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Abstract. This article focuses on the study of optimal vaccination strategies for tuber­

culosis. Two vaccination programs are considered within an age structure population in 

order to determine the optimal age or ages at which an individual should be vaccinated. 

We look at two scenarios. First, we begin with the goal of reducing the basic reproductive 

numbers down to a fixed level at a minimal cost. Secondly, we determine what are the best 

ways to minimize the basic reproductive number with fixed resources. It is shown that 

the optimal strategies are either one-age strategies or two-age strategies. In the process 

an age-structure model is introduced. The basic reproductive numbers for cases with or 

without vaccination are calculated using the approach of "next generation operator" for 

heterogeneous mixing models. Conditions for the stability of the infection-free steady state 

in the absence of vaccination are also derived. 

Key words: Tuberculosis, Age-structure, Proportionate Mixing, Vaccination Strategies, 

Optimization, Dynamical systema, Differential Equations 

Introduction 

Tuberculosis (TB) is a communicable disease primarily spread by the airborne route. 

The risk that a person may become infected is strongly associate vvith tlw probability of 
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coming in contact with an actively infected individual as well as the closeness and the 

duration of the contact (Reichman 1993). There are evidences showing that TB case rates 

are highly age-dependent. Furthermore, it is also clear that mixing plays a key role in 

TB transmission as it does for most communicable diseases. Because we are interested 

in vaccination policies, we first study the effects of age-dependent transmission rates on a 

model for TB dynamics in a population where there is no vaccine. The formulation of an 

age-structure model for the transmission dynamics is straightforward, however, because 

TB treated individuals can become infected again, it is not easy to study such a model. 

Here, we use the "next generation operator" approach of Diekmann and co-workers (see 

Diekmann et al.1990; Heesterbeek 1992) to determine the threshold for our heterogeneous 

mixing population. We obtain a formula for the basic reproductive number R 0 ; conditions 

for the stability of the infection-free steady state distribution; and establish necessary and 

sufficient conditions for the existence of an endemic steady state. We use the results on 

the dynamics of our TB age-structure model to study the role of the Bacillus of Calmette 

and Guerin (BCG) vaccine for TB on the epidemiological age-structure of a population. 

Approximately 100 million newborns and children received the BCG vaccine in 1992 

through the World Health Organization (WHO, 1992; Bloom1994). More people alive 

today have been vaccinated with BCG than with any other vaccine. However, despite its 

wide usage, the effectiveness of BCG in preventing TB is controversial. Results of field 

trials of the vaccine have differed widely, some indicating protection n1tes as high as 70% to 

80% while others presenting a strong evidence that the vaccine was completely ineffective 

in preventing TB (Saylers 1994). Potential problems associated with the generalized use 

of the BCG vaccine in some populations are closely associated to the fact that vaccinated 

individuals will test positive for TB. It becomes therefore nearly impossible to be able to 

detect the prevalence of a disease in a population like the Argentinean population where 

most individuals are vaccinated. 

Different vaccin;:d ion policies have been adopted in different parts of the world. In 

Argentina, BCG is given to children both at birth and at age of 15. Children are vaccined 

at age of 12-14 in Queensland (Australia) and newborns are vaccinated in Burma (see 

Patel et a11991; l\1yint et al 1987). In practice the application of a v0ccination policy is 
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limited by many factors including the costs associated with its application. Costs may be 

increased by variability in age-dependent compliance (at birth, children may be "caught" 

in the hospitals and hence, the per-capita vaccine cost may be relatively low). Various 

vaccination policies have been established in the past and our objective here is to determine 

whether or not current vaccination policies are "optimal" in some sense. Here we assume 

that the vaccine is somewhat effective. An assumption that it may have to be weaken if 

definite studies show that the vaccine is totally ineffective or if it is established that it 

only provides only temporary protection. However, we believe that our study will throw 

some light on how to handle the "real" problem. In order to test the value of a strategy, 

we introduce an age-dependent effective vaccination rate 'lj;(a) into our age-structure TB 

model and calculate the corresponding effect of this rate on the reproductive number for 

the vaccine-dependent model. We denote the vaccine-dependent reproductive number by 

R( 'lj;) and consider two optimization problems following earlier work on HIV vaccination 

policies (see Hadeler and Mueller 1993a; 1993b ): reducing R( 'If;) below a certain level n* 
at minimal costs or minimizing the basic reproductive number R( 'lj;) with fixed resources. 

Following the approach used by Hadeler and coworkers (to some degree implicit in the work 

on optimal harvesting models of Rorres and Fair 1975, albeit the mathematical approach 

in Hadeler's group is more general) we show that the optimal strategies for the above two 

problems have the form "vaccinate at a single age class" or "vaccinate at precisely two 

age classes". These results agree qualitatively with the policies followed in Argentina and 

many other countries (a detailed account on the epidemiology of TB for modelers can be 

found in Castillo-Chavez and Feng, 1996). 

This paper is organized as follows: Section 1 introduces an age-structure model to 

study the dynamics of TB in the absence of a vaccine. The basic reproductive number 'Ro 

is computed in Section 2. In Section 3 we study r0le of 1?.,0 on the dynamics and stability 

properties of this vaccine-free model. In Section 4 we modify our model through the 

introduction of an age-dependent per-capita vaccination rate into our "null" age-structure 

model and study the two optimization problems outlined above. Section 5 discuss our 

results and points to some future work. 
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1. The model in the absence of vaccine 

In order to formulate an age-structure model for the transmission of TB we need to 

introduce some notation. The age-structured population under consideration is divided 

into four epidemiological classes: susceptible, exposed, infectious, and treated. We let 

s(t, a), l( t, a), i(t, a) and j (t, a) denote the associated density functions with these respective 

epidemiological age-structured classes. The transfer diagram that graphically illustrates 

the flow of individuals is that of Fig.l. We assume that all newborns are susceptible, 

that the mixing between individuals is proportional to their age-dependent activity levels, 

and that the disease-induced death rate can be neglected. The joint dynamics of the 

age-structure epidemiological classes are governed by the following initial boundary value 

problem: 

(1.1) 

8 8 
( 8t + 8)s(t, a) = -f3(a)c(a)B(t)s(t, a)- J-Ls(t, a), 

(:t + :a)l(t, a)= f3(a)c(a)B(t)s(t, a)- (k + J-L)l(t, a)+ af3(a)c(a)B(t)j(t, a), 

( ~ + aa )i(t, a) = kl(t, a)- (r + J-L)i(t, a), at a 

(:t + :a)j(t, a)= ri(t, a)- af3(a)c(a)B(t)j(t, a)- J.tj(t, a), 

() 100 i(t,a') ( ') , 
B t = ( ') p t, a, a da , 

0 n t,a 

') c( a')n( t, a') _ ( ') 
p(t,a,a = foooc(u)n(t,u)du =pt,a' 

s(t, 0) =A, l(t, 0) = i(t, 0) = j(t, 0) = 0, 

s(O, a)= s0 (a), l(O, a)= lo(a), i(O, a)= io(a), j(O, a)= }o(a), 

n(t, a)= s(t, a)+ l(t, a)+ i(t, a)+ j(t, a), 

where A is the recruitment/birth rate (assumed constant); f3(a) is the age-specific (average) 

probab;lity of becoming infected through contacts ivith bfectious individuals; c( a) is the 

age-speciiic pc'; -capita contact/ activit,y rate; f-L is the per-capita natural death rate; k is 

the per-capita rate at which individuals leave the latent class by becoming infectious; r 

is the per-capita treatment rate; a is the reduction in risk due to prior exposure to TB, 

0 :::; a :::; 1; p(t, a, a') gives the probability that an individual of age a. has a contact with 
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an individual of age a' given that it has a contact with a member of our population. 

We assume that individuals mix according to the proportionate mixing model as priorly 

introduced by many researchers including Hethcote and Yorke (1984), Dietz and Schenzle 

(1985), Anderson and May (1984), Castillo-Chavez et al. (1988, 1989). If we assume that 

p(t, a, a') = p(t, a') then using the approach of Busenberg and Castillo-Chavez (1991), 

we obtain the above expression for age-dependent mixing. The initial age distributions 

are assumed to known and to be zero beyond some maximum age. We assumed that an 

individual may be infected only through contacts with infectious individuals, and that 

treated individuals can become infected again. The model (1.1) is well-posed. The proof 

is similar to that found is standard (see Castillo-Chavez et al., 1989). 

R 0 is defined as the expected number of secondary infectious generated by a utypical" 

infected individual during its entire-death adjusted-period of infectiousness on a popula­

tion of purely susceptibles in demographic steady-state when it is invaded by an infectious 

agent. In the next section we derive explicit expressions for the basic reproductive number 

R 0 , a quantity that must exceed one for the disease to remain endemic (persist). The 

method commonly used to calculate R 0 for age-structure models consists of obtaining first 

expressions for its steady-state age distributions (s*(a),l*(a),i*(a),j*(a)) with B(t) = B* 

(a constant). The expression for i*(a) and B* are then substituted into the equation for 

B(t). The resulting characteristic equation is then used to define R 0 . We cannot follow 

this approach because there is a flow going back to the l class from the j class and, con­

sequentely, we are unable to obtain an explicit expression for i*(a). Such an expression 

- when computable - can be found from models where individuals only move forward 

(a= 0). For such models (the case a= 0 in our model) it is possible to solve the steady 

state equations recurrently (e.g., one can solve for s*(a) first, then solve for l*(a) inde­

pendently of i*(a) and j*(a), and then for i*(a) and j*(a)), the initial step towards the 

application of the usual procedure. 

Diekmann and collaborators (see Diekmann et al. 1990; Heestebeek 1992) introduced 

the method of the "next generation operator" to calculate R 0 for heterogeneous popu­

lations. Diekmann and collaborators gave a mathematical definition of R 0 that it is in 

complete analogy ·with the usual one. They introduce an operator \Yhich, '"":hen acting on 
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an initial distribution of infectives, gives the distribution of secondary cases. Ro is defined 

as the spectral radius of this operator. Their method works nicely for System (1.1) as it 

will be shown in the next section. 

2. Calculation of Ro 

Diekmann and coworkers consider (as we do) a heterogeneously mixing population 

where individuals are characterised by age a. We let s( a) denote the density function used 

to describe the steady demographic state in the absence of disease. A( r, a, a) gives the 

expected infectivity of an individual infected T units of time ago while at age a towards 

an uninfected individual of age a while the population is in a steady demographic state. 

The function A(r, a, a) combines information on the probability (per unit of time) that 

contacts between certain ages take place and the probability that, given a contact, the 

disease agent is actually transmitted. Under the special assumption of proportionate­

mixing A(r, a, a) can be written in the form A(r, a, a)= f(a)g(r, a). Proportionate mixing 

is quite appropriate in the modeling of communicable diseases such as TB. This assumption 

which is sociologically acceptable makes the computation of 'Ro possible. However, the 

use of this assumption in models for sexually-transmitted diseases while common is not 

appropriate (see Castillo-Chavez et al., 1995). 

We can now state the following important result. 

Lemma 1. (Diekmann ) Under assumptions above, R 0 is given by the formula 

(2.1) 

To make use of the formula (2.1) to calculate Ro for System (1.1), weconsider the de­

mographic steady state (s(a), 0, 0, 0) of System (1.1) where every one is susceptible. We 

also temporarily ignore the fact that s(a) decreases due to the infection process (for the 

justification see Diekmann et al. 1990). Then s(a) = n(a) = Ae-J.La. \Ve need to compute 
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the remaining factors required in Equation (2.1). We observe that 

(2.2) ( ) _ c(a)n(a) 
p a - roo ' 

Jo c(u)n(u)du 

and let 1( T, a) be the probability that an individual of age a + T who was infected T time 

units ago is in class i. We also let u E (0, T) denote the probability that an individual of age 

a+ T who was infected T time units ago is in class l at time u after infection. Furthermore, 

we observe that the probability of remaining in the l class times the probability of being 

still alive at age a+ u, given that the individual was alive at age a, is: 

e-~t(o+u) 
e-ku = e-<~t+k)u. 

e-~ta ' 

and we observe that the density function for entering class i is therefore given by 

(2.3) 

In order to be in class i with infection age T one should 

i) have entered i at some time u E (0, T) 

ii) have remained in i in the interval ( u, T). 

The probability that ii) holds is 

(2.4) e-<~t+r)(r-u). 

From (2.3) and (2.4) we have that 

!(T, a) = 1r ke-(~t+k)ue-(r+~t)(r-u)du 

k ( -kr -rr) -J.tr =--e -e e . 
r-k 

Remark: I(T, a)> 0 for all r > 0, k > 0. 

Hence using the definition of A(T, a, a) we have 

!(T,a) 
A( T, a, a) = ,B(a)c(a)p(a + T) ( ) 

na+T 

(2.5). k 1 
= ,B(a)c(a)p(a + T)--(e-kr- e-rr)el-u:._ 

r-k A 
=: f(a)g(T, a)~ 
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where 
f(a) = f3(a)c(a), 

k 1 g(T, a)= p(a + T)--(e-k7 - e-rT)eJ-Lcx_ 
r-k A 

Noticing that s(a) = Ae-J-Lcx, we conclude from Lemma 1 that 

(2.6) 

Equation (2.6) gives the basic reproductive number or Ro for our age-structured model 

that governs the dynamics of TB in the absence of a vaccination policy. We use this 

threshold quantity in the next section to study some of the properties of System (1.1); the 

properties that are relevant to our study of optimal vaccination policies. 

3. Stability of the infection-free state and existence of an endemic state 

We find the relationship between the generation process (transmission of the disease) 

and the development of the epidemic in real time following the work of Diekmann (1989 

and 1990). We let I(t, a) denote the rate at which uninfected individuals of age a are 

infected at timet and observe that individuals with infection age T were actually infected 

at timet- T. These infected individuals have at timet an infectivity given by A(T, a,.) 

that can be directed towards uninfected individuals (those in classes s and j) of age a. 

Therefore, A('r, a, a)I(t-T, a) gives the infective pressure per unit of time on the uninfected 

individuals of age a from infected individuals with infection age T at time t. Integrating 

over all possible ages a and and all infection ages T gives the total infective pressure. 

Finally, we arrive at the following relation between I(t, a) and its history: 

(3.1) I(t, a)= (s(t, a)+ j(t, a)) 100 100 A(T, a, a)I(t- T, a)dadT. 

Using Expression (3.1) we can establish the following result: 

Result 1: (a) The disease-free equilibrium of System (1.1) is stable ifRo < 1 and unstable 

ifR0 > 1. (b) vVhen R 0 > 1, there exists a unique endemic steady state ,qge distribution. 
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Proof: (a). The infection-free state is given by 

(3.2) s(t, a)= s(a) = Ae-JLa, j(t, a)= 0, 'I(t, a) = 0. 

For solutions to (3.1) of the form 'I(t, a) = r;(a)e>-t the linearization of (3.1) about the 

infection-free state (3.2) gives 

(3.3) 

Substituting the expressions for s(a) given in Equation (3.2) and for A(T,a,a) given in 

Equation (2.5) in Equation (3.3) leads to 

(3.4) 

Equation (3.4) is separable, that is, it can be written as the following product 

(3.5) r;(a) = </>(r;)e-JLa{3(a)c(a), 

where 

</>(r;) = p(a + T)-- ( e-kT- e-rT)e~Lary(a)e->-T dadT 100100 k 
o o r- k 

is a positive constant depending on r;. Replacing r;(a) in (3.4) by (3.5) and dividing the 

resulting equation by </>(r;)e-JLa{3(a)c(a) we arrive at the following characteristic equation: 

(3.6) 1 = 100100 {3(a)c(a)p(a + T) r ~ k (e-kT- e-rT)e->-'-r dadT. 

Let G(A) denote the RHS of (3.6) as a function of A and observe that G(O) = R 0 , G'(A) < 0 

for all A E R, and that 

lim G(A) = 0, lim G(>.) = oo. 
A->oo A->-oo 

Hence G (A) = 1 has a unique negative real root if and only if R 0 < 1 and a unique positive 

(zero) real root A* if R 0 > 1 (Ro = 1). Let>.= x + iy be another root. Since 

1 = G(A) = IG(x + iy)l :s; G(x) 

then lRA :s; A*. It follows that the disease-free steady state is l.a.s. if R 0 < 1, and unstable 

if R 0 > 1. 
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Proof: (b). Let (8*(a), l*(a), i*(a),j*(a)) denote an endemic steady state distribution 

for System (1.1) and let n*(a) = 8*(a) + l*(a) + i*(a) + j*(a). It is easy to see that 

n*(a) = n(a) = Ae-JLa. We assume that B(t) -t B* as t -too where 

100 i*(a') 
B* = p*(a')da', 

0 n*(a') 

and where p*(a) = p(a) is given by (3.2). Hence the age specific force of infection (that is, 

the age specific rate of becoming infected) is given by B* f3(a)c(a). The survival function 

(3.7) F(a) = e- foa B*f3(u)c(u)du 

gives the probability that a susceptible individual remains uninfected if alive (in classes 8 

and j) and, hence 

(3.8) 8*(a) = AF(a)e-JLa. 

Because B*f3(a)c(a)8*(a) gives the age specific incidence rate then consistency requires 

that 

(3.9) 
B* f3(a)c(a) = 100 100 

A(r, a, a)B* f3(a)c(a)(8*(a) + j* (a))dadr 

rooroo k #a 
= Jo Jo f3(a)c(a)p(a + r) r _ k (e-kr- e-rr)AB*c(a)(8*(a) + j*(a))dadr. 

First B* = 0 is always a solution of Equation (3.9) and this natwally corresponds to 

the disease-free state. Any other positive solution of Equation (3.9) corresponds to an 

endemic equilibrium. As an equation for B*, Equation (3.9) provides a necessary and 

sufficient condition for the existence of an endemic equilibrium solution 

Assuming that B* > 0 and dividing both sides of (11) by B*f3(a)c(a) we get 

roo roo k 
(3.10) 1 = Jo Jo {3(a)c(a)p(a + r) r _ k (e-kr- e-rr)h(B*)dadr, 

\vhere 

(3.11) 

h(a, B*) = 8*(a, B*) + j*(a, B*), 

*( B*) _A -JLa-J"' B*(3(u)c(u)du 
8 a, - e o , 

·* ( B*) ia -JL(a+s)-J"' B* f3(u)c(u)du '* ( )d J a, = e • rz 8 8 . 
. o 
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We let H(B*) denote the function on the RHS of (3.10)-a function of B*. Note that as a 

function of B*, s*(a, B*)---+ 0 as B* ---+ oo. Also note that since i*(a) is bounded by A for 

all a E [0, a], j*(a, B*) ---+ 0 as B* ---+ oo for all a E [0, oo). It follows that h(a, B*) ---+ 0 and 

hence H(B*) ---+ 0 as B* ---+ oo. Since H(B*) is a continuous function of B*, we conclude 

that H(B*) = 1 has a unique positive solution when H(O) = R 0 > 1. 

This finishes the proof. 

4. Optimal vaccination strategies 

Generally speaking, the effect of subjecting a population to a vaccination program is 

to reduce its basic reproductive number and to increase its average age of first infection 

(Dietz, 1975). The goals of a vaccination program are multiple. Ideally, one would like 

to eliminate or erradicate a disease. Often, vaccinations can only prevent major epidemic 

outbreaks. Elimination is usually highly unlikely. Hence, we often try to find ways of 

reducing the prevalence or the incidence of a particular disease. The reduction of the 

reproductive number provides an approach towards the reduction of the prevalence and 

incidence of a disease. Following the work ofHadeler and Mueller (1993a; 1993b) on models 

for HIV vaccination, we proceed to look at the effectiveness of vaccination policies that are 

driven by reductions on the basic reproductive number. In order to discuss these concepts, 

we must introduce a model with per capita age-dependent vaccination rates. 

We assume that susceptibles in the same age-structure population model are vacci­

nated at an age-dependent per capita vaccination rate given by the function '1/J(a) (similar 

results can be obtained in the case where susceptibles cannot be recognized and thus every 

one is vaccinated, see Hadeler and Mueller (1993b). We also assume that vaccination lasts 

forever. Let R( 'ljJ) be the basic reproduction number in the presence of the vaccination 

strategy V:. Note that for the calculation of R(~:) \F~ oily need to consider the equc;tion 

for s since the population is assumed to be at demographic equilibrium and consisting of 

only susceptible individuals. The equation for s now has the following form: 

[) [) 
(- + ~) s(t, a) = -c(a)B(t)s(t, a)- J-lS(t, a) - '1/J(a)s(t, a) 
8t ua 
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with the same boundary condition s(t, 0) = A. Let s'I/J(a) denote the density function 

describing the steady demographic state in the absence of disease, and let 

Fv(a) = e-<I>(a), <I>( a)= loa 1/J(u)du. 

Clearly, we have that 

(4.1) 

We derive a formula for R( 1/J) using the same approach used to derive the expression for 

R 0 in Section 2 (details are ommited). We arrive at the following expression for R('l/J): 

(4.2) 100 100 k R('lj;) = {3c(a)p(a + r)--k (e-kr- e-rr)Fv(a)drda. 
o o r-

Since '1/J(a) ~ 0, comparisons between the formula for R0 (see (2.6)) and Formula (4.2) 

show that 

(4.3) R('l/J) ~ Ro, R(O) = Ro. 

A little algebra shows that 

(4.4) R('ljJ) = Ro + F('l/J), 

where 

(4.5) 100 100 
k F('lj;) = {3c(a)p(a + r)--k (e-kr- e-rr)(1- Fv(a))drda. 

o o r-

Remark: Tbe quantity F('lj;) is tbe reduction in tbe reproductive number tbat can be 

achieved wben tbe vaccination strategy '1/J is applied. 

When R 0 > 1, one would like to choose a vaccination strategy t!: which mal::es F(1jJ) 

large, and thus possibly reduces R( '1/J) to values below which would lead to the elimination 

of the disease. In Dietz and Schenzle (1985), a formula is derived to compute the '1/J(a) 

needed to reduce R('lj;) below 1. However, their approximation was constructed for diseases 

where the length of the inf8ctious period is short. Because TB has a long and vari;:1 ble 
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periods of infectiousness, we follow instead, the approach used by Hadeler and Mueller 

( 1993b) in their study of potential HIV vaccination policies. 

In practice the application of vaccination strategies is limited by costs. We assume that 

the costs associated with one vaccination at age a are given by a positive number K(a), and 

let the total cost associated with the vaccination program depend linearly on the number 

of vaccinations (see Hadeler and Mueller (1993b)). Vaccination here-as with Hadeler and 

Mueller (1993b )-means a transition from the susceptible state to the vaccinated state. 

Vaccinnes which do not lead to the vaccinated class (vaccine efficacy and failure) are 

assumed to have been incorporated into the cost function K. Let C ( '1/J) be the total cost 

associated with the vaccination steategy '1/J, then 

(4.6) C('I/J) = 100 
K(a)'!fJ(a)sV;(a)da, 

where SV;(a) is given by (4.1). 

Following Hadeler and Mueller (1993b), we define two optimization problems. 

(I) Find a vaccination strategy '1/J (a) that minimizes C ( '1/J) constrained by R( '1/J) ::; R*; 

(II) Find a vaccination strategy '1/J(a) that minimizes R('I/J) constrained by C('I/J)::; K*; 

where (explicitly) 

These optimization problems are stated in terms of C('I/J) and F('I/J) that is, in terms of 

non-linear functionals of '1/J. To make both C('I/J) and F('I/J) linear functionals the following 

transformation is used (Hadeler and Mueller, 1993b). 

(4.7) ¢( ) d ra '1/,(s)ds I ( , - fa 'if.:(.o·)ds 
a = --eJo · = w CL)e Jo . 

da · 

If we let F(¢) F('I/J) and C(¢) = C('I/J); observe that 

1- Fv('I/J) = 1- e- foa V;(s)ds = 1a ¢>(s)ds; 
0 
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and exchange the order of integrations in ( 4.5) to arrive at 

Hence we can proceeed to reformulate our optimization problems using the linear func­

tionals 

(4.8) 

where 

(4.9) 

Let 

F(¢) = 100 K(a)ifJ(a)da, 

C(<P) = 100 B(a)ifJ(a)da, 

Q(<P) = 100 
¢(a)da 

and let p = Ro- R*. Then observing that Q(</J) ~ 1, we are able to replace Problem (I) 

with the following linear optimization problem: 

Minimize C(¢) subject to 

(4.10) !(¢) ~ 0, 

<P?. 0, 

where 

f(<P) = ( h(<P)) = (P- F(¢)) 
h(<P) Q(¢)- 1 . 

We apply the Kuhn-Thcker Theorem for convex optimization problems because both C(¢) 

and /(¢) are linear and hence convex. Therefore ¢ is a solution to (4.10) if and only if 

there exists a non-negative vector (Lagrange multipliers ) Y = (ry, ()T ?. 0 such that the 

Lagrange function 

L(</J, Y) = C(¢) + yT f(¢) 
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andY satisfy the following conditions: 

(4.11) 
(D¢L(¢, Y))¢ = 0, 

yT f(</>) = 0. 

The Saddle Point Theorem of Kuhn and Tucker requires a necessary condition for ¢ to be 

an optimal solution to (4.10), namely, that (¢, Y) is a saddle point of L. If this assumption 

is satisfied then 

(4.12) D¢L(¢, Y)?:. 0. 

Noticing that 

(4.13) (D¢L(¢, Y))</>o = 100 (B(a)- TJ(a)K(a)- ~)</>o(a)da 

for any ¢0 ?:. 0, we get from (4.12) that 

(4.14) B(a)- TJK(a)- ~?:. 0, for almost all a?:. 0. 

Using (4.13) we can rewrite conditions (4.11) as follows: 

(4.15) 

C(¢)- TJF(¢)- ~Q(¢) = o, 

"'(P- F(¢)) = 0, 

~(C(¢)- 1) = o. 

Conditions (4.14), (4.15) give formally the same conditions as those described in Hadeler 

and Mueller (1993b, Equations (15a)-(15f)). Problem (I) is mathematically equivalent 

to their roblem (P1) (Hadeler and Mueller, 1993b). Hence, using Hadeler and Mueller's 

results (Hadeler and Mueller, 1993b) led to the following conclusion: 

Result 2: In a 'generic' situation the optimal vaccination strategy in Problem (I) is 

either a one-age strategy with vaccination at exactly one age A, or it is a t-wo-age stra.tegy 

where part of the population is vaccinated at an age A1 while the remaining susceptible 

individuals are vaccinated at a later age A2. 

Remarks: 
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1 The one-age strategy occurs when Q( ¢) < 1 in which case, necessarily, ¢ is a delta 

function concentrated at the minimum of the function B(a)/K(a). When Q(¢) = 1, 

there is a two-age strategy as the optimal ¢ is a convex combination of two delta 

functions. Hadeler and Mueller (1993b) results also provide a way of calculating the 

optimal ages for these two vaccination strategies. 

2 The word "generic" is used in the same sense as in Hadeler and Mueller (1993b). For 

arbitrary positive continuous functions B(a) and K(a) nothing can be said about the 

set where the quotient assumes its minimum. However, for almost all functions the 

minimum is assumed at a single point. This argument can be made mathematically 

rigorous by fixing a topology that guarantees the existence of an open dense set where 

this quotient assumes its minimum at a single point. Hence generically the quotient 

assumes its minimum at a single point. The case Q( ¢) = 1 demands a similar argument 

but not applied to the ratio B(a)/ K(a) but to the function B(a)- 77K(a). 

For these two vaccination strategies the corresponding total costs can be calculated using 

the following formulas 

(4.16) 

B(A) 
C(A) = K(A)P' 

p- K(Az) K(AI)- p 
C(Ab Az) = K(AI)- K(Az) B(AI) + K(AI)- K(A2) B(Az), 

respectively for one-age and two-age strategy. 

To determine the optimal ages, we note that K(a) is a strictly decreasing function 

with K(O) = R 0 > p and K(a) ---+ 0 as a---+ oo. Hence we can find a A* > 0 such that 

K(A*) = p. The following result can be used to calculate the optimal ages. 

Result 3. The minimum A of the quotient B(a)/ K(a), if A E [0, A*], gives an optimal 

age for the one-age strategy. If A E (A*, oo) then the optimal two-age strategy is found by 

minin1izing the expression C(ih,A2) on A1 E (O,A*],A2 E [A*,oo). 

A similar conclusion to Result 1 can be obtained for Problem (II), i.e., the optimal 

vaccination strategy is either a one-age strategy or a bvo-age strategy. To determine the 
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optimal ages in this case, we define 

M* ={a: a 2: O,B(a) 2: ;;;*} 

N* = {(A1,Az): Az 2: A1 2:0,0:::; (;;;*- B(AI))/(B(Az)- B(A1)):::; 1}. 

Result 4. For Problem (II) the optimal age for the one-age strategy is found by minimizing 

K(A)/ B(A) on M* and the optimal ages for the two-age strategy are found by minimizing 

the expression 

onN*. 

5. Discussion 

In this paper we introduced an age-structure model for the dynamics of TB to study 

age-dependent optimal vaccination strategies. First we calculated the basic reproductive 

number using the approach of the "next generation operator" and studied the disease 

transmission dynamics in the absence of a vaccination policy. We proceeded to study cost 

related optimal vaccination strategy problems. We found that optimal strategies have the 

form of one-age strategies or of two-age strategies. The optimal strategies are determined 

by minimizing functions of one or two variables. Our model has many limitations. For 

example, we did not consider infection age depedent infectivity which may play a role in 

the transmission of TB. We also assumed permanent immunity which may not be realistic 

for the BCG vaccine. 

We have looked at a complex mathematical model for TB dynamics that it is not 

realistic enough to capture the major difficulties associated with the study of the optimal 

vaccin<1tion strategies associated with the use of BCG vaccine. The main difficult may be 

that tl1e BCG vaccine is not be very effective. In Argentina, individuals are vaccinated at 

birth and at age of 15. Is this policy in agreement with the optimal vaccination strategies 

computed in this article? We cannot answer this question until information on R 0 , the 

cost function, and more importantly 1/• ( n.) becomes available. 
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Our results agree with those of Rorres and Fair (1975) who obtained the same qual­

itative results in the context of a resource management problem that involved an age­

structured population. This is not surprising as "harvesting" is mathematically equivalent 

to "vaccinating" in our model. We followed mostly the approach of Hadeler and Mueller 

(1993a, 1993b) throughout our paper after our computation of 1?-0 • Our contribution con­

sists on looking at a model where individuals are allowed to "return" to previously visited 

epidemiological classes and showing how to compute the optimal vaccination strategies 

in such situations by combining the approaches of Diekman, Hadeler and their various 

collaborators. Clearly, one or two-age optimal vaccination strategies seem the rule for this 

type of models. 
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