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Restaurant Management

One of the many front-of-house tasks that are critical to a 
restaurant’s success is assigning walk-in customers to a 
table. While a variety of researchers has shown that wait 
times affect satisfaction in restaurants (Butcher and Kayani 
2008; Davis and Vollmann 1990; Gupta, McLaughlin, and 
Gomez 2007; Hwang and Lambert 2006, 2009), I have 
found no studies that expressly compare the various 
approaches to seating guests, either in terms of revenue or 
customer satisfaction. Despite this research gap, I am con-
vinced that an effective table-assignment rule will enhance 
a restaurant’s revenue and customer satisfaction. Because 
tables vary in capacity and customers vary in a number of 
ways, this matter would fall into the category of a flexible 
queuing system, which can be complex to analyze 
(Gurumurthi and Benjaafar 2004).

Bearing in mind both customer satisfaction and restau-
rant revenue, this paper assesses three types of party-to-
table-assignment rules, individually and in combination, 
from the perspective of managing customer flow and resul-
tant revenue. Based on a survey I conducted (described 
below), restaurants use three general table-assignment poli-
cies: seating the party that has waited longest, seating the 
largest party, and allowing the customers to seat themselves. 
From these three policies, I developed nine seating rules, 
which I evaluate using a large simulation-based experi-
ment. Generally speaking, the simulation finds that the 
rule most commonly used in practice—give the table to the 

longest waiting party—outperforms the second most com-
monly used simple rule—give the table to the largest wait-
ing party. However, both of those simple rules are 
outperformed by a hybrid rule based on both waiting time 
and party size. Indeed, hybrid rules based on party size and 
waiting were used by about one-quarter of my survey 
respondents, as I explain in a moment. First, however, I 
review relevant literature and then I will describe my res-
taurant survey. From this, I define the nine table-assignment 
rules, describe and present the results of my simulation-
based study, and offer suggestions based on those findings.

Literature Review

This paper extends the lengthy thread of studies addressing 
restaurant revenue management (RRM), a term coined by 
Kimes et al. (1998), which focuses on applying revenue 
management concepts to restaurants. Many of these studies 
examine the relationship of restaurant revenue to table man-
agement, including table mix and location. Robson and 
Kimes (2009) found, for instance, that having empty seats 
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at a table did not affect guests’ spending or satisfaction but 
having closely spaced tables reduced both spending per 
minute and satisfaction. One queuing analysis study that I 
conducted (Thompson 2011a) found that the conditions 
favoring “cherry-picking” of smaller parties were more 
viable in restaurants when customers had a lower tolerance 
for waiting, when the peak demand time windows were lon-
ger, and when table sizes were proportional to the number 
of seats.

In addition to identifying the optimal table mix for restau-
rants (Kimes and Thompson 2004, 2005; Thompson 2002), 
a major avenue of capacity-oriented research has addressed 
reservations policies (Alexandrov and Lariviere 2012; 
Bertsimas and Shioda 2003; Thompson and Kwortnik 2008). 
These studies have so far primarily applied a table-assign-
ment rule of seating the largest waiting party that fits the 
table, with ties broken by longest waits (Kimes and 
Thompson 2005; Thompson 2002, 2003, 2009, 2011a). I am 
aware of just two studies that used the longest wait policy—
Field, McKnew, and Kiessler (1997) and Hwang (2008).

The table-mix and reservation studies are related to 
right-sizing, a term coined by Kimes (2004) that refers to 
matching parties to tables to avoid empty seats. For exam-
ple, if tables with even numbers of seats are used, tight 
right-sizing would allow no more than one empty seat per 
table, while a looser application of right-sizing might allow 
no more than three empty seats. Field, McKnew, and 
Kiessler (1997), for instance, used a hybrid of a tight right-
sizing approach with just two table sizes. Parties of four or 
fewer were seated in four-tops, while parties of five and six 
were seated in six-tops.

My recent study that examined the accuracy of simple 
calculations designed to identify top-performing table 
mixes (Thompson 2011b) used the longest waiting and 
largest party rules, combined with the tight right-sizing and 
loose right-sizing policies that I just mentioned. That study 

found that the largest party rule yielded revenue improve-
ment of a little over 1 percent compared with the longest 
waiting rule, while the looser right-sizing approach yielded 
about a 1.5-percent revenue bump over the tighter 
right-sizing.

In this article, I address questions that I left unanswered 
in that 2011 study. First, I would like to determine whether 
loose right-sizing is better than no right-sizing at all since I 
did not address that issue earlier. Second, no one has yet 
examined the effect of combination rules, which attempt to 
blend party size and wait duration. Third, given the many 
restaurants that allow customers to seat themselves, the per-
formance of that unmanaged approach needs to be exam-
ined. Fourth, the effect of the different table-assignment 
policies on the level of service delivered (in terms of length 
of wait) has yet to be considered. Fifth, the performance of 
the assignment rules with respect to the restaurant size and 
table configuration has yet to be examined. Sixth, and most 
fundamentally, no one has surveyed restaurant managers to 
identify the industry’s assignment policies. This paper 
addresses all these issues.

Restaurant Survey

Starting with the basic question of what table-assignment 
policies are generally in use, I surveyed 276 restaurant man-
agers, drawn from a survey frame of 2,100 people who had 
downloaded one or more of the restaurant-related studies I 
produced and posted on the Cornell Center for Hospitality 
Research site (many of which are cited in this article). After 
one reminder e-mail, 492 people responded to the online 
survey but only 276 were employed in a restaurant or food 
and beverage operation. Thus, the effective response rate 
was 13.1 percent. The survey respondents covered a wide 
geographical mix, as reported in Exhibit 1.

Stand-alone restaurants represented 16.4 percent of the 
qualifying respondents, while the preponderance (72.5%) 
were located in a lodging property and the remainder 
(11.1%) were in other locations such as strip malls. The res-
taurants ranged in size from 26 to 2,000 seats, with a mean 
of 211 seats and a median of 150 seats (see Exhibit 2). 
Independent operators predominated in the sample, as just 
37.6 percent represented chain restaurants. Walk-ins are 
important to most of these businesses, as 81.1 percent of the 
respondents accept walk-in customers, and about one-
fourth of those (18.4% of the full sample) dealt only with 
walk-in customers. On average, walk-in customers repre-
sented 49.9 percent of these operations’ business volume.

To identify these restaurants’ seating policies, the survey 
asked the following question: “If you have a wait list for 
tables, which best describes which party is given a newly 
available table?” The “longest wait rule” was most com-
mon, as shown in the following responses:

Exhibit 1:
Geographical Distribution of Survey Respondents.

Country/Region Percentage of Respondents

Asia 24.4
United States 22.0
Europe 21.5
Canada 6.8
Australia and Pacific Islands 5.9
South America 5.9
Middle East 5.4
Caribbean Islands 2.9
Mexico 2.9
Africa 2.0
Central America 0.5
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•• The longest waiting party that will fit in the table:
53.9 percent;

•• The largest waiting party that will fit in the table, with
ties broken by the longest wait: 20.6 percent; and

•• Parties are selected based on a combination of size
and wait: 25.5 percent.

These respondents were asked to describe the actual rule 
being used, but there were no dominant approaches in the 
responses.

Table-Assignment Rules

Given the results of the survey, I evaluated nine approaches 
to table assignments: three variants of the longest wait rule, 
three variants of the largest party rule, and two blended 
rules, as well as allowing customers to seat themselves. The 
rules I evaluated are as follows:

•• Longest-pure. This rule assigns a newly available
table to the longest waiting party, without consider-
ation of matching party and table size. Thus, there is
no limit on the number of empty seats that a table
might have.

•• Longest–loose right-sizing. This rule also assigns a
newly available table to the longest waiting party but
includes a limit of three empty seats per table.

•• Longest–tight right-sizing. Once again the longest
waiting party is seated, but this time, the limit is one
empty seat per table.

•• Largest-pure. This rule assigns a newly available
table to the largest waiting party that fits in the table,
with ties broken by longest waits. As with longest-
pure, there is no limit on the number of empty seats
that a table might have.

•• Largest–loose right-sizing. This rule also assigns a
newly available table to the largest waiting party that
fits in the table, with ties again broken by longest
waits. By applying loose right-sizing, however, this
policy ensures that a table has no more than three
empty seats.

•• Largest–tight right-sizing. As above, the largest wait-
ing party that fits the table is seated, ties are broken
by longest waits, and no table will have more than
one empty seat.

•• Blended-SzWt. This blended rule assigns a newly
available table to the party that can fit in the table and
that has the highest size–wait score, calculated by

Exhibit 2:
A Relative Frequency Histogram of the Number of Restaurant Seats.
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multiplying the proportion of seats that would be 
occupied if the party is assigned to the table by the 
party’s current wait time. This policy puts no limit on 
the number of empty seats that a table might have.

•• Blended-ExpLs. To account for the possibility that
guests will renege from the queue and walk out, this 
blended rule takes guests’ tolerance for waiting into 
account by assigning a newly available table to the 
party that can fit in the table and that has the highest 
expected loss score, which is calculated as follows:

ExpLs  CurrentWait AvgWaitTol AvgPartyRev= ( )×/ ,

where
CurrentWait = amount of time the party has been 

waiting for a table;
AvgWaitTol = average waiting time tolerance for 

parties of the specified size;
AvgPartyRev = average revenue for parties of the 

specified size.
This rule also does not limit the number of empty 

seats per table.

•• Self-Managed. This rule is designed to mimic restau-
rants where customers can seat themselves in order
of their arrival (first-in-first-out [FIFO]). This
approach works only when there is no queue since
this operates like the “longest-pure” approach when
guests are waiting. When guests seat themselves, I
assume that some parties prefer to sit in a larger-
than-necessary table, with the probabilities given in
Exhibit 3. If no queue exists, and if a choice of tables
exists, the simulation picks a table randomly, consis-
tent with the probabilities given in Exhibit 3. If a
queue exists and a table becomes available, then the
table is taken by the party closest to the front of the
queue that will fit in the table, consistent with the
longest-pure rule.

Simulation Study and Hypotheses

To test the nine rules, I conducted the simulation-based 
experiment described here, using the assumptions given 
below. I have three hypotheses, which originate from the 
survey of restaurateurs. First, based on the prevalence of 
restaurateurs’ usage of the simple rules, where the longest 
wait rule was used more than twice as frequently as the larg-
est party rule, I propose the following hypotheses.

Hypothesis 1: The longest-based rules will perform bet-
ter than the largest-based rules.

Next, I expect that any managed rule should perform bet-
ter than the customer-managed approach, given its potential 
inefficiencies. Thus,

Hypothesis 2: The longest-based rules and the largest-
based rules will perform better than the customer- 
managed rule.

Finally, given that the rationale for choosing a blended 
rule is that one wants to fill tables without losing customers, 
noting that the blended rules offer a means of considering 
both size and waiting time:

Hypothesis 3: The blended rules will perform better 
than the other rules.

Design of the Simulation Experiment

The simulation experiment used a full-factorial design, with 
nine factors each having two or three levels, as described 
next and reported in Exhibit 4. The levels of the factors 
resulted in a total of 2,592 restaurant contexts in which to 
compare the seating rules. I selected the specific factors and 
their levels because I believed that the rules might perform 
differently under various assumptions.

Restaurant size had three levels: average seating capaci-
ties for approximately ten, thirty, and one hundred parties. I 
set capacities based on party size, rather than seats, because 

Exhibit 3:
Assumed Preference Weights for Table Sizes, by Party 
Size.

Table Size (Seats)

Party Size (People) 2 4 6 8 10

1, 2 .5161 .2581 .1290 .0645 .0323
3, 4 n.a. .5333 .2667 .1333 .0667
5, 6 n.a. n.a. .5714 .2857 .1429
7, 8 n.a. n.a. n.a. .6667 .3333
9, 10 n.a. n.a. n.a. n.a. 1.0000

Exhibit 4:
Factors in the Simulation Experiment.

Experimental Factor Number of Levels: Levels

Restaurant size 3: 10, 30, and 100 parties
Table space proportions 2: proportional and non-

proportional
Peak demand length 3: 2, 3.5, and 5 h
Ramp-up duration 2: 1 and 2 h
Demand intensity 3: 100%, 115%, and 130% of 

restaurant capacity
Mean party size 2: 2.5 and 3.0 people
Average check variation across 

party sizes
2: linear and non-linear decay

Duration variation across party 
sizes

2: low and high

Propensity to wait 3: long, medium, and short
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of factors that affect the space requirements per seat and the 
number of customers per party. These three restaurant sizes 
range from quite small to larger than both the mean and 
median number of seats for the restaurants in my survey. 
While simulating even larger restaurants would be ideal, the 
computational effort in doing so is impractical. I included 
the restaurant size factor in part because I anticipated that 
the reduced seating flexibility in smaller restaurants could 
lead to differences in the seating rules’ relative performance 
(which did occur, as described below).

Table space proportions represent the space require-
ments, per seat, of different size tables. I used two levels of 
this factor, representing proportional and non-proportional 
space requirements. Exhibit 5, which reports the actual 
space requirements for the different levels, shows that with 
the non-proportional level, the space per seat declines as the 
table size increases. To my knowledge, with two exceptions 
(Thompson 2011a, 2011b), all of the published RRM-
related research examining capacity issues has assumed 
proportional space requirements (Kimes and Thompson 
2004, 2005; Thompson 2002, 2003; Thompson and Sohn 
2009). Nonetheless, I include the non-proportional level 
because it is consistent with space requirements with rect-
angular tables that have a fixed space required per person, 
plus a fixed space requirement along a side of the table for 
access. The non-proportional space requirements in 
Exhibit 5, for example, are given by 6.25 ft.2 per person 
plus 20 ft.2 Another consideration with declining space 
requirements per seat for larger tables is that replacing a 
large table with smaller tables results in a loss of seating 
capacity, which could lead to differences in the relative per-
formance of the assignment rules.

Peak demand length is the length of time during which 
the customer arrival rate is at its highest level. I applied 
three levels of peak duration, 2, 3.5, and 5 hr, to represent 
a broad range of restaurant environments. Longer peak 

periods mean the restaurant is stressed (at capacity) for a 
longer time, and this may cause variations in the rules’ 
relative performance.

Ramp-up duration refers to the length of the time from 
when the restaurant opens for a meal period until the cus-
tomer arrival rate reaches its peak intensity. I used periods 
of 1 and 2 hr for this factor, and I further assume that the 
customer arrival rate increases linearly over the ramp-up 
period. I believe that a rapid ramp-up might provoke greater 
relative differences in the performance of the seating rules 
than with a longer, more gradual ramp-up.

Demand intensity represents the level of peak customer 
demand, measured relative to the demand level that would 
result in the restaurant operating just at its full capacity. 
This factor had three levels, corresponding to 100 percent, 
115 percent, and 130 percent of full capacity. These factor 
levels correspond to what occurs during rush times in popu-
lar restaurants. My colleagues and I have applied a wide 
variety of demand intensity percentages in RRM-related 
restaurant simulations, ranging from a low of 95 percent of 
capacity (Thompson 2003; Thompson and Sohn 2009) to a 
high of 300 percent of capacity (Thompson 2011a), with 
others falling within this range (Thompson 2002, 100%; 
Kimes and Thompson 2005, 100%; Thompson and Sohn 
2009, 105%; Kimes and Thompson 2005, 120%; Thompson 
2011b, 130%). I expect to see bigger differences in the rela-
tive performance of the table-assignment approaches under 
higher demand intensity because of the inherent challenge 
of seating more customers.

Mean party size is the average number of customers per 
party. I used two levels of this factor, corresponding to 2.5 
and 3.0 people. Kimes and Robson (2004) found an average 
party size of 2.6, and my earlier study (Thompson 2011a) 
reported 2.55 people per party. Another study in which I 
participated (Thompson and Sohn 2009) indicated that the 
mean party size in the restaurant being studied was 

Exhibit 5:
Parameter Levels for Probabilities of Party Sizes and Table Space Requirements.

Table Space Requirements (sq. ft.)
Party Size Probabilities, by Mean 

Party Size

Party Size or Table Seats Proportional Non-proportional 2.5 People 3.0 People

  1 .31 .25
  2 30 45 .42 .29
  3 .10 .17
  4 60 70 .05 .12
  5 .03 .05
  6 90 95 .02 .03
  7 .02 .025
  8 120 120 .02 .025
  9 .02 .025
10 180 145 .01 .015
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approximately three people. My factor levels, then, bracket 
the reported values, with the probabilities reported in 
Exhibit 5 for the two levels of this factor. I included this 
factor to see whether the various seating policies performed 
differently across party sizes.

The factor representing the variation across party sizes in 
per-person average check had two levels: linear and non-
linear decay. Anecdotal evidence suggests that larger par-
ties spend less per person than do smaller studies. I note, 
however, that there was minimal, if any, decay in the lunch 
period for the restaurant that I examined with Heeju Sohn 
(Thompson and Sohn 2009). In many studies, we assumed 
a linear decline in per-person average check (Kimes and 
Thompson 2005; Thompson 2002, 2003, 2011a, 2011b; 
Thompson and Sohn 2009). However, the data reported by 
Kimes and Robson (2004) and Kimes and Thompson (2004) 
show a non-linear relationship. Fitting a curve to the data 
reported in those studies yields the function:

Per person spend 6 2841 15 7965− = +p p$ . $ . / , 	 (1)

where p = party size.
Equation (1), which I used for the non-linear level, gives 

an average per-person check of $22.08 for parties of one 
person, falling to $7.86 for parties of ten people (see 
Exhibit 6). For the linear level, I simply assumed a linear 
decline in per-person spending across the party sizes.  

I included this factor to see whether seating rules interacted 
with party value relationships.

Several authors have observed that dining duration 
increases with party size (Bell and Pliner 2003; Kimes and 
Robson 2004; Kimes and Thompson 2004). As a conse-
quence, I applied two levels of this factor to express the 
ratio of the dining time for parties of ten to the dining time 
for parties of one: 1.5:1 and 2.0:1. These ratios are within 
the range observed in the literature—a low of 1.14 (Kimes 
and Thompson 2004) to a high of 3.18 (Bell and Pliner 
2003). In both factor levels, I assumed that mean dining 
duration increased linearly with party size. Since the table-
assignment policies deal with customers’ wait times, 
rather than their dining duration, I do not expect to see 
much difference in the relative performance of the rules 
across the two factor levels, but I included this factor to be 
thorough.

Finally, I modeled customers’ willingness to wait for a 
table. Though I am not aware of published research on the 
topic, anecdotal evidence suggests that willingness to wait 
increases with party size. I selected three factor levels that I 
believed would represent a broad coverage of restaurant 
environments: willingness to wait of 105 to 120 min, 45 to 
60 min, or 15 to 30 min for parties of 1 to 10, with differ-
ences in each range linear with party size. My thinking is 
that restaurants have less flexibility to pursue various seat-
ing policies when guests’ waiting tolerance is low.

Exhibit 6:
Relationship between Per-person Spend and Party Size.
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Simulation Assumptions

The simulation was governed by the following thirteen 
assumptions:

•• Parties would be seated at a single table, not split
across two or more tables, in keeping with common
restaurant practice.

•• Tables would not be combined. When I compared
the effects of combining tables as against maintain-
ing an appropriate mix of table sizes (Thompson
2002), I found that most restaurants are better served
with a mix of table sizes.

•• Tables only had an even number of seats. This is
consistent with the use of square or rectangular
tables.

•• All demand was from walk-in parties, since my focus 
is on rules for selecting customers from the wait list.
Restaurants that accept reservations would have set
aside the necessary tables for those customers, leav-
ing the remainder for walk-ins.

•• Parties ranged from one to ten people. Ten is already
large for a walk-in party. Restaurants that take large
parties generally encourage them to make reserva-
tions (26% of the respondents to my survey reported
that their restaurants take reservations only for large
parties).

•• Poisson arrival process. Typical of service settings,
specific arrival times are essentially random, but the
overall arrival pattern for a shift can be modeled
mathematically based on the mean of arrivals.

•• Log-normal distribution of dining times. The log-
normal distribution, with a longer right tail, tends to
better fit the dining duration data. This skewed distri-
bution reflects the fact that some parties like to linger
over their meal.

•• Following the peak demand period, demand had a
ramp-down period of an hour, during which the party
arrival rate decreased linearly.

•• No limit on the number of parties that could be wait-
ing. Under this assumption, any lost business would
result from customers’ waits exceeding their
tolerance.

•• Parties would wait up to their individually specified
tolerance and then depart if they had not been seated.
In other words, the simulation does not allow cus-
tomers to depart immediately if quoted a wait time
that exceeded their tolerance.

•• Random variation in each party’s willingness to wait
for a table, with a mean determined by the party’s
size (as described earlier) and a coefficient of varia-
tion of 0.20.

•• Random variation in the spending for individual
parties, with a mean given by the party’s size (as

described earlier) and a coefficient of variation of 
0.25. While I am unaware of any studies that report 
this metric, the value I use falls within the range of 
coefficients of variation in spending of 0.15 and 
0.30 used in one of my earlier studies (Thompson 
and Sohn 2009).

•• Random variation in the dining duration for individ-
ual parties, with a mean determined by the party’s
size (as described earlier) and a coefficient of varia-
tion of 0.30. This coefficient of variation falls within
the range of 0.16 to 0.50 reported in the literature
(Bell and Pliner 2003; Kimes and Robson 2004).

Simulation Process

The process I followed in conducting the simulation experi-
ment was as follows. For each of the 2,592 combinations of 
factor levels, I generated and stored simulated customer 
characteristic information for one hundred days of opera-
tion, which is equivalent to a year’s worth of demand data 
where there are two peak meal periods per week (such as 
Friday and Saturday evenings). In each scenario, I used the 
stored data to search for the best table mix for each of the 
nine seating rules using a heuristic and recorded perfor-
mance metrics for the best table mix I found. I used a search 
heuristic because the number of table-mix combinations 
made it impractical to find the optimal table mixes. In a 
study with Sheryl Kimes, I found that a properly created 
heuristic was nearly optimal, that is, attaining revenue 
within 0.2 percent of the optimal table mix (Kimes and 
Thompson 2005). Since this simulation uses a similar heu-
ristic, I am confident that the differences I observe in per-
formance are a result of the effectiveness of the a particular 
seating rule, rather than the search procedure itself.

For each of the nine assignment rules, I recorded the fol-
lowing metrics: average daily revenue, average daily lost 
revenue (from customers who depart before being served), 
the best mix of tables, and average wait times by party size. 
While one could focus on minimizing the amount of busi-
ness lost, the search heuristic attempts to maximize the rev-
enue achieved (though either approach should, in fact, yield 
similar results).

Results

The blended rules worked best, as shown in Exhibit 7, 
which presents the average daily revenue results measured 
relative to the top-performing table-assignment rule, 
Blended-SzWt. Following the blended rules, those relating 
to longest wait were next in revenue and then those seating 
the largest waiting party. Letting customers choose their 
own table (self-managed) was least effective and was easily 
trumped by the best rule (Blended-SzWt), which yielded 
more than a 1-percent revenue increase compared with a 
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self-managed wait list. However, restaurant size has a great 
influence here, as I discuss next. Loose right-sizing was bet-
ter than no right-sizing (pure rules), which, in turn, was bet-
ter than tight right-sizing.

Restaurant size affected the revenue outcome for many 
of the seating rules, as shown in Exhibit 8. Exhibits 8 
through 12 illustrate the revenue performance of the nine 
table-assignment rules at the various factor levels. In all of 
these figures, the vertical axis is measured relative to the 
average daily revenue generated by the best-performing 
rule (Blended-SzWt). There are eight key results illustrated 
in Exhibit 8. First, most of the rules perform better with 
larger restaurants. Second, tight right-sizing is affected by 
restaurant size and performed poorly in small restaurants. 
Third, the Blended-ExpLs rule was little affected by restau-
rant size, performing closely to Blended-SzWt in all restau-
rant sizes. Fourth, of all the rules, longest-loose and 
longest-tight came closest to matching the performance of 
Blended-SzWt but only in the large restaurants. Fifth, the 
self-managed rule performed within 1 percent of the best 
rule in the largest size restaurant. Sixth, most of the rules 
performed more poorly with non-proportional table sizes 
than they did with proportional table sizes and (seventh) 
that included tight right-sizing but not (eighth) the Blended-
ExpLs, which was little affected by non-proportionality of 
tables.

The results with respect to peak dining length and to 
demand intensity are mixed, as illustrated in Exhibit 9. 
Some rules performed relatively better with shorter peaks, 
others with longer peaks, while the Blended-ExpLs was 
robust for all three levels of peak demand. Other than 
longest-tight, all the rules performed better with lower 
demand intensity than with higher demand intensity. The 
performance discrepancies across the levels of demand 
intensity were particularly pronounced for largest-pure, and 
again for self-managed.

The results for the rules by mean party size and by varia-
tion in the average check across party size also were mixed 

(as shown in Exhibit 10). Large-tight, large-loose, and lon-
gest-tight all performed relatively better with the larger 
mean party size. In contrast, self-managed, longest-pure, 
longest-loose, and Blended-ExpLs performed relatively 
better with the smaller mean party size. The largest-pure 
and Blended-SzWt rules had the most consistent perfor-
mance for the two party sizes. All three rules based on seat-
ing the largest party performed better when the average 
check declined linearly as party size grew; all other rules 
performed better with a non-linear decline in average check. 
The smallest discrepancies in performance were for the 
longest-tight and Blended-SzWt assignment rules.

Exhibit 11 illustrates rule performance by dining dura-
tion variation across party sizes and by customers’ willing-
ness to wait. While the three largest-based rules did better 
with smaller duration variation, all the others did better with 
the larger duration variation. The largest-tight and Blended-
SzWt approaches performed the most consistently on both 
levels of duration variation. Willingness to wait shows the 
most dramatic performance differences for the rules across 
various levels of any of the experimental factors. The larg-
est-based rules all did much better with short wait tolerance 
than at the medium or high wait tolerances. Longest-tight 
was also best under the low wait tolerance, while longest-
pure, longest-loose, Blended-ExpLs, and self-managed all 
did best under the longest wait tolerance. I particularly 
wanted to note the performance of the self-managed 
approach, which performed progressively better as wait tol-
erance increased. As with other experimental factors, 
Blended-SzWt had robust and consistent performance 
across the range of wait tolerances.

Average waits by party size for the nine seating policies 
are illustrated in Exhibit 12. Since some cherry-picking 
occurs at higher customer intensities (Thompson 2011a), 
whereby the restaurant turns away the parties of nine and 
ten, the results in Exhibit 12 reflect only the instances where 
the parties are being served. Several observations can be 
made from Exhibit 12. First, average waits increase as party 
sizes increase. That should not be unexpected, given that the 
experimental conditions are such that larger parties are will-
ing to wait longer for tables. Second, several of the seating 
policies provide better service (shorter waits) to even-sized 
parties than to odd-sized parties—the three largest-based 
rules are notable in that regard. Third, the longest-tight rule 
would probably be considered the fairest rule in that the wait 
increases little as party size increases, and it is little affected 
by whether the party is even- or odd-sized. Fourth, the self-
managed rule shows the greatest increase in waiting time as 
party size increases. Fifth, the top-performing seating rule 
from an economic perspective—Blended-SzWt—shows 
notably increased wait time across party sizes but provides 
better service to parties of two (rather than one) and four 
people (rather than three). This is the result of the way this 
rule calculates the priority of parties.

Exhibit 7:
Overall Performance, by Table-Assignment Rule.

Table-Assignment Rule Relative Average Daily Revenuea (%)

Blended-SzWt 100.00
Blended-ExpLs 99.94
Longest-loose 99.75
Longest-pure 99.51
Longest-tight 99.13
Largest-pure 99.05
Largest-loose 99.05
Self-managed 98.95
Largest-tight 98.00

Note. SzWt = size–wait; ExpLs = expected loss.
a. Relative to the average daily revenue of Blended-SzWt.
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Exhibit 9:
Performance of the Table-Assignment Rules, by Peak Demand Length and Demand Intensity.

Note. SzWt = size–wait; ExpLs = expected loss.

Exhibit 8:
Performance of the Table-Assignment Rules, by Restaurant Size and Table Space Proportions.

Note. SzWt = size–wait; ExpLs = expected loss.

http://cqx.sagepub.com/


100	 Cornell Hospitality Quarterly 56(1)

The results reinforce the approach of the majority of sur-
veyed F&B managers who use a “longest” rule, since lon-
gest-loose yielded the highest revenue in 73.2 percent of 
scenarios, as compared with largest-loose, which was 
reported by about one-fifth of responding restaurateurs. 
Exhibit 13 provides details by level of the experimental fac-
tors. Longest-loose more frequently generated higher reve-
nue than largest-loose, across all levels of all factors except 
for the shortest propensity to wait. Longest-loose’s advan-
tage was higher with the following factor levels: larger res-
taurants, proportional space requirements for tables, shorter 
peak demand periods, shorter ramp-up durations, lower 
demand intensity, smaller mean party size, the non-linear 
decrease in average per-person checks across party sizes, 
greater variation in dining durations across party sizes, and 
longer propensities to wait. However, the opposite condi-
tions returned a different result, as the largest-loose policy 
yielded higher revenue than the longest-loose rule in 140 of 
the 144 scenarios with the smallest size restaurant, as well 
as lower variation in dining durations across party sizes, 
and lowest propensity to wait.

To test my hypotheses, I ran a regression model, with a 
dependent variable of the revenue yielded by each table-
assignment rule measured relative to the revenue of the self-
managed rule. The results of this regression, which had an 
adjusted R2 of .499, are presented in Exhibit 14. Hypothesis 

1—that longest would be better than largest—was generally 
supported, with longest-loose and longest-pure both per-
forming better than either largest-pure or largest-loose, and 
with longest-tight performing better than largest-tight. 
Hypothesis 2—that largest and longest would be better than 
self-managed—was also generally supported, with the 
exception of longest-tight and largest-tight, which both per-
formed more poorly than self-managed. Finally, Hypothesis 
3—that the blended rules would be best overall—was 
supported.

Discussion

My finding that tight right-sizing was not as effective as 
loose right-sizing confirms my results in an earlier study 
(Thompson 2011b). Apparently, a requirement of no more 
than one empty seat per table is just too restrictive, given 
the variation in customer demand. This explanation is con-
sistent with the steep decline in performance of the tight 
right-sizing seating rules as restaurant size shrinks (see 
Exhibit 8). My earlier study (Thompson 2011b) did not 
examine pure right-sizing, as I have done here, and I think 
these findings are of merit. These results showed that loose 
right-sizing was as good as pure right-sizing for a largest 
party rule and better than pure right-sizing in a longest wait 
approach. My explanation is that while some flexibility is 

Exhibit 10:
Performance of the Table-Assignment Rules, by Mean Party Size and Average Check Variation across Party Sizes.

Note. SzWt = size–wait; ExpLs = expected loss.
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Exhibit 11:
Performance of the Table-Assignment Rules, by Duration Variation across Party Sizes and Propensity to Wait.

Note. SzWt = size–wait; ExpLs = expected loss.

Exhibit 12:
Average Wait Times, by Party Size, for the Table-Assignment Rules.
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Exhibit 14:
Regression Results for Revenue Measured Relative to the Revenue of Self-Managed.

Experimental Factor Regression Coefficient

Intercept 1.00996***
Restaurant size (measured as the number of parties that could be seated simultaneously; i.e., 10, 30, and 100) 3.74E-05***
Table space proportions (proportional = 0; non-proportional = 1) −0.003355***
Peak demand length (in hours; i.e., 2, 3.5, and 5) 8.34E-12
Ramp-up duration (in hours; i.e., 1 and 2) 4.17E-12
Demand intensity (measured as proportion of restaurant capacity; i.e., 1.00, 1.15, and 1.30) 0.017072***
Mean party size (in people; i.e., 2.5 and 3.0) 0.000829*
Average check variation across party sizes (linear = 0; non-linear = 1) −0.002341***
Duration variation across party sizes (measured as the ratio of duration for a party of ten compared with the 

duration for a party of one; i.e., 1.5 and 2.0)
−0.012265***

Propensity to wait (in minutes, for parties of one; i.e., 105, 45, and 15) −0.000169***
Blended-SzWt 0.013602***
Blended-ExpLs 0.012683***
Longest-loose 0.008146***
Longest-pure 0.006791***
Largest-pure 0.006125***
Largest-loose 0.003087***
Longest-tight −0.011235***
Largest-tight −0.02056***

Note. SzWt = size–wait; ExpLs = expected loss.
*p < .05. ***p < .001.

Exhibit 13:
Number of Scenarios Where Longest-Loose Performed Better than Largest-Loose, by Level of the Experimental 
Factors.

Experimental Factor Level Number of Instances

Restaurant size 10 parties 478 (55.3%)
30 parties 645 (74.7%)
100 parties 776 (89.8%)

Table space proportions Proportional 978 (75.5%)
Non-proportional 921 (71.1%)

Peak demand length 2 hr 669 (77.4%)
3.5 hr 629 (72.8%)
5 hr 601 (69.6%)

Ramp-up duration 1 hr 954 (73.6%)
2 hr 945 (72.9%)

Demand intensity 100% 683 (79.1%)
115% 621 (71.9%)
130% 595 (68.9%)

Mean party size 2.5 people 977 (75.4%)
3.0 people 922 (71.1%)

Average check variation across party sizes Linear decrease 869 (67.1%)
Nonlinear decrease 1,030 (79.5%)

Duration variation across party sizes 10:1 dining durations = 1.5 826 (63.7%)
10: 1 dining durations = 2.0 1,073 (82.8%)

Propensity to wait Long 856 (99.1%)
Medium 739 (85.5%)
Short 304 (35.2%)
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good (i.e., loose right-sizing is better than tight right-siz-
ing), too much flexibility can be counterproductive in that it 
allows parties to be seated at tables with too many empty 
seats.

As I outlined above, the approach of blending party size 
and wait time (Blended-SzWt) performed the best through-
out the simulation, yielding higher revenue than the other 
eight rules under every level of every experimental factor. 
This supports the approach reported by more than one-quar-
ter of my survey respondents. Comparing the two simple 
rules used most commonly in the industry, that is, longest 
wait and largest party, seating the longest waiting party 
proved better close to 75 percent of the time. As I noted, 
however, there are conditions under which it is better to 
assign parties by size (particularly when customers have a 
low propensity to wait), which may well explain the use of 
that rule in practice.

There are interesting implications for allowing custom-
ers to seat themselves. Across all wait tolerances, there was 
about a 1-percent revenue bump from using Blended-SzWt 
over self-managed approaches. Using some simple assump-
tions, and the average increase in revenue given by Blended-
SzWt compared with the self-managed rule, the revenue 
bump provided by using a host or hostess to assign parties 
to tables is not large (Exhibit 15). The modest revenue 
increase would mean that restaurateurs should use consider-
ations other than incremental revenue in making the deci-
sion to control table assignments. Such considerations 
would include whether having customers select a table is 
consistent with the overall service level provided by the res-
taurant. Since restaurants that provide high levels of service 
also typically have much higher average checks, the eco-
nomics may also favor managed table assignments in these 
restaurants. Obviously, this revenue analysis would be dif-
ferent if customers had other likelihoods of selecting par-
ticular party sizes (i.e., different probabilities than reported 
in Exhibit 3), or with different values of the parameters 
reported in Exhibit 15.

Since the performance of having customers seat them-
selves was notably affected by their willingness to wait (see 
Exhibit 11), I repeated the calculations in Exhibit 15 for 

only the case where customers had a low wait tolerance. 
Here, the revenue bump of using Blended-SzWt was more 
than 2 percent compared with the self-managed approach. 
As reported in Exhibit 15, the economic benefit of manag-
ing table assignments is more positive, even with the low 
average check used in the calculations. Certainly with large 
restaurants, the economics would favor managed table 
assignments.

As an extension to this study, it would be interesting to 
evaluate the performance of a rule that applied loose right-
sizing to the Blended-SzWt, since the loose right-sizing was 
effective in both the largest and longest rules. I expect any 
improvement to be modest, however, given the overall 
effectiveness of the Blended-SzWt rule.

Conclusion

This paper examined different approaches for assigning 
walk-in parties to tables in restaurants. My survey of restau-
rateurs identified two prominent, simple rules: longest—
assigning an open table to the party waiting the longest and 
largest—assigning an open table to the largest party that 
fits. However, when I tested variations of these two rules in 
a broad simulation-based study, the best rule proved to be a 
blended rule that considers both party size and waiting time. 
Interestingly, as I noted above, over one-quarter of my sur-
vey respondents were using blended assignment rules that 
considered both party size and waiting time.

There are several implications for practice from my find-
ings. First, if one wishes to implement the best rule, it 
clearly is Blended-SzWt. However, applying such a rule 
would require a real-time ranking system for parties, 
because a party’s rating moves up as the length of wait 
increases. The requirement of a real-time calculation may 
be impractical for many restaurants. Second, if one wishes 
to apply a simple, yet high-performing rule, one should 
select the longest-loose, except if customers’ wait tolerance 
is low, when largest-loose is the better rule. Clearly, fair-
ness is higher with longest, as that follows a FIFO queue 
protocol, while the largest rule can lead to different service 
levels across party sizes, with even-sized parties being 

Exhibit 15:
Incremental Revenue of Blended-SzWt Relative to Self-Managed across All Wait Tolerances and the Low Wait 
Tolerance Case.a

All Wait Tolerances Low Wait Tolerance Case

Size (Parties)
Proportional 

Revenue Increase
Net Revenue 

Increase per Day
Proportional 

Revenue Increase
Net Revenue 

Increase per Day

100 0.0089 $14.69 0.0222 $110.90
  30 0.0144 $9.11 0.0256 $38.38
  10 0.0184 $3.04 0.0226 $11.29

Note. SzWt = size–wait.
a. For a party size of 2.5 people, two table turns, an average check of $10.00 per person and a contribution proportion of 0.333.
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seated more quickly than odd-sized parties (see Exhibit 
11). Third, loose right-sizing—allowing a party to be 
seated in the smallest table that fits or the next larger 
table—proved better than tighter right-sizing and also bet-
ter than no right-sizing at all. I believe the reason for this is 
the reduced flexibility that comes with tight right-sizing. 
As reported by McGuire and Kimes (2006), restaurant 
patrons generally view right-sizing favorably, though some 
education of customers as to the restaurant’s policies may 
be warranted.

Based on some back-of-the-envelope calculations, in 
many restaurant environments, the economics may favor a 
customer-managed table assignment, rather than an 
employee-managed queue. However, self-managed table 
assignment is only congruent with lower service levels. It is 
hard to envision customers picking their own tables in a 
Michelin three-star restaurant, for example.

I see several implications of my work for future research. 
First, as I noted earlier, I think it is likely that applying loose 
right-sizing to the Blended-SzWt would result in a mod-
estly superior rule. Second, because Blended-SzWt has 
some elements of unfairness in customer service (for small, 
odd-sized parties), it is possible that a modified version of 
the rule could still yield superior economic performance but 
increase fairness. Third, having established a top-perform-
ing table-assignment rule, it is possible to tackle the issue of 
being able to estimate waits for customers. Fourth, given 
that about 60 percent of restaurants in my survey took both 
customer reservations and walk-in customers, more research 
integrating seating policies for these two customer types is 
desirable.
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