs, and l1 is the thickness of the specimen. Arsenault et

al. [12] observed no significant effect of the specimen thickness on the measure-

ments of chloride diffusion coefficient in mortar specimens, except for the du-

ration to reach steady-state conditions. MacDonald and Northwood [101] ob-

served a small decrease in the measurements of chloride diffusion coefficient in

cement paste specimens with the increasing specimen thickness. The effective

diffusion coefficient is independent of the chloride binding effect (see Section

2.3.2), because all chemical reactions involving chloride should be completed

to achieve a steady-state flow [175]. However, the chloride binding mechanism

affects the duration to reach steady-state conditions. Generally, it takes months,

or even years, to achieve steady-state conditions.

In the case of the non-steady-state diffusion experiments, the chloride con-

centration profile across a material specimen is measured along time [31, 53, 88],

and then the apparent diffusion coefficient Dapp, which includes the chloride

binding effect implicitly, is calculated from Fick’s second law [42]:

∂C(x, t)

∂t
= −Dapp

∂2C(x, t)

∂x2
(5.2)
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with the initial and boundary conditions

C(x, 0) = 0, x > 0, (5.3a)

C(0, t) = Cs, t > 0, (5.3b)

C(x, t) = 0, x ↑ ∞, t = a large number, (5.3c)

where C(x, t) is the chloride concentration at a distance x from the upstream

surface of the specimen at time t, and Cs is the chloride concentration at the

upstream surface of the specimen. The widely used solution to Eq. 5.2, which is

valid with the semi-infinite medium assumption [42], is

C(x, t)

Cs

= 1− erf

(
x

2
√

Dappt

)
, (5.4)

where erf is the Gaussian error function given as

erf(y) =
2

π

∫ y

0

e−t2dy, y =
x

2
√

Dappt
. (5.5)

The most prominent disadvantage of the diffusion-based experiments is that

both the steady-state and non-steady-state experiments are time-consuming, es-

pecially for high performance concretes. There are two well-known standard-

ized diffusion-based experimental techniques, (i) AASHTO T259 Test, and (ii)

NordTest (NT-Build 443).

5.2.1.1 AASHTO T259 Test

The AASHTO T259 test [162], also referred to as the 90-day salt ponding test,

is a widely used experimental method for measuring the resistance of concrete

to chloride ingress. Test specimen is a 75 mm thick concrete slab having a 300

mm by 300 mm surface. After 14 days of moist curing, the specimen is stored in
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a drying room at 50% relative humidity for 28 days. Then a 3% NaCl solution is

ponded on the top surface of the specimen for 90 days. The bottom surface is left

exposed to drying environment and the sides are sealed. After 90 days of pond-

ing, the specimen is removed from the drying environment, and the chloride

concentrations at different depths are measured. The apparent diffusion coeffi-

cient is then obtained by fitting Eq. 5.4 to the measured chloride concentration

profile [189].

There occurs an sorption effect when a specimen is first exposed to the chlo-

ride solution, since it has been kept in the drying room for 28 days. As a result

of the sorption effect, the chloride solution is drawn into the capillary pores of

the specimen. In addition to initial sorption effect, wicking takes place since the

bottom surface of the specimen is exposed to the drying environment. Wicking

is the movement of water into the specimen carrying chloride ions within itself

due to the vapor transmission from the wet surface to the surface exposed to

the drying environment. Therefore the chloride concentration profile provided

by the AASHTO T259 test is not a result of diffusion only [153].

5.2.1.2 NordTest (NT-Build 443)

The NordTest [5] is the first standardized test among the bulk diffusion type

of experiments. Contrary to the AASHTO T259 test, test specimen is saturated

with limewater for 28 days, which prevents the sorption effect observed in the

AASHTO T259 test, and the faces of the specimen, except the one exposed to

the chloride solution, are sealed. It is kept fully submerged into a 2.8 M NaCl

solution for at least 35 days. After the chloride concentrations at different depths

are measured, the apparent diffusion coefficient is determined by fitting Eq. 5.4
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to the measured chloride concentration profile. A similar experimental method

has been proposed by ASTM C1556-04 [2].

5.2.2 Electrical Methods

Since the diffusion-based experiments are time-consuming, electrical meth-

ods, which reduce the duration of experiments significantly, have been devel-

oped for measuring the resistance of concrete against chloride ingress. When

a concrete specimen is subjected to an electrical field, the movement of ions

diffusing through the specimen is affected such that (i) the ions are directed

towards electrodes, and (ii) they are accelerated proportional to their mobility

and the magnitude of the applied electrical field [9]. Electrical methods can

be divided into three as conduction experiments, steady-state and non-steady-

state migration experiments. A well-known electrical method is rapid chloride

permeability test (ASTM C1202 [1] or AASHTO T277 [163]). Despite its disad-

vantages, it is an important method regarding to its role in the development of

migration experiments.

5.2.2.1 Rapid Chloride Permeability Test (RCPT)

The idea of RCPT was first proposed by Whiting [182]. Contrary to its name,

it is not the permeability being measured but the ionic movement. RCPT uses a

water-saturated concrete specimen having a thickness of 50 mm and a diameter

of 100 mm. The specimen mounted in between two reservoirs, one of which con-

tains a 3.0% NaCl solution and the other does 0.3 M NaOH solution, is subjected

to a 60 V DC voltage [1, 163]. The chloride ion penetrability of the specimen is
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evaluated according to the total charge passed through the specimen within 6

hours, where the higher the amount of total coulombs measured, the higher the

”permeability” of the specimen (Table 5.1).

Table 5.1: RCPT Ratings [1]

Charge Passed (coulombs) Chloride Ion Penetrability

> 4000 High

2000− 4000 Moderate

1000− 2000 Low

100− 2000 Very Low

< 100 Negligible

Although it is a standardized experimental method, numerous researchers

[8, 197] have criticized RCPT on the basis of the following issues:

• the amount of current passed through a concrete specimen is affected by

all ions existing in its pore solution, not just by the chloride ions,

• the measurements are made before a steady-state flow is achieved,

• and the applied voltage is so high that it leads to an increase in tempera-

ture, which affects the rate of ionic movement.

5.2.2.2 Steady-State Migration Experiments

The discussions on RCPT led to the development of new electrical methods

for measuring the resistance of concrete against chloride ingress [8, 49, 154, 197].

Steady-state migration experiment, inspired from RCPT, is based on the Nernst-
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Planck equation [35], which describes the movement of ions in a solution sub-

jected to an electrical field:

−Jj(x) = Dj
dCj(x)

dx︸ ︷︷ ︸
Diffusion

+ DjCj(x)
zjF

RTa

dΨ(x)

dx︸ ︷︷ ︸
Migration

+ Cj(x)vj(x)︸ ︷︷ ︸
Convection

, (5.6)

where Jj is the flux of species j, Dj is the diffusion coefficient of species j, Cj(x)

is the concentration of species j at location x, zj is the valence of species j, F is

the Faraday’s constant, R is the universal gas constant, Ta is the absolute tem-

perature, Ψ is the applied electrical potential and vj(x) is the convection velocity

of species j at location x. The flux of species j defined by Eq. 5.6 depends on

diffusion, migration and convection of species j.

A standardized steady-state migration experiment is the Nordic standard

NT BUILD 355 [4], the experimental setup of which consists of two electrolyte

reservoirs separated by a concrete disc with a diameter of 100 mm and a thick-

ness ranging from 15 mm to 50 mm. The thickness of a specimen is supposed

to be larger than the maximum aggregate particle size in order to avoid an in-

terfacial transition zone forming a path all the way through the specimen. A

steady-state flow can be achieved in a few days by applying an electrical po-

tential across the anodic and cathodic electrodes placed in the reservoirs. The

diffusion and convection terms in Eq. 5.6 are generally considered as negligi-

ble compared to the migration term. Then Deff can be calculated by using the

simplified version of Eq. 5.6 such that

Deff = Jdown
RTa

zCl−FCs

l1
4Ψ

, (5.7)

where Jdown is the chloride flux measured at the downstream face of the speci-

men, Cs is the chloride concentration at the upstream surface of the specimen,

l1 is the thickness of the specimen, zCl− is the valence of chloride ions and 4Ψ is
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the absolute value of the electrical potential difference between the electrodes.

In the literature, Deff obtained from migration experiments is also called the

steady-state migration coefficient Dssm. Truc et al. [175] pointed out possible er-

rors in the resulting Deff due to the use of chloride concentration change in the

downstream reservoir for obtaining Jdown, such as the error due to the evolution

of chlorine gas, and suggested to measure the drop in the chloride concentration

in the upstream reservoir.

The voltage applied in a migration experiment determines the duration of

the experiment. The applied voltage should be low enough to avoid the evolu-

tion of gas at the electrodes and the heating of the specimen, while high enough

to reduce the duration of the experiment considerably. A voltage range of 10-12

V is used commonly [12, 32, 33, 43, 49, 82, 107, 175, 197].

An alternative method for calculating the effective diffusion coefficient of

chloride in a concrete specimen is to use the Nernst-Einstein equation [35]:

Dj =
RTaκj

z2
j F

2Cj

, (5.8)

where κj is the specific conductivity of species j and the rest is the same as

defined in Eq. 5.6. If the specific conductivity and concentration of species j

are known, the diffusion coefficient of species j can be calculated. The specific

conductivity of species j is

κj = tjκ, (5.9)

where κ is the conductivity of concrete and

tj =
Qj

Q

Ie
j

Ie
(5.10)

is the transference number of species j, where Qj and Ie
j are the electric charge

and current carried by species j, respectively, and Q and Ie are the total elec-
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tric charge and current, respectively [8, 100]. Even though it is not correct, Lu

[100] suggested to assume the transference number of chloride as 1. Then the

effective diffusion coefficient of chloride in a concrete specimen can be calcu-

lated by equating Cj to the chloride concentration in the solution used to fill the

specimen.

Zhang and Gjørv [197, 198] derived an alternative equation, based on the

Einstein equation, for calculating the effective diffusion coefficient as

Deff = β0
300kBTa

zCl−e04Ψ

l1Vres,up

C0A0

dC

dt
, (5.11)

where β0 is the correction factor for ionic interaction (see Section 2.4.3), kB is the

Boltzman constant, e0 is the charge of proton (or electron), Vres,up is the volume

of upstream reservoir, C0 is the chloride concentration in the upstream reservoir,

A0 is the cross-sectional area of test specimen, dC/dt is the steady-state migra-

tion rate of chloride ions and the rest is the same as defined in Eqs. 5.6 and 5.7.

5.2.2.3 Rapid Migration Test (CTH Rapid Test)

Tang and Nilsson [168] proposed a different type of migration experiment

using a test specimen with a thickness of 50 mm and a diameter of 100 mm,

subjected to a voltage of 30 V. The difference from the usual migration experi-

ment is that the specimen is removed and split after 8 hours, and the depth of

chloride penetration is determined in one half of the specimen, using a colori-

metric technique, e.g., silver nitrate (AgNO3) solution spray method, instead of

monitoring the chloride concentration in the downstream reservoir. Then the

effective diffusion coefficient is determined by using an equation derived from
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the Nernst-Einstein equation (Eq. 5.8):

Deff =
RTa

zCl−FΨ

xf

t
, (5.12)

where xf is the inflection point of the chloride concentration profile, t is time and

the rest is the same as defined in Eqs. 5.6 and 5.7. When a silver nitrate solution

is sprayed on a concrete containing chloride ions, a white precipitate of silver

chloride forms in the zone penetrated by chloride ions, whereas a brown pre-

cipitate of silver oxide forms in the absence of chlorides [125]. Otsuki et al. [125]

determined the optimum solution as 0.1 N silver nitrate solution, resulting in a

soluble chloride concentration of 0.15% by weight of cement at the color change

border. The CTH Rapid Test has overcome the issues of RCPT about not exam-

ining chloride profile and causing errors due to a temperature increase resulting

from high voltage. The Nordic standard NT BUILD 492 [6] is based on the CTH

Rapid Test with some modifications.

5.2.2.4 Non-Steady-State Migration Experiments

In a non-steady-state migration experiment, it is a challenging task to de-

termine the breakthrough time for chloride ions penetrating over through the

specimen. Despite this difficulty, few researchers [82, 168] obtained good results

from non-steady-state migration experiments. Halamickova et al. [82] applied

a voltage of 12 V to mortar specimens having a thickness of 50 mm and a di-

ameter of 100 mm. The upstream and downstream reservoirs were filled with

3% KCl solution and 0.3M KOH solution, respectively. The chloride diffusion

coefficients, referred to as the non-steady-state migration coefficient Dnssm, were

calculated from

−∂J(x, t)

∂x
=

∂C(x, t)

∂t
= Dnssm

(
∂2C

∂x2
− zF4Ψ

RTal1

∂C

∂x

)
, (5.13)
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which has a solution given as

C(x, t)

Cs

=
1

2

[
eξMxerf

(
x + ξMDnssmt

2
√

Dt

)
+ erf

(
x− ξMDnssmt

2
√

Dt

)]
, (5.14)

where ξM = (zF4Ψ)/(RTal1) and the initial and boundary conditions are the

same as Eq. 5.3.

The calculation of the Dnssm is based on the time delay tD, defined as the time

at which the initial increase in the chloride concentration in the downstream

reservoir is detected. The ratio of C(l1, tD) to Cs is a small number at the first

reliable detection. Halamickova et al. [82] used a value of 0.005 for this ratio. The

change in the chloride concentration in the upstream reservoir does not affect

the value of tD but the rate of the change in the chloride concentration at the

downstream face after tD. Hence, the chloride concentration in the upstream

reservoir should be kept constant in order to be able to calculate the chloride

diffusion coefficient from the slope of the chloride concentration profile after tD.

Samson et al. [144] proposed an alternative multi-ionic approach to calcu-

late the diffusion coefficient of each species in concrete from the results of a

non-steady-state migration experiment. It is suggested to use two disc-shaped

specimens, which have a diameter of 100 mm and a thickness ranging from 25

mm for mortar to 50 mm for concrete, per mixture. The specimens are vacuum

saturated in a 0.3 M NaOH solution prior to testing. Both reservoirs are filled

with a NaOH solution prepared at a pH of 13.5 in order to minimize the mi-

crostructural changes during the experiment. The upstream reservoir also con-

tains NaCl or Na2SO4. An electrical potential of 500 V/m is applied across the

specimen. The current passing through the specimen and the chloride concen-

tration in the downstream reservoir are recorded for 120 hours. Then the exper-

imental data are analyzed with the coupled extended Nernst-Planck/Poisson
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set of equations:

∂Cj(x, t)

∂t
−Dj

∂

∂x

[
∂Cj(x, t)

∂x
+ Cj(x, t)

(
zjF

RTa

dΨ

dx
+

d ln γj

dx

)]
= 0 (5.15)

τt
d2Ψ

dx2
+

F

εd

N∑
j=1

zjCj(x, t) = 0 (5.16)

where Cj(x, t) is the chloride concentration of species j at position x and time

t, Dj = τtD
µ
j is the diffusion coefficient of species j in the specimen, τt is the

tortuosity of the specimen, Dµ
j is the diffusion coefficient of species j in the free

water, γj is the chemical activity coefficient, εd is the dielectric permittivity of

the specimen and the rest is the same as defined in Eqs. 5.7 and 5.8. Since the

set of equations defined by Eq. 5.15 cannot constitute a complete set of equa-

tions, another relation (Eq. 5.16) that accounts for the electrical potential locally

induced by the movement of all ions is used to have a complete set of equations.

Eqs. 5.15 and 5.16 need to be solved simultaneously to analyze the experimen-

tal data since the equations are coupled. They are solved for different values of

tortuosity τt. Then for each value of τt, the error between the measurements and

the model is calculated as

ε =

√√√√
M∑

k=1

(
Imes
e,k − Inum

e,k

)2
, (5.17)

where M is the number of measurements, Imes
e,k and Inum

e,k are the measured and

predicted currents passing through the system, respectively. The best estimate

of the diffusion coefficient of each species in the specimen is determined from

the tortuosity value yielding the smallest error. For simplicity, Eqs. 5.15 and

5.16 are given for one-dimensional space, but the method is applicable to multi-

dimensional spaces. The detailed discussions on modeling ion diffusion mecha-

nisms by solving the coupled extended Nernst-Planck/Poisson set of equations

can be found elsewhere [91, 96, 113, 139, 140, 142, 143, 176].
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5.2.2.5 Resistivity/Conductiviy Experiments

Concrete conducts electric current as an electrolyte, in other words, elec-

tricity is conducted through concrete by the ions present in its pore solution

[28]. Since solid phases are highly resistive, their contribution to the conduc-

tivity is neglected. The idea in the resistivity/conductivity experiments is to

measure the electrical resistance of concrete, and then to relate it to the chloride

diffusivity in concrete. Resistivity, the inverse of conductivity, is the electrical

resistance of a medium, normalized to a unit area and length. In a saturated

porous medium, where the solid phase is an insulator, the relationship between

conductivity and diffusivity is given by

Deff

D0

=
κeff

κ0

, (5.18)

where Deff and κeff are the effective diffusion coefficient of chloride in the porous

medium and the effective conductivity of the porous medium, respectively, D0

and κ0 are the chloride diffusivity in the pore solution and the conductivity of

the pore solution, respectively [154]. A resistivity/conductivity experiment can

be carried out by using either alternating current [112] or direct current [154].

The resistivity/conductivity of the specimen is calculated from the measured

values of electric current.

Even though the resistivity/conductivity experiments are fast and avoid the

heating of specimens, there exist difficulties in determining the conductivity of

pore solution, which is done by either removing the pore solution from the spec-

imen or saturating the specimen with a solution of known conductivity before

the experiment [153].

Dı́az et al. [51] used a method based on impedance spectroscopy (IS), where
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impedance measurements are made by using both two-electrode and four-

electrode arrangements, and chloride concentration is measured by using a

chloride-selective electrode. The resistivity of a specimen is obtained by fitting

the measured impedance data to an equivalent electrical model. The advan-

tages of IS technique are [51, 150]: (i) it is non-destructive, (iii) it allows in-situ

testing, and (ii) it returns real time data on the variation of diffusion coefficient

with time.

Rapid chloride permeability test (RCPT) is a type of conductivity test. It is

considered at the beginning of the review of electrical methods (Section 5.2.2.1)

since it led to the development of latter electrical methods.

5.2.3 Pressure Penetration Method

An alternative method of accelerating the chloride ingress through a mor-

tar/concrete specimen is to expose one of the faces of the specimen to a chloride

solution under an applied pressure [153]. Then chloride is driven into the spec-

imen under both convection and diffusion, described by the equation

∂C(x, t)

∂t
= Dapp

∂2C(x, t)

∂x2
− v̄

∂C(x, t)

∂x
, v̄ = −k

φ

∂hp

∂x
, (5.19)

where v̄ is the average linear rate of flow, k is the hydraulic permeability, φ is the

porosity, hp is the applied pressure head [54]. The solution to Eq. 5.19 is given

as

C(x, t)

Cs

=
1

2

[
exp

(
v̄x

Dapp

)
erf

(
x + v̄t

2
√

Dappt

)
+ erf

(
x− v̄t

2
√

Dappt

)]
, (5.20)

where the initial and boundary conditions are the same as Eq. 5.3.
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5.2.4 A Brief Comment on Experimental Techniques

It is important to note that the equations to obtain transport coefficients from

diffusion and migration experiments are one-dimensional, except multi-ionic

approach by Samson et al. [144]. This is inevitable since the data obtained from

such experiments are one-dimensional.

Chloride diffusion coefficients reported in the literature (see Appendix A)

may differ, sometimes widely, mainly due to the differences in the hypotheses

behind the methods. For instance, the driving force in diffusion-based experi-

ments is the chloride concentration gradient, while it is the electrical potential

in migration experiments, therefore they are not directly comparable in gen-

eral. There have been numerous attempts, some of which mentioned herein,

to establish a relationship between the results obtained from different types of

experiments.

McGrath and Hooton [108], and Andrade and Whiting [11] compared the

results obtained from 90-day salt ponding test and RCPT. The relationship be-

tween the integral chloride content (by mass of concrete), the area under the

chloride profile obtained from a 90-day salt ponding test, and the RCPT num-

ber measured by McGrath and Hooton [108] is shown in Figure 5.1, in which

scattering of data can be observed. The coefficient of determination r2 for a

linear fit of the data was calculated as 0.34 [108]. McGrath and Hooton [108]

modified the ponding test by eliminating the partially saturated condition of

the specimens to make diffusion the dominant process. They identified the rela-

tionship between the penetration depth at 0.1% chloride concentration and the

RCPT number as the best correlation (Figure 5.2), where the r2 was calculated

as 0.83 [108].
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Figure 5.1: AASHTO T259 vs. RCPT [108]
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Figure 5.2: Modified Ponding Test (AASHTO T259) vs. RCPT [108]
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Figure 5.3: Non-steady-state Migration Test vs. 90-Day Ponding Test [189]
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Figure 5.4: Steady-state Migration Test vs. 90-Day Ponding Test [189]
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Yang [189] compared the chloride diffusion coefficients obtained from 90-

day salt ponding tests and migration experiments for various concrete mixtures.

The coefficients obtained from the non-steady-state and steady-state migration

experiments are plotted against the ones obtained from the 90-day salt ponding

tests in Figure 5.3 and Figure 5.4, respectively, in which a linear relationship

can be observed. The coefficient of determination r2 for a linear fit of the non-

steady-state data was calculated as 0.952, while it was computed as 0.973 for the

steady-state data [189].

Tang [164] derived a relationship between the chloride diffusion coefficients

obtained from steady-state and non-steady-state migration experiments. The

coefficients obtained from steady-state and non-steady-state cases were in good

agreement for concrete specimens with low w/c ratios (w/c ≤ 0.4), while

large differences were observed for concrete specimens with high w/c ratios

(w/c ≥ 0.5) [164]. In another study, Tang [165, 166] analyzed the concentration

dependence of diffusion and migration processes, and studied the relationship

between the chloride diffusion coefficients obtained from diffusion and migra-

tion experiments. Delagrave et al. [45] conducted a similar study on the diffu-

sion coefficients obtained from diffusion and migration experiments.

Tang and Sørensen [170] carried out a research on the relationship between

the chloride diffusion coefficients obtained from NT BUILD 443 test (immersion

test), NT BUILD 355 test (non-steady-state migration test) and CTH Rapid Test.

It can be seen from Figure 5.5 that the measured diffusion coefficients from the

CTH Rapid Test and NT BUILD 443 are comparable, while the ones from NT

BUILD 355 test are one to two orders of magnitude lower than those obtained

from the others.
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Figure 5.5: Diffusion Coefficients from Different Test Methods [170]

A B C D E F H J
0.01

0.1

1

10

100

1000

Concrete Type

D
iff

u
si
o
n

C
o
effi

ci
en

t
(1

0
−

6
m

m
2
/
s)

 

 
CTH
ACA-NS
ACA-TL
ACA-RTL

Figure 5.6: Diffusion Coefficients by Different Methods of Calculation [10]
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Figure 5.7: Migration Experiments vs. Diffusion Experiments [10]

Castellote et al. [33] discussed the possible reasons of the difference between

the chloride diffusion coefficients obtained from diffusion and migration exper-

iments. In another study, Castellote et al. [32] suggested the use of an applied

voltage of 12 V in a steady-state migration experiment on a cement paste spec-

imen with a w/c ratio of 0.4 in order to obtain an effective diffusion coefficient

similar to a coefficient that can be obtained from a natural diffusion experiment.

Andrade et al. [10] compared the apparent diffusion coefficients obtained

through four different methods of calculation from migration experiments at 60

V during 6 hours. The scatter between the values obtained through different

methods of calculation can be observed in Figure 5.6, however the diffusion co-

efficients for the same concrete are generally in the same range of magnitude,

except the concrete type E, which is the most impermeable one. Also, Andrade

et al. [10] compared the diffusion coefficients obtained through four different

methods of calculation from migration experiments at 60 V during 6 hours and
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at 12 V during 30 hours with the coefficients obtained from natural diffusion

experiments. It can be deduced from Figure 5.7 that, (i) for the most imper-

meable concrete, scatter among the coefficients obtained through the various

methods of calculation from the migration experiment is relatively high, but

the coefficients are distributed in an interval around the corresponding coeffi-

cient obtained from the diffusion experiment, and (ii) the coefficients obtained

through the various methods of calculation from the migration experiment be-

come smaller than the corresponding coefficient obtained from the diffusion ex-

periment, as the permeability of concrete increases [10]. Castelotte et al. [34] es-

tablished relationships between the coefficients obtained from natural diffusion

experiments under different conditions and between the coefficients obtained

from natural diffusion experiments and migration experiments.

Although the chloride diffusion coefficients obtained from the experimental

methods reviewed above cannot be considered as material constants, experi-

mental data obtained through the same type of experiments may provide a use-

ful comparison tool to evaluate the effects of certain parameters on the chloride

diffusivity in various types of concrete [117]. Each method has advantages and

disadvantages. Diffusion-based methods are capable of exhibiting pure diffu-

sion behavior, but they are time-consuming. On the other hand, migration ex-

periments, in which the ionic movement is accelerated by applying an electrical

potential, last significantly shorter than diffusion experiments. However, the

most common methods calculating the effective diffusion coefficient of chloride

through a migration experiment (Eqs. 5.7, 5.8, 5.11 and 5.12) neglect the fact

that it is not only the chloride ions affected by the applied electrical potential,

but also the other ions existing in pore solution. Samson et al. [144] developed

a multi-ionic approach, which considers all ions in pore solution, to overcome
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this issue, but it is a complicated method since the coupled extended Nernst-

Planck/Poisson set of equations (Eqs. 5.15 and 5.16) need to be solved simulta-

neously. Conductivity experiments also last shorter than diffusion experiments,

but they also neglect the ions in pore solution other than chloride ions, and dif-

ficulties may arise in determining the conductivity of pore solution.

Since diffusion is of interest to this research, diffusion experiments are con-

sidered as more reliable than the others within the context of this research. Since

natural diffusion experiments are time-consuming, the objective of this study is

to propose a numerical method for estimating the effective diffusion coefficient

of chloride in a given mortar/concrete specimen.

5.3 Numerical Techniques

Garboczi and Bentz [62] simulated the chloride diffusivity in saturated ce-

ment pastes by converting digital cement pastes into random conductor net-

works. Once a digital image of a hydrated cement paste is generated by the

NIST model [60] (see Section 2.2.3.3), a network of nodes, each of which is

placed at the center of each pixel, is constructed. Then conductors connecting

the nodes to each other are set up. After the network of nodes and conductors

is generated, the effective conductivity of the network is calculated by using ei-

ther the Fogelholm algorithm or the conjugate relaxation algorithm [62]. The

effective diffusion coefficient of chloride in the simulated cement paste is then

calculated by using the Nernst-Einstein relation (Eq. 5.18). Based on the results

obtained from the developed model, Garboczi and Bentz [62] proposed a for-

mula for calculating the chloride diffusivity in a cement paste normalized to the
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diffusivity of chloride in free water as

D

D0

= 0.001 + 0.07φ2 + 1.8(φ− φc)
2H(φ− φc), (5.21)

where φ is the capillary porosity of the cement paste, φc is the capillary porosity

percolation threshold and H is the Heaviside function, i.e., H(x) = 0 for x ≤ 0,

and H(x) = 1 for x > 0.

Garboczi et al. [22, 63, 65, 68, 145] developed a multi-scale microstructural

numerical model to study the diffusivity of chloride in concrete. The model is

applicable to the conventional saturated concretes and considers chloride diffu-

sion under steady-state conditions. It has three steps as follows:

(i) Nondiffusive spherical aggregate particles are placed randomly in a com-

putational volume having periodic boundary conditions, according to the

aggregate particle size distribution of interest. The thickness of interfacial

transition zone (ITZ) is taken equivalent to the median cement particle di-

ameter. Volume fractions of ITZ and bulk cement paste are calculated by

systematic point sampling.

(ii) A computational volume for cement hydration, the dimensions of which

are determined in such a way that the volume ratio of ITZ to bulk cement

paste matches the ratio obtained in the first step, is constructed. Spheri-

cal cement particles are placed randomly, according to the cement particle

size distribution and w/c ratio of interest. After the hydration of cement

particles is simulated up to a presumed degree of hydration by the NIST

model [60], capillary porosity of the simulated cement paste is measured

as a function of distance from the aggregate surface. Then the normalized

chloride diffusivity as a function of distance from the aggregate surface is
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obtained from Eq. 5.21. It is assumed that Eq. 5.21 holds also in ITZ. The

normalized diffusivity values are averaged into two subsets, ITZ and bulk

cement paste having values DITZ/D0 and Dbulk/D0, respectively. The ratio

DITZ/Dbulk is an input to the next step.

(iii) The effective diffusion coefficient of chloride is estimated by executing ran-

dom walks throughout the computational volume generated in the first

step. The computational volume consists of three phases as aggregate par-

ticles, bulk cement paste and ITZ having diffusivity values of 0, 1 and

DITZ/Dbulk, respectively. A fixed step size is presumed for random walks.

Time elapsed in a step of a random walk depends on the diffusivity of the

phase in which the random walk is. A random walk steps from one phase

to another one with a probability based on the ratio of their diffusivities.

A projected step falling into an aggregate particle is not allowed, but the

clock is advanced. After a presumed number of steps, the normalized ef-

fective diffusion coefficient of chloride is calculated as

Deff

Dbulk
=

1

∆x2

(
1

ns

ns∑
i=1

R̄i
2

ti

)
(
1− Vagg

)
, (5.22)

where ∆x is the step size, ns is the number of random walks, R̄i is the

distance between the start and end points of the i-th random walk, ti is the

elapsed time for the i-th random walk and Vagg is the volume fraction of

aggregate. The Deff is then obtained by multiplying Deff/Dbulk by Dbulk/D0

obtained from the cement hydration model and D0, which is taken as 2 ·
10−9 m2/s by Bentz et al. [22].

After executing three independent runs for a single set of parameters, Gar-

boczi et al. [22] observed that the coefficient of variation was less than 1.5%, and

decided that only one run would be enough to obtain representative results for
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each set. Since the random walks executed in the last step of the multi-scale

model call for a huge amount of computational power, the method requires us-

ing a cluster of computers [65]. Even though Garboczi et al. [22, 63, 65, 68, 145]

obtained some satisfactory results using the multi-scale model, the model does

not simulate the actual chloride diffusion phenomenon. Bentz et al. [22] per-

formed a set of simulations to study the effects of water-to-cement ratio w/c,

degree of hydration α, aggregate volume fraction Vagg, coarse aggregate parti-

cles size distribution CA, fine aggregate particle size distribution FA, ITZ thick-

ness lITZ and air content- on the chloride diffusivity. The results for w/c ratios of

0.3, 0.45 and 0.6, are shown in Tables 5.2, 5.3 and 5.4, respectively. ”A” and ”B”

denote extreme low and high settings for coarse aggregate particle size distrib-

ution, respectively. Similarly, ”a” and ”b” denote extreme low and high settings

for fine aggregate particle size distribution, respectively. Based on the simula-

tion results, w/c ratio, α and Vagg have been identified as the significant variables

affecting the chloride diffusivity in the multi-scale model.

Table 5.2: Simulation Results by Multi-Scale Model (w/c =0.3) [22]

α Vagg CA FA lITZ (µm) Air Cont. (%) Deff (10−6 mm2/s)

0.5 0.600 A a 10 0 2.10

0.5 0.600 B a 30 10 4.00

0.5 0.750 A b 30 10 1.75

0.5 0.750 B b 10 0 1.20

0.7 0.600 A b 30 0 0.84

0.7 0.600 B b 10 10 0.44

0.7 0.750 A a 10 9 0.21

0.7 0.750 B a 30 0 0.69
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Table 5.3: Simulation Results by Multi-Scale Model (w/c =0.45) [22]

α Vagg CA FA lITZ (µm) Air Cont. (%) Deff (10−6 mm2/s)

0.6 0.675 mid mid 20 5 9.4

0.6 0.525 B b 10 0 16.3

0.6 0.825 B b 10 0 5.34

0.4 0.675 B b 10 0 39.5

0.8 0.675 B b 10 0 1.76

Table 5.4: Simulation Results by Multi-Scale Model (w/c =0.6) [22]

α Vagg CA FA lITZ (µm) Air Cont. (%) Deff (10−6 mm2/s)

0.5 0.600 A b 10 10 58.1

0.5 0.600 B b 30 0 77.7

0.5 0.750 A a 30 0 41.0

0.5 0.750 B a 10 9 28.7

0.7 0.600 A a 30 10 28.4

0.7 0.600 B a 10 0 36.3

0.7 0.750 A b 10 0 20.1

0.7 0.750 B b 30 10 12.9

Kato and Uomoto [90] proposed a model for estimating the effective diffu-

sion coefficient of chloride in saturated concrete, considering the spatial prop-

erties of cement paste and ITZ. The pore structures of cement paste and ITZ are

simulated by arranging the solid phases randomly. Cement particles and ag-

gregate particles are represented by circles and squares, respectively. Instead of

particle size distributions, average sizes are used for both cement and aggregate

particles. The thickness of ITZ is calculated by considering both the wall-effect
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and the bleeding. In order to estimate the effective diffusion coefficient of chlo-

ride in concrete, the chloride diffusion coefficients in each phase are calculated.

• First, the effective diffusion coefficient of chloride in porous media is cal-

culated. The chloride diffusion coefficient in the pores is set to the chloride

diffusion coefficient in a dilute solution, and the chloride diffusion is simu-

lated according to Fick’s second law (Eq. 5.2). Then the effective diffusion

coefficient of chloride in porous media is obtained from Eq. 5.4.

• Second, the effective diffusion coefficient of chloride in cement paste is

calculated. The effective diffusion coefficient of pores comes from the first

step, and the chloride diffusion coefficient in the cement particles are set

to 0. Then the effective diffusion coefficient of chloride in cement paste

is obtained from Fick’s second law (Eq. 5.2) and Eq. 5.4, similar to the

procedure in the first step.

• Third, the effective diffusion coefficient of chloride in concrete is calcu-

lated by following the same solution procedure with the chloride diffusion

coefficients obtained in the previous steps.

The authors [90] compared the results obtained from their model with ex-

perimental results (Figure 5.9), showing that the effective diffusion coefficients

from their model underestimates the experimental results, but the tendency of

the relationship between the w/c ratio and the effective diffusion coefficient is

similar to the one observed in the experimental results. It is worthy to note that

the model simulates the chloride diffusion according to Fick’s second law, but

ignores the chloride binding effect.
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Yamada et al. [188] proposed an inverse method for calculating the effective

diffusion coefficient of chloride in concrete and the parameters of non-linear

chloride binding isotherm, modeled as a Freundlich isotherm (see Section 2.3.2),

from chloride concentration profiles measured by electron probe micro analy-

sis (EPMA). The analysis is based on the numerical solution of Eq. 5.2 with

Deff/(φ(1 + ∂Cb/∂Cf )) in place of Dapp by using the Cranck-Nicolson implicit

finite-difference method, where φ is the porosity of concrete determined exper-

imentally, Cb and Cf is the bound and free chloride concentrations expressed in

per unit volume of pore solution, respectively. Initial condition is determined

from EPMA measurements and boundary condition is set to the chloride con-

centration in the solution in which the concrete specimen is immersed. The ef-

fective diffusion coefficient Deff and the parameters of non-linear chloride bind-

ing isotherm, cα and cβ , are determined by minimizing an objective function

that measures the agreement between the EPMA results and the numerical re-

sults. Comparisons of numerical results with the ones from migration tests are

shown in Figure 5.8

5.4 Analytical and Empirical Techniques

Garboczi and Bentz [64, 65, 145] derived analytical formulas, using dif-

ferential effective medium theory, to avoid executing random walks for esti-

mating the effective diffusion coefficient of chloride in a computational vol-

ume, representing concrete, in the multi-scale model developed by Garboczi et

al. [63, 65, 68, 145] (see Section 5.3). To map an ITZ, in which chloride diffusion

coefficient varies spatially, into a zone having a constant chloride diffusion co-
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efficient, the dilute limit of concrete, which occurs when the volume fraction of

aggregate is so small that the effect of each aggregate particle can be treated in-

dependently, was analyzed by using a spherical aggregate particle surrounded

by a number of shells enough to represent the chloride diffusivity gradient in

the ITZ, where each shell was assigned with a constant chloride diffusion co-

efficient. The results of the dilute limit analysis was used for calculating the

chloride diffusion coefficient in any concrete with an arbitrary volume fraction

of aggregate by using a weighted average between two extreme cases, a con-

stant DITZ and a constant DITZ/Dbulk. The weights were determined from the

results of random walk simulations.
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Figure 5.10: Comparison of Results with Simulations [67]

The model developed by Garboczi and Bentz [64, 65, 145] requires an ad-

justable parameter, but Garboczi and Berryman [67] derived a new differential

effective medium theory in order to overcome this handicap. It was accom-

plished by mapping each aggregate particle and its accompanying ITZ into a
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single effective particle, and then analyzing this effective particle using the pre-

vious theory. The results of effective medium theory agreed with the results

of random walk simulations in general sense (Figures 5.10 and 5.11), but the

theory ignores some important effects such as the percolation of ITZs.
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Figure 5.11: Comparison of Results with Simulations [67]

Xi and Bažant [187] modeled the effect of aggregate on the effective diffusion

coefficient of chloride in concrete by using a composite model developed by

Christensen [39]. For nonporous aggregate particles, the model calculates the

effective diffusion coefficient as

Deff = Dcp
2(1− Vagg)

(2 + Vagg)
, (5.23)

where Dcp and Vagg are the chloride diffusion coefficient in the cement paste

fraction of concrete and the volume fraction of aggregate, respectively. How-

ever, Caré [31] showed that Eq. 5.23 disagrees with the experimental results for

mortar specimens since it is a simple model considering mortar as a two-phase

169



medium. Thus Caré [31] revised the formulation as

Deff = Dncp
[
0.11VITZ + (1− Vagg)

] 2

2 + Vagg
, (5.24)

where Dncp is the chloride diffusion coefficient in the corresponding neat cement

paste and VITZ is the volume fraction of ITZ. The multiplier 0.11 was obtained

from experimental data. According to Caré [31], it can be determined if the

chloride diffusion coefficients for a reference mortar and the corresponding neat

cement paste are known, and then the effective diffusion coefficient of chloride

in any mortar with the same cement paste but different aggregate content can

be estimated.

Yang and Su [193] studied the dilution, tortuosity and ITZ effects of aggre-

gate on the chloride diffusivity in mortar specimens, and proposed an equation

for calculating the effective diffusion coefficient of chloride. Modeling the ITZ

as a uniform layer around spherical fine aggregate particles and not allowing

the aggregate with ITZ to overlap, the authors expressed the effective diffusion

coefficient as

Deff = Dncp
(
1− Vagg

)3/2
+ Dncp (β − 1) VITZ, β =

DITZ

Dcp
, (5.25)

where Dncp is the chloride diffusion coefficient in the neat cement paste, Vagg is

the volume fraction of aggregate, VITZ is the volume fraction of ITZ, Dcp and

DITZ are the chloride diffusion coefficients in the bulk cement paste and ITZ, re-

spectively. The first and second terms on the right side of Eq. 5.25 represent the

combined effect of dilution and tortuosity, and the effect of ITZ on the effective

diffusion coefficient of chloride, respectively. In developing Eq. 5.25, it was as-

sumed that the chloride diffusivity in the ITZ is constant and the flow in the ITZ

is locally parallel to the aggregate surface. The effective diffusion coefficient of
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chloride in mortar as a function of the volume fraction of aggregate can be deter-

mined by conducting steady-state migration experiments on mortar specimens

with various aggregate contents. Then the chloride diffusion coefficient in the

ITZ for different values of ITZ thickness is calculated by using the experimental

results and the regression analyses with Eq. 5.25.
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Figure 5.12: Comparison of Diffusion Coefficients in Mortar [121]

Oh and Jang [121] proposed an analytical model for estimating the effective

diffusion coefficient of chloride in concrete considering the relationship between

the chloride diffusivity and the microstructure of concrete. An analytical solu-

tion, in terms of diffusivities normalized to the diffusivity of chloride in pore

solution, to the general effective media equation was derived for estimating the

effective diffusion coefficient of chloride in cement paste by using the Nernst-

Einstein relation (Eq. 5.18). A reasonable agreement was found between the

experimental data available in the literature and the results obtained from the

derived equation. Then an equation based on composite sphere assemblage
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model, proposed by Hashin [83], was derived for estimating the effective diffu-

sion coefficient of chloride in concrete, where the thickness of ITZ was assumed

to be the same for all particles. The model depends on two main variables, cap-

illary porosity and volume fraction of aggregate. The main parameters of the

model are the normalized chloride diffusivity in solid phases, the percolation

exponent, the ratio of diffusivity in ITZ to the diffusivity in bulk cement paste

and the thickness of ITZ relative to the average radius of aggregate particles.

The results obtained from the model were in reasonable agreement with the re-

sults of the non-steady-state migration experiments carried out for validating

the model (Figures 5.12 and 5.13).
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Figure 5.13: Comparison of Diffusion Coefficients in Concrete [121]
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5.5 Effective Diffusion Coefficient

A numerical method for estimating the effective diffusion coefficient of chlo-

ride in a deterministic/random heterogeneous medium is discussed extensively

in Chapter 3. Hereinafter, the application of the proposed method to virtual con-

crete specimens is presented.

Let H = (0, l1) × (0, l2) ∈ R2, be a bounded subset containing a virtual con-

crete specimen of interest. The chloride concentration C(x) satisfies

2∑
p=1

∂D(x)

∂xp

∂C(x)

∂xp

+ D(x)∆C(x) = 0, x ∈ H, (3.67)

where D(x) is the chloride diffusion coefficient at x and ∆ is the Laplace oper-

ator, with the Dirichlet boundary conditions

C(0, x2) = 0 and C(l1, x2) = 1, x2 ∈ (0, l2), (3.68)

and the Neumann boundary conditions

∂C(x)

∂x2

= 0, x ∈ (0, l1)× {0} and x ∈ (0, l1)× {l2}. (3.69)

Concrete is viewed as a three-phase material: aggregate, bulk cement paste

and interfacial transition zone (ITZ). Through the analyses of virtual concrete

specimens, the chloride diffusion coefficient in these phases is defined as fol-

lows:

• The aggregate is assumed to be nonporous, i.e., D = 0 in the aggregate

particles.

• The bulk cement paste is assumed to have a constant chloride diffusion

coefficient Dcp.
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• The chloride diffusion coefficient in the ITZ is assumed to be described by

D(u) = c1u + c2u
2 + c3e

−u, 0 < u ≤ lITZ, (5.26)

where u is the distance from the aggregate surface, lITZ is the ITZ thickness,

and c1, c2 and c3 are constants satisfying a presumed ratio of D(0)/D(lITZ),

referred to as αD, ∂D(lITZ)/∂u = 0 and D(lITZ) = Dcp.
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Figure 5.14: D(u) for lITZ = 30 µm, αd = 10 and Dcp = 1 · 10−6 mm2/s

5.5.1 Single Particle System

This example demonstrates the effect of a single particle and its accompa-

nying ITZ on the effective diffusion coefficient of chloride in a virtual specimen

with l1 = 5 mm and l2 = 10 mm, i.e., H = (0, 5) × (0, 10), and Dcp = 1 · 10−6

mm2/s. Suppose that a single circular nonporous aggregate particle having a

diameter of 2.5 mm is placed at the center of H (Figure 5.15).
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The objective is to calculate the effective diffusion coefficient

Deff =
1

l2

∫

H

D(x)
∂C(x)

∂x1

dx, x ∈ H, (3.74)

for different values of the ITZ thickness lITZ and the ratio αD = D(0)/D(lITZ).

Based on the calculations for different values of lITZ and αD by using the MAT-

LAB’s PDE Toolbox, it can be observed in Figure 5.16 that placing a particle con-

stituting 10% of the specimen by area results in:

• Deff/Dcp = 0.84 if there is no ITZ, that is, replacing 10% of the porous

medium with a nonporous medium reduces the effective diffusion coef-

ficient since there is less room for chloride to diffuse through. In other

words, the amount of chloride passing through the specimen decreases

with increasing amount of nonporous medium, if there is no ITZ.

• Deff/Dcp = 1.01 if lITZ = 50 µm and αD = 100, and Deff/Dcp = 1.02 if

lITZ = 100 µm and αD = 50, that is, even though the specimen with a sin-
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gle particle contains 10% less amount of porous medium than the homo-

geneous specimen does, the amount of chloride passing through the het-

erogeneous specimen is almost the same as the amount passing through

the homogeneous specimen if lITZ = 50 µm and αD = 100, or lITZ = 100 µm

and αD = 50, since chloride travels faster in the ITZ.
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Figure 5.16: Variation of the Deff with lITZ and αD

• Deff/Dcp = 1.10 if lITZ = 100 µm and αD = 100, that is, as the ITZ gets

thicker or more porous, the amount of chloride passing through the speci-

men increases, and exceeds the amount passing through the homogeneous

specimen at some combinations of lITZ and αD.

5.5.2 Determination of Specimen Size

Since computation time for calculating the effective diffusion coefficient of

chloride in a virtual specimen increases with its size, the size of the virtual spec-
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imen needs to be sufficiently small to reduce the computation time, but suffi-

ciently large to obtain an accurate result. A two-stage procedure is proposed to

determine the specimen size. First, the dimension parallel to the chloride flow,

l1, is determined. Second, the dimension perpendicular to the chloride flow, l2,

is identified. Virtual specimens are labeled as SP−l1 × l2 − ωs, ωs = 1, . . . , nsp,

where nsp is the number of virtual specimen samples.

l1

l 2 SP-l1 × l2 − ωs

Chloride Flow

Figure 5.17: Labeling of Virtual Specimens

Since aggregate particles in mortar are finer than those in concrete, relatively

small virtual specimens are sufficient to examine mortar. Since computation

time is less for smaller specimens, all numerical results are limited to mortar

specimens. Virtual mortar specimens are constructed in 2D using volume frac-

tion statistics obtained from 3D specimens. This is an approximation and has

been used to reduce calculations. Three 2D virtual mortar specimens have been

generated as explained below.

• One of the mortar specimens tested by Caré [31] has been chosen as a ba-
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sis for generating virtual specimens used in specimen size determination.

The sand particle size distribution in the mortar specimen of Caré [31] is

shown in Figure 5.18. The volume fraction of aggregate is 50% [31].
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Figure 5.18: Sand Particle Size Distribution [31]

Table 5.5: Particle Size Distribution in Virtual Specimens

Type-k dL,k (mm) dU,k (mm) pk (by area) p̂k (by area)

1 0.315 0.630 0.10 0.10

2 0.630 0.800 0.21 0.21

3 0.800 1.000 0.22 0.22

4 1.000 1.250 0.21 0.21

5 1.250 1.600 0.13 0.13

6 1.600 2.000 0.13 0.13

• According to the sand particle size distribution shown in Figure 5.18, the

particle types and the corresponding proportions pk, k = 1, . . . , 6, for vir-
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tual specimens have been determined as shown in Table 5.5, where dL,k

and dU,k are the minimum and maximum particle size for type-k particles,

respectively. The target area fraction of aggregate in virtual specimens is

50%.

• A rectangular virtual mortar specimen, l1 = 200 mm by l2 = 100 mm has

been generated, and labeled as SP−200×100−1. The resulting proportions

p̂k, k = 1, . . . , 6, are shown in Table 5.5, and the resulting area fraction of

23955 particles, Âagg, is 0.5001.
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Figure 5.19: Cutting SP−200× 100− 1 into Three Test Specimens

• The 25 mm thick ends of SP−200 × 100 − 1 have been removed, and the

remaining specimen (25, 175)× (0, 100) has been cut into three rectangular

specimens, 50 mm by 100 mm (Figure 5.19). The new specimens have been

labeled as SP−50 × 100 − ωs, ωs = 1, 2, 3. They have 6075, 6095 and 6096

particles, where Âagg’s are 0.5014, 0.5021 and 0.5007, respectively. One of

the specimens, SP−50× 100− 1, is shown in Figure 5.20.
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Figure 5.21: Chloride Diffusion Coefficient in the ITZ
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The chloride diffusion coefficient in the bulk cement paste Dcp, the ITZ thick-

ness lITZ and the ratio αD = D(0)/D(lITZ) have been chosen as 2.7 · 10−6 mm2/s,

30 µm and 10, respectively, for the specimens used in this section (Figure 5.21).

Then c1, c2 and c3 in Eq. 5.26 have been calculated as -0.0016, 0.027 and 2.7 ·10−5,

respectively. lITZ is assumed to be the same for all particles and uniform around

each particle.

The calculation of the effective diffusion coefficient of chloride in a specimen

is based on

Deff =
l1
l2

∫

x1×(0,l2)

D(x)
∂C(x)

∂x1

dx2, x1 ∈ (0, l1). (3.72)

Deff can be approximated by Eq. 3.75, which in this case is in the form

D̂eff =
l1
l2

n2∑

k=1

4x2,kD (l1 − ζ, x2,k)
1− C (l1 − ζ, x2,k)

ζ
, (5.27)

where ζ is the distance between the line, on which numerical integration is done,

and the upstream boundary {l1} × (0, l2), n2 is the number of integration points

on the line {l1−ζ}×(0, l2),4x2,k is the increment assigned to the k-th integration

point, D(l1 − ζ, x2,k) and C(l1 − ζ, x2,k) are the chloride diffusion coefficient and

the chloride concentration at the k-th integration point.

Since the values of D(l1 − ζ, x2,k) are known, the only unknowns in Eq. 5.27

are C(l1 − ζ, x2,k). They can be estimated by using the random walk method

(RWM) presented in Chapter 3. The algorithm is summarized briefly below.

• ns independent samples of an R2-valued Itô process X(τ), defined by

dX(τ) = a(X(τ))dτ + b(X(τ))dB(τ), τ ≥ 0, (3.23a)

where a and b are the drift and diffusion coefficients, and B is a Brownian

motion, are generated for each point, where X(0, ωi,k) = [l1 − ζ, x2,k], k =

1, . . . , n2, i = 1, . . . , ns.
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• Samples of X̃ = [X̃1 = X1, X̃2 = r(X2)], are obtained from the samples of

X by reflection at the Neumann boundaries (0, l1)× {0} and (0, l1)× {l2},

where r(ε) is the periodic function with period 2l2 coinciding with |ε| for

ε ∈ [−l2, l2]. The drift and diffusion coefficients are given by Eqs. 3.78 and

3.79, respectively, which in this case are in the form

a1(x) =
∂D(x̃)

∂x̃1

, a2(x) = r′(x2)
∂D(x̃)

∂x̃2

, (5.28)

b(x) =
√

2D(x̃)i, (5.29)

respectively, where x ∈ (0, l1) × R, x̃ = (x̃1 = x1, x̃2 = r(x2)) ∈ H and i is

the 2 by 2 identity matrix.

• Chloride concentration at an integration point x2,k is numerically equal to

the expectation of C(X̃(T )) (Eq. 3.80). The expectation can be estimated

by Eq. 3.82, which in this case is in the form

Ĉ(l1 − ζ, x2,k) =
1

ns

ns∑
i=1

C
{

X̃(T (ωi,k), ωi,k)
}

, k = 1, . . . , n2, (5.30)

where T = inf{τ ≥ 0 : X̃(τ) /∈ H} is a stopping time, that is, the time at

which X̃ reaches one of the Dirichlet boundaries of H = (0, l1)×(0, l2) ∈ R2

for the first time.

For analyses of SP−50×100−1, SP−50×100−2 and SP−50×100−3, ζ , n2 and

ns have been chosen as 0.5 mm, 100 and 1000, respectively. Samples of X̃ have

been generated by using Euler’s scheme (Eq. 3.37). The time step4τ needs to be

sufficiently small to exhibit chloride diffusion in the ITZ, which has a thickness

of 30 µm. A 4τ of 1.5 seconds when X̃(τ, ω) is in the ITZ and 15 seconds when

it is in the bulk cement paste have been decided by generating a few samples of

X̃ with various values of4τ . Estimates of mean and standard deviation of step

size of resulting samples of X̃ are approximately 8 µm and 6 µm, respectively.
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4τ has been decreased as an aggregate surface has been approached in order to

avoid stepping into the aggregate particle. Five stopping times have been set as

Tj = inf
{

τ ≥ 0 : X̃(τ) /∈ (10 · (j − 1), 50)× (0, 100)
}

, j = 1, . . . , 5, (5.31)

to obtain estimates of Deff for different values of l1, i.e., l1,j = 50 − 10 · (j − 1).

For each value of j, estimate of Deff can be obtained by introducing l1,j and

Ĉ(l1,j − ζ, x2,k), k = 1, . . . , n2, obtained from Eq. 5.30, into Eq. 5.27.

Table 5.6: D̂eff (10−6 mm2/s) vs. Specimen Size (0, l1)× (0, 100)

l1 (mm) 10 20 30 40 50

SP−50× 100− 1 5.27 5.29 5.40 5.62 5.60

SP−50× 100− 2 4.44 4.18 4.16 4.16 4.34

SP−50× 100− 3 4.31 4.27 4.29 4.36 4.41
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Figure 5.22: D̂eff vs. Specimen Size (0, l1)× (0, 100)

The resulting estimates of Deff for different values of l1 are shown in Table

5.6 and plotted in Figure 5.22. The results show that reducing the dimension in
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the direction parallel to chloride flow, l1, from 50 mm to 10 mm does not have

any significant effect on the resulting estimate of Deff, which is consistent with

the results reported by Arsenault et al. [12].

The difference between the D̂eff obtained from SP−50×100−1 and the other

specimens, SP−50× 100− 2 and SP−50× 100− 3, has been analyzed, and it has

been found out that n2 = 100 points, which are almost uniformly distributed on

the line {l1− ζ}× (0, l2), is not a fine enough mesh, for l2 = 100 mm, to represent

the chloride diffusivity profile on the line {l1 − ζ} × (0, l2). Therefore, an algo-

rithm, which improves the accuracy of D̂eff, has been developed to determine

the number and location of integration points.

C
h
lo

ri
d
e

D
iff

u
si
v
it
y

A
g
g
re

g
a
te

A
g
g
re

g
a
te

ITZ ITZ
30-50 µm 30-50 µmCement Paste

Bulk

< 0.5 mm

(2 points) (2 points)

4x2,k

k

Figure 5.23: Schematical Representation of Integration Points

• The line {l1 − ζ} × (0, l2) is partitioned into segments according to the

phases -aggregate, ITZ and bulk cement paste- in which they are. A

schematical representation of integration points falling in between two ag-

gregate particles is shown in Figure 5.23.
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• A segment in bulk cement paste contains enough number of points to sat-

isfy the condition that the distance between two consecutive points on the

same segment is less than 0.5 mm.

• A segment in ITZ contains two points, that is, the spacing of points in ITZ

is much smaller than the spacing of points in bulk cement paste, therefore

the gradient of chloride diffusivity in ITZ can be captured.

• Segments in aggregate does not contain any point.

• The increment 4x2,k assigned to the k-th integration point, k = 1, . . . , n2,

is a subset of the segment on which the k-th integration point is.
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Figure 5.24: SP−10× 100− 1, SP−10× 100− 2 and SP−10× 100− 3

The rightmost 10 mm thick parts of SP−50 × 100 − 1, SP−50 × 100 − 2 and

SP−50× 100− 3 have been cut, and labeled as SP−10× 100− 1, SP−10× 100− 2

and SP−10×100−3 (Figure 5.24). The new specimens have 1291, 1288 and 1294

particles, where the resulting area fractions of particles are 0.5042, 0.5014 and
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0.5003, respectively. The number of integration points on the line {l1−ζ}×(0, l2),

l1 = 10 mm, l2 = 100 mm, ζ = 0.5 mm, have been determined as 383, 460 and

461, respectively, using the improved algorithm. Five stopping times have been

set as

Tj = inf
{

τ ≥ 0 : X̃(τ) /∈ (2 · (j − 1), 10)× (0, 100)
}

, j = 1, . . . , 5, (5.32)

to obtain estimates of Deff for different values of l1, i.e., l1,j = 10 − 2 · (j − 1).

For each value of j, the estimate of Deff can be obtained by introducing l1,j and

Ĉ(l1,j − ζ, x2,k), k = 1, . . . , n2, obtained from Eq. 5.30, into Eq. 5.27.
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Figure 5.25: D̂eff vs. Specimen Size (0, l1)× (0, 100)

Based on ns = 1000 samples of X̃ for each integration point placed by the

improved algorithm, the resulting estimates of Deff for different values of l1 are

plotted in Figure 5.25 and shown in Table 5.7.
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Table 5.7: D̂eff (10−6 mm2/s) vs. Specimen Size (0, l1)× (0, 100)

l1 (mm) 2 4 6 8 10

SP−10× 100− 1 1.76 1.78 1.71 1.70 1.71

SP−10× 100− 2 1.65 1.64 1.66 1.66 1.66

SP−10× 100− 3 1.98 1.98 1.99 1.96 1.98
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Figure 5.26: Schematical Representation of Uniform Integration Points

Different meshes of integration points have caused large differences between

the resulting estimates of Deff, as can be observed in Table 5.6 and Table 5.7. The

results in Table 5.6 have been obtained from integration points distributed al-

most uniformly along the line {l1 − ζ} × (0, l2). This type of mesh has two

shortcomings: (i) if an integration point falls in ITZ and the increment assigned

to that point covers a part of bulk cement paste as shown in Figure 5.26, then

relatively low chloride diffusivity in bulk cement paste is represented by the

higher chloride diffusivity in ITZ, which might result in an overestimation of
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Deff, and (ii) no integration point is present in between two aggregate particles,

if the particles are in between two consecutive integration points. Therefore, an

algorithm that differentiates bulk cement paste and ITZ, and then places inte-

gration points according to the phases -bulk cement paste and ITZ- is crucial.

The results in Table 5.7 have been obtained by using such an algorithm, thus

they are more accurate than the ones in Table 5.6.

For further analysis of the effect of l1 on the estimate of Deff, the rightmost 2

mm thick parts of SP−10×100−1, SP−10×100−2 and SP−10×100−3 have been

cut, and labeled as SP−2× 100− 1, SP−2× 100− 2 and SP−2× 100− 3. The new

specimens have 317, 337 and 326 particles, where the resulting area fractions of

particles are 0.5025, 0.5049 and 0.5023, respectively. The number of integration

points on the line {l1 − ζ} × (0, l2), l1 = 2 mm, l2 = 100 mm, ζ = 0.1 mm, have

been determined as 436, 482 and 449, respectively. Five stopping times have

been set as

Tj = inf
{

τ ≥ 0 : X̃(τ) /∈ (0.4 · (j − 1), 2)× (0, 100)
}

, j = 1, . . . , 5, (5.33)

to obtain estimates of Deff for different values of l1, i.e., l1,j = 2 − 0.4 · (j − 1).

For each value of j, estimate of Deff can be obtained by introducing l1,j and

Ĉ(l1,j − ζ, x2,k), k = 1, . . . , n2, obtained from Eq. 5.30, into Eq. 5.27.

Table 5.8: D̂eff (10−6 mm2/s) vs. Specimen Size (0, l1)× (0, 100)

l1 (mm) 0.4 0.8 1.2 1.6 2.0

SP−2× 100− 1 1.91 1.79 1.75 1.71 1.72

SP−2× 100− 2 2.09 1.94 1.92 1.90 1.90

SP−2× 100− 3 1.93 1.83 1.79 1.75 1.69
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Figure 5.27: D̂eff vs. Specimen Size (0, l1)× (0, 100)

Based on ns = 1000 samples of X̃ for each integration point, the resulting

estimates of Deff are shown in Table 5.8 and plotted in Figure 5.27. The result-

ing estimates of Deff for different values of l1 ranging from 0.4 mm to 50 mm

show that l1 should be equal to or greater than maximum aggregate particle

size, which is 2 mm in this case. A value of 5 mm has been chosen for l1 in the

analyses presented in the next section.

In order to examine the effect of the dimension of specimen perpendicular to

the chloride flow, l2, D̂eff (Eq. 5.27) has been calculated for different values of l2,

i.e., l2,i, i = 1, . . . , n2, based on the analyses of SP−10× 100− 1, SP−10× 100− 2

and SP−10× 100− 3, as

D̂eff,i =
l1
l2,i

i∑
j=1

4x2,jD (l1 − ζ, x2,j)
1− C (l1 − ζ, x2,j)

ζ
, (5.34)

where {l1− ζ}× (0, l2,i) is a subset of {l1− ζ}× (0, l2), l1 = 10 mm, l2 = 100 mm,

ζ = 0.5 mm, and contains integration points from 1 to i = 1, . . . , n2.
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Figure 5.28: D̂eff,i vs. l2,i, i = 1, . . . , n2 (Specimen SP−10× 100− 1)
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Figure 5.29: D̂eff,i vs. l2,i, i = 1, . . . , n2 (Specimen SP−10× 100− 2)
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Figure 5.30: D̂eff,i vs. l2,i, i = 1, . . . , n2 (Specimen SP−10× 100− 3)
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Figure 5.31: Estimates of Mean and Standard Deviation of Al2, agg
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The resulting values of D̂eff,i, i = 1, . . . , n2, are shown in Figures 5.28, 5.29

and 5.30, respectively. A critical parameter for determining the value of l2 is the

fraction of the line {l1 − ζ} × (0, l2) falling into aggregate, denoted as Al2, agg.

Estimates of mean and standard deviation of Al2, agg as a function of l2 have

been calculated by using 150 samples from SP−200×100−1, i.e., {x1}× (0, 100),

x1 = 26, . . . , 175 (Figure 5.31).
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Figure 5.32: Estimates of Statistics of Al2, agg for l2 = 50 mm

Based on the results shown in Figure 5.28 through Figure 5.31, l2 has been

determined as 50 mm for the analyses presented in Section 5.5.3. According to

the estimates of mean and standard deviation of Al2, agg as a function of sample

size for l2 = 50 mm (Figure 5.32), the number of specimen samples nsp has been

determined as 20.
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5.5.3 Analyses and Results

For estimating the effective diffusion coefficient of chloride in a specimen,

chloride diffusivity field within the specimen is required as an input. However,

chloride diffusivity fields in interfacial transition zones are not known. There-

fore, a real mortar specimen has been analyzed with various chloride diffusivity

fields, then the effective diffusion coefficient of chloride in another one has been

estimated using one of those diffusivity fields.

A mortar specimen tested by Caré [31] has been chosen for analysis. The

sand particle size distribution of the chosen specimen is shown in Figure 5.18

[31]. The specimen was first immersed in a concentrated alkaline solution of

KOH (4.65 g/l) + NaOH (1 g/l) and vacuum-saturated. Then, for a non-steady-

state diffusion test, it was immersed in a salt solution of KOH (4.65 g/l) + NaOH

(1 g/l) + NaCl (30 g/l) for approximately 40 days.
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Figure 5.33: Total Chloride Profile at t ≈ 40 days [31]
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Figure 5.34: Chloride Binding Isotherm [31]

The effective diffusion coefficient of chloride in the specimen was calculated

from the measured total chloride profile and chloride binding isotherm, shown

in Figures 5.33 and 5.34, respectively [31]. The reason for choosing Caré’s spec-

imen is that the effective diffusion coefficient of chloride in the corresponding

cement paste specimen was also measured. The effective diffusion coefficients

of chloride in the mortar specimen and in the corresponding cement paste spec-

imen, obtained by Caré [31], are shown in Table 5.9.

Table 5.9: Experimental Results by Caré [31]

Specimen w/c Vagg (%) Deff (10−6 mm2/s)

Cement Paste 0.45 0 5.65

Mortar 0.45 50 7.40

The particle types and the corresponding proportions pk, k = 1, . . . , 6, deter-

mined according to the sand particle size distribution shown in Figure 5.18, are
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shown in Table 5.5, where dL,k and dU,k are the minimum and maximum parti-

cle size for type-k particles, respectively. Virtual specimen size, l1 × l2 (Figure

5.17), and number of specimen samples, nsp, have been determined as 5 mm

× 50 mm and 20, respectively, as explained in Section 5.5.2. In order to gener-

ate specimens of 5 mm by 50 mm, first, specimens of 100 mm by 50 mm have

been generated according to the particle size distribution shown in Table 5.5,

second, 20 specimens of 5 mm by 50 mm have been cut from the 100 mm by 50

mm specimens. Three of the resulting specimens are shown in Figure 5.35. The

number of particles within the specimens range from 323 to 360. The resulting

estimates of mean, standard deviation and coefficient of variation of area frac-

tion of aggregate Aagg are 0.5023, 0.0114 and 2.26%, respectively. Particle size

distributions in virtual specimens SP−5 × 50 − ωs, ωs = 1, . . . , 20, are shown in

Figure 5.36 together with the target particle size distribution.
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Figure 5.35: SP−5× 50− 1, SP−5× 50− 10 and SP−5× 50− 20
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Figure 5.36: Particle Size Distributions in SP−5× 50− ωs, ωs = 1, . . . , 20
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Table 5.10: Parameters of Chloride Diffusivity Fields

Case lITZ (µm) Dcp (10−6 mm2/s) αD αA

I 0 5.65 1 1

II 30 5.65 35 12.3

III 30 5.65 40 14.0

IV 30 4.00 60 20.6

V 50 5.65 25 9.0

Simulations have been performed for five different cases shown in Table

5.10, where lITZ is the ITZ thickness, Dcp is the effective diffusion coefficient

of chloride in the bulk cement paste, αD = D(0)/D(lITZ) and αA is the ratio of

chloride diffusion coefficient in the ITZ to the one in the bulk cement paste, if

chloride diffusivity field in the ITZ is replaced with a constant diffusivity field,

such that

αA =

∫ lITZ

0
D(u)du/lITZ

Dcp
. (5.35)

Case I represents a case as if the presence of aggregate does not have any af-

fect on the microstructure of cement paste, i.e., there is no ITZ between cement

paste and aggregate. Then the resulting estimate of effective diffusion coeffi-

cient reflects the effect of increased tortuosity and dilution due to the presence

of aggregate.

The other cases consider various combinations of lITZ and αD, or αA (Figure

5.38). The combinations have been decided in such a way that the resulting

estimate of effective diffusion coefficients end up in the neighborhood of the

coefficient measured by Caré [31]. lITZ has been set equal to the estimate of ITZ

thickness reported by Caré [31], i.e., 30 µm (Table 5.10), in Case II, Case III and
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Case IV. lITZ is assumed to be the same for all particles and uniform around each

particle in all cases.
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Figure 5.38: Chloride Diffusivity Profiles in the ITZ

Case II and Case III assumes that the bulk cement paste in the mortar spec-

imen has the same properties as the cement paste specimen of Caré [31] does,

i.e., Dcp has been set equal to the effective diffusion coefficient in the cement

paste specimen, i.e., 5.65 · 10−6 mm2/s (Table 5.10). The values of αD in Case II

and Case III have been set to 35 and 40, resulting in values of αA of 12.3 and

14, respectively (Table 5.10), which would result in coefficients bounding the

effective diffusion coefficient in the mortar specimen measured by Caré [31].

Case IV considers a redistribution of w/c ratio between bulk cement paste

and ITZ. The specimens of Caré [31] have an overall w/c ratio of 0.45 (Table

5.9). However, it is likely that ITZ has a w/c ratio higher than 0.45 due to its

relatively high porosity, while bulk cement paste has a ratio lower than 0.45.

Case IV assumes that Dcp is equal to 4.00 · 10−6 mm2/s, which corresponds to a
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w/c ratio of 0.42-0.43 approximately. Since the value of Dcp is smaller than those

in Case II and Case III, the chloride diffusivity in the ITZ needs to be larger than

those in Case II and Case III in order to obtain an estimate close to the effective

diffusion coefficient of chloride in the mortar specimen measured by Caré [31].

Therefore αD has been set equal to 60, resulting in an αA of 20.6 (Table 5.10).

Case V also assumes that the bulk cement paste in the mortar specimen has

the same properties as the cement paste specimen of Caré [31] does. However,

it considers an ITZ thickness of 50 µm (Table 5.10), unlike Case II and Case III

do. Since the value of lITZ in Case V is larger than those in Case II and Case III,

the chloride diffusivity in the ITZ needs to be less than those in Case II and Case

III in order to obtain an estimate close to the effective diffusion coefficient of

chloride in the mortar specimen of Caré [31]. Therefore αD has been set equal to

25, resulting in an αA of 9.0 (Table 5.10).

In an analysis of a case, the procedure followed for analyzing each specimen

SP−5× 50− ωs, ωs = 1, . . . , 20, is explained below.

• The number and location of integration points, n2(ωs) and x2,k(ωs), k =

1, . . . , n2(ωs), respectively, are determined using the algorithm explained

in Section 5.5.2.

• The chloride concentrations at the integration points C(l1− ζ, x2,k(ωs), ωs),

k = 1, . . . , n2(ωs), are estimated by using Eq. 5.30, where the number of

samples of Itô process X̃ (Eq. 3.23a), ns, and ζ have been chosen as 1000

and 0.1 mm, respectively. Estimates of mean and standard deviation of

step size of resulting samples of X̃ are shown in Table 5.11.

• The effective diffusion coefficient of chloride in the specimen is estimated

by introducing Ĉ(l1 − ζ, x2,k(ωs), ωs) into Eq. 5.27.
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Table 5.11: Statistics of Step Size of Samples of X̃

Case Estimate of Mean (µm) Estimate of Std. Dev. (µm)

I 18 10

II 12 11

III 14 12

IV 13 12

V 13 11

The resulting statistics of D̂eff based on 20 specimen samples, i.e., µ̂Deff and

σ̂Deff , and relative error calculated as

εrel =
µ̂Deff −Deff,mortar

Deff,mortar
× 100, (5.36)

where Deff,mortar = 5.65 · 10−6 mm2/s (Table 5.9) is the effective diffusion coeffi-

cient of chloride in the mortar specimen measured by Caré [31], are shown in

Table 5.12.

Table 5.12: Statistics of D̂eff by the RWM

Case µ̂Deff (10−6 mm2/s) σ̂Deff (10−6 mm2/s) εrel (%)

I 1.90 0.14 -74.3

II 7.00 0.82 -5.4

III 7.76 0.93 +4.8

IV 7.46 0.95 +0.8

V 8.03 0.78 +8.4

Estimates of mean and standard deviation of the effective diffusion coeffi-

cient as a function of number of specimen samples, nsp, are plotted in Figures

5.39, 5.41, 5.43, 5.45 and 5.47. It can be observed that an nsp of 20 is sufficient
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to obtain stabilized results. Also, histograms of D̂eff are plotted in Figures 5.40,

5.42, 5.44, 5.46 and 5.48.

Case I results in a µ̂Deff of 1.90 · 10−6 mm2/s and a σ̂Deff of 0.14 · 10−6 mm2/s,

where the resulting relative error in the µ̂Deff is -74.3% (Table 5.12). Since there

are no interfacial transition zones in Case I, i.e., only the increased tortuosity and

dilution due to the presence of aggregate are in effect, the resulting estimate of

the Deff is much smaller than the Deff,mortar.

Case II leads to a µ̂Deff of 7.00 · 10−6 mm2/s and a σ̂Deff of 0.82 · 10−6 mm2/s,

where the resulting relative error in the µ̂Deff is -5.4% (Table 5.12). Significant

reduction in the relative error compared to that in Case I, from -74.3% to -5.4%,

shows the effect of ITZ on the effective diffusion coefficient.

Case III, in which lITZ and Dcp are the same as those in Case II, yields a µ̂Deff of

7.76 · 10−6 mm2/s and a σ̂Deff of 0.93 · 10−6 mm2/s, where the resulting relative

error in the µ̂Deff is +4.8% (Table 5.12). The difference between Case II and Case

III is the chloride diffusivity profiles in the ITZ (Figure 5.38). Then the chloride

diffusivity profile in the ITZ of the mortar specimen of Caré [31] is in between

the chloride diffusivity profiles considered by Case II and Case III (Figure 5.38),

that is, αD is between 35 and 40, or αA is between 12.3 and 14.0, provided that the

chloride diffusion coefficient in the bulk cement paste is equal to the effective

diffusion coefficient of chloride in the cement paste specimen of Caré [31].

Case IV leads to a µ̂Deff of 7.46 · 10−6 mm2/s and a σ̂Deff of 0.95 · 10−6 mm2/s,

where the resulting relative error in the µ̂Deff is 0.8% (Table 5.12). Since the rela-

tive error is small, there is no need to analyze another case to bound the exper-

imental coefficient in the mortar specimen. Case IV can be thought as a more
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realistic case than the others, since it is likely that a redistribution of w/c ratio

would take place due to the relatively high porosity in the ITZ.

Case V, in which lITZ is larger than those in Case II and Case III, but Dcp is

the same as those in Case II and Case III, results in a µ̂Deff of 8.03 · 10−6 mm2/s

and a σ̂Deff of 0.78 · 10−6 mm2/s, where the resulting relative error in the µ̂Deff is

+8.4% (Table 5.12). Case V has been included to examine the effect of lITZ on the

effective diffusion coefficient.

Based on the results obtained by the RWM, it is concluded that ITZ is an

important phase affecting the effective diffusion coefficient of chloride signifi-

cantly. Case I shows that a 74.3% reduction would occur in the Deff if there were

no ITZ, due to the increased tortuosity and dilution. The presence of ITZ affects

the Deff in the opposite direction, and yields a Deff larger than that in the cement

paste specimen in these particular cases, Case II through Case V.
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Figure 5.39: Statistics of D̂eff for Case I
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Figure 5.41: Statistics of D̂eff for Case II
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Figure 5.42: Histogram of D̂eff for Case II
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Figure 5.43: Statistics of D̂eff for Case III
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Figure 5.44: Histogram of D̂eff for Case III
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Figure 5.45: Statistics of D̂eff for Case IV
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Figure 5.46: Histogram of D̂eff for Case IV
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Figure 5.47: Statistics of D̂eff for Case V
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Figure 5.48: Histogram of D̂eff for Case V

5.5.4 Comparison with Other Methods

For comparison, some of the methods reviewed in Sections 5.3 and 5.4, the

ones developed by Garboczi and Bentz [63], Garboczi and Berryman [67], Xi and

Bažant [187], and Yang and Su [193], have been used to estimate the effective

diffusion coefficient of chloride.

For analysis by the numerical method of Garboczi and Bentz [63], nsp = 20

computational cubic volumes having a size length of 10 mm have been gener-

ated. Spheres, representing sand particles, have been generated according to

the particle size distribution given in Table 5.5, and then they have been placed

randomly in cubic volumes, which have periodic boundary conditions. One of

the computational cubic volumes is shown in Figure 5.49.
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The model defines the chloride diffusivity in the vicinity of aggregate parti-

cles as a step function. For analyses, chloride diffusivity fields in cubic volumes

have been defined with the parameters used in Case III (Section 5.5.3), that is, the

ITZ thickness lITZ and the ratio of the chloride diffusion coefficient in the ITZ to

the one in the bulk cement paste, αA, are 30 µm and 14.0, respectively. ns = 1000

random walks, which start from randomly selected points and perform 200,000

steps, have been executed within each cubic volume, and the effective diffu-

sion coefficient of chloride in each cubic volume has been estimated by using

Eq. 5.22. The resulting estimates of mean and standard deviation of Deff are

6.14 · 10−6 mm2/s and 0.16 · 10−6 mm2/s (Figure 5.50), respectively, where the

resulting error in the D̂eff relative to the one obtained in Case III by using the

RWM is -20.9% (Table 5.13).

The effective diffusion coefficients for all cases studied in Section 5.5.3 have

been calculated also by using the effective medium theory developed by Gar-

boczi and Berryman [67]. The resulting estimates of the Deff are shown in Table

5.13. Other than Case I, the resulting error in the D̂eff relative to the one obtained

in the corresponding case by using the RWM is more than 30% (Table 5.13).

According to the model developed by Xi and Bažant [187], the effective dif-

fusion coefficient of chloride in the mortar specimen measured by Caré [31]

can be approximated by Eq. 5.23. If the chloride diffusion coefficient in the

cement paste and the volume fraction of aggregate are introduced into Eq. 5.23

as 5.65 · 10−6 mm2/s and 0.5, respectively, Eq. 5.23 calculates the Deff in the mor-

tar specimen as 2.26 · 10−6 mm2/s, with an error of +18.7% relative to the one

obtained in Case I by using the RWM (Table 5.13). It is important to note that

Eq. 5.23 does not consider the effect of ITZ on the effective diffusion coefficient.
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The effective diffusion coefficient calculated from Eq. 5.25, developed by

Yang and Su [193], for Case I through Case IV are shown in Table 5.13. The

chloride diffusion coefficient in the neat cement paste, the volume fraction of

aggregate and the volume fraction of ITZ in Eq. 5.25 are 5.65 · 10−6 mm2/s, 0.5

and 0.103, respectively [31], and β in Eq. 5.25 is equal to αA (Eq. 5.35), the value

of which is given in Table 5.10 for each case. For Case I, the D̂eff obtained from

Eq. 5.25 is in good agreement with the one obtained by using the RWM. On the

other hand, the results for Case IV are significantly different. The resulting er-

rors in the D̂eff relative to the ones obtained in Case II and Case III by using the

RWM are +22.5% and +23.3% (Table 5.13), respectively.

Table 5.13: Comparison of D̂eff by the RWM with Other Methods

Method
D̂eff

Case
D̂eff (RWM) εrel

(10−6 mm2/s) (10−6 mm2/s) (%)

Garboczi & Bentz [63] 6.14 III 7.76 -20.9

Garboczi & Berryman [67] 1.70 I 1.90 -10.7

Garboczi & Berryman [67] 4.48 II 7.00 -36.0

Garboczi & Berryman [67] 4.97 III 7.76 -35.9

Garboczi & Berryman [67] 4.91 IV 7.46 -34.2

Xi & Bažant [187] 2.26 I 1.90 +18.7

Yang & Su [193] 2.00 I 1.90 +4.9

Yang & Su [193] 8.57 II 7.00 +22.5

Yang & Su [193] 9.56 III 7.76 +23.3

Yang & Su [193] 13.40 IV 7.46 +79.8

It can be observed in Figure 5.51 that the effective diffusion coefficients ob-

tained by various methods agree well when there is no ITZ, i.e., in Case I. In
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the other cases, the coefficients obtained by the method of Yang and Su [193]

is larger than the ones by the RWM, whereas the coefficients obtained by the

method of Garboczi and Berryman [67] is smaller than the ones by the RWM.
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Figure 5.51: Comparison of D̂eff by Various Methods

5.5.5 Estimating Effective Diffusion Coefficient

Caré [31] tested another mortar specimen prepared with the same cement

paste, but finer sand particles, compared to the mortar specimen analyzed in

Section 5.5.3. The effective diffusion coefficient of chloride in this specimen was

measured as 9.50 · 10−6 mm2/s (Table 5.14). The objective is to estimate the

effective diffusion coefficient in this specimen by using the RWM method with

the chloride diffusivity field defined by Case IV (Section 5.5.3).

According to the sand particle size distribution shown in Figure 5.52, the

particle types and the corresponding proportions pk, k = 1, . . . , 5, have been
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determined as shown in Table 5.15, where dL,k and dU,k are the minimum and

maximum particle size for type-k particles, respectively. Area fraction of par-

ticles, Aagg, is 0.5 [31]. Specimens of 100 mm by 50 mm have been generated

according to the particle size distribution shown in Table 5.15. The resulting

proportions p̂k, k = 1, . . . , 5, in SP−100 × 50 − 1 are shown in Table 5.15, where

the resulting area fraction of 12955 particles, Âagg, is 0.5002.

Table 5.14: Experimental Results by Caré [31]

Specimen w/c Vagg (%) Deff (10−6 mm2/s)

Cement Paste 0.45 0 5.65

Mortar (F) 0.45 50 9.50

Table 5.15: Particle Size Distribution in Virtual Specimens

Type-k dL,k (mm) dU,k (mm) pk (by area) p̂k (by area)

1 0.315 0.400 0.09 0.09

2 0.400 0.510 0.10 0.10

3 0.510 0.630 0.09 0.09

4 0.630 0.800 0.65 0.6499

5 0.800 1.000 0.07 0.0701

Then 20 specimens of 5 mm by 50 mm have been cut from the 100 mm by 50

mm specimens. Three of the resulting specimens are shown in Figure 5.53. The

number of particles within the specimens range from 698 to 739. The resulting

estimates of mean, standard deviation and coefficient of variation of area frac-

tion of aggregate Aagg are 0.5005, 0.0050 and 1.00%, respectively. Particle size

distributions in virtual specimens SP−5× 50− ωs, ωs = 21, . . . , 40, are shown in

Figure 5.52 together with the target particle size distribution.
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Figure 5.54: Statistics of D̂eff for Mortar (F)
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The procedure followed for analyzing each specimen SP−5 × 50 − ωs, ωs =

21, . . . , 40, is explained in Section 5.5.3. Estimates of mean and standard devi-

ation of step size of resulting samples of X̃ are 12 µm and 11 µm, respectively.

Estimates of mean and standard deviation of the effective diffusion coefficient

as a function of number of specimen samples, nsp, and histogram of D̂eff are

plotted in Figures 5.54 and 5.55, respectively. The resulting estimates of mean

and standard deviation of Deff are 11.26 · 10−6 mm2/s and 0.76 · 10−6 mm2/s

(Figure 5.55), respectively.

Comparing the results for the mortar (M) analyzed in Section 5.5.3 and the

mortar (F) analyzed in this section, it can be observed that using finer sand par-

ticles, while keeping aggregate fraction constant, results in a higher effective

diffusion coefficient, provided that ITZ has the same transport properties, be-

cause finer particles results in a larger amount of ITZ, in which diffusivity is

relatively high.

The resulting estimate of the Deff in mortar (F) is 19.1% higher than the cor-

responding experimental result of Caré [31]. The error shows that the chloride

diffusivity field within the mortar (F) is different from the field within the mor-

tar (M). However, the estimate is still in satisfactory agreement with the experi-

mental result.

5.6 Estimating Chloride Concentration

The total chloride profile and the chloride binding isotherm, measured by

Caré [31], for the mortar specimen analyzed in Section 5.5.3 are shown in Fig-
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ures 5.33 and 5.34, respectively. The free chloride profile can be obtained as

follows:

Ct(x, t) = Cb(x, t) + φCf (x, t) = kbCf (x, t) + φCf (x, t)

⇒ Cf (x, t) =
Ct(x, t)

kb + φ
, (5.37)

where Ct(x, t) is the total chloride concentration (kg/m3 of mortar), Cb(x, t) is

the bound chloride concentration (kg/m3 of mortar), Cf (x, t) is the free chloride

concentration (kg/m3 of pore solution) at depth x and time t, φ is the porosity

and kb is the linear chloride binding isotherm (Figure 5.34). φ and kb are 0.122

and 0.1431, respectively [31]. The calculated free chloride profile is shown in

Figure 5.56. The time of measurement is given as approximately 40 days [31].
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Figure 5.56: Free Chloride Profile

The objective is to calculate the free chloride concentration at a few points at

40 days. Let H = (0, l1) × (0, l2) ∈ R2, be a bounded subset containing a virtual

mortar specimen of interest and D(x) > 0, x ∈ H , be the chloride diffusivity
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field. The free chloride concentration Cf (x, t), x ∈ H , t ≥ 0, satisfies

∂Cf (x, t)

∂t
=

2∑
p=1

∂D∗(x)

∂xp

∂Cf (x, t)

∂xp

+ D∗(x)∆Cf (x, t), (2.10)

where ∆ is the Laplace operator and

D∗(x) =
D(x)

kb + φ
. (2.11)

The initial condition is

Cf (x, 0) = 0, x ∈ H, (5.38)

and the boundary conditions are

Cf (x, t) = Cs, x ∈ {0} × (0, l2), t > 0, (5.39a)

Cf (x, t) = 0, x ∈ {l1} × (0, l2), t > 0, (5.39b)

Cf (x, t) = 0, x ∈ (0, l1)× {0}, t > 0, (5.39c)

Cf (x, t) = 0, x ∈ (0, l1)× {l2}, t > 0, (5.39d)

where Cs is the surface chloride concentration.

Cf (x, t), x ∈ H , t > 0, can be calculated using the random walk method

(RWM) given in Chapter 3. Let X̃ = (X, X3), X̃(0) = (x, t), be an R3-valued Itô

process defined by the stochastic differential equation

dX(τ) = a(X(τ))dτ + b(X(τ))dB(τ), τ ≥ 0, (3.23a)

dXd+1(τ) = −dτ, (3.23b)

where a and b are the drift and diffusion coefficients, respectively, i.e.,

ak(x) =
∂D∗(x)

∂xk

, k = 1, 2, (3.21)

b(x) =
√

2D∗(x)i. (3.22)
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Then Cf (x, t) is given by Eq. 3.34, which in this case reduces to

Cf (x, t) = E
[
Cf (X̃(T̃ )

]
= E

[
Cf (X̃(t− T̃ ))

∣∣∣T̃ < t
]

P
(
T̃ < t

)
, (5.41)

where

T̃ = inf{τ > 0 : X̃(τ) /∈ H × (0, t)} (3.30)

is a stopping-time, that is, the time at which X̃ exits H × (0, t) for the first time.

It is not possible to solve Eq. 5.41 analytically, but Cf (x, t) can be estimated by

Eq. 3.36, which in this case reduces to

Ĉf (x, t) =
n′s
ns


 1

n′s

n′s∑
ω=1

Cf (X̃(T̃ (ω), ω))


 , (5.42)

where ns is the number of independent samples of X̃ , n′s is the number of sam-

ples of X̃ that exit H × (0, t) through the boundary of H , i.e., ∂H .

The procedure for estimating the free chloride concentration at a point x ∈ H

and time t > 0 is explained below.

• The mortar specimen tested by Caré [31] was a disc-shaped specimen hav-

ing a 50 mm height and a 70 mm diameter with an aggregate volume frac-

tion of 0.5. Then 2D virtual specimens of l1 = 50 mm and l2 = 70 mm

have been generated according to the sand particle size distribution given

in Table 5.5. One of the virtual specimens, SP−50×70−1, is shown in Fig-

ure 5.57. The number of particles within the specimens range from 4177 to

4215. The resulting estimates of mean, standard deviation and coefficient

of variation of area fraction of aggregate Aagg are 0.5007, 2 ·10−4 and 0.03%,

respectively.

• The mortar specimen was immersed in a salt solution of KOH (4.65 g/l)

+ NaOH (1 g/l) + NaCl (30 g/l) [31]. The atomic weights of sodium (Na)
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and chlorine (Cl) are 22.990 g and 35.453 g, respectively. Then the surface

chloride concentration Cs is

Cs =

(
35.453

22.99 + 35.453

)
× 30 = 18.2 g/l

= 18.2 kg/m3 of pore solution. (5.43)
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Figure 5.57: Specimen SP−50× 70− 1

• Based on ns samples of X̃ starting from x at time t, C(x, t) is estimated by

Eq. 5.42, which in this case reduces to

Ĉf (x, t) =
n′′s
ns

Cs, (5.44)

where n′′s is the number of samples of X̃ that exit H × (0, t) through the

boundary {0} × (0, l2).

For estimating the free chloride concentration at a point in a virtual specimen

at time t = 40 days, ns = 1000 samples of X̃ starting at the point of interest at
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t = 40 days have been generated. The evolution of n′′s/ns with ns for SP−50 ×
70 − 1 is shown in Figure 5.58, in which it can be observed that less samples

are sufficient to obtain a reliable estimate of Cf (x, t). Estimates of mean and

standard deviation of step size of resulting samples of X̃ are 13 µm and 12 µm,

respectively.
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Figure 5.58: Evolution of n′′s/ns with ns

For estimating the free chloride concentration at a point at time t = 40 days,

10 virtual specimens, SP−50× 70− ωs, ωs = 1, . . . , nsp, where nsp is the number

of specimen samples, have been used. The evolution of the resulting estimate

of the free chloride concentration at x1 = 12 mm, x2 = 35 mm and t = 40

days with nsp is shown in Figure 5.59. The free chloride concentrations at three

locations (x1, x2) = (12, 20), (12,35) and (12,50), where the locations are in mm,

at t = 40 days have been estimated using the RWM method. Based on ns =

1000 samples of X̃ and nsp = 10 virtual specimens, the resulting estimates of

mean and standard deviation of Cf are shown in Table 5.16. The free chloride
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concentration at depth 12 mm was measured as 5.37 kg Cl−/m3 of pore solution

by Caré [31]. Relative errors, calculated as

εrel =
µ̂Cf

− Cf,Caré

Cf,Caré
× 100, (5.45)

where µ̂Cf
is an estimate of mean of Cf and Cf,Caré is the free chloride concentra-

tion at depth 12 mm measured by Caré [31], are also shown in Table 5.16. The

resulting estimates of Cf at depth 12 mm at 40 days differ by less than 12% from

the experimental result, which is a satisfactory agreement.
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Figure 5.59: Evolution of Ĉf (x1 = 12, x2 = 35, t = 40) with nsp

Table 5.16: Statistics of Ĉf (x1, x2, t = 40 days)

x1 x2 µ̂Cf
σ̂Cf

εrel

(mm) (mm) (kg/m3 of pore sol.) (kg/m3 of pore sol.) (%)

12 20 4.81 0.18 -10.5

12 35 4.99 0.21 -7.1

12 50 4.76 0.20 -11.4
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5.7 Conclusion

Chloride-induced corrosion of steel reinforcement is one of the major causes

of deterioration of reinforced concrete structures. Of the various chloride trans-

port mechanisms, diffusion is of interest to this research since it is the most

dominant chloride transport mechanism. A critical parameter for evaluating the

resistance of concrete against chloride diffusion is the effective diffusion coeffi-

cient, which provides information on the rate of chloride diffusion through con-

crete specimens. The effective diffusion coefficient of chloride can be obtained

experimentally (Section 5.2), numerically (Section 5.3) or analytically (Section

5.4).

Diffusion, migration and conductivity experiments are the most common

types of experimental methods for obtaining the effective diffusion coefficient of

chloride in concrete. The driving force in the diffusion experiments is the chlo-

ride concentration gradient, whereas it is the externally applied electrical poten-

tial in the migration experiments. In the conductivity experiments, the conduc-

tivity measurements are converted to the effective diffusion coefficients. The

results obtained through various experimental methods are not directly compa-

rable mainly due to the differences in the hypotheses behind the methods [170].

Since chloride diffusion is of interest to this research, diffusion experiments are

considered as more reliable than the others within the context of this research.

A probability-based numerical method was developed for estimating effec-

tive diffusion coefficients of concrete specimens and chloride concentration at

arbitrary points of these specimens. The method uses virtual concrete speci-

mens consisting of (i) aggregate particles with zero diffusivity, (ii) bulk cement
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paste with a constant chloride diffusion coefficient, and (iii) interfacial transi-

tion zones around aggregate particles in which the chloride diffusion coefficient

increases as the aggregate surface is approached. Virtual specimens are con-

structed in 2D using volume fraction statistics obtained from 3D specimens.

This is an approximation and has been used to reduce calculations. A proba-

bilistic method in [80] for estimating the effective diffusion coefficient of chlo-

ride in a virtual concrete specimen was adopted. The effective diffusion coef-

ficient of the virtual concrete specimen is the diffusion coefficient of a virtual

homogeneous specimen.

The proposed method for estimating effective diffusion coefficients of con-

crete specimens and chloride concentration at arbitrary points of these speci-

mens is stable, accurate, simple to code and suitable for parallel computation.

Since computation time increases with the size of a specimen, a statistical study

was performed to determine the smallest size of the specimen that is still suf-

ficiently large to provide accurate effective diffusivity estimates. Then the pa-

rameters of the chloride diffusivity random field model were calibrated to ex-

periments. Using those parameter values, effective diffusion coefficients were

calculated for several virtual specimens and chloride concentration was esti-

mated at a few points of virtual specimens. All numerical results are limited to

2D mortar specimens for two reasons. First, computation time is much smaller

for 2D specimens than for 3D specimens. Second, effective properties of mortar

can be used to construct large virtual concrete specimens.

The results of analyses on a mortar specimen tested by Caré [31] are pre-

sented in Section 5.5.3. The results show that ITZ is an important phase affect-

ing the effective diffusion coefficient of chloride significantly. It was found that
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the effective diffusion coefficient of chloride in the analyzed mortar specimen

would be reduced by 74.3% if there were no ITZ, due to the effects of increased

tortuosity of travel paths and dilution of cement paste. The presence of ITZ has

an opposite effect on the effective diffusion coefficient, leading to a coefficient

larger than the one in the cement paste specimen for the particular cases ana-

lyzed in Section 5.5.3. The comparison of the results obtained by the proposed

method with the ones by a few methods available in the literature is given in

Section 5.5.4.

The calibrated version of the method was used to calculate effective diffu-

sion coefficients in several virtual specimens with the same statistical proper-

ties of another mortar specimen tested by Caré [31]. The sand particles in this

specimen are finer than those in the specimen used for the calibration. Finer

particles led to a higher effective diffusion coefficient for the same aggregate

volume fraction and transport properties in the ITZ, since finer particles result

in a larger amount of ITZ, in which diffusivity is relatively high. The resulting

estimate of the effective diffusion coefficient differs by 19.1% from the experi-

mental result. The method was also used to predict chloride concentration at

three points of specimens (Section 5.6). The resulting estimates of the chloride

concentration differ by less than 12% from the experimental result. The esti-

mates of the effective diffusion coefficient and the chloride concentration are in

satisfactory agreement with the experimental results.
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CHAPTER 6

CONCLUSION

6.1 Conclusions

Of the various deterioration mechanisms of reinforced concrete structures,

chloride-induced corrosion of steel reinforcement is of great importance since

numerous reinforced concrete structures are exposed to chloride sources,

e.g., de-icing salts or marine environment [129]. ASCE 2005 Report Card es-

timates a cost of $9.4 billion a year for 20 years to eliminate deficiencies of

590,750 bridges in the United States, almost half of which are reinforced con-

crete. A 1998 survey reports that 9% of the reinforced concrete bridges in the

United States are structurally deficient, primarily due to corrosion of steel re-

inforcement [196]. Accurate lifetime predictions are essential for developing

efficient strategies to handle the corrosion damage. Since chloride propagation

is a transport phenomenon, it is necessary to have an accurate representation

of concrete at microscale to obtain adequate lifetime predictions of reinforced

concrete structures.

Diffusion, convection, migration and permeation are chloride transport

mechanisms in reinforced concrete structures. Chloride ingress into concrete

usually occurs by either diffusion or diffusion coupled with another mode of

transport. Diffusion is of interest to this research since it is the most dominant

mechanism. A critical parameter for evaluating the resistance of concrete to

chloride diffusion is the effective diffusion coefficient, which provides informa-

tion on the rate of chloride diffusion through concrete specimens.
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A probability-based numerical method was developed for estimating effec-

tive diffusion coefficients of concrete specimens and chloride concentration at

arbitrary points of these specimens. The method involves two steps. First, vir-

tual specimens need to be constructed such that they are consistent with sta-

tistics of target concrete specimens. A concrete specimen is modeled as a three-

phase material consisting of (i) aggregate particles with zero diffusivity, (ii) bulk

cement paste with a constant chloride diffusion coefficient, and (iii) interfacial

transition zones around aggregate particles in which the chloride diffusion co-

efficient increases as the aggregate surface is approached. The algorithm con-

structing virtual concrete specimens places virtual aggregates at random loca-

tions. The aggregates are ellipses of random aspect ratios with noisy boundaries

defined by beta translation fields. Second, properties of Itô process are used to

estimate the effective diffusion coefficients in virtual specimens and the chloride

concentration at arbitrary points of specimens. A probabilistic method in [80]

for estimating the effective diffusion coefficient of chloride in a virtual concrete

specimen was adopted. The effective diffusion coefficient of the virtual concrete

specimen is the diffusion coefficient of a virtual homogeneous specimen.

The proposed method for estimating effective diffusion coefficients of con-

crete specimens and chloride concentration at arbitrary points of these speci-

mens is stable, accurate, simple to code and suitable for parallel computation.

The computation time can be lengthy particularly when dealing with large

and/or 3D specimens. To reduce calculations, a statistical study was under-

taken to identify the smallest size of a specimen that is still sufficiently large

to provide accurate effective diffusivity estimates. Then the parameters of the

chloride diffusivity random field model were calibrated to experiments. Using

those parameter values, effective diffusion coefficients were calculated for sev-
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eral virtual specimens and chloride concentration was estimated at a few points

of virtual specimens. The resulting estimates are in satisfactory agreement with

the experimental results. All numerical results are limited to 2D mortar speci-

mens.

6.2 Future Research

Future research will be related to the extensions of the method proposed in

this study. The future research topics are briefly outlined below.

• In this study, 2D mortar specimens were used in order to reduce com-

putation time. The next step is to study concrete specimens. This can

be performed either following the approach in this study or considering

concrete specimens consisting of mortar, viewed as a homogeneous phase

with an effective diffusivity, coarse aggregate and interfacial transition

zone around coarse aggregate.

• The method in this study uses 2D virtual specimens, but it can be modi-

fied to examine 3D specimens. The random fields proposed for concrete

aggregate in [79] can be adopted for generating 3D virtual aggregates. The

packing algorithm proposed in this study can be extended to 3D for pack-

ing 3D virtual aggregates.

• Interfacial transition zone is an important phase affecting the rate of chlo-

ride diffusion through concrete specimens, but chloride diffusivity fields

in interfacial transition zones are not known. Therefore more analyses on

experimental data are needed to calibrate the parameters defining chlo-
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ride diffusivity random field model. Such analyses will possibly lead to

more realistic models in later applications.

• The method can be used to estimate corrosion initiation time for a rein-

forced concrete structure. In such calculations, time-dependence of chlo-

ride diffusivity should be considered, since chloride diffusion through re-

inforced concrete structures is a long term process.
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APPENDIX A

CHLORIDE DIFFUSION COEFFICIENTS

It is not possible to put all information in the literature here, but a few chloride

diffusion coefficients obtained through diffusion and migration experiments are

summarized below.

A.1 Diffusion Experiments

Diffusion-based experiments can be carried out under either steady-state

or non-steady-state conditions (Section 5.2.1). Experimental results by Page et

al. [126], Goto and Roy [74], Dhir and Byars [47], MacDonald and Northwood

[101], Jensen et al. [88] and Caré [31] are given below.

Table A.1: Deff in Various Cement Pastes by Page et al. [126]

Type of Cement Deff (10−6 mm2/s)

Portland Cement 4.47

Portland Cement/30%PFA 1.47

Portland Cement/65%BFS 0.41

Sulfate-Resistant Portland Cement 10.00

Page et al. [126] conducted steady-state diffusion experiments. The speci-

mens were cured under saturated Ca(OH)2 solution at 22◦C for 60 ± 3 days.

The downstream and upstream reservoirs were filled with saturated Ca(OH)2

solution and 1 M NaCl + saturated Ca(OH)2 solution, respectively. The effective

diffusion coefficients at 25◦C in various cement paste specimens having a w/c
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ratio of 0.5 are shown in Table A.1, where PFA is pulverized fly ash and BFS is

ground-granulated blast furnace slag. The coefficients at various temperatures

in Portland cement paste specimens having various w/c ratios are plotted in

Figure A.1.
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Figure A.1: Deff in Portland Cement Pastes by Page et al. [126]

Table A.2: Deff in Portland Cement Pastes by Goto and Roy [74]

Curing T. (◦C) Curing Period (weeks) Test T. (◦C) Deff (10−6 mm2/s)

27 4 27 6.9

60 4 35 27.0

60 6 35 37.0

60 4 45 37.0

60 6 45 37.0

60 4 60 92.0

Goto and Roy [74] measured the effective diffusion coefficients at various
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temperatures in Portland cement paste specimens having a w/c ratio of 0.4. The

specimens were cured under saturated Ca(OH)2 solution at various tempera-

tures for 4 or 6 weeks. The downstream and upstream reservoirs were filled

with deionized water and a solution of 0.5 M NaCl, respectively. The effec-

tive diffusion coefficients obtained from steady-state diffusion experiments are

shown in Table A.2 together with the corresponding curing temperature, curing

period and experiment temperature.

Table A.3: Curing Conditions Examined by Dhir and Byars [47]

Label Curing Type Curing Condition Curing Duration

A Water curing 23◦ 28 days

B Water curing 23◦ 180 days

C Air curing 23◦ & 55% RH 28 days

D Air curing 23◦ & 55% RH 180 days

E
Air curing 5◦ & 95% RH 1 day

Air curing 10◦ & 55% RH 27 days

F

Air curing 5◦ & 95% RH 1 day

Air curing 10◦ & 55% RH 27 days

Air curing 23◦ & 55% RH 152 days

Dhir and Byars [47] measured the effective diffusion coefficients of chloride

in concrete specimens cured under various conditions shown in Table A.3. The

downstream and upstream reservoirs were filled with deionized water and a

solution of 5 M NaCl, respectively. The effective diffusion coefficients measured

through steady-state diffusion experiments are plotted against w/c ratio in Fig-

ure A.2.

231



0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

w/c

D
e
f
f

(1
0
−

6
m

m
2
/
s)

 

 
Curing A
Curing B
Curing C
Curing D
Curing E
Curing F

Figure A.2: Deff in Portland Cement Concrete by Dhir and Byars [47]
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Figure A.3: Deff vs. w/c by MacDonald and Northwood [101]
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MacDonald and Northwood [101] measured the effective diffusion coeffi-

cients of chloride in Portland cement paste specimens with various w/c ratios

(Figure A.3), where the downstream and upstream reservoirs were filled with

distilled water and a solution of 1 M NaCl, respectively. Also, the effective diffu-

sion coefficients of chloride in cement paste specimens with a w/c ratio of 0.45

were measured for various chloride concentrations in the upstream reservoir

(Figure A.4). The specimens were cured at 25◦C and 100% relative humidity for

8 weeks. The measurements were performed under steady-state conditions.
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Figure A.4: Deff vs. Upstream Solution [101]

Hornain et al. [85] measured the effective diffusion coefficients of chloride in

Portland cement paste specimens and mortar specimens with and without lime-

stone fillers, where w/c ratio was 0.55 in all specimens. The specimens were kept

at 20◦C and 100% relative humidity for 48 hours, then stored in a water bath at

20◦C for 60 days. Following this period, they were immersed in a saturated

Ca(OH)2 solution for 6 days. The downstream and upstream reservoirs were
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filled with a saturated Ca(OH)2 solution and a saturated Ca(OH)2 solution +

35 g/L NaCl, respectively. The mix proportions of the specimens and the co-

efficients obtained from steady-state diffusion experiments are shown in Table

A.4.

Table A.4: Deff in Specimens Tested by Hornain et al. [85]

Mixture
Cement Filler Sand Deff

(% by weight) (% by weight) (% by weight) (10−6 mm2/s)

P1 100 0 0 11.25

P2 80 20 0 5.36

M1 25 0 75 3.60

M2 20 5 75 2.42
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Figure A.5: Deff vs. w/c by Jensen et al. [88]

Jensen et al. [88] obtained the effective diffusion coefficients in cement paste

specimens with various w/c ratios (Figure A.5) and in cement paste specimens
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with various silica fume contents by weight (Figure A.6) through non-steady-

state diffusion experiments. After approximately 100 days of pre-hardening and

water saturation, the specimens were exposed to a 3% NaCl solution for 30 days

at 20◦C. In calculation of the effective diffusion coefficients from the measured

chloride profiles, chloride binding was modeled as Freundlich isotherms (Sec-

tion 2.3.2).
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Figure A.6: Deff vs. Silica Fume Content by Jensen et al. [88]

Caré [31] measured the effective diffusion coefficients in mortar specimens

with a w/c of 0.45 and various aggregate contents through non-steady-state dif-

fusion experiments. The specimens were first immersed in a concentrated alka-

line solution of KOH (4.65 g/l) + NaOH (1 g/l) and vacuum-saturated. Then

they were immersed in a solution of KOH (4.65 g/l) + NaOH (1 g/l) + NaCl

(30 g/l) for 40 days. The coefficients are shown in Table A.5, where Vagg is the

volume fraction of aggregate, α is the degree of hydration, φ is the porosity and

aggregate type is the type of sand particle distribution (Figure A.7).

235



Table A.5: Deff in Mortar by Caré [31]

Aggregate Distribution Vagg α φ Deff (10−6 mm2/s)

– 0 0.811 0.226 5.65

C 0.25 0.835 0.151 5.40

C 0.50 0.688 0.110 4.80

M 0.50 0.812 0.122 7.40

F 0.25 0.862 0.179 8.10

F 0.50 0.779 0.130 9.50
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Figure A.7: Sand Particle Distributions Used by Caré [31]

A.2 Migration Experiments

Migration experiments can be carried out under either steady-state or non-

steady-state conditions. Various methods of calculating the effective diffusion

coefficient from the results of migration experiments are given in Section 5.2.2.
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Tang and Nilsson [168] calculated the effective diffusion coefficients in Port-

land cement paste and mortar specimens using Eq. 5.12 and the results of CTH

tests. The specimens were cured under saturated Ca(OH)2 solution at 22◦C for

3 months. A solution of 3% NaCl saturated in Ca(OH)2 and a voltage of 30 V

were used. For comparison, diffusion experiments were also performed. The

results are shown in Table A.6, where c : s : w is cement:sand:water ratio.

Table A.6: Deff in Cement Paste and Mortar by Tang and Nilsson [168]

c : s : w Testing Time Deff (10−6 mm2/s) Deff (10−6 mm2/s)

(by weight) (hours) (Eq. 5.12) (Diff. Exp.)

1:0:0.4 8 9.3 2.9

1:0:0.6 8 17.5 9.4

1:0:0.8 8 25.4 21.0

1:0:0.4 24 7.2 2.9

1:0:0.6 24 15.6 9.4

1:2:0.4 8 6.5 1.1

1:2:0.6 8 11.0 2.6

1:2:0.8 8 15.1 6.4

1:2:0.4 4 6.7 1.1

1:2:0.4 24 6.4 1.1

1:2:0.4 48 6.3 1.1

Tang and Nilsson [167] also calculated the effective diffusion coefficients in

high strength concrete specimens using Eq. 5.12 and the results of CTH tests.

The specimens were sealed in plastic bags and stored in the laboratory until the

specified ages shown in Table A.7. A solution of 3% NaCl saturated in Ca(OH)2

were used in the test and a voltage of 30 V were applied for 8 hours. The mix
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proportions of the specimens (kg/m3) and the averages of resulting effective

diffusion coefficients at various ages are shown in Table A.7.

Table A.7: Deff (10−6 mm2/s) in HSC by Tang and Nilsson [167]

Mix No. NSC HSCSF0 HSCSF6 HSCSF12 HSCSF24

OPC (Slite) 270 522 492.5 466 421

CSF (Norway) 0 0 29.5 56 101

Sand (< 4 mm) 769 0 0 0 0

Sand (< 8 mm) 0 700 700 700 700

Gravel (8− 12 mm) 1153 1050 1050 1050 1050

Water 189 165 165 165 165

Superplasticizer 0 5.22 6.26 6.68 7.20

CSF/OPC 0 0 6% 12% 24%

water/binder 0.7 0.32 0.32 0.32 0.32

admixture/binder 0 1% 1.2% 1.28% 1.38%

Deff at 1 day 45.60 7.39 8.24 6.67 7.96

Deff at 3 days 26.95 6.22 5.14 3.54 1.09

Deff at 7 days 21.10 4.93 2.79 1.60 0.48

Deff at 28 days 14.50 3.22 0.91 0.44 0.19

Deff at 90 days 15.30 1.79 0.49 0.34 0.10

Deff at 180 days N/A 1.74 0.38 0.22 0.04

Zhang and Gjørv [197] calculated the effective diffusion coefficients in mor-

tar and concrete specimens using Eq. 5.11 and the results of steady-state mi-

gration experiments. The experimental setup was the same as that used in the

AASHTO T277 test [163]. Before testing, all specimens were subjected to vac-

uum saturation. Mix proportions of specimens are shown in Table A.8. A so-
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lution of 0.3 M NaCl were used in the test and voltages of 6, 9 and 12 V were

applied. The averages of resulting effective diffusion coefficients for various

applied voltages are shown in Table A.9.

Table A.8: Mix Proportions of Specimens Tested by Zhang and Gjørv [197]

Specimen w/c
Cement Water Aggregate (kg/m3) Air Content

(kg/m3) (kg/m3) 0-8 mm 8-16 mm (%)

D7 (Mortar) 0.5 330 165 1894 - 3.9

A2 (Concrete) 0.5 330 165 756 1310 1.2

Table A.9: Deff (10−6 mm2/s) by Zhang and Gjørv [197]

Specimen
Voltage (V)

6 9 12

D7-4 (Mortar) 1.94 1.97 1.65

D7-5 (Mortar) 1.26 1.21 1.19

A2-3 (Concrete) 3.63 3.65 3.42

A2-4 (Concrete) 2.86 3.25 3.17

McGrath and Hooton [107] calculated the effective diffusion coefficients in

concrete specimens using (i) Eq. 5.7 and the results of steady-state migration ex-

periments, and (ii) Eq. 5.20 and the results of non-steady-state migration exper-

iments. The concrete specimens had a w/c ratio of 0.49, and they were stored

under water for a year. The downstream and upstream reservoirs were filled

with a solution of 0.3 M NaOH and a solution of 0.5 M NaCl + 0.3 M NaOH,

respectively. The calculated coefficients are plotted against nominal voltage in

Figure A.8.
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Figure A.8: Deff in Concrete Specimens by McGrath and Hooton [107]
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Figure A.9: Deff in Concrete Specimens by Truc et al. [175]
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Truc et al. [175] calculated the effective diffusion coefficients in concrete spec-

imens using Eq. 5.7 and the results of steady-state migration experiments, and

compared the results obtained by using the chloride concentration changes in

the downstream and upstream reservoirs. Two types of cement and two w/c ra-

tios were studied. The specimens were vacuum-saturated with a basic alkaline

solution of NaOH + KOH. They were cured under water for 14 days. The reser-

voirs were filled with a solution of 0.025 M NaOH + 0.083 M KOH. A solution

of 0.564 M NaCl was added in the upstream reservoir. A voltage of 12 V was

applied. The resulting coefficients are plotted in Figure A.9.

Table A.10: Mix Proportions of Specimens of Zhang and Gjørv [200]

Mix w/c
Cement Water Aggregate (kg/m3) Wat.-Red.

(kg/m3) (kg/m3) 0-8 mm 8-11 mm 8-16 mm (kg/m3)

A 0.4 397 159 1047 418 418 8.1

B 0.5 380 190 1000 408 408 2.6

C 0.6 326 195 1002 423 423 -
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Figure A.10: Deff in Concrete Specimens by Zhang and Gjørv [200]
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Zhang and Gjørv [200] calculated the effective diffusion coefficients in con-

crete specimens using Eq. 5.11 and the results of steady-state migration experi-

ments. The experimental setup was the same as that used in the ASTM C 1202

test [1]. The specimens were cured in water at room temperature for at least

3 months. Mix proportions are shown in Table A.10. A potential difference of

12 V was used. The resulting coefficients are plotted against chloride source

concentration in Figure A.10.

Table A.11: D for w/c = 0.4 Mortar by Halamickova et al. [82]

Sand Volume (%) Degree of Hydration (%) Average D (10−6 mm2/s)

0 54-55 1.69

0 59-60 1.09

35 65-70 0.74

45 50-57 2.33

45 65-67 1.62

55 55-61 2.80

55 66-72 0.82

Halamickova et al. [82] calculated the effective diffusion coefficients in mor-

tar specimens using Eq. 5.20 and the results of non-steady-state migration ex-

periments. Two w/c ratios, 0.4 and 0.5, and four aggregate volume fractions,

0%, 35%, 45% and 55%, were studied. The specimens were stored in a satu-

rated Ca(OH)2 solution, and vacuum-saturated before testing. The experimen-

tal setup was based on the ASTM C 1202 test [1]. A potential difference of 12

V was used. The downstream and upstream reservoirs were filled with 0.3 M

KOH and 3% KCl solutions, respectively. The calculated diffusion coefficients

are shown in Tables A.11 and A.12.
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Table A.12: D for w/c = 0.5 Mortar by Halamickova et al. [82]

Sand Volume (%) Degree of Hydration (%) Average D (10−6 mm2/s)

0 46-48 7.54

0 55-56 2.96

35 70-73 0.96

45 53-55 5.66

45 70-72 1.79

55 55-57 5.30

55 70-73 0.84

Table A.13: Mix Proportions Used by Samson and Marchand [141]

Material
Mix Proportions (kg/m3)

w/c = 0.45 w/c = 0.65 w/c = 0.75

Cement (T10 and T50) 380 280 260

Water 171 182 195

Sand 719 833 915

Coarse Aggregate 1127 1065 956

Samson and Marchand [141] studied the effect of temperature on the chlo-

ride diffusivity in concrete by conducting non-steady-state migration experi-

ments and solving the coupled extended Nernst-Planck/Poisson set of equa-

tions (Eqs. 5.15 and 5.16). The specimens were cured in a fog chamber (100%

relative humidity and 25◦C) until the specified age (Table A.14). Test setup was

a modified version of ASTM C 1202 test [1]. The downstream and upstream

reservoirs were filled with a 0.3 M NaOH solution and a a 0.3 M NaOH + 0.5

M NaCl solution, respectively. An external 20 V potential was applied. The
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mix proportions and the calculated chloride diffusion coefficients are shown in

Table A.13 and A.14, respectively.

Table A.14: Diffusion Coefficients by Samson and Marchand [141]

w/c
Age

Chloride Diffusion Coefficient (10−6 mm2/s)

(days) 4◦C 23◦C 40◦C

Type 10 Type 50 Type 10 Type 50 Type 10 Type 50

0.45

28 32 71 56 110 80 137

91 30 45 52 75 67 113

365 26 45 44 75 71 135

0.65

28 53 77 83 130 129 197

91 53 73 80 114 145 197

365 62 66 91 128 157 253

0.75

28 61 107 105 157 161 254

91 67 94 115 150 188 231

365 74 103 119 167 194 270
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