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ABSTRACT
We have developed a set of algorithms and associated software for

systems inventory planning (SIP) of production-distribution systems. The
algorithms have been published in a set of technical reports that are quite
detailed and complex in their mathematical developments. The basis for
these algorithms, however, is very intuitive. The purpose of this paper is
to explain the modelling basis of the problem addressed, including the
reasons for certain key assumptions, and to discuss implications of our

results for process and facility design.



In previous technical papers we have developed a method for deter—
mining the reorder intervals for all of the parts of a complex product.

This paper has several purposes:

1. explain the rationale for the model that is used and its
assumptions

2. give an intuitive basis for the method

3. point out the uses for the method.

Consider a very simple product structure, conisting of two components,

Cl and €2, and one subassembly S,
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Cl, C2, and S are parts that may be stocked. For simplicity assume that
one each of parts Cl and C2 are needed to make subassembly S.

Let

Ki = the setup cost for part i, in dollars

Di = the annual demand for part i

hi = the annual holding cost for part i, in dollars
T. = the reorder interval for part 1, in years.

The standard textbook approach says to choose the Economic Reorder

Interval, ERIi, by minimizing Ki/Ii + hiDiIi/Z, yielding,

ERT, = VK./(h,D,/2) .
1 1 1 1



This approach, in which the economic reorder intervals are chosen
independently of one another, has two serious drawbacks. For example,
consider the data and corresponding Economic Reorder Intervals given in

Table 1.

part setup cost annual demand holding cost

i K ng hy ERT,

C1 .625 10000 .05 .05

Cc2 74.25 10000 .10 V. 1485

S 12.5 10000 .25 .10
Table 1

The inventory plots of part Cl and part S are given in Figure 1.
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Every 0.1 years part S consumes 1000 of part Cl. Since part Cl is
produced twice and used only in this interval, there is a buildup of part
Cl. An obviously better solution is to produce part Cl only when it is
needed——this will involve only one setup every 0.1 years rather than two
and will not involve holding inventory of part Cl. Clearly this is less
expensive, so there is something amiss in the way the calculations were
done. As we shall see it is the model that is wrong.

Second, part C2 1is produced every Vv.1485 years while part S,
which needs part C2, 1is produced once every .11 years. The inventory

plots of part C2 and part S are given in Figure 2.
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Suppose that these economic reorder intervals are to be used indefin-
itely. One can show that if shortages of part C2 are to be avoided, the
inventory level of part C2 after orders at time zero are placed cannot be
less than 1000. Also note that the inventory level of part C2 has a very
complex time path. The problem is that the model for the average inventory

level of part C2 1is incorrect.



The problem is that the cost model

cost = = (Ki/Ti + hiDiTilz)
i=Cl1,C2,S

ignores the fact that parts Cl and C2 are needed to make part S.
The first drawback can be overcome by requiring that the reorder
interval of a part should not be less than the reorder interval of a part

that it goes into. Thus we should have the restrictions

<
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Cc2

The second drawback was that in order to avoid component shortages we
needed an initial buffer inventory of a component of size equal to the
economic reorder quantity of the part using the component. In a system
that (in theory) is completely reliable and has infinite capacity, this
seems excessive. This drawback is not eliminated by requiring (1) to hold
because in the example we had ERTC2 > ERTS.

The second drawback arose from the fact that ERTC2/ERTS was an
irrational number. We can eliminate the need for an initial buffer

inventory of a component and insure that components are not produced

earlier than they are needed by modifying the restrictions to

ct~ cr'se
_ (2)
Too = MeoTg

where MCl and MC2 are positive integers.



There is a final, and subtle point, which is the interpretation of the
holding cost. Consider component C2 and subassembly S and assume that

TC2 = 3TS, and TS = 1. The inventory plots of part C2 and part S for

this situation are given in Figure 3.
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The average inventory cost for part S is hsDSTS/Z. The average

inventory cost for part C2 depends upon both TC2 and TS; it is
hC2D01(TCZ—TS)/2 =h

C2DS(TC2~TS)/2 because

ch = DS. The total inventory

cost is

hDTo/2 + hogDo (T Tg)/2 = (hghog)DgTe/2 + heoDeToo/2.

The subtle point is that the inventory holding cost for a subassembly

is not proportional to its cumulative value but to its value added. If we



had considered both components Cl1 and C2, we would have found the
effective holding cost for part S to be hs—hCl—hCQ. This concept of
"value-added” holding cost is discussed in Caie and Maxwell [ ]. The
closely-related concept of echelon stock, has been in use for decades in
the literature on inventory in distribution systems [ , ].

Using this concept of "value-added" holding cost, define

8c1 = hClDS/Z, the value-added holding cost if TC1 =1 vyear
8co = hC2DS/2, the value-added holding cost if TC2 = 1 year

gg = (hs—hCl—hcg)DS/2, the value-added holding cost if TS = 1 year.

The problem we wish to solve is

min > (K./T, + g.T.)
i=c1,c2,s ! 11
subect to TCl = MClTS’
TCz = MCQTS’ (3)
MCl’MC2 positive integers.

The variables are TS’ the reorder interval for the subassembly, and
MC1 and MC2’ the multiples of TS for the reorder intervals of
components Cl1 and C2. This problem has a non-linear objective function
with a mixture of continuous (TS) and integer variables (MC1 and MCZ)'
We are not aware of any computer codes that can handle such problems.

The optimal solution to this problem using the data in Table 1 was

obtained by an exhaustive search procedure. The solution is



TS = .1297
M01 1
MC2 3

Cost = 583.845

In [ ] we propose a solution technique that is based upon some

additional model restrictions. These restrictions are:

1. Every reorder interval will be a multiple of the length of some

basic period.

2. This multiple will be a non-negative power of 2, the so called

powers of two restriction.

The base period restriction is used to ensure that the economic
reorder intervals are tied to the natural planning cycle that one often
finds in effect in material planning systems. For example, at GM and Ford
the natural planning cycle is one week; in other firms we have found the
cycle to be one fiscal quarter. without this restriction it is possible to
have reorder intervals which are "umnatural” (such as V2 years) for
planning purposes.

We have found that the power of two restriction is often used in

practice, and for good reason. The power of two is based upon interval
lengths, not lot sizes. If the length of the base period is a week than
all production planning activity is for one, two, four, or perhaps eight
weeks. The actual scheduling of production, setup activity, tool room
activity, maintenance activity, etc. is much easier with this sort of
interval planning. When demand for the final product varies the lot sizes
are varied in this type of planning according to the variation in demand.

If lot sizes are fixed then the timing of activities must vary as demand



varies:; such changes in timing of scheduled activities is difficult to
adapt to.

The second reason for the power of two restriction is based upon
experimental work that has been done on a classical scheduling problem
called ELSP-the Economic Lot Scheduling Problem (see Elmaghraby [ ] for an
excellent analysis of work in this problem). This problem requires that
one consider not only the economics of a production plan but also the
problem of scheduling in time the production time of a single machine on
which several parts are produced. The experimental work on sample problems
indicates that the best solution is usually a power of two solution.

To illustrate the reason for this phenomenon, consider a three-part
example in which the base period is a week, M1 = 2, M2 = 3, and M3 = 4.
We must have the capacity of producing one lot each of parts one and two in
a single week, as this will need to be done once every six weeks.
Similarly, we must have the capacity to produce one lot each of parts two
and three. However the average number of lots produced per week is
172 + 1/3 + 1/4 < 1.1. Clearly the capacity of the machine is not being
utilized effectively. It seems more appropriate to set Ml = 2 and
M3 = M4 = 4. This allows us to find a schedule in which one lot is
produced each week.

The final reasons for the power of two restriction are that such a
solution is very easily computed and that there is a guarantee that the
cost of the solution will be within 6.1% of the cost of the best possible
solution (details and proofs are given in [ 1]).

The efficiency of the computations required and the fact that the

structure of the solutions computed facilitates the generation detailed



schedules and is often compatible with current planning activity make the
base period and power of two restrictions extremely attractive.

The technical work we have done [ ] had its original focus in
obtaining the actual numerical values for the economic reorder intervals
for all parts in complex assembly and distribution systems. The focus was
on the system as described by the Bill of Materials, including assembly
stages and stages which produce parts used in more than one assembly. Much
of what we have said so far has focused on how such a system should be
modelled and how to otain the economic reorder intervals simultaneously
considering all part interactions.

We now realize that the work we have done can be explained in economic
terms that professors of production management have been groping with for
yvears. We also realize that the potential payoff of the work may be more
in helping product and process designers understand the economic impacts of
production design rather than in simply calculating economic reorder

intervals.

Economic Interpretation

Consider a serial production process with N stages; each stage is

represented by a circle with its stage number within

®- . -@WW-O-®-0-0

Suppose stage 1 adds value vy The value—-added profile plot is

. . i .
constructed by showing cumulative value, c, as a function of

R S

stage number, i. We suggest drawing this as in Figure 4.
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Figure 4

Production economists have argued that the forms of such a plot gives
a "feel"” for the nature of the entire production system and perhaps guide—
lines as to how the production system should be managed in terms of posi-
tioning of inventories. If this plot were convex, as say in Figure 5, then
the late stages add most of the value to the product, whereas if this plot
were concave, as say in Figure 6, then the early stages add most of the

value to the product.
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Figure ©
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In the convex case one can argue, as economists do, that inventory
should exist in work—-in-progress since it has relatively small cumulative
value added. In the concave case there should be no work—in-progress
inventory.

These arguments ignore the processing nature of a stage. As shown in
Figure 4, the ordinate of the plot is stage number. Suppose stage i has

1 K. be the cumulative setup cost up to

j=1 "]

and including stage i. Consider the plot of ki versus c. as given in

a setup cost Ki' Let ki = 2

Figure 7.
k6 +
kykyks T
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Figure 7
Define cy = 0O and ko = 0. Then,
K. = k. - Lk, i=1, N
i i i-1
vV, = C, - C, i=1, N
i i i-1

The plot of Figure 7 is obtained from the plot of Figure 4 by making
the ordinate scale jump not by one {the stage number) but by the stage
setup cost. It turns out that VK;7;;, the square root of the slope of
the line segment in Figure 7 for stage 1, is proportional to the reorder

interval one would use for stage i if that were the only stage. Recall,
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N

min ifl (Ki/Ti + giTi)’

where g; = %—h.D., and hi is value added holding cost. Then,

—3

=VK.7g., = V2K _/h. D, = V2K./Rv_.d = VK /v, V2/Rd
i"=i i"7iTd i i’

if R 1is the percentage holding cost factor and Di = d.

We have discussed the need for the restriction Ti 2 Ti—l’ implicit
in (2). This means that we cannot allow the slope of a segment in Figure 7
to be steeper than that of a segment further to the right. Thus instead of

using the slopes of the solid lines in Figure 7 to compute economic reorder

intervals we use their convex hull, the dotted lines in Figure 8.

Note that segments 2, 3, 4 and 5 have the same slope for the dotted
line. This is a cluster, a group of operations whose costs make simul-
taneous ordering more economical. The cost of the policy is proportional

to the sum of the square roots of the shaded areas in Figure 9.
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Figure 9

The foregoing analysis has been simplified in one very important
respect. In a manufacturing environment the major component of the cost of
a setup is usually not the direct cost of performing the setup, but the
value of the production time lost during the setup. One of the valuable
byproducts of our algorithm for solving this problem is a reliable estimate

of the dollar value of an hour of setup time on each machine.

Design Implications

The economic interpretation above has implications for both process
design and facility design. We begin with facility design.

All operations within each cluster are performed at the same
frequency. In the example of Figure 8 operations 2, 3, 4 and 5 are in the
same cluster. If these operations are scheduled in immediate succession,
or are performed in parallel with transfer carried out either continuously
or in small batches, the inventories of parts 2, 3 and 4 are for all
practical purposes eliminated. Inventories of parts 1 and 6 will be held,
however, because of the relatively small setup cost of part 1 and the

relatively large setup cost of part 6.
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The implications of the clusters on facility layout are evident. An
effective layout should facilitate efficient transfer between 2, 3, 4 and 5
and should facilitate storage and retrieval of parts between stages 1 and 2
and stages b5 and 6.

With regard to process design, the gold is clearly to engineer the
manufacturing process in such a way that the cost is minimized. Usually
this is best accomplished by reducing selected setup costs and/or setup
times. The question is, which ones should be reduced, and how much should
one be willing to pay to reduce them.

The clusters provide insight into the selection of setup costs/times

for potential reduction. The total cost can be written as

c = 232 é.]'gj

where j indexes the clusters and Ky and gJ

are the total setup cost
and value-added holding cost in cluster j. The partial derivative of the

cost with respect to Ki is

gc_ _
3K, ©

1

gJ/KJ = 1/Ti’ i in cluster J. (4)

Thus the partial derivative is simply the reciprocal of the economic

reorder interval, assuming the economic reorder interval has been chosen

correctly.
Note that the unit of Ki is dollars per setup. If the major
component of the setup cost is lost production time, the dollar value of

machine time is required to convert BC/BKi from ($/day)/($/setup) into
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($/day) (days/setup). In either case a reduction of X dollars per setup
in Ki is usually easier to achieve for large setup costs than small ones.
The larger setup costs in a cluster are usually found among the last

operation in the cluster.



