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Abstract

In this study, we present rule formats for four main notions of bisimulation with
silent moves. Weak bisimulation is a congruence for any process algebra defined by
WB cool rules; we have similar results for rooted weak bisimulation (Milner’s “ob-
servational equivalence”), branching bisimulation, and rooted branching bisimulation.
The theorems stating that, say, observational equivalence is an appropriate notion of
equality for CCS are corollaries of the results of this paper. We also give sufficient
conditions under which equational axiom systems can be generated from operational
rules. Indeed, many equational axiom systems appearing in the literature are instances
of this general theory.

1 Introduction

Process algebras serve the same role in concurrency that the A-calculus does in sequential
block-structured languages, isolating the essential features of the area while abstracting away
inessential details. As there are a vast variety of fundamentally different concurrent settings
(varying process synchrony, communication mechanism, failure, and so forth), there is a
need for many process algebras. Developing the right basic theory for the first few process
algebras was a labor of several years. This paper is part of a continuing investigation in the
metatheory of process algebra, with the goal of developing a body of mathematics to make
the development and use of process algebras simpler.

The multiplicity of computational models is reflected in several ways in process algebras.
Most obviously, the operations in the algebra must match the operations in the model:
describing broadcasting systems requires broadcasting operations in the algebra. Somewhat
more subtly, the basic notion of process equivalence — that is, the definition of what it
means for two processes p and ¢ to mean the same thing — will also vary with the model of
concurrency. Notions of equivalence which work perfectly for point-to-point communication
(e.g., failures equivalence [BHR84]) are not correct for broadcasting.
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Figure 1: Linear vs. Branching Time

A wide range of process equivalences have been proposed and used [vG93]; in process
algebra, they range from strong bisimulation (the finest reasonable notion in this setting) to
weak partial trace equivalence (the coarsest notion, and not often applicable).

There are many ways to characterize equivalences, two of which are relevant to our
discussion. In many process algebras, there is a silent move 7, an action which represents
internal computation. Some equivalences, called strong equivalences, treating 7 as just
another action, without special status. Other equivalences, the weak equivalences, do their
best to ignore 7 actions that are computationally irrelevant. For example, let 77 be a process
which does two 7 actions and then stops. Then 77 and 7 are distinguished by most strong
equivalences, but identified by most weak ones. Some 7 actions cannot be ignored; the
process a + b is able to accept either an a or a b signal, but the process ra+ 7b autonomously
chooses which it will accept, and will reject the other.

Another important characterization of process equivalences is linear and branching time
[G1a90]. Loosely, linear-time equivalences observe the behavior of a process as it runs along a
single execution, with very limited ability to observe possible alternate paths of computation.
Branching-time equivalences consider the whole tree of possible executions. For example,
the processes P; and P; of Figure 1 are linear-time equivalent in all standard linear-time
equivalences; for example, they have the same traces, abc and abd. They are distinguished
by most branching-time equivalences; P, makes an important decision on its first step, while
P, delays it until its second.

Most process algebras use the notion of a transition. The relation p —» ¢ says that
the process p can perform the atomic action a and thereafter behave like the process gq.
Most process algebras are given by a Structural Operational Semantics (SOS), defining the
transition relation by induction on the structure of the term p.

Given the multiplicity of models of concurrency, notions of equivalence, and process
algebras, it seems worthwhile to study the metatheory of process algebra: theorems which
apply to large families of languages, rather than merely specific ones. Such theories will
greatly facilitate the development of new process algebras. For example, [BIM90, GV92,
Gro90] show that any language defined by suitable forms of structured operational rules enjoy



certain desirable properties: in particular, all such languages respect strong bisimulation. In
[ABV92a], we extend this theory: any language described by the GSOS rules of [BIM9(]
can in fact be given an equational axiom system with a single infinitary induction principle,
which is complete for proving equalities between programs.

Most of these studies have treated strong equivalences. There have only been a few studies
concerning methatheory of SOSses for weak equivalences. Most of these studies have been
aimed at calculating the finest appropriate weak process equivalence. [Blo90] introduced
several technical tools used in later studies, but its notion of equivalence had some ability
to count 7 moves and was therefore judged inappropriate as a weak process equivalence.
[Uli92] was considerably more appealing as a study of equivalences, describing the class of
ISOS rules, and precisely characterizing the notion of process equivalence they generate.
Ulidowski’s notion is appealing in many ways, but misses certain important uses of process
algebras: e.g., processes with polling loops can diverge, and Ulidowski’s theory doesn’t place
many requirements on divergent processes.

In this study, we give SOS rule formats for important weak variants of bisimulation, weak
bisimulation, and branching bisimulation, and their (more useful) rooted versions. Weak
bisimulation [Mil81] is perhaps the most obvious variant of bisimulation designed to ignore 7
moves; its theory is not quite as clean as that of strong bisimulation. Branching bisimulation
[vGW8Y] is a finer notion, with better algebraic properties. Neither notion is quite right for
process algebra: they are not congruences with respect to certain operations, mainly nonde-
terministic choice +. Both can be slightly modified, to rooted weak bisimulation (Milner’s
observational equivalence [Mil89a]) and rooted branching bisimulation, capable of handling
+ and maintaining their other properties. We discuss the implications of these rule formats
on equational axiom systems.

1.1 Strong and Weak Bisimulation

Strong bisimulation [Par81, Mil83, Mil84] is the finest generally-accepted notion of process
equivalence in this setting. Informally, two processes are strongly bisimilar iff they make the
same decisions at the same times. Formally,

Definition 1.1 A binary relation — between processes is a strong bisimulation relation iff,
whenever p — p', then

o Ifp 2+ q for some action a and process q, then p —= ¢ for some process ¢ such
that g — ¢'.

o Vice versa; that is, if p —— ¢ for some action a and process q', then p -2+ ¢ for
some process q such that ¢ — ¢'.

Processes p and p' are strongly bisimilar, p « p/, iff there is some strong bisimulation
relation — such that p — p'.

Strong bisimulation enjoys a rich and powerful theory. There are complete equational
axiom systems (some requiring induction principles) for a wide variety of theories. [BW90,



Mil89b, ABV92a]. There is an elegant equivalent logical characterization via Hennessy-
Milner Logic [HM85]. Definition 1.1 gives a useful method for showing two real programs
equivalent [CPS89, WBB92]: one guesses a relation — relating the programs, and verifies
that it is indeed a strong bisimulation relation. Checking this is local, involving only one step
of computation. Despite some theoretical concerns (e.g., strong bisimulation is too strong,

capable of distinguishing processes which ought to be identified [Abr87, BIMS8S, BM90)),
strong bisimulation is a central part of concurrency theory.

1.1.1 Weak Bisimulation

Most process algebras, including CCS and ACP, have a silent or hidden action, 7. This action
marks internal computation: for example, processes will take 7 steps as they compute; and
when processes communicate on a hidden channel, all that is visible outside is a 7 action.
The informal intent is that 7’s are (mostly) irrelevant, and that processes which differ only
in the number and positioning of 7’s are equivalent. As stated before, we would like to have
7 and 77 identified.

Strong bisimulation, and strong equivalences in general, do not meet this informal intent.
7’s are as visible as any other action, and 7 ¢ 77. Accordingly, several researchers have
defined weak versions of bisimulation, which pay less attention to 7’s but still have the
essential flavor of bisimulation. The first such relation, called simply weak bisimulation, is

based on the weak transition relation —b , defined by:

Definition 1.2 We define multi-step transition relations p —— q by p —— p, and if
p — qandq —=+ 1 thenp —=+ r. This is extended to sets of string S in existentially:
P S, qiffIs€ Sp =+ q. Let 7 = {e,7,77,...}.

Finally, we define = for a € Act, to be 7T if @ € Act, and A ifa=r.

Weak bisimulation is defined like strong bisimulation, using the relation = for a €
Act, instead of —2+ for a € Act.

Definition 1.3 A relation — between processes is a weak bisimulation relation iff, whenever

p~—p andp -~ q for some a € Act, and process q, then there is a ¢ such that ' — q
and q — ¢', and vice versa.

Processes p and p' are weakly bisimilar, p & p/, if there is a weak bisimulation relation
— withp —p.

For example, a & 7a. Note that a «+ Ta, as the one can take an a-step and the other
cannot. Strong bisimulation is mathematically quite nice, but weak bisimulation is somewhat
less so. For example, strong bisimulation is a congruence with respect to all CCS (and a vast
range of other) operations. Weak bisimulation is a congruence with for most CCS operations,
but not for 4. For example, a & 7a, but a + b & Ta + b; the latter process can take a
7 step to the process b, which the former cannot match. The standard approach to fixing
this is to take weak bisimulation congruence, also known as rooted weak bisimulation, rooted
7-bisimulation [BW90], and rather anomalously as observational equivalence [Mil84, Mil89a).
This relation is defined as follows:



Definition 1.4 Processes p and p' are rooted weakly bisimilar, p <, p/, iff whenever
P L. q for some B € Act,, then p AN g & q, and vice versa.

This is a direct definition of &, in terms of <; and it differs from & only when 8 = 7
the rooted relation insists that p’ take at least one 7-step. Rooted weak bisimulation works
correctly: all CCS, and indeed most other process algebra operations respect it.

1.1.2 Branching Bisimulation

Detailed philosophical justification for branching bisimulation may be found in [vGW89,
vG93]. Briefly, branching bisimulation is the finest weak analog of bisimulation in the testing
scenarios of [vG93], and the finest notion which admits an expansion theorem. Furthermore,
the informal description of bisimulation, “two processes making the same decisions at the
same time,” is imperfectly captured by the formal definition. Consider the weakly bisimilar
processes py = a(7x 4+ y) and p; = a(7z + y) + ax. The process p; can, on an a-transition,
choose to forgo the chance of performing y. The process p; cannot make the same choice
in just the a-move; discarding the y requires an a-move followed by a 7. This conceptual
imperfection is fixed by branching bisimulation; p; and p, are not branching bisimilar.

Definition 1.5 — is a branching bisimulation relation if, for all actions B € Act, and for
all p— p', then

1. Ifp L. r, then either:
(a) B=7 andr — p, or

(b) there are ¢', v’ such that p' AR q R r',p—¢, andr —r':

T a
P r p -
- R o
~ . * .
/ / T ! a !
p P q r

(a) or ()

2. Vice versa.

As usual, p and p' are branching bisimilar, p < p/, if there is a branching bisimulation
relation relating them.

Branching bisimulation suffers from the same congruence problem as weak bisimulation:
a <3 Ta, but a + b ¢y Ta + b. The solution is a bit finer than for weak bisimulation.
Rooted branching bisimulation does one step of strong bisimulation, then turns into branch-
ing bisimulation.

Definition 1.6 Two processes p and q are rooted branching bisimilar if, whenever p —— g,

then o —2+ ¢' and q <y ¢'; and vice versa.



The theory of <4 is quite nice: for example, rooted branching bisimulation is a congruence
with respect to CCS, has a complete axiom system on finite processes, and so forth.

We refer to the relations of weak and branching bisimulation, rooted and otherwise,
collectively as “silent bisimulations.”

1.2 Structured Operational Semantics and Process Equivalences

Most process calculi are given behavior by structured operational semantics (SOS), rules
which define the behavior of composite processes in terms of the behavior of their com-
ponents. A well-designed SOS rule system has many of the advantages of denotational
semantics; e.g, structural induction is a viable proof technique, as we will see repeatedly
in this study. Furthermore, SOS rules are generally fairly easy to read. For example, the
interleaving parallel operation p || ¢ is easily described by SOS rules: for each action a, there
are rules:

T . n ) . Y2 (1)
21l za — yi || 2o o1l zs — 21| y2

The purpose of this study, like many others in this line of research, is to determine the
relation between the SOS definition of a process algebra, and the equational theory. We will
give some quite general rule formats which guarantee that process algebras respect the four
silent bisimulations described in Section 1.1, and a new variant which may be of some use.

The SOS definition of a process algebra or programming language describes the intended
behavior of processes. It is not intended to suggest the preferred implementation of the
language, any more than the S-rule is intended suggest the preferred implementation of
functional languages. It is often useful to specify languages using rules which appear rather
unreasonable, knowing that the implementation need not reflect the rules.

Two common categories of “unreasonable” or “unimplementable” features of rules are
copying of processes and negative tests. Both features arise quite naturally in the simplest
specifications of standard operations. Our rule formats for weak process equivalences allow
copying in a fairly general way. However, negative tests defy both implementation and weak
bisimulations, and are thus excluded from our rule format.

1.2.1 Copying

For example, one of the rules of the specification of a while loop is:

while z; do zy —— (x5 ; while y; do z9)

That is, if the test z; signals “true,” the loop body is executed once and the loop is re-
executed. This specification makes a copy of the loop body z;. A typical implementation
[Plo81, WBB92] does not copy z; it simply uses a loop around the code.

A similar operation is Milner’s !p, which effectively turns p into a reentrant server:

a /
r — T

e 2o 2f||le



This spawns a new server 2’ to handle each request a. This will probably be implemented by
spawning new processes on each machine running « — which may, in general, be a distributed
system [BC90, BCGY1].

Many other operations can be specified by copying rules. For example, a process imple-
menting a distributed service might produce a signal ¢ if its load gets too high, piggybacked
on top of its normal service message. The system’s response might be to bring up another
processor running the original server code, running in parallel with the original process. Such
a service could conveniently be specified by rules including:

a a 4
Iy — 1 — Y1, 71— Y12
server(zy,z9) —— server(yy, ;) server(zy,x3) —— server(yyy |y, x3)

where a ranges over server actions, the z; argument represents the current state of the server,
and the z, argument represents the initial state of a new server processor.

1.2.2 Negative Rules vs. Weak Bisimulation

For strong notions of process equivalence, many operations are best described using negative
rules; viz., those with antecedents of the form & —2» , which are satisfied if z cannot perform
an ¢ action. Consider the following “full sequencing” operation p ; ¢, which runs p until it
stops, then runs ¢:

=, e g, V(o )
T . Y1 2 Y2 Ty —* (2)

. . a
T13%2 — Y1;22 Ty, Ty — Yo

It is impossible to define this operation without negative rules, though most process
algebras define approximations which are adequate for programming, and much easier to
implement. There are several other reasonable operations which can only be defined with
negative rules; e.g., polling operations which branch on whether or not a process is ready to
communicate.

Unfortunately, negative rules seem incompatible with weak process equivalences. One
of the fundamental laws of silent bisimulations is KFAR, Koomen’s Fair Abstraction Rule
[BW90]. Intuitively, this rule says that that nondeterministic choice can be implemented by
a polling loop. Indeed, delay-insensitive implementations of process algebra based languages
[WBB92] implement selective communication (the main practical application of nondeter-
ministic choice in this setting) via polling loops. As these implementations are correct up to
weak or branching bisimulation and (probably) not much stronger, KFAR is practically and
philosophically important.

However, KFAR seems incompatible with negative rules. A basic consequence of KFAR

*

.
is that, if we have two processes p; and p; such that p; == p,, then p; and p, ought to be
T‘

considered the same process. That is, the decision of whether or not p; —= should involve

-
all such p,. As { p2|p1 = p2 ¢ can be unmanageable — infinite and not even recursive —
T.

testing p;’s ability to do an a is necessarily challenging.

7



We are not aware of any way to interpret negative tests z 5 ina way that respects
silent bisimulations and has any chance of being implementable. Consider the weakly bisim-
ilar processes of Figure 2.

T T
D1 D2 p3— QO ps —— QO
T T

a T a T
4
0 O 0 O
a a
4 4
0 0

Figure 2: Weakly Bisimilar Processes

These processes must be indistinguishable in any language respecting weak bisimulation,
as they are weakly bisimilar. The most obvious interpretation of x —2% is simply to test
that z has no a transition. With this interpretation, =(p; —= ) but p, — : a rule which

can test for + —» could distinguish these equivalent processes.
A variant interpretation which has been proposed several times [Vaa91, Uli92] is that

negative rules only be interpreted in stable states; that is, z satisfies the test z —s iff
x can perform 7-moves to reach a state which has neither a nor 7 transitions. This is
implementable (by running the process until such time as it reaches a stable state), and does

address the primary difficulty with KFAR; the set of processes .T—_’ to a stable process p is

just {p}. For example, p4 LN , as ps — a which is stable and cannot perform a b. This
interpretation does work for Ulidowski’s weak equivalence, but it fails for weak bisimulation.

For example, p, %% in this interpretation, but —(ps LR ) as p3 is not in a stable state,
and indeed cannot reach one by performing T moves.

As there seems to be no good interpretation of negative tests, we do not include them
in our languages for weak or branching bisimulation. The languages for rooted branching
bisimulation can tolerate them to a limited degree.

1.3 Results

In this paper, we give rule formats for the four silent bisimulations of Section 1.1, as well as
a variant of rooted weak bisimulation. The basic intuition behind the classes is fairly similar
— basically, we require operations to wait calmly for their operands to be ready. We call this
property coolness: we thus have WB cool languages, which respect Weak Bisimulation; RBB
cool languages respecting Rooted Branching Bisimulation, and so forth. Weak bisimulation
is discussed in Section 3, rooted weak bisimulation and a technically convenient variant called
“strongly rooted weak bisimulation” in Section 4, branching bisimulation in Section 5, and



rooted branching bisimulation in Section 6. It is worth noting that the methods used for
branching bisimulation are very similar to those for weak bisimulation, though the proofs
have twice as many cases.

In Section 7, we discuss the implication of these rule formats for equational theories.
It is well-known that neither weak nor branching bisimulation has appealing (e.g., finite)
axiom systems for some basic operations like parallel composition. However, the rooted
versions generally admit equational axiom systems. The method of [ABV92a] for generating
equational axiom systems applies to all SRWB cool and RBB cool languages (and preserves
their SRWB cool or RBB cool character.) We give decidable sufficient conditions under which
RWB cool languages have [ABV92a]-style axiom systems. The equational axiom systems the
[ABV92a] method generates are not complete for any decent programming language.

1.3.1 Useful Corollaries: simply cool languages

In the rest of the paper, our results are quite general, and accordingly hard to apply. We
expect that the following straightforward corollaries of our main theorems will prove useful
in most cases appearing in practice; they are enough to cover most CCS-like process calculi
known to date.

Definition 1.7 A language £ defined by SOS rules is simply RB cool if

1. All rules p for all operation symbols f of L have the form:

w10
p= 2
fle, .. xn) — &

where I(p) is a set of numbers telling which arguments of f take actions under rule p.

2. For all rules p, and all i € I(p), L contains a patience rule:

-
Li — Y;

f(f) _‘T_’ f(‘T'la s Ty 15 Yy Tig1y e - axn)

3. No rules have hypotheses mentioning 7’s, except the patience rules required by clause
2.

The definition for weak bisimulation differs only slightly:

Definition 1.8 A language is simply WB cool iff it is simply RB cool, and furthermore for
every t in clause 1, x; does not appear int when i € I(p).

CCS without + is a simply WB cool (and, a fortiori, simply RB cool) language.

Rule formats for rooted silent bisimulations are built by partitioning the rules into two
classes: tame operations, which respect the silent bisimulation from the previous definitions,
and wild operations, which exploit the rootedness condition for one step and then evolve
into tame operations.



Definition 1.9 A GSOS language L is simply RWB cool if the operations in L can be
partitioned into tame and wild operations, such that:

1. The targets of all rules (the t’s above) only mention tame operations.
2. The sublanguage consisting only of tame operations is WB cool.
3. Every rule p for a wild operation has the form

(s 2 wie 1)

b

HZ) — t
4. For each such rule, there are rules (possibly derived rules):
r ey {oc 2 i e 1)) 6 ey
f(&) — tlei =yl t = t[F =] bt =y

For example, CCS is a simply RWB cool language. + is a wild operation; all others are
tame. Pick one of the rules for +, say

a
Iy — U

[+
1+ 2y — Y1

If we choose t = x,, then we must have the following rules and derived rules:

T a T
Ty — U1 T3 — Y1 Iy — Y1
T a T
T+ — Y Ty — U Ty —

Indeed, these are all valid CCS rules or derived rules, and hence + is a suitable wild operation.
Rooted branching bisimulation is much easier, largely due to the stronger first-step con-
dition.

Definition 1.10 A GSOS language L is simply RBB cool iff the operation symbols can be
partitioned into tame and wild operations, such that

1. The sublanguage of L consisting of only tame operations is simply RB cool, and

2. Let f(Z) —» t be the conclusion of any rule of L. Then t mentions only tame
operations.

As one would hope, we have the following corollary to most of the main theorems of this
paper.

Corollary 1.11

1. If £ is simply WB cool, then weak bisimulation is a congruence for L.

10



2. If L is simply RWB cool, then rooted weak bisimulation is a congruence for L.

3. If L is simply RB cool, then branching bisimulation is a congruence for L.

4. If L is simply RBB cool, then rooted branching bisimulation is a congruence for L.
We also have

Corollary 1.12 If L is a simply RBB cool language, then the methods of [ABV92a] generate
a simply RBB cool, conservative extension of L, and a set of equations which are sound for
rooted branching bisimulation and complete for strong bisimulation.

A similar fact generally holds for simply RWB cool languages, but it is harder to state in
full generality.

2 Preliminaries

In this section, we review some standard and mostly-standard definitions in process algebra.

2.1 Notation

We use fairly standard mathematical notation, though we write A h B for AN B = @. If
AUB = C and A B, then A and B partition the set C; unlike some authors, we allow A
and B to be empty.

We often introduce eccentric notations for tuples; e.g., we write write the tuple (¢,a,t)
ast — t/, when we are interpreting it as a formula.!

We use vector notation, Z, to denote a finite sequence of items named x,, z, ..., , for
some n. We assume that the sequences are of the correct lengths, which are always clear from
context or irrelevant. Operations and relations on vectors are to be interpreted pointwise.
For example, the equation ¥ = § means that Z and g have the same length, and that z; = y;
for each i. To add to the confusion, ¥ is occasionally treated as the set {zy,zy,...,2z,}.

We denote the empty string by . If 7 is asymbol, 7+ = {7, 77, 777,...} and 7 = {e}ur™.
Similarly, if S is a set of actions or string, then S* is the Kleene closure of S, the set of all
finite strings of elements of S.

2.2 Structural Operational Semantics

As we are investigating the comparative anatomy of process algebras and their definitions,
we discuss their definitions in some generality. We are concerned with GSOS and related
classes of rules; to discuss these, we need some notation.

A process algebra language, or simply “language,” includes a finite set of actions, and
a finite algebraic signature. In this study, we assume that the set of actions Act, contains
a distinguished element 7, the silent action; the remaining actions Act are not required to

1When necessary, we add an extra component to the tuple; if we are using the notation t —+ 1 as
well, we assume that the representations are disjoint. This fine point is never relevant.

11



have any significance. The definitions of signature, term, and so forth are fairly standard. A
signature X is a finite function from a set of operation symbols f, g, h,. .. to natural numbers,
their arities. Terms t are inductively built from an infinite set of variables z,y,z,... by
application of function symbols:

tu=x | f(t1,...,tn) where X(f) =n

A term is closed if it contains no variable symbols; process algebras generally contain nullary
operators, such as the stopped process 0, and thus have closed terms. This is important, as
closed terms are processes which can be executed. There are no binding operators, and in
particular no rec [z < P] operator for recursive process definition a la CCS. Our definitional
schema are powerful enough to include general nontermining computations, even without
recursion; and any program written with rec[z < P] over any of our calculi can be written
without rec[- <= -] in a suitable variant calculus.

Let Procs(£) be the set of closed terms of the language £, and Terms(£) the set of all
terms. When £ is clear from context, we simply write Procs and Terms. A term is univariate
if no variable appears in it more than once.

Actions a are elements of some finite nonempty set Act. Transition formulas describe
possible transitions. A positive transition formula is a triple, written ¢ ——~ ¢, where ¢ and
i’ are terms, and a is an action symbol. A negative transition formula is a pair t ——s . A

formula is primitive if t and ¢ are variables: * —+ 2’ and x —w .
A GSOS rule is a pair <'H, f(&) = t>, where H is a set of primitive transition formulas,

subject to certain conditions. GSOS rules are usually written:

Ui {22 ym-llstmi}uui{xi 2 1< <ni)

f($1,...,$n) _c’ t

The conditions are: the variables &, § are all distinct, and the variables in ¢ are at most Z,7.
In this study, we take the point of view that rules bind all variables appearing in them. In

particular, rules which differ only by a bijective renaming of variable names are equivalent.
We use the following terminology to describe parts of a GSOS rule:

e ante(p) = H is the set of antecedents.

o cons(p) = f(T) — tis the consequent.

source(p) = f(Z) is the source.

target(p) =t is the target.
e cis the action.

o The variables z; are the source variables SourceVars(p).

The variables y;; are the target variables TargetVars(p).

12



Symbol Usage
a,b,c,d  Actions other than 7; elements of Act

a, B Actions or 7; elements of Act,.

¢ Actions, 7, or ; element of Act, .
p,q,r,s  Processes

t,u,v Process terms

.Y, 2 Variables

Figure 3: Conventions

For example, the interleaving parallel operation p|| ¢ is defined by the 2- |Act| rules of (1).
Many process algebras have the operations of action prefiring and. nondeterministic choice.
For each action a, ap is a process which performs an a and thereafter behaves like p; for all
p and ¢, p + ¢ may behave like either p or ¢. These have the rules (for each a):

[o3 [o3
Iy — Y1 T2 — Y2

(3)

o] o o
ar — T 1+ 22 — Y 1+ Xy —— Yo

If R is a rule format (that is, a set of rules), an R language is a finite signature ¥ of
operations together with a finite set of rules R C R, where all operations in R are in ¥ and
used with the correct arity.

Null transitions, # —— ¥, will provide great notational convenience later on: they are
intended to mean that = and y are bound to the same term. This can be trivially expressed
in the GSOS format by using = everywhere y appears: the following are equivalent.

€
r—19Y

@ @
ar — I ar — Yy

We set Act,. = Act U {7,¢}, use ( to range over Act,., and with a slight pun we use the

notation z — y for ¢ € Act, . to range over x 2, yand 2 — Y.

Definition 2.1 A rule or language which is GSOS except for possibly having null transitions
as antecedents is said to be in GSOS(e) format.

Notation 2.1 In this study we work with a variety of objects including variables: terms,
transition formulas, rules, and so forth. For any such object Q, Vars(Q) is the set of variables
in Q1. If x € Vars(Q) and £ is a suitable object, then Qz := ¢] is O with ¢ substituted for x.
Only rules bind variables, and that at the top level only; so the definition is not subtle.

It is often convenient to work with substitutions (traditionally also called instantiations
when they refer to rules), which are partial functions ¢ from variable names to Procs. We
extend o to terms t with Vars(t) C dom(o) by:

U(f(tla ) tn)) = f(U(tl)a s 7U(tn)>a
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and similarly to other constructs including variables.
If 4 is a transition formula, ~» C Procs x Act x Procs, and ¢ is a substutition, and
Vars(¢)) C dom(o), then we may define the relation o,~» |= v:

o, ot u = ()5 o(u)
o~ =t LR <= Jq € Procs. o(t) AP
o, ot — u = ot)=o(u)

We extend = to sets of formulae:

0,5 [ H <= Vg€ H (0,5 ).

The GSOS theory of [BIM88, Blo89] shows for any GSOS language £, there is a unique

appropriate transition relation ~»; that is, one satisfying the following properties:

1. For any process term p = f(p1,...,p,) and action a, if p ~5 ¢, then there exists a rule
p which enables the transition: that is, there is an instantiation o on Vars(p) such that:
(a) o(z;) = p; for each 7
(b) o = ante(p)
(c) ocons(p)) =p — gq.

2. For each rule p and instantiation o such that o,~+|= ante(p), then o,~sk= cons(p).

This relation is denoted —— (, or simply —— when £ is clear from context.

2.3 Ruloid Theorems

We will frequently need to examine the behavior of processes in arbitrary contexts. Our
main technical tools for doing so are Ruloid Theorems [BIM90, Blo93], which characterize
all possible behaviors of all terms in a language, in a form that resembles the original rule
format.

Definition 2.2 Ruloids are like rules, except that the conclusion has the formt —— u for

some term t, rather than the simpler form f(Z) — wu as required for rules.

Rules carry proscriptive force; that is, they define the behavior of all terms of the language.
Ruloids simply carry descriptive force; that is, they explain how the rules cause complex
terms to compute.

Most well-designed rule formats enjoy a Ruloid Theorem. That is, for each term ¢ and
s € Act.”, it is possible to calculate a set R(t,s) of ruloids which precisely capture the
circumstances under which ¢ can perform s; and each p € R(¢, s) is still in the same format
as the original rules, mutatis mutandis. Formally,

Definition 2.3 A set R of ruloids is just right for a term t and a string s of actions if,

14



1. The conclusion of each p € R has the formt —— t' for some t'.

2. R explains all the transitions possible for instances of t. Formally, let o : Vars(t) — Procs,

and suppose o(t) —— q. Then there is some ruloid p € R, and extension ¢’ D o to

Vars(p) such that:

(a) o' |= ante(p)
(b) o'(cons(p)) = o'(t) — q.

3. Every ruloid in R is valid. That is, if o : Vars(p) — Procs and o |= ante(p), then
o = cons(p).

For example, the following set of ruloids for (z || y) + z are just right for that term and the
action a:

r — 7 y — o z — 2
(@ly)+=z = (' lly) @ly)+z — (zlly) (@lly)+z — 2

2.4 e-Presentation
In this study (and many other ones), it is convenient to use rules and ruloids in e-presentation.

Definition 2.4 A ruloid p in GSOS(¢) format is e-presented iff:

1. There is at least one antecedent x —~ y for each source variable z, for some ( €
Act. ., and

2. SourceVars(p) h TargetVars(p)

For example, the first sequencing rule (2) is not e-presented, as no antecedent mentions

z,. Nor is the rule
a =
1 — Y1, T2 — Y2

a
TiyL2 — Y1522
Although an antecedent mentions each argument, the source and target variables are not

disjoint. However, the equally useful rule

a 1=
1y — Y1, T2 — Y2

L1y T2 R Yy Y2
is e-presented. The precise definition of “equally useful” is equipotent:

Definition 2.5 Two ruloids p and p' are equipotent if, whenever one of them enables a

transition p —— gq, then the other does as well.

Lemma 2.6 Let £ be any GSOS(¢) language. Then there is a GSOS(e) language L' with
the same sets of actions and operations (and hence the same set of terms), and a bijection
p — p' between their ruloids such that p and p' are equipotent.
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Proof: Let p be a ruloid of £. Let V be the set of variables which either don’t appear in
the antecedents of p, or appear in both source and target. For each 2 € V, pick a variable x’

distinct from Vars(p) and all other z’s. Suppose that cons(p) =t —— wu. Let v’ be u with
each x € V replaced by the corresponding z’. Let p’ be the ruloid:

ante(p) U {:c s 2|z € V}

t 2

Then clearly p and p’ are equipotent, and p' is e-presented. 4!}

3 Rules for Weak Bisimulation

The simplest kind of operations which respect weak bisimulation are the patient ones. Sup-
pose that p & p/, and that f(p) LN g(q) via a rule
[+
T — y

b

flz) — g(y)

and a transition p —— ¢. All that we know about p’ is that p’ AN ro— Ty A q

with ¢ & ¢'. This suggests that f(z) will have to wait for its argument to perform an «
action. So, we need a patience rule:

/

7 /
r — T

fle) — f(2)

which allows its argument to take 7-transitions freely. (It turns out that g(q) does not need
a patience rule, but this is a theorem.)

Not all operations have, or require, patience rules. The canonical example of an operation
that shouldn’t have them is prefixing, with rule:

a
ar — T
It would be a mistake to have a patience rule:

T !
r — T

(mistake) -
ar — ax’

as (1) this would destroy many essential properties of prefixing, e.g., its ability to guard
recursions, and (2) it isn’t necessary, as prefixing already does respect weak bisimulation.
That is, if p & p/, then ap’s only possible move is an a-transition to p; clearly ap’ can do
an a-transition to p’, which is weakly bisimilar to p by hypothesis. More generally, if f(p)’s
first step of behavior doesn’t involve p’s behavior, then we don’t need patience rules.
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So, we only require patience rules for active arguments of functions f; that is, those
arguments which f allows to run. For example, if we have an operator with the single rule:

Q
Ly —
b
f(mla $2) - g(yla '7:2)
we would expect to have a patience rule for 2; but not for z,.

However, we know from first principles that operations defined by patience rules alone
are not as powerful as possible. Bisimulation equivalences, of all sorts, are branching-time
equivalences. Thus, it ought to admit branching tests: testing for the ability to do both an
a and a b simultaneously. That is, it should tolerate copying, in the style of Section 1.2.1.
For example, we’d like to have an operation given by a rule of the form:

a b
r — Y1, T — Y

k(z) —= 0

(4)

However, this is somewhat complicated. We can’t (with weak bisimulation) expect to detect
simultaneous transitions. Specifically, a+bis weakly bisimilar to P, = rec[z < a + 7(b + 7)),
which alternately offers @ and b:

T

Py — Py,

a+b
-
& 3
A N N ®
0 0 0 0
Pyp cannot perform an a and a b simultaneously, and thus k(P,) cannot fire by rule (4).

Our solution is to require the presence of enough rules and operations so that k(P,) will
behave right. Specifically, we insist that there be a two-argument version k* of k, with one

argument to handle the —+ test of £ and the other for the ", test. The operation k*
has one computational rule, giving £* the ability to do (4):

a a
ry — Y1, Iy —> Y2 (6)

k*(:z:l, .232) —(E-* 0

The basic operation k and the derived version £* are connected by a pair of rules, allowing
k’s argument to take a 7 move in preparation for doing its two possible behaviors separately.
These will be called bifurcation rules:

T T

r — y r — y
k(z) — k*(z,y) k(z) — k*(y,)

Similarly, £* has patience rules allowing its arguments to proceed independently:

(7)

I _T’ N ) —T’ Y2 (8)
k* (21, 22) — k*(y1, 22) k (21, 2) — k*(21,72)

With these rules, we see that k(P,;) = 0 as desired:

k(Pab) . k*(Pabana) — 0
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3.1 WB cool Languages

In this section, we work entirely with e-presented languages. We define a subset of the e-
presented positive GSOS(e) languages, the WB cool languages, in which weak bisimulation is
a congruence. For example, CCS without + is a WB cool language. The definition proceeds
in two parts. We first give an infinitary version, the fully WB cool languages, which places
restrictions on all univariate terms. Then we give necessary and sufficient finitary conditions
on the rules which guarantee the infinitary version.

Definition 3.1 The source variable z is active in p if there is an antecedent x 2, y of p
(where by our conventions 8 € Act, and hence 3 # ). The variable z € Vars(t) is active if
it is active in any ruloid p fort.

For example, the variable z is active in k(z) and A*(z, ), but not in ax. Next, we need to
count how many copies of a variable we will need:

Definition 3.2 Let € Vars(t) for a univariate term t. We define barb(t,z) to be the

mazimum number of antecedents x < y in any element of p € UgR(t, ).

For example, barb(k(z),z) = 2, as (4) has two antecedents for z. Recall that we use
e-presented rules and ruloids; among other things, this guarantees that each variable in a
rule appears in at least one antecedent. Thus, barb(ax,x) = 1.

Definition 3.3 A rule p with source f(&) is straight if p has exactly one antecedent for each
argument x;. Non-straight rules are branching.

For example, (4) is not straight; (6), (7), and (8) are straight.

Definition 3.4 A univariate term t is straight if barb(z,t) = 1 for each x € Vars(t). We
define Terms] to be the set of straight univariate terms.

For example, k*(z1, z3) is straight, and k(z) is not. Indeed, k*(x1, z2) is a straight version
of k(z), in a sense we will make precise. To describe the correspondence between k(z) and
k*(z1,z2), we several things.

o First, we need a function (-)*, taking terms to their straightened versions: we will have
(k(z))" = k*(x1,22). Recall that k and k* are simply operation symbols; the right
hand side of this equation is just a term.

e We need to explain that z; and z; in £*(z1, z2) both correspond to x in k(z); we thus
have a map X(-) = &| () : {z1, 22} — {2}, with X(z1) = ¥(z2) = z. The notation
(z
X (z') is intended to be reminiscent of fractions: we use conventions so that generally
X(z') = .
X!

o We need bifurcation rules, like (7), which allow k(z) to copy its argument and run it
along some 7-steps.
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e We need a correspondence p — p* between the rules for k(z) and the rules for k*(zq, z2).
For example, (4)* = (6), and the two rules of (7) correspond to the two rules of (8).
Note that this is a bijection between the rules for k(z) and those for &*(zy, x2), and
that the rules corresponding to the bifurcating rules are patience rules.

These requirements are formalized in the following definition.
Definition 3.5 A positive GSOS(¢) language L is fully WB cool if there is a mapping
() : Terms; — Termsy, and, for eacht € Terms;, a mapping %| () : Vars(t*) — Vars(t). Let
:

X'}
X

(z) = {:1:' € Vars(t*)| % (2') = x} When t is clear from context (which is almost all the
¢

time), we write these as simply %(z') and &2 (z). Note that X(-) is a substitution, and we
may apply it to terms and the like.

1. Ift is straight, then %(t*) =t.

X7

2. If z is active in t, then for all ' € &3 (z), there is a ruloid bit, € R(t,7):
X T

o 2w bule = wl(pE) =2) A fe,2) # 0,20}

T

t — o(t)

(9)

where v, ’s are distinct fresh variables, and o(z') = vy for each z'. bi, is the bi-
furcation ruloid of t for z'; if t is straight, it is also called the patience ruloid for
z'.?

3. The only ruloids with 7’s in the antecedent are the bifurcation ruloids.

4. For allt and a, there is a bijection (-)*: R(t,a) — R(t*, ) such that:

ante(p) = %(ante(p")) (10)
target(p) = target(p*) (11)

Note that Definition 3.5 part 4 implies that the variables appearing in p and p* are closely
related. For any ruloid p, we have

k) SRS )
r — Yy .  —y
p: p:

x [o4
t — u t* — u

Note that TargetVars(p) = TargetVars(p*). As p* is straight, for each 2’ € SourceVars(p*)

there is exactly one antecedent z’ . y of p*. There is thus a bijection XYI() from

TargetVars(p*) to SourceVars(p*), where ¥ (y) = 2’ iff 2 L. ye ante(p).?

2Recall that the source and target variables of a GSOS(¢) ruloid must be disjoint. Thus, we must introduce
new variables v,/, to avoid possible name clashes.
3Note that p is an implicit parameter of these functions.
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Similarly, for each y, there is a unique € SourceVars(p) with an antecedent z <. U3
let ¥(-) : TargetVars(p) — SourceVars(p) be the function associating z’s with y’s. It is
not in general a bijection (though it is by definition a bijection for straight ruloids); let

B(.) : SourceVars(p) — p(TargetVars(p)) be given by ¥ (z) = {y|§(y) = x}
Note also that if p is a bifurcation ruloid, then so is p* and vice versa.

3.2 Weak Bisimulation is a Congruence for fully WB cool Lan-
guages

In this section, we show that weak bisimulation is a congruence for fully WB cool languages.
In Section 3.2.1 we develop a more local equivalent definition of weak bisimulation; which
we use in Section 3.2.2 to prove the main theorem.

3.2.1 Local Weak Bisimulation Relations

It is convenient to use an alternate version of weak bisimulation, with a much more local
character.

*a

Definition 3.6 p—oqiffa=r7andp A g, ora# 7 andp —> q. A relation —
is a local weak bisimulation relation if, whenever p — p' and p —=+ ¢ for some «, then

p —o ¢ and ¢ — ¢'; and vice versa.
Lemma 3.7 Every local weak bisimulation relation — is a weak bisimulation relation.

Proof: Suppose that p — p’ for a local weak bisimulation relation —, and that p = gq.
There are two cases: @ # 7 and @ = 7. We only present the o # 7 case. In this case, we

have p ="+ ¢ for some m, n. We may then fill in the following diagram from the left,
using the definition of local weak bisimulation relation repeatedly:

T T T « T T

P = Do 1 e > Pm Q1 ~Gqn = q
T T T ) « T
Po= py o py 0 —op, o qy o —og, = ¢

It is straightforward from this that p’ =i g’ and ¢ — ¢ as desired. é&

3.2.2 Weak bisimulation is a congruence

We use standard bisimulation methodology to show that p < p’ implies f(p) & f(p'). We
construct a relation — which includes < and is closed under application of operations. The
diacritical conventions used in this proof are summarized in Figure 4.

Definition 3.8 We define p — p* to hold if:
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t*, p* | Straight versions of ¢ and p

x Source variable of p
! Source variable of p*
Y Target variables of p and p*
p*,0* | Things on the right-hand side of —.

o1 Components after one 7-step of computation.
o) Components after all their 7-steps.
o Components after one « of computation.

Figure 4: Diacritical Conventions

1. p&p*, or

2. There is a univariate term t, and substitutions o and o* on Vars(t), such that for all
x € Vars(t), o(z) — o*(z) and p = o(t) and p* = o*(t).

3. There is a univariate term t, and substitutions o on Vars(t) and o* on Vars(t*) such
that p = o(t) and p* = o*(t*), and V' € Vars(t*).0(X(a")) — o°(z’).

4. p*~pby3
Note that — is symmetric.

Theorem 3.9 If £ is a fully WB cool language, then weak bisimulation is a congruence

for L.

Proof: By Lemma 3.10, — is a weak bisimulation relation. Suppose that p; & p! for
¢ = 1,2,.... It suffices to show that f(p) < f(p') for all operation symbols f of £. Let
t = f(Z), and define o(z;) = p; and o*(z;) = p?; then we have f(p) = o(t) — o*(t) = f(7)
by clause 2. Hence f(p) < f(7') as desired.

Lemma 3.10 — s a weak bisimulation relation.

Proof: It suffices to show that, if p — p* and p —=+ ¢, then there is some ¢* such that

p* —0 ¢* and ¢ — ¢°*. There are four cases, depending on the reason that p — p°*.

1: This case is trivial.

2: In this case, p = o(t) and p* = o°*(t), where Va € Vars(t).o(z) — o°(z). Let p be the
ruloid enabling p — ¢, and u = target(p). There is an instantiation & of Vars(t),

such that ¢ = &(u) and for each antecedent x —*+ y of p, we have

o(z) =~ 5(y) (12)



By (12) and the induction hypothesis, for each z . y, there are terms d°*(z’) and
6*(y) (where 2’ = ¥ (y)) such that,

(=e = o*z) = () = &y — o(y)
(=7 = o'r) o @) = ) — o) (13)
Else o*(z) — &*(z') L a*(y) — o(y)

We have two cases, depending on whether p was an action rule or a bifurcation rule.

2.action: In this case, no ( is 7. We have two subcases, depending on whether or not
any o*(z) takes a 7-step in (13)

2.action.no: In this case, we have o*(z) LN *(y) for each antecedent x Ly

of p. Hence, p applies to p* = o*(¢):
P e o) =
and ¢ = 6(u) — 6°*(u) = ¢°* as desired.
2.action.yes: In this case, there is an antecedent o, Yo in ante (p) such
T+ , , . . . .
that o*(zo) — 6°*(xg). Let 25 = ¥ (yo). In this case, there is a bifurcation

ruloid (except for variable names) biig’ which is

To — vxé,{x . x'|%‘,(x')::n/\(;z:7é:c0\/x'7éx6)}

t — t*[xo:= Vg ]

(14)

We know that

0% (o) —o * e %(h) —e 6°(yo)

Let o} be the substitution on Vars(¢*) given by:

o/ I\ _ r® = 1?6
oy (z') = { o*(Z(z')) otherwise

By the bifurcation rule (14)

pt — o}(t*) = p}

Now, we will run p} with patience ruloids until it is ready to execute p* the
right way. For each 2’ ., y in ante (p~) , we have of(z') A o*(z') and
for all 2/ —» y, we have 6*(2') = of(2') = 0"(%(33')). Hence, we have
transitions: .

pi —— (1) = pj
Now, for each antecedent L y of p~, we have ¢°*(z’) A, 7*(y), and
for each antecedent @’ —— y, we have 6°(z’) = 6°(y). Hence p* applies to
Py

Py — o*(u)=¢".

q — ¢°* by part 3 of the definition.
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2.bifurcation: In this case, p = bi;, for some z;. Let zo = %(zp). Let 6(zp) be the
7-child of o(zo) that caused the transition, and 6(a’) = a(?(m')) for other z'’s.
Then ¢ = 6(t*). By the induction hypothesis, there is a process ¢*(zf) — &(x}p)
with o*(z) - 6°*(zf). For each o’ # z{, let 6°(2') = 0'(§(x')) There are two
cases: n =0 and n > 0.
2.bifurcation.(n = 0): We have 0*(zo) — 6(zf). Furthermore, for each o' # x,
g(z') = a'(%(x')) — &(z'). Hence

¢ =p=0(t)—a(t)=¢

as desired.
2.bifurcation.(n > 0): This is basically the same as case 2.action.yes.

3: In this case, we havep = o(t), p’ = o*(t*), and for all 2’ € Vars(t*) we have 0(%(:10')) — o*(z).
Let p be the ruloid and & the substitution for target variables enabling the transition
p —— ¢. That is, for all antecedents z <. y of p, we have o(z) L. a(y); and
also p = o(t) and ¢ = 6(u) where u = target(p).

By the induction hypothesis, we have for each antecedent 2’ . y of p*, a process
6*(y) such that

(=e = o°(z) = o) = &y — oy
(=7 = o'2) — &) = &0 — 5y (15)
Else o*(z) - (2) - 6'(y) — 6(y)

3.action: Unlike most other cases, we don’t need to apply a bifurcation ruloid to p*;
it’s already bifurcated. By repeated uses of patience ruloids for p*, we have

*

po — U.(t*) A of,o(t*) — p;.
And by p*, we have
Py — &*(u)=¢"
Now, we have ¢ = 6(u) — 6°*(u) = ¢° as desired.
3.bifurcation: Otherwise, p is a bifurcation rule, p = bi;(). Let o = %(z5). Then
g = 6(t*), where o(z) —— &(}) is the instantiation of the (unique) non-e
antecedent of p, and 6(z') = J(L(x’)) for 2’ # zf,.
By induction, we have o*(z}) —— &°(a}) — &(z}). Let 6°(z') = o°(z!) for

x' # x.

By repeated use of the z{) patience rule for ¢*, we have

and ¢ = 6(t*) — &°(t*) = ¢* as desired.
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4: In this case, we have p = o(t*), p* = 0°(t), and V2’ € Vars(t*).o(z') — o* (XL( )) Let p*

enable the transition p —— ¢. As usual we have

(=¢ = o*x) = () = oy — oy
(=717 = o*z) —— *(zf) = &'(y) — a(y) (16)
Else o*(z) - x) S 5'(y) — 6(y)

There are two cases, depending on whether p is an action or bifurcation rule.

4.action: We have two subsubcases, depending on whether there are any 7-moves or
not:

4.action.no: In this case, for all 2 —+ y ¢ ante(p), we have o°*(z) L *(y).
So, p applies to p* = o°*(t), giving us the transition

as desired.

T+ A
4.action.yes: Let yo be a y such that o*(z) — 6°(2’), where z}, = ¥(yo), and
Tg = §(y0) Clearly, zq is active in p, and hence there is a blfurcatlon ruloid

biig)- We have

*

T . T ‘e Jo/ ~e
o*(zo) —= oi(zp) — 6°(z5) —> °(yo)

Let o3(z}) = o*(Z(2))) for all 2 # z. The bifurcation ruloid bi;() enables
the transition

T .

p* — o}(t") = pi.

We have, for all active 2/, o(z’) AR o*(z'); so repeated uses of the patience
rules for t* gives us

7.‘

pi — o*(t") = p}

Now, p* applies to p3, giving

as desired.
4.bifurcation: In this case, p is a bifurcation ruloid biié. Let p* be the bifurcation
ruloid biiz. We have o(z)) — &(x}), and let &(2') = o(a') for all 2’ # z}. Let
zo = %(zp). By the induction hypothesis, we have o*(x0) 7 o(zpy) — &(xp).

Let 6*(z') = o ( (x ')) for all 2" # . We have two subsubcases, depending on
n:

4.bifurcation.(n = 0): In this case, we have 6*(zo) = 6°(2}) — &(z}). For all
z' # x, we have o ( (x ')) — o(2') = 6(z'). Hence,

¢ =0%t) —6(t")=gq

as desired.
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4.bifurcation.(n # 0): In this case, we have

o*(z0) — of(zh) T 6°(ah) < &(ab).

The bifurcation ruloid bitr(,) applies to p*:

pt — o}(t")

where o3(2') = a'(%(a:')) for all 2’ # 2. We now use n — 1 patience ruloids
on o3 (t*):
oi(t*) —— 5 (t") =¢"

Then ¢ = 6(t*) — &°(t*) = ¢* as desired.

3.3 Finitary Characterization: WB cool Languages

As we have seen, fully WB cool languages respect weak bisimulation. Unfortunately, the def-
inition of fully WB cool is infinitary. In this section, we present finitary, decidable necessary
and sufficient conditions.

Definition 3.11 A language is WB cool if the terms f(&) where f is a function symbol and
T are distinct variables satisfy the fully WB cool condition.

The proof that WB cool languages are fully WB cool proceeds by constructing the ruloid
sets R(t, a) for each ¢t and e, and then checking that they satisfy Definition 3.5. The ruloid
theorem will be presented as what amounts to a functional program, in which we construct
the set of ruloids for each term by induction.

Theorem 3.12 Let £ be a WB cool language. Then L is fully WB cool.

Proof: We first construct sets R(t,a) for all terms ¢ and actions a € Act, ., and then show
that are fully WB cool. The constructions for ¢ are easy:

’R(t,e)z{ {x . vr|x€Vars(t)} }

t —— oft)

where o(z) = v,. The constructions for variables are equally easy:

R(z,a) = {_S'J_fi}
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Suppose, then, that ¢ = f(#) is a univariate term. Consider a rule p for f:

Ty —> Yij

f(3) — u

p:

Choose ruloids p;; € R(ti,(i;). These ruloids give conditions under which ¢ L, They

have the form:

{z L w|z Lewe ante(pij)}
Pij =

Cij
ti —_— uij

Rename the target variables as necessary in some fixed way so that Vars(u,;) are all disjoint.
Let the ruloid p be:
Ui; ante(pi;)

t — ulyij := uij]

p=
Note that by hypothesis the ruloids for (f(Z))* are in the right correspondence with those
for f(Z). That is, corresponding to p there is a ruloid:

Cij Cij
= {xﬁj — yij|%($§j) =Ti, T; — Yi Ea"te(P)}

(f(@)" — u

and by induction to each p;; there is a valid ruloid L

. {z’ LI w|3z Swe ante(p;;). %(2') = z}
Pij =

* .
t,b I ul']

Thus, there is a valid ruloid

5 Ui; ante(p;;)
= ulyij = uq
where

"= (f(2))]ei = 1]

Furthermore, we define | (2) for ¢ to be the union of the %
1

That is, if z € Vars(t), then z € Vars(¢;) for precisely one i. Let %
check the parts of Definition 3.5.

(+) functions for the ¢,.
ti

(2) be X| (z). We now

t;

t

Part 1: If ¢ is straight, then each ¢; is also straight. Hence X (¢¥) = t;, and furthermore f(Z)
is straight; hence (f(Z))* = f(Z), and so X(t*) = t.

x?

Part 2: Suppose that z is active in ¢, and 2’ € &1 (z). We know that z € Vars(t;) for some
¢, and z; is active in f(&£).* Bifurcation ruloids for ¢ may be built from the bifurcation
ruloids for f and ¢;.

“Note that the ruloid for an ¢ transition has only ¢’s as antecedents.
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Part 3: Suppose that p has a 7 in an antecedent z —— w. Then by construction, some pij
also has z ——+ w as an antecedent. Hence pi; is a bifurcation ruloid for ¢;. As it proves

a conclusion of the form t; —— u;j, the rule p must have an antecedent z; — Yiis
hence p is a bifurcation rule as well. By construction,  is also a bifurcation ruloid.

Part 4: Straightforward from the definitions.

&

4 Rooted Weak Bisimulation

Weak bisimulation is not a congruence for most process algebras. Indeed, such basic opera-
tions as nondeterministic choice and selective communication are not WB cool and do not
respect weak bisimulation. For example, the CCS rules for + are

a / a /

r+y — 2 gty —

for all @. In particular, there are no patience rules. We have a < 7a, but a+b & ra+b. For
this reason, some researchers [Hen88] introduce patent versions of +, with the above rules
for all @ # 7, and two patience rules:

7 ' T ’

T+py — ' 4y ctny — Y +ny

With this notion of choice, one may build a WB cool version of CCS, for which weak
bisimulation will be a congruence.

The more standard solution is to use a slightly different notion of equivalence: rooted weak
bisimulation, called rooted 7 bisimulation in [BW90]; Milner originally called it observational
congruence [Mil80]. The definition is given in Definition 1.4.

The characterization of RWB cool languages is rather complicated. Rather than do it
immediately, we start with a related, slightly stronger notion, strongly rooted weak bisimu-
lation, which is quite reminiscent of rooted branching bisimulation. SRWB cool languages
are much like RWB cool and RBB cool languages, but the definitions and proofs are much
simpler. We deal with rooted weak bisimulation proper in the next subsection.

4.1 Strongly Rooted Weak Bisimulation

For expository convenience, we introduce a slightly strengthened version of rooted weak
bisimulation. The rule format for rooted weak bisimulation is based on the ideas used in
much simpler form here.

Strongly rooted weak bisimulation is a congruence for a wider class of languages than
ordinary rooted weak bisimulation. It probably roughly as useful for actual verification as
the ordinary relation. The canonical difference is, a + 7a <, 7a, but a + ra &, 7a. The
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theory of strongly rooted weak bisimulation remains to be developed. Perhaps it will turn
out to be good for something.

Definition 4.1 Processes p and p' are strongly rooted weakly bisimilar, p <. ¢, iff when-
ever p £, q for some 3 € Act,, then p/ s, q' & q, and vice versa.

This is a direct definition of &, in terms of &.

We introduce a rule format which guarantees that all operations respect strongly rooted
weak bisimulation. Note that &, is an extremely powerful relation on its first move; it has
the full power of strong bisimulation on that move. It is not surprising that it respects a
rule format which has the full power of GSOS rules available on its first move. After the
first move, &,, is simply <; so we use the WB cool rule format.

A SRWB cool language, like CCS, then, has two kinds of operations. First, it includes a
WB cool sublanguage of tame operations — for CCS, all the operations except +. Second,
it includes some wild operations defined by arbitrary GSOS rules — like + — which are
required to yield terms in the WB cool sublanguage after the first step of computation.
Formally:

Definition 4.2 A (not necessarily positive) GSOS(e) language £ is SRWB cool iff the func-
tion symbols can be partitioned into two sets, of wild and tame operations, such that

1. The targets of all rules in L are univariate terms mentioning only tame operations.

2. The sublanguage of L given by just the tame operations and all their rules is WB cool.
Theorem 4.3 Let L be a SRWB cool language. Then <, is a congruence for L.

Proof: Clearly, if o(z) & o'(z) for all z € dom(c), and ¢ is a univariate term mentioning
only tame operations, then o(t) & o'().

Now, suppose that p; &, p! for each i. It suffices to show that f(5) &, f(7). Suppose
that some rule p enables a transition f(5) —— ¢ = o(t) where p = o(source(p)) and
t = target(p) and o |= ante(p). For each positive antecedent z; — y of p, we have
pi N o(y). Hence, p/ b o'(y) for some o'(y) & o(y). Furthermore, if p; —b», then
Pl _’s as well. In particular, p applies to f(#), giving a transition f(7') —— o'(target(p)).
By the first paragraph of this proof, we have o(target(p)) & o’(target(p)). As this holds for
all transitions from f(p), and (by symmetry) from f('), we have shown that f(5) <, f(@).

4.2 Rooted Weak Bisimulation

We now adapt the tame/wild idea to rooted weak bisimulation proper. First, we give a more
local definition of rooted weak bisimulation; then, exploiting that definition, a rule format
respecting it.
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Definition 4.4 A symmetric relation ~ is a local rooted weak bisimulation if, whenever

p~p and p —>+ g, then there is a ¢’ such that p/ Ter] q¢ £ q. Two processes are locally
rootedly weakly bisimilar, p &, p’ iff there is a local rooted weak bisimulation relating them.

As with ordinary &, this is a direct definition in terms of <. Local and ordinary rooted
weak bisimulation differ formally in that the local relation only looks at a single step of one
process, whilst the ordinary relation allows any number of 7 steps of the other.

Lemma 4.5 Local rooted weak bisimulation coincides with rooted weak bisimulation; that is,
perp fipe,p.

Proof: Suppose that p <. p/, and that p 77T r. We must show that there is a such

T

thatp T & r. fn=0,then p —a> q . r for some ¢. By p &, ¢/, we have

P ———T>q3q.Aquq,wehaveq ——»r<:>r Hence, p' —T—?Lr@rasdesued
T T+ T 7'7'
Otherwise, n > 0, and we havep — ¢ — r. Fromp &, p’ wehavepy = ¢/ & ¢,

and from weak bisimulation ¢ ==~ ' & r. Again, putting these together gives us
7 2 ¢ & 1 as desired.
7.‘ 'T‘

For the other direction, suppose that p &, p/, and p —=+ ¢. We thus have p 727 g,
with both 7*’s being empty; hence, the rooted weak bisimulation condition applies, and

v rar] ¢ & q as desired. é&

We can use the characterization as local rooted weak bisimulation to deduce a rule format
which respects &,. Some operations, the tame ones, will respect <; in CCS, this is all
operations except +. The remaining operations, the wild ones, like + need not respect weak
bisimulation; but they must have ruloids which force them to respect local rooted weak
bisimulation.

For example, suppose that for each rule

a

T — y
fle,z) =~ ¢
that there are ruloids of the form:
T — y y —2» 2 y — 2 an)
flz,z) -t t 2o tly = 2] t ety =2

where ¢ is some tame term. For example, if f were +, t would be .

Suppose p &, p'. Intuitively, the first rule allows f(p/,r) to take a 7-transition to an
instance of ¢, handling the first 7 moves of p’. The second ruloid lets ¢ do the transition that
f did; the third ruloid handles the final 7 moves of p’. Suppose we have transitions:

a
p q




™~

P1 > P2 P3 Pa Ps Pe 0
\\b Y
0 0
a c
szs Pés 0
|l
b
P/123' Pgs —0

Figure 5: Rooted Weakly Bisimilar Processes

The above rules give (roughly)

f(p,r) - tly = ¢]

T b T
f,r) —tly = p] — ty := i) — t[y := ¢]
In general, though, we need some more structure. Suppose that we have the operation

f, whose rules include

a
r—19

fl@) =~ dy  fl@) -2
where d.y is prefixing, (3). For example, f(a.c) « b.d.c + d.a.c. Consider the processes
p = tra(b+7(b+ 7c)) and p' = a(b+ 7c) + ac + 7.7.p'; see Figure 5, where the names
of the states show the correspondence between the processes. We have p <, p'. (These
processes are chosen to illustrate all the difficulties that arise in the general case.) We will
have f(p) &, f(p'), but this will require several new operations and a new rule for f.

Let us try to match the transition f(p') *. d.c with some computation from f(p). We

have to do several things. First of all, we need to absorb the transition p; —— p,. When
we do this, we lose the option of performing the d action that is available to f(p); we have

committed to the transition f(...) ALy , though it is not yet available. Thus we must have
a transition f(p) —— g(ps) for some new function g.
g will wait patiently for its argument to perform an a, with a transition g(p,) — 9(p3),

and when it does, will perform something like f’s a transition: g(ps) b h(ps). Note that
we cannot simply have g(ps3) move to d.ps, as the latter has the option of eventually doing
the string db, but f(p')’s child d.c cannot.

T*b7T*

The function A intuitively means that we have performed the f(...) =2+ and are trying
to get into a state in which it is appropriate to get to its target d.c. It will discard 7 actions,

in a transition A(ps) —— h(ps). When the process is about to get to the right state, A will

become the target of f’s original transition: A(ps) — d.ps < d.c.
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Thus, in general, to match a transition from f, we need two intermediate states — g
and % in this example — which represent the intent to do that transition, with g being the
state before the transition has happened, and % the state afterwards. This rather compli-
cated example inspires the following equally complicated definition. Given the top transition

f —=+ tin this diagram, we insist that the rest be possible as well (where there are 7 loops
at t! and ¢?):

f t
T T
ctt ¢ Lo

Definition 4.6 A positive GSOS language is RWB cool if the operations can be partitioned
into tame and wild operations, such that:

1. The target of every rule contains only tame operations.

2. The sublanguage of tame operations is WB cool.

8. For every rule p with target f(¥) —— t for a wild operation symbol f, the following
exist:

(a) Terms t' and t*, such that Vars(t), {7}, Vars(tl), and Vars(t2) are mutually
disjoint.

(b) Bijections ;(Yl_() . Vars(tl) — Vars(t) and X_%() : Vars(t2) — Vars(t). (Let %()
and %() be the inverses, and let x—xl—(a:l) = ?(X'Ll (331)))

(¢) The following ruloids, for each xo which is active in f(Z), each zd such that

Ty = X—xl—(:v(l)), and each x3 such that xg P, Yo € ante(p) and X%(a:g) =0

w e b fr S lem 2 () (om0 £ )

(18)
f(@) — ¢

ol emoni-zl)
f(@) =t

z) L. 35',{:1:1 = xl’lfcl#xl} (20)

where tY = ¢1[z := TV]
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{xl _< 22|a <. yeante(p),xzx—xf(xl),y=x—¥2-(a:2)}

(21)

tl _a’ t2

¢ ¢

{:1:1 —— ylr — y € ante(p),z = ;Xl-(xl)} (22)

et
2 — x?’/’{x? — lelxz#x(z)} (23)

t2 __T_’ t2/

where t¥ = ¢2[7? := §¥]
2 _ T 2 _° — 2 0

N RN S

12 1o ¢

In most cases, t! and ¢? will simply be renamings of ¢; for +, where ¢ is a target variable
z', t! and 2 are other variables y’ and #’.

Theorem 4.7 Rooted weak bisimulation is a congruence with respect to all RWB cool lan-
guages.

Proof: Let £ be a RWB cool language. It is clear that if ¢ is a univariate term containing
only tame operations, and o(z) & o°*(x) for each z, then

o(t) & o°(t) (25)

Let p; &, p} be vectors of closed terms of £. It suffices to show that p = f(p) &,
f(p*) = p*. Suppose that p —+ ¢, and let p be the rule for f enabling this transition. Let
o(z;) = p; and o*(z;) = p?. For each antecedent x L y of f, we have o(z) L o(y) for
some &. By local weak bisimulation, let z! = %(y) and 2% = ~ W)

o*(z) Rl ag(:r:l) L a;(:cz) R *(y)

where 6(y) & 6°*(y) for each y. What happens next depends on whether or not there are 7
actions.

Vy.my = n, = 0: In this case, we have o*(z) <, o°*(y) for each antecedent z L y of p.

Hence p applies to p*, giving a transition p* — ¢* = 6*(t), and ¢ & ¢° by (25).

Vy.my, = 0, and 3yo.ny, > 0: In this case, use (19) to get a transition
(] L] g 18 °
p* =0 (f(T) — o(t?)
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Now, apply the rules (23) (Ey ny) — 1 times, giving us transitions

o2(t) T oi(t?) (26)
where o2(z2) L o%(z?) — &(yo), and o3(2?) = &.(x_yf (xz)) for all other z2.
Then, apply the rule (24), giving a transition

o3E) —e G°(1) = 4" 27)
From (25), we have ¢ & ¢*. That is, p°® i g* as desired.

dyo.my, > 0: For this case, we use (18) to get a transition
pt = oa(t!)

7M%0 -1

T 1 1
where o°(z9) — a;(x—y(yo)> — O'b'()—(;l-(yo)>. Let o2(z!) = a'x—xf(xl) for all
other z'. We then use (20) (Zy my> — 1 times, giving us transitions

'T‘

oa(th) — a3(t!)
We are now ready to use one of the ruloids giving ? a a-action. There are two subcases,
depending on whether or not 3y;.my, > 0. If no such y; exists, then o* (:cz) =d*(y)
for each y = ;(% (51:2), and so we use (22) to give a transition

() = *(t)=q"24q
which proves the theorem in this case.

Otherwise, such a y' does exist. In this case, we use (21), giving a transition

oi(t') - ar(e?)

T

We then proceed as for (26) and (27), giving 02(#?) — ¢* & q.

Thus, rooted weak bisimulation is a congruence é&

4.3 Discussion

The SRWB cool and RWB cool formats provide an amazing degree of programming power
for a language respecting silent bisimulation. They allow operations like +, and even some
operations which require negative rules: e.g., a one-step priority operator, which gives the
action a priority over b:
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Note that the full priority operator,

a ’ b ' a
r — r — 2,z —»

0(z) - 4(z') 0(z) — 6(z')

which is not cool. The negative rule forces 6 to be wild, but the targets of both rules use 6
and thus it must be tame. However, this operation does not respect ¢»,,. Recall the process

Py, of (5), which alternately offered a b and an a transition; recall that Py, & a + b, though
they are not strongly rooted weakly bisimilar. We have 0( Py,) LR 6(0), but 6(a+b) L
and 0(a + b) —» ; hence # does not respect weak bisimulation. As Py, < a + b, we have
aPy, &, a(a+b). But 8(aPy) —— 0O(Py,) and 0(a(a + b)) —+ 0(a + b), and hence the

two are not strongly rooted weak bisimilar.

5 SOSses for branching bisimulation

Branching bisimulation is a finer relation than weak bisimulation. Not surprisingly, a wider
class of operations respect it. Here, for example, is an operation which respects branching
bisimulation but not weak bisimulation:

T

r — 2 x — 2’ x — 2
h(z) —~ 0 h(z) —= h(z) —- h(z')

Note that this is almost a WB cool operation, with A* = h. However, the target of the b-rule
is x rather than z'; the rule is not e-presented, and if it were it would not be straight, and
thus we would not be allowed to have A* = h.

Let p=a+7band ¢ = p+b. It is easy to verify that p & ¢, but p ¢4 q. We have
h(p) & a + 7bb, and h(q) LN q — 0. In particular, h(q) R , but A(p) cannot take
these actions even with 7’s interspersed. The two are thus distinguishable by .

We define fully RB cool languages and related terms in much the same way that we
defined fully WB cool languages. Indeed the definition differs only in two places from Def-
inition 3.5: £ is a GSOS language (without e-transitions) rather than a GSOS(e) language
(requiring e-transitions.), and the matching between targets, part 4 is slightly different than
for Definition 3.5. barb(t, z) must be redefined: barb(¢,z) must be defined as 1 if no rule for
t has z as an antecedent.

Definition 5.1 A GSOS language L is Fully RB cool if there is a mapping (-)* : Terms; — Terms],
and, for each t € Terms,, a mapping %’ (+) = Vars(t*) — Vars(t). We use the same auxiliary
¢

functions as in Section 3.

1. If t is straight, then X(t*) = t.

X!
2. If z is active in t, then for all z)) € X} (z), there is a ruloid bitr(,) € R(t,7):

T
r — v

28
t —L. Wxé(t*) ( )
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where v is a fresh variable, and

oy (a) = { f(ml) o

[ |
' =z

bii(,) is the bifurcation ruloid of t for xy; if t is straight, it is also called the patience
ruloid for zy,.

3. The only ruloids with 7’s in the antecedent are the bifurcation ruloids.
4. For allt and a, there is a bijection (-)*: R(t,a) — R(t™, «) such that:

ante(p) = X(ante(p")) (29)
target(p) = X(target(p")) (30)

The functions &i(z), % (y), and %(y), are defined as before.

Definition 5.2 If { is not a univariate term, we define t* as follows. For each variable z,
choose an infinite number of variables z1, x5, ..., distinct for all x and i, and Pstrip the
function sending each x; back to x. Let t be t with the i’th occurrence of each variable x

replaced by x;. We define t* to be t*, and % i(:r.') = Pstrip <% 7f(ac’)).

Definition 5.3 We define p — p* to hold if:
1. p <3 p*, or

2. There is a term t, and substitutions o and o® on Vars(t), such that Vz € Vars(t).o(z) —
o*(z) and p = o(t) and p* = o°*(t).

3. There is a term t, and substitutions o on Vars(t) and o® on Vars(t*) such that p = o(t)
and p* = o*(t*), and Vz' € Vars(t*).0(%(z')) — o*(2’).

4. p*—pby 3.
Note that — is symmetric.
Theorem 5.4 Branching bisimulation is a congruence for every RB cool language.

Proof: As with Theorem 3.9, it suffices to show that — is a branching bisimulation relation;

that is, whenever p —~+ r, that either

[T} =7 and r — p*:

or
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@: there are ¢*, r* such that p*® AR ¢* —=~ r* and p— ¢* and r — r*:

«
P -7
:\/ -'\/ N’
*
T «
(] [ ] L]
p q T

The proof that — is a branching bisimulation relation is by induction on the reason that

p ~— p°*, plus an extensive case analysis. Suppose that p — p®, and that p —>+ r. We use
some more diacritical marks beyond Figure 4:

o4+ | The substitution which will prove the theorem
i | The target of p*, which in this setting is different from that of p.

1: This case is trivial.

2: Suppose that p = 6(f) — 6°({) = p*, where &(z) — ¢°(z) for each ¢ € Vars(i). Now,
t need not be univariate. However, by definition, there is a univariate term ¢ and
substitution % : Vars(¢) — Vars(i) such that ¥ (t) = ¢. Let 0 = 601 and 0° = &° 0 3.

Let p be the ruloid for t and 6 O ¢ be the instantiation giving p —=» r. Let
u = target(p); note that r = &(u). There are two cases, depending on the kind of
ruloid p is.

2.bifurcation: In this case, for some zo € Vars(t) and zj € Vars(t*), we have

.
o — Yo

p= -

t — Sox{)(t*)

As o(z0) — 0*(20) and o(z9) ——~ &(yo), the induction hypothesis shows that

o*(zo) matches o(zo)’s move. There are two cases, depending on how o*(z)

matches o(zg)’s transition.

2.bifurcation.[7]: In this case, we have 6(yo) — 0°*(zo). Let o4 (2') = 6 (Pa
We have oy (2') — o*(%(2')) for all 2/ € Vars(t*). Hence r = o,(t
o*(t) = p by part 4 of the definition of —.

2.bifurcati0n.@: This case is like 2.action below, where 3y = 7, and there is
only one antecedent of the rule.

2.action: In this case, p is any non-bifurcation ruloid. Let u = target(p). For each

antecedent z —» y of p, we have:




where 2’ = %(y). There are two subcases depending on whether or not there are

any 7-steps in any transition o*(z) — &°*(z’).

2.action.no: If there are no 7-steps in any transition o*(z) ARG *(2'), then
we have o*(z) £, 6°*(y) for each antecedent z 2., y of p. So, p applies

directly to o*(t), giving us a transition p* —» &°(u) = r*. Let ¢* = p;

then we have @ as desired.

2.action.yes: Otherwise, for some antecedent zo % yo of p, we have 0*(zg) ——

of(ah) - &%(ah) 2 5°(yo). Let of(a) = o°(3(x')) for all &' €
Vars(t*) — {z'}. We apply the bifurcation ruloid blx , which gives a tran-

sition .

o*(t) —+ o1(t") (31)
We now apply patience ruloids for t* to move all the of(z')’s to 6*(2')’s:

o (t) = (1) (32)
Note that p = o(t) — 6°(t*) = ¢* by Definition 5.3 part 3.
The ruloid p* applies to 6°(t*), and we have the transition:

G () =~ &°(ii). (33)

where i = target(p*). Recall that X (u) = u. Let r* = 6°(u). Let o4(y) =

6(y) for each y, and oy (2) = o(X(z )) for each z'; then o4 (i) = 6(u) = r.
We have 0, (2) — 6°(z) for each z € Uy, and hence r — r*. This completes
the @ diagram as desired.

3: In this case, we have p = 6(f) and p* = &*(£*) for some term {. As before, we uniquify
Varlables, giving us a univariate term ¢ and substitutions o and o® such that p = o(#)
and p* = o*(t*). Let p be the ruloid for ¢ and & D o the instantiation giving p — 7.
Let u = target(p), and note that r = &(u). There are two cases, depending on whether
p is a bifurcation or an action ruloid.

3.bifurcation: In this case, p has the form

T —_—
p= oT Yo
t — Pz (t7)
We have
r= 5-(‘19x(’)(t*))
and

There are two subsubcases, depending on how o*(z)) matches o(x)’s move.
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3.bifurcation.[7]: In this case, 6(yo) — 0*(zf). Let oy = 6 0@y, Then for all
z' € Vars(t*), we have o4 (2') — o*(a’). Hence r = o, (t*) — o*(t*) = p by
Definition 5.3 part 2.

3.bifurcation.@: This case is about the same as 3.action below.

3.action: For each antecedent z — y of p, we have a diagram:
B .
5(y)

. .. .

o*(2) T 50(a) L o)
where z' = ¥(y). Unlike 2, we do not need any subcases, as p* is already bi-

furcated. For each antecedent 2/ —"- y of p*, there is a patience ruloid for t*,
giving us transitions

pP=ot(t) —— (1) =¢" (34)
As 6(%(2")) — (') for each z’, we have p — ¢*. Furthermore, the ruloid p*
applies to ¢*(t*), giving a transition

¢t = 5(1) e %) =
where @ = target(p*).
We have 6(y) — &*(
z'. Let o4(y) = 6(y
desired.

y) for each target variable y, and 6(%(2')) — 6°(a’) for each
) and o, (z') = 6(X(2’)); then oy (i) = r. Hence, r — r* as

4: In this case, we have p = 5({*) and p* = ¢*(f) for some term {. As before, we uniquify
variables, giving us a univariate term ¢ and substitutions ¢ and o* such that p = o(t*)
and p* = o*(1).

Let p* be the ruloid for t* and & D o the instantiation giving p ——~ r. Let u =
target(p) and i = target(p*), and note that r = &(ii).
We have two cases, depending on whether p is an action or bifurcation rule.

4.bifurcation: If p is the bifurcation rule for z!, then we must do cases on how

o(z}) — o*(x;), where of course z; = X (zh).

4.bifurcation.[7 We have o(z!) —— oy(z!) — o*(z;). Let o () = a(z}) for
all § # 1. We have ¢ = (i) — o*(u) = ¢* as desired.
4.bifurcation.@: This case is much like case 4.action below.

4.action: For each antecedent z' — v y of p*, we have




where z = X(z’). As usual, there are two cases, depending on whether or not
there are any 7 moves.

4.action.yes: In this case, for some zf), we have 0*(z¢) — o3(z}) AR a°(zp)
Let o7(2') = o*(%(2")) for 2’ # z{. Apply the bifurcation ruloid for z to
o*(t), giving us the transition:

o*(t) =~ oi(t")
and then use patience ruloids for ¢* to give transitions
o) T 5(t) = ¢°

It is easily seen that p = o(t*) — &°(t*) = ¢°*. As usual, p* applies to ¢°(t*),
and we have a transition

As 6(y) — 6*(y) and o(z’) — 6°(a’) for each y and 2’, we have r — r® as
desired.

4.action.no: In this case, p applies directly to p*. We have ¢*(z2') = a*(X(z"))
for each z’, and a transition

PP =g =0t) 2 6°u) = .

Let 04*(y) = 6*(y) and 0,°*(2') = o*(%(a’)); then o4°(it) = 6°(u) = r*. We
thus have r = 6(i) — 04*(i) = r* as desired.

This completes the proof. %

5.1 Finitary Characterization: RB cool Languages

As in Section 3.1, we present a finitary characterization of Fully RB cool languages; indeed,
we show that requiring the operation symbols to satisfy the Fully RB cool requirement
suffices to guarantee that the whole language is Fully RB cool.

Definition 5.5 A language L is RB cool iff the terms f(&) satisfy the Fully RB cool condi-
tion.

As before, we inductively construct R(t,a) and ¢* for all terms ¢, and show that they
work properly.

Theorem 5.6 Let £ be a RB cool language. Then L is fully RB cool.
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Proof: Let

R(z, ) = {_x_—z_»_y_}

Suppose, then, that t = f(£) is a univariate term. Consider a rule p for f:

T~y
p= o 5
f(@) — u

Choose ruloids p;; € R(t;,aij). These ruloids give conditions under which t; =2 . They
have the form:

{z 2wl 2 wEante(pij)}
pi; =

gy
ti E— ’ui]‘

Rename the variables as necessary in some fixed way so that Vars(u;;) are all disjoint, and
the variables in p;;’s are disjoint from those in p Let the ruloid 5 be:

Ui; ante(p;;)

t ——C> u[x,- = ti,yij = uij]

p:

Note that, by induction, the ruloids for (f(Z))* are in the right correspondence with those
for f(&). That is, corresponding to p there is a ruloid:

/ &y Ax (Y o ~ aigyijeante(p)
o = {331'3' - ym|w(l‘¢j) =& T —"

(f(@) — i

with X1 (&) = u and to each p;; there is a ruloid pj;:
f()

{z’ w3 2 we ante(p;;). %(2') = z}
pij =

£ —=
with %(u”) = u;;. Let

t* = (f(Z)) [} == 17]
Thus, there is a ruloid

= Ui; ante(p*ij)
- b . .
t*r —s u[a:; = t;, Yij = ui]']

(-) functions. That is, if z € Vars(t),

t;
(z) for t to be X (z).
t;

Furthermore, we define X| () to be the union of the X
t

then z € Vars(t;) for precisely one i; we define X X

t
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1. If t is straight, then so are all the ¢;’s, and f. Hence X (¢ , an
That is, f(Z)* = f(#). Hence t* = f(i*), whence (t*) = f(% ()

=t

e
Il

St

d H(f(@)) = f(@).
) = f(#) as desired.

2. Just as for this case of Theorem 3.12.

3. Just as for this case of Theorem 3.12.

4. We have ante(p*) = Uante(p;‘j) = &(ante(p;;)) = X(ante(p)). Furthermore, dom <%

Z by construction So,

X(target(p*) = % (iifal; o= t7,y;j = iii;])
= ulz; = E(0), vy = & ()]

= u[:r:i = ti,yij = ui]‘]

as desired.

&

6 Rooted Branching Bisimulation

Branching bisimulation suffers from the same kind of problem as weak bisimulation: some
operations, + in particular, do not respect it. The solution is to use rooted branching bisim-
ulation, Definition 1.6, which is adequate for all of CCS and most related languages. As
with strongly rooted weak bisimulation, a rooted weak bisimulation relation gives us the full
power of bisimulation on the first step of computation, and hence we may use the full power

of GSOS rules.

Definition 6.1 A GSOS language L is RBB cool iff the function symbols can be partitioned
into tame and wild operations, such that

1. The sublanguage of L given by just the tame operations and all their rules is RB cool.

2. The targets of all rules in L are univariate terms mention only tame operations.

Theorem 6.2 Let £ be a RBB cool language. Then «,4 is a congruence for L.

Proof: Just like Theorem 4.3. é

4]
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7 Equational Theories

In [ABV92a], we gave a general procedure for taking a GSOS language £, and building an
extension £’ of £ and an equational axiom system which, with the addition of one induction
principle, is complete for proving strong bisimulations of processes.

[ABV92a] comprises a collection of methods for computing equations and, where neces-
sary, auxiliary operations from the rules of £. The central example is interleaving composi-
tion, (1). Interleaving is smooth but not distinctive — the full definitions are not relevant
yet — and the method of [ABV92a] introduces the auxiliary operation of leftmerge [BK82],
with rules

& /
r — T

- (35)
cly — 2’|y

and the equation
ey =aly+yle (36)

Leftmerge is a very tractable operation, being both smooth and distinctive. The method of
[ABV92a] gives us essentially the axiom system of [BK82]:

(z+y)lz = (zllz2)+ (yll=2) (37)
(az)ly = a(z]y) (38)
Olz = 0 (39)

which is complete for strong bisimulation.

7.1 Equations Fail for Unrooted Weak Bisimulations

However, lL is not WB cool or RB cool, as it doesn’t have a patience rule. Not surprisingly,
it does not respect either weak or branching bisimulation. Letting ~ stand for either weak
or branching bisimulation, we have

an~Ta

However, allL b 4 (7a)lL b; they’re not even weakly trace equivalent:

allb rall b
0|6 allb
b 'V \\b‘
0 0l|6 al|o

N
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Making |l patient, by adding the rule

T /
r — X

(mistake) =
zlly — 2'lly

will, of course, make it respect both weak and branching bisimulation. This doesn’t help.
While the patient Il still enjoys (37), (39), and a suitably modified version of (38), we have
lost the all-important (36). Indeed, consider 7a || 76 and (ralL7b) + (7blL7a). The 7-children
of the former are:

Ta || Tb
7N
al b Tall b
N4
allb
However,
(mistake) (ralL7d) + (rblL7a) - all7b

which is committed to doing the a first; and 7a || 76 cannot evolve via T steps to any state
which is committed to doing a first. Thus the two are not even weakly bisimilar.

Conjecture 7.1 We conjecture that this is not fixable in general; that no non-distinctive
operation can be given a finite ariomization, even with auxiliary operators, with respect to
weak or branching bisimulation.

7.2 Equations for Strongly Rooted Equivalences

The situation for strongly rooted weak bisimulation and rooted branching bisimulation is
much better: the auxiliary operations created by [ABV92a] can be added as wild operations,
and hence those methods give a sound axiomatization.

Suppose that £ is a SRWB cool or RBB cool language. Recall that each rule p of £ has
the form:

where t, is a term mentioning only tame operations.

If £’ is the [ABV92a] extension of £, then all the targets of new rules are (up to renaming
of variables) equal to some targets of rules of £. For example, the target of (35) is the same
as that of (1). Hence, the targets of £’ are all tame terms. Let us declare that all the new
operations are wild. The tame sublanguage of £’ is the same as that of £’, and hence WB
cool or RB cool as appropriate. Thus, £’ is SRWB cool or RBB cool.
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In particular, the new operations all respect &, or «,;. The equations generated by
[ABV92a] are valid under strong bisimulation, and remain valid under coarser relations,
including &, and <,;. Thus, the axiom system is sound.

Completeness is more of a problem, for familiar reasons. We must add axioms describing
the equivalence as a quotient of strong bisimulation. This is a (probably easy) open problem
for strongly rooted weak bisimulation. For rooted branching bisimulation, this is the equation
[BW90]:

a(r(z+y)+ ) = a(z +y).

However, for general processes, this will not be complete. [ABV92a] achieve completeness
by using the facts that (1) two finitely-branching synchronization trees are strongly bisimilar
iff they are bisimilar when truncated to all finite depths, and (2) GSOS languages only
generate finitely-branching trees. Any decent process algebra can define a process p which

is infinitely branching up to —— : that is, there are an infinite number of distinct processes

pn with p —— p,. The best approach we are aware of is the use of auxiliary predicates to
test for boundedness, and take a bounded version of the Approximation Induction Principle;

for details, see [BW90].

7.3 Equations for Rooted Weak Bisimulation

As always, we need to have equations characterizing rooted weak bisimulation as a quotient
of strong bisimulation. For rooted weak bisimulation, these are the familiar

Q. T.T = «aX

a(r(y+z2)+y) = aly+z)

We need to extend [ABV92a] slightly; operations in RWB cool languages are frequently
non-distinctive. The intuition behind distinctive operations is that at most one rule can
apply to any term of the form f(aip1,...,anp,). However, this is frequently not true in
RWB cool languages. For example, in Definition 4.6, if ¢* and ¢ are different, the rules (21)
and (22) give t! two transitions with the same cause. However, the full force of distinctiveness
isn’t required for [ABV92a], nor is it here.

Definition 7.2 Let f be a straight operation in a positive GSOS(¢) language, and p a rule
for f. Thetrigger of f by p is the vector (yi,...,¥n), where ; is the action on the antecedent

Yi
Ty — Yi.
The trigger of a rule describes when it can fire. We are interested in when several rules can
apply to a term. Clearly, two rules with the same trigger fire or don’t fire together. However,

rules with different triggers can also apply; e.g., both rules of (1) both apply to alla, with
triggers (o, ¢) and (g, @). The two rules overlap:

Definition 7.3 Two triggers ¥ and 5 overlap if, for all i, if v; # &;, then either v; or &; is
€. Two rules overlap if their triggers do.
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It is impossible in general to axiomatize operations with overlapping rules directly; e.g.,
there is no finite axiomatization of || [Mol90]. The definition of distinctiveness in [ABV92a]
simply forbade overlapping triggers. For our setting, we need a looser notion:

Definition 7.4 A straight positive GSOS(e) operation f is instinctive if,
1. whenever two rules have overlapping triggers, the triggers are equal; and

2. the rules for f use the same target variables; that is, if t —— vy is an antecedent of

[e4 .
one rule for p, then * —=+ y is an antecedent of every rule p for some a),; and

3. For any argument z;, either all rules have a non-¢ antecedent for x; or none do.

A set of rules is instinctive if the operation defined by only those rules is instinctive.
(Thus, we may speak of a subset of an operation’s rules being instinctive. )

Lemma 7.5 Let f be an instinctive operation, and let 5 be a irigger of the right length for
f. Let R be the set of all rules for f with ¥ as trigger. Let o be the action and t° be the

target of rule p. Let X; = { ;’y' z’ iz . Then |= f(X) = S per @P.tP.

Proof: Each of the rules in R applies to f(X), each p € R causes an o’ transition to t*. As
the triggers of rules of f which are not in R do not overlap v, no such rule applies to f(X).

Note that if there are no rules with ¥ as their trigger, this gives an equation of the form
f(X) = 0. The language is positive, so the tricks of [ABV92a] for negative rules are not
necessary.

Lemma 7.6 Let f be an instinctive operation. Then f is distributive over its active argu-
ments. Specifically, suppose that ; is active in f(Z). For convenience, let C[v] = (f(Z))[x; := v].
Then

= Cle +y] « Clz] + Cly].

Proof: This is a consequence of [ABV92b]’s Lemma 4.3, which essentially says that the
third part of the definition of “instinctive” guarantees distributivity.

Definition 7.7 A RWB cool language is classy if, for each rule p for a wild operation, the
rule p together with all instances of (18) and (19) for it are instinctive.

An equational axiom system E is said to be head-normalizing if, whenever p is a process,
there is a theorem of the form £+ p = ¥, a;¢;. Head normalization is the essential property

of [ABV92a]-like theories.

Theorem 7.8 Let L be a classy RWB cool language. Then there is a RWB cool extension
L' of L with a sound and head-normalizing ariom system for strong bisimulation.
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Proof: The method of [ABV92a] proceeds in steps. The first step introduces straight
versions of all non-straight operations in £. If f is not straight, its straightened version f*
has the same rules as f*; the main difference is that [ABV92a] does not introduce bifurcation
rules taking f to f*.

Thus, if f is non-straight but tame, then £ already has a straightened version of f(Z).
Indeed, the equation

f(Z) = F(f(@))
is valid, as the rules for the two sides are in such close correspondence. So, we need not
introduce f* in this case.

If f is non-straight and wild, then we must introduce f*. The targets of the rules for f*
are the same as the targets of the rules for f:

a b a b
r — Y, T — Y R ry — Y1, T2 — Y2

f(z) e 9(y1, y2) S (21, 29) — 9(y1,92)

In particular, f has rules (18) and (19), giving f 7-transitions to ¢! and 2. f* has corre-
sponding rules, giving f* transitions to ¢! and ¢2. Of course, t' and ¢? are the same terms
for ft as they were for f, so the remaining rules (which govern #! and #? transitions and
do not mention f) show that f* has the required auxiliary ruloids. Hence, by declaring the
new f*t operations to be wild, the £ extended by the straightening auxiliary operations is
RWB cool.

The remaining steps of the [ABV92a] method are straightforward given our assumptions.
Straight, instinctive operations can be axiomatized directly as described above. Suppose
that f is straight and not instinctive. We will introduce some auxiliary, wild, instinctive
operations which jointly describe f. For each rule p for f, we define the operation f,, which
just has rules corresponding to p, and the rules (18) and (19): the rules for f, are identical
to those for f, except that f, replaces f in the sources. The condition of classiness ensures
that f, is instinctive, and hence can be axiomatized. Using the f,, we can axiomatize f:

1(@) = 3 £,(#)
2

8 Conclusion

We have given fairly general rule formats for four popular notions of silent bisimulation,
and one new formal as well. In many cases, the rule formats for the rooted equivalences
admit the extension giving equational axiom systems of [ABV92a]. These axiom systems
are as close to complete as can be expected, given the degree of undecidability of the silent
bisimulations.
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8.1

Open Problems

A number of questions remain to be answered.

9

1.

Conjecture 7.1, that nondistinctive operations cannot be finitely axiomatized with
respect to weak or branching bisimulation.

Rooted weak bisimulation might able tolerate negative rules to some (probably very
small) extent, under some interpretation. Can this actually be done? Is the resulting
extension useful?

Almost all of the rules used in this study have been positive GSOS. It seems likely that
similar constructions would work for the tyft rules of [GV92].

What is the theory and practice of strongly rooted weak bisimulation? Is it actually
good for anything, or does it just have a clean rule format?

Are the conditions given in this paper sufficient? That is, are there GSOS operations
which do respect, say, weak bisimulation, but are not WB cool? We exclude junk
operations; for example, if f has only one rule

a a
T — Y —»

f(z) 2.0

then f does respect weak bisimulation — indeed, f is semantically constant, with
f(z) & 0 — but this is uninteresting.

As with GSOS languages, we may define the congruence generated by a rule format:
two processes are, say, RB cool congruent iff they have the same set of completed
weak traces (viz., without 7) in all RB cool languages. (Actually, there are a number
of choices to be made here: e.g., one may use weak partial traces instead of weak
completed ones, or take divergence into account.) Do the congruences generated by
these rule formats have any good characterization or properties?
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