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The animal gut can be colonized by diverse microorganisms that impact the nutritional 

physiology of the animal host. Most research has concerned the effect of individual 

microorganisms, which may compete for dietary constituents, provide essential 

nutrients or modulate host signaling pathways regulating nutrient allocation and 

metabolic function. The goal of this dissertation was to investigate the effect of 

among-microbe interactions on the nutritional physiology of the animal host, using the 

Drosophila melanogaster gut microbiome as the experimental system.  The specific 

aims were to 1) determine the genetic capacity for metabolic function of individual 

bacteria associated with Drosophila by genome sequence analysis,  2) investigate the 

effect of among-microbe interactions on Drosophila nutrient allocation and the 

underlying processes, and 3) assess the effect of microbial co-associations on the 

Drosophila metabolome. Results indicated that bacteria associated with Drosophila 

differ metabolically at multiple levels of taxonomy, from order to within-species, with 

redundant functions predicted to influence Drosophila performance and physiology. 

Complementary experimental studies using the bacteria Acetobacter fabarum and 

Lactobacillus brevis and yeast Hanseniaspora uvarum revealed that the nutritional 

traits of Drosophila vary both with the composition of the microbiota and between 



 

male and female flies. For example, the lipid content of male flies was negatively 

correlated with the titer of the microbial fermentation product acetic acid when the 

flies were co-associated with A. fabarum and H. uvarum. The metabolomic analysis of 

Drosophila provided evidence that the interaction between A. fabarum and L. brevis 

stimulates metabolic signaling to increase metabolic activity through the TCA cycle 

and for male flies, decrease glucose and lipid content. In addition, the microbial 

metabolite phenyllactic acid was identified as a statistically robust biomarker for low 

lipid content in Drosophila. Taken together, these studies reveal that nutritional traits 

of Drosophila are strongly influenced by the presence and composition of the gut 

microbiota, and that the effect of taxonomically-complex communities cannot be 

predicted from the traits of Drosophila bearing single microbial taxa. An imperative 

for future research is to determine the processes by which male and female hosts differ 

in their nutritional responses to microbial communities of different complexity and 

composition. 
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CHAPTER 1 
AMONG-MICROBE INTERACTIONS AND  

THEIR EFFECT ON ANIMAL HOSTS 

Summary 

Animal gut-associated microorganisms influence animal performance and fitness. 

Although microbiome research has predominately concerned the effect of individual 

microorganisms on animal traits, there is growing interest in the role of among-

microbe interactions in these processes. Taking advantage of simple animal models, 

such as Drosophila melanogaster, can provide an experimental framework to address 

how microbiomes shape animal health and fitness.  

 

Introduction 

   The animal gut is generally colonized by a community of microorganisms, referred 

to as the microbiome. These taxa are functionally diverse and are able to influence 

many animal traits, including nutrition, performance, immune system, behavior, and 

fitness (Herp et al., 2019; Huang et al., 2015; Karasov and Douglas, 2013; McFall-

Ngai et al., 2013; Morais et al., 2020; Nicholson et al., 2012; Sommer and Bäckhed, 

2013; Thaiss et al., 2016; Wong et al., 2016). Most interactions between animals and 

the gut microbiome have a metabolic basis, and can be defined through direct and 

indirect effects on animal nutritional physiology and metabolism (Ankrah and 

Douglas, 2018; Douglas, 2014; Engel and Moran, 2013; Hooper et al., 2002). 

Microbes are able to contribute directly to animal metabolism through digestion of 

complex substrates that are inaccessible to the host, synthesis of essential nutrients, 
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and recycling of metabolic waste and toxic metabolites. Indirect effects are observed 

through metabolite effectors that modulate animal metabolic signaling pathways 

regulating nutrient allocation and metabolism. 

   To identify genetic and metabolic determinants of microbiome-dependent animal 

traits, studies have relied heavily on the application of metagenomics to conventional 

animals, i.e. with the naturally-occurring microbiome (Armour et al., 2019; Fromont et 

al., 2019; Kau et al., 2011) or the study of mono-associations, i.e. experimental 

associations with single microbial taxa  (Chaston et al., 2014; Consuegra et al., 2020b; 

Judd et al., 2018; Kešnerová et al., 2017). Both approaches have severe limitations. 

Metagenomics identifies the genetic capacity for microbial function, potentially over-

estimating the realized function. The use of mono-associations precludes analysis of 

the effect of among-microbe interactions, which are increasing being recognized as 

important drivers of animal traits (Consuegra et al., 2020a; Coyte and Rakoff-

Nahoum, 2019; Gould et al., 2018; Granato et al., 2019). The gut microbiome of many 

animals, including humans, is complex with high taxonomic diversity and includes 

many taxa that are not currently amenable to culture under laboratory conditions (e.g. 

human gut).  For these reasons, simple animal models with a microbiome that is 

naturally of low diversity and dominated by culturable taxa play a vital role in 

research on microbiome-host interactions (Douglas, 2019). One simple model that is 

gaining increasing traction is Drosophila melanogaster, and this system is introduced 

next. 
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Drosophila: a model of animal-microbiome interactions 

   Drosophila melanogaster (Diptera: Drosophilidae) has been used as a biological 

model for over a century because of its fast generation time (< two weeks), suitability 

for laboratory culture, and increasingly, its superb genetic and genomic resources 

(Markow, 2015). In addition, the Drosophila gut microbiome is a fast-emerging 

system for investigating animal microbiomes due to its low taxonomic diversity and 

most of the microbiome members are culturable in the laboratory (Broderick and 

Lemaitre, 2012; Douglas, 2019; Erkosar et al., 2013; Ludington and Ja, 2020). The 

community is dominated by bacteria of the Acetobacteraceae (Alpha-Proteobacteria), 

Lactobacillales (Firmicutes), and Enterobacterales (Gamma-Proteobacteria), as well as 

yeasts of the Saccharomycetales (Ascomycota) (Adair et al., 2018; Bost et al., 2018; 

Chandler et al., 2012, 2011; Chaston et al., 2016; Cox and Gilmore, 2007; Quan and 

Eisen, 2018; Staubach et al., 2013; Wang et al., 2020; Wong et al., 2013). 

Acetobacteraceae and Lactobacillales bacteria are detected in most field-collected and 

laboratory cultures of Drosophila, while the incidence of Enterobacterales tends to be 

variable. The yeasts, although largely recognized as an important dietary component 

of flies, are not prevalent in laboratory lines, largely due to the addition of anti-fungal 

preservatives in diet (Broderick and Lemaitre, 2012).  

   In nature, the adult flies are attracted to microbial-derived fermentation products 

associated with rotting fruits, and they use the fruit substrate as a food source, 

courtship and mating location and, for females, an oviposition site (Becher et al., 

2012). Eggs deposited on these substrates hatch and feed on microorganisms and 

degraded fruit tissue (Reaume and Sokolowski, 2006). Drosophila alter the microbial 
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community composition, at least under laboratory conditions, and are believed to 

promote microbial taxa that are beneficial for larval growth and development (Buser et 

al., 2014; Wong et al., 2015). Although the gut microbiome is known to be acquired 

by feeding on microorganisms associated with the food, and that the presence and 

composition of these microorganisms influence D. melanogaster fitness, development, 

and behavior, there still remain unanswered questions about the underlying processes.  

 

Among-microbe interactions in the gut microbiome and the influence of host traits 

One of the largest challenges in microbial ecology relates to the difficulties in 

observing how microorganisms interact with each other in real time, and therefore 

many studies have focused on descriptive methods to understand microbiome structure 

and function (Widder et al., 2016). Interactions in microbial communities are varied 

and complex, ranging from antagonistic to beneficial. Generally, interactions between 

microorganisms are described in terms of how co-associations change the abundance 

of individual taxa. Culture-independent methods can be used to identify and quantify 

microbial taxa, making use of taxonomically-informative sequences, specially the 16S 

rRNA gene (Adair et al., 2018; Ellegaard and Engel, 2016). There are several 

limitations to this approach, especially as an index of microbial function, including 

lack of congruence between taxon identity and functional capacity as a result of strain-

level variation (Martiny, 2015), redundancy in some functions between 

phylogenetically-distant microbial taxa (Lozupone et al., 2012), and horizontal 

transfer of genes between closely and distantly related taxa (Hall et al., 2020). 

Community composition analyses in conjunction with imaging techniques to define 
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spatial organization of microorganisms (i.e. fluorescence in situ hybridization [FISH]) 

(Mark et al., 2016), functional characterization using metagenomics (functional 

capacity), metatranscriptomics or metaproteomics (molecular function), or 

metabolomics (metabolic function) (Chaston et al., 2014; Douglas, 2018), genome-

scale metabolic modeling to simulate community metabolic interactions (Brunner and 

Chia, 2019; Mendoza et al., 2019), and community network analyses (Coyte et al., 

2015) can address function more directly than 16S analyses.   

   As techniques focused on function are applied, it is becoming apparent that certain 

functions may only be realized in a community context. When microorganisms are 

cultured as a community, they often produce compounds that are not detected by any 

of the microbial taxa cultured in isolation (Wintermute and Silver, 2010). This can 

result from cross-feeding of metabolites between different taxa; polymicrobial 

functions arise from the exchange of microbial-derived metabolites that are not 

available in the environment and are generally by-products of metabolism or the 

extracellular degradation of complex substrates (Douglas, 2020; D’Souza et al., 2018; 

Freilich et al., 2011; Smith et al., 2019). For example, Bacteriodes spp. in the human 

gut microbiome can degrade complex carbohydrates and provide simple sugars that 

are used by different taxa for growth and the production of host-beneficial metabolites 

(Mahowald et al., 2009; Rakoff-nahoum et al., 2016; Rodriguez-Castaño et al., 2019). 

Similarly in the honey bee gut, cross-feeding between Snodgrassella, Gilliamella, and 

Bifidobacterium spp. has been documented (Kešnerová et al., 2017; Zheng et al., 

2019). 

   For Drosophila, information is available on interactions between Acetobacter and 
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Lactobacillus spp., with evidence that Acetobacter and Lactobacillus spp. display 

positive and negative interactions in co-culture and in the presence of Drosophila 

(Newell and Douglas, 2014; Wong et al., 2015). However, we have limited knowledge 

of how they interact and their spatial organization on dietary substrates and in the 

Drosophila gut.  

   Evidence for competition between microorganisms and the Drosophila host over 

dietary resources comes from evidence that Acetobacter can consume glucose in the 

Drosophila diet, resulting in reduced Drosophila lipid storage (Chaston et al., 2014; 

Huang and Douglas, 2015). This effect can be compounded by positive interactions 

between Acetobacter and Lactobacillus.  Specifically, the lactic acid produced by 

Lactobacillus is consumed by Acetobacter to expand metabolic capacity of the two 

microorganisms and alter their effect on Drosophila performance and nutrient 

allocation (Consuegra et al., 2020a; Sommer and Newell, 2019). In addition, the 

production of acetic acid, acetate esters, acetaldehyde derivatives by Acetobacter are 

dependent on cross-feeding of yeast-derived ethanol and are preferred by Drosophila 

for feeding and oviposition (Fischer et al., 2017). Acetic acid in particular is 

highlighted for its effects on Drosophila reproductive behavior and egg deposition 

rate, stimulating insulin-like signaling and influencing patterns of nutrient allocation, 

and activation of the IMD pathway (Joseph et al., 2009; Kamareddine et al., 2018; 

Kim et al., 2017; Shin et al., 2011). 
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Research objectives 

The goal of this dissertation was to determine the impact of gut 

microorganisms on nutrient allocation and metabolic function in Drosophila, and to 

investigate the underlying processes. This was done through three separate 

investigations: first, to apply genome sequencing to define the metabolic capacity of 

individual bacteria (Chapter 2); second, to conduct an experimental analysis of the 

impact of co-associated microorganisms on patterns of nutrient allocation (Chapter 3); 

and, finally, to quantify the effect of microorganisms on the metabolome of 

Drosophila (Chapter 4). In particular for chapter 2, a comparative genomic approach 

was implemented to address the relationship between taxonomy and function of 

bacteria associated with Drosophila to identify functional capacity of individual 

bacteria. Chapter 3 concerned a combinatorial experimental approach in parallel with 

a metabolite feeding assay to determine whether community metabolism is present in 

the Drosophila gut microbiome and the metabolic basis for among-microbe 

interactions to affect host nutrient allocation. Finally, Chapter 4 used a comparative 

metabolomics approach to determine how co-associations shaped Drosophila 

metabolic function. 
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CHAPTER 2 

GENOME-INFERRED CORRESPONDENCE BETWEEN PHYLOGENY AND 

METABOLIC TRAITS IN THE WILD DROSOPHILA GUT MICROBIOME1 

 

Abstract 

Annotated genome sequences provide valuable insight into the functional capabilities 

of members of microbial communities. Although this approach is applied extensively 

to infer function of the microbiomes in animal guts, most studies use metagenomic 

data, hampering the assignment of genes to specific microbial taxa. Here, we make use 

of the readily culturable bacterial communities in the gut of the fruit fly Drosophila 

melanogaster to obtain draft genome sequences for 96 isolates from wild flies. These 

include 81 new de novo assembled genomes, assigned to three order (Enterobacterales, 

Lactobacillales, and Rhodospirillales) with 80% of strains identified to species using 

average nucleotide identity and phylogenomic reconstruction. Based on annotations by 

the RAST pipeline, among-isolate variation in metabolic function partitioned strongly 

by bacterial order, particularly by amino acid metabolism (Rhodospirillales), 

fermentation and nucleotide metabolism (Lactobacillales) and arginine, urea and 

polyamine metabolism (Enterobacterales). Seven bacterial species, comprising 2-3 

species in each order, were well-represented among the isolates and included > 5 

strains, permitting analysis of metabolic functions in the accessory genome (i.e. genes 

 
1 Article in preparation for journal submission by McMullen, J.G., Bueno, E., Blow, F., and Douglas, 
A.E.  
Supplemental material is found in Appendix A. 
Bueno, E. contributed to fly collections, microorganism isolations, and 16S rRNA gene amplicon 
sequencing and Blow, F. contributed to the genome assembly pipeline. 
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not present in every strain). Overall, the metabolic function in the accessory genome 

partitioned by bacterial order. Two species, Gluconobacter cerinus (Rhodospirillales) 

and Lactobacillus plantarum (Lactobacillales) had large accessory genomes, and 

metabolic functions were dominated by amino acid metabolism (G. cerinus) and 

carbohydrate metabolism (L. plantarum). The patterns of variation in metabolic 

capabilities at multiple phylogenetic scales provide the basis for future studies of the 

ecological and evolutionary processes shaping the diversity of microorganisms 

associated with natural populations of Drosophila. 

 

Introduction  

   Animal gut microbiomes are complex assemblages of microorganisms which 

mediate diverse functions that impact host physiology, behavior, and fitness 

(Nicholson et al. 2012; Read & Holmes 2017; Rolhion & Chassaing 2016; Sommer & 

Bäckhed 2013; Thaiss et al. 2016; Huang et al. 2015; Qiao et al. 2019; Turkiewicz et 

al. 2019). Most interactions between the microbiome and the animal host are based on 

the metabolic capabilities of microbiome members, with traits ranging from 

degradation and fermentation of host-inaccessible substrates to synthesis of key 

nutrients for the host, detoxification of harmful dietary constituents and recycling of 

metabolic waste products, and effects on host signaling pathways (Ankrah & Douglas 

2018; Hooper et al. 2002; Engel & Moran 2013). Investigation of the relationship 

between the traits and taxonomic identity among gut microorganisms has shown that 

many metabolic traits are functionally redundant and can be shared by closely and 

distantly related microbiome members (Louca et al. 2018; Heintz-Buschart & Wilmes 



 

16 

2018). This finding is largely based on metagenomic studies, where the taxonomic 

composition of the microbiome is uncontrolled and variable (Lozupone et al. 2012; 

Huttenhower et al. 2012).  

   Functional redundancy can ensure sustained function (also known as ecosystem 

resilience) of the gut microbiome during perturbations that reduce the abundance or 

function of specific taxa and alter the overall microbiome composition (Heintz-

Buschart & Wilmes 2018; Allison & Martiny 2008). Evolutionary changes, which can 

occur within ecological timeframes, can also affect the relationship between taxonomy 

and function. In particular, phylogenetically-divergent taxa may share a metabolic trait 

by gain of function through horizontal gene transfer (HGT), and closely-related taxa 

may differ in functional traits by differential gene deletions and by functional 

divergence of a recently-duplicated gene (Louca et al. 2018). Two examples illustrate 

these processes. The first is the bile salt hydrolase gene, which is involved in lipid 

homeostasis and antimicrobial effects. This gene is widespread across bacterial taxa in 

the human microbiome (most prevalent among the Firmicutes) with evidence of HGT 

events among different Lactobacillus spp. and Listeria monocytogenes (Chand et al. 

2017; Jones et al. 2008; Kumar et al. 2012). Secondly, in the honey bee gut 

microbiome, the distribution of a glucoside hydrolase gene family (genes involved in 

degradation of hemicellulose in pollen) in Bifidobacterium spp. is the result of gene 

duplication and deletion events (Zheng et al. 2019).  

   The apparent ubiquity of functional redundancy, however, is open to question.  

Functional composition analyses often rely on broad metabolic annotations that can 

encompass multiple pathways (Langille 2018).  These methods can fail to detect 
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biologically important differences in metabolic function of gene families, as 

demonstrated, for example, in Proteobacteria of the human gut microbiome (Bradley 

& Pollard 2017). Compounding these problems, within-species variation in metabolic 

function can be widespread, such that metabolic traits important to the host are 

displayed by only a subset of strains or are mediated by pathways distributed across 

two or more different strains (Douglas 2020). For example, Bifidobacterium longum, a 

member of the microbiome of the human infant, has a large accessory genome with 

variable incidence of genes involved in transport and degradation of human milk 

oligosaccharides, implicating some, but not all, strains of this species as important to 

human milk metabolism (Vatanen et al. 2019). Intraspecific variation requires 

identification of not only the pangenome (i.e. total genetic capabilities) of a species, 

but also how the functional traits are distributed across different strains (Tettelin et al. 

2005; Brockhurst et al. 2019; Van Rossum et al. 2020). 

   The goal of this study was to investigate how primary metabolism functions of a gut 

microbiome map onto bacterial phylogeny. We used the gut microbiome of 

Drosophila melanogaster for this analysis because, unlike the microbiome of many 

animals, most of the Drosophila-associated bacteria are readily culturable (Douglas 

2019). Relative to metagenome-assembled genomes, genome sequences of the 

individual bacterial isolates enable higher quality assembly and increased resolution of 

phylogenomic patterns (Van Rossum et al. 2020). More generally, Drosophila is a 

fast-emerging system to investigate ecological and evolutionary questions regarding 

animal-associated microbiomes (Broderick & Lemaitre 2012; Douglas 2019; Erkosar 

et al. 2013; Wong et al. 2016) and there are indications that, as for the mammalian gut 
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microbiome, the Drosophila metagenome displays incongruence between functional 

traits and taxonomic composition ( Newell et al. 2014; Petkau et al. 2016; Adair et al. 

2018; Consuegra et al. 2020; Kang & Douglas 2020). However, the relationship 

between taxonomy and distribution of traits has not been robustly tested. 

   For our analysis, we focused on bacterial taxa isolated from natural populations of 

Drosophila. The gut microbiome of wild Drosophila is dominated by members of the 

bacterial orders Enterobacterales, Lactobacillales, and Rhodospirillales, although the 

relative abundance of the different taxa varies among individuals and collections 

(Chandler et al. 2011; Adair et al. 2018; Bost et al. 2018; Kang & Douglas 2020; 

Wang et al. 2020; Walters et al. 2020).  Long-term laboratory cultures of Drosophila 

were not used because their gut microbiome is of low diversity (Cox & Gilmore 2007; 

Wong et al. 2013; Obadia et al. 2018) and can be functionally different from wild 

populations (Winans et al. 2017; Bost et al. 2018). The great majority of published 

studies on the genome sequences of Drosophila gut microorganisms have concerned 

bacterial taxa derived from laboratory lines (e.g. Winans et al. 2017; Newell et al. 

2014; Petkau et al. 2016) with few sequences available from field-isolates (Table 1.1). 

Therefore, this study was initiated by the isolation of bacteria from field-collected 

Drosophila. In total, we isolated and sequenced the genomes of 81 bacterial strains 

associated with wild Drosophila. We performed comparisons of metabolic traits 

among all field-isolated strains, and then examined the metabolic pangenomes of 

prevalent species to assess the scale of within-species variation. For this panel of 

bacteria, the three bacterial orders were strongly differentiated by primary metabolic 

function, and a subset of species also displayed strain level variation in metabolism 
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related genes. The taxonomically-variable traits include functions likely to be adaptive 

for utilization of sugar-rich rotting fruit environment and predicted to influence 

Drosophila physiology and performance.  
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Table 1.1. Bacterial strains used in comparative genomics analyses. Prevalent species (detected in 4 or more flies and represented 

by >4 strains in our dataset) used for pangenome analyses are in bold. 

Order Family Genus Species (strain ID) No. strains sequenced 
(no. flies) 

Publicly available 
strains 

Enterobacterales Enterobacteriaceae Citrobacter sp. (C) 1 (1)  
  Enterobacter asburiae (Ea) 1 (1)  
   ludwigii (El) 1 (1)  
   mori (Em) 1 (1)  
   sp. (E) 1 (1)  
  Klebsiella michiganensis (Km) 1 (1)  
   variicola (Kv) 1 (1)  
 Erwiniaceae Pantoea dispersa (PAd) 2 (1)  
   sp. (PA) 1 (1)  
  Tatumella sp. #1 (T) 6 (6)  
   sp. #2 (T) 1 (1)  
 Morganellaceae Providencia alcalifaciens (PRa)  1a 

   
burhodogranariea 

(PRb) 
 1a 

   rettgeri (PRr) 4 (4) 1a 
   sneebia (PRs)  1a 

   sp. (PR) 3 (3)  
 Yersiniaceae Nissabacter archeti (Na) 1 (1)  
  Serratia rubidaea (Sr) 1 (1)  

Lactobacillales Lactobacillaceae Lactobacillus brevis (LAb) 5 (5)  
   paracasei (LApa) 1 (1) 1b 

   plantarum (LApl) 5 (5) 1c 

  Leuconostoc citreum (LEc)  1d 

   mesenteroides (LEm) 1 (1)  
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pseudomesenteroides 

(LEp) 1 (1)  

   suionicum (LEs) 1 (1)  
  Weissella cibaria (Wc)  1e 

   minor (Wm) 1 (1)  
 Streptococcaceae Lactococcus lactis (Ll)  1f 

Rhodospirillales Acetobacteraceae Acetobacter cibinongensis (Ac)  1g 

   indonesiensis (Ai)  1g 

   okinawensis (Aok) 2 (1)  
   orientalis (Aor)  2g 

   persici (Ap) 3 (2)  
   thailandicus (Ath) 4 (4) 1g 

   tropicalis (Atr)  1g 

  Gluconobacter albidus (Ga) 1 (1)  
   cerinus (Gc) 13 (5)  
   japonicus (Gj) 1 (1)  
   kondonii (Gk) 6 (5)  
   sp. #1 (G) 3 (2)  
   sp. #2 (G) 1 (1)  
   sphaericus (Gs) 3 (2)  
   wancherniae (Gw) 3 (1)  

aGalac and Lazzaro 2012; bHammer et al. 2017; cPetkau et al. 2016; dWright et al. 2017; eRicks et al. 2017; fChaston et al. 2014; 
gWinans et al. 2017 
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Materials and methods 

Isolation of Drosophila-associated bacteria 

   Wild D. melanogaster flies were collected from compost bins or other food waste 

from five domestic kitchens in Ithaca, NY, USA and from a dumpster containing 

rotting fruits at the Cornell Orchards, Ithaca, NY, USA from 2015 to 2019 (see Table 

S1.1A for collection details). Flies were starved for 1-3 h to allow any food in the gut 

to be eliminated, and then anesthetized with CO2 and sorted by sex (distinguished 

visually by genitalia morphology) and species to obtain D. melanogaster adults (no 

Drosophila simulans males were observed in collections). The flies were washed in 

sterile phosphate buffered-saline (PBS; Cold Spring Harbor, 2018), and hand-

homogenized in 100 μl PBS (except 200 μl for 2019 Lactobacillales collections) with 

a disposable pestle (Kontes/Kimble-Chase, Vineland, NJ, USA) using aseptic 

technique. Each homogenate was inoculated onto an agar medium (yeast-peptone-

dextrose [YPD] or modified De Man, Rogosa, and Sharpe [mMRS]) and incubated at 

30°C for up to one week under aerobic or high CO2 conditions by placing a lit candle 

in a glass jar (Fan & Li 1997)  (Table S1.1A&B). YPD is a nutrient rich medium that 

supports the growth of sugar-rich environment microorganisms, while mMRS is a 

more selective medium that promotes the growth of acetic acid bacteria 

(Rhodospirillales) and Lactobacillales associated with Drosophila. In 2019, the 

procedure was modified to enhance the efficacy of isolating lactobacilli, which tend to 

have low relative abundance in wild fly guts (Adair et al. 2018; Chandler et al. 2011; 

Kang & Douglas 2020). Specifically, the homogenates were allowed to settle for 5-10 

mins (allowing large microorganisms, e.g. yeasts, to settle) and 75 μl supernatant was 
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inoculated on agar plates. The mMRS medium was also supplemented with azide, 

tween-80, and bromocreosol purple (Table S1.1B) to select for Lactobacillales taxa 

(Choi et al. 2016). Individual colonies representative of different morphologies were 

isolated and streaked onto fresh agar (same medium as initial growth but lacking any 

antibiotics or dyes). A single representative colony was grown in broth of the same 

medium, visually confirmed as a bacterium by light microscopy (DM5000 B, Leica 

Microsystems, Buffalo Grove, IL, USA), and stored in 20% glycerol (Sigma, St. 

Louis, MO, USA) at -80°C. 

 

DNA extraction of bacterial isolates 

   A chunk of frozen glycerol stock was inoculated either onto mMRS or YPD agar 

and a single colony was obtained to grow in 5 ml broth until turbid (see Table S1.1B 

for media). A 1 ml sample of the cell suspension was centrifuged at 19,000xg for 5 

min and cells were re-suspended in 678 μl cell lysis buffer (108 mM Tris-HCl, pH 8.0; 

1.5 M NaCl; 21.6 mM EDTA; Sigma) and 16 U proteinase K (Qiagen, Hilden, 

Germany) with either 30 μl 1 mm diameter glass beads (Scientific Industries, 

Bohemia, NY, USA) and 250 μl 2.3 mm diameter zirconia beads (BioSpec, 

Bartlesville, OK, USA) or 200 μl 1 mm diameter glass beads. Samples were 

homogenized for 35 s at 5.5 m/s with a FastPrep-24 instrument (MP Biomedicals, 

Santa Ana, CA, USA) and incubated at 56°C for 2 h. Homogenates were incubated 

overnight at 37°C with 35 U RNaseA (Qiagen). DNA was extracted from homogenate 

with 750 μl phenol:chloroform:isoamyl alcohol (25:24:1; Thermo Fisher Scientific, 

Waltham, MA, USA) and centrifuged at 19,000xg for 15 min at 4°C. To precipitate 
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DNA from 450 μl aqueous layer, 900 μl ethanol and 45 μl 3 M sodium acetate (pH 

5.2; Sigma) were added to each sample and incubated overnight at -20°C. Following 

centrifugation at 19,000xg for 15 min at 4°C, DNA pellet was washed in 75% ethanol, 

centrifuged at 19,000xg for 10 min at 4°C, air-dried for 10 min, and re-suspended in 

50 ul nuclease-free water (Ambion, Austin, TX, USA). DNA was stored at -20°C until 

PCR amplification and whole-genome sequencing.  

 

Molecular identification of bacteria 

   Molecular characterization was first performed by Sanger sequencing of bacterial 

16S rRNA gene amplicons obtained by PCR with the primers 16SA1 (forward: 5’-

AGAGTTTGATCMTGGCTCAG-3’) and 16SB1 (reverse: 5’-

TACGGYTACCTTGTTACGACTT-3’) from Fukatsu & Nikoh (1998). 

Approximately 1 µg DNA template (quantified using Nanodrop; Thermo Fisher 

Scientific) was added to 0.2 μM primers and 1 U OneTaq 2x Master Mix with 

Standard Buffer (New England BioLabs, Ipswich, MA, USA). PCR reaction 

conditions were 94°C for 30 seconds, 30 amplification cycles of 94°C for 30 s, 55.3°C 

for 60 s, and 68°C for 60 s with a final extension for 5 min at 68°C. PCR products 

were purified using ExoSAP-IT PCR Clean Up Reagent (Applied Biosystems, 

Waltham, MA, USA) and submitted for Sanger sequencing (both forward and reverse 

directions) at Cornell University Genomics Facility using Applied Biosystems 3730xl. 

Consensus sequences were generated from forward and reverse sequences and 

taxonomic identity was assigned using BLASTn 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) against the NCBI non-redundant nucleotide 
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collection with Geneious Prime 2019.2.1 (Biomatters, Auckland, New Zealand). 

Bacterial isolates were selected for genome sequencing by maximizing taxonomic, fly 

replicate, and collection diversity within Enterobacterales, Lactobacillales, and 

Rhodospirillales. 

 

Sequencing and genome assembly 

   Genomic DNA (0.2 ng/μl; quantified by Qubit 2.0 fluorimeter; Invitrogen, Waltham, 

MA, USA) was submitted to Cornell University Genomics Facility for whole-genome 

shotgun sequencing using an Illumina NextSeq500 Platform with the Nextera XL 

DNA Library Preparation kit (Illumina, San Diego, CA, USA) to generate 150 bp 

paired-end reads according to manufacturer’s protocol. Libraries were pooled in equal 

proportions across three runs and their quality was assessed with a Fragment Analyzer 

(Advanced Analytical Technologies, Ames, IA, USA). A Blue Pippin device (Sage 

Science, Beverley, MA, USA) was used for further size-selection of pooled libraries to 

target fragments £ 800 bp, if required. 

   Between 1,033,730 and 28,432,172 reads were obtained for 81 bacterial genomes 

(Table S1.1A). Read quality was assessed using FastQC v0.11.3 

(www.bioinformatics.babraham.ac.uk/) and were trimmed with trimmomatic v0.36 

(Bolger et al. 2014). Reads were trimmed on the ends if the quality score was <3 or 

the terminal base was unidentified (‘N’), and sequences were only retained if they had 

a quality score of >15 over a 4 bp moving window and length of 125 bp. Then, 

SPADES v3.11.1 (Bankevich et al. 2012) was used to assemble reads into contigs (k-

mer lengths 21, 33, 55, and 77 were used) following default parameters. The careful 



 

26 

option was included for genome polishing. Low k-mer coverage contigs were filtered 

to reduce contamination following Douglass et al. (2019); see Table S1.1A for cutoffs 

applied to each genome. SSPACE v3.0 (Boetzer et al. 2011) was used for contig 

extension and scaffolding following default parameters with a minimum 100 bp (insert 

size was estimated from subsampling 1,000,000 reads). Genome assembly statistics 

were obtained using Quast v4.6.3 (Gurevich et al. 2013) with contigs less than 500 bp 

removed. To assess average sequence depth, reads were mapped to final contigs using 

Bowtie2 v2.2.6 (Langmead & Salzberg 2012) following default parameters and the 

samtools v0.1.19 (Li et al. 2009) depth function. ConEst16S (Lee et al. 2017) was 

used to identify bacterial contamination when more than one 16S rRNA gene was 

detected for a genome (Table S1.1A); none of the genomes were found to have 

bacterial contamination. 

 

Genome annotation 

   Genomes were annotated using the RASTtk pipeline on RAST server with error 

correcting (Brettin et al. 2015; Overbeek et al. 2014). For analysis of primary 

metabolism genes, the following RAST categories were extracted: amino acids and 

derivatives; carbohydrates; cofactors, vitamins, prosthetic groups and pigments; fatty 

acids, lipids, and isoprenoids; nitrogen metabolism; and nucleosides and nucleotides. 

The RAST subsystems associated with secondary metabolism (cyanate hydrolysis, 

hopanes, polyhydroxybutyrate metabolism, nitrilase, and nitrosative stress), and the 

nucleosides and nucleotides subcategories detoxification and ‘no subcategory’ were 

removed to retain the main nucleotide biosynthesis, conversion, and degradation 
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genes. For the selected primary metabolism functions, all genes in the ‘no 

subcategory’ subsystems were combined into an ‘other’ subcategory for each RAST 

category (apart from nucleoside and nucleotide category). For analyses, each RAST 

role (or gene function) was counted once, although there may be several genes (or 

RAST features) that are annotated with each function. Due to the large variation in 

total number of coding sequences for each strain (Table S1.1A), relative counts were 

generated for the number of functions found in each RAST subcategory (scaled to the 

total number of primary metabolism related functions). The GenBank flat file of 

publicly available genomes for other wild Drosophila-associated bacteria were 

downloaded from NCBI (Table S1.1C) and were re-annotated using RAST to obtain 

functional trait data. For pangenome analysis, metabolic genes were extracted using a 

custom R script for species with more than 4 strains and were re-annotated using 

PROKKA v1.14.6 (Seemann 2014). For orthogroup analysis, Eggnog mapper v2 

(Huerta-Cepas et al. 2019) was implemented to annotate representative sequences 

from each orthogroup as a general annotation, while a custom R script was used to 

associate RAST metabolic functions with metabolism-related orthogroups for 

statistical analyses. 

 

Orthologous group gene clustering and pangenome analysis 

   OrthoFinder v2.4.0 (Emms & Kelly 2015, 2019) was implemented to cluster protein-

coding sequences into orthogroups for all Drosophila-associated bacteria with default 

settings. Several reference genomes were included for analysis of species tree (Table 

S1.1C). For metabolism-related clusters, reference genomes were pruned from 



 

28 

orthogroup list, and a custom R script was used to extract orthogroups containing 

relevant metabolic functions (based on RAST annotations). Hmmer v3.3.1 was used to 

identify representative amino acid sequence for each orthgroup using ‘hmmbuild’ and 

‘hmmsearch’ functions (hmmer.org). In addition, Roary v3.13.0 (Page et al. 2015) was 

used to assess variation in metabolic repertoire of prevalent species using PROKKA 

annotations. The pangenome distribution index was calculated as a corrected 

proportion of the number of core genes (subtracting the accessory gene count from the 

core gene count of each strain) scaled to the total number of genes found in the 

pangenome. 

 

Phylogenetic and phylogenomic reconstructions 

   Sequences for single-gene and multi-locus phylogenies were aligned using 

MUSCLE (Edgar 2004) with default settings in Geneious Prime and phylogenetically 

informative sites were selected with GBlocks v0.91b (Castresana 2000) using less 

stringent options (b1-b5 settings: 0.5, 0.55, 8, 5, half). Maximum likelihood 

phylogenies were generated using IQ-TREE v1.6.12 (Nguyen et al. 2015) with model 

of evolution chosen by lowest BIC score with ModelFinder (Kalyaanamoorthy et al. 

2017). Bootstrap replicates (10,000 replicates with ultrafast bootstrap approximation 

method) were performed to identify node support using UFBoot2 (Hoang et al. 2018). 

For the phylogenomic reconstruction, single orthologous gene clusters identified using 

OrthoFinder (52 amino acid sequences, see Table S1.2) were concatenated with 

SequenceMatrix v1.8 (Vaidya et al. 2011) for a partitioned model (proportional branch 

lengths implemented) with IQ-TREE (Chernomor et al. 2016). For statistical analyses, 
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reference taxa (Table S1.1C) were removed from phylogenies.  

   Species boundaries of sampled taxa were determined using a 95% average 

nucleotide identity (ANI) score threshold using JSpecies v1.2.1 (Richter & Rosselló-

Móra 2009) with MuMmer v3.23 (Kurtz et al. 2004) at default settings. Taxa identities 

were confirmed by comparing each strain to related genomes (type specimens 

accessed from NCBI) and a BLASTn search for genome extracted 16S rRNA gene 

sequences (Table S1.1A). Individual phylogenies for each bacterial order were drawn 

by extracting each clade from the entire reconstruction using the packages ape v5.4 

(Paradis & Schliep 2019) and ggtree v2.2.4 (Yu et al. 2017) with Vibrio cholerae, 

Bacillus subtilis, and Rhodospirillaceae spp. (Magnetospirillum magneticum and 

Rhodospirillum rubrum) used to root phylogenies of the Enterobacterales, 

Lactobacillales, and Rhodospirillales, respectively.  

 

Statistics 

   All analyses were performed using R v4.0.2 (R Core Team 2018) with a significance 

a threshold of 0.05. Genome features (number of coding sequences (CDS), genome 

size, metabolic function count, and GC content) were assessed for phylogenetic signal 

using two different univariate methods. First, Pagel’s λ was imputed to determine 

whether genomic features could be explained by phylogenetic relatedness as compared 

to a Brownian motion model of evolution using a likelihood ratio test (null hypothesis: 

λ = 0 or completely random) with the package phytools v0.7.47 (Revell 2012). Then, 

an analysis of variance (ANOVA) was implemented to assess the categorical effect of 

taxonomy on genomic features with patristic distance (sum of branch lengths from 
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root tip) as a covariate using the car package v3.0.8 (Fox & Weisberg 2019), except a 

logistic regression (quasibinomial distribution with logit link) was implemented to 

analyze GC content with a Wald’s Χ2 test for the omnibus test. Patristic distance was 

calculated with the ‘distRoot’ function from the package adephylo v1.1.11 (Jombart et 

al. 2010) using a Lactococcus lactis Bpl1 rooted tree. This taxon was selected because 

it is the most ancestral strain represented in the dataset (Hug et al. 2016; Zheng et al. 

2020). Normality and homoscedasticity of residuals were visually assessed for each 

model. For all models, genome size and CDS were log10-transformed. 

   Several multivariate methods were implemented to identify relationships among 

bacterial metabolic traits and orthogroups. First, RAST subcategories were visualized 

by bacterial strain using principal coordinates analysis (PCoA) with Bray-Curtis 

dissimilarities on relative counts (proportions were based on total number of function 

counts in selected RAST subcategories related to primary metabolism pathways) using 

the ‘capscale’ function in the vegan package v2.5.6 (Oksanen et al. 2019). Orthogroup 

incidence was visualized with a PCoA using a Jaccard similarity coefficient for 

presence-absence data. Second, a permutational multivariate analysis of variance 

(PERMANOVA) was performed with the ‘adonis’ function to determine whether 

metabolic traits and orthogroup incidence varied by bacterial taxonomy with 999 

permutations and Bray-Curtis dissimilarities on relative count data or Jaccard 

similarity coefficient for presence-absence data. A post hoc pairwise PERMANOVA 

was implemented using the ‘adonis.pair’ function from the EcolUtils package v0.1 

(Salazar 2020) with 999 permutations and Benjamini-Hochberg false discovery rate p-

value correction method (FDR). Then, a Ward’s linkage agglomerative hierarchical 
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cluster was applied to relative count data with Bray-Curtis dissimilarities to generate a 

dendrogram by bacterial strains. The pvclust package v2.2.0 (Suzuki et al. 2019) was 

implemented to identify significant clusters in the hierarchical cluster with 

approximately unbiased p-values and bootstrap probability support values (n = 

10,000). Finally, PCoA of the metabolism-related orthogroups were correlated with 

the PCoA of all orthogroups using a Procrustean randomization test (999 

permutations) in the vegan package with the function ‘protest.’ 

   Correlation between dendrograms was determined using two metrics. First, 

normalized Robinson-Foulds metric was calculated using the phangorn package v2.5.5 

(Schliep 2011) to test for congruence between dendrogram topologies. nRF values are 

bounded between 0 and 1, corresponding to complete congruence to incongruence. 

Then, a Mantel test was performed to associate two distance matrices using 

Spearman’s rank correlation with 999 permutations using vegan. For phylogenies, 

cophenetic distances (pairwise sum of branch lengths) were calculated using the 

‘cophenetic.phylo’ function in ape. Bray-Curtis dissimilarities were used for the 

relative function counts. Tanglegrams were generated using the dendextend package 

v1.13.4 (Galili 2015) with the ‘step2side’ aligner. 

   For the analysis of prevalent species, represented in at least four flies and comprising 

>4 strains, several methods were used to compare pangenome distribution and 

functional content. Differences in the pangenome distribution index were examined 

with a beta regression using the betareg package v3.1.3 (Cribari-Neto & Zeileis 2010). 

A likelihood ratio test was used to assess the effect of species by comparing the 

regression to an intercept-only model with the package lmtest v0.9.37 (Zeileis & 
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Hothorn 2002) and a post hoc Tukey’s test was implemented with the emmeans 

package. Pearson’s product-moment correlation coefficient was used to assess linear 

association between strain diversity and pangenome distribution gene count. Strain 

diversity was scored in two ways: first with Shannon’s entropy on the concatenated 

amino acid sequence alignment used in the phylogenomics analysis with the Bio3d 

package (Grant et al. 2006) and then nucleotide diversity was obtained for 16S rRNA 

gene alignment with the pegas package (Paradis 2010). A two-sided Fisher’s exact test 

was used to compare orthogroup incidence between species, while a one-sided 

Fisher’s exact test was used for enrichment of subsystems in the accessory genome 

compared to the core genome of each species. The odds ratios (OR) were calculated 

based of the function count of a given subsystem in the accessory genome relative to 

the rest of the function counts in the core genome. FDR was used to correct for 

multiple Fisher’s exact tests.  

 

Results 

Sequencing and characterization of bacterial genomes 

   In this study, we assessed whether primary metabolism functions found in gut 

bacterial microbiome members of wild Drosophila can be mapped onto bacterial 

taxonomy. First, we characterized the genomic features of the strains found in each 

bacterial order. Given that few bacterial species associated with wild Drosophila have 

been isolated and sequenced previously, we collected and sequenced 81 newly isolated 

strains that are members of the three dominant bacterial orders (i.e. Enterobacterales, 

Lactobacillales, and Rhodospirillales) found within the fly gut to complement the 15 
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genomes currently available (Table 1.1 and S1.1A&B). Genome features (genome 

size, number of coding sequences (CDS), and GC content) of all newly-sequenced 

taxa (Table S1.1A) were similar to publicly available species. The estimated genome 

sizes of the strains sequenced ranged from 1.8 to 5.8 Mbp with 1,879-5,983 CDS and 

GC content of 37-60%. Average coverage (i.e. sequence depth) of genomes ranged 

from 53x to 1,390x (Table S1.1A). The number of annotated metabolic functions by 

RAST ranged from 286 to 968. Comparisons of genomic features indicated that all 

measures significantly differed by bacterial order (Fig. 1.1A-D). In addition, 

phylogenetic signal was found for all four genomic features scored using Pagel’s λ and 

patristic distance (based on phylogenomic analysis) as a covariate in ANOVA and 

logistic regression analyses (Fig. 1.1A-D), indicating that closely related taxa tend to 

have similar genome characteristics. 
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Figure 1.1. Genomic features and phylogenomic analysis of Drosophila-associated 

bacteria. (A) Estimated genome size, (B) number of CDS (coding sequences), (C) GC 

content, and (D) RAST metabolic function counts by bacterial order. (E-F) 

Phylogenomic reconstruction for (E) Enterobacterales, (F) Lactobacillales, and (G) 

Rhodospirillales. For all genomic features, the raw means and standard error are 

displayed, except for box plots used in panel C to show GC content. Pagel’s λ and F-

statistic or Χ2 statistics for model predictors (order and phylogenetic distance) are 

displayed for each panel (residual df = 92). * All p values are less than <0.01. 

Phylogenetic distance is calculated from branch lengths of phylogenomic 

reconstruction. Letters represent statistical grouping from post hoc Tukey’s test. 

Phylogenomic analysis is based on the concatenated sequence (length = 13,238 amino 

acids) of 52 genes (details in Table S7). Dendrograms are scaled to amino acid 

divergence. 
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   The taxonomy of the newly isolated bacterial strains was characterized by two 

methods: genome comparisons of average nucleotide identity (ANI) to genomes of 

type specimens, and BLAST search of genome extracted 16S rRNA gene against the 

non-redundant NCBI database. Based on ANI scores, 80% of the strains were 

identified to the species level (Table S1.1A). The remainder of the strains were 

identified to the genus level using 16S rRNA gene sequence where no close ANI 

match was available (Table S1.1A). In addition, a previously sequenced genome 

Acetobacter sp. DmW-043 (Winans et al. 2017) was identified as Acetobacter 

thailandicus (98.9% ANI to A. thailandicus LMG 30826, accession: 

GCA_011516655, which was not available at the time of publishing this genome 

sequence). A phylogenomic analysis of 52 single-orthologs supported the ANI species 

boundaries with strong bootstrap node support (generally >95%, although some of the 

Rhodospirillales species had node support >70%; Fig. 1.1E-G & S1.1). Most species 

and genera included formed monophyletic clades. Exceptionally, Leuconostoc and 

Weissella spp. were embedded within the paraphyletic Lactobacillus genus, as found 

previously in larger phylogenomic analyses of this group (Salvetti et al. 2018; Zheng 

et al. 2020). In addition, the evolutionary relationships between taxa of the 

Enterobacterales and Rhodospirillales were consistent with published datasets 

containing additional species from each order (Adeolu et al. 2016; Matsutani et al. 

2011; Baek et al. 2020; Yukphan et al. 2020). 

 

Association of 16S rRNA gene with phylogenomic relationships 

   As 16S rRNA gene sequencing is widely used in taxonomic surveys for microbiome 
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studies, we investigated how well 16S sequence predicted species identity and 

phylogenomic relationships of the strains used in this study. In the BLAST top 

matches with 16S rRNA genes, 77% of the strains had more than one species match 

(Table S1.1A). Similarly, many of the 16S rRNA genes yielded ≥97% identity 

matches (general threshold for species boundaries) between strains of the different 

species isolated. This applied especially to Gluconobacter and Leuconostoc spp. and 

many of the Enterobacterales strains (Table S1.3), consistent with published data of 

these taxa (Adeolu et al. 2016; Matsutani et al. 2011; Jeon et al. 2017), and indicated 

the 16S rRNA gene does not always infer species identity reliably. Phylogenetic 

analysis of 16S rRNA genes tended to have lower bootstrap support than the 

phylogenomic analysis (Fig. S1.2). Many of the species clusters identified by 

phylogenomics were evident in the 16S phylogeny, but some of the 

Enterobacteriaceae and Gluconobacter spp. were mis-identified as polyphyletic (Fig. 

S1.2).  

   Two complementary methods were implemented to compare congruence between 

the phylogenomic analysis and 16S rRNA phylogeny. First, normalized Robinson-

Foulds index was used to compare dendrogram topologies, which indicated that 16S 

rRNA gene phylogeny had the best correspondence with Lactobacillales and weakest 

association with the Rhodospirillales (Fig. 1.2). Second, a Mantel test was 

implemented to correlate the cophenetic distances between all taxa of each 

dendrogram. All three bacterial orders displayed strong, statistically significant 

correlation, indicating that 16S rRNA gene phylogeny retains much of the overall 

taxonomic placement of species relationships found in the phylogenomic analysis.  
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Figure 1.2. Relationship between phylogenome and 16S rRNA gene phylogeny.  

Tanglegrams for (A) Enterobacterales. (B) Lactobacillales. (C) Rhodospirillales. 

Normalized Robinson-Foulds (nRF) indices and Mantel test correlations are displayed 

for each order. Subtrees with the same topologies between each dendrogram are 

colored. * represented p = 0.001. 
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Correspondence between metabolic traits and phylogeny 

   Bacterial traits were grouped by the 38 RAST subcategories related to primary 

metabolism to infer correspondence between bacterial phylogeny and distributions of 

metabolic functions. Despite some variability in counts between genomes from each 

order, the taxa belonging to the order Enterobacterales tended to have more functions 

related to amino acid, carbohydrate, and vitamin metabolism than Lactobacillales and 

Rhodosprillales, while functions involved in lipid, nitrogen, and nucleotide 

metabolism generally had similar counts across all taxa (Fig. 1.3A). The expanded 

range of functions in the Enterobacterales is likely linked to the relatively large 

genome size and number of coding sequences in these bacteria (Fig. 1.1). 

   Principal coordinates analysis (PCoA) was applied to visualize the relationship 

between taxonomy and metabolic potential using relative counts to normalize the data 

(Fig. 1.3B). On the first axis, the three bacterial orders were distinctly separated, while 

on the second axis, the Enterobacterales were separated from the other two orders. 

PERMANOVA indicated a large effect by bacterial order on metabolic trait groupings 

(F2,93 = 61.72, p = 0.001, R2 = 0.57) and a pairwise PERMANOVA analysis revealed 

that all three orders were significant different from each other after FDR p-value 

correction (Table S1.4A). In addition, each of the clusters separated by genus-level 

taxonomy, apart from some mixing between Providencia and Tatumella spp., further 

indicating metabolic differentiation by taxonomy (Fig. S3).



 

41 

 

Figure 1.3. Taxonomic correspondence with encoded metabolic functions. (A) 

Heatmap of raw function counts in RAST subcategories displayed by bacterial order. 

Rows and columns are organized by alphabetical order for RAST categories and 

bacterial taxonomy. RAST subcategories are grouped by categories: A = amino acids 

and derivatives, C = Carbohydrates, V = cofactors, vitamins, prosthetic groups, and 

pigments, L = fatty acids, lipids, and isoprenoids, Ni = nitrogen metabolism, and Nu = 

nucleosides and nucleotides. (B) Principal coordinates analysis (PCoA) of relative 

counts for RAST subcategories with Bray-Curtis dissimilarity matrix. Arrows indicate 

the loading subcategories (top 15 displayed) and the percent variance explained for 

each axis is displayed. (C) Hierarchical cluster of relative counts for RAST 

subcategories. Significant clusters are boxed and colored by bacterial order.  

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444

555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555

666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666

777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212

131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313

141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414

151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (44%)

PC
2 

(2
0%

)

Enterobacterales
Lactobacillales
Rhodospirillales

[1] Lysine, threonine, methionine,     
& cysteine                      

[2] Monosaccharides                                                  
[3] Arginine, urea cycle, & 

polyamines                                 
[4] Tetrapyrroles                                                    
[5] Purines                                                          
[6] Pyrimidines                                                      
[7] Alanine, serine, and glycine                                     
[8] Aromatic amino acids & 

derivatives                             
[9] Isoprenoids                                                      
[10] Fermentation                                                     
[11] Di- and oligosaccharides                                         
[12] Branched-chain amino acids                                       
[13] Histidine metabolism                                             
[14] Other nitrogen metabolism                                                         
[15] Folate & pterines

0.06

C)

0

20

40

60

80

100

0.06

Bootstrap support

> 50%

> 70%

> 80%

> 95%

Enterobacterales

Lactobacillales

Rhodospirillales

B)

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444

555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555

666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666

777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010


141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414

151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1 (44%)

PC
2 

(2
0%

)

Enterobacterales
Lactobacillales
Rhodospirillales

A)

Enterobacterales Lactobacillales Rhodospirillales

A

C

V

L
Ni
Nu



 

42 

   The top 15 loadings were displayed to identify RAST subcategories that were 

associated with each bacterial order (Fig. 1.3B). Generally, each order was associated 

with different metabolic functions; the Rhodospirillales were driven by amino acid 

metabolism, while the Lactobacillales were associated with carbohydrate, nucleotide, 

and lipid metabolism and Enterobacterales were influenced by arginine, urea cycle, 

and polyamine metabolism. Both the Lactobacillales and Rhodospirillales were 

associated with functions related to vitamin and cofactor metabolism. Lastly, the 

Rhodospirillales may share some of the nitrogen metabolism functions with 

Enterobacterales, as it relates to different organic and inorganic nitrogen metabolic 

pathways (subcategory contains ammonia fixation, allantoin utilization, and amidase 

subsystems). 

   The metabolic functions of each strain were further clustered using an agglomerative 

hierarchical method (Fig. 1.3C). The three orders clustered separately with >50% 

bootstrap probability support. The Enterobacterales and Rhodospirillales bacteria 

formed two significant clusters with almost all of the genera grouped together for each 

order (except some of the Gluconobacter spp.). The Lactobacillales formed three 

significant clusters by Lactobacillus spp. (L. brevis, L. paracasei, and L. plantarum), 

as well as another Leuconostoc spp. cluster (Fig. 1.3C), which all had >95% bootstrap 

probability support. The remainder of the Lactobacillales species only had single 

strain representatives, likely influencing the lack of clusters. 

   To further understand the relationship between phylogeny and distribution of 

metabolism functions, the hierarchical cluster was correlated with phylogenomic and 

16S rRNA gene dendrograms using normalized Robinson-Foulds index and Mantel 
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test. Overall topologies of dendrograms were moderately associated between 

phylogeny and metabolic traits, with the best congruence found when associating 

function with phylogenomic analysis (likely driven by the congruence of the 

Enterobacterales members) (Fig. S1.4). Results from Mantel test comparing 

cophenetic distances of each phylogeny with Bray-Curtis dissimilarities supported this 

finding with a 1.2x increase in correlation statistic when using the phylogenomic 

reconstruction compared to the 16S rRNA gene phylogeny, suggesting that the 

increased resolution of the species tree amplified the phylogenetic signal for overall 

distribution of metabolic traits. Further inspection of the tanglegrams indicated that 

few strains had overlapping topologies between dendrograms (i.e. displayed the same 

node-edge relationships), further supporting weak to moderate congruence between 

dendrograms found for each order (Fig. S1.4).  

   As a complementary analysis, orthogroups were identified between all 96 taxa to 

determine whether a finer resolution at the gene family incidence level would reflect 

the functional relationships observed based on RAST annotations. A PCoA was used 

to visualize taxonomic relationships between the 13,170 orthogroups with genes from 

at least three genomes using a Jaccard similarity coefficient. All three bacterial orders 

clustered away from one another, with Rhodospirillales separating on the first axis 

away from the Enterobacterales and Lactobacillales and all three orders distinctly 

separating on the second axis (Fig. S1.5). Orthogroup composition of each genome 

significantly differed by order (PERMANOVA: F2,93 = 63.2, R2 = 0.58, p = 0.001, 

Table S1.4B). Of the total orthogroups identified, 8% were involved in metabolism-

related functions (defined by RAST annotations). These 1,055 orthogroups were 



 

44 

extracted and subjected to the same analysis, resulting in a similar finding that all three 

bacterial orders are distinct on both PCoA axes (Fig. S1.5), with PERMANOVA 

support (F2,93 = 106.5, R2 = 0.7, p = 0.001, Table S1.4C). In addition, a Procrustean 

randomization test indicated that the orientation of metabolism-related orthogroups 

was highly correlated with the overall relationship among all orthogroups (m2 = 0.008, 

r = 0.996, p = 0.001). 

 

Variation in metabolism genes of prevalent species 

   To extend our analysis of metabolic variation among the Drosophila-associated 

bacteria, we focused on 7 species, which we termed ‘prevalent’ by the criteria that 

they were isolated from at least 4 flies and were represented by >4 strains (Table 1.1). 

These taxa provide the opportunity to define the distribution of metabolic traits from a 

pangenomic perspective, including comparisons in orthogroup membership between 

species and identification of among-strain variation, i.e. enriched functions in 

accessory genome. 

   A pangenome analysis was performed using Roary to identify single orthologous 

genes encoding metabolic functions found within each of the seven species and to 

define the distribution of genes found in the metabolic pangenome. Across the 7 

species, the total pangenome ranged from 287 to 538 metabolism related genes with 

core genome size of 264-488 and accessory genome size of strains ranging from 0-102 

genes (Fig. 1.4A). A distribution index was generated to compare the relative sizes of 

the metabolic pangenome with values close to 1 indicating a small accessory genome 

with few genes per strain; values closer to 0 indicate high strain diversity with equal 
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numbers of genes in the core and accessory genome for a strain. A beta regression of 

indices for each species indicated significant differences by species (likelihood ratio 

test: Χ2
6 = 200.2, p < 2.2x10-16) with no specific statistical similarities between species 

with similar taxonomy, although both P. rettgeri and Tatumella sp. (Enterobacterales) 

had small metabolic accessory genomes (Fig. 1.4B). The relatively large accessory 

genome sizes of G. cerinus, G. kondonii, and L. plantarum correlated with increased 

residue diversity (index for measuring average strain diversity within species using the 

amino acid alignments from the phylogenomic analysis) (Fig. 1.4C and S1.6). 

Additionally, nucleotide diversity based on 16S rRNA genes among strains was also 

assessed and no significant relationships were found, indicating the increased 

resolution of the phylogenomic analysis was required to score strain diversity between 

species (Fig. S1.6).
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Figure 1.4. Metabolic pangenome analysis of prevalent species. (A) Distribution of 

metabolism genes in pangenome of each species with number of strains listed below 

each taxon identifier. (B) Relative pangenome distribution by species. (C)  Strain 

diversity by species using Shannon’s entropy score. (D) PCoA of orthogroup 

composition among species (E) Heatmap of function counts (20-140) in accessory 

genome by species. In panels B and C, estimated marginal means and standard error 

are plotted from each model with letters from post hoc Tukey’s test representing 

statistical groups. Percent variation explained among significantly different 

orthogroups is shown for each axis in panel D. Gray cells in heatmap of panel E 

indicate function is absent in accessory genome. Species identifiers: Ath = A. 

thailandicus, Gc = G. cerinus, Gk = G. kondonii, LAb = L. brevis, LApl = L. 

plantarum, PRr = P. rettgeri, and T = Tatumella sp. RAST categories: A = amino 

acids and derivatives, C = Carbohydrates, V = cofactors, vitamins, prosthetic groups, 

and pigments, L = fatty acids, lipids, and isoprenoids, Ni = nitrogen metabolism, and 

Nu = nucleosides and nucleotides. Data are provided in Table S5. 
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   The contribution of between- and within-species differences to variation in 

metabolic traits was investigated using two methods. In the first approach, the 

metabolic traits between species were compared using Fisher’s exact test on 

orthogroup membership based on incidence (minimum threshold of three genomes 

represented per orthogroup). After p-value correction, 597 of the 717 orthogroups 

were significantly different between species. A PCoA with a Jaccard similarity 

coefficient was used to visualize how species separated by significant orthogroups. All 

seven species formed distinct taxonomic clusters (PERMANOVA: F6,39 = 775.23, R2 = 

0.99, p = 0.001, Table S1.4D) with bacteria separating by order on the first axis and 

Lactobacillales and Rhodospirillales separated from the Enterobacterales strains on the 

second axis (Fig. 1.4D). The top RAST category was assigned to each orthogroup and 

associated with each PCoA axis, indicating Rhodospirillales were enriched in amino 

acid, nucleotide, and vitamin metabolism while Enterobacterales were enriched in all 

metabolism categories except nucleotide metabolism (Fig. S1.7). This analysis of 7 

species largely recapitulates the analysis of all strains, as displayed in Fig. 1.3B. 

   Further investigation into the orthogroup analysis established that the top significant 

orthogroups were primarily involved in carbohydrate metabolism (~50%) and that 

most orthogroups were present in the two Gluconobacter spp. while the other taxa had 

lower incidence rates across gene families (Table S1.5). When a given species was a 

member of a top orthogroup identified, all strains were found to contain at least one 

gene from this gene family. In addition, all of the top orthogroups were present in at 

least two species, and were generally not defined by higher order taxonomy (e.g. 

Gluconobacter and Tatumella spp. tended to have similar orthogroup functions). Of 
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the top gene functions identified, several were noteworthy for known effects on 

Drosophila physiology. Some of the sugar and sugar derivative dehydrogenases have 

been implicated as determinants of reduced lipid content in adult flies by incomplete 

oxidation of external carbohydrates (Chaston et al. 2014). Our analysis (Table S1.5) 

also identified a bacterial methionine salvage gene (5-methylthioribose kinase), which 

bacterial methionine metabolism lowers starvation resistance of Drosophila (Judd et 

al. 2018), and the hydroxymethylpyrimidine ABC transporter involved in the 

production of thiamine (vitamin B1) (Table S1.5), an important determinant of larval 

development and survival on low-nutrient diets (Sannino et al. 2018). In addition, 

several gene functions that aid in the bacterial growth and utilization of Drosophila 

metabolic waste products (Storelli et al. 2018; Winans et al. 2017) were identified 

(Table S1.5).  Notably, N-acetylglucosamine gene families (the monomer of chitin 

found in the peritrophic envelope of the insect gut as well as fungal cell walls) and 

xanthine degradation gene families (part of an Acetobacteraceae uric acid degredation 

locus, the primary nitrogen waste product of Drosophila) were top gene functions 

(Table S1.5). For the latter orthogroup, we further inspected whether the uricase gene 

was also present in the genomes of the prevalent strains, as it is not a function 

classified by the RAST subsystem annotations. This gene was present in all genomes 

of prevalent Gluconobacter and Tatumella spp. and is part of the orthogroup 

OG0001450, indicating these taxa may potentially utilize uric acid egested by 

Drosophila. 

   Our second analysis of variation in metabolic traits across the 7 prevalent species 

identified gene functions enriched in the accessory genome of each species compared 
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to the core genome (Table S1.6A-G). Among the different functional annotation 

counts in the accessory genome, amino acid metabolism in G. cerinus and 

carbohydrate metabolism in L. plantarum were the highest and nitrogen metabolism 

were low or absent in all 7 species (Fig. 1.4E). Only 7 RAST subsystems were 

identified as enriched in the accessory genome of four species (G. kondonii, both 

Lactobacillus spp., and P. rettgeri) after p-value correction for multiple testing (Table 

S1.6H). Each species included carbohydrate metabolism gene functions predicted to 

expand the capacity of the bacteria to utilize and ferment different carbohydrates 

(potentially glucose, gluconate, fructose, mannose, and trehalose) and the carboxylic 

acid citrate, which is important for the growth and acid resistance of Lactobacillus 

(Martin et al. 2005). Lipid/carbohydrate metabolism (related to short chain fatty acid 

butyric acid fermentation) and purine biosynthesis were implicated as enriched in the 

P. rettgeri accessory genome (Table S1.6F). Most of the ortholog functions in L. 

plantarum and P. rettgeri were exclusively found in these taxa, while the other 

orthologs of G. kondonii and L. brevis were found in the pangenomes of at least one 

other prevalent species examined (Table S1.6H), indicating that some of the accessory 

genome functions can be redundant among closely and distantly related taxa. 

 

Discussion 

   A robust understanding of the relationship between the taxonomic identity and 

functional traits of microorganisms is essential for detailed analyses of the ecological 

and evolutionary processes that shape microbial communities. This relationship is 

particularly important for the microbial communities in animal guts because microbial 
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function can influence many host traits, but the pattern and scale of the effect of 

variation in taxonomic composition on microbial function are poorly understood. This 

study on the comparative genomics of bacteria isolated from the guts of wild 

Drosophila focused on bacterial metabolic traits, which have been implicated in the 

metabolic health and fitness of animal hosts (McFall-Ngai et al., 2013; Visconti et al., 

2019), including Drosophila (Consuegra et al. 2020; Bost et al. 2018; Newell et al. 

2014; Chaston et al. 2014). Two key results were obtained. First, representatives of the 

three dominant bacterial orders (Enterobacterales, Lactobacillales and 

Rhodospirillales) can be differentiated by key metabolic traits, based on annotations 

and homology of metabolism related genes. Second, evidence for within-species 

variation in metabolic function was obtained, including for functions relevant to 

utilization of the sugar-rich habitats and interactions with the Drosophila host. Here, 

we consider these two issues in turn. 

   Our finding that the variation in metabolic function partitions by the three bacterial 

orders of gut bacteria (Fig. 1.3) reflects the differences in lifestyles of the bacteria.  

For interpreting these results, it should be considered that these differences relate 

exclusively to the panel of genomes isolated from Drosophila guts, comprising 

members of just one, two and four families for Rhodospirillales, Lactobacillales and 

Enterobacterales, respectively (Table 1.1).  The diversity of taxa studied are also 

functionally restricted by the conditions in the Drosophila gut, including physical 

instability, hypoxia (but not anoxia), low pH, and immunological defenses (Douglas 

2018; Lemaitre & Miguel-Aliaga 2013). A final potential issue is that some taxa in the 

Drosophila gut microbiome may be intractable to cultivation but the magnitude of this 
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difficulty is likely low because the taxa in the genome panel (Table 1.1) match well to 

the results from cultivation-independent studies on Drosophila collected from the 

same habitats in New York State (Bost et al. 2018; Kang & Douglas 2020; Adair et al. 

2018). The key lifestyle features of Acetobacteraceae (Rhodospirillales) relate to their 

adaptation to high sugar habitats, such as the rotting fruits utilized by Drosophila 

(Lievens et al., 2015). The distinctive metabolic features identified in this study (Fig. 

1.3B) relate to aerobic fermentation of exogenous sugars via processes dependent on 

the tetrapyrrole derivative pyrroloquinoline quinone (Matsutani & Yakushi 2018) and 

the capacity to utilize simple inorganic and organic nitrogenous substrates for the 

synthesis of amino acids required for protein synthesis and proliferation (Sainz et al. 

2017).  Similarly, all but one of the Lactobacillales in this study comprised a 

taxonomically-restricted set of three paraphyletic genera in the family 

Lactobacillaceae and have the functional traits of fermentative metabolism, especially 

of sugars and other organic compounds, including terpenes and nucleotides (Duar et 

al., 2017). The Enterobacterales associated with Drosophila are taxonomically and 

functionally more diverse (Fig. 1.1D & E).  The lifestyles represented by the 

Enterobacterales in our panel likely include both free-living bacteria associated with 

the food ingested by the flies and taxa that may be pathogenic to Drosophila, e.g. 

some strains of P. rettgeri (Adair et al. 2018; Galac & Lazzaro 2011). This metabolic 

diversity probably accounts for the single metabolic trait that partitions with the 

Enterobacterales (Fig. 1.3B). Unlike the Acetobacteraceae and Lactobacillaceae, the 

dynamics of Enterobacterales and other γ-Proteobacteria in the Drosophila gut are 

unknown, and these bacteria have generally not been identified as beneficial to 
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Drosophila metabolic health and fitness. The association of Enterobacterales with the 

urea cycle and polyamine synthesis raises the possibility that the association of these 

bacteria with Drosophila may be facilitated by their capacity to utilize Drosophila 

waste urea as a nitrogen source and to tolerate hostile conditions in the gut via 

polyamine-mediated stabilization of the genome and membranes. Microbiome-

mediated polyamine production has also been implicated in microbiome effects on 

human health (Tofalo et al., 2019), but the role of this class of metabolites in 

Drosophila-microbe interactions has not been investigated.    

   The parallel analysis of within-species variation, conducted on 7 species with at least 

5 sequenced genomes, provided the opportunity to assess the scale of among-strain 

variation in genetic and functional variation in metabolism, including metabolic traits 

with known effects on Drosophila nutritional physiology and performance (e.g. Shin 

et al. 2011; Judd et al. 2018; Chaston et al. 2014; Kang & Douglas 2020; Winans et al. 

2017). For this analysis, we used two approaches. First, we compared between-species 

genetic variation (Fig. 1.4D), which was congruent with annotation-based analysis in 

Fig. 1.3B. Of the top gene functions found to vary by species, only a few were 

relevant determinants of Drosophila physiology and some were functionally redundant 

across disparate taxa. Several genes involved utilization of Drosophila nitrogenous 

waste products, and they were also identified primarily among Glucobacter spp., 

which may allow these taxa to use host nitrogenous waste for their own growth. The 

second analysis focused on identifying functions enriched in the accessory genome of 

each species. Interestingly, the majority of the genes that differed within species 

related to carbohydrate digestion and fermentation as well as carboxylic acid and short 
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chain fatty acid metabolism. The enrichment of carbohydrate metabolism genes is also 

supported by published pangenome analyses of L. plantarum and P. rettgeri (Galac & 

Lazzaro 2012; Martino et al. 2016). Taken together, the identified gene functions are 

suggestive of survival in sugar-rich rotting fruit environment that is enriched by the 

waste products of Drosophila larvae and possibly adults (Winans et al. 2017; Storelli 

et al. 2018)) (Lievens et al. 2015).  

   Rotting fruit provide an energy-rich but ephemeral resource colonized by numerous 

microorganisms.  In this environment, there is strong selective pressure to utilize 

carbon sources due to exploitative competition and the release of toxic metabolic by-

products by co-occurring microbes (e.g. citrate lyase gene functions can be involved in 

acid stress in Lactobacillus spp. (Martin et al. 2005)). Although we did not sample 

strains from this habitat, various studies indicate that there is frequent cycling between 

wild Drosophila and external environment (Inamine et al. 2018; Blum et al. 2013; Pais 

et al. 2018), and that this likely prevents genetic differentiation between strains in 

Drosophila and externally (Winans et al. 2017).  

   This study also raises two key methodological issues. The first relates to the utility 

of 16S rRNA gene sequence data for taxonomic identification and inference of 

functional traits.  Our analysis reinforces the conclusion of many previous studies, 

including research on microbiomes, that 16S data can be insufficiently precise to 

discriminate functionally different microorganisms because functionally important 

sequences are gained, lost or modified by mutation more rapidly than 16S sequence 

change (Ellegaard & Engel 2016; Lladó Fernández et al. 2019; Koeppel & Wu 2013). 

16S rRNA gene sequence evolution can also yield phylogenetic patterns that are 
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incongruent with patterns from phylogenomic data, as illustrated for several taxa in 

Fig. 1.2 as well as other bacterial orders (e.g. Maayer et al. 2019). For these reasons, 

inferring function from 16S gene surveys (e.g. Langille et al. 2013) is less satisfactory 

than genomic and metagenomic data. The second issue relates to the key limitation of 

genomic data, that these data provide the genetic capacity for function, and the 

realized capacity is dictated by gene expression, enzyme activity and pattern of flux 

through the metabolic network of individual microbial cells and the microbial 

community (Heintz-Buschart & Wilmes 2018). In microbiomes, as in other complex 

microbial communities, the metabolic traits of individual bacterial taxa can be strongly 

dependent on the identity and metabolic activity of other co-occurring 

microorganisms, such that the metabolic function of any taxon can be resolved most 

effectively by a community approach (e.g. Fischer et al. 2017; Douglas 2020; 

Henriques et al. 2020; McMullen et al. 2020).     

   We conclude by considering how this study informs our understanding of metabolic 

trait distribution among members of animal gut microbiomes. The metabolic network 

of animal gut microbiomes is influenced by diet, host, and co-occurring 

microorganisms. By identifying the microorganisms that mediate different functions 

and their evolutionary history, we can have a basis to understand and predict 

microbiome functions. This is the basis for rationally-designed routes to manipulate 

microbiomes for treatment of metabolic disease and application of probiotics. This 

study supports previously identified trends in complex microbiome systems, such as 

the human microbiome (e.g. Bauer et al. 2015), but highlights the benefits of the 

Drosophila gut microbiome system by having readily culturable taxa. The 
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identification of variation in metabolic functions at different phylogenetic scales in 

this study provides the basis for future studies to determine the ecology and evolution 

of microbiome functions of Drosophila in natural settings.  
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CHAPTER 3 

HOW GUT MICROBIOME INTERACTIONS AFFECT  

NUTRITIONAL TRAITS OF DROSOPHILA MELANOGASTER2 

 

Abstract 

Most research on the impact of the gut microbiome on animal nutrition is designed to 

identify the effects of single microbial taxa and single metabolites of microbial origin, 

without considering the potentially complex network of interactions among co-

occurring microorganisms. Here, we investigate how different microbial associations 

and their fermentation products affect host nutrition, using Drosophila melanogaster 

colonized with three gut microorganisms (the bacteria Acetobacter fabarum and 

Lactobacillus brevis and the yeast Hanseniaspora uvarum) in all seven possible 

combinations. Some microbial effects on host traits could be attributed to single taxa 

(e.g. yeast-mediated reduction of insect development time), while other effects were 

sex-specific and driven by among-microbe interactions (e.g. male lipid content 

determined by interactions between the yeast and both bacteria). Parallel analysis of 

nutritional indices of microbe-free flies administered different microbial fermentation 

products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent 

effect: that the lipid content of both male and female flies is reduced by acetic acid. 

 
2 Presented with minor modifications from the originally published article: 
McMullen, J.G., Peters-Schulze, G., Cai, J., Patterson, A.D., and Douglas A.E. (2020). How gut 
microbiome interactions affect nutritional traits of Drosophila melanogaster. 223(19): jeb227843. 
All of the supplementary material is found in Appendix B, and data can be accessed at: 
https://doi.org/10.5061/dryad.ngf1vhhrj.  
Peters-Schulze, G. performed the CAFE experiments and Cai, J. conducted the short-chain fatty acid 
quantification assay. 
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This effect was recapitulated in male flies colonized with both yeast and Acetobacter, 

but not for any microbial treatment in females nor in males with other microbial 

complements. These data suggest that the effect of microbial fermentation products on 

host nutritional status is strongly context-dependent, with respect to both the 

combination of associated microorganisms and host sex. Taken together, our findings 

demonstrate that among-microbe interactions can play a critically important role in 

determining the physiological outcome of host-microbiome interactions in Drosophila 

and, likely, in other animal hosts.   

 

Introduction 

The gut of many animals is colonized by a diverse community of microorganisms 

(collectively known as the microbiome) that can influence the health and fitness of the 

animal host. The gut microbiome contributes to various host functions, including the 

degradation of dietary constituents, synthesis of essential nutrients, modulation of host 

immunity, and protection against pathogens (Herp et al., 2019; Hooper et al., 2012; 

Huang et al., 2015; Karasov et al., 2011; Read and Holmes, 2017; Rolhion and 

Chassaing, 2016; Sommer and Bäckhed, 2013; Thaiss et al., 2016; Wong et al., 2016). 

Numerous studies have linked specific microorganisms and microbial metabolites with 

host traits (e.g. Morton et al., 2019; Tripathi et al., 2018). However, it is increasingly 

recognized that the traits of individual microorganisms can be influenced by 

interactions with other members of the microbiome (Douglas, 2020; Kundu et al., 

2019; Noecker et al., 2019). Theoretical models have predicted that among-microbe 

interactions, which range from beneficial to antagonistic and are widespread 
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throughout microbial communities, can have varying levels of metabolic dependencies 

and cross-feeding of metabolites between taxa (Coyte et al., 2015; Freilich et al., 2011; 

Levy and Borenstein, 2013; Magnúsdóttir et al., 2017; Noecker et al., 2019; Zelezniak 

et al., 2015). These interactions can lead to the net production of metabolites that none 

of the individual taxa in the community are able to synthesize in isolation (Wintermute 

and Silver, 2010). As a result, data for associations between animals and single 

microbial taxa may not accurately predict how individual taxa perform in a complex 

community.  

   A valuable approach to investigate among-microbial interactions is to use in vitro 

and simplified gnotobiotic animal systems with pairs or small groups of microbial 

taxa. For example, some Bacteriodes spp. in the human gut degrade dietary 

polysaccharides and the simple carbohydrates liberated support the growth of co-

occurring taxa and promote the release of metabolites that influence human health 

(Mahowald et al., 2009; Rakoff-nahoum et al., 2016; Rodriguez-Castaño et al., 2019). 

In the lower termite gut, folate-producing bacteria release 5-formyl-tetrahydrofolate 

and the spirochete Treponema primitia uses this metabolite as a co-factor to produce 

acetic acid, an energy source for the insect host (Graber and Breznak, 2005). In the 

honey bee gut microbiome, numerous candidate cross-feeding events have been 

identified between the bacteria Bifidobacterium spp., Gilliamella apicola, and 

Snodgrassella alvi, resulting in improved digestion of the pollen diet and utilization of 

bacterial by-products by co-occurring taxa (Kešnerová et al., 2017; Zheng et al., 

2019).  

   The focus of this study is the impact of among-microbe interactions on the 
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nutritional physiology of the fruit fly Drosophila melanogaster, which is a fast-

emerging model for gut-microbiome interactions (Broderick and Lemaitre, 2012; 

Douglas, 2019; Erkosar et al., 2013; Wong et al., 2016). Three taxonomic groups, the 

bacteria of the family Acetobacteraceae and order Lactobacillales, and the 

Sacchromycetales yeasts, are the dominant taxa in the Drosophila gut microbiome 

(Adair et al., 2018; Chandler et al., 2011; Chandler et al., 2012; Quan and Eisen, 2018; 

Wong et al., 2011). To date, most research has focused either on the bacteria or yeast 

partners, with evidence that co-associations involving between two and five bacterial 

species can recapitulate the effects of conventional multi-species communities on 

certain traits under laboratory conditions (Gould et al., 2018; Newell and Douglas, 

2014; Rohlfs and Kürschner, 2010). For example, D. melanogaster reared in co-

association with pairs of Acetobacter and Lactobacillus species likely display 

cooperative metabolism and lower fly lipid content relative to microbe-free flies 

(Consuegra et al., 2020; Newell and Douglas, 2014; Sommer and Newell, 2019). 

Indications that interactions between bacteria and yeasts may be important 

determinants of Drosophila traits come largely from a single study (Fischer et al., 

2017), which demonstrated that female flies prefer to both feed and lay eggs on 

substrate bearing a Saccharomyces-Acetobacter co-culture relative to mono-cultures 

and an Acetobacter strain unable to produce acetic acid. Furthermore, research on both 

Acetobacter-Lactobacillus interactions and Acetobacter-Saccharomyces interactions 

(Fischer et al., 2017; Sommer and Newell, 2019) has identified four microbial 

metabolites as candidate mediators of among-microbe and microbe-host interactions: 

acetic acid, acetoin, ethanol, and lactic acid. Importantly, these four metabolites have 
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also been implicated in the regulation of Drosophila metabolism, immunity, and 

behavior (Devineni and Heberlein, 2013; Farine et al., 2017; Fry, 2014; Hang et al., 

2014; Hoffmann and Parsons, 1984; Iatsenko et al., 2018; Kamareddine et al., 2018; 

Shin et al., 2011). 

   The specific goal of this study was to understand whether and how among-microbe 

interactions may influence Drosophila performance and nutrient allocation. We used 

three representative strains of gut microorganisms: two bacteria, Acetobacter fabarum 

and Lactobacillus brevis, widely used in Drosophila microbiome research (Dobson et 

al., 2015; Sommer and Newell, 2019; White et al., 2018); and the yeast, 

Hanseniaspora uvarum, a prevalent species in wild Drosophila populations (Chandler 

et al., 2012; De Camargo and Phaff, 1957) that has also been used for laboratory 

experiments (Hoang et al., 2015; Murgier et al., 2019; Palanca et al., 2013; Scheidler 

et al., 2015; Solomon et al., 2019). We administered the microorganisms 

combinatorially to give associations with one, two, or all three taxa. The Drosophila in 

these treatments are described as gnotobiotic, meaning that they have a defined 

complement of microorganisms. In parallel, we quantified for the effect of four 

microbial fermentation products, acetic acid, acetoin, ethanol, and lactic acid, on 

nutrient allocation in flies reared under microbiologically-sterile conditions (known as 

axenic flies) and linked these results to the fermentation product profiles in the axenic 

and gnotobiotic flies. This study demonstrates how non-additive among-microbe 

effects can influence Drosophila performance and nutrition, and it establishes the 

contribution of individual microbial metabolites in the observed among-microbe 

interactions.  
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Materials and methods 

Insects and microorganisms 

The three microorganisms were: Acetobacter fabarum DsW54 (ACE), Lactobacillus 

brevis DmCS_003 (LAC) and Hanseniaspora uvarum FYH04C (YST). Details of 

their provenance and culture protocols are provided in Table 2.1. 

   The stock culture of D. melanogaster strain Canton S (Wolbachia-free) was 

maintained at 25°C with 50% relative humidity in a 12 h:12 h light:dark cycle on a 

yeast-glucose (Y-G) diet comprising 10% inactive brewer’s yeast (MP Biomedicals), 

10% glucose (Sigma), and 1.2% Drosophila type II agar (Apex) with preservatives, 

0.04% phosphoric acid (Fisher Scientific) and 0.42% propionic acid (Fisher 

Scientific).  

   Axenic flies were prepared by a standard protocol for egg dechorionation (Koyle et 

al., 2016). Briefly, flies from the stock culture were allowed to oviposit for 16-18 

hours on grape juice agar plates (Y-G diet with 1% Drosophila agar and approx. 15% 

Welch’s grape juice concentrate), and the deposited eggs were thrice washed in 0.6% 

hypochlorite solution for 5 min, followed by three rinses in sterile deionized water. 

Approximately 60 eggs were aseptically transferred to 50 ml sterile conical Falcon 

tubes (Globe Scientific, Inc.) containing 7.5 ml autoclaved Y-G diet without 

preservatives, and they were raised under standard culture conditions to generate 

axenic flies.
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Table 2.1. Microbial strains 
 
Microbial strain Origin % glycerol 

for stock 
at -80oC  

Culture 
media 
at 30oC 

Incubation time Calibration 
equations1  Abbreviation Solid 

medium 
for colony 
growth 

Broth for 
mid-
logarithmic 
culture 

Acetobacter 
fabarum 
DsW54 

ACE Gut of wild 
Drosophila 
suzukii (Winans 
et al., 2017) 

20 mMRS2, 
ambient 
oxygen  

2 days  16 h with 
agitation 

C = 2x109�A – 1x108 

Lactobacillus 
brevis 
DmCS_003 

LAC Gut of 
laboratory 
culture of 
Drosophila 
melanogaster 
(Newell et al., 
2014) 

20 mMRS2, 
reduced 
oxygen3  

2 days 35 h without 
agitation 

C = 4x109�A + 2x108 

Hanseniaspora 
uvarum 
FYH04C 

YST Gut of wild 
Drosophila 
melanogaster 
from Ithaca, 
NY (2014)4 

10 YPD5, 
ambient 
oxygen 

1 day 13 h with 
agitation 

C = 9x107�A + 3x107 
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1 Obtained by parallel quantification of OD and CFUs for 5 replicate tubes, each for 5 time points over 20 to 45 h growth 
(depending on the strain) of 5 ml broth culture with shaking at 200 rpm for A. fabarum and H. uvarum and no agitation for L. 
brevis.  All calibration curves yielded R2 > 0.8. C = CFU concentrations [CFU ml-1]. A = optical density. 
2 modified De Man, Rogosa, and Sharpe medium: 1.25% bacto-proteose peptone, 0.75% yeast extract, 2% glucose, 0.5% sodium 
acetate, 0.2% dipotassium hydrogen phosphate, 0.2% tirammonium citrate, 0.02% magnesium sulphate heptahydrate, 0.005% 
manganese sulfate tetrahydrate, and 1.2% agar (for plates only). All ingredients are from Sigma, except bacto-proteose peptone 
from Becton Dickinson. 
3 high CO2 conditions in a brewer’s jar with a lit candle to consume most of the available oxygen.  
4The H. uvarum isolate was identified with molecular characterization of the ITS sequence with Sanger sequencing (primers ITS1 
(forward: 5’-CCGTAGGTGAACCTGCGG-3’) and ITS4 (reverse: 5’-TCCTCCGCTTATTGATATGC-3’) from White et al. 
(1990)). NCBI accession: MT217045. Note: the isolate originated from a female fly, and although male flies appeared to be D. 
melanogaster, female flies are indistinguishable from D. simulans.  
5yeast-peptone-dextrose medium: 1% yeast extract, 2% bacto-peptone, 2% glucose, and 1.5% agar (for plates only). All ingredients 
are from Sigma, except bacto-peptone from Becton Dickinson. 
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   To produce gnotobiotic insects colonized with one, two, or all three microbial 

strains, microorganisms were administered aseptically to Falcon tubes containing 

dechorionated eggs at a density of 5 x 106 cells (50 μl suspension of microorganism at 

1 x 108 cells ml-1) in phosphate-buffered saline (PBS) (Cold Spring Harbor, 2018). For 

treatments containing multiple microbial species, the taxa were added in equal 

proportion to give the same total concentration. To prepare the microorganisms, a loop 

of frozen glycerol stock was streaked onto solid medium and, following 1-2 days of 

growth, a single colony was picked and grown in 5 ml broth to mid-logarithmic phase 

(see Table 2.1 for details). Cell densities were determined by optical density at 600 nm 

(OD) on 96-well plates (Globe Scientific, Inc.) using an xMark Spectrophotometer 

(BioRad) and diluted to the required cell number based on calibration curves of OD 

against number of colony-forming units (CFUs) constructed for each strain (Table 

2.1). 

 

Experimental design 

The eight treatments comprised axenic insects and seven gnotobiotic treatments of 

insects administered every combination of mono-, di-, and tri-association with ACE, 

LAC, and YST, with six replicates (i.e. Falcon tubes) per treatment. The insects were 

reared from dechorionated eggs under the standard culture conditions and scored twice 

daily (two- and ten-hours post dawn) for number of pupae and number of empty 

puparia to obtain time to pupation and eclosion, respectively. On the first day post-

eclosion (dpe), the flies in each Falcon tube were aseptically transferred to a fresh 

Falcon tube containing autoclaved Y-G diet. At 5 dpe, the flies were anesthetized 
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using CO2, separated by sex by visualizing morphological differences in genitalia, 

counted, and analyzed with one sample of each sex per Falcon tube for microbial load 

(two flies per sample) and nutritional indices (five flies per sample). In addition, ca. 20 

mg (10-20 flies per sample) of each sex from two Falcon tubes per treatment were 

used for quantification of short chain fatty acids (SCFAs); the number of flies 

available for quantification varied with treatment. The weight of each sample used for 

nutritional indices and SCFA content was determined with a Mettler-Toledo balance, 

to an accuracy of 0.1 mg. All samples were flash frozen in liquid nitrogen and stored 

at -80°C. This experiment was replicated three times independently to generate a total 

of 18 replicates of males and females for each treatment.  

 

Microbial load in flies 

The abundance of each microbial strain per fly of each sex at 5 dpe was scored as 

number of colony-forming units (CFUs). Two male flies and two female flies from 

each Falcon tube were surface sterilized in 500 μl 0.3% hypochlorite solution in a 

sterile 1.5 ml centrifuge tube with gentle shaking by hand, followed by two rinses in 

sterile PBS. The flies were transferred to a sterile 2 ml screw-cap microcentrifuge tube 

containing 100 µl sterile lysis matrix D beads (MP Biomedicals) and 200 µl sterile 

PBS, homogenized using a FastPrep-24 instrument at 4.0 m/s for 30 s, diluted with 

800 µl sterile PBS, and then inoculated in duplicate onto the appropriate medium 

(Table 2.1) using a WASP-2 spiral plater (Microbiology International). A Protocol3 

instrument (Microbiology International) was utilized to enumerate CFUs after 2-3 

days of growth at 30oC, and the data were normalized to CFUs per fly. The detection 
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limit was 10 CFU fly-1; this value was added for statistical analysis to eliminate zeros 

from microbial treatments in the dataset.  

   To facilitate the automated counting, samples from di- and tri-associations were 

plated onto media supplemented with antimicrobial(s) that selectively suppressed one 

of the microorganisms: 100 µg kanamycin sulfate ml-1 (Sigma) to suppress ACE, 10 

µg ampicillin sodium salt ml-1 (Sigma) to suppress LAC, 500 µg methylparaben ml-1 

(Apex) under high CO2 on mMRS medium to suppress YST (Fig. S2.1A-D). 

Preliminary experiments confirmed that each antimicrobial did not suppress growth of 

the non-target microorganisms (Fig. S2.1E), apart from methylparaben which had a 

negative effect on ACE growth and was not used in plates selecting for ACE growth 

(Fig. S2.1B). For ACE and YST co-associations, colonies were differentiated by 

morphology: ACE has small orange/tan colonies and YST has large off-white 

colonies.  

   Negative controls comprised axenic flies plated onto mMRS and YPD agar without 

antimicrobials and incubated at 30oC for one week. Individual replicates were 

discarded if microbial contamination was present on plates for the entire experiment. 

Microbial biomass (dry weight) was estimated following the method of Norland et al. 

(1987), using estimates of biovolume (ACE = 1.1 μm3, LAC = 1.7 μm3 , YST = 38.7 

μm3) derived from published data (Cleenwerck et al., 2008; Gries and Ly, 2009; 

Cadez and Smith, 2011). 

 

Nutritional indices 

The lipid, carbohydrate, and protein contents of the flies were quantified by the 
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procedure of Newell and Douglas (2014) as indices of fly nutritional status. Briefly, 

each fly sample was homogenized in 125 μl ice-cold TET buffer (10 mM Tris pH 8, 1 

mM EDTA, 0.1% Triton X-100) and 100 μl lysis matrix D beads, using a FastPrep-24 

at 4 m/s for 45 s. For protein analysis, 10 μl was removed from the homogenate and 

diluted 1:6 for males and 1:7 for females in ice-cold TET buffer. The remaining 

homogenate was incubated at 72°C for 30 min to inactivate endogenous enzymes. 

Samples were stored at -80°C prior to quantification.  

   Protein content was determined using the DC Protein Assay Kit (Bio-Rad) according 

to manufacturer’s protocol, with a standard curve using 0-1.4 mg bovine serum 

albumin ml-1. For lipid content, the triglyceride (TAG) content was determined by 

incubating 5 μl heat-inactivated homogenate with 37.5 μl lipase (20 U ml-1 in 20 mM 

potassium phosphate, 20 mM EDTA, and 20 mM magnesium chloride, pH 7.5, Sigma 

L9518), followed by assay of liberated glycerol, using the Free Glycerol Reagent 

(Sigma-Aldrich F6428) following manufacturer’s protocol with 0-3 mg triolein 

equivalent glycerol ml-1 for the standards. Absorbance attributed to endogenous free 

glycerol was subtracted from TAG for quantification. Glucose, trehalose, and 

glycogen were assayed with the glucose (GO) kit (Sigma GAGO20) following 

manufacturer’s protocol, with 0-0.8 mg glucose ml-1, 0-0.2 mg trehalose ml-1, and 0-

0.2 mg glycogen ml-1 as standards. For trehalose and glycogen determination, 2.5 μl 

trehalase (1 U ml-1, Sigma T0167) and 5 μl amyloglucosidase (2 U ml-1 in 5 mM acetic 

acid, 5 mM sodium acetate, Sigma A7420), respectively, were added to samples and 

incubated for 1 h at 37 °C prior to quantification of glucose. For trehalose 

measurements, 2 μl 1 mM EDTA and 2 μl 0.2 M sodium citrate dihydrate were added 
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to samples and incubated for 10 min at 37 °C prior to the addition of the enzyme. All 

samples and standards were assayed in duplicate, and the absorbance values of the two 

technical replicates were averaged. Final absolute quantifications for all nutritional 

indices were normalized to fly weight. 

 

Short chain fatty acid (SCFA) content  

SCFAs were assayed using the propyl esterification derivatization method of Cai et al. 

(2017) on ca. 20 mg whole bodies of pooled flies for each sex, with quantification by 

an Agilent 7890A gas chromatograph coupled with an Agilent 5975 mass 

spectrometer (GC-MS, Agilent Technologies, Santa Clara, CA) at the Penn State 

Metabolomics Facility, University Park, PA. A targeted analysis was performed to 

quantify the following 12 SCFAs: acetate, propionate, butyrate, isobutyrate, 

isovalerate, valerate, 2-methylbutyrate, 2-methylpentanoate, 3-methylpentanoate, 2-

methylhexanoate, 4-methylvalerate and heptanoate. Each fly sample was homogenized 

at 6,500 rpm for 60 s (Precellys, Bertin Technologies, Rockville, MD) in 1 ml 5 mM 

NaOH, with 10 μg caproic acid-6,6,6-d3 ml-1 (internal standard) using 1.0 mm 

diameter zirconia/silica beads (BioSpec, Bartlesville, OK), and centrifuged at 13,200 g 

for 20 min at 4 °C. 500 μl of sample supernatant was added to 500 μl 1-

propanol:pyridine (v/v = 3:2), followed by an addition of 100 μl propyl chloroformate 

(esterification reagent). Then, samples were vortexed for 1 min, with a subsequent 1 h 

incubation at 60 °C. The derivatized samples were extracted with a two-step hexane 

extraction (300 μl + 200 μl) following the procedure of Zheng et al. (2013), yielding 

500 μl, which was transferred to a glass autosampler vial. A standard curve was 
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generated for each analyte to quantify biological concentration (metabolite amount 

normalized to fly fresh weight [μmol g-1]) of SCFAs. The data was range scaled to 

normalize SCFA titers across three experimental replicates; values were centered to 

the mean metabolite concentration and scaled by the range of metabolite quantified in 

each experimental replicate (van de Berg et al., 2006).  

 

Dietary administration of fermentation products to flies 

The effect of microbial fermentation products on fly nutritional indices was assayed 

using a modification of the CAFÉ method (Ja et al., 2007) to enable parallel 

quantification of food consumption in adult flies and remove effects of larval 

manipulation to the diet. The feeding chamber comprised a sterile 50 ml Falcon tube, 

containing a filter paper (1” x 2”) wetted with 0.5 ml sterile deionized water to 

maintain humidity. Calibrated capillary tubes (1-5 µl, Drummond Scientific Co.) were 

aseptically filled to 5 µl with a chemically-defined liquid food. The diet followed the 

protocol of Piper et al. (2014) with the following modifications. First, the agar was 

omitted.  Second, glucose was provided as sole sugar source, as in Y-G diet used in 

this study, but at 5% (w/v) because 10% (the concentration in Y-G diet) was viscous 

and supported very low feeding rates in the CAFÉ system (unpub. data). Third, the 

cholesterol was dissolved in 2.5:1 mmol ratio of cyclodextrin to cholesterol (replacing 

ethanol) for improved solubilization (Christian et al., 1997). Finally, acetic acid buffer 

was replaced by citric acid buffer, with pH adjusted to 4.8 using 10 M NaOH. Three 

capillaries were inserted into the lid of each Falcon tube. Pilot experiments confirmed 

that food consumption by the insects did not differ significantly between the liquid 
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holidic diet and liquid meridic diet comprising 5% glucose and 5% yeast extract (Fig. 

S2.2A) with high insect survival (> 80%; Fig. S2.2B) and small differences in nutrient 

allocation (Fig. S2.2C-E).  We also compared fly traits on liquid and solid media (Fig. 

S2.2C-F), finding that flies on the liquid diets had lower or similar survival, TAG, and 

glucose content compared to the solid diets, while weight per fly also did not vary 

significantly, apart from elevated values for females on the solid meridic diet.  

   The experimental design of the metabolite administration assay tested one 

metabolite: acetic acid, acetoin, ethanol, and lactic acid, at three treatment levels: 0, 

0.15, and 0.3 M based on concentrations used in Kim et al. (2018) for acetic acid 

effects on Drosophila, which was adopted for all four metabolites. The concentrations 

generally reflect published data on microbial production of these metabolites (Adler et 

al., 2014; Aranda-Díaz et al., 2020; Barata et al., 2012; Consuegra et al., 2020; Hall et 

al., 2018). Exceptionally, acetoin was administered at higher concentrations than 

reported in Drosophila cultures to enable comparisons to the other metabolites in the 

experiment (Adler et al., 2014; Barata et al., 2011). Three independent experiments 

were conducted for each metabolite, with male and female flies in separate replicate 

chambers for each experiment. All the chambers of a given diet were stored together 

in a sterile air-tight Snapware 23-cup container (Corelle Brands, Illinois, USA). To 

control for diet evaporation, one fly-free chamber was included in each container. The 

experiments used axenic flies that had been raised to three dpe, with six flies per 

chamber, incubated at 25°C with 12:12 h light:dark cycle. Each chamber was scored 

daily for four days for the number of live insects and the volume of food in each 

capillary tube (quantified from the liquid height to an accuracy of 0.1 µl). Capillary 
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tubes containing fresh diet were replaced daily. At day-4 of the experiment, all living 

flies from each feeding chamber were weighed, flash frozen in liquid nitrogen, and 

stored at -80°C prior to quantification of the protein, glucose, and TAG content as 

above, except protein samples were diluted 1:3 for males and 1:4 for females. 

   To calculate food consumption, the change in height in each of the three capillaries 

over the 24 h test period was determined, and then summed to obtain the total amount 

consumed. The change in height of the liquid column in the three capillaries in the 

negative control was also scored and subtracted from the experimental values to 

control for evaporation. To determine diet consumption per fly per day, the value per 

chamber was divided by the number of live flies at the end of each day (i.e. it is 

assumed that flies which died in each 24 h period did not feed over that period).  

 

Statistics 

All statistics were performed using R version 3.6.1 (R Core Team, 2018) with α = 0.05 

as the cut-off for statistical significance of model predictors. An analysis of variance 

(ANOVA) was implemented to examine microbial abundance, relative insect 

numbers, fly weight, nutritional indices, feeding rates, and SCFA content. All models 

used the ‘lmer’ function in the lme4 package (Bates et al., 2015) for mixed-effect 

models, expect for relative insect numbers as no random effect was required. 

Residuals from each model were visually assessed for normality and 

homoscedasticity. See supplemental tables for specific information on predictors and 

random effects included in models. Differences between fixed effects for the ANOVA 

models were determined by type II Wald F test with Kenward-Roger degrees of 
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freedom approximation using the ‘Anova’ function in the car package (Fox and 

Weisberg, 2019); type III method was used for feeding rates due to repeated measures. 

Either a post hoc Tukey’s or Dunnett’s test was implemented to discriminate between 

effect of predictors on response variables with the emmeans package (Lenth, 2019). 

The contribution of random effects in the model was tested by an analysis of deviance 

using the ‘Anova’ function in the car package. The Multi-Model Inference (MuMIn) 

package (Bartoń, 2019) was used to calculate the marginal and conditional R2 values 

to assess model fit of fixed and random effects. For SCFA content analysis, effect 

sizes (ω2) for each predictor and interactions were calculated from ANOVA table 

results provided by lmerTest (Kuznetsova et al., 2017) to determine degree of 

associations for fixed effects. Treatments were considered to have an effect on 

metabolite concentrations when ω2 ≥ 0.01 (Cohen, 1988; Kirk, 1996). For the analysis 

of flies administered fermentation products, the best linear unbiased predictions were 

estimated for all response variables to obtain between-trial effect sizes with the ‘ranef’ 

function for the controls (without added metabolite) and were assessed for between-

trial variation when significant results were found for analysis of deviance.  

Specifically, we simulated the posterior distributions (n = 10,000) from each model 

using the ‘REsim’ function in the merTools package (Knowles and Frederick, 2019).  

   Insect development time summary statistics (Kaplan-Meir method) were calculated 

using the ‘survfit’ function in the survival package (Therneau, 2015). A Cox mixed-

effect model was used to assess the impact of administered microorganisms on 

pupation and eclosion rates with the coxme package (Therneau, 2019). Microbial 

treatments were coded as a categorical fixed effect predictor, and replicate (i.e. each 
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Falcon tube) was nested within each of the three experiments as a categorical random 

effect. Pairwise comparisons between all treatments were assessed by post hoc Tukey 

test using the multcomp package (Hothorn et al., 2008). An analysis of deviance was 

performed as ANOVA models. 

   The two-sample Kolmogorov-Smirnov test was used to assess differences in the 

cumulative distribution function of each microbial treatment against the axenic fly 

treatment; a Bonferroni correction was used for multiple tests (i.e. α = 0.05/7). The 

skewness and kurtosis of each treatment were calculated with the DescTools package 

(Signorell et al., 2019); 95% confidence intervals (bias corrected and accelerated 

[BCa] method) were generated with 10,000 bootstrap replicates to enable comparisons 

among treatments. D’Agostino and Anscombe tests were performed to test for 

skewness and kurtosis, respectively, for each treatment using the moments package 

(Komsta and Novomestky, 2015); a Bonferroni correction was used for multiple tests 

(i.e. α = 0.05/8).  

   To determine whether the elevated insect mortality in the treatments including YST 

reduced development time by selective death of slowly developing individuals, a re-

sampling approach of the axenic eclosion data was implemented to impute the 

“missing” flies of the YST treatment using the ‘sample’ function (replace = TRUE). 

The missing flies comprised 347 insects (29% of 1195 axenic flies observed) that were 

randomly selected from the axenic eclosion distribution for each simulation (n = 

5,000). Cox mixed-effect model was performed for each simulation to assess the 

proportion of significant results and changes in the hazard ratio. In addition, skewness 

and kurtosis were calculated for each simulation. 
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   Nutritional indices were analyzed using several multivariate methods. First, 

principal component analysis (PCA) was implemented with a correlation matrix to 

visualize nutritional status of each fly replicate for each sex separately using the vegan 

package (Oksanen et al., 2019). TAG, glucose, and trehalose content of each sex were 

square root-transformed to reduce right-skew. Principal components were correlated 

with microbial abundance using ‘envfit’ function, and the resulting vectors were 

plotted onto PCA plots. Second, a permutational multivariate ANOVA 

(PERMANOVA) was performed using autoscaled data to identify the influence of 

microbiota on nutritional status for each sex. Presence of microbes was coded as three 

binary fixed effect predictors with dummy codes using the ‘adonis’ function in vegan 

with Euclidean distances (999 permutations). Then, ordination plots of female and 

male nutritional status were correlated with a Procrustean analysis and significance 

was assessed using a Procrustean randomization test (‘protest’ function in vegan with 

999 permutations). Finally, a structural equation model (SEM) was used to identify 

how microbiota influenced each nutritional index with the piecewiseSEM 2.0.2 

package (Lefcheck, 2016). Mixed effect linear models were constructed for the 

piecewise SEM analysis to determine the relationship for microbial abundance of each 

taxon and each nutritional index (see Fig. S2.4A for links tested). Indirect effects in 

SEMs were assessed by multiplying significant standardized coefficients of 

relationship between microbial abundances and the effect of individual taxa on a 

nutritional index.  

   Fly survival was investigated using a mixed effect logistic regression with the lme4 

package using the ‘glmer’ function. Metabolite concentration and sex were included as 
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categorical fixed effects. Total food consumed per fly was included as continuous 

covariate in the CAFÉ experiments other than the method development experiments 

(feeding rates were not obtained for flies on solid media). Experimental replicate was 

included as categorical random effect with replicate (i.e. each Falcon tube) nested in 

experimental replicate for survival analysis to account for overdispersion by using 

replicate as an observation level random effect. A Wald’s c2 test was performed to 

examine effect of predictors using the ‘Anova’ function. A post hoc Dunnett’s test was 

used to compare each metabolite concentration to the control treatment for both sexes. 

An analysis of deviance was performed as ANOVA models. 

   A moderation analysis was performed to assess how each microorganism influenced 

the association between SCFA content and a given nutritional index. A mixed-effect 

multiple linear regression was performed for each sex separately with microbes 

included as three separate fixed effects with binary dummy codes and raw SCFA 

content as a continuous predictor with ‘lmer’ function. Experimental replicate was 

included as a categorical random effect. An ANOVA effect test table was generated as 

for SCFA content analysis. A Bonferroni correction was implemented to control for 

multiple tests (i.e. α = 0.05/30). A follow-up analysis was performed to examine the 

effect of ACE and YST presence on acetic acid titer and TAG content in male flies, 

and LAC predictor was removed from the analysis as it had no strong moderation 

effect on acetic acid titer. The model was performed as before, however a categorical 

random effect of treatment was nested within experimental replicate. The function 

‘emtrends’ was used to assess the moderation effect of ACE presence on simple slopes 

for treatments with and without YST. An analysis of deviance and R2 values were 
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performed as ANOVA models. 

 

Results  

Microbial abundance 

We, first, quantified the microbial abundance in the flies at 5 days post eclosion (dpe) 

with the three microorganisms (Table 2.1) in each of the 7 microbial treatments. The 

majority of flies sampled contained at least 10 cells of the microbial taxon that had 

been administered and no other microorganisms, except for the di-association 

treatment with ACE and LAC where LAC was below the detection limit, i.e. <10 CFU 

fly-1, for all replicates (Fig. 2.1A). No microorganisms were detected in the axenic 

flies. The among-treatment variation differed significantly by sex for total microbial 

abundance, with female flies harboring more microbial cells than males in all 

treatments except the ACE/YST di-association (Table S2.1A). The effects of co-

association on abundance of individual taxa varied among the microorganisms and 

were predominantly negative (Fig. 2.1A & B). The abundance of both LAC and YST 

was reduced by co-association with ACE, and both ACE and LAC were also 

significantly suppressed by YST. These negative effects were also evident in the tri-

association, although YST ameliorated the negative effect of ACE on LAC. Just one 

positive interaction was identified: ACE populations were increased in the di-

association with LAC (Fig. 2.1A), as reported previously (Newell and Douglas, 2014). 

Although ACE tended to be the most abundant taxon in co-associations, YST (which 

is 17-26 times the estimated biomass cell-1 of ACE and LAC) attained a comparable or 

greater biomass than the bacteria in co-associations (Fig. 2.1C). In addition, the 
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inclusion of total estimated microbial biomass increased model explanatory power 

from 40% in total abundance model to 63% (Table S2.1A).  This result reinforces the 

finding of Keebaugh et al. (2018) that microbial biomass indices improve the 

statistical power of analyses of microbial abundance in Drosophila, even though 

different conversion factors were adopted (using empirical data for Escherichia coli 

and S. cerevisiae for Keebaugh et al., and use of an allometric equation based on 

biovolume estimates in the literature for this study). 
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Figure 2.1. Abundance of microorganisms in flies.  (A) Number of colony forming 

units (CFUs) per fly, (B) pairwise effects of co-association on microbial abundance, 

and (C) estimated biomass of microorganisms in female (F) and male (M) flies. The 

black line indicates the limit of detection per fly in panel (A). The estimated marginal 

mean and standard error from ANOVA analyses are plotted. Results from statistical 

analyses are provided in Table S2.1A. Among-microbe effects are summarized in 

panel (B); arrows indicate co-association effects (black = positive, red = negative, and 

grey = null) and the yeast amelioration of the negative effect of ACE on LAC in the 

tri-association is shown by encircled-*. Mono = mono-association. Di = di-

association. Tri = tri-association.  
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Survival and development time of Drosophila 

Our first analysis of Drosophila administered the 7 microbial treatments (every 

combination of ACE, LAC, and YST), together with axenic insects as a control, 

focused on insect performance. YST, irrespective of co-associating bacteria, 

significantly decreased development time to both pupation and eclosion compared to 

bacteria-only and axenic treatments (Fig. 2.2A & B and Table 2.2). ACE significantly 

decreased development time relative to the axenic treatment. LAC-alone did not 

change development time relative to the axenic treatment, nor influence the effect of 

ACE in the di-association (Fig. 2.2A & B and Table 2.2).  These results are broadly 

consistent with published evidence that axenic cultivation extends larval development 

time of Drosophila (e.g. Murgier et al. 2019; Newell & Douglas, 2014; Shin et al. 

2011), although this developmental delay can be much reduced or undetectable on 

high nutrient diets, e.g. Storelli et al. 2011; Tefit & Leulier, 2017; Wong et al. 2014. 
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Figure 2.2. Development time of insects colonized with different microorganisms.  

(A) time to pupation and (B) eclosion, (C) number of insects eclosed relative to axenic 

treatment, and (D) violin plots for time to eclosion. Kaplan-Meier results are plotted 

for panels (A) and (B), showing mean pupation and eclosion rates at the observed 

times. In panel C, the estimated marginal mean and 95% confidence intervals from 

ANOVA analysis are plotted, along with letter rankings from post hoc Tukey tests. 

The dashed line is the average value for axenic flies; confidence intervals that do not 

overlap with this line indicate a significant difference from axenic insects. In panel 

(D), probability density function and median time (black bar) for the time to eclosion 

are shown. Kolmogorov-Smirnov tests comparing development time of each microbial 

treatment to axenic insects, with p < 0.0001 indicated by asterisks (statistical analyses 

provided in Table S2.1C). Statistics for: (A) Cox mixed-effect model treatment effect: 

integrated χ29 = 2491.67, p < 0.0001 with full summary provided in Table S2.1B. (B) 

Cox mixed-effect model treatment effect: integrated χ29 = 2187.88, p < 0.0001 with 

full summary displayed in Table S1B. (C) ANOVA treatment effect: F6,110 = 6.88, p = 

3.20 x 10-6, R2 = 0.27.  
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Table 2.2. Summary statistics for average and median development time 
 
Time to pupation 
Treatment RMPT

a
 ± SE

b
 PT50

c
 (CI

d
) Tukey rank

e
 Total number  

Axenic 150 ± 0.344 145 (145,145) C 1165 
ACE 143 ± 0.388 137 (137,137) B 951 
LAC 152 ± 0.394 145 (145,145) C 992 
YST 133 ± 0.393 137 (137,137) A 819 
ACE+LAC 141 ± 0.321 137 (137,137) B 951 
ACE+YST 131 ± 0.425 137 (137,137) A 912 
LAC+YST 134 ± 0.361 137 (137,137) A 909 
ACE+LAC+YST 131 ± 0.453 122 (122,122) A 943 
Time to eclosion 
Treatment RMET

f
 ± SE

b
 ET50

g
 (CI

d
) Tukey rank

e
 Total number  

Axenic 251 ± 0.330 242 (242,256) C 1195 
ACE 245 ± 0.371 242 (242, 242) B 959 
LAC 251 ± 0.364 242 (242,256) C 974 
YST 236 ± 0.373 233 (233, 233) A 802 
ACE+LAC 242 ± 0.350 242 (242,242) B 951 
ACE+YST 232 ± 0.409 233 (233, 233) A 881 
LAC+YST 237 ± 0.304 233 (233, 233) A 894 
ACE+LAC+YST 234 ± 0.395 233 (233, 233) A 897 

 
arestricted mean pupation time 
bstandard error 
cmedian pupation time 
d95% confidence interval 
eletter ranking generated from Cox mixed-effect post hoc Tukey test 
frestricted mean eclosion time 
gmedian eclosion time 
 

 

   The total number of pupae and flies was reduced by 15-29% in YST-bearing 

Drosophila compared to axenic insects (Fig. S2.3A & 2.2C, respectively). This result 

suggests that the presence of YST reduces the larval population prior to late third 

instar when larvae wander to pupate. None of the bacterial associations (mono- or di-

association) significantly affected the number of insects pupated or eclosed relative to 
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the axenic treatment and the bacteria also did not alter the effect of YST in co-

associations (Fig. 2.2C & S2.3A-B and Table S2.1C). 

   The finding that YST reduced both development time and numbers of surviving 

insects raised the possibility that the treatment may have disproportionately increased 

mortality of slowly developing insects, thereby artifactually inflating the development 

rate. This hypothesis was supported by finding that the presence of YST decreased 

skewness for time to eclosion compared to the axenic or bacterial treatments (Fig. 

2.2D). To address this issue, we conducted 5,000 simulations in which time to 

eclosion for insects bearing YST was supplemented with values randomly drawn from 

the dataset for axenic insects. The YST median development time was shifted to the 

axenic time in these simulations (Fig. S2.3C), indicating that the elevated 

developmental rate of insects with YST could be explained by disproportionate 

mortality of slowly developing individuals.  

 

Nutritional indices 

The weight and four of the five nutritional indices (glucose, glycogen, trehalose, 

triglyceride (TAG)) of the flies at 5 dpe varied significantly with the interaction term 

between microbial treatment and sex; the interaction term for protein content was not 

significant, although the main effects sex and microbial treatment were significant 

(Fig. 2.3 and Table S2.1D).  
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Figure 2.3. Individual nutritional indices in flies colonized with different 

microorganisms. (A) Average fresh weight. (B) Protein content. (C) Glucose content. 

(D) Trehalose content. (E) Glycogen content. (F) Triglyceride (TAG) content. The 

estimated marginal mean and 95% confidence interval are plotted from each ANOVA 

model. Letters indicate post hoc Tukey test results with female and male specific 

comparisons indicated by capital and lowercase letters, respectively. Full description 

of statistical tests are in Table S2.1D.  
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   Female flies bearing microbes weighed more on average than axenic flies (except 

LAC-associated flies) and bacterial co-associations with YST significantly increased 

female fly weight, while male flies showed little variation in weight across all 

treatments (Fig. 2.3A). Further inspection of the data revealed that males had a 

significantly lower TAG content than females in both axenic flies and flies bearing 

bacteria, as has also been observed for Drosophila in routine culture (Jehrke et al., 

2018; Wong et al., 2014), while the stereotypical difference in TAG content between 

the sexes was ameliorated in the presence of YST (Fig. 2.3F). 

   To investigate the overall nutritional status of the flies further, we applied principal 

component analysis (PCA) (Fig. 2.4A & 2.4B). For both sexes, ordination plots 

significantly correlated with each other as determined by Procrustes analysis (m2 = 

0.681, r = 0.565, p = 0.001). YST was a strong separator on the first PC axis (PC1) for 

both males and females, but other effects differed between the sexes. YST-containing 

treatments were associated with investment in protein content for females, but in TAG 

content for males, while bacteria-only and axenic treatments increased carbohydrate 

content (glucose, trehalose and glycogen) for both sexes.  

  Multivariate correlation of PC-1 and PC-2 with microbial abundance detected 

significant effects of all three microbial taxa on the nutritional status of the insects, 

apart from LAC in males; and that the effect size of YST was substantially greater 

than the bacteria (Table 2.3). The PERMANOVA full factorial analysis (Table 2.3) 

further showed that the effect of YST was significantly influenced by co-association 

with either ACE or LAC in both sexes. A significant interaction between the two 

bacteria, ACE and LAC, was also evident for females.   
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Figure 2.4. Nutritional status of flies colonized with different microorganisms.  

Principal component analyses (PCA) for (A) females and (B) males. Black arrows 

indicate loading indices and colored vectors correspond to correlation of microbial 

abundances (log10-transformed CFU fly-1 + 1) with PCA axes. Significant results from 

structural equation models are shown for (C) female glucose and for (D) male glucose 

and (E) TAG content. Red and black arrows indicate negative and positive 

associations, respectively. The standardized coefficient for each significant association 

and marginal R2 values for all response variables are shown, with conditional R2 

values shown in parentheses if needed. Full structural equation model test results are 

provided in Table S2.1E and Fig S2.4A.  
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Table 2.3. Effect of microbial presence and abundance on fly nutritional status.  

PERMANOVA 
Female Male 

Effect test Effect size 
(R2) Effect test Effect size 

(R2) 

ACE F1,126 = 8.672,  
p = 0.001 0.04453 F1,126 = 5.432,  

p = 0.002 0.02260 

LAC F1,126 = 1.404,  
p = 0.216 0.00721 F1,126 = 0.813,  

p = 0.505 0.00338 

YST 
F1,126 = 
44.474,  

p = 0.001 
0.22835 

F1,126 = 
90.885,  

p = 0.001 
0.37811 

ACE * LAC F1,126 = 3.670, 
p = 0.006 0.01885 F1,126 = 2.608,  

p = 0.055 0.01085 

ACE * YST F1,126 = 4.320, 
p = 0.002 0.02218 F1,126 = 3.079,  

p = 0.029 0.01281 

LAC * YST F1,126 = 5.989, 
p = 0.002 0.03075 F1,126 = 9.782,  

p = 0.001 0.04069 

ACE * LAC * 
YST 

F1,126 = 0.234, 
p = 0.941 0.00120 F1,126 = 1.770,  

p = 0.148 0.00736 

Multivariate 
correlation 

Effect size 
(R2) P-value Effect size 

(R2) P-value 

Log10 (ACE+1) 0.084 0.008 0.068 0.005 
Log10 (LAC+1) 0.068 0.006 0.008 0.602 
Log10 (YST+1) 0.496 0.001 0.727 0.001 

P-values below the threshold are bolded. 

 

   We then implemented structural equation modeling to investigate the contributions 

of the different microbial taxa and their abundance on each nutritional index (Fig. 

S2.4A-B). The most pronounced effects of microbial composition were obtained for 

fly glucose and TAG content (marginal R2 > 0.5 in at least one sex), while the 

explanatory power for protein content was particularly weak (marginal R2 0.08-0.2) 

(Fig. S2.4B). The model outputs for glucose and TAG content are shown in Fig. 2.4. 

For female flies, YST negatively impacted glucose content, while ACE indirectly 

promoted glucose content by lowering the YST population (standardized coefficient = 
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0.28) (Fig. 2.4C). The relationships were more complex in males. YST-only reduced 

the glucose content but increased the TAG content, and both of these effects were 

dampened by co-association with ACE or LAC. In addition, LAC promoted male 

glucose content, both alone and in co-association with ACE (Fig. 2.4D & E).   

 

Nutritional indices of flies administered microbial fermentation metabolites 

We hypothesized that the effects of microorganisms on the nutritional indices of the 

flies were mediated, at least partly, by by-products of microbial metabolism that alter 

nutrient allocation in the fly (see Introduction). We tested the hypothesis by feeding 

adult flies on chemically-defined liquid diet, administered via capillary tubes and 

supplemented individually with acetic acid, acetoin, ethanol or lactic acid. The flies 

feeding from the capillary tubes increased in daily consumption per fly over the full 

four days of the experiment for female flies, and over the first two days followed by 

stable feeding rates between days-3 and -4 for male flies (Fig. S2.5A & B). On 

average 85% and 82% of female and male flies, respectively, survived during the 4-

day study period with significant differences by concentration for all metabolites, 

except acetoin, and a sex-specific difference in survival for lactic acid (Fig. S2.5C and 

Table S2.1F).  Generally, the indices scored did not vary significantly between the 

controls (i.e. flies on fermentation metabolite-free diets) for the three independent 

experiments per fermentation metabolite or between the experiments on different 

fermentation metabolites. (Exceptionally, among-experiment variation was obtained 

for food consumption in the acetoin-control and glucose content in the ethanol-control 

(Fig. S2.5C); and the mean glucose content of male flies in the acetoin control was 
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significantly greater than the lactic acid control (Table S2.1F).) 

   The effect of metabolite concentration (0, 0.15, and 0.3 M) and fly sex were 

evaluated for TAG, glucose and protein content, with fly weight and food 

consumption included in each model as covariates to discriminate between the effects 

of each metabolite and associated covariates on nutritional status. Acetic acid 

significantly reduced both TAG and protein content of the flies, with significant 

effects for both concentrations tested (0.15 and 0.3 M) for females and for one 

concentration for males (Fig. 2.5 and Table S2.1F). This result could not be attributed 

to effects of acetic acid on food consumption (the volume of diet ingested, used as a 

covariate in the analysis was not significant, Table S2.1F) but TAG content was 

positively associated with fly weight in females for both experiments (Fig. 2.5 and 

Table S2.1F). The other three metabolites had no significant effects, apart from a 

change in glucose content of females administered 0.3 M acetoin and lactic acid and a 

small reduction in female protein content at 0.3 M lactic acid (Table S2.1F).  

   To investigate the link between acetic acid and microbial effects on fly TAG and 

protein content, we quantified the acetic acid content of the flies colonized with 

different microbial taxa.  This analysis was extended to other SCFAs, as a check for 

the possible contribution of other SCFAs to this effect. 
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Figure 2.5. TAG content of axenic flies administered microbial fermentation 

compounds.  The effect of ethanol and acetic acid on TAG content is indicated with 

raw mean and standard error. * indicates p-value < 0.05 for post hoc Dunnett’s test 

from each ANOVA model. The covariate slopes and SEs for weight per fly from each 

ANOVA model are included when significant and displayed under each metabolite 

label; the volume of diet consumed by the flies was non-significant for all 

experiments. Statistical analyses are provided in Table S2.1F and ANOVA model 

plots are included in extended Fig. S5.2. 
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SCFA content and association with host nutrient allocation 

Of the 12 SCFAs tested (see methods), just three compounds were detected in the 

adult flies: acetic acid, butyric acid and propionic acid, which are also the three 

dominant SCFAs found in the mammalian intestine (Cummings et al., 2004). The 

normalized content of all three SCFAs in Drosophila (Fig. 2.6A) was significantly 

increased in flies bearing YST with differences by sex in butyric acid (Fig. 2.6A and 

Table S2.1G). For acetic acid, this effect was increased by the YST/ACE interaction 

and also varied with both LAC and sex (Table S2.1G). ACE also significantly affected 

propionic and butyric acid content, although the magnitude of this effect varied with 

sex and LAC (Fig. 2.6A and Table S2.1G).  

   A moderation analysis was performed to investigate how the microorganisms 

influenced the association between SCFA content and each nutritional index. A 

significant relationship was obtained between one SCFA, acetic acid, and one 

nutritional index, TAG, in male flies only (Table S2.1H). Specifically, the association 

between TAG and acetic acid content varied significantly with both the presence of 

ACE and YST (Table 2.4), with a correlated increase in acetic acid titer and decrease 

in TAG content of flies bearing ACE and YST (Fig. 2.6B). This finding suggests that 

a YST factor may modulate the effect of acetic acid on TAG content observed in Fig. 

2.5, while an ACE factor is capable of reducing the YST factor to decrease TAG 

content as acetic acid titer increases (Fig. 2.6C). 
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Figure 2.6. The SCFA content of Drosophila colonized with different microorganisms 

and the association between the SCFA acetic acid and TAG content.  (A) SCFA 

profile of flies, (B) moderation analysis for microbial effect on TAG content by acetic 

acid titer, and (C) proposed ACE and YST factors influencing the relationship 

between acetic acid and TAG (see Discussion for details).  For panel (A), the dotted 

horizontal line indicates the mean concentration across all treatments for each SCFA. 

The estimated marginal mean and 95% confidence interval from ANOVA analyses are 

plotted. Confidence intervals that do not overlap with zero indicate a significant effect 

of a microbial treatment on SCFA concentration. Statistical analyses are provided in 

Table S2.1G. Panel (B) shows the linear prediction for male fly TAG content by acetic 

acid titer for the presence (+) and absence (-) of ACE and YST in all combinations 

from the moderation analysis with the results averaged over LAC treatments. The 

ribbon around the line represents the confidence interval with symbols displaying 

individual replicates sampled. A post hoc linear contrast was performed comparing the 

effect of the presence of ACE on the regression slopes with and without YST. 

Asterisks indicates statistical significance (p < 0.0001); NS = not significant.  
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Table 2.4. Moderation effect of acetic acid titer and microorganism presence on TAG 

content in male flies.  

 Male  
Predictors ANOVA effect test Regression coefficienta 

ACE F1,17.12 = 20.49*** -3.7 ± 3.0 
YST F1,17.45 = 180.63*** 16.3 ± 3.0*** 
[Acetic acid] F1,31.53 = 5.19* -0.1 ± 0.2 
ACE*[Acetic acid] F1,32.67 = 7.27* 0.2 ± 0.2 
YST*[Acetic acid] F1,31.65 = 1.59 0.7 ± 0.2** 
ACE*YST F1,17.48 = 10.39** 1.9 ± 4.3 
ACE*YST*[Acetic acid] F1,29.94 = 12.53** -1.0 ± 0.3*** 
Analysis of Deviance   
Experimental replicate (treatment) X22 = 6.52* 
R2   
Marginal 0.877 
Conditional 0.945 

Effect test tables for all moderation analyses are in Table S2.1H. Significance: * p < 
0.05, ** p < 0.01, *** p < 0.001 
aThe coefficient estimate (b) and standard error are reported to show the effect of 
factors on TAG content. The estimate is based on the presence of each microbe. 
 
 
Discussion  

This study on the interaction between gut microorganisms and their Drosophila host 

yielded two key results. First, the impact of individual bacterial and yeast taxa on the 

performance and nutritional status of Drosophila is strongly influenced by both the 

presence of other microorganisms and host sex. Second, the relationship between a 

key microbial fermentation product, acetic acid, and fly lipid content is strongly 

dependent on both microbiota composition and sex. Here we address the processes 

that may contribute to the interactive effects of the bacteria and yeasts, focusing the 

latter part of the Discussion specifically on the role of acetic acid.  Our interpretation 

of the results is informed by two important aspects of Drosophila-microbiome system.  

The first is that viable microbial cells are shed via the feces onto the diet (Fink et al., 
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2013; Inamine, et al., 2018), and these shed cells are both available for re-ingestion 

(i.e. fecal-oral cycling) and can proliferate in the food, thereby altering the nutritional 

composition of the food consumed by the insects (Broderick and Lemaitre, 2012; 

Huang and Douglas, 2015; Martino et al., 2018; Wong et al., 2015). In this study, we 

focused on microbial populations in the insects, while recognizing that some microbial 

effects on the nutritional status of Drosophila may be mediated by diet-associated 

microorganisms. Secondly, various studies indicate that the effect of gut 

microorganisms on the nutritional status of Drosophila can be mediated by post-

ingestive processes, including nutrient assimilation across the gut wall and nutrient 

allocation by the insect (e.g. Shin et al., 2011; Storelli et al., 2011; Kamareddine et al., 

2018; Yamada et al., 2015), and this is the primary focus of this study. Nevertheless, 

we recognize that the nutritional physiology of Drosophila can be influenced by 

microbial effects on feeding rates (e.g. Huang and Douglas, 2015; Wong et al., 2014; 

Wong et al., 2017), and that this important facet of the Drosophila-microbiome 

interactions remains to be investigated systematically.    

   Many of the among-microbe interactions and sex-specific effects of the 

microorganisms involved the YST treatment (an isolate of Hanseniaspora uvarum 

from wild Drosophila). Previous studies on gut bacteria in Drosophila and other 

animals have shown that most among-bacteria interactions reduce bacterial 

abundance, i.e. they are negative interactions (Coyte and Rakoff-Nahoum, 2019; Faust 

et al., 2018; Gould et al., 2018; Newell and Douglas, 2014; Venturelli et al., 2018). 

This study extends this generality to a yeast, including evidence for both mutual 

reduction in numbers of live YST and ACE in flies colonized with both taxa and a 
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negative effect of YST on LAC abundance (Fig. 2.1). The basis for these effects in the 

Drosophila system remains to be determined but may include competition for 

nutrients in the food and Drosophila gut, as well as toxicity of certain metabolic by-

products released from the different microorganisms (Dashko et al., 2014; Hibbing et 

al., 2010; Mitri and Foster, 2013). In some instances, however, the cross-feeding of 

metabolic by-products between microbial taxa (Fischer et al., 2017) can promote 

microbial abundance in Drosophila. For example, the LAC-dependent promotion of 

ACE abundance (Consuegra et al., 2020; Newell and Douglas, 2014; this study) is 

likely mediated by LAC-derived fermentation metabolites (e.g. lactic acid) (Consuegra 

et al., 2020; Sommer and Newell, 2019). In addition, the effect of YST on LAC 

abundance may be due to YST-derived small metabolites as observed in other yeast-

Lactobacillus systems (Ponomarova et al., 2017). 

   The effect of YST on Drosophila performance was highly significant and 

independent of the presence of bacteria. The pattern of reduced survival but increased 

developmental rate to adulthood of Drosophila with YST obtained in our study has 

also been reported by Murgier et al. (2019), who compared pre-adult performance of 

Drosophila associated with a different strain of the same yeast species (Hanseniaspora 

uvarum) to a treatment comprising dried Saccharomyces cerevisiae routinely used to 

maintain Drosophila cultures. Our dataset is compatible with the interpretation that 

YST killed slowly-developing larvae (Fig. 2.2D and S2.3C). Recognizing that yeasts 

release a wide range of fermentation metabolites and other compounds (Arguello et 

al., 2013; Bueno et al., 2019; Halbfeld et al., 2014; Jolly et al., 2014; Krause et al., 

2018; Rossouw et al., 2008), we hypothesize that one or more of the YST products 
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accumulate in the diet to levels that are toxic for the slower-developing larval insects. 

YST may, in this way, exert very strong selection for rapid Drosophila development 

time. A high priority for future research is to identify and investigate the mode of 

action of the putative insecticidal products of YST.    

   Our analysis of the nutritional indices of 5-day-old adult flies revealed markedly 

different effects of YST on nutrient allocation in male and female Drosophila, with 

significantly increased protein content of females and TAG (lipid) content of males 

(Fig. 2.3 & 2.4). The female response is fully in keeping with published evidence that 

females derive protein from dietary yeast for ovary maturation and egg production, 

underpinned at the molecular level by heightened expression of yolk protein genes for 

vitellogenesis (Bownes et al., 1988; Roy et al., 2018; Terashima and Bownes, 2004). 

The male response to YST comprised the loss of the stereotypical lower lipid content 

in male than female flies that is exhibited by Drosophila in a range of rearing 

conditions (Jehrke et al., 2018; Schwasinger-Schmidt et al., 2012; Wong et al., 2014), 

and also by axenic flies and Drosophila bearing bacteria (Fig. 2.3A). The effect of 

YST on TAG in male flies matches the effect of eliminating the function of the 

Drosophila lipase gene brummer in neurons and somatic cells of the testes (Wat et al., 

2020). The evidence that brummer expression in these organs plays an important role 

in global lipid homeostasis (Wat et al., 2020) raises the possibility that the nutritional 

consequences of YST in male flies involves system-level change in the regulation of 

lipid metabolism via a brummer-dependent process. In addition, changes in feeding 

behavior and dietary nutrient composition may provide insight into the microbial-

mediated effects on nutrient allocation. 
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   Whatever the mechanistic basis of YST-mediated increase in TAG of male flies, this 

effect is ameliorated by co-colonization with ACE (Fig. 2.3F & 2.4E). Importantly, 

aspects of the interactive effect of YST and ACE on male TAG content did not match 

well to published evidence that various Acetobacter strains reduce fly TAG content 

(Chaston et al., 2014; Newell and Douglas, 2014; Shin et al., 2011). Contrary to these 

previous studies, flies colonized with ACE in this study did not have significantly 

lower TAG content than axenic flies. The likely basis for this discrepancy is a 

difference in experimental design. Acetobacter growing in the food consume dietary 

glucose, thereby reducing the availability of glucose substrate for TAG synthesis by 

Drosophila (Huang and Douglas, 2015). Dietary glucose would be less-depleted for 

the 5-day-old flies analyzed in this study than in previous work because we transferred 

the newly-eclosed flies to fresh diet, while published studies reared the Drosophila 

with the Acetobacter inoculum from egg without refreshing the diet at adulthood. A 

further discrepancy is the finding from our structural equation modeling that the 

effects of microorganisms on fly TAG content could not be predicted from microbial 

population size, contrary to the published finding of a negative correlation between fly 

TAG content and Acetobacter load (Chaston et al., 2014). This difference likely arises 

from the inclusion of YST in our analyses.  

   Insight into the basis of the interactive effect of ACE and YST on fly TAG content 

comes from consideration of the response of adult Drosophila to microbial 

fermentation products. Our demonstration that dietary acetic acid significantly reduces 

TAG content of axenic flies in both sexes is consistent with previous studies, which 

have, additionally, shown that acetic acid-mediated TAG reduction is mediated by 



 

111 

enhanced antimicrobial peptide production in the gut and systemic insulin signaling 

(Kamareddine et al., 2018; Shin et al., 2011). 

   Our study demonstrates, further, that the relationship between acetic acid titer and 

Drosophila TAG content is strongly influenced by the presence and composition of 

the gut microbiota. The first issue is the microbial source of acetic acid. To date, acetic 

acid in the Drosophila system has been identified as the product of aerobic 

fermentation by Acetobacteraceae, a metabolic trait that is displayed when the ethanol 

substrate is cross-fed from yeasts or heterofermentative lactobacilli (Fischer et al., 

2017; Shin et al., 2011; Sommer and Newell, 2019). However, this interpretation may 

be incomplete because, although (as predicted) fly acetic acid levels are greatest in the 

YST/ACE treatments, they are also significantly elevated in YST-only flies compared 

to axenic flies. We hypothesize that YST may be a net producer of acetic acid, as 

demonstrated for various yeasts (Jolly et al., 2014), including a different strain of the 

same species, Hanseniaspora uvarum (Bueno et al., 2019). A further potential source 

of metabolic complexity is the production of acetic acid by various heterofermentative 

lactobacilli (Adler et al., 2013; Oude Elferink et al., 2001), although we obtained no 

indication of this effect from the acetic acid content of flies bearing the 

heterofermentative LAC used in this study.  

   Taken together, these considerations lead to the apparently paradoxical conclusion 

that male flies bearing YST have elevated TAG levels, despite their high acetic acid 

titer. This paradox can be resolved by invoking a YST-derived factor that suppresses 

the metabolic response of male flies to acetic acid, and the reversal of this effect by an 

ACE-factor that suppresses the YST-factor (Fig. 2.6C). Priorities for future research 
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are twofold: to establish the identity of the putative YST- and ACE-factors; and to 

investigate how the putative YST-factor may interact with the IMD and insulin 

signaling pathways (Kamareddine et al., 2018; Shin et al. 2011) that mediate TAG-

reduction by acetic acid and the brummer-mediated regulation of TAG levels in males.  

   Our analysis of the SCFA profiles detected propionic acid and butyric acid in 

Drosophila, with elevated titers in YST-bearing flies. Although we obtained no 

significant relationship between these SCFAs and Drosophila nutritional indices, these 

microbial-derived SCFAs are important effectors of gut microbiome-host interactions 

in mammals (Den Besten et al., 2013; Gentile and Weir, 2018), including 

transgenerational effects on energy homeostasis (Kimura et al., 2020). In addition, 

propionic acid has been identified as an appetite stimulant for Drosophila larvae under 

nutrient stress (Depetris-Chauvin et al., 2017). Considering the evolutionary 

conservation of many aspects of gut microbiome interactions and metabolism across 

the animal kingdom (Douglas, 2019; Musselman and Kühnlein, 2018), we cannot 

exclude the possibility that these SCFAs may influence Drosophila metabolism at 

different developmental stages, on different diets or over longer timescales than used 

in this study.   

   We conclude by considering how this study contributes to our understanding of the 

central role of gut microorganisms and the microbial metabolite acetic acid as 

determinants of Drosophila lipid content. Although most research on this topic has 

been conducted on Drosophila associated with a single bacterial strain (e.g. Chaston et 

al., 2014; Ma et al., 2019; Shin et al., 2011), there is growing interest in the effects of 

among-microbe interactions on various fly traits (Aranda-Díaz et al., 2020; Consuegra 
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et al., 2020; Fischer et al., 2017; Gould et al., 2018; Judd et al., 2018; Sommer and 

Newell, 2019). Here, we demonstrate that the impact of a microbial community on  

metabolism-related traits, especially lipid content, cannot be predicted reliably from 

the study of mono-associations because the effect of individual microorganisms is 

strongly influenced by other microorganisms, especially yeast-bacterial interactions, 

and by host sex. There is growing evidence that this complexity is not peculiar to 

Drosophila but applies to other animals, including humans (Bolnick et al., 2014; Haro 

et al., 2016; Markle et al., 2013; Weger et al., 2019). Because Drosophila is superbly 

amenable to large experiments, including combinatorial designs of microbial 

treatments (Gould et al., 2018; this study), it is an excellent system to investigate the 

fundamental processes underlying gut microbiome-host interactions.  
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CHAPTER 4 

IMPACT OF MICROBIOME COMPOSITION ON THE METABOLOME OF 

DROSOPHILA MELANOGASTER3 

 

Abstract  

Despite the abundant evidence that the gut microbiome influences the metabolic health 

of the animal host, understanding of how the microbiome composition influences host 

metabolism is fragmented and incomplete. To obtain a global overview of the 

metabolic consequences of the microbiome, we determined the metabolome of 

Drosophila melanogaster experimentally associated with the bacteria Acetobacter 

fabarum and Lactobacillus brevis and the yeast Hanseniaspora uvarum in 

communities of one, two, or three taxa. Of 153 metabolites identified, the abundance 

of 50 (34%) varied significantly with microbial treatment and sex. Titers of various 

nucleotides and amino acids were elevated in females with di-associations that 

included Acetobacter, while central carbon intermediates were enriched in males with 

di- and tri-associations. However, the most robust correspondence between 

metabolites and two key indices of metabolic health, lipid and glucose content, related 

to a microbial metabolite, phenyllactic acid, which was correlated negatively with 

glucose (both sexes) and positively with lipid content (males). This study reveals that, 

although microbiome composition and nutritional effects are similar for males and 

 
3 Article in preparation for journal submission by McMullen, J.G., Koo, I., Vijay, A.M., Patterson, 
A.D., and Douglas, A.E.  
Supplemental material are provided in Appendix C. 
Koo, I. processed the metabolomics data to select peak areas and metabolite identifications and Vijay, 
A.M. performed metabolite extraction. 
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females, the underlying metabolic basis differs between the sexes, and it identifies 

phenyllactic acid as a candidate microbial determinant of the metabolic health of 

Drosophila. 

 
Introduction  

   The microorganisms that colonize the animal gut, collectively referred to as the 

microbiome, have diverse effects on the physiology and health of the animal host, with 

impacts on nutrition, growth, immune function, and behavior (McFall-Ngai et al., 

2013; Morais et al., 2020; Read and Holmes, 2017; Rolhion and Chassaing, 2016; 

Sommer and Bäckhed, 2013; Thaiss et al., 2016). Most host-microbiome interactions 

are metabolic in nature and microbiome effects on the animal metabolome can be 

categorized as either direct effects of microbial-produced or -processed nutrients or 

indirect effects of microbial-derived effectors on host signaling pathways involved in 

metabolic regulation and nutrient allocation (Ankrah and Douglas, 2018; Douglas, 

2014; Engel and Moran, 2013; Hooper et al., 2002). Although it is widely accepted 

that the microbiome influences the animal metabolome (Nicholson et al., 2012), much 

of our understanding of host-microbiome metabolic interactions comes from 

investigations using metagenomic approaches e.g. Armour et al. (2019; Fromont et al. 

(2019; Kau et al. (2011) or hosts experimentally colonized with a single microbial 

partner (Consuegra et al., 2020b; Judd et al., 2018; Kešnerová et al., 2017). There is, 

however, increasing interest in how among-microbe interactions influence animal 

physiology (Consuegra et al., 2020a; Coyte and Rakoff-Nahoum, 2019; Figueiredo 

and Kramer, 2020; Gould et al., 2018; Granato et al., 2019), but current information is 



 

125 

fragmentary. 

   Simple animal models can be powerful experimental systems to investigate the 

effects of among-microbe interactions on the host metabolic function (Douglas, 2019). 

Specifically, Drosophila melanogaster is tractable for metabolomics-based studies 

(Cox et al., 2017; Jin et al., 2020; Li and Tennessen, 2017; Musselman and Kühnlein, 

2018; Zhou et al., 2019) and a fast-emerging model for animal-microbiome 

interactions (Broderick and Lemaitre, 2012; Douglas, 2019; Erkosar et al., 2013; 

Wong et al., 2016). The dominant microorganisms associated with the Drosophila gut 

are bacteria in the family Acetobacteraceae and order Lactobacillales and the 

Saccharomycetales yeasts (Adair and Douglas, 2017; Chandler et al., 2012, 2011; 

Quan and Eisen, 2018; Wong et al., 2013). Currently, several lines of evidence support 

direct effects of the microorganisms on Drosophila nutrition through competition for 

dietary glucose to reduce lipid storage (Chaston et al., 2014; Huang and Douglas, 

2015; Sommer and Newell, 2019) and indirect effects of microbial metabolism on host 

nutritional physiology through insulin-like signaling via acetic acid and branched 

chain amino acids (Dobson et al., 2016; Shin et al., 2011; Storelli et al., 2011). Host 

nutrient allocation patterns are also influenced by among-microbe interactions, 

primarily between Acetobacter-Lactobacillus (Aranda-Díaz et al., 2020; Consuegra et 

al., 2020a; Gould et al., 2018; Newell and Douglas, 2014; Sommer and Newell, 2019) 

and Acetobacter-yeast (Fischer et al., 2017; McMullen et al., 2020). In particular, the 

interaction between Acetobacter-yeast increases Drosophila acetic acid titers and 

lowers lipid content (McMullen et al., 2020); however, the underlying metabolic 

processes have not yet been resolved. 
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   The goal of this study was to investigate how co-colonization of Drosophila with 

different gut microorganisms influenced Drosophila metabolic function, as revealed 

by the fly metabolome. For this study, we used a combinatorial experimental approach 

and associated Drosophila of each sex with one, two, or three representative taxa of 

the three dominant microbiome groups (the bacteria Acetobacter fabarum and 

Lactobacillus brevis and the yeast Hanseniaspora uvarum). The metabolomics data 

presented were combined with data from McMullen et al. (2020) to link metabolite 

titers with microbial abundance and indices of fly nutritional status. This study 

identified significant differences in metabolites from several pathways with respect to 

both microbial complement and host sex. The pattern of variation points to 

microbiome effects on the function of central carbon, amino acid, and nucleotide 

metabolism, which may be influenced through microbiome-mediated modulation of 

metabolic signaling pathways.  

 

Materials and methods 

Experimental design 

   D. melanogaster were experimentally associated with three microorganisms, 

Acetobacter fabarum (ACE), Lactobacillus brevis (LAC), and Hanseniaspora uvarum 

(YST), in all possible combinations of mono-, di-, and tri-associations with an axenic 

(microbe-free) control. Full description of the experimental design is available in 

McMullen et al. (2020). Briefly, Drosophila eggs were dechorionated in bleach 

following Koyle et al. (2016) and microorganisms were added at a dose of 5 x 106 

cells with co-associations combined in equal proportions onto a diet of 10% inactive 
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brewer’s yeast (MP Biomedicals), 10% glucose (Sigma), and 1.2% Drosophila type II 

agar (Apex). Insects were allowed to develop until one day post eclosion (dpe), at 

which time adults were transferred to fresh, sterile diet using aseptic technique. At 5 

dpe, flies were harvested, sorted by sex, and weighed. Samples were pooled for 

microbial abundance (2 flies per sex), nutritional indices (5 flies per sex), and global 

metabolomics screen (ca. 20 mg flies per sex). The first two measures were previously 

reported in McMullen et al. (2020). Microbial abundance was surveyed by colony 

forming units (CFU) using a WASP-2 spiral platter and counted with a Protocol 3 

instrument (Microbiology International). For nutritional indices, glucose, protein, and 

triglyceride (TAG) content were measured using spectrophotometric enzyme assays 

(glucose: Sigma GAGO20, protein: BioRad DC kit, and TAG: L9518 & F6428); data 

was autoscaled by experiment replicate for correlations with individual metabolites. 

 

Global metabolite profiling assay 

   Pools of ca. 20 mg of flies for each sex were flash frozen in liquid nitrogen and 

stored at -80°C until processing for global metabolomics screen at the Penn State 

Metabolomics Facility, University Park, PA, USA following Blow et al. (2020). 

Metabolites were extracted from samples in 1 mL ice-cold 3:3:2 acetonitrile:isopropyl 

alcohol:water containing the internal standards alanine, pyruvate, isoleucine, 

glutamate, uracil, and tyrosine and 0.1 mm zirconia/silica beads (BioSpec. Products, 

Bartlesville, OK, USA) by homogenizing samples for two 20 sec cycles at 6,500 rpm 

with a Precellys 24 homogenizer (Bertin Technologies, Rockville, MD, USA) and 

were shaken for an additional 6 min at 4°C. Samples were placed on ice in between 
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cycles. Homogenates were centrifuged for 10 min at 20,187 g and 4°C. The 

supernatant was transferred, dried using a SpeedVac (Thermo Fisher Scientific), and 

washed in 500 µL 1:1 acetonitrile:water. Following the previous conditions, the 

supernatant was centrifuged, transferred, dried, and resuspend in 100 µL 3% 

methanol:97% water containing 1 µM internal standard chlorpropamide (Santa Cruz 

Biotech). A blank sample was included as a control. Liquid chromatography-mass 

spectrometry (LC-MS) was performed using a Dionex Ultimate 3000 quaternary high-

performance liquid chromatography (HPLC) system coupled with an Exactive Plus 

Orbitrap mass spectrometer controlled by Xcalibur 2.2 software (Thermo Fisher 

Scientific) following the conditions described by Cai et al. (2018). 

   Data generated from LC-MS were processed using MS-DIAL (Tsugawa et al., 

2015). The raw instrument files to mzML format using Proteowizard (Chambers et al., 

2012). MS1 tolerance was set to 0.001 Da. Linear weighted moving average was 

applied (smoothing level = 3) to chromatograms. Minimum peak height and width 

were set to 1,000 and 5, respectively, to select peaks. An identification threshold of 

85% with retention time tolerance of 0.5 min and accurate mass of 0.001 was 

implemented to identify peaks from an internal curated library of metabolites. 

Alignment thresholds of retention time and MS1 were set to 0.35 min and 0.0015. 

Peak areas were normalized by subtracting the blank peak area, dividing by the 

internal standard chlorpropamide peak area and sample mass, and multiplying by the 

average peak area of the internal standard to retain original scaling. Data were further 

range scaled (van den Berg et al., 2006) to control for variation between experimental 
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replicates, which was used for all statistical analyses unless specified. Metabolite 

classification was determined using Chemical Translation Service (Wohlgemuth et al., 

2010) and ClassyFire (Djoumbou Feunang et al., 2016). 

Statistics 

   All statistical analyses were performed using R version 4.0.2 (R Core Team, 2018) 

with an a of 0.05. For all analyses, female and male flies were analyzed separately, 

following our previous demonstration that male and female flies differ in their 

metabolic response to similar microbiome composition (McMullen et al., 2020). An 

analysis of variance (ANOVA) was applied to assess the effect of microbial treatment 

on range scaled metabolite concentration, richness, and diversity with the car package 

version 3.0.10 (Fox and Weisberg, 2019). Residuals from models were visually 

assessed for normality and homoscedasticity. A Benjamini-Hochberg false discovery 

rate p-value correction method (FDR) was applied for multiple comparisons with a 

threshold of 0.2 (Efron, 2007), when required. Richness and diversity were calculated 

by number of metabolites and inverse Simpson index with vegan package version 

2.5.6 (Oksanen et al., 2019) using the normalized dataset prior to range scaling. 

   Several multivariate statistics were implemented to visualize and associate 

metabolome profiles with microorganisms. First, a principal components analysis was 

used to identify the first two components of the metabolome data using a correlation 

matrix with the ‘rda’ function from vegan. Each component was then correlated with 

microbial abundance (log10-transformed) using the vegan ‘envfit’ function. Second, 

permutational multivariate analysis of variance (PERMANOVA) was implemented 
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with a full factorial analysis (three-way interaction for presence of each 

microorganism) using the ‘adonis’ function with 999 permutations. Lastly, a partial 

least squares-discriminant analysis (PLS-DA) was implemented to categorize 

metabolites by microbial treatment on the first two components (with 1,000 

permutations to assess model significance) using the ropls package version 1.20.0 

(Thévenot et al., 2015). The top metabolites that varied with the fly microbiome were 

identified by selecting variable importance in projection (VIP) scores >1.  

   Metabolites determined from PLS-DA were correlated with nutritional indices using 

a Spearman’s rank correlation method with FDR correction. A heatmap was produced 

using pheatmap package version 1.0.12 (Kolde, 2019) with an agglomerative 

hierarchical cluster applied to mean response of metabolite concentration by treatment 

with Euclidean distance and Ward’s linkage. Post hoc Tukey’s test with the emmeans 

package 1.5.1 (Lenth, 2019) or a full factorial ANOVA was implemented to identify 

differences among treatments for each metabolite. 

 

Results 

Identification of microbial-responsive metabolites 

   Our first approach to assess the effect of the microbiome on the Drosophila 

metabolome was to identify metabolites that vary with microbial treatment. In total, 

153 metabolites were identified from the global metabolomics screen. Of these, 50 

metabolites (34%) were identified as microbial-responsive after p-value correction 

(Table S3.1A), including 9% (13 metabolites) identified in both female and male flies, 

16% (24) specific to females, and 9% (13) specific to males (Table S3.1B). The 
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majority of metabolites found in female and male flies were amino acids, 

carbohydrates, and nucleotides (Table S3.1B). In female flies, richness and diversity 

of microbial-responsive metabolites differed significantly by treatment in a full 

factorial ANOVA with the presence of ACE and YST increasing number of 

metabolites (Table 3.1). The interaction of ACE with either LAC or YST decreased or 

increased metabolite diversity (Table 3.1), suggesting that the interactions among-

microbes influenced the richness and relative abundance of metabolome profiles. 

Although the concentration of 26 metabolites varied with microbial treatment in males 

(see above), no significant differences in richness or diversity of metabolites were 

obtained, and suggests that male flies maintain metabolite diversity by shifting 

metabolite concentrations in response to microorganisms present (Table 3.1). 
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Table 3.1. Effect of microbiome on metabolite richness and diversity by treatment.  

Microbial 
treatments 

Female Male 

Richness Inverse 
Simpson Richness Inverse 

Simpson 
(a) Estimated marginal means (standard error) 

Axenic 31.2 (0.7) 4.8 (0.5) 23.7 (0.6) 3.0 (0.3) 
ACE 33.5 (0.7) 4.4 (0.5) 23.2 (0.6) 2.5 (0.3) 
LAC 32.8 (0.7) 5.2 (0.5) 22.5 (0.6) 3.0 (0.3) 
YST 33.0 (0.7) 4.9 (0.5) 22.5 (0.6) 2.6 (0.3) 

ACE+LAC 32.8 (0.7) 2.4 (0.5) 24.0 (0.6) 3.0 (0.3) 
ACE+YST 34.0 (0.7) 5.7 (0.5) 22.2 (0.6) 3.0 (0.3) 
LAC+YST 33.2 (0.7) 5.3 (0.5) 24.2 (0.6) 3.3 (0.3) 

ACE+LAC+YST 34.7 (0.7) 5.3 (0.5) 23.0 (0.6) 2.9 (0.3) 
(b) Full factorial ANOVA F statistics (df = 1,40) 

ACE 6.2* 3.3 0.1 0.5 
LAC 0.9 1.2 1.4 1.7 
YST 5.4* 11.0** 0.7 0.4 

ACE*LAC 0.9 5.9* 0.4 0.1 
ACE*YST 0.0 9.2** 1.9 0.4 
LAC*YST 0.0 1.4 2.4 0.0 

ACE*LAC*YST 2.1 1.3 2.4 2.5 
* p < 0.05; ** p < 0.01. 

 

Patterns of microbiome-dependent variation in the Drosophila metabolome  

   To visualize how the metabolome varies with the composition of the microbiome, a 

principal component analysis (PCA) was performed for each sex. For both males and 

females, mono-associations (i.e. with a single microbial taxon) were separated from 

co-association treatments (Fig. 3.1). The axenic flies overlapped with the mono-

association treatments, although female replicates were more variable than male 

samples (Fig. 3.1). On the second axis, the co-association treatments in female and 

male flies largely separated by the presence of ACE. A multivariate correlation 

between principal components and microbial abundance indicated that metabolome 

profiles of both fly sexes were associated with ACE and LAC abundance in male flies 
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(Fig. 3.1 & Table S3.2A). PERMANOVA results indicated that the presence of all 

three microbes influenced the Drosophila metabolome by three-way interaction in 

females and all two-way interactions in males (Table S3.2B). For female flies, all four 

co-association treatments were clustered separately, while male flies indicated that all 

three di-associations were distinct from each other and the tri-association overlapped 

with the ACE+LAC treatment (Fig. 3.1).  

 

Figure 3.1. Effect of microorganisms on the metabolome of Drosophila. PCA of 

microbial-responsive metabolites in (A) female and (B) male flies. Symbols are 

colored according to microbial treatment. Top 10 metabolite loadings are displayed for 

each sex (black arrows). The colored arrows correspond to significant multivariate 

correlations with microbial abundance (log10-transformed [CFU fly-1 +1]). Percent 

variation explained on each axis is shown. 
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   The top 10 loadings were shown to highlight metabolites associated with the 

microbial treatments. All 10 metabolites differed between female and male flies, 

indicative of distinctly different metabolic patterns for the two sexes (Fig. 3.1). 

Metabolites identified in female flies consisted of pyrimidine related molecules, amino 

acids (including derivatives), and carbohydrates, which had higher titers in the co-

association treatments (Fig. 3.1A). Male flies were associated with TCA cycle 

intermediates, a purine nucleoside, a pyrimidine nucleotide, and amino acid 

derivatives, which were mostly positively correlated with ACE co-association 

treatments (Fig. 3.1B).  

   Our subsequent analysis focused on the variation in metabolites with microbial 

treatments. A partial least squares-discriminant analysis (PLS-DA) was used and 17 

and 8 metabolites were identified in female and male flies, respectively (Fig. S3.1 & 

Table S3.3A), including four metabolites in both sexes: acetyl-aspartate, fumarate, 

glutathione disulfide and phenyllactic acid (Table S3.3B). Most of the metabolites 

identified in the PCA (Fig. 3.1) were supported with the PLS-DA (Fig. S3.1).  

   A hierarchical cluster was then used to identify patterns among treatments and 

metabolites. In both sexes, the ACE+LAC di-association and the tri-association 

clustered together while the pattern for the rest of the treatments differed between 

males and females (Fig. 3.2). For female flies, treatments containing both ACE and 

LAC had elevated titers of pyrimidine nucleotides, some amino acids (including 

derivatives), and the TCA cycle intermediate, fumarate. Higher concentrations for 

amino acids and derivatives, ubiquinone intermediate (p-hydroxybenzoate), and a 

carbohydrate were found in bacteria-YST di-associations, YST-alone, or axenic fly 
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treatments (Fig 3.2A). Contrastingly, TCA cycle intermediates and amino acid 

derivatives were enriched in male flies, particularly for the ACE+LAC treatments. The 

remainder of the male microbial treatments generally had low titers of all metabolites, 

except the LAC+YST di-association which had the highest concentrations observed 

for phenyllactic acid and the TCA cycle intermediate, citrate/isocitrate (Fig 3.2B). 

Axenic flies of both sexes had relatively low to moderate levels for most metabolites, 

apart from lysine in female flies. Although lysine catabolism is hypothesized to be in 

part microbial (St. Clair et al., 2017), the process driving sex-specific response 

observed is unclear. 
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Figure 3.2. Variation in metabolite profile by treatment. Heatmap with hierarchical 

cluster dendrograms for (A) female and (B) male flies. Values reported are the range 

scaled metabolite concentrations. For among-treatment differences, see Fig. S3.2 for 

individual plots of each metabolite for both sexes. 



 

138 

Correlation between individual metabolites and host nutritional status 

   Individual metabolites (identified from the PLS-DA VIP scores) were correlated 

with nutritional indices (glucose, protein, and TAG content) to identify metabolites 

associated with Drosophila nutrient allocation patterns (Table S3.4). A total of six 

metabolites were identified (Table 3.2), of which three are TCA cycle intermediates 

associated with glucose (aconitate, fumarate) or TAG content of males (acetyl CoA). 

A nucleoside (xanthosine) had a significant relationship with male protein content. In 

addition, one amino acid, proline, was correlated with glucose in females, and the 

amino acid derivative, phenyllatic acid, was negatively associated with glucose in both 

sexes and positively associated with TAG in males.  

 

Table 3.2. Spearman rank correlation between nutritional indices and individual 

metabolites.  

Nutritional index Metabolite Rho q value 
(a) Female flies    

Glucose Phenyllactic acid -0.65 8.8 x 10-5 
Glucose Proline -0.48 0.02 

(b) Male flies    
Glucose Phenyllactic acid -0.63 3.3 x 10-5 
Glucose Aconitate -0.38 0.06 
Glucose Fumarate -0.34 0.09 
Protein Xanthosine -0.46 0.01 
TAG Phenyllactic acid 0.70 1.3 x 10-6 
TAG Acetyl-CoA -0.33 0.11 

 

 

Discussion 

   Variation in the metabolome with gut microbiome composition provides insight into 
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how microorganisms influence metabolic function, and in turn, nutrient allocation of 

the animal host. Here, we demonstrated that gut microorganisms in Drosophila can 

have a significant effect on metabolites involved in various metabolic pathways (e.g. 

central carbon, amino acid, nucleotide metabolism), but the pattern of these effects 

differs between female and male insects. In addition, several individual metabolites 

correlated with fly glucose, protein, and lipid content, offering a basis for further 

investigation of the metabolic basis of nutrient allocation. 

    Our interpretation of the metabolomics data is based on the expectation that the 

majority of the metabolites observed are reflective of host cellular metabolism because 

the gut microbiome contributes < 1% of the total fly biomass (Keebaugh et al., 2018; 

McMullen et al., 2020). This differs from many mammalian metabolomics studies, 

which focus on gut tissues and body fluids (e.g. urine, blood), in which microbial-

derived metabolites are abundant (Vernocchi et al., 2016). Nevertheless, one 

metabolite highlighted by our statistical analysis, phenyllactic acid, is likely microbial 

in origin. Drosophila has no known genetic capacity to synthesize phenyllactic acid 

(Kanehisa and Goto, 2000), but both lactic acid bacteria and various yeasts synthesize 

this compound (Ruggirello et al., 2019; Storelli et al., 2018; Svanström et al., 2013). A 

further important issue for interpreting the metabolomic data relates to the many 

metabolites identified that did not differ significantly with microbial treatments. 

Additional metabolites of interest may be recognized in an expanded analysis that 

includes a greater diversity of microbial treatments or larger sample sizes. In addition, 

metabolomics has the limitation that it offers a steady-state view of metabolic 

function, and cannot detect biologically-important differences in metabolic flux that 



 

140 

retain metabolite pools of uniform size.  

   The very substantial differences in the composition of microbial-responsive 

metabolites between female and male flies parallels previously identified sex 

differences found in nutrient allocation and molecular function (Bost et al., 2018; 

Jehrke et al., 2018; McMullen et al., 2020; Ridley et al., 2013; Wong et al., 2014). 

These several effects are likely due to sex-specific strategies for metabolic investment 

in reproduction (Camus et al., 2019) with female investment in lipid and protein 

synthesis for vitellogenesis and egg production (Bownes et al., 1988; Roy et al., 2018; 

Terashima and Bownes, 2004) and costs in male flies associated with courtship and 

general vigor (Harvanek et al., 2017; Jensen et al., 2015; McKean and Nunney, 2001). 

For male flies, results indicated a shift in the metabolic function from mono-

association to co-associations with maintenance of metabolite diversity across 

treatments, while increasing microbiome community complexity for female flies 

resulted in either increased (with ACE+YST treatments) or decreased (with 

ACE+LAC di-association) metabolite diversity. Many of the top metabolites were 

related to products of central carbon, amino acid, and nucleotide metabolism, which 

indicates changes in metabolic pathways central to energy production and biosynthesis 

and likely TOR/insulin-like signaling (Mattila and Hietakangas, 2017; Wilinski et al., 

2019).  

   Overlaying the sex-specific effects of the microbial treatments is the common 

feature that the di-association with ACE and LAC and the tri-association had the 

greatest effect on enriching metabolite titers in each sex. Functional interpretation of 

differences in metabolite titers is constrained without complementary flux data 
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because, for example, high titers can be indicative of increased metabolic importance 

or reduced utilization, while low titers can be explained as reduced production or 

increased turnover. Nevertheless, the overall pattern of metabolic effects of ACE and 

LAC is consistent with increased central carbon metabolism in two respects. First, the 

interpretation that increased titers of TCA cycle intermediates indicates increased 

TCA activity and is supported by the elevated glutathione disulfide titer, associated 

with oxidative stress as observed in the mouse model (Gansemer et al., 2020); and, 

second, the increased acetyl-aspartate concentration, fits to prior evidence linking this 

metabolite with energy metabolism in Drosophila (Wilinski et al., 2019) and the use 

of low acetyl-aspartate titer as a biomarker for obesity in humans (Coplan et al., 2014; 

Kaur et al., 2017). Reinforcing these lines of evidence, the titers of several TCA cycle 

intermediates were negatively correlated with glucose and TAG content in males. In 

addition, female flies displayed a negative correlation between proline titers and 

glucose content, which may indicate changes in energy metabolism due to proline 

utilization as a respiratory fuel (Goncalves et al., 2014). 

   Two additional metabolites were correlated with nutritional indices and may serve as 

biomarkers for Drosophila nutritional status. First, phenyllactic acid was positively 

correlated with lipid content in males and negatively correlated with glucose content 

in both sexes. The male-specific association of phenyllactic acid with lipid content 

may be a general animal feature, because this microbial metabolite is also elevated in 

urine of hyperlipidemic male rats (Wu et al., 2014). Second, xanthosine, which is part 

of purine degradation to uric acid, a major nitrogenous waste product of Drosophila 

(Dow and Davies, 2003), was negatively associated with protein content of males, and 
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this correlation may indicate male-specific patterns of nitrogen metabolism that are 

influenced by the microbiome. 

   We conclude with considering how these data contribute to our understanding of 

how the microbiome shapes animal metabolism. From an evolutionary standpoint, 

many of the interactions between animals and their gut microbiomes, including 

microbial effects on host metabolic signaling (Gérard and Vidal, 2019; Shin et al., 

2011; Storelli et al., 2011), are highly conserved across the animal kingdom (Douglas, 

2019; Musselman and Kühnlein, 2018). The evolutionary drivers are not well-

understood but can involve both microbial manipulation of host nutritional status and 

life history traits, as well as host utilization of microbial metabolic activity as a cue for 

adaptive trait responses. In particular, an important outstanding question is the effects 

of microorganisms on host signaling pathways, which are likely adaptive for the 

animal host by allowing for shifts in metabolic activity in response to their 

environment. The use of Drosophila, as it is amenable to large experiments and 

combinatorial designs for microbiome treatments, e.g. Gould et al. (2018; McMullen 

et al. (2020) and this study, offers the opportunity to interrogate the processes 

determining the effects of microbiome composition on animal metabolic function. 
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CHAPTER 5 

DISCUSSION 

 

Research conclusions 

   The goal of this dissertation was to investigate the effect of among-microbe 

interactions on Drosophila nutrient allocation and metabolic function. Results 

indicated that among the bacterial microbiome members, taxa of different orders differ 

metabolically which may facilitate niche overlap between taxa. In addition, co-

associations between representative members of three key taxa, Acetobacter fabarum 

(Acetobacteraceae), Lactobacillus brevis (Lactobacillales) and yeast (Hanseniaspora 

uvarum), demonstrated that mono-associations cannot predict how the microbiome 

influences key aspects of the nutritional physiology and metabolome of Drosophila. 

This research contributes to our understanding of the relationship between animal 

hosts and the gut microbiome, including how metabolic functions of individual 

microbial taxa and metabolic interactions among microorganisms influence host traits. 

At the start of this research, there were few examples on the importance of among-

microbe interactions on Drosophila traits, e.g. Newell and Douglas (2014). Most 

research on host-microbiome interactions in Drosophila had emphasized the functions 

of individual bacteria in host-microbiome associations, e.g. (Chaston et al., 2014; 

Erkosar et al., 2015; Shin et al., 2011; Storelli et al., 2011) with the assumption that 

individual traits would be additive in a community context, or focused on the 

combined effect multi-species communities with conventional (i.e. unmanipulated 

microbiome) fly, while some studies used a standard synthetic microbiome without 
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assessing underlying community processes (Chaston et al., 2016; Combe et al., 2014; 

Ridley et al., 2012; Wong et al., 2014). However, there have been several notable 

recent findings that highlight that pairwise and higher-order interactions between gut 

microorganisms can expand the metabolic capabilities of individual microbes and their 

influence on Drosophila health and fitness (Consuegra et al., 2020a; Fischer et al., 

2017; Gould et al., 2018; Sommer and Newell, 2019), and these studies complement 

this dissertation work.  

   In the main section of this Discussion (below), I address the patterns identified in my 

research in the context of the literature on the Drosophila system, and the implications 

of this research for the ecology and evolution of Drosophila and its associated gut 

microbiome. I conclude with some perspectives for future research.   

 

Patterns of interactions between microorganisms and Drosophila 

   It has been known from the first studies on the Drosophila microbiome using 

culture-independent molecular methods that the taxonomic composition of the 

Drosophila gut microbiome is variable and dominated by bacterial taxa of three orders 

(Enterobacterales, Lactobacillales, and Rhodospirillales) (Chandler et al., 2011; 

Corby-Harris et al., 2007). The genome sequence analyses conducted in Chapter 2 

revealed that bacteria isolated from wild Drosophila are functionally distinct at 

various taxonomic levels from order to strain-level variation. At higher order 

taxonomy, the metabolic traits varied widely between the three dominant bacterial 

orders with a high number of traits related to fermentation, amino acid, and nucleotide 

metabolism in bacteria belonging to the Rhodospirillales and Lactobacillales. These 
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metabolic functions are candidate processes contributing to host traits that vary with 

gut microbiome composition. For example, there is evidence that conserved metabolic 

capabilities of Rhodospirillales and Lactobacillales can suppress or reverse locally 

adapted life history traits of Drosophila with faster or slower development time, 

respectively, and that the natural composition of the microbiome in wild Drosophila 

populations along a well-established latitudinal gradient along the U.S. East coast 

matches the latitudinal gradient of host life history traits (Walters et al., 2020). 

   Strain-level variation among prevalent bacteria associated with Drosophila indicated 

that some of the bacteria, particularly Lactobacillus plantarum and Gluconobacter 

cerinus, were enriched in diverse functions for utilization of carbon. These results 

provide a strong caution against the continued use of 16S rRNA gene-based data as a 

proxy for the study of functional variation in the gut microbiome of Drosophila. In 

addition, these findings may also explain the different and occasionally incompatible 

results obtained from different laboratories using different bacterial strains, e.g. Blum 

et al. (2013); Douglas (2018); Inamine et al. (2018); Matos and Leulier (2014). 

Looking ahead, they also provide a rationale for future research to extend the 

laboratory study of L. plantarum interactions with Drosophila, which currently is 

conducted on single strains (e.g. Newell and Douglas, 2014; Storelli et al., 2018, 2011; 

Téfit and Leulier, 2017), to multiple strains, to ensure that the range of results are 

representative of the species. Similarly, there is the opportunity to expand 

investigations of Acetobacteraceae to genera other than Acetobacter as we have a 

limited understanding of taxa outside of this genus, but see Ryu et al. (2008); Solomon 

et al. (2019). 
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   Research to date on the Drosophila microbiome has focused primarily on 

Acetobacter and Lactobacillus spp., (e.g. Aranda-Díaz et al., 2020; Consuegra et al., 

2020b; Dobson et al., 2015; Gould et al., 2018; Newell and Douglas, 2014; Shin et al., 

2011; Storelli et al., 2011; Walters et al., 2020). In part, this is because these taxa are 

commonly found associated with laboratory Drosophila colonies. The genome data for 

representatives of the Enterobacterales can also provide the basis for further 

investigation of these taxa. Notably, the Enterobacterales analyzed in Chapter 2 

included a higher diversity of functional traits than for the Acetobacteraceae or 

Lactobacillales strains investigated. The distinctive features of the Enterobacterales 

studied were associated primarily with urea cycle and polyamine metabolism. 

Important issues for future research are whether and how this metabolism may be 

linked to functional aspects of the interaction between Enterobacterales and 

Drosophila.  Some members of the Enterobacterales, particularly Providencia spp., 

can be pathogenic to Drosophila (Galac and Lazzaro, 2011) and there may be host 

filtering processes that limit their abundance in the gut (Wang et al., 2020). A further 

prevalent and abundant genus of the Enterobacterales found in multiple studies in the 

wild Drosophila gut microbiome is Tatumella (Adair et al., 2018; Kang and Douglas, 

2020; Wong et al., 2013). Tatumella is a member of the Erwiniaceae, which also 

includes important pathogens of plants and Drosophila, as well as insect 

endosymbionts (Adeolu et al., 2016; Manzano-Marı́n et al., 2020; Troha et al., 2018). 

In summary, the data are currently fragmentary but offer a strong basis to investigate 

Drosophila interactions with Enterobacterales. These interactions may differ from 

Drosophila interactions with Acetobacteraceae and Lactobacillales, may vary among 
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taxa within the Enterobacterales, and may be context-dependent, varying with 

environmental circumstance and co-occurring microorganisms.  

   The study summarized in Chapter 3 was founded on the known effects of 

Acetobacter and Lactobacillus spp. on Drosophila performance and nutritional 

physiology. For example, Acetobacter spp. tend to decrease lipid and glucose content 

and development time, while Lactobacillus spp. lower glucose content and increased 

starvation resistance of female flies on nutrient poor conditions (Newell and Douglas, 

2014; Téfit and Leulier, 2017). In co-association, Acetobacter and Lactobacillus 

display cooperative metabolism, with exchange of Lactobacillus-derived lactic acid 

for Acetobacter-produced essential amino acids and B vitamins, which in turn results 

in synergistic reductions in both development time and lipid storage of Drosophila. 

These effects are likely mediated through some combination of insulin-like signaling 

by acetic acid from Acetobacter produced using Lactobacillus-derived ethanol and 

consumption of dietary glucose (Consuegra et al., 2020a; Shin et al., 2011; Sommer 

and Newell, 2019). However, apart from Fischer et al (2017), interactions between 

bacteria and yeasts have rarely been investigated.  

  A key feature of the combinatorial experimental design of the research conducted in 

Chapter 3 is the inclusion of yeast and yeast-bacteria interactions in the analysis of 

microbiome effects on fly nutritional status. In particular, the interaction between 

Acetobacter fabarum and Hanseniaspora uvarum resulted in increased titers of acetic 

acid and decreased lipid storage, with evidence suggesting that an unknown yeast-

derived factor suppressed the acetic acid effect and increased lipid storage (Fig. 3.6).  

The metabolic basis for this interaction is a high priority for future research. The data 
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in Chapter 3 offers a clear indication that yeasts may be an active constituent of the 

microbiome, which has been an open question in the field despite the early recognition 

of their importance in the Drosophila life cycle (Broderick and Lemaitre, 2012).  

   Most of the early research conducted on Drosophila-yeast interactions has focused 

on yeast as a food source, providing protein, B vitamins and sterols (Broderick and 

Lemaitre, 2012; Sang, 1956) and as an attractant (via volatile fermentation products) 

for Drosophila to rotting fruits (Becher et al., 2012). Nevertheless, there are several 

indications in the recent literature that yeasts can influence host functions in ways that 

may be contingent on their metabolic activity. For example, yeast increased flux of 

amino acids to the fly to extend fly longevity, although this function can be replaced 

with a re-occurring high dose of heat killed yeast cells (Yamada et al., 2015). 

Drosophila performance was dramatically influence, in particular with decreased 

development time (Murgier et al., 2019; Solomon et al., 2019; Fig. 3.2). In addition, 

yeast differ in their effect from individual bacteria on Drosophila molecular functions 

and resemble transcriptional profiles of conventional flies (Elya et al., 2016). To date, 

evidence for metabolic interactions between yeast and bacteria in the context of 

Drosophila come from a single study (Fischer et al., 2017), which indicated that 

Drosophila prefer co-culture of Acetobacter-Saccharomyces for feeding and 

oviposition compared to individual cultures. This is primarily due to the utilization of 

yeast-derived ethanol by Acetobacter to produce acetic acid, acetate esters, and 

acetaldehyde derivatives. However, synthesis of these different studies is limited by 

their use of different yeast species. 

   Much of our knowledge on Drosophila-yeast interactions comes from investigations 
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with Saccharomyces cerevisiae, e.g. Becher et al. (2012; Christiaens et al. (2014; Ha 

et al. (2009, 2005; Min et al. (2008), but may not be representative of yeast associated 

with wild Drosophila populations. Generally S. cerevisiae does not colonize the fly 

gut in the wild (Chandler et al., 2012; Quan and Eisen, 2018), is not found to survive 

the gut environment well (except as a spore) (Coluccio et al., 2008; Hoang et al., 

2015), and its effect on Drosophila traits can differ from other yeasts (Anagnostou et 

al., 2010; Hoang et al., 2015; Murgier et al., 2019; Palanca et al., 2013). In nature, 

yeast diversity is lower compared to bacterial gut microbiome with Hanseniaspora 

and Pichia (also known as Issatchenkia (Kurtzman et al., 2008)) spp. as the dominant 

taxa (Chandler et al., 2012). At least for the larval gut, some H. uvarum vegetative 

cells appear to survive passage, but cell viability has not been quantified (Solomon et 

al., 2019). Based on research with S. cerevisiae, spores are likely to be the dominant 

cell type to survive the harsh conditions of the gut, which appears to be important for 

dispersal, outbreeding, and overwintering protection (Coluccio et al., 2008; Stefanini 

et al., 2016); while vegetative cells are likely transmitted via the bodily surface 

(Christiaens et al., 2014). Further investigation is required to understand the role of 

yeasts in the Drosophila gut microbiome as the current information is fragmentary. 

   In summary, our current understanding of the metabolic basis of microbiome effects 

on the nutritional and fitness traits of Drosophila comprises two broad processes. 

Acetobacter strains can lower Drosophila lipid storage through the competition for 

dietary glucose (Chaston et al., 2014; Huang and Douglas, 2015), and microbial 

production of acetic acid stimulates insulin-like signaling to reduce development time 

and glucose and lipid content (Shin et al., 2011). The metabolomics presented in 
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Chapter 4 provides evidence that co-associations can influence the metabolic profile 

of Drosophila and particularly highlights that co-associations between A. fabarum and 

L. brevis promotes titers of TCA cycle intermediates, particularly in male flies. It can 

be reasoned from the work presented here that the high titers of acetic acid observed in 

di-association between A. fabarum and H. uvarum may be causal for elevated titers of 

TCA cycle intermediates. This hypothesis is testable, for example by analysis of 

metabolite profiles in flies administered acetic acid (using the experimental design 

adopted in Chapter 3).  

   The identification of phenyllactic acid in the Drosophila metabolome, likely 

produced by L. brevis and H. uvarum (Ruggirello et al., 2019; Svanström et al., 2013), 

suggests that this metabolite it is a biomarker for metabolic health with negative 

association with glucose content in both sexes and a positive correlation with male fly 

lipid content. Direct evidence of microbial production of this metabolite by members 

of the microbiome and its effect on Drosophila remain to be investigated. The low 

titer of phenyllactic acid in the tri-association, if shown by further work to be general, 

could be indicative of Acetobacter effects on the production of this compound. These 

further studies are potentially very important because phenyllactic acid has a known 

antimicrobial effect on filamentous fungi (Svanström et al., 2013), and could represent 

a novel role of the microbiome in protection against filamentous fungal pathogens and 

competitors.  

 

Perspectives 

   The key general point to emerge from these studies is that the interactions between 
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Drosophila and its microbiome members are complex and context-dependent. 

Multiple processes have been identified, such as nutritional interactions, defensive 

functions, and modulation of host signaling, and microbial partners have been shown 

to have diverse effects that are strongly dependent on the presence and composition of 

other microorganisms. Many other factors, including Drosophila genotype, diet, age, 

temperature, endosymbiont status (Wolbachia, Spiroplasma), and among-yeast 

interactions, e.g. (Jehrke et al., 2018; Newton and Rice, 2020; Rohlfs and Kürschner, 

2010; Yamauchi et al., 2020), were not considered in these studies, but undoubtedly 

compound the context-dependency of microbial effects on Drosophila traits. 

Drosophila is a superb system to address the complexity of animal-microbiome 

interactions, which would be difficult or ethically impossible with other animals, 

especially humans. For example, the genetic and genomic resources available for 

Drosophila, such as DGRP lines (Drosophila Genetic Reference Panel), RNA 

interference, and CRISPR (Heigwer et al., 2018; Mackay et al., 2012), allows for 

follow-up investigations to determine the host genetic basis for metabolic patterns 

identified. In addition, genome-scale metabolic modeling with host signaling networks 

(Consuegra et al., 2020b; Imam et al., 2015; Schönborn et al., 2019) can provide a 

useful basis for combining in silico predictions and empirical studies to identify novel 

and unexpected metabolic targets for future investigations. Furthermore, the flexibility 

to study Drosophila in the laboratory and field (Adair et al., 2018; Kang and Douglas, 

2020; Rudman et al., 2019) allows for studies concerning questions on the ecology and 

evolution of animal-microbiomes. In conclusion, the Drosophila gut microbiome has a 

continuing important role to play in study of animal-microbiome interactions.   
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

 

 

 

 
 

Figure S1.1. Species boundary delineation among Drosophila-associated strains. (A) 

Enterobacterales. (B) Lactobacillales. (C) Rhodospirillales. Black cells of heatmap 

correspond to pairwise average nucleotide identity (ANI) score of 95% or greater, 

while white cells indicate scores < 95%. 
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Figure S1.2. 16S rRNA gene phylogeny. (A) Enterobacterales clade extraction. V. cholerae, H. influenzae, and P. multocida are 

used as reference strains for studied taxa. Maximum likelihood tree was generated with a TIM3+F+I+G4 model of evolution 

(length = 1441 bp) with 10,000 ultrafast bootstrap replicates. Tree is scaled by number of nucleotide substitutions per site. 
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Figure. S1.2. 16S rRNA gene phylogeny. (A) Enterobacterales clade extraction. V. cholerae, H. 
influenzae, and P. multocida are used as reference strains for studied taxa. Maximum likelihood 
tree was generated with a TIM3+F+I+G4 model of evolution (length = 1441 bp) with 10,000 
ultrafast bootstrap replicates. Tree is scaled by number of nucleotide substitutions per site.
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Figure S1.2. 16S rRNA gene phylogeny. (B) Lactobacillales clade extraction. B. subtilis, E. faecalis, and S. pyogenes are used as 

reference strains for studied taxa. Maximum likelihood tree was generated with a TIM3+F+I+G4 model of evolution (length = 

1441 bp) with 10,000 ultrafast bootstrap replicates. Tree is scaled by number of nucleotide substitutions per site.
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Figure. S1.2. 16S rRNA gene phylogeny. (B) Lactobacillales clade extraction. B. subtilis, E. 
faecalis, and S. pyogenes are used as reference strains for studied taxa. Maximum likelihood 

tree was generated with a TIM3+F+I+G4 model of evolution (length = 1441 bp) with 10,000 

ultrafast bootstrap replicates. Tree is scaled by number of nucleotide substitutions per site.
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Figure S1.2. 16S rRNA gene phylogeny. (C) Rhodospirillales clade extraction. M. magneticum, R. rubrum, and G. bethesdensis are 

used as reference strains for studied taxa. Maximum likelihood tree was generated with a TIM3+F+I+G4 model of evolution 

(length = 1441 bp) with 10,000 ultrafast bootstrap replicates. Tree is scaled by number of nucleotide substitutions per site.
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Figure. S1.2. 16S rRNA gene phylogeny. (C) Rhodospirillales clade extraction. M. magneticum, 
R. rubrum, and G. bethesdensis are used as reference strains for studied taxa. Maximum 
likelihood tree was generated with a TIM3+F+I+G4 model of evolution (length = 1441 bp) with 
10,000 ultrafast bootstrap replicates. Tree is scaled by number of nucleotide substitutions per 
site.
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Figure S1.3. Principal coordinates analysis (PCoA) of metabolic functions by genus. All points represent composite of metabolic 

functional traits for each genome analyzed with colors corresponding to genus-level taxonomy. The percentages on each axis 

correspond to the amount of variation explained.
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Fig. S3. Principal coordinates anlaysis (PCoA) of metabolic functions by genus. All points represent composite of 
metabolic functional traits for each genome analyzed with colors corresponding to genus-level taxonomy. The 
percentages on each axis correspond to the amount of variation explained.
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 Figure S1.4. Mapping function onto phylogeny. (A) Correlation between multi-locus 

species phylogeny and Bray-Curtis dissimilarity based hierarchical cluster of relative 

metabolic function counts. The normalized Robinson-Foulds index (nRF) and 

Mantel’s test (based on Spearman’s rank correlation) for the entire tanglegram are 

reported at the top. Each bacterial order is indicated by shaded box with the specific 

nRF obtained for each order. The tips of each dendrogram are connected by either 

black or colored line; the latter represents subtrees within each dendrogram that have 

the same topology. * represents p = 0.001.

Multi-locus species phylogeny Hierarchical cluster of functionnRF: 0.53
r = 0.79*

Lactobacillales
nRF: 0.53

Rhodospirillales
nRF: 0.65

Enterobacterales
nRF: 0.37

Fig. S4. Mapping function onto phylogeny. (A) Correlation between multi-locus species phylogeny 
and Bray-Curtis dissimilarity based hierarchical cluster of relative metabolic function counts. The 
normalized Robinson-Foulds index (nRF) and Mantel’s test (based on Spearman’s rank 
correlation) for the entire tanglegram are reported at the top. Each bacterial order is indicated by 
shaded box with the specific nRF obtained for each order. The tips of each dendrogram are 
connected by either black or colored line; the latter represents subtrees within each dendrogram 
that have the same topology. * represents p = 0.001.
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Figure S1.4. Mapping function onto phylogeny. (B) Correlation between 16S rRNA 

gene phylogeny and Bray-Curtis dissimilarity based hierarchical cluster of relative 

metabolic function counts. The normalized Robinson-Foulds index (nRF) and 

Mantel’s test (based on Spearman’s rank correlation) for the entire tanglegram are 

reported at the top. Each bacterial order is indicated by shaded box with the specific 

nRF obtained for each order. The tips of each dendrogram are connected by either 

black or colored line; the latter represents subtrees within each dendrogram that have 

the same topology. * represents p = 0.001.
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Fig. S4. Mapping function onto phylogeny. (B) Correlation between 16S rRNA gene phylogeny 
and Bray-Curtis dissimilarity based hierarchical cluster of relative metabolic function counts. The 
normalized Robinson-Foulds index (nRF) and Mantel’s test (based on Spearman’s rank 
correlation) for the entire tanglegram are reported at the top. Each bacterial order is indicated by 
shaded box with the specific nRF obtained for each order. The tips of each dendrogram are 
connected by either black or colored line; the latter represents subtrees within each dendrogram 
that have the same topology. * represents p = 0.001.
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Figure S1.5. Principal coordinates anlaysis (PCoA) of orthogroup incidence. (A) 

Representation of all 13,170 orthogroups with at least three genomes present in each. 

(B) Visualization of the 1,055 metabolism-related orthogroups extracted from the full 

dataset. All points represent composite of orthogroup incidence for each genome 

analyzed with colors corresponding to order-level taxonomy. The percentages on each 

axis correspond to the amount of variation explained. 
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Fig. S5. Principal coordinates anlaysis (PCoA) of orthogroup incidence. (A) Representation of all 13,170 
orthogroups with at least three genomes present in each. (B) Visualization of the 1,055 metabolism-related 

orthogroups extracted from the full dataset. All points represent composite of orthogroup incidence for each 

genome analyzed with colors corresponding to order-level taxonomy. The percentages on each axis correspond 

to the amount of variation explained. Data are provided in Table S5.
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Figure S1.6. Strain diversity among metabolic pangenomes and gene distribution. (A) 

Rarefaction curves generated from Roary analysis using log-log linear model. (B) 

Correlation between pangenome distribution for each species with residue diversity 

(Shannon’s entropy calculated from phylogenomic amino acid sequence alignment) 

and (C) nucleotide diversity among 16S rRNA gene alignments. γ in panel A 

represents the slope and standard error from the log-log linear model, which indicates 

an ”open” pangenome for values < 1. For panels B and C, Pearson’s correlation 

statistic is show. NS = not significant; * p = 0.003. Species identifiers: Ath = A. 

thailandicus, Gc = G. cerinus, Gk = G. kondonii, LAb = L. brevis, LApl = L. 

plantarum, PRr = P. rettgeri, and T = Tatumella sp. 
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Fig. S6. Strain diversity among metabolic pangenomes and gene distribution. (A) Rarefaction curves generated 
from Roary analysis using log-log linear model. (B) Correlation between pangenome distribution for each species 
with residue diversity (Shannon’s entropy calculated from phylogenomic amino acid sequence alignment) and (C) 
nucleotide diversity among 16S rRNA gene alignments. γ in panel A represents the slope and standard error from 
the log-log linear model, which indicates an ”open” pangenome for values < 1. For panels B and C, Pearson’s 
correlation statistic is show. NS = not significant; * p = 0.003. Species identifiers: Ath = A. thailandicus, Gc = G. 
cerinus, Gk = G. kondonii, LAb = L. brevis, LApl = L. plantarum, PRr = P. rettgeri, and T = Tatumella sp. Data are 
provided in Dataset 3.



 

175 

  

Figure S1.7. Association of metabolic function with composite representation of 

orthogroup incidence among prevalent species. (A) PC1 and (B) PC2 from PCoA in 

Figure 4. The means and 95% confidence interval are plotted. Non-overlapping 

confidence intervals indicate significant association with function and taxa deviations 

from PCoA center (0,0). RAST categories: A = amino acids and derivatives, C = 

Carbohydrates, V = cofactors, vitamins, prosthetic groups, and pigments, L = 

fatty acids, lipids, and isoprenoids, Ni = nitrogen metabolism, and Nu = nucleosides 

and nucleotides. 
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Fig. S7. Association of metabolic function with composite representation of orthogroup

incidence among prevalent species. (A) PC1 and (B) PC2 from PCoA in Figure 4. The 

means and 95% confidence interval are plotted. Non-overlapping confidence intervals 

indicate significant association with function and taxa deviations from PCoA center (0,0). 

RAST categories: A = amino acids and derivatives, C = Carbohydrates, V = cofactors, 

vitamins, prosthetic groups, and pigments, L = fatty acids, lipids, and isoprenoids, Ni = 

nitrogen metabolism, and Nu = nucleosides and nucleotides. 



 

176 

Table S1.1. List of bacteria used in comparative genomics analysis (A) Summary of genome sequencing and strain isolation for 

new Drosophila-associated bacteria (see Table S1.1C for media recipes) 

Year 
isolate
d 

Fly 
replicat
e (sex) 

Collectio
n site 

Isolatio
n 
medium Order Family Genus Species strain ID 

Median 
insert 
size (SD) 
[bp] 

Total 
number 
of reads 

Number 
of reads 
after QC 
(percent 
kept) 

Total 
number 
of 
contigs 
from 
SPADE
S 

Contig 
Lengt
h 
cutoff 
[bp] 

Contig 
kmer 
coverage 
cutoff 
(SPADE
S output) 

Final 
numbe
r of 
contigs 

Genome 
length 
[bp] 

GC 
conten
t [%] N50 [bp] 

Number 
of coding 
sequence
s 

Mean 
read 
depth 
(SD) 

Whole 
genome 
accessio
n 

Closest ANI match 
(%) [Accession ID] 

Genome extracted 
16S rRNA gene 
best BLAST hit (% 
ID) [Accession ID] 

16S 
rRN
A 
count 

23S 
rRN
A 
count 

5S 
rRN
A 
count 

tRN
A 
count 

2015 1 (F) Kitchen A YPD 
Enterobacterale
s 

Enterobacteriacea
e Citrobacter sp. 

JGM12
4 C124 

249 
(109.79) 3,100,133 

2,137,234 
(68.94) 2,701 500 10x 43 

3,883,95
4 47.51 327,922 3,887 

161.78x 
(811.81)  No match ≥  95% 

Citrobacter freundii 
RHBSTW-00119 
(99.0) [CP056852] 2 2 2 53 

2015 2 (F) Kitchen B YPD 
Enterobacterale
s 

Enterobacteriacea
e Enterobacter asburiae JGM58 Ea58 

386 
(254.94) 3,426,835 

2,917,895 
(85.15) 125 500 10x 15 

4,619,75
5 55.93 501,168 4,383 

189.50x 
(89.88)  

Enterobacter 
asburiae ATCC 
35953 (97.02) 
[GCA_001521715] 

Enterobacter 
asburiae ATCC 
35953 (100) 
[CP011863]M 1 1 2 64 

2015 3 (F) Kitchen B YPD 
Enterobacterale
s 

Enterobacteriacea
e Enterobacter ludwigii JGM43 El43 

264 
(384.27) 2,663,001 

1,933,682 
(72.61) 571 500 10x 96 

5,302,77
4 54.26 190,941 5,293 

108.51x 
(531.90)  

Enterobacter 
ludwigii  EN-119 
(98.95) 
[GCA_001750725] 

Enterobacter 
ludwigii D42-sc-
1712201 (100) 
[CP056119]M 2 2 1 64 

2015 2 (F) Kitchen B YPD 
Enterobacterale
s 

Enterobacteriacea
e Enterobacter mori JGM37 Em37 

379 
(91.19) 2,931,967 

2,402,089 
(81.93) 174 500 10x 25 

4,827,68
7 55.31 507,969 4,551 

149.15x 
(69.97)  

Enterobacter mori 
LMG 25706 (97.78) 
[GCA_000211415] 

Enterobacter 
roggenkampii 
RHBSTW-00002 
(99.2) [CP058196]M 1 1 2 62 

2015 1 (F) Kitchen A YPD 
Enterobacterale
s 

Enterobacteriacea
e Enterobacter sp. 

JGM12
7 E127 

364 
(1,307.28

) 2,228,975 
1,754,533 

(78.71) 185 500 10x 20 
4,568,06

1 54.80 392,584 4,461 
114.32x 
(66.19)  No match ≥  95% 

Enterobacter sp. 
RHBSTW-00175 
(96.5) [CP055930] 1 1 2 68 

2015 3 (F) Kitchen B YPD 
Enterobacterale
s 

Enterobacteriacea
e Klebsiella michiganensis JGM22 Km22 

277 
(130.64) 1,785,485 

1,328,744 
(74.42) 566 500 10x 221 

5,847,85
5 55.57 54,609 5,983 

67.80x 
(355.71)  

Klebsiella 
michiganensis 
CCUG 66515 
(97.76) 
[GCA_009173485] 

Klebsiella 
michiganensis 
RHBSTW-00676 
(100) [CP055985]M 2 1 1 59 
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2015 4 M Kitchen C YPD 
Enterobacterale
s 

Enterobacteriacea
e Klebsiella variicola JGM34 Kv34 

299 
(147.33) 1,745,945 

1,314,149 
(75.27) 548 500 10x 196 

5,456,38
1 57.44 65,405 5,473 

72.11x 
(31.61)  

Klebsiella variicola 
DSM-15968 (99.14) 
[GCA_000828055] 

Klebsiella variicola 
RHBSTW-00883 
(100) [CP056145]M 2 3 2 62 

2015 4 M Kitchen C YPD 
Enterobacterale
s Erwiniaceae Pantoea dispersa 

JGM10
6 

PAd10
6 

398 
(273.46) 3,162,348 

2,669,777 
(84.42) 410 500 10x 94 

4,835,93
3 57.57 171,482 4,674 

164.93x 
(176.5)  

Pantoea dispersa 
DSM 30073 (98.12) 
[GCA_014155765] 

Pantoea dispersa 
BJQ0007 (99.9) 
[CP045216] 1 1 3 65 

2015 4 M Kitchen C YPD 
Enterobacterale
s Erwiniaceae Pantoea dispersa 

JGM11
2 

PAd11
2 

234 
(110.56) 3,736,174 

2,487,138 
(66.57) 1,276 500 15x 162 

4,978,69
7 57.56 90,469 4,848 

148.48x 
(100.84)  

Pantoea dispersa 
DSM 30073 (98.09) 
[GCA_014155765] 

Pantoea dispersa 
BJQ0007 (99.9) 
[CP045216]M 1 2 1 58 

2015 5 (F) Kitchen B YPD 
Enterobacterale
s Erwiniaceae Pantoea sp. JGM49 PA49 

208 
(63.18) 

27,430,86
3 

11,709,56
8 (42.69) 407 500 10x 51 

5,332,55
0 54.00 353,778 5,196 

658.70x 
(306.63)  No match ≥  95% 

Pantoea sp. ME81 
(100) [LR861560]M 2 3 2 70 

2015 6 (F) Kitchen B YPD 
Enterobacterale
s Erwiniaceae Tatumella sp. JGM94 T94 

379 
(84.41) 5,141,122 

4,292,469 
(83.49) 424 500 10x 43 

3,588,19
8 50.43 154,630 3,739 

358.97x 
(154.81)  No match ≥  95% 

Tatumella punctata 
SHS 2003 (99.9) 
[NR_104937]M 1 1 2 56 

2015 7 (F) Kitchen B YPD 
Enterobacterale
s Erwiniaceae Tatumella sp. 

JGM10
0 T100 

336 
(106.24) 2,900,815 

2,067,278 
(71.27) 694 500 10x 44 

3,578,39
9 50.46 140,089 3,737 

172.92x 
(98.35)  No match ≥  95% 

Tatumella punctata 
SHS 2003 (99.9) 
[NR_104937]M 1 1 2 58 

2015 8 (F) Kitchen B YPD 
Enterobacterale
s Erwiniaceae Tatumella sp. JGM91 T91 

370 
(86.75) 3,728,278 

2,994,946 
(80.33) 360 500 10x 50 

3,523,62
6 50.61 139,881 3,687 

254.39x 
(267.36)  No match ≥  95% 

Tatumella punctata 
DSM 13700 (99.9) 
[NR_116798]M 1 1 3 61 

2015 9 (F) Kitchen B YPD 
Enterobacterale
s Erwiniaceae Tatumella sp. JGM82 T82 

271 
(121.19) 1,728,130 

1,207,082 
(69.85) 8,482 500 10x 70 

3,595,26
5 50.40 140,040 3,758 

91.79x 
(40.71)  No match ≥  95% 

Tatumella punctata 
SHS 2003 (99.9) 
[NR_104937]M 2 4 1 53 

2015 10 M Kitchen A YPD 
Enterobacterale
s Erwiniaceae Tatumella sp. 

JGM11
8 T118 

236 
(259.18) 4,595,051 

2,725,004 
(59.30) 11,825 500 20x 57 

3,708,05
6 52.51 196,007 3,900 

198.50x 
(93.97)  No match ≥  95% 

Tatumella ptyseos 
NCTC11468 (99.0) 
[LS483499] 2 3 2 51 

2015 1 (F) Kitchen A YPD 
Enterobacterale
s Erwiniaceae Tatumella sp. 

JGM13
0 T130 

213 
(86.26) 3,750,073 

2,223,719 
(59.30) 717 500 20x 99 

3,561,53
2 50.30 88,360 3,768 

186.44x 
(371.54)  No match ≥  95% 

Tatumella punctata 
LMG 22050 (100) 
[NR_116109]M 2 1 2 51 

2015 11 (F) Kitchen B YPD 
Enterobacterale
s Erwiniaceae Tatumella sp. JGM16 T16 

272 
(126.57) 1,916,022 

1,385,688 
(72.32) 478 500 20x 60 

3,521,59
7 50.60 114,471 3,684 

117.30x 
(428.84)  No match ≥  95% 

Tatumella punctata 
DSM 13700 (99.9) 
[NR_116798]M 1 1 1 53 

2015 12 (F) Kitchen D 
YPD + 
tet 

Enterobacterale
s Morganellaceae Providencia rettgeri 

JGM23
2 PRr232 

375 
(83.61) 5,187,746 

4,372,077 
(84.28) 108 500 10x 29 

4,674,71
8 40.30 932,376 4,517 

280.99x 
(338.51)  

Providencia rettgerii 
NCTC11801 (98.22) 
[GCF_900455085] 

Providencia rettgeri 
G0519 (99.9) 
[CP058958]M 1 1 4 63 
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2015 14 (F) Kitchen B YPD 
Enterobacterale
s Morganellaceae Providencia rettgeri JGM76 PRr76 

364 
(692.08) 4,465,980 

3,655,226 
(81.85) 123 500 10x 30 

4,621,31
2 40.35 262,434 4,399 

237.59x 
(149.05x)  

Providencia rettgerii 
NCTC11801 (98.3) 
[GCF_900455085] 

Providencia rettgeri 
G0519 (99.9) 
[CP058958]M 1 1 2 62 

2015 17 (F) Kitchen D 
YPD + 
tet 

Enterobacterale
s Morganellaceae Providencia rettgeri 

JGM22
6 PRr226 

357 
(679.79) 5,152,318 

4,112,723 
(79.82) 144 500 10x 30 

4,673,89
2 40.29 381,814 4,509 

264.22x 
(517.35)  

Providencia rettgerii 
NCTC11801 (98.22) 
[GCF_900455085] 

Providencia rettgeri 
G0519 (99.9) 
[CP058958]M 1 1 2 60 

2015 13 (F) Kitchen D 
YPD + 
tet 

Enterobacterale
s Morganellaceae Providencia rettgeri 

JGM18
7 PRr187 

355 
(870.92) 3,025,022 

2,192,475 
(72.48) 178 500 10x 25 

4,675,13
0 40.30 941,677 4,515 

140.59x 
(149.52)  

Providencia rettgerii 
NCTC11801 (98.21) 
[GCF_900455085] 

Providencia rettgeri 
G0519 (99.9) 
[CP058958]M 1 1 3 64 

2015 13 (F) Kitchen D 
YPD + 
tet 

Enterobacterale
s Morganellaceae Providencia sp. 

JGM18
1 PR181 

178 
(40.44) 

20,779,49
8 

2,751,196 
(13.24) 497 500 10x 309 

3,753,40
0 43.03 21,063 3,563 

219.77x 
(160.03)  No match ≥  95% 

Providencia sp. 
WCHPHu000369 
(99.5) [CP031123]M 1 1 2 58 

2015 15 (F) Kitchen D 
YPD + 
tet 

Enterobacterale
s Morganellaceae Providencia sp. 

JGM17
2 PR172 

337 
(2,376.93

) 2,354,416 
1,640,601 

(69.68) 96 500 10x 14 
3,829,85

6 42.67 588,134 3,578 
128.59x 
(88.16)  No match ≥  95% 

Providencia sp. 
WCHPHu000369 
(99.5) [CP031123]M 1 1 3 56 

2015 16 (F)  Kitchen D 
YPD + 
tet 

Enterobacterale
s Morganellaceae Providencia sp. 

JGM17
8 PR178 

371 
(388.03) 4,675,512 

3,870,268 
(82.78) 66 500 10x 14 

3,831,00
1 42.67 693,049 3,580 

303.64x 
(150.77)  No match ≥  95% 

Providencia sp. 
WCHPHu000369 
(99.5) [CP031123]M 1 1 3 64 

2015 3 (F) Kitchen B YPD 
Enterobacterale
s Yersiniaceae Nissabacter archeti JGM97 Na97 

399 
(117.85) 3,650,488 

3,067,737 
(84.04) 112 500 10x 28 

4,977,39
0 58.52 287,468 4,807 

177.63x 
(348.34)  

Nissabacter archeti 
2134 (99.25) 
[GCF_900130115] 

Nissabacter sp. 
SGAir0207 (99.2) 
[CP028035] 1 2 3 68 

2015 18 (F) Kitchen A YPD 
Enterobacterale
s Yersiniaceae Serratia rubidaea JGM70 Sr70 

262 
(130.50) 3,580,730 

2,461,972 
(68.76) 1,904 500 10x 625 

4,756,08
7 58.95 17,420 5,318 

153.83x 
(81.64)  

Serratia rubidaea 
CIP 103234 (99.14) 
[GCF_001304675] 

Serratia rubidaea 
NCTC12971 (99.9) 
[LR590463] 2 3 2 63 

2019 19 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  brevis 

Dm-
2019-31 LAb31 

225 
(70.91) 8,912,486 

5,360,814 
(60.15) 1,064 500 20x 46 

2,709,38
5 45.39 175,200 2,743 

587.16x 
(567.31)  

Lactobacillus brevis 
NCTC13768 (99.02) 
[GCA_900475625] 

Lactobacillus brevis 
LMT1-73 (100) 
[CP033885] 1 2 1 55 

2019 20 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  brevis 

Dm-
2019-57 LAb57 

225 
(70.99) 

16,482,16
6 

10,229,84
6 (62.07) 2,360 500 100x 53 

2,720,19
6 45.19 119,292 2,853 

1,002.84x 
(790.16)  

Lactobacillus brevis 
ATCC 14869 = 
DSM 20054 (98.86) 
[GCA_000469365] 

Lactobacillus brevis 
NCTC13768 (99.9) 
[LS483405] 2 2 1 57 

2019 21 M Kitchen E 
mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  brevis 

Dm-
2019-70 LAb70 

230 
(71.49) 

11,434,13
3 

7,339,395 
(64.19) 2,110 500 10x 64 

2,798,99
7 45.2 159,197 2,883 

779.03x 
(681.29)  

Lactobacillus brevis 
ATCC 14869 = 
DSM 20054 (99.03) 
[GCA_000469365] 

Lactobacillus brevis 
LMT1-73 (100) 
[CP033885] 1 1 1 59 
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2019 22 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  brevis 

Dm-
2019-10 LAb10 

240 
(77.71) 9,450,050 

6,402,573 
(67.75) 520 500 10x 40 

2,649,62
0 45.38 136,007 2,732 

713.78x 
(527.48)  

Lactobacillus brevis 
ATCC 14869 = 
DSM 20054 (98.86) 
[GCA_000469365] 

Lactobacillus brevis 
NCTC13768 (99.9) 
[LS483405] 1 1 1 48 

2019 23 M Kitchen E 
mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  brevis 

Dm-
2019-67 LAb67 

236 
(80.56) 9,853,100 

6,566,134 
(66.64) 1,599 500 10x 71 

2,796,03
0 45.21 159,197 2,883 

686.74x 
(1835.42)  

Lactobacillus brevis 
ATCC 14869 = 
DSM 20054 (99.03) 
[GCA_000469365] 

Lactobacillus brevis 
LMT1-73 (100) 
[CP033885] 1 1 1 59 

2019 24 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  paracasei 

Dm-
2019-60 

LApa6
0 

245 
(78.76) 7,155,294 

4,934,625 
(68.96) 614 500 10x 55 

3,018,73
9 46.36 128,475 3,081 

486.39x 
(301.76)  

Lactobacillus 
paracasei subsp. 
paracasei JCM 8130 
(98.53) 
[GCA_000829035] 

Lactobacillus 
paracasei strain 347-
16 (100) 
[CP052065] 1 2 1 55 

2019 25 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  plantarum 

Dm-
2019-13 LApl13 

237 
(76.10) 6,852,346 

4,491,633 
(65.55) 1,092 500 10x 137 

3,402,12
8 44.14 46,313 3,485 

387.43x 
(1,454.68

)  

Lactobacillus 
plantarum subsp. 
plantarum NBRC 
15891 (99.14) 
[GCA_007989145] 

Lactobacillus 
plantarum SK156 
(100) [CP059473] 2 3 1 68 

2019 19 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  plantarum 

Dm-
2019-28 LApl28 

193 
(52.38) 6,947,542 

2,670,759 
(38.44) 1,235 500 10x 279 

3,274,22
8 44.02 25,972 3,576 

221.54x 
(1234.25)  

Lactobacillus 
plantarum subsp. 
plantarum NBRC 
15891 (98.66) 
[GCA_007989145] 

Lactobacillus 
plantarum BCC9546 
(100) [CP044500]M 1 2 1 63 

2019 26 M Kitchen E 
mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  plantarum 

Dm-
2019-48 LApl48 

239 
(76.91) 7,792,794 

5,197,778 
(66.70) 712 500 10x 128 

3,590,14
1 43.82 69,009 3,609 

427.15x 
(740.31)  

Lactobacillus 
plantarum subsp. 
plantarum NBRC 
15891 (99.21) 
[GCA_007989145] 

Lactobacillus 
plantarum SK156 
(100) [CP059473] 1 1 1 64 

2019 22 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  plantarum 

Dm-
2019-33 LApl33 

239 
(188.00) 9,388,764 

6,311,894 
(67.23) 483 500 20x 44 

3,428,36
1 44.31 330,600 3,394 

551.15x 
(369.04)  

Lactobacillus 
plantarum subsp. 
plantarum NBRC 
15891 (99.18) 
[GCA_007989145] 

Lactobacillus 
plantarum SK156 
(100) [CP059473] 1 1 1 58 
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2019 27 M 
Apple 
dumpster 

mMRS 
+ azide Lactobacilales Lactobacillaceae Lactobacillus  plantarum 

Dm-
2019-3 LApl3 

233 
(74.32) 

11,535,96
3 

7,533,931 
(65.31) 909 500 10x 209 

3,279,26
2 43.94 32,231 3,570 

668.45x 
(915.25)  

Lactobacillus 
plantarum subsp. 
plantarum NBRC 
15891 (98.67) 
[GCA_007989145] 

Lactobacillus 
plantarum BCC9546 
(99.9) [CP044500]M 1 2 1 70 

2019 29 M Kitchen E 
mMRS 
+ azide Lactobacilales Leuconostocaceae Leuconostoc mesenteroides 

Dm-
2019-12 LEm12 

250 
(78.67) 5,190,537 

3,660,034 
(70.51) 407 500 10x 10 

2,110,54
8 37.40 

1,544,73
9 2,117 

520.51x 
(641.19)  

Leuconostoc 
mesenteroides 
subsp. 
jonggajibkimchii 
DRC1506 (99.08) 
[GCA_001886915] 

Leuconostoc 
mesenteroides 
SRCM102733 (100) 
[CP028251] 1 1 1 53 

2017 30 M 
Apple 
dumpster mMRS Lactobacilales Leuconostocaceae Leuconostoc 

pseudomesenteroide
s Dm-9 LEp9 

253 
(87.89) 3,650,652 

1,658,845 
(45.44) 12,873 500 10x 41 

2,179,58
1 38.78 187,733 2,219 

216.27x 
(293.89)  

Leuconostoc 
pseudomesenteroide
s NCDO 768 (97.17) 
[GCA_012396745] 

Leuconostoc 
pseudomesenteroide
s CBA3630 (99.9) 
[CP042383]M 1 1 1 51 

2019 28 M Kitchen E 
mMRS 
+ azide Lactobacilales Leuconostocaceae Leuconostoc suionicum 

Dm-
2019-54 LEs54 

239 
(91.89) 

14,269,85
7 

9,640,781 
(67.56) 432 500 10x 7 

2,085,96
5 37.14 

1,430,34
0 2,058 

1,389.63x 
(791.59)  

Leuconostoc 
suionicum DSM 
20241 (97.5) 
[GCA_001891125] 

Leuconostoc 
mesenteroides 
SRCM102733 
(99.9) [CP028251] 1 1 1 52 

2019 21 M Kitchen E 
mMRS 
+ azide Lactobacilales Leuconostocaceae Weissella minor 

Dm-
2019-34 Wm34 

182 
(42.88) 

28,432,17
2 

6,681,393 
(23.50) 1,278 500 10x 31 

1,804,35
5 39.08 191,254 1,879 

1,087.05x 
(3,256.22

)  

Weissella minor 
DSM 20014 (96.25) 
[GCA_001437425] 

Weissella 
viridescens UAM-
MG5 (99.1) 
[MT814884]M 2 1 2 57 

2017 31 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter okinawensis Dm-38 Aok38 

359 
(88.86) 2,339,511 

1,775,446 
(75.89) 222 500 10x 64 

3,110,90
0 57.54 102,586 3,153 

171.09x 
(86.81)  

Acetobacter 
okinawensis JCM 
25146 (97.95) 
[GCA_000613865] 

Acetobacter 
ghanensis LMG 
23848T (99.6) 
[LN609302] 1 1 1 47 

2017 31 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter okinawensis Dm-55 Aok55 

337 
(75.90) 1,760,234 

1,406,700 
(79.92) 515 500 10x 221 

3,402,22
4 56.57 32,922 3,658 

123.39x 
(150.85)  

Acetobacter 
okinawensis JCM 
25146 (98) 
[GCA_000613865] 

Acetobacter 
ghanensis LMG 
23848T (99.6) 
[LN609302] 1 1 1 48 

2017 32 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter persici Dm-48 Ap48 

396 
(1063.92) 3,229,753 

2,720,799 
(84.24) 260 500 10x 31 

3,505,52
5 58.07 208,105 3,367 

232.41x 
(293.79)  

Acetobacter persici 
JCM 25330 (96.16) 
[GCA_000613905] 

Acetobacter persici 
TMW2.1084 (99.9) 
[CP014687]M 1 1 1 45 
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2017 33 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter persici Dm-49 Ap49 

394 
(651.97) 1,276,255 

1,062,148 
(83.22) 372 500 10x 49 

3,378,26
1 57.66 126,693 3,302 

93.48x 
(928.54)  

Acetobacter persici 
JCM 25330 (96.29) 
[GCA_000613905] 

Acetobacter persici 
TMW2.1084 (99.9) 
[CP014687]M 1 1 1 48 

2017 32 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter persici Dm-46 Ap46 

377 
(183.63) 2,368,062 

1,884,359 
(79.57) 877 500 10x 29 

3,405,33
3 57.79 220,118 3,219 

164.18x 
(55.45)  

Acetobacter persici 
JCM 25330 (96.36) 
[GCA_000613905] 

Acetobacter persici 
TMW2.1084 (100) 
[CP014687]M 1 1 1 47 

2017 34 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter thailandicus Dm-59 Ath59 

373 
(164.34) 4,765,208 

3,863,426 
(81.08) 138 500 10x 42 

2,872,43
2 50.54 302,218 2,793 

402.86x 
(685.40)  

Acetobacter 
thailandicus LMG 
30826 (98.77) 
[GCA_011516655] 

Acetobacter sp. 1.74 
(99.9) 
[KM085445]M 1 0 0 45 

2017 32 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter thailandicus Dm-60 Ath60 

388 
(93.78) 4,040,653 

3,424,448 
(84.75) 566 500 10x 25 

2,779,52
4 50.63 727,068 2,710 

369.66x 
(377.01)  

Acetobacter 
thailandicus LMG 
30826 (98.75) 
[GCA_011516655] 

Acetobacter sp. 1.74 
(99.9) 
[KM085445]M 1 0 0 44 

2017 30 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter thailandicus Dm-29 Ath29 

370 
(580.29) 2,055,491 

1,630,886 
(79.34) 632 500 10x 53 

2,749,69
5 50.53 171,177 2,676 

176.74x 
(559.26)  

Acetobacter 
thailandicus LMG 
30826 (98.8) 
[GCA_011516655] 

Acetobacter sp. 1.74 
(99.9) 
[KM085445]M 1 0 0 45 

2017 35 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae Acetobacter thailandicus Dm-72 Ath72 

376 
(85.42) 2,705,121 

2,238,280 
(82.74) 155 500 10x 59 

2,775,40
9 50.80 145,847 2,697 

241.96x 
(140.76)  

Acetobacter 
thailandicus LMG 
30826 (98.79) 
[GCA_011516655] 

Acetobacter sp. 1.74 
(99.9) 
[KM085445]M 1 0 0 43 

2017 34 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r albidus Dm-56 Ga56 

397 
(215.13) 3,874,546 

3,245,115 
(83.75) 230 500 10x 47 

3,488,35
4 59.69 215,201 3,445 

278.89x 
(237.74)  

Gluconobacter 
albidus NBRC 3250 
(98.39) 
[GCA_002723915] 

Gluconobacter 
albidus TMW2.1191 
(100) [CP014689]M 1 1 1 48 

2017 30 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-3 Gc3 

216 
(133.06) 5,680,602 

2,546,208 
(44.82) 1,770 500 20x 90 

3,393,64
5 55.32 204,504 3,397 

222.68x 
(327.67)  

Gluconobacter 
cerinus NBRC 3267 
(95.79) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.5) [CP043043]M 1 1 1 48 

2017 36 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-75 Gc75 

378 
(842.67) 2,439,056 

1,925,101 
(78.93) 950 500 10x 22 

3,293,51
2 55.74 435,536 3,170 

174.42x 
(80.24)  

Gluconobacter 
cerinus NBRC 3267 
(96.83) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 48 
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2017 35 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-76 Gc76 

395 
(376.08) 3,215,107 

2,703,277 
(84.08) 246 500 10x 49 

3,363,04
1 55.85 185,512 3,359 

240.95x 
(177.15)  

Gluconobacter 
cerinus NBRC 3267 
(96.38) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 50 

2017 35 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-77 Gc77 

378 
(88.94) 3,494,791 

2,830,392 
(80.99) 164 500 10x 25 

3,510,32
6 55.62 519,642 3,424 

242.04x 
(111.31)  

Gluconobacter 
cerinus NBRC 3267 
(96.73) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 46 

2017 35 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-69 Gc69 

398 
(82.52) 2,889,676 

2,465,411 
(85.32) 50 500 10x 17 

3,502,62
9 55.80 373,207 3,371 

211.35x 
(117.55)  

Gluconobacter 
cerinus NBRC 3267 
(96.57) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 50 

2017 35 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-79 Gc79 

397 
(1,291.83

) 2,247,038 
1,912,481 

(85.11) 154 500 10x 35 
3,535,19

7 55.54 581,210 3,399 
162.01x 
(236.63)  

Gluconobacter 
cerinus NBRC 3267 
(96.55) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 50 

2017 30 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-13 Gc13 

397 
(573.75) 1,033,730 

744,174 
(71.99) 617 500 10x 125 

3,770,72
4 55.98 100,552 3,853 

53.02x 
(46.58)  

Gluconobacter 
cerinus NBRC 3267 
(96.38) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 52 

2017 32 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-45 Gc45 

362 
(743.30) 1,533,908 

1,161,072 
(75.69) 943 500 10x 89 

3,425,70
5 55.12 113,989 3,474 

97.15x 
(152.87)  

Gluconobacter 
cerinus NBRC 3267 
(96.52) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 47 

2017 31 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-57 Gc57 

373 
(410.21) 2,859,856 

2,341,534 
(81.88) 193 500 10x 32 

3,545,82
6 55.55 581,206 3,413 

197.88x 
(105.01)  

Gluconobacter 
cerinus NBRC 3267 
(96.53) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 49 

2017 31 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-25 Gc25 

380 
(91.07) 2,215,489 

1,796,893 
(81.11) 629 500 10x 57 

3,591,19
0 55.64 263,375 3,497 

148.06x 
(87.46)  

Gluconobacter 
cerinus NBRC 3267 
(96.62) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 46 

2017 31 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-58 Gc58 

376 
(86.46) 2,177,527 

1,777,819 
(81.64) 569 500 10x 35 

3,574,11
7 55.71 389,398 3,488 

148.68x 
(55.81)  

Gluconobacter 
cerinus NBRC 3267 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 51 
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(96.58) 
[GCA_002723935] 

2017 31 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-23 Gc23 

362 
(89.75) 1,908,386 

1,514,280 
(79.35) 181 500 10x 43 

3,579,70
0 55.85 265,421 3,509 

126.37x 
(112.28)  

Gluconobacter 
cerinus NBRC 3267 
(96.62) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 48 

2017 36 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r cerinus Dm-80 Gc80 

377 
(748.31) 2,242,173 

1,847,303 
(82.39) 144 500 10x 19 

3,473,27
0 55.60 399,216 3,397 

159.00x 
(126.69)  

Gluconobacter 
cerinus NBRC 3267 
(96.74) 
[GCA_002723935] 

Gluconobacter 
thailandicus HD924 
(99.3) [CP043043]M 1 1 1 49 

2017 34 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r japonicus Dm-27 Gj27 

372 
(3141.69) 2,122,970 

1,681,250 
(79.19) 228 500 10x 18 

3,367,70
6 55.48 392,390 3,282 

147.65x 
(50.84)  

Gluconobacter 
japonicus NBRC 
3271 (95.03) 
[GCA_002723975] 

Gluconobacter 
thailandicus HD924 
(99.9) [CP043043]M 1 1 1 48 

2017 33 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r kondonii Dm-16 Gk16 

276 
(287.36) 6,114,446 

3,467,282 
(56.71) 1,198 500 20x 87 

2,882,78
2 58.52 100,609 2,844 

358.03x 
(546.65)  

Gluconobacter 
kondonii NBRC 
3266 (97.08) 
[GCA_002723995] 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 45 

2017 33 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r kondonii Dm-18 Gk18 

378 
(92.06) 2,569,747 

2,051,855 
(79.85) 514 500 10x 127 

3,496,60
2 58.18 120,145 3,595 

175.58x 
(103.92)  

Gluconobacter 
kondonii NBRC 
3266 (96.67) 
[GCA_002723995] 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 48 

2017 32 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r kondonii Dm-47 Gk47 

392 
(84.09) 4,477,981 

3,714,981 
(82.96) 468 500 20x 95 

3,052,38
1 58.42 89,340 3,073 

363.53x 
(299.73)  

Gluconobacter 
kondonii NBRC 
3266 (96.69) 
[GCA_002723995] 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 47 

2017 31 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r kondonii Dm-54 Gk54 

395 
(82.80) 3,284,054 

2,738,597 
(83.39) 340 500 10x 86 

3,535,73
8 58.37 176,740 3,627 

232.01x 
(137.65)  

Gluconobacter 
kondonii NBRC 
3266 (96.39) 
[GCA_002723995] 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 47 

2017 36 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r kondonii Dm-68 Gk68 

380 
(217.01) 3,357,111 

2,770,162 
(82.52) 621 500 10x 108 

3,293,60
5 58.01 127,416 3,284 

250.86x 
(139.76)  

Gluconobacter 
kondonii NBRC 
3266 (96.94) 
[GCA_002723995] 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 48 
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2017 34 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r kondonii Dm-42 Gk42 

373 
(91.80) 3,766,484 

3,027,001 
(80.37) 349 500 20x 85 

3,085,20
2 58.40 107,848 3,117 

293.59x 
(212.97)  

Gluconobacter 
kondonii NBRC 
3266 (96.76) 
[GCA_002723995] 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 47 

2017 36 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r sp. Dm-73 G73 

387 
(87.33) 3,839,698 

3,139,804 
(81.77) 335 500 10x 32 

3,226,13
2 58.72 242,295 3,105 

291.68x 
(257.56)  No match ≥  95% 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 50 

2017 36 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r sp. Dm-74 G74 

390 
(98.86) 4,092,688 

3,413,851 
(83.41) 346 500 20x 32 

3,367,89
4 58.68 135,550 3,323 

303.77x 
(125.63)  No match ≥  95% 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 51 

2017 32 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r sp. Dm-62 G62 

357 
(210.00) 3,059,058 

2,550,988 
(83.39) 135 500 10x 52 

3,470,03
7 58.96 193,283 3,410 

220.25x 
(110.66)  No match ≥  95% 

Gluconobacter 
albidus TMW2.1191 
(99.7) [CP014689]M 1 1 1 49 

2017 34 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r sp. Dm-44 G44 

291 
(162.42) 8,349,074 

5,087,521 
(60.94) 2,803 500 20x 47 

3,390,29
7 58.56 237,275 3,303 

445.81x 
(406.83)  No match ≥  95% 

Gluconobacter 
albidus TMW2.1191 
(99.9) [CP014689]M 1 1 1 50 

2017 34 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r sphaericus Dm-28 Gs28 

337 
(731.22) 2,827,494 

1,944,881 
(68.78) 192 500 10x 35 

3,021,65
4 58.31 186,031 3,054 

190.17x 
(281.76)  

Gluconobacter 
sphaericus NBRC 
12467 (98.05) 
[GCF_006539125] 

Gluconobacter 
albidus TMW2.1191 
(100) [CP014689]M 1 1 1 46 

2017 34 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r sphaericus Dm-21 Gs21 

378 
(206.20) 2,334,687 

1,860,400 
(79.69) 5,408 500 15x 68 

3,103,60
5 58.09 157,683 3,122 

170.42x 
(71.10)  

Gluconobacter 
sphaericus NBRC 
12467 (98.92) 
[GCF_006539125] 

Gluconobacter 
albidus TMW2.1191 
(100) [CP014689]M 1 1 1 47 

2017 33 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r sphaericus Dm-14 Gs14 

363 
(92.66) 1,470,047 

950,203 
(64.64) 11,014 500 10x 85 

3,081,67
1 58.19 95,827 3,109 

64.44x 
(27.38)  

Gluconobacter 
sphaericus NBRC 
12467 (98.91) 
[GCF_006539125] 

Gluconobacter 
albidus TMW2.1191 
(100) [CP014689]M 1 1 1 45 

2017 33 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r wancherniae Dm-17 Gw17 

335 
(1206.82) 1,303,785 

954,814 
(73.23) 393 500 10x 24 

3,336,88
7 54.95 453,923 3,304 

85.54x 
(34.01)  

Gluconobacter 
wancherniae NBRC 
103581 (98.71) 
[GCA_007988885] 

Gluconobacter 
thailandicus HD924 
(99.1) [CP043043]M 1 1 1 47 

2017 33 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r wancherniae Dm-19 Gw19 

268 
(422.47) 7,352,214 

4,393,792 
(59.76) 656 500 20x 34 

2,933,15
2 55.34 557,743 2,889 

447.16x 
(360.73)  

Gluconobacter 
wancherniae NBRC 

Gluconobacter 
thailandicus HD924 
(99.1) [CP043043]M 1 1 1 48 
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103581 (98.71) 
[GCA_007988885] 

2017 33 M 
Apple 
dumpster mMRS 

Rhodospirillale
s Acetobacteraceae 

Gluconobacte
r wancherniae Dm-15 Gw15 

379 
(1686.07) 2,539,861 

2,097,529 
(82.58) 350 500 10x 26 

3,267,72
4 55.17 771,059 3,291 

192.05x 
(80.16)  

Gluconobacter 
wancherniae NBRC 
103581 (98.68) 
[GCA_007988885] 

Gluconobacter 
thailandicus HD924 
(99.1) [CP043043]M 1 1 1 45 

M indicates BLAST top matches with more than one species match. 
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Table S1.1. List of bacteria used in comparative genomics analysis (B) Publicly available genomes used in analyses 

Order Family Genus Species Strain Accession ID 
Referece 
genome 

Drosophila-
associated 

Bacillales Bacillaceae Bacillus  subtilis 168 NC_000964 Yes No 

Enterobacterales Morganellaceae Providencia   burhodogranariea 
DSM 
19968 NZ_AKKL01000000 No Yes 

Enterobacterales Morganellaceae Providencia   sneebia 
DSM 
19967 NZ_AKKN01000000 No Yes 

Enterobacterales Morganellaceae Providencia    alcalifaciens Dmel2 NZ_AKKM01000000 No Yes 

Enterobacterales Morganellaceae Providencia    rettgeri Dmel1 NZ_AJSB01000000 No Yes 

Lactobacillales Enterococcaceae Enterococcus  faecalis 68EA1 NZ_KZ846072 Yes No 

Lactobacillales Lactobacillaceae Lactobacillus paracasei  DmW181 NDXH00000000  No Yes 

Lactobacillales Lactobacillaceae Lactobacillus plantarum DF NZ_CP013753 No Yes 

Lactobacillales Lactobacillaceae Lactococcus    lactis BPL1 JRFX00000000  No Yes 

Lactobacillales Lactobacillaceae Leuconostoc  citreum DmW_111 NDXG00000000 No Yes 

Lactobacillales Lactobacillaceae Weissella  cibaria DmW_103 NDXJ00000000 No Yes 

Lactobacillales Streptococcaceae Streptococcus pyogenes NGAS638 NZ_CP010450 Yes No 

Pasteurellales Pasteurellaceae Haemophilus  influenzae Hi375 NZ_CP009610 Yes No 

Pasteurellales Pasteurellaceae Pasteurella multocida 20N NZ_CP028926 Yes No 

Rhodospirillales Acetobacteraceae Acetobacter cibinongensis  DmW_047 JOMQ00000000 No Yes 

Rhodospirillales Acetobacteraceae Acetobacter indonesiensis  DmW_046 JOMP00000000 No Yes 

Rhodospirillales Acetobacteraceae Acetobacter orientalis  DmW_045 JOMO00000000 No Yes 

Rhodospirillales Acetobacteraceae Acetobacter orientalis  DmW_048 JOOY00000000 No Yes 

Rhodospirillales Acetobacteraceae Acetobacter 
thailandicus (fromerly 
sp.) DmW_043 JOMN00000000 No Yes 

Rhodospirillales Acetobacteraceae Acetobacter tropicalis  DmW_042 JOMM00000000 No Yes 
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Rhodospirillales Acetobacteraceae Granulibacter bethesdensis CGDNIH4 NZ_CP003182 Yes No 

Rhodospirillales Rhodospirillaceae Magnetospirillum magneticum AMB-1 AP007255 Yes No 

Rhodospirillales Rhodospirillaceae Rhodospirillum rubrum F11 CP003046 Yes No 

Vibrionales Vibrionaceae Vibrio cholerae MS6 
AP014524 & 
AP014525 Yes No 
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Table S1.1. List of bacteria used in comparative genomics analysis (C) Recipes for media used to isolate new bacteria strains 

Medium 
(abbreviated 
name) Ingredients 
Yeast-peptone-
dextrose (YPD) 

1% yeast extract, 2% bacto-peptone, 2% glucose, and 1.5% agar (for plates only). All ingredients are from 
Sigma, except bacto-peptone from Becton Dickinson. 

Yeast-peptone-
dextrose + 
tetracycline (YPD 
+ tet) YPD medium supplemented with 25 μl ml-1 tetracycline (Sigma) 

modified De 
Man, Rogosa, 
Sharpe (mMRS) 

1.25% bacto-proteose peptone, 0.75% yeast extract, 2% glucose, 0.5% sodium acetate, 0.2% dipotassium 
hydrogen phosphate, 0.2% tirammonium citrate, 0.02% magnesium sulphate heptahydrate, 0.005% 
manganese sulfate tetrahydrate, and 1.2% agar (for plates only). All ingredients are from Sigma, except 
bacto-proteose peptone from Becton Dickinson. 

modified De 
Man, Rogosa, 
Sharpe + azide 
(mMRS + azide) 

mMRS medium supplemented with 0.005% azide (Acros), 0.005% bromocresol purple (Sigma), and 0.1% 
tween-80 (Sigma) and grown under low oxygen condition in a candle jar 



 

189 

Table S1.2. Gene annotation and model selection for 52 amino acid sequences used in 
phylogenomic reconstruction of Drosophila-associated bacteria 
 
Gene 
family 

Name Length 
(aa) 

Model of 
evolution 

Eggnog mapper annotation 

1 gpsA 309 LG+I+G4 Glycerol-3-phosphate dehydrogenase 

2 rpsB 224 LG+G4 
Belongs to the universal ribosomal protein uS2 
family 

3 

tsf 262 LG+I+G4 

Associates with the EF-Tu.GDP complex and 
induces the exchange of GDP to GTP. It 
remains bound to the aminoacyl-tRNA.EF- 
Tu.GTP complex up to the GTP hydrolysis 
stage on the ribosome 

4 rsmD 113 LG+I+G4 
Specifically methylates the guanine in position 
966 of 16S rRNA in the assembled 30S particle 

5 rimP 55 LG+G4 
Required for maturation of 30S ribosomal 
subunits 

6 nusA 385 LG+G4 
Participates in both transcription termination 
and antitermination 

7 

rbfA 93 LG+G4 

One of several proteins that assist in the late 
maturation steps of the functional core of the 
30S ribosomal subunit. Associates with free 
30S ribosomal subunits (but not with 30S 
subunits that are part of 70S ribosomes or 
polysomes). Required for efficient processing 
of 16S rRNA. May interact with the 5'-terminal 
helix region of 16S rRNA 

8 atpB 131 mtZOA+G4 
it plays a direct role in the translocation of 
protons across the membrane 

9 
coaD 137 LG+I+G4 

Reversibly transfers an adenylyl group from 
ATP to 4'- phosphopantetheine, yielding 
dephospho-CoA (dPCoA) and pyrophosphate 

10 recJ 413 LG+I+G4 single-stranded-DNA-specific exonuclease recJ 
11 ribF 258 WAG+I+G4 Belongs to the ribF family 

12 

plsY 101 LG+I+G4 

Catalyzes the transfer of an acyl group from 
acyl- phosphate (acyl-PO(4)) to glycerol-3-
phosphate (G3P) to form lysophosphatidic acid 
(LPA). This enzyme utilizes acyl-phosphate as 
fatty acyl donor, but not acyl-CoA or acyl-ACP 

13 

pyrG 509 LG+I+G4 

Catalyzes the ATP-dependent amination of 
UTP to CTP with either L-glutamine or 
ammonia as the source of nitrogen. Regulates 
intracellular CTP levels through interactions 
with the four ribonucleotide triphosphates 

14 prmA 161 LG+G4 ribosomal protein L11 
15 ybeY 77 LG+G4 Single strand-specific metallo-endoribonuclease 
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involved in late-stage 70S ribosome quality 
control and in maturation of the 3' terminus of 
the 16S rRNA 

16 
prfA 341 LG+F+I+G4 

Peptide chain release factor 1 directs the 
termination of translation in response to the 
peptide chain termination codons UAG and 
UAA 

17 

smpB 135 LG+I+G4 

Required for rescue of stalled ribosomes 
mediated by trans-translation. Binds to transfer-
messenger RNA (tmRNA), required for stable 
association of tmRNA with ribosomes. tmRNA 
and SmpB together mimic tRNA shape, 
replacing the anticodon stem-loop with SmpB. 
tmRNA is encoded by the ssrA gene 

18 glyQ 274 LG+I+G4 glycyl-tRNA synthetase, alpha subunit 
19 mutY 223 LG+I+G4 TIGRFAM A G-specific adenine glycosylase 

20 atpC 70 LG+G4 
Produces ATP from ADP in the presence of a 
proton gradient across the membrane 

21 
atpD 434 LG+I+G4 

Produces ATP from ADP in the presence of a 
proton gradient across the membrane. The 
catalytic sites are hosted primarily by the beta 
subunits 

22 

atpG 230 LG+I+G4 

Produces ATP from ADP in the presence of a 
proton gradient across the membrane. The 
gamma chain is believed to be important in 
regulating ATPase activity and the flow of 
protons through the CF(0) complex 

23 
atpA 484 LG+I+G4 

Produces ATP from ADP in the presence of a 
proton gradient across the membrane. The alpha 
chain is a regulatory subunit 

24 

atpH 92 LG+G4 

F(1)F(0) ATP synthase produces ATP from 
ADP in the presence of a proton or sodium 
gradient. F-type ATPases consist of two 
structural domains, F(1) containing the 
extramembraneous catalytic core and F(0) 
containing the membrane proton channel, 
linked together by a central stalk and a 
peripheral stalk. During catalysis, ATP 
synthesis in the catalytic domain of F(1) is 
coupled via a rotary mechanism of the central 
stalk subunits to proton translocation 

25 nusG 172 LG+G4 
Participates in transcription elongation, 
termination and antitermination 

26 
tsaD 273 LG+I+G4 

Required for the formation of a 
threonylcarbamoyl group on adenosine at 
position 37 (t(6)A37) in tRNAs that read 
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codons beginning with adenine. Is involved in 
the transfer of the threonylcarbamoyl moiety of 
threonylcarbamoyl-AMP (TC-AMP) to the N6 
group of A37, together with TsaE and TsaB. 
TsaD likely plays a direct catalytic role in this 
reaction 

27 

alaS 745 LG+I+G4 

Catalyzes the attachment of alanine to 
tRNA(Ala) in a two-step reaction alanine is first 
activated by ATP to form Ala- AMP and then 
transferred to the acceptor end of tRNA(Ala). 
Also edits incorrectly charged Ser-tRNA(Ala) 
and Gly-tRNA(Ala) via its editing domain 

28 

miaA 256 LG+F+I+G4 

Catalyzes the transfer of a dimethylallyl group 
onto the adenine at position 37 in tRNAs that 
read codons beginning with uridine, leading to 
the formation of N6-(dimethylallyl)adenosine 
(i(6)A) 

29 

obg 311 LG+I+G4 

An essential GTPase which binds GTP, GDP 
and possibly (p)ppGpp with moderate affinity, 
with high nucleotide exchange rates and a fairly 
low GTP hydrolysis rate. Plays a role in control 
of the cell cycle, stress response, ribosome 
biogenesis and in those bacteria that undergo 
differentiation, in morphogenesis control 

30 der 394 LG+G4 
GTPase that plays an essential role in the late 
steps of ribosome biogenesis 

31 
rsmE 150 LG+I+G4 

Specifically methylates the N3 position of the 
uracil ring of uridine 1498 (m3U1498) in 16S 
rRNA. Acts on the fully assembled 30S 
ribosomal subunit 

32 

ffh 406 LG+F+I+G4 

Involved in targeting and insertion of nascent 
membrane proteins into the cytoplasmic 
membrane. Binds to the hydrophobic signal 
sequence of the ribosome-nascent chain (RNC) 
as it emerges from the ribosomes. The SRP-
RNC complex is then targeted to the 
cytoplasmic membrane where it interacts with 
the SRP receptor FtsY. Interaction with FtsY 
leads to the transfer of the RNC complex to the 
Sec translocase for insertion into the membrane, 
the hydrolysis of GTP by both Ffh and FtsY, 
and the dissociation of the SRP-FtsY complex 
into the individual components 

33 rpsP 70 LG+G4 
Belongs to the bacterial ribosomal protein bS16 
family 

34 rimM 66 LG+G4 An accessory protein needed during the final 
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step in the assembly of 30S ribosomal subunit, 
possibly for assembly of the head region. 
Probably interacts with S19. Essential for 
efficient processing of 16S rRNA. May be 
needed both before and after RbfA during the 
maturation of 16S rRNA. It has affinity for free 
ribosomal 30S subunits but not for 70S 
ribosomes 

35 trmD 212 LG+G4 tRNA (Guanine-1)-methyltransferase 

36 
rplS 106 LG+G4 

This protein is located at the 30S-50S ribosomal 
subunit interface and may play a role in the 
structure and function of the aminoacyl-tRNA 
binding site 

37 
clpX 372 LG+I+G4 

ATP-dependent specificity component of the 
Clp protease. It directs the protease to specific 
substrates. Can perform chaperone functions in 
the absence of ClpP 

38 

proS 384 LG+G4 

Catalyzes the attachment of proline to 
tRNA(Pro) in a two-step reaction proline is first 
activated by ATP to form Pro- AMP and then 
transferred to the acceptor end of tRNA(Pro). 
As ProRS can inadvertently accommodate and 
process non-cognate amino acids such as 
alanine and cysteine, to avoid such errors it has 
two additional distinct editing activities against 
alanine. One activity is designated as 
'pretransfer' editing and involves the 
tRNA(Pro)-independent hydrolysis of activated 
Ala-AMP. The other activity is designated 
'posttransfer' editing and involves deacylation 
of mischarged Ala-tRNA(Pro). The misacylated 
Cys- tRNA(Pro) is not edited by ProRS 

39 typA 582 LG+I+G4 GTP-binding protein TypA 

40 engB 155 LG+I+G4 
Necessary for normal cell division and for the 
maintenance of normal septation 

41 rseP 232 LG+I+G4 zinc metalloprotease 

42 
uppS 224 LG+I+G4 

Catalyzes the condensation of isopentenyl 
diphosphate (IPP) with allylic pyrophosphates 
generating different type of terpenoids 

43 

frr 170 LG+I+G4 

Responsible for the release of ribosomes from 
messenger RNA at the termination of protein 
biosynthesis. May increase the efficiency of 
translation by recycling ribosomes from one 
round of translation to another 

44 pyrH 230 LG+G4 
Catalyzes the reversible phosphorylation of 
UMP to UDP 
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45 

era 262 LG+G4 

An essential GTPase that binds both GDP and 
GTP, with rapid nucleotide exchange. Plays a 
role in 16S rRNA processing and 30S 
ribosomal subunit biogenesis and possibly also 
in cell cycle regulation and energy metabolism 

46 

aspS 542 LG+I+G4 

Aspartyl-tRNA synthetase with relaxed tRNA 
specificity since it is able to aspartylate not only 
its cognate tRNA(Asp) but also tRNA(Asn). 
Reaction proceeds in two steps L-aspartate is 
first activated by ATP to form Asp-AMP and 
then transferred to the acceptor end of 
tRNA(Asp Asn) 

47 
apt 156 LG+G4 

Catalyzes a salvage reaction resulting in the 
formation of AMP, that is energically less 
costly than de novo synthesis 

48 
rpsA 485 LG+F+G4 

thus facilitating recognition of the initiation 
point. It is needed to translate mRNA with a 
short Shine-Dalgarno (SD) purine-rich 
sequence 

49 
recR 169 LG+G4 

May play a role in DNA repair. It seems to be 
involved in an RecBC-independent 
recombinational process of DNA repair. It may 
act with RecF and RecO 

50 pgk 369 WAG+I+G4 Belongs to the phosphoglycerate kinase family 

51 yqgF 108 LG+G4 
Could be a nuclease involved in processing of 
the 5'-end of pre-16S rRNA 

52 

grpE 126 LG+I+G4 

Participates actively in the response to 
hyperosmotic and heat shock by preventing the 
aggregation of stress-denatured proteins, in 
association with DnaK and GrpE. It is the 
nucleotide exchange factor for DnaK and may 
function as a thermosensor. Unfolded proteins 
bind initially to DnaJ 
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Table S1.3. Percent identity among 16S rRNA gene nucleotide sequences. (A) Enterobacterales. 

 PRsDSM PRbDSM PRaDmel2 PR172 PR178 PR181 PRRrDmel1 PRr76 PRr187 PRr226 PRr232 Na97 Sr70 PAd106 PAd112 T118 Kv34 E127 C124 T16 T91 T82 T94 T100 T130 Km22 Ea58 El43 Em37 PA49 
PRsDSM  98.8 98.6 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.2 94.4 96.7 93.5 96.1 93.2 96.2 91.9 95.3 93.7 93.7 93.8 93.8 93.8 95.6 92 94.8 95.8 93.2 95.1 
PRbDSM 98.8  99.5 98.8 98.8 98.8 99.1 98.7 98.9 98.9 98.9 94 96.2 93.5 95.9 93 95.8 91.9 94.8 93.5 93.5 93.6 93.6 93.6 95.2 92.4 94.3 95.4 92.8 95.5 
PRaDmel2 98.6 99.5  99.3 99.3 99.3 99.1 98.7 98.9 98.9 98.9 94 96.3 93.5 96 93 95.9 91.8 94.8 93.5 93.5 93.6 93.6 93.6 95.3 92.2 94.3 95.3 92.8 95.3 
PR172 99.2 98.8 99.3  100 100 99.4 99.2 99.4 99.4 99.4 94.7 96.8 93.7 96.5 93.5 96.3 91.9 95.4 94.1 94.1 94.1 94.1 94.1 96 92 94.7 95.8 93.2 95.3 
PR178 99.2 98.8 99.3 100  100 99.4 99.2 99.4 99.4 99.4 94.7 96.8 93.7 96.5 93.5 96.3 91.9 95.4 94.1 94.1 94.1 94.1 94.1 96 92 94.7 95.8 93.2 95.3 
PR181 99.2 98.8 99.3 100 100  99.4 99.2 99.4 99.4 99.4 94.7 96.8 93.7 96.5 93.5 96.3 91.9 95.4 94.1 94.1 94.1 94.1 94.1 96 92 94.7 95.8 93.2 95.3 
PRRrDmel1 99.2 99.1 99.1 99.4 99.4 99.4  99.7 99.8 99.8 99.8 94.6 96.5 93.8 96.2 93.6 95.9 92 95.1 94.1 94.1 94.1 94.1 94.1 95.7 92.3 94.7 95.5 93.1 94.9 
PRr76 99.2 98.7 98.7 99.2 99.2 99.2 99.7  99.8 99.8 99.8 94.5 96.5 93.8 96.4 93.4 95.9 92 94.9 94.1 94.1 94.2 94.2 94.2 95.8 92 94.7 95.7 93.1 94.7 
PRr187 99.2 98.9 98.9 99.4 99.4 99.4 99.8 99.8  100 100 94.7 96.7 93.8 96.4 93.6 96.1 92 95.1 94.1 94.1 94.2 94.2 94.2 95.8 92.1 94.7 95.7 93.1 94.9 
PRr226 99.2 98.9 98.9 99.4 99.4 99.4 99.8 99.8 100  100 94.7 96.7 93.8 96.4 93.6 96.1 92 95.1 94.1 94.1 94.2 94.2 94.2 95.8 92.1 94.7 95.7 93.1 94.9 
PRr232 99.2 98.9 98.9 99.4 99.4 99.4 99.8 99.8 100 100  94.7 96.7 93.8 96.4 93.6 96.1 92 95.1 94.1 94.1 94.2 94.2 94.2 95.8 92.1 94.7 95.7 93.1 94.9 
Na97 94.4 94 94 94.7 94.7 94.7 94.6 94.5 94.7 94.7 94.7  98.4 96.4 97.6 95.9 97.6 93.5 96.7 96.4 96.4 96.4 96.4 96.4 97.3 94.7 97.1 97.2 96.5 97.4 
Sr70 96.7 96.2 96.3 96.8 96.8 96.8 96.5 96.5 96.7 96.7 96.7 98.4  97.4 97.6 96.1 97.1 93.5 97.3 96.8 96.8 96.8 96.8 96.8 96.8 96.2 97.5 97.6 96.9 97.5 
PAd106 93.5 93.5 93.5 93.7 93.7 93.7 93.8 93.8 93.8 93.8 93.8 96.4 97.4  99.9 97 97.6 93.9 96.6 97.3 97.3 97.3 97.3 97.3 97.4 96.3 97.9 97.5 96.6 97.7 
PAd112 96.1 95.9 96 96.5 96.5 96.5 96.2 96.4 96.4 96.4 96.4 97.6 97.6 99.9  97 97.7 94 97.5 97.8 97.8 97.8 97.8 97.8 97.8 97.3 98.1 97.8 97.2 97.9 
T118 93.2 93 93 93.5 93.5 93.5 93.6 93.4 93.6 93.6 93.6 95.9 96.1 97 97  97.5 94.3 96.4 98.3 98.3 98.3 98.3 98.3 98.3 96.6 97.6 97.5 96.1 97.7 
Kv34 96.2 95.8 95.9 96.3 96.3 96.3 95.9 95.9 96.1 96.1 96.1 97.6 97.1 97.6 97.7 97.5  93.9 98 97.3 97.3 97.3 97.3 97.3 97.3 98.7 98.7 98.4 97.5 98.7 
E127 91.9 91.9 91.8 91.9 91.9 91.9 92 92 92 92 92 93.5 93.5 93.9 94 94.3 93.9  94.2 95 95 95 95 95 95 98.2 95.8 94.8 94.2 98.3 
C124 95.3 94.8 94.8 95.4 95.4 95.4 95.1 94.9 95.1 95.1 95.1 96.7 97.3 96.6 97.5 96.4 98 94.2  97.2 97.2 97.2 97.2 97.2 97.2 96.8 97.6 97.8 97 98.9 
T16 93.7 93.5 93.5 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 96.4 96.8 97.3 97.8 98.3 97.3 95 97.2  100 99.9 99.9 99.9 100 96.5 97.9 98.3 96.7 98.9 
T91 93.7 93.5 93.5 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 96.4 96.8 97.3 97.8 98.3 97.3 95 97.2 100  99.9 99.9 99.9 100 96.5 97.9 98.3 96.7 98.9 
T82 93.8 93.6 93.6 94.1 94.1 94.1 94.1 94.2 94.2 94.2 94.2 96.4 96.8 97.3 97.8 98.3 97.3 95 97.2 99.9 99.9  100 100 100 96.4 97.9 98.3 96.8 98.9 
T94 93.8 93.6 93.6 94.1 94.1 94.1 94.1 94.2 94.2 94.2 94.2 96.4 96.8 97.3 97.8 98.3 97.3 95 97.2 99.9 99.9 100  100 100 96.4 97.9 98.3 96.8 98.9 
T100 93.8 93.6 93.6 94.1 94.1 94.1 94.1 94.2 94.2 94.2 94.2 96.4 96.8 97.3 97.8 98.3 97.3 95 97.2 99.9 99.9 100 100  100 96.4 97.9 98.3 96.8 98.9 
T130 95.6 95.2 95.3 96 96 96 95.7 95.8 95.8 95.8 95.8 97.3 96.8 97.4 97.8 98.3 97.3 95 97.2 100 100 100 100 100  97.4 98 98.3 97.6 98.9 
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Km22 92 92.4 92.2 92 92 92 92.3 92 92.1 92.1 92.1 94.7 96.2 96.3 97.3 96.6 98.7 98.2 96.8 96.5 96.5 96.4 96.4 96.4 97.4  99.5 98.3 96.9 98.7 
Ea58 94.8 94.3 94.3 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 97.1 97.5 97.9 98.1 97.6 98.7 95.8 97.6 97.9 97.9 97.9 97.9 97.9 98 99.5  99.4 98.6 99.4 
El43 95.8 95.4 95.3 95.8 95.8 95.8 95.5 95.7 95.7 95.7 95.7 97.2 97.6 97.5 97.8 97.5 98.4 94.8 97.8 98.3 98.3 98.3 98.3 98.3 98.3 98.3 99.4  98.6 99.4 
Em37 93.2 92.8 92.8 93.2 93.2 93.2 93.1 93.1 93.1 93.1 93.1 96.5 96.9 96.6 97.2 96.1 97.5 94.2 97 96.7 96.7 96.8 96.8 96.8 97.6 96.9 98.6 98.6  99.4 
PA49 95.1 95.5 95.3 95.3 95.3 95.3 94.9 94.7 94.9 94.9 94.9 97.4 97.5 97.7 97.9 97.7 98.7 98.3 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.7 99.4 99.4 99.4  
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Table S1.3. Percent identity among 16S rRNA gene nucleotide sequences. (B) Lactobacillales. 

 
LlBp
l1 

LEc1
11 

LEp
9 

LEm
12 

LEs
54 

Wc1
03 

Wm
34 

LApa
60 

LApa1
81 

LAb
10 

LAb
57 

LAb
31 

LAb
67 

LAb
70 

LApl
DF 

LAp
l3 

LApl
28 

LApl
13 

LApl
33 

LApl
48 

LlBpl1  82.8 
83.

2 83 
83.

1 76.7 85.8 85.7 87.4 85 85 85 86.1 86.1 85.5 
85.

5 85.5 86.9 85.5 87.9 
LEc11
1 82.8  

97.
8 97.9 

97.
9 81.4 90.4 86.6 88.2 84.9 84.9 84.9 85.6 85.6 85 85 85 87.1 85.1 87 

LEp9 83.2 97.8  99.6 
99.

6 81.6 91.4 86.7 88.5 85.1 85.1 85.1 86.1 86.1 85.8 
85.

7 85.7 88.3 85.8 88.1 
LEm1
2 83 97.9 

99.
6  

99.
9 81.7 91.3 86.7 88.5 85.2 85.2 85.2 86.3 86.3 85.9 

85.
8 85.8 88.4 86 88.2 

LEs54 83.1 97.9 
99.

6 99.9  81.7 91.2 86.7 88.6 85.1 85.1 85.1 86.2 86.2 85.9 
85.

8 85.8 88.3 85.9 88.1 
Wc10
3 76.7 81.4 

81.
6 81.7 

81.
7  96.9 86.8 89.2 79.8 79.8 79.9 87.5 87.5 79.2 

79.
6 79.6 89.3 79.5 89.3 

Wm3
4 85.8 90.4 

91.
4 91.3 

91.
2 96.9  92.7 92.7 91.9 91.9 92 92 92 92 

92.
1 92.1 92.3 92.3 92.3 

LApa6
0 85.7 86.6 

86.
7 86.7 

86.
7 86.8 92.7  100 92 92 92.1 92.1 92.1 92.1 

92.
1 92.1 93.3 92.2 93.4 

LApa1
81 87.4 88.2 

88.
5 88.5 

88.
6 89.2 92.7 100  93.5 93.5 93.5 93.5 93.5 93.3 

93.
4 93.4 93.3 93.5 93.5 

LAb10 85 84.9 
85.

1 85.2 
85.

1 79.8 91.9 92 93.5  100 99.9 99.9 99.9 93.4 
93.

4 93.4 95.6 93.4 95.8 

LAb57 85 84.9 
85.

1 85.2 
85.

1 79.8 91.9 92 93.5 100  99.9 99.9 99.9 93.4 
93.

4 93.4 95.6 93.4 95.8 

LAb31 85 84.9 
85.

1 85.2 
85.

1 79.9 92 92.1 93.5 99.9 99.9  100 100 93.4 
93.

4 93.4 95.7 93.4 95.9 

LAb67 86.1 85.6 
86.

1 86.3 
86.

2 87.5 92 92.1 93.5 99.9 99.9 100  100 94.6 
94.

8 94.8 95.7 94.7 95.9 

LAb70 86.1 85.6 
86.

1 86.3 
86.

2 87.5 92 92.1 93.5 99.9 99.9 100 100  94.6 
94.

8 94.8 95.7 94.7 95.9 
LAplD
F 85.5 85 

85.
8 85.9 

85.
9 79.2 92 92.1 93.3 93.4 93.4 93.4 94.6 94.6  

99.
7 99.7 99.8 99.9 99.8 

LApl3 85.5 85 
85.

7 85.8 
85.

8 79.6 92.1 92.1 93.4 93.4 93.4 93.4 94.8 94.8 99.7  100 99.9 99.9 99.9 
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LApl2
8 85.5 85 

85.
7 85.8 

85.
8 79.6 92.1 92.1 93.4 93.4 93.4 93.4 94.8 94.8 99.7 100  99.9 99.9 99.9 

LApl1
3 86.9 87.1 

88.
3 88.4 

88.
3 89.3 92.3 93.3 93.3 95.6 95.6 95.7 95.7 95.7 99.8 

99.
9 99.9  100 100 

LApl3
3 85.5 85.1 

85.
8 86 

85.
9 79.5 92.3 92.2 93.5 93.4 93.4 93.4 94.7 94.7 99.9 

99.
9 99.9 100  100 

LApl4
8 87.9 87 

88.
1 88.2 

88.
1 89.3 92.3 93.4 93.5 95.8 95.8 95.9 95.9 95.9 99.8 

99.
9 99.9 100 100  
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Table S1.3. Percent identity among 16S rRNA gene nucleotide sequences. (C) Rhodospirillales. 

 

G6
2 

Gs1
4 

Gs2
1 

Gs2
8 

Ga5
6 

Gk1
6 

Gk4
2 

Gk4
7 

G7
3 

G7
4 

G4
4 

Gk1
8 

Gk5
4 

Gk6
8 

Gw1
5 

Gw1
7 

Gw1
9 

Gj2
7 

Gc8
0 

Gc1
3 

Gc2
5 

Gc4
5 

Gc5
7 

Gc5
8 

Gc6
9 

Gc7
5 

Gc7
6 

Gc7
7 

Gc7
9 

Gc2
3 Gc3 

Aok3
8 

Aok5
5 

Ath4
3 

Ath2
9 

Ath5
9 

Ath6
0 

Ath7
2 

Atr4
2 

Ap4
8 

Ap4
9 

Ap4
6 

Ai4
6 

Ac4
7 

Aor4
5 

Aor4
8 

G62  99.7 99.7 99.7 99.7 99.5 99.5 99.5 
99.

5 
99.

5 
99.

6 99.6 99.6 99.6 98.4 98.4 98.4 98 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.1 
98.

3 95.3 95.3 95.7 95.5 95.5 95.5 95.5 95.5 95.1 95.2 95.1 
95.

4 95.1 95.7 95.7 

Gs14 
99.

7  100 100 100 99.9 99.9 99.9 
99.

9 
99.

9 
99.

9 99.9 99.9 99.9 98.3 98.3 98.3 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.5 95.5 96 95.9 95.9 95.9 95.9 95.7 95.5 95.5 95.5 
95.

7 95.5 96 96 

Gs21 
99.

7 100  100 100 99.9 99.9 99.9 
99.

9 
99.

9 
99.

9 99.9 99.9 99.9 98.3 98.3 98.3 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.5 95.5 96 95.9 95.9 95.9 95.9 95.7 95.5 95.5 95.5 
95.

7 95.5 96 96 

Gs28 
99.

7 100 100  100 99.9 99.9 99.9 
99.

9 
99.

9 
99.

9 99.9 99.9 99.9 98.3 98.3 98.3 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.5 95.5 96 95.9 95.9 95.9 95.9 95.7 95.5 95.5 95.5 
95.

7 95.5 96 96 

Ga56 
99.

7 100 100 100  99.9 99.9 99.9 
99.

9 
99.

9 
99.

9 99.9 99.9 99.9 98.3 98.3 98.3 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.5 95.5 96 95.9 95.9 95.9 95.9 95.7 95.5 95.5 95.5 
95.

7 95.5 96 96 

Gk16 
99.

5 99.9 99.9 99.9 99.9  100 100 100 
99.

9 
99.

9 99.9 99.9 99.9 98.2 98.2 98.2 
97.

9 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.4 95.4 95.9 95.7 95.7 95.7 95.7 95.5 95.3 95.4 95.3 
95.

6 95.3 95.9 95.9 

Gk42 
99.

5 99.9 99.9 99.9 99.9 100  100 100 
99.

9 
99.

9 99.9 99.9 99.9 98.2 98.2 98.2 
97.

9 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.4 95.4 95.9 95.7 95.7 95.7 95.7 95.5 95.3 95.4 95.3 
95.

6 95.3 95.9 95.9 

Gk47 
99.

5 99.9 99.9 99.9 99.9 100 100  100 
99.

9 
99.

9 99.9 99.9 99.9 98.2 98.2 98.2 
97.

9 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.4 95.4 95.9 95.7 95.7 95.7 95.7 95.5 95.3 95.4 95.3 
95.

6 95.3 95.9 95.9 

G73 
99.

5 99.9 99.9 99.9 99.9 100 100 100  
99.

9 
99.

9 99.9 99.9 99.9 98.2 98.2 98.2 
97.

9 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.4 95.4 95.9 95.7 95.7 95.7 95.7 95.5 95.3 95.4 95.3 
95.

6 95.3 95.9 95.9 

G74 
99.

5 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
99.

9  
99.

9 99.9 99.9 99.9 98.2 98.2 98.2 
97.

9 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

4 95.5 95.5 96 95.9 95.9 95.9 95.9 95.7 95.5 95.5 95.5 
95.

7 95.5 96 96 

G44 
99.

6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
99.

9 
99.

9  100 100 100 98.3 98.3 98.3 98 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 
98.

5 95.5 95.5 96 95.8 95.8 95.8 95.8 95.6 95.4 95.5 95.4 
95.

7 95.4 95.9 95.9 

Gk18 
99.

6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
99.

9 
99.

9 100  100 100 98.3 98.3 98.3 98 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 
98.

5 95.5 95.5 96 95.8 95.8 95.8 95.8 95.6 95.4 95.5 95.4 
95.

7 95.4 95.9 95.9 

Gk54 
99.

6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
99.

9 
99.

9 100 100  100 98.3 98.3 98.3 98 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 
98.

5 95.5 95.5 96 95.8 95.8 95.8 95.8 95.6 95.4 95.5 95.4 
95.

7 95.4 95.9 95.9 
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Gk68 
99.

6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
99.

9 
99.

9 100 100 100  98.3 98.3 98.3 98 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 
98.

5 95.5 95.5 96 95.8 95.8 95.8 95.8 95.6 95.4 95.5 95.4 
95.

7 95.4 95.9 95.9 
Gw1
5 

98.
4 98.3 98.3 98.3 98.3 98.2 98.2 98.2 

98.
2 

98.
2 

98.
3 98.3 98.3 98.3  100 100 

99.
2 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 

98.
6 94.9 94.9 94.7 94.5 94.5 94.5 94.5 94.6 94.3 94.4 94.3 

94.
6 94.4 94.9 94.9 

Gw1
7 

98.
4 98.3 98.3 98.3 98.3 98.2 98.2 98.2 

98.
2 

98.
2 

98.
3 98.3 98.3 98.3 100  100 

99.
2 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 

98.
6 94.9 94.9 94.7 94.5 94.5 94.5 94.5 94.6 94.3 94.4 94.3 

94.
6 94.4 94.9 94.9 

Gw1
9 

98.
4 98.3 98.3 98.3 98.3 98.2 98.2 98.2 

98.
2 

98.
2 

98.
3 98.3 98.3 98.3 100 100  

99.
2 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 

98.
6 94.9 94.9 94.7 94.5 94.5 94.5 94.5 94.6 94.3 94.4 94.3 

94.
6 94.4 94.9 94.9 

Gj27 98 98.1 98.1 98.1 98.1 97.9 97.9 97.9 
97.

9 
97.

9 98 98 98 98 99.2 99.2 99.2  99.3 99.3 99.3 99.3 99.3 99.3 99.3 99.3 99.3 99.3 99.3 99.3 
99.

4 95.3 95.3 95.1 94.9 94.9 94.9 94.9 94.9 94.7 94.8 94.7 
95.

2 94.8 95.2 95.2 

Gc80 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3  100 100 100 100 100 100 100 100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc13 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100  100 100 100 100 100 100 100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc25 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100  100 100 100 100 100 100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc45 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100  100 100 100 100 100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc57 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100  100 100 100 100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc58 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100 100  100 100 100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc69 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100 100 100  100 100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc75 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100 100 100 100  100 100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc76 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100 100 100 100 100  100 100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc77 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100 100 100 100 100 100  100 100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 
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Gc79 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100 100 100 100 100 100 100  100 
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc23 
98.

1 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
98.

2 
98.

2 
98.

3 98.3 98.3 98.3 98.5 98.5 98.5 
99.

3 100 100 100 100 100 100 100 100 100 100 100  
99.

8 95.3 95.3 95.2 95.1 95.1 95.1 95.1 95 94.9 94.9 94.9 
95.

3 94.9 95.3 95.3 

Gc3 
98.

3 98.4 98.4 98.4 98.4 98.4 98.4 98.4 
98.

4 
98.

4 
98.

5 98.5 98.5 98.5 98.6 98.6 98.6 
99.

4 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8  95.5 95.5 95.3 95.1 95.1 95.1 95.1 94.9 94.8 94.9 94.8 
95.

3 94.8 95.3 95.3 
Aok3
8 

95.
3 95.5 95.5 95.5 95.5 95.4 95.4 95.4 

95.
4 

95.
5 

95.
5 95.5 95.5 95.5 94.9 94.9 94.9 

95.
3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 

95.
5  100 97.5 97.5 97.5 97.5 97.5 97.5 97.1 97.2 97.1 

97.
7 97.7 97.7 97.7 

Aok5
5 

95.
3 95.5 95.5 95.5 95.5 95.4 95.4 95.4 

95.
4 

95.
5 

95.
5 95.5 95.5 95.5 94.9 94.9 94.9 

95.
3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 

95.
5 100  97.5 97.5 97.5 97.5 97.5 97.5 97.1 97.2 97.1 

97.
7 97.7 97.7 97.7 

Ath4
3 

95.
7 96 96 96 96 95.9 95.9 95.9 

95.
9 96 96 96 96 96 94.7 94.7 94.7 

95.
1 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 

95.
3 97.5 97.5  99.9 99.9 99.9 99.9 97.9 98.1 98 98.1 

98.
2 98.5 98.2 98.2 

Ath2
9 

95.
5 95.9 95.9 95.9 95.9 95.7 95.7 95.7 

95.
7 

95.
9 

95.
8 95.8 95.8 95.8 94.5 94.5 94.5 

94.
9 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 

95.
1 97.5 97.5 99.9  100 100 100 97.9 98.1 97.9 98 

98.
1 98.4 98.1 98.1 

Ath5
9 

95.
5 95.9 95.9 95.9 95.9 95.7 95.7 95.7 

95.
7 

95.
9 

95.
8 95.8 95.8 95.8 94.5 94.5 94.5 

94.
9 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 

95.
1 97.5 97.5 99.9 100  100 100 97.9 98.1 97.9 98 

98.
1 98.4 98.1 98.1 

Ath6
0 

95.
5 95.9 95.9 95.9 95.9 95.7 95.7 95.7 

95.
7 

95.
9 

95.
8 95.8 95.8 95.8 94.5 94.5 94.5 

94.
9 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 

95.
1 97.5 97.5 99.9 100 100  100 97.9 98.1 97.9 98 

98.
1 98.4 98.1 98.1 

Ath7
2 

95.
5 95.9 95.9 95.9 95.9 95.7 95.7 95.7 

95.
7 

95.
9 

95.
8 95.8 95.8 95.8 94.5 94.5 94.5 

94.
9 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 

95.
1 97.5 97.5 99.9 100 100 100  97.9 98.1 97.9 98 

98.
1 98.4 98.1 98.1 

Atr42 
95.

5 95.7 95.7 95.7 95.7 95.5 95.5 95.5 
95.

5 
95.

7 
95.

6 95.6 95.6 95.6 94.6 94.6 94.6 
94.

9 95 95 95 95 95 95 95 95 95 95 95 95 
94.

9 97.5 97.5 97.9 97.9 97.9 97.9 97.9  98.6 98.6 98.7 
98.

9 98.7 98.8 98.8 

Ap48 
95.

1 95.5 95.5 95.5 95.5 95.3 95.3 95.3 
95.

3 
95.

5 
95.

4 95.4 95.4 95.4 94.3 94.3 94.3 
94.

7 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 
94.

8 97.1 97.1 98.1 98.1 98.1 98.1 98.1 98.6  99.9 99.9 
98.

9 98.7 98.5 98.5 

Ap49 
95.

2 95.5 95.5 95.5 95.5 95.4 95.4 95.4 
95.

4 
95.

5 
95.

5 95.5 95.5 95.5 94.4 94.4 94.4 
94.

8 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 
94.

9 97.2 97.2 98 97.9 97.9 97.9 97.9 98.6 99.9  99.9 
99.

1 98.7 98.5 98.5 

Ap46 
95.

1 95.5 95.5 95.5 95.5 95.3 95.3 95.3 
95.

3 
95.

5 
95.

4 95.4 95.4 95.4 94.3 94.3 94.3 
94.

7 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 
94.

8 97.1 97.1 98.1 98 98 98 98 98.7 99.9 99.9  99 98.8 98.5 98.5 

Ai46 
95.

4 95.7 95.7 95.7 95.7 95.6 95.6 95.6 
95.

6 
95.

7 
95.

7 95.7 95.7 95.7 94.6 94.6 94.6 
95.

2 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 
95.

3 97.7 97.7 98.2 98.1 98.1 98.1 98.1 98.9 98.9 99.1 99  99.2 98.8 98.8 
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Ac47 
95.

1 95.5 95.5 95.5 95.5 95.3 95.3 95.3 
95.

3 
95.

5 
95.

4 95.4 95.4 95.4 94.4 94.4 94.4 
94.

8 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 
94.

8 97.7 97.7 98.5 98.4 98.4 98.4 98.4 98.7 98.7 98.7 98.8 
99.

2  99.3 99.3 
Aor4
5 

95.
7 96 96 96 96 95.9 95.9 95.9 

95.
9 96 

95.
9 95.9 95.9 95.9 94.9 94.9 94.9 

95.
2 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 

95.
3 97.7 97.7 98.2 98.1 98.1 98.1 98.1 98.8 98.5 98.5 98.5 

98.
8 99.3  100 

Aor4
8 

95.
7 96 96 96 96 95.9 95.9 95.9 

95.
9 96 

95.
9 95.9 95.9 95.9 94.9 94.9 94.9 

95.
2 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 

95.
3 97.7 97.7 98.2 98.1 98.1 98.1 98.1 98.8 98.5 98.5 98.5 

98.
8 99.3 100  
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Table S1.4. Post hoc pairwise comparisons for PERMANOVAs 
 
(A) Comparisons among orders for RAST normalized function counts (Figure 3) 
Factor F statistic Effect size (R2) p-value (post hoc FDR adjusted) 
Order 61.72 0.57 0.001 
Enterobacterales vs. 
Lactobacillales 

36.10 0.43 0.001 (0.001) 
 

Enterobacterales vs. 
Rhodospirillales 

79.96 0.52 0.001 (0.001) 

Lactobacillales vs. 
Rhodospirillales 

73.89 0.54 0.001 (0.001) 

(B) Comparisons among orders for orthogroup incidence for all taxa (Figure S5A) 
Factor F statistic Effect size (R2) p-value (post hoc FDR adjusted) 
Order 63.24 0.58 0.001 
Enterobacterales vs. 
Lactobacillales 

44.32 0.48 0.001 (0.001) 

Enterobacterales vs. 
Rhodospirillales 

75.67 0.51 0.001 (0.001) 

Lactobacillales vs. 
Rhodospirillales 

66.66 0.51 0.001 (0.001) 

(C) Comparisons among orders for metabolic orthogroup incidence for all taxa 
(Figure S5B) 
Factor F statistic Effect size (R2) p-value (post hoc FDR adjusted) 
Order 106.52 0.70 0.001 
Enterobacterales vs. 
Lactobacillales 

69.81 0.59 0.001 (0.001) 

Enterobacterales vs. 
Rhodospirillales 

133.93 0.64 0.001 (0.001) 

Lactobacillales vs. 
Rhodospirillales 

116.00 0.64 0.001 (0.001) 

(D) Comparisons among orders for metabolic orthogroup incidence for prevalent 
species (Figure 4) 
Factor F statistic Effect size (R2) p-value (post hoc FDR adjusted) 
Species 775.23 0.99 0.001 
Ath vs. Gc 326.80 0.95 0.002 (0.005) 
Ath vs. Gk 369.79 0.98 0.001 (0.005) 
Ath vs. LAb 1293.69 0.99 0.006 (0.006) 
Ath vs. LApl 1008.25 0.99 0.004 (0.005) 
Ath vs. PRr 4709.46 1.00 0.013 (0.013) 
Ath vs. T 8199.83 1.00 0.004 (0.005) 
Gc vs. Gk 117.45 0.87 0.001 (0.005) 
Gc vs. LAb 988.79 0.98 0.002 (0.005) 
Gc vs. LApl 786.48 0.98 0.001 (0.005) 
Gc vs. PRr 710.41 0.98 0.002 (0.005) 
Gc vs. T 814.54 0.98 0.001 (0.005) 
Gk vs. LAb 912.16 0.99 0.003 (0.005) 
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Gk vs. LApl 711.58 0.99 0.003 (0.005) 
Gk vs. PRr 1003.73 0.99 0.004 (0.005) 
Gk vs. T 1190.39 0.99 0.005 (0.006) 
LAb vs. LApl 382.28 0.98 0.002 (0.005) 
LAb vs. PRr 976.67 0.99 0.006 (0.006) 
LAb vs. T 1287.88 0.99 0.004 (0.005) 
LApl vs. PRr 801.15 0.99 0.003 (0.005) 
LApl vs. T 991.91 0.99 0.004 (0.005) 
PRr vs. T 2565.03 1.00 0.005 (0.006) 
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Table S1.5. Top metabolic orthogroups of prevalent species. 

Orthogro
up 

RAST 
category Function Ath Gc Gk LAb LApl PRr T p-value 

FDR 
adjusted 
p-value 

OG00014
26 A 5-methylthioribose kinase (EC 2.7.1.100)           4.32E-13 8.89E-12 
OG00008
85 A L-asparaginase (EC 3.5.1.1)             7.22E-13 8.89E-12 
OG00022
54 A Cysteine desulfurase (EC 2.8.1.7)          7.22E-13 8.89E-12 
OG00023
37 A 

4-hydroxyphenylpyruvate dioxygenase (EC 
1.13.11.27)          7.22E-13 8.89E-12 

OG00024
66 A 

Periplasmic aromatic amino acid aminotransferase 
beta precursor (EC 2.6.1.57)          7.22E-13 8.89E-12 

OG00025
21 A Ornithine cyclodeaminase (EC 4.3.1.12)          7.22E-13 8.89E-12 
OG00001
38 C 

2-Keto-D-gluconate dehydrogenase (EC 1.1.99.4), 
membrane-bound, flavoprotein           4.32E-13 8.89E-12 

OG00003
48 C 

2-Keto-D-gluconate dehydrogenase (EC 1.1.99.4), 
membrane-bound, gamma subunit           4.32E-13 8.89E-12 

OG00007
46 C 

Gluconate 2-dehydrogenase (EC 1.1.99.3), 
membrane-bound, gamma subunit           4.32E-13 8.89E-12 

OG00007
69 C 

Gluconate 2-dehydrogenase (EC 1.1.99.3), 
membrane-bound, flavoprotein           4.32E-13 8.89E-12 

OG00011
20 C 

N-acetylglucosamine kinase of eukaryotic type 
(EC 2.7.1.59)           4.32E-13 8.89E-12 

OG00016
05 C 

Glucokinase (EC 2.7.1.2)/Galactokinase (EC 
2.7.1.6)           4.32E-13 8.89E-12 

OG00016
56 C 

Inner membrane protein YghQ, probably involved 
in polysaccharide biosynthesis           4.32E-13 8.89E-12 

OG00001
61 C 

Alcohol dehydrogenase (EC 
1.1.1.1)/Acetaldehyde dehydrogenase (EC 
1.2.1.10)             7.22E-13 8.89E-12 

OG00013
00 C N-acetyl glucosamine transporter, NagP          7.22E-13 8.89E-12 
OG00014
29 C Hydroxyacylglutathione hydrolase (EC 3.1.2.6)          7.22E-13 8.89E-12 
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OG00020
46 C 

1,4-alpha-glucan (glycogen) branching enzyme, 
GH-13-type (EC 2.4.1.18)          7.22E-13 8.89E-12 

OG00021
19 C Xylonolactonase (EC 3.1.1.68)          7.22E-13 8.89E-12 
OG00021
76 C Phosphoenolpyruvate carboxylase (EC 4.1.1.31)          7.22E-13 8.89E-12 

OG00022
07 C 

Broad-specificity glycerol dehydrogenase (EC 
1.1.99.22), subunit SldB/Glucose dehydrogenase, 
PQQ-dependent (EC 1.1.5.2)          7.22E-13 8.89E-12 

OG00002
75 L 

Acetyl-CoA acetyltransferase (EC 2.3.1.9)/3-
ketoacyl-CoA thiolase (EC 2.3.1.16)            4.32E-13 8.89E-12 

OG00014
84 L 

CDP-diacylglycerol pyrophosphatase (EC 
3.6.1.26)           4.32E-13 8.89E-12 

OG00016
43 Nu 

Cytosine/purine/uracil/thiamine/allantoin 
permease family protein           4.32E-13 8.89E-12 

OG00014
28 Nu 

Xanthine dehydrogenase, molybdenum binding 
subunit (EC 1.17.1.4)          7.22E-13 8.89E-12 

OG00020
47 Nu 

Xanthine and CO dehydrogenases maturation 
factor, XdhC/CoxF family          7.22E-13 8.89E-12 

OG00021
05 Nu 

Xanthine dehydrogenase iron-sulfur subunit (EC 
1.17.1.4)/Xanthine dehydrogenase, FAD binding 
subunit (EC 1.17.1.4)          7.22E-13 8.89E-12 

OG00022
58 Nu Adenosine deaminase (EC 3.5.4.4)          7.22E-13 8.89E-12 
OG00025
63 Nu Thymidine kinase (EC 2.7.1.21)          7.22E-13 8.89E-12 
OG00025
73 Nu CTP:molybdopterin cytidylyltransferase          7.22E-13 8.89E-12 
OG00008
08 V 2-dehydropantoate 2-reductase (EC 1.1.1.169)             7.22E-13 8.89E-12 
OG00016
49 V 

Hydroxymethylpyrimidine ABC transporter, 
transmembrane component          7.22E-13 8.89E-12 

Black indicates an orthogroup is present in all strains and white indicates absent in all strains. 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (A) Acetobacter thailandicus. 

 Present Absent  

Subsystem
s Accessory Core Accessory Core Odds ratio 

Fisher's p-
value 

FDR 
corrected 
p-value 

L-2-amino-
thiazoline-
4-
carboxylic a
cid-
Lcysteine co
nversion 3 0 23 473 20.17078 0.002233 0.167458 
Nonmevalon
ate Branch o
f Isoprenoid
 Biosynthesi
s 2 4 24 470 6.473515 0.059617 1 
5-FCL-
like protein 3 13 23 460 3.733465 0.068749 1 
Thiamin bio
synthesis 2 5 24 469 5.543674 0.074238 1 
Pyridoxin (V
itamin B6) Bi
osynthesis 2 8 24 466 3.864988 0.123729 1 
Histidine Bio
synthesis 2 9 24 465 3.507673 0.141681 1 
Pyruvate Ala
nine Serine I
nterconversi
ons 1 3 25 472 4.690937 0.234332 1 
Citrate Meta
bolism, Tran
sport, and R
egulation 1 3 25 472 4.690937 0.234332 1 
Pyruvate me
tabolism I: a
naplerotic r 1 3 25 472 4.690937 0.234332 1 
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eactions, PE
P 
Biotin biosy
nthesis 1 4 25 471 3.749867 0.274387 1 
Glutamine, 
Glutamate, 
Aspartate a
nd Asparagi
ne Biosynth
esis 2 16 24 458 2.116021 0.277532 1 
Biotin biosy
nthesis Exp
erimental 1 5 25 470 3.121559 0.312423 1 
Folate biosy
nthesis clust
er 1 6 25 469 2.672094 0.348538 1 
Coenzyme A
 Biosynthesi
s 1 8 25 467 2.071412 0.415374 1 
Fatty Acid Bi
osynthesis F
ASII 1 9 25 466 1.861057 0.446269 1 
Threonine a
nd Homoser
ine Biosynth
esis 1 10 25 465 1.688686 0.475591 1 
Coenzyme B
12 biosynth
esis 1 15 25 460 1.14966 0.601177 1 
Cobalamin s
ynthesis 0 11 26 465 0 1 1 
Pentose pho
sphate path
way 0 9 26 467 0 1 1 
Ammonia as
similation 0 10 26 466 0 1 1 
Lysine Biosy
nthesis DAP 0 8 26 468 0 1 1 
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Pathway, GJ
O scratch 
Lysine Biosy
nthesis DAP 
Pathway 0 8 26 468 0 1 1 
Polyamine M
etabolism 0 3 26 473 0 1 1 
Glycine clea
vage system 0 3 26 473 0 1 1 
Glycine and 
Serine Utiliz
ation 0 13 26 463 0 1 1 
Threonine d
egradation 0 2 26 474 0 1 1 
Methylglyox
al Metabolis
m 0 7 26 469 0 1 1 
Pyruvate me
tabolism II: 
acetyl-
CoA, acetog
enesis from 
pyruvate 0 7 26 469 0 1 1 
Creatine an
d Creatinine
 Degradatio
n 0 4 26 472 0 1 1 
D-
gluconate a
nd ketogluc
onates meta
bolism 0 4 26 472 0 1 1 
Mannose Me
tabolism 0 3 26 473 0 1 1 
Branched-
Chain Amin
o Acid Biosy
nthesis 0 9 26 467 0 1 1 
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Acetolactate
 synthase su
bunits 0 2 26 474 0 1 1 
Methionine 
Biosynthesis 0 18 26 458 0 1 1 
Cysteine Bio
synthesis 0 13 26 463 0 1 1 
Chorismate:
 Intermediat
e for synthe
sis of Trypto
phan, PAPA 
antibiotics, 
PABA, 3-
hydroxyanth
ranilate and 
more. 0 11 26 465 0 1 1 
Tryptophan 
synthesis 0 9 26 467 0 1 1 
Heme and Si
roheme Bios
ynthesis 0 12 26 464 0 1 1 
Methionine 
Degradation 0 7 26 469 0 1 1 
NAD and NA
DP cofactor 
biosynthesis
 global 0 8 26 468 0 1 1 
Alanine bios
ynthesis 0 6 26 470 0 1 1 
Dehydrogen
ase complex
es 0 7 26 469 0 1 1 
Methionine 
Salvage 0 5 26 471 0 1 1 
Proline, 4-
hydroxyprol
ine uptake a 0 2 26 474 0 1 1 
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nd utilizatio
n 
De Novo Pur
ine Biosynth
esis 0 12 26 464 0 1 1 
Purine conv
ersions 0 11 26 465 0 1 1 
Glycolate, gl
yoxylate int
erconversio
ns 0 2 26 474 0 1 1 
Common Pa
thway For Sy
nthesis of A
romatic Co
mpounds (D
AHP synthas
e to chorism
ate) 0 6 26 470 0 1 1 
Proline Synt
hesis 0 4 26 472 0 1 1 
pyrimidine c
onversions 0 9 26 467 0 1 1 
Fermentatio
ns: Lactate 0 1 26 475 0 1 1 
Riboflavin, F
MN and FAD
 metabolism 0 8 26 468 0 1 1 
Histidine De
gradation 0 7 26 469 0 1 1 
Leucine Bios
ynthesis 0 5 26 471 0 1 1 
Arginine an
d Ornithine 
Degradation 0 6 26 470 0 1 1 
Trehalose Bi
osynthesis 0 2 26 474 0 1 1 
Purine Utiliz
ation 0 4 26 472 0 1 1 
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Serine Biosy
nthesis 0 7 26 469 0 1 1 
Phenylalanin
e and Tyrosi
ne Branches
 from Choris
mate 0 3 26 473 0 1 1 
riboflavin to
 FAD 0 4 26 472 0 1 1 
Triacylglyce
rol metaboli
sm 0 1 26 475 0 1 1 
One-
carbon meta
bolism by te
trahydropter
ines 0 6 26 470 0 1 1 
Glycine Bios
ynthesis 0 1 26 475 0 1 1 
Urea decom
position 0 3 26 473 0 1 1 
Urea carbox
ylase and Al
lophanate h
ydrolase clu
ster 0 2 26 474 0 1 1 
Arginine Dei
minase Path
way 0 2 26 474 0 1 1 
Lactate utili
zation 0 4 26 472 0 1 1 
Isoprenoind
s for Quinon
es 0 3 26 473 0 1 1 
Polyprenyl D
iphosphate 
Biosynthesis 0 2 26 474 0 1 1 
Glycerol and
 Glycerol-3- 0 5 26 471 0 1 1 
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phosphate U
ptake and U
tilization 
Xanthine Me
tabolism in 
Bacteria 0 1 26 475 0 1 1 
Coenzyme A
 Biosynthesi
s cluster 0 3 26 473 0 1 1 
Glutamine s
ynthetases 0 1 26 475 0 1 1 
Isoprenoid B
iosynthesis: 
Interconvers
ions 0 1 26 475 0 1 1 
GMP syntha
se 0 2 26 474 0 1 1 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (B) Gluconobacter cerinus. 

 Present Absent  

Subsystem
s Accessory Core Accessory Core Odds ratio 

Fisher's p-
value 

FDR 
corrected 
p-value 

Histidine De
gradation 15 0 310 712 2.294779 0.020655 1 
Methylglyox
al Metabolis
m 15 3 310 709 1.904718 0.052763 1 
Urease subu
nits 10 0 315 717 2.274239 0.056043 1 
Urea decom
position 10 0 315 717 2.274239 0.056043 1 
Methionine 
Degradation 9 0 316 718 2.27021 0.068874 1 
D-
gluconate a
nd ketogluc
onates meta
bolism 20 11 305 696 1.471674 0.123357 1 
Pyruvate Ala
nine Serine I
nterconversi
ons 11 4 314 712 1.661978 0.144819 1 
Arginine an
d Ornithine 
Degradation 8 2 317 717 1.808258 0.158823 1 
Glycine and 
Serine Utiliz
ation 16 10 309 701 1.395624 0.19334 1 
Pyruvate me
tabolism II: 
acetyl-
CoA, acetog
enesis from 
pyruvate 10 5 315 712 1.506257 0.215239 1 
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Mannose Me
tabolism 5 1 320 721 1.876467 0.229384 1 
Fatty Acid Bi
osynthesis F
ASII 12 8 313 707 1.354893 0.260902 1 
Chitin and N
-
acetylglucos
amine utiliz
ation 12 8 313 707 1.354893 0.260902 1 
Cobalamin s
ynthesis 10 7 315 710 1.32553 0.305899 1 
Isoprenoid B
iosynthesis: 
Interconvers
ions 2 0 323 725 2.242699 0.36403 1 
Sucrose utili
zation 2 0 323 725 2.242699 0.36403 1 
Formaldehy
de assimilati
on: Ribulose
 monophosp
hate pathwa
y 2 0 323 725 2.242699 0.36403 1 
Molybdenu
m cofactor 
biosynthesis 2 0 323 725 2.242699 0.36403 1 
Threonine d
egradation 3 1 322 723 1.683105 0.373122 1 
5-FCL-
like protein 15 14 310 698 1.164439 0.374644 1 
Biotin biosy
nthesis 4 3 321 720 1.281441 0.456772 1 
Creatine an
d Creatinine
 Degradatio
n 4 3 321 720 1.281441 0.456772 1 
Proline, 4-
hydroxyprol 4 3 321 720 1.281441 0.456772 1 
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ine uptake a
nd utilizatio
n 
Polyamine M
etabolism 3 2 322 722 1.344976 0.471071 1 
Pyruvate me
tabolism I: a
naplerotic r
eactions, PE
P 3 2 322 722 1.344976 0.471071 1 
Flavodoxin 2 1 323 724 1.493721 0.490316 1 
Polyprenyl D
iphosphate 
Biosynthesis 2 1 323 724 1.493721 0.490316 1 
Serine Biosy
nthesis 6 6 319 715 1.120558 0.499437 1 
Alanine bios
ynthesis 6 6 319 715 1.120558 0.499437 1 
Glutamate d
ehydrogena
ses 1 0 324 726 2.238866 0.522633 1 
Arginine Dei
minase Path
way 1 0 324 726 2.238866 0.522633 1 
VC0266 1 0 324 726 2.238866 0.522633 1 
Biotin biosy
nthesis Exp
erimental 4 4 321 719 1.119807 0.535408 1 
Xanthine de
hydrogenas
e subunits 4 4 321 719 1.119807 0.535408 1 
Glutamine, 
Glutamate, 
Aspartate a
nd Asparagi
ne Biosynth
esis 10 12 315 705 1.0173 0.55028 1 
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Pyridoxin (V
itamin B6) Bi
osynthesis 7 9 318 711 0.97819 0.598234 1 
Isoprenoind
s for Quinon
es 2 2 323 723 1.119066 0.599474 1 
Purine Utiliz
ation 6 8 319 713 0.957951 0.618886 1 
Dihydroxyac
etone kinas
es 1 1 324 725 1.118698 0.670389 1 
Threonine a
nd Homoser
ine Biosynth
esis 6 9 319 712 0.892888 0.672144 1 
Proline Synt
hesis 2 3 323 722 0.894214 0.690014 1 
pyrimidine c
onversions 7 11 318 709 0.867172 0.696673 1 
NAD and NA
DP cofactor 
biosynthesis
 global 5 8 320 714 0.858301 0.69859 1 
Histidine Bio
synthesis 5 8 320 714 0.858301 0.69859 1 
Tryptophan 
synthesis 3 7 322 717 0.668246 0.818012 1 
Folate biosy
nthesis clust
er 2 5 323 720 0.637135 0.820597 1 
Coenzyme A
 Biosynthesi
s 2 5 323 720 0.637135 0.820597 1 
Methionine 
Biosynthesis 8 16 317 703 0.739401 0.822146 1 
Branched-
Chain Amin
o Acid Biosy
nthesis 4 10 321 713 0.634873 0.856795 1 
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Chorismate:
 Intermediat
e for synthe
sis of Trypto
phan, PAPA 
antibiotics, 
PABA, 3-
hydroxyanth
ranilate and 
more. 3 8 322 716 0.606696 0.857558 1 
Trehalose Bi
osynthesis 1 4 324 722 0.445963 0.891774 1 
Thiamin bio
synthesis 2 7 323 718 0.494263 0.899628 1 
Nonmevalon
ate Branch o
f Isoprenoid
 Biosynthesi
s 1 5 324 721 0.371161 0.925401 1 
One-
carbon meta
bolism by te
trahydropter
ines 2 8 323 717 0.444248 0.925649 1 
Dehydrogen
ase complex
es 1 6 324 720 0.317735 0.948601 1 
Common Pa
thway For Sy
nthesis of A
romatic Co
mpounds (D
AHP synthas
e to chorism
ate) 1 6 324 720 0.317735 0.948601 1 
Pentose pho
sphate path
way 1 7 324 719 0.277665 0.964602 1 
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Lysine Biosy
nthesis DAP 
Pathway, GJ
O scratch 1 8 324 718 0.246434 0.975632 1 
Lysine Biosy
nthesis DAP 
Pathway 1 8 324 718 0.246434 0.975632 1 
De Novo Pur
ine Biosynth
esis 2 12 323 713 0.315617 0.978663 1 
Purine conv
ersions 5 23 320 699 0.390351 0.989606 1 
Heme and Si
roheme Bios
ynthesis 0 11 325 716 0 1 1 
riboflavin to
 FAD 0 4 325 723 0 1 1 
Riboflavin, F
MN and FAD
 metabolism 0 8 325 719 0 1 1 
Glycine Bios
ynthesis 0 1 325 726 0 1 1 
GMP syntha
se 0 2 325 725 0 1 1 
Ammonia as
similation 0 5 325 722 0 1 1 
Glutamine s
ynthetases 0 1 325 726 0 1 1 
Cysteine Bio
synthesis 0 10 325 717 0 1 1 
Methionine 
Salvage 0 6 325 721 0 1 1 
Leucine Bios
ynthesis 0 5 325 722 0 1 1 
Acetolactate
 synthase su
bunits 0 2 325 725 0 1 1 
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Acetoin, but
anediol met
abolism 0 3 325 724 0 1 1 
Phenylalanin
e and Tyrosi
ne Branches
 from Choris
mate 0 4 325 723 0 1 1 
Glycine clea
vage system 0 3 325 724 0 1 1 
Glycogen m
etabolism 0 3 325 724 0 1 1 
Fermentatio
ns: Lactate 0 1 325 726 0 1 1 
Glycerol and
 Glycerol-3-
phosphate U
ptake and U
tilization 0 5 325 722 0 1 1 
D-
ribose utiliz
ation 0 1 325 726 0 1 1 
Xylose utiliz
ation 0 2 325 725 0 1 1 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (C) Gluconobacter kondonii. 

Subsystem
s 

Present Absent  

Accessory Core Accessory Core 
Odds ratio Fisher's p-

value 
FDR 
corrected 
p-value 

D-
gluconate a
nd ketogluc
onates meta
bolism 21 14 95 501 3.156881 0.000191 0.014542 
Histidine De
gradation 8 0 108 528 4.871778 0.002911 0.110621 
Chitin and N
-
acetylglucos
amine utiliz
ation 9 3 107 524 3.662794 0.005801 0.146955 
Proline, 4-
hydroxyprol
ine uptake a
nd utilizatio
n 6 1 110 529 4.109461 0.016329 0.310246 
Purine Utiliz
ation 5 5 111 526 2.365404 0.109733 1 
Pyruvate me
tabolism II: 
acetyl-
CoA, acetog
enesis from 
pyruvate 4 5 112 527 2.088397 0.186203 1 
Sucrose utili
zation 2 1 114 533 3.109661 0.217778 1 
Pyruvate me
tabolism I: a
naplerotic r 2 2 114 532 2.329494 0.290296 1 
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eactions, PE
P 
Citrate Meta
bolism, Tran
sport, and R
egulation 2 2 114 532 2.329494 0.290296 1 
Dihydroxyac
etone kinas
es 1 0 115 535 4.636434 0.324399 1 
Formaldehy
de assimilati
on: Ribulose
 monophosp
hate pathwa
y 1 0 115 535 4.636434 0.324399 1 
Heme and Si
roheme Bios
ynthesis 4 9 112 523 1.435923 0.357608 1 
Mannose Me
tabolism 2 3 114 531 1.860986 0.361961 1 
Cysteine Bio
synthesis 4 10 112 522 1.330995 0.402069 1 
Methylglyox
al Metabolis
m 2 4 114 530 1.548519 0.430793 1 
pyrimidine c
onversions 4 11 112 521 1.240039 0.445997 1 
Thiamin bio
synthesis 2 5 114 529 1.325189 0.495532 1 
Xanthine de
hydrogenas
e subunits 2 5 114 529 1.325189 0.495532 1 
Coenzyme A
 Biosynthesi
s cluster 1 2 115 533 1.54375 0.544173 1 
Polyamine M
etabolism 1 2 115 533 1.54375 0.544173 1 
5-FCL-
like protein 3 10 113 523 1.067976 0.563363 1 
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Biotin biosy
nthesis 1 3 115 532 1.156213 0.625771 1 
Glycine clea
vage system 1 3 115 532 1.156213 0.625771 1 
Methionine 
Biosynthesis 4 16 112 516 0.921561 0.644227 1 
Serine Biosy
nthesis 2 8 114 526 0.922945 0.659726 1 
Pyruvate Ala
nine Serine I
nterconversi
ons 2 8 114 526 0.922945 0.659726 1 
One-
carbon meta
bolism by te
trahydropter
ines 1 4 115 531 0.923618 0.692866 1 
Ammonia as
similation 1 4 115 531 0.923618 0.692866 1 
Pyridoxin (V
itamin B6) Bi
osynthesis 2 10 114 524 0.766372 0.743641 1 
Coenzyme A
 Biosynthesi
s 1 5 115 530 0.768403 0.748017 1 
Glycine and 
Serine Utiliz
ation 3 17 113 516 0.685314 0.808107 1 
Glutamine, 
Glutamate, 
Aspartate a
nd Asparagi
ne Biosynth
esis 2 12 114 522 0.654512 0.809341 1 
NAD and NA
DP cofactor 
biosynthesis
 global 1 7 115 528 0.574326 0.830561 1 
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Alanine bios
ynthesis 1 8 115 527 0.509607 0.861128 1 
Tryptophan 
synthesis 1 8 115 527 0.509607 0.861128 1 
Histidine Bio
synthesis 1 9 115 526 0.457823 0.88622 1 
Chorismate:
 Intermediat
e for synthe
sis of Trypto
phan, PAPA 
antibiotics, 
PABA, 3-
hydroxyanth
ranilate and 
more. 1 9 115 526 0.457823 0.88622 1 
Purine conv
ersions 2 16 114 518 0.505308 0.897741 1 
Threonine a
nd Homoser
ine Biosynth
esis 1 10 115 525 0.415435 0.906811 1 
Branched-
Chain Amin
o Acid Biosy
nthesis 1 10 115 525 0.415435 0.906811 1 
Fatty Acid Bi
osynthesis F
ASII 1 13 115 522 0.324609 0.948906 1 
Biotin biosy
nthesis Exp
erimental 0 5 116 531 0 1 1 
Nonmevalon
ate Branch o
f Isoprenoid
 Biosynthesi
s 0 5 116 531 0 1 1 
riboflavin to
 FAD 0 4 116 532 0 1 1 
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Riboflavin, F
MN and FAD
 metabolism 0 8 116 528 0 1 1 
Flavodoxin 0 1 116 535 0 1 1 
Folate biosy
nthesis clust
er 0 7 116 529 0 1 1 
Glycine Bios
ynthesis 0 1 116 535 0 1 1 
De Novo Pur
ine Biosynth
esis 0 12 116 524 0 1 1 
Dehydrogen
ase complex
es 0 6 116 530 0 1 1 
Pentose pho
sphate path
way 0 8 116 528 0 1 1 
GMP syntha
se 0 2 116 534 0 1 1 
Isoprenoind
s for Quinon
es 0 3 116 533 0 1 1 
Polyprenyl D
iphosphate 
Biosynthesis 0 2 116 534 0 1 1 
Isoprenoid B
iosynthesis: 
Interconvers
ions 0 1 116 535 0 1 1 
Glutamine s
ynthetases 0 1 116 535 0 1 1 
Arginine an
d Ornithine 
Degradation 0 4 116 532 0 1 1 
Methionine 
Degradation 0 7 116 529 0 1 1 
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Threonine d
egradation 0 3 116 533 0 1 1 
Lysine Biosy
nthesis DAP 
Pathway, GJ
O scratch 0 8 116 528 0 1 1 
Lysine Biosy
nthesis DAP 
Pathway 0 8 116 528 0 1 1 
Methionine 
Salvage 0 6 116 530 0 1 1 
Creatine an
d Creatinine
 Degradatio
n 0 3 116 533 0 1 1 
Leucine Bios
ynthesis 0 5 116 531 0 1 1 
Acetolactate
 synthase su
bunits 0 2 116 534 0 1 1 
Acetoin, but
anediol met
abolism 0 3 116 533 0 1 1 
Common Pa
thway For Sy
nthesis of A
romatic Co
mpounds (D
AHP synthas
e to chorism
ate) 0 6 116 530 0 1 1 
Phenylalanin
e and Tyrosi
ne Branches
 from Choris
mate 0 4 116 532 0 1 1 
Proline Synt
hesis 0 4 116 532 0 1 1 
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Trehalose Bi
osynthesis 0 2 116 534 0 1 1 
Lactate utili
zation 0 5 116 531 0 1 1 
Fermentatio
ns: Lactate 0 1 116 535 0 1 1 
Glycerol and
 Glycerol-3-
phosphate U
ptake and U
tilization 0 5 116 531 0 1 1 
VC0266 0 1 116 535 0 1 1 
D-
ribose utiliz
ation 0 1 116 535 0 1 1 
Xylose utiliz
ation 0 2 116 534 0 1 1 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (D) Lactobacillus brevis. 

 Present Absent  

Subsystem
s 

Accessory Core Accessory Core 
Odds ratio Fisher's p-

value 

FDR 
corrected 
p-value 

Citrate Meta
bolism, Tran
sport, and R
egulation 5 0 22 399 17.78866 0.000135 0.009031 
Glycolate, gl
yoxylate int
erconversio
ns 3 3 24 398 8.199947 0.014339 0.415199 
D-
Galacturona
te and D-
Glucuronate
 Utilization 5 18 22 381 3.746413 0.023667 0.415199 
Xylose utiliz
ation 4 11 23 389 4.482147 0.024788 0.415199 
Pyruvate me
tabolism I: a
naplerotic r
eactions, PE
P 2 7 25 395 3.494042 0.146586 1 
Trehalose Bi
osynthesis 1 1 26 402 7.646196 0.176792 1 
Chitin and N
-
acetylglucos
amine utiliz
ation 1 3 26 400 3.824602 0.277493 1 
D-
ribose utiliz
ation 1 3 26 400 3.824602 0.277493 1 
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L-
Arabinose u
tilization 1 4 26 399 3.056405 0.323286 1 
Glycerate m
etabolism 1 5 26 398 2.543036 0.366277 1 
Fatty Acid Bi
osynthesis F
ASII 1 12 26 391 1.156389 0.601532 1 
pyrimidine c
onversions 1 16 26 387 0.875812 0.69544 1 
Purine conv
ersions 1 26 26 377 0.537649 0.846297 1 
Biotin biosy
nthesis Exp
erimental 0 1 27 403 0 1 1 
riboflavin to
 FAD 0 4 27 400 0 1 1 
Riboflavin, F
MN and FAD
 metabolism 0 9 27 395 0 1 1 
Flavodoxin 0 4 27 400 0 1 1 
Pyridoxin(Vi
tamin B6) D
egradation P
athway 0 1 27 403 0 1 1 
NAD and NA
DP cofactor 
biosynthesis
 global 0 7 27 397 0 1 1 
Folate Biosy
nthesis 0 5 27 399 0 1 1 
5-FCL-
like protein 0 15 27 389 0 1 1 
One-
carbon meta
bolism by te
trahydropter
ines 0 4 27 400 0 1 1 
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Pyruvate me
tabolism II: 
acetyl-
CoA, acetog
enesis from 
pyruvate 0 11 27 393 0 1 1 
Fermentatio
ns: Lactate 0 10 27 394 0 1 1 
Glycine Bios
ynthesis 0 1 27 403 0 1 1 
Serine Biosy
nthesis 0 1 27 403 0 1 1 
Dehydrogen
ase complex
es 0 3 27 401 0 1 1 
Lipoic acid 
metabolism 0 3 27 401 0 1 1 
Coenzyme A
 Biosynthesi
s 0 6 27 398 0 1 1 
Creatine an
d Creatinine
 Degradatio
n 0 1 27 403 0 1 1 
Deoxyribose
 and Deoxyn
ucleoside C
atabolism 0 9 27 395 0 1 1 
De Novo Pyr
imidine Synt
hesis 0 7 27 397 0 1 1 
Xanthine Me
tabolism in 
Bacteria 0 3 27 401 0 1 1 
Purine Utiliz
ation 0 6 27 398 0 1 1 
GMP syntha
se 0 2 27 402 0 1 1 
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Triacylglyce
rol metaboli
sm 0 1 27 403 0 1 1 
Fatty acid m
etabolism cl
uster 0 2 27 402 0 1 1 
Mevalonate 
Branch of Is
oprenoid Bi
osynthesis 0 6 27 398 0 1 1 
Isoprenoid B
iosynthesis 0 9 27 395 0 1 1 
Acetyl-
CoA fermen
tation to But
yrate 0 5 27 399 0 1 1 
Isoprenoind
s for Quinon
es 0 3 27 401 0 1 1 
Polyprenyl D
iphosphate 
Biosynthesis 0 3 27 401 0 1 1 
Isoprenoid B
iosynthesis: 
Interconvers
ions 0 2 27 402 0 1 1 
Glutamine, 
Glutamate, 
Aspartate a
nd Asparagi
ne Biosynth
esis 0 8 27 396 0 1 1 
Glutamine s
ynthetases 0 1 27 403 0 1 1 
Glutamate a
nd Aspartat
e uptake in 
Bacteria 0 2 27 402 0 1 1 
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Arginine Dei
minase Path
way 0 11 27 393 0 1 1 
Polyamine M
etabolism 0 11 27 393 0 1 1 
Arginine an
d Ornithine 
Degradation 0 13 27 391 0 1 1 
Methionine 
Degradation 0 6 27 398 0 1 1 
Methionine 
Biosynthesis 0 7 27 397 0 1 1 
Common Pa
thway For Sy
nthesis of A
romatic Co
mpounds (D
AHP synthas
e to chorism
ate) 0 1 27 403 0 1 1 
Chorismate:
 Intermediat
e for synthe
sis of Trypto
phan, PAPA 
antibiotics, 
PABA, 3-
hydroxyanth
ranilate and 
more. 0 1 27 403 0 1 1 
Proline Synt
hesis 0 1 27 403 0 1 1 
Alanine bios
ynthesis 0 2 27 402 0 1 1 
Pyruvate Ala
nine Serine I
nterconversi
ons 0 4 27 400 0 1 1 
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Pentose pho
sphate path
way 0 12 27 392 0 1 1 
D-
gluconate a
nd ketogluc
onates meta
bolism 0 6 27 398 0 1 1 
Trehalose U
ptake and U
tilization 0 4 27 400 0 1 1 
Lactose and 
Galactose U
ptake and U
tilization 0 8 27 396 0 1 1 
D-
galactarate, 
D-
glucarate an
d D-
glycerate ca
tabolism - g
jo 0 4 27 400 0 1 1 
D-
galactarate, 
D-
glucarate an
d D-
glycerate ca
tabolism 0 4 27 400 0 1 1 
Alpha-
acetolactate
 operon 0 2 27 402 0 1 1 
Acetoin, but
anediol met
abolism 0 5 27 399 0 1 1 
Glycerol and
 Glycerol-3-
phosphate U 0 9 27 395 0 1 1 
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ptake and U
tilization 
VC0266 0 1 27 403 0 1 1 
Mannose Me
tabolism 0 1 27 403 0 1 1 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (E) Lactobacillus plantarum. 

 Present Absent  

Subsystem
s 

Accessory Core Accessory Core 
Odds ratio Fisher's p-

value 

FDR 
corrected 
p-value 

Trehalose U
ptake and U
tilization 21 0 204 711 3.47937 0.000117 0.009502 
Fructose util
ization 8 0 217 724 3.331103 0.018044 0.616989 
Inositol cata
bolism 6 0 219 726 3.309842 0.040298 0.616989 
Xylose utiliz
ation 6 0 219 726 3.309842 0.040298 0.616989 
Glycogen m
etabolism 6 1 219 725 2.833771 0.060501 0.616989 
Nitrate and 
nitrite amm
onification 5 0 220 727 3.299355 0.060937 0.616989 
Denitrifying 
reductase g
ene clusters 5 0 220 727 3.299355 0.060937 0.616989 
L-
Arabinose u
tilization 5 0 220 727 3.299355 0.060937 0.616989 
Molybdenu
m cofactor 
biosynthesis 6 2 219 724 2.476619 0.085714 0.771389 
Beta-
Glucoside M
etabolism 12 11 213 709 1.735548 0.095233 0.771389 
Common Pa
thway For Sy
nthesis of A
romatic Co
mpounds (D 7 5 218 720 1.925192 0.134516 0.990529 
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AHP synthas
e to chorism
ate) 
D-
ribose utiliz
ation 5 4 220 723 1.8244 0.214785 1 
Pentose pho
sphate path
way 9 11 216 712 1.482663 0.222409 1 
Tryptophan 
synthesis 5 5 220 722 1.639956 0.264264 1 
Methionine 
Degradation 7 10 218 715 1.350057 0.325985 1 
Flavodoxin 2 1 223 729 2.17731 0.335737 1 
Chorismate:
 Intermediat
e for synthe
sis of Trypto
phan, PAPA 
antibiotics, 
PABA, 3-
hydroxyanth
ranilate and 
more. 5 7 220 720 1.36316 0.36881 1 
Trehalose Bi
osynthesis 1 0 224 731 3.258341 0.415131 1 
Deoxyribose
 and Deoxyn
ucleoside C
atabolism 1 0 224 731 3.258341 0.415131 1 
Sucrose utili
zation 3 4 222 725 1.39908 0.4295 1 
Mannose Me
tabolism 2 2 223 728 1.631348 0.430629 1 
Glycerol and
 Glycerol-3-
phosphate U 7 13 218 712 1.142929 0.45672 1 
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ptake and U
tilization 
Lactose and 
Galactose U
ptake and U
tilization 6 11 219 715 1.15209 0.46469 1 
Pyruvate me
tabolism I: a
naplerotic r
eactions, PE
P 4 7 221 721 1.186158 0.484692 1 
Methionine 
Biosynthesis 11 24 214 697 1.023607 0.533265 1 
Serine-
glyoxylate c
ycle 4 9 221 719 1.001047 0.593891 1 
Serine Biosy
nthesis 2 4 223 726 1.085118 0.595622 1 
D-
gluconate a
nd ketogluc
onates meta
bolism 2 4 223 726 1.085118 0.595622 1 
NAD and NA
DP cofactor 
biosynthesis
 global 3 7 222 722 0.975693 0.622094 1 
Pyruvate Ala
nine Serine I
nterconversi
ons 3 7 222 722 0.975693 0.622094 1 
Biotin biosy
nthesis 1 2 224 729 1.084738 0.658369 1 
Fermentatio
ns: Mixed ac
id 7 19 218 706 0.872035 0.691076 1 
Pyruvate me
tabolism II: 
acetyl- 5 14 220 713 0.853009 0.700466 1 
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CoA, acetog
enesis from 
pyruvate 
5-FCL-
like protein 5 15 220 712 0.809265 0.736678 1 
Glycine and 
Serine Utiliz
ation 5 16 220 711 0.769685 0.769612 1 
Glutamine, 
Glutamate, 
Aspartate a
nd Asparagi
ne Biosynth
esis 5 16 220 711 0.769685 0.769612 1 
Pyridoxin (V
itamin B6) Bi
osynthesis 2 7 223 723 0.720714 0.771935 1 
Isoprenoind
s for Quinon
es 1 4 224 727 0.649381 0.800706 1 
Polyprenyl D
iphosphate 
Biosynthesis 1 5 224 726 0.540492 0.847858 1 
Chitin and N
-
acetylglucos
amine utiliz
ation 1 5 224 726 0.540492 0.847858 1 
Citrate Meta
bolism, Tran
sport, and R
egulation 1 5 224 726 0.540492 0.847858 1 
De Novo Pyr
imidine Synt
hesis 3 13 222 716 0.605028 0.861321 1 
Purine conv
ersions 6 23 219 703 0.664422 0.868378 1 
Thiamin bio
synthesis 1 7 224 724 0.404295 0.91142 1 
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Coenzyme A
 Biosynthesi
s 1 7 224 724 0.404295 0.91142 1 
Fatty Acid Bi
osynthesis F
ASII 3 16 222 713 0.50744 0.921079 1 
Histidine Bio
synthesis 1 8 224 723 0.358903 0.932444 1 
Fermentatio
ns: Lactate 2 16 223 714 0.356025 0.967711 1 
pyrimidine c
onversions 1 11 224 720 0.268101 0.970091 1 
Riboflavin, F
MN and FAD
 metabolism 1 12 224 719 0.247143 0.97722 1 
Folate Biosy
nthesis 1 13 224 718 0.229178 0.982655 1 
De Novo Pur
ine Biosynth
esis 1 13 224 718 0.229178 0.982655 1 
Threonine a
nd Homoser
ine Biosynth
esis 1 15 224 716 0.199983 0.989955 1 
Heme and Si
roheme Bios
ynthesis 0 2 225 730 0 1 1 
riboflavin to
 FAD 0 6 225 726 0 1 1 
Pyridoxin(Vi
tamin B6) D
egradation P
athway 0 1 225 731 0 1 1 
Folate biosy
nthesis clust
er 0 6 225 726 0 1 1 
One-
carbon meta
bolism by te 0 5 225 727 0 1 1 
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trahydropter
ines 
Glycine Bios
ynthesis 0 1 225 731 0 1 1 
Dehydrogen
ase complex
es 0 3 225 729 0 1 1 
Lipoic acid 
metabolism 0 3 225 729 0 1 1 
Xanthine Me
tabolism in 
Bacteria 0 2 225 730 0 1 1 
Purine Utiliz
ation 0 4 225 728 0 1 1 
GMP syntha
se 0 2 225 730 0 1 1 
Mevalonate 
Branch of Is
oprenoid Bi
osynthesis 0 5 225 727 0 1 1 
Isoprenoid B
iosynthesis: 
Interconvers
ions 0 2 225 730 0 1 1 
Glutamine s
ynthetases 0 1 225 731 0 1 1 
Glutamate d
ehydrogena
ses 0 1 225 731 0 1 1 
Proline Synt
hesis 0 4 225 728 0 1 1 
Arginine Dei
minase Path
way 0 3 225 729 0 1 1 
S-
methylmethi
onine 0 2 225 730 0 1 1 
Lysine Biosy
nthesis DAP 0 10 225 722 0 1 1 
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Pathway, GJ
O scratch 
Lysine Biosy
nthesis DAP 
Pathway 0 10 225 722 0 1 1 
Phenylalanin
e and Tyrosi
ne Branches
 from Choris
mate 0 1 225 731 0 1 1 
Alanine bios
ynthesis 0 3 225 729 0 1 1 
Glycerate m
etabolism 0 5 225 727 0 1 1 
Dihydroxyac
etone kinas
es 0 5 225 727 0 1 1 
Glycolate, gl
yoxylate int
erconversio
ns 0 4 225 728 0 1 1 
Alpha-
acetolactate
 operon 0 2 225 730 0 1 1 
Acetoin, but
anediol met
abolism 0 2 225 730 0 1 1 
VC0266 0 1 225 731 0 1 1 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (F) Providencia rettgeri. 

 Present Absent  

Subsystem
s 

Accessory Core Accessory Core 
Odds ratio Fisher's p-

value 

FDR 
corrected 
p-value 

Acetyl-
CoA fermen
tation to But
yrate 11 7 73 851 7.095209 1.22E-05 0.00128 
De Novo Pur
ine Biosynth
esis 8 3 76 858 8.173156 8.90E-05 0.004671 
Fatty acid m
etabolism cl
uster 9 9 75 851 5.654388 0.000263 0.009221 
Mannose Me
tabolism 6 1 78 862 9.424761 0.000408 0.010721 
Carbon stor
age regulato
r 3 0 81 866 10.63303 0.010877 0.190355 
Aromatic a
mino acid in
terconversio
ns with aryl 
acids 3 0 81 866 10.63303 0.010877 0.190355 
Indole-
pyruvate oxi
doreductase
 complex 2 0 82 867 10.51584 0.040977 0.614653 
Butanol Bios
ynthesis 3 7 81 859 3.175453 0.099063 1 
Serine Biosy
nthesis 2 5 82 862 2.99842 0.184446 1 
Proline, 4-
hydroxyprol
ine uptake a 2 7 82 860 2.327669 0.251982 1 
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nd utilizatio
n 
Glutamine, 
Glutamate, 
Aspartate a
nd Asparagi
ne Biosynth
esis 3 14 81 852 1.854595 0.255283 1 
Glycerol and
 Glycerol-3-
phosphate U
ptake and U
tilization 2 10 82 857 1.740602 0.353784 1 
Tryptophan 
synthesis 2 11 82 856 1.605029 0.386842 1 
Flavodoxin 1 4 83 864 2.079783 0.426019 1 
Chorismate:
 Intermediat
e for synthe
sis of Trypto
phan, PAPA 
antibiotics, 
PABA, 3-
hydroxyanth
ranilate and 
more. 2 13 82 854 1.388066 0.450625 1 
Glycolate, gl
yoxylate int
erconversio
ns 1 5 83 863 1.73168 0.476931 1 
Menaquinon
e and Phyllo
quinone Bio
synthesis 1 7 83 861 1.296293 0.565744 1 
Menaquinon
e and Phyllo
quinone Bio 1 7 83 861 1.296293 0.565744 1 
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synthesis -
- gjo 
Purine Utiliz
ation 1 7 83 861 1.296293 0.565744 1 
Urease subu
nits 1 7 83 861 1.296293 0.565744 1 
Urea decom
position 1 7 83 861 1.296293 0.565744 1 
Glyoxylate b
ypass 1 7 83 861 1.296293 0.565744 1 
Pyruvate me
tabolism I: a
naplerotic r
eactions, PE
P 1 7 83 861 1.296293 0.565744 1 
Biotin biosy
nthesis 1 9 83 859 1.03491 0.639626 1 
Coenzyme A
 Biosynthesi
s 1 9 83 859 1.03491 0.639626 1 
Glycine and 
Serine Utiliz
ation 2 21 82 846 0.897225 0.663533 1 
Threonine a
nd Homoser
ine Biosynth
esis 1 10 83 858 0.939816 0.671761 1 
Heme and Si
roheme Bios
ynthesis 1 11 83 857 0.860556 0.701062 1 
Common Pa
thway For Sy
nthesis of A
romatic Co
mpounds (D
AHP synthas
e to chorism
ate) 1 11 83 857 0.860556 0.701062 1 
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Arginine an
d Ornithine 
Degradation 1 12 83 856 0.793477 0.727775 1 
Pyruvate me
tabolism II: 
acetyl-
CoA, acetog
enesis from 
pyruvate 1 13 83 855 0.736033 0.752128 1 
Chorismate 
Synthesis 1 13 83 855 0.736033 0.752128 1 
TCA Cycle 1 14 83 854 0.68619 0.774325 1 
5-FCL-
like protein 1 17 83 851 0.569882 0.829794 1 
Methionine 
Degradation 1 17 83 851 0.569882 0.829794 1 
Cysteine Bio
synthesis 1 17 83 851 0.569882 0.829794 1 
pyrimidine c
onversions 1 20 83 848 0.486795 0.871752 1 
Purine conv
ersions 1 25 83 843 0.390908 0.920153 1 
Methionine 
Biosynthesis 1 30 83 838 0.32594 0.950422 1 
Biotin biosy
nthesis Exp
erimental 0 4 84 865 0 1 1 
Thiamin bio
synthesis 0 9 84 860 0 1 1 
Pyridoxin (V
itamin B6) Bi
osynthesis 0 11 84 858 0 1 1 
Nonmevalon
ate Branch o
f Isoprenoid
 Biosynthesi
s 0 5 84 864 0 1 1 
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riboflavin to
 FAD 0 4 84 865 0 1 1 
Riboflavin, F
MN and FAD
 metabolism 0 8 84 861 0 1 1 
NAD and NA
DP cofactor 
biosynthesis
 global 0 18 84 851 0 1 1 
Deoxyribose
 and Deoxyn
ucleoside C
atabolism 0 11 84 858 0 1 1 
Folate biosy
nthesis clust
er 0 8 84 861 0 1 1 
Folate Biosy
nthesis 0 12 84 857 0 1 1 
Coenzyme A
 Biosynthesi
s cluster 0 3 84 866 0 1 1 
One-
carbon meta
bolism by te
trahydropter
ines 0 5 84 864 0 1 1 
Fermentatio
ns: Mixed ac
id 0 10 84 859 0 1 1 
Fermentatio
ns: Lactate 0 6 84 863 0 1 1 
Glycine Bios
ynthesis 0 3 84 866 0 1 1 
Glycine clea
vage system 0 7 84 862 0 1 1 
Dehydrogen
ase complex
es 0 5 84 864 0 1 1 



 

246 

Lipoic acid 
metabolism 0 2 84 867 0 1 1 
Creatine an
d Creatinine
 Degradatio
n 0 2 84 867 0 1 1 
Pentose pho
sphate path
way 0 8 84 861 0 1 1 
Xanthine Me
tabolism in 
Bacteria 0 3 84 866 0 1 1 
Purine nucle
otide synthe
sis regulator 0 1 84 868 0 1 1 
GMP syntha
se 0 2 84 867 0 1 1 
Triacylglyce
rol metaboli
sm 0 2 84 867 0 1 1 
Fatty Acid Bi
osynthesis F
ASII 0 11 84 858 0 1 1 
Acyl-
CoA thioest
erase II 0 1 84 868 0 1 1 
Isoprenoind
s for Quinon
es 0 4 84 865 0 1 1 
Polyprenyl D
iphosphate 
Biosynthesis 0 3 84 866 0 1 1 
Isoprenoid B
iosynthesis: 
Interconvers
ions 0 1 84 868 0 1 1 
Nitrate and 
nitrite amm
onification 0 15 84 854 0 1 1 
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Denitrifying 
reductase g
ene clusters 0 4 84 865 0 1 1 
Ammonia as
similation 0 6 84 863 0 1 1 
Glutamine s
ynthetases 0 1 84 868 0 1 1 
Glutamate d
ehydrogena
ses 0 1 84 868 0 1 1 
Proline Synt
hesis 0 5 84 864 0 1 1 
Branched-
Chain Amin
o Acid Biosy
nthesis 0 14 84 855 0 1 1 
Histidine De
gradation 0 9 84 860 0 1 1 
Histidine Bio
synthesis 0 8 84 861 0 1 1 
Arginine Dei
minase Path
way 0 3 84 866 0 1 1 
Polyamine M
etabolism 0 8 84 861 0 1 1 
Urea carbox
ylase and Al
lophanate h
ydrolase clu
ster 0 4 84 865 0 1 1 
Lysine Biosy
nthesis DAP 
Pathway, GJ
O scratch 0 13 84 856 0 1 1 
Lysine Biosy
nthesis DAP 
Pathway 0 13 84 856 0 1 1 
Threonine d
egradation 0 2 84 867 0 1 1 
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Leucine Bios
ynthesis 0 5 84 864 0 1 1 
Alanine bios
ynthesis 0 8 84 861 0 1 1 
Pyruvate Ala
nine Serine I
nterconversi
ons 0 12 84 857 0 1 1 
Acetolactate
 synthase su
bunits 0 5 84 864 0 1 1 
Acetoin, but
anediol met
abolism 0 6 84 863 0 1 1 
Phenylalanin
e and Tyrosi
ne Branches
 from Choris
mate 0 7 84 862 0 1 1 
Aromatic a
mino acid d
egradation 0 10 84 859 0 1 1 
Glycerate m
etabolism 0 6 84 863 0 1 1 
D-
galactarate, 
D-
glucarate an
d D-
glycerate ca
tabolism - g
jo 0 4 84 865 0 1 1 
D-
galactarate, 
D-
glucarate an
d D-
glycerate ca
tabolism 0 4 84 865 0 1 1 
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Methylglyox
al Metabolis
m 0 7 84 862 0 1 1 
Dihydroxyac
etone kinas
es 0 2 84 867 0 1 1 
D-
gluconate a
nd ketogluc
onates meta
bolism 0 5 84 864 0 1 1 
Chitin and N
-
acetylglucos
amine utiliz
ation 0 4 84 865 0 1 1 
Lactose and 
Galactose U
ptake and U
tilization 0 6 84 863 0 1 1 
Methylcitrat
e cycle 0 4 84 865 0 1 1 
Citrate Meta
bolism, Tran
sport, and R
egulation 0 6 84 863 0 1 1 
2-
Ketoglucona
te Utilizatio
n 0 4 84 865 0 1 1 
D-
ribose utiliz
ation 0 3 84 866 0 1 1 
L-
ascorbate ut
ilization (an
d related ge
ne clusters) 0 3 84 866 0 1 1 
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D-
galactonate 
catabolism 0 3 84 866 0 1 1 
Xylose utiliz
ation 0 2 84 867 0 1 1 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (G) Tatumella sp. 

 Present Absent  

Subsystem
s 

Accessory Core Accessory Core 
Odds ratio Fisher's p-

value 

FDR 
corrected 
p-value 

Mannose Me
tabolism 3 1 31 748 17.87454 0.002303 0.207283 
Conserved c
luster aroun
d inner me
mbrane prot
ein gene yg
hQ, probabl
y involved in
 polysacchar
ide biosynth
esis 3 5 31 744 8.934928 0.009631 0.433413 
Lactose utili
zation 1 0 33 751 22.43571 0.084696 1 
Nitrate and 
nitrite amm
onification 2 8 32 742 4.619457 0.091385 1 
Heme and Si
roheme Bios
ynthesis 2 13 32 737 3.06362 0.1648 1 
Glutamine, 
Glutamate, 
Aspartate a
nd Asparagi
ne Biosynth
esis 2 15 32 735 2.696915 0.196563 1 
Biotin biosy
nthesis Exp
erimental 1 3 33 748 5.639076 0.198828 1 
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Xanthine Me
tabolism in 
Bacteria 1 3 33 748 5.639076 0.198828 1 
Acetolactate
 synthase su
bunits 1 4 33 747 4.510231 0.233706 1 
Lactose and 
Galactose U
ptake and U
tilization 1 5 33 746 3.755621 0.267109 1 
Purine Utiliz
ation 1 6 33 745 3.216886 0.299096 1 
Biotin biosy
nthesis 1 7 33 744 2.812218 0.329727 1 
Lysine degr
adation 1 7 33 744 2.812218 0.329727 1 
Threonine a
nd Homoser
ine Biosynth
esis 1 9 33 742 2.245168 0.38714 1 
Arginine Dei
minase Path
way 1 9 33 742 2.245168 0.38714 1 
Pyruvate Ala
nine Serine I
nterconversi
ons 1 9 33 742 2.245168 0.38714 1 
Acetoin, but
anediol met
abolism 1 9 33 742 2.245168 0.38714 1 
Thiamin bio
synthesis 1 10 33 741 2.038768 0.414026 1 
Ammonia as
similation 1 11 33 740 1.866789 0.439767 1 
Pyridoxin (V
itamin B6) Bi
osynthesis 1 13 33 738 1.596215 0.487997 1 
TCA Cycle 1 13 33 738 1.596215 0.487997 1 
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Glycine and 
Serine Utiliz
ation 1 15 33 736 1.393244 0.532186 1 
Branched-
Chain Amin
o Acid Biosy
nthesis 1 15 33 736 1.393244 0.532186 1 
Polyamine M
etabolism 1 15 33 736 1.393244 0.532186 1 
5-FCL-
like protein 1 25 33 726 0.846316 0.703177 1 
D-
gluconate a
nd ketogluc
onates meta
bolism 1 27 33 724 0.783759 0.729191 1 
Arginine an
d Ornithine 
Degradation 1 28 33 723 0.755712 0.741354 1 
Fatty acid m
etabolism cl
uster 0 3 34 749 0 1 1 
Butanol Bios
ynthesis 0 10 34 742 0 1 1 
Nonmevalon
ate Branch o
f Isoprenoid
 Biosynthesi
s 0 5 34 747 0 1 1 
riboflavin to
 FAD 0 4 34 748 0 1 1 
Riboflavin, F
MN and FAD
 metabolism 0 8 34 744 0 1 1 
Flavodoxin 0 4 34 748 0 1 1 
Serine Biosy
nthesis 0 8 34 744 0 1 1 



 

254 

NAD and NA
DP cofactor 
biosynthesis
 global 0 13 34 739 0 1 1 
Chorismate:
 Intermediat
e for synthe
sis of Trypto
phan, PAPA 
antibiotics, 
PABA, 3-
hydroxyanth
ranilate and 
more. 0 14 34 738 0 1 1 
Folate biosy
nthesis clust
er 0 8 34 744 0 1 1 
Folate Biosy
nthesis 0 12 34 740 0 1 1 
Coenzyme A
 Biosynthesi
s cluster 0 3 34 749 0 1 1 
Coenzyme A
 Biosynthesi
s 0 11 34 741 0 1 1 
Purine conv
ersions 0 20 34 732 0 1 1 
Tryptophan 
synthesis 0 11 34 741 0 1 1 
One-
carbon meta
bolism by te
trahydropter
ines 0 8 34 744 0 1 1 
pyrimidine c
onversions 0 14 34 738 0 1 1 
Pyruvate me
tabolism II: 
acetyl- 0 9 34 743 0 1 1 
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CoA, acetog
enesis from 
pyruvate 
Fermentatio
ns: Mixed ac
id 0 15 34 737 0 1 1 
Fermentatio
ns: Lactate 0 5 34 747 0 1 1 
Glycine Bios
ynthesis 0 1 34 751 0 1 1 
De Novo Pur
ine Biosynth
esis 0 11 34 741 0 1 1 
Methionine 
Biosynthesis 0 21 34 731 0 1 1 
Glycine clea
vage system 0 6 34 746 0 1 1 
Methionine 
Degradation 0 9 34 743 0 1 1 
Dehydrogen
ase complex
es 0 5 34 747 0 1 1 
Lipoic acid 
metabolism 0 1 34 751 0 1 1 
Deoxyribose
 and Deoxyn
ucleoside C
atabolism 0 8 34 744 0 1 1 
Pentose pho
sphate path
way 0 10 34 742 0 1 1 
Purine nucle
otide synthe
sis regulator 0 1 34 751 0 1 1 
GMP syntha
se 0 2 34 750 0 1 1 
Triacylglyce
rol metaboli
sm 0 1 34 751 0 1 1 
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Fatty Acid Bi
osynthesis F
ASII 0 12 34 740 0 1 1 
Acyl-
CoA thioest
erase II 0 1 34 751 0 1 1 
Isoprenoind
s for Quinon
es 0 4 34 748 0 1 1 
Polyprenyl D
iphosphate 
Biosynthesis 0 3 34 749 0 1 1 
Isoprenoid B
iosynthesis: 
Interconvers
ions 0 1 34 751 0 1 1 
Denitrifying 
reductase g
ene clusters 0 4 34 748 0 1 1 
Glutamine s
ynthetases 0 1 34 751 0 1 1 
Histidine Bio
synthesis 0 7 34 745 0 1 1 
Putrescine u
tilization pa
thways 0 4 34 748 0 1 1 
Proline, 4-
hydroxyprol
ine uptake a
nd utilizatio
n 0 7 34 745 0 1 1 
S-
methylmethi
onine 0 2 34 750 0 1 1 
Cysteine Bio
synthesis 0 16 34 736 0 1 1 
Lysine Biosy
nthesis DAP 0 12 34 740 0 1 1 
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Pathway, GJ
O scratch 
Lysine Biosy
nthesis DAP 
Pathway 0 12 34 740 0 1 1 
Leucine Bios
ynthesis 0 6 34 746 0 1 1 
Alanine bios
ynthesis 0 8 34 744 0 1 1 
DAP (1,3-
diaminopro
pane) produ
ction 0 2 34 750 0 1 1 
Common Pa
thway For Sy
nthesis of A
romatic Co
mpounds (D
AHP synthas
e to chorism
ate) 0 13 34 739 0 1 1 
Phenylalanin
e and Tyrosi
ne Branches
 from Choris
mate 0 6 34 746 0 1 1 
Proline Synt
hesis 0 4 34 748 0 1 1 
Glycerate m
etabolism 0 4 34 748 0 1 1 
Methylglyox
al Metabolis
m 0 7 34 745 0 1 1 
Dihydroxyac
etone kinas
es 0 1 34 751 0 1 1 
Pyruvate me
tabolism I: a
naplerotic r 0 6 34 746 0 1 1 
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eactions, PE
P 
Glycolate, gl
yoxylate int
erconversio
ns 0 1 34 751 0 1 1 
Chitin and N
-
acetylglucos
amine utiliz
ation 0 4 34 748 0 1 1 
Citrate Meta
bolism, Tran
sport, and R
egulation 0 4 34 748 0 1 1 
Alpha-
acetolactate
 operon 0 3 34 749 0 1 1 
Glycerol and
 Glycerol-3-
phosphate U
ptake and U
tilization 0 11 34 741 0 1 1 
D-
ribose utiliz
ation 0 2 34 750 0 1 1 
2-
Ketoglucona
te Utilizatio
n 0 4 34 748 0 1 1 
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Table S1.6. Subsystem enrichment analysis of prevalent species. (H) Gene functions among top subsystems and distribution across 

pangenomes. 

Species Metabolic 
functions Metabolic distribution among prevalent taxa 

Gk 

Subsystem: D-
gluconate and 
ketogluconate
s metabolism 
(OR = 3.2, p = 
0.0002, 
adjusted p = 
0.01)               
Ortholog 
functions Ath Gc Gk LAb LApl PRr T 
2-Keto-D-
gluconate 
dehydrogenas
e (EC 1.1.99.4), 
membrane-
bound, 
flavoprotein               
2-Keto-D-
gluconate 
dehydrogenas
e (EC 1.1.99.4), 
membrane-
bound, 
cytochrome c               
2-Keto-D-
gluconate 
dehydrogenas
e (EC 1.1.99.4), 
membrane-
bound,               
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gamma 
subunit 
Gluconate 2-
dehydrogenas
e (EC 1.1.99.3), 
membrane-
bound, 
gamma 
subunit               
Gluconate 2-
dehydrogenas
e (EC 1.1.99.3), 
membrane-
bound, 
flavoprotein               
Glucose 1-
dehydrogenas
e (EC 1.1.1.47)               

LAb 

Subsystem: 
Citrate 
metabolism, 
transport, and 
regulation (OR 
= 17.8, p = 
0.0001, 
adjusted p = 
0.009)               
Ortholog 
functions Ath Gc Gk LAb LApl PRr T 
[Citrate [pro-
3S]-lyase] 
ligase (EC 
6.2.1.22)               
Apo-citrate 
lyase 
phosphoribosy
l-dephospho-
CoA               
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transferase 
(EC 2.7.7.61) 
Citrate lyase 
alpha chain 
(EC 4.1.3.6)               
Citrate lyase 
beta chain (EC 
4.1.3.6)               
Citrate lyase 
transcriptional 
regulator CitI               

LApl 

Subsystem: 
Trehalose 
uptake and 
utilization (OR 
= 3.5, p = 
0.0002, 
adjusted p = 
0.01)               
Ortholog 
functions Ath Gc Gk LAb LApl PRr T 
Trehalose-6-
phosphate 
hydrolase (EC 
3.2.1.93)               
PTS system, 
trehalose-
specific IIA 
component 
(EC 2.7.1.69)               
PTS system, 
trehalose-
specific IIB 
component 
(EC 2.7.1.69)               
PTS system, 
trehalose-               
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specific IIC 
component 
(EC 2.7.1.69) 
Trehalose 
operon 
transcriptional 
repressor               
Beta-
phosphogluco
mutase (EC 
5.4.2.6)               
PTS system, 
glucose-
specific IIB 
component 
(EC 2.7.1.69)               
Trehalose 6-
phosphate 
phosphorylase 
(EC 2.4.1.216)               
Trehalose 
phosphorylase 
(EC 2.4.1.64)               

PRr 

Subsystem: 
Mannose 
metabolism 
(OR = 9.4, p = 
0.0004, 
adjusted p = 
0.01)               
Ortholog 
functions Ath Gc Gk LAb LApl PRr T 
Phosphoma
nnomutase (
EC 5.4.2.8)               
Mannose-
6-
phosphate i               
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somerase (E
C 5.3.1.8) 
Subsystem: 
De Novo Purin
e Biosynthesis 
(OR = 8.2, p = 
8.9e-5, 
adjusted p = 
0.005)               
Ortholog 
functions Ath Gc Gk LAb LApl PRr T 
IMP cyclohy
drolase (EC 
3.5.4.10)               
Phosphoribo
sylaminoimi
dazolecarbo
xamide for
myltransfera
se (EC 2.1.2.
3)               
Phosphoribo
sylamine--
glycine ligas
e (EC 6.3.4.
13)               
Amidophos
phoribosyltr
ansferase (E
C 2.4.2.14)               
Phosphoribo
sylaminoimi
dazole-
succinocarb
oxamide sy
nthase (EC 6
.3.2.6)               
Phosphoribo
sylformylgly               
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cinamidine 
cyclo-
ligase (EC 6.
3.3.1) 
Phosphoribo
sylformylgly
cinamidine s
ynthase, syn
thetase sub
unit (EC 6.3.
5.3)               
Phosphoribo
sylformylgly
cinamidine s
ynthase, glu
tamine amid
otransferase
 subunit (EC
 6.3.5.3)               
Subsystem: 
Acetyl-
CoA fermentat
ion to Butyrat
e (OR = 7.1, p 
= 1.2e-5, 
adjusted p = 
0.001)               
Ortholog 
functions Ath Gc Gk LAb LApl PRr T 
3-
hydroxybuty
ryl-
CoA epimer
ase (EC 5.1.
2.3)               
Enoyl-
CoA hydrata
se (EC 4.2.1.
17)               
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3-
hydroxyacyl
-
CoA dehydr
ogenase (EC
 1.1.1.35)               
Electron tra
nsfer flavop
rotein-
ubiquinone 
oxidoreduct
ase (EC 1.5.
5.1)               
Subsystem: 
Fatty acid 
metabolism 
cluster (OR = 
5.7, p = 
0.0003, 
adjusted p = 
0.009)               
Ortholog 
functions Ath Gc Gk LAb LApl PRr T 
3-
hydroxybuty
ryl-
CoA epimer
ase (EC 5.1.
2.3)               
Enoyl-
CoA hydrata
se (EC 4.2.1.
17)               
3-
hydroxyacyl
-
CoA dehydr
ogenase (EC
 1.1.1.35)               
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 
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Fig S1 Method development for microbial selection media. Assessment of antimicrobials selected to inhibit (A &
B) ACE, (C) LAC, and (D) YST using mono-cultures. (E) Validation of media and antimicrobials used to select for 
ACE, LAC, and YST using tri-culture community to calculate microbial abundance. Data represents five 
replicates from three independent experimental replicates, except for panel (B), which had one experimental 
replicate. CFU was normalized to CFU of microbe grown under optimal conditions (see Table 1). The mean and 
95% confidence intervals of positive control are shown as lines for each panel (solid and dashed, respectively). 
Non-overlapping confidence intervals indicate significant difference between treatments. K = kanamycin. A = 
ampicillin. MP = methylparaben.
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Figure S2.1. Method development for microbial selection media. Assessment of antimicrobials selected to inhibit (A & B) ACE, (C) 

LAC, and (D) YST using mono-cultures. (E) Validation of media and antimicrobials used to select for ACE, LAC, and YST using tri-

culture community to calculate microbial abundance. Data represents five replicates from three independent experimental replicates, 

except for panel (B), which had one experimental replicate. CFU was normalized to CFU of microbe grown under optimal conditions 

(see Table 1). The mean and 95% confidence intervals of positive control are shown as lines for each panel (solid and dashed, 

respectively). Non-overlapping confidence intervals indicate significant difference between treatments. K = kanamycin. A = 

ampicillin. MP = methylparaben.  



 

268 

 

A)

F M

Liquid Solid Liquid Solid
0.7

0.8

0.9

1.0

pr
op

or
tio

n 
su

rv
ive

d
(m

ea
n 

± 
SE

, n
 =

 3
6)

Holidic
Meridic

F
M

Delivery: 
c21 =  5.76*

F M

1 2 3 4 1 2 3 4

0.0

0.5

1.0

1.5

time (d) µ
 g

 fl
y−

1    (m
ea

n 
± 

C
I, 

n 
= 

6)
Holidic
Meridic

F
M

sex*day: 
F3,60 = 13.16***

B)

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20

0
5

10
15
20

 µ
 g

 g
lu

co
se

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20
25
30

0
5

10
15
20
25
30

 µ
 g

 T
AG

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20

0
5

10
15
20

 µ
 g

 g
lu

co
se

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Mass: 5.3 ±2.5*

Delivery*Diet: 10.2**
Sex: 6.3*  

C)

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20
25
30

0
5

10
15
20
25
30

 µ
 g

 T
AG

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20
25
30

0
5

10
15
20
25
30

 µ
 g

 T
AG

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20
25
30

0
5

10
15
20
25
30

 µ
 g

 T
AG

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Delivery*Sex: 12.9***  
Delivery*Diet: 4.8*

Mass: 12.1 ± 3.3***

D)

Day−0 Day−4

F
M

Initial Liquid Solid

70

105

140

70

105

140
 µ

 g
 p

ro
te

in
 fl

y−
1  (m

ea
n 

± 
C

I, 
n 

= 
6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20
25
30

0
5

10
15
20
25
30

 µ
 g

 T
AG

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)
Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

70

105

140

70

105

140

 µ
 g

 p
ro

te
in

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Mass: 40.1 ± 11.2***

Diet: 13.3***
Sex: 11.9**  

E)

Day−0 Day−4

F
M

Initial Liquid Solid

0.5
1.0
1.5
2.0

0.5
1.0
1.5
2.0

m
g 

m
as

s 
fly

−1
 (m

ea
n 

± 
C

I, 
n 

= 
6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

0
5

10
15
20
25
30

0
5

10
15
20
25
30

 µ
 g

 T
AG

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

0.5
1.0
1.5
2.0

0.5
1.0
1.5
2.0

m
g 

m
as

s 
fly

−1
 (m

ea
n 

± 
C

I, 
n 

= 
6)

Holidic
Meridic
Y−G

F
M

Delivery*Sex: 7.8**  

F)

Day−0 Day−4

F
M

Initial Liquid Solid

70

105

140

70

105

140

 µ
 g

 p
ro

te
in

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

Day−0 Day−4

F
M

Initial Liquid Solid

70

105

140

70

105

140

 µ
 g

 p
ro

te
in

 fl
y−

1  (m
ea

n 
± 

C
I, 

n 
= 

6)

Holidic
Meridic
Y−G

F
M

l



 

269 

 

 

 

 

 

Figure S2.2. Method development for capillary feeding experiments. Comparison of diet (holidic 

v. meridic) and delivery method (liquid or solid) on fly (A) feeding rate, (B) survival, nutritional 

indices ((C) glucose, (D) TAG, and (E) protein content), and fly weight for female (F) and male 

(M) flies. All data are displayed as estimated marginal mean and SE or CI, except for the raw 

mean and SE are shown for survival data. For nutritional indices and fly weight, day-0 raw mean 

and CI are shown for starting reference. The significant effect terms from models are displayed 

for each panel (significant main effects are not included if interaction term is significant). Panels 

C-F, the residual degrees of freedom are 39 and the fly weight covariate slope and SE are 

included under the day-4 label. Note: for solid medium, there is no direct measure of fly feeding 

as for the CAFÉ method. Significance: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Fig. S3. Analyses of Drosophila development time. (A) Relative number of insects pupated, (B) violin plot for time to pupation, and (C) summary statistics of 
simulated YST time to eclosion. In panel (A), the estimated marginal mean and 95% confidence intervals from ANOVA analysis are plotted, along with letter 
rankings from post hoc Tukey tests. The dashed line is the average value for axenic flies; confidence intervals that do not overlap with this line indicate a 
significant difference from axenic insects. Probability density function and median time (black bar) are shown for the time to pupation in panel (B). Asterisks 
indicated significance for Kolmogorov-Smirnov test ** < 0.01 and **** < 0.0001. Statistics for ANOVA treatment effect: F6,110 = 7.40, p = 1.15 x 10-6, R2 = 0.29. 
Distribution statistics are in Table S1C. For panel (C), hazard ratio from Cox regression comparing simulated YST eclosion time to axenic data and measures of 
distribution shape (skewness and excess kurtosis) are shown from all 5,000 simulations. The dashed lines indicate results from observed data distributions to 
compare how the simulations performed against the observed data. For Cox regression analyses, only 22% of simulations had significant results. The variation 
in hazard ratios was low across simulations (relative standard deviation [RSD] = 5.2%), and the median time for all YST simulations was equal to the axenic flies 
(observed axenic and YST median time, 242 and 233 h, respectively) with increased measures of skewness and kurtosis. Simulated YST data indicates that if 
all flies reached eclosion, it is likely that this would result in an eclosion rate similar to the observed axenic fly data. Mono = mono-association. Di = di-
association. Tri = tri-association.
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Figure S2.3. Analyses of Drosophila development time. (A) Relative number of insects pupated, (B) violin plot for time to pupation, 

and (C) summary statistics of simulated YST time to eclosion. In panel (A), the estimated marginal mean and 95% confidence 

intervals from ANOVA analysis are plotted, along with letter rankings from post hoc Tukey tests. The dashed line is the average value 

for axenic flies; confidence intervals that do not overlap with this line indicate a significant difference from axenic insects. Probability 

density function and median time (black bar) are shown for the time to pupation in panel (B). Asterisks indicated significance for 

Kolmogorov-Smirnov test ** < 0.01 and **** < 0.0001. Statistics for ANOVA treatment effect: F6,110 = 7.40, p = 1.15 x 10-6, R2 = 

0.29. Distribution statistics are in Table S2.1C. For panel (C), hazard ratio from Cox regression comparing simulated YST eclosion 

time to axenic data and measures of distribution shape (skewness and excess kurtosis) are shown from all 5,000 simulations. The 

dashed lines indicate results from observed data distributions to compare how the simulations performed against the observed data. 

For Cox regression analyses, only 22% of simulations had significant results. The variation in hazard ratios was low across 

simulations (relative standard deviation [RSD] = 5.2%), and the median time for all YST simulations was equal to the axenic flies 

(observed axenic and YST median time, 242 and 233 h, respectively) with increased measures of skewness and kurtosis. Simulated 

YST data indicates that if all flies reached eclosion, it is likely that this would result in an eclosion rate similar to the observed axenic 

fly data. Mono = mono-association. Di = di-association. Tri = tri-association. 
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Fig. S4. Nutritional indices. (A) Generalized path analysis model tested to understand among-microbe interactions and 

their effect on a given nutritional index and (B) association of among-microbe interactions with nutritional indices. Most 

models did not include a random effect for experimental replicate (p > 0.05), expect for some of the linear models 

associating a nutritional index to among-microbe interactions (e.g. TAG ~ ACE*LAC*YST). These models include 

glucose content (both sexes), glycogen content (males only), and TAG content (both sexes). For Fig. 4 and S4B, both 

the marginal and conditional R2 are reported for the nutritional index response variable. For panel B, left- and right-side 

are female and male flies, respectively. Red and black arrows indicate negative and positive associations, respectively. 

The standardized coefficient for each significant association and marginal R2 values for all response variables are 

shown, with conditional R2 values shown in parentheses if needed. Full description of statistical tests are in Table S1E.
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Figure S2.4. Nutritional indices. (A) Generalized path analysis model tested to understand 

among-microbe interactions and their effect on a given nutritional index and (B) association of 

among-microbe interactions with nutritional indices. Most models did not include a random 

effect for experimental replicate (p > 0.05), expect for some of the linear models associating a 

nutritional index to among-microbe interactions (e.g. TAG ~ ACE*LAC*YST). These models 

include glucose content (both sexes), glycogen content (males only), and TAG content (both 

sexes). For Fig. 2.4 and S2.4B, both the marginal and conditional R2 are reported for the 

nutritional index response variable. For panel B, left- and right-side are female and male flies, 

respectively. Red and black arrows indicate negative and positive associations, respectively. The 

standardized coefficient for each significant association and marginal R2 values for all response 

variables are shown, with conditional R2 values shown in parentheses if needed. Full description 

of statistical tests is in Table S2.1E. 
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Fig. S5. Performance and nutritional indices of Drosophila in CAFÉ assays. Feeding rates of flies administered (A) ethanol, (A) acetate, (B) 
lactate or (B) acetoin. (C) Comparison of variation between independent experimental replicates for the measures: fly weight, total diet volume 
consumed by day-4 (Feeding), survival at day-4 (Survival), and nutritional indices for TAG, glucose, and protein content. For panels A and B, 
the estimated marginal mean and confidence interval are plotted from ANOVA model. Post hoc Dunnett’s test was used to compare treatments 
(0.15 and 0.3 M) to control diet for each day and sex (significance: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). Effect test results in 
Table S1F. For panel C, experimental replicates are labeled as 1, 2, and 3 for each metabolite. Data are displayed as estimated conditional 
mean and standard deviation for experimental replicate random effect from each model. The dashed line indicates the grand mean. Significant 
effect terms from each model are shown next to measure label (significance: * p < 0.05, ** p < 0.01, **** p < 0.0001). Open-triangle indicates 
experimental replicates that differ from grand mean as determined by non-overlapping 95% confidence intervals from simulated posterior 
distributions (note: no differences were found for protein content in the post hoc analysis). F = female. M = male. See Dyrad (doi: 
10.5061/dryad.ngf1vhhrj) for extended version of this figure with data displayed from all associated measures in CAFÉ assays.
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Figure S2.5. Performance and nutritional indices of Drosophila in CAFE assays. Feeding rates of flies administered (A) ethanol, (A) 

acetate, (B) lactate or (B) acetoin. (C) Comparison of variation between independent experimental replicates for the measures: fly 

weight, total diet volume consumed by day-4 (Feeding), survival at day-4 (Survival), and nutritional indices for TAG, glucose, and 

protein content. For panels A and B, the estimated marginal mean and confidence interval are plotted from ANOVA model. Post hoc 

Dunnett’s test was used to compare treatments (0.15 and 0.3 M) to control diet for each day and sex (significance: * p < 0.05, ** p < 

0.01, *** p < 0.001, **** p < 0.0001). Effect test results in Table S1F. For panel C, experimental replicates are labeled as 1, 2, and 3 

for each metabolite. Data are displayed as estimated conditional mean and standard deviation for experimental replicate random effect 

from each model. The dashed line indicates the grand mean. Significant effect terms from each model are shown next to measure label 

(significance: * p < 0.05, ** p < 0.01, **** p < 0.0001). Open-triangle indicates experimental replicates that differ from grand mean 

as determined by non-overlapping 95% confidence intervals from simulated posterior distributions (note: no differences were found 

for protein content in the post hoc analysis). F = female. M = male. See Dyrad (doi: 10.5061/dryad.ngf1vhhrj) for extended version of 

this figure with data displayed from all associated measures in CAFE assays. 
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Table S2.1A. Effect of co-associations on microbial abundance and biomass 
Analysis 
categories 

ACE LAC YST 
Total 

abundance 
Total biomass 

Tukey test      
ACE-F B - - B C 
ACE-M ab - - ab bc 
LAC-F - A - B BC 
LAC-M - a - bc bc 
YST-F - - A CD A 
YST-M - - a d a 
ACE+LAC-F A D - A B 
ACE+LAC-
M a d 

- 
a b 

ACE+YST-F C - B D D 
ACE+YST-
M c - b cd c 
LAC+YST-F - B A BC A 
LAC+YST-
M - b a bcd a 
ACE+LAC+ 
YST-F C C B CD CD 
ACE+LAC+ 
YST-M bc c b bcd c 
ANOVA 
Effect test      
Treatment F3,60. = 31.58, 

p = 2.2x10-12 
F3,60. = 231.69,  
p < 2.2 x 10-16 

F3,64. = 198.01,  
p < 2.2 x 10-16 

F6,108.04 = 17.23,  
p = 6.80 x 10-14 

F6,106.73 = 48.20,  
p < 2.2 x 10-16 

Sex F1,62 = 5.51,  
p = 0.0221 

F1,62 = 3.53,  
p = 0.0650 

F1,66 = 9.60,  
p = 0.0029 

F1,110 = 33.23,  
p = 7.59 x 10-8 

F1,107.43 = 40.74,  
p = 4.52 x 10-9 

Interaction F3,62 = 2.74,  
p = 0. 0506 

F3,62 = 1.12,  
p = 0.3469 

F3,66= 13.25,  
p = 7.2 x 10-7 

F6,110 = 2.55,  
p = 0.0236 

F6,107.50 = 4.21,  
p = 0.0008 

Analysis of 
Deviance      
Experimental 
replicate 
(Vial) 

X2
2 = 29.71,  

p = 3.5 x 10-7 
X2

2 = 0,  
p = 1 

X2
2 = 20.92,  

p = 2.9 x 10-5 
X2

2 = 23.34,  
p = 8.53 x 10-6 

X2
2 = 30.59,  

p = 2.27 x 10-7 

R2      
Marginal 0.404 0.843 0.848 0.398 0.632 
Conditional 0.682 0.843 0.922 0.632 0.797 

 
The post hoc Tukey test was implemented to assess differences in microbial abundance between 
treatments for each sex. Uppercase letters are used to represent the ranking of female samples and 
lowercase letters are used to distinguish the rankings for male samples. A hyphen indicates treatment-sex 
combinations that were not used in species-specific analyses. P-values below the threshold are bolded. 
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Table S2.1B. Mixed effect Cox regression model results for influence of microbiota treatment on 
development time 
 
i) Time to pupation: Axenic reference 

Treatment Coefficient ± SEa Hazard Ratio z-value p-value 
ACE 0.383 ± 0.090 1.466 4.26 < 0.0001 

LAC -0.067 ± 0.091 0.935 -0.74 0.46 
YST 1.231 ± 0.089 3.426 13.87 < 0.0001 

ACE+LAC 0.618 ± 0.091 1.856 6.79 < 0.0001 

ACE+YST 1.298 ± 0.087 3.663 14.91 < 0.0001 

LAC+YST 1.150 ± 0.087 3.157 13.28 < 0.0001 

ACE+LAC+YST 1.142 ± 0.088 3.132 12.91 < 0.0001 

Analysis of deviance for Experiment(vial): χ22 = 653.13, p < 2.2 x 10-16 
ii) Time to eclosion: Axenic reference 

Treatment Coefficient ± SEa Hazard Ratio z-value p-value 
ACE 0.411 ± 0.085 1.509 4.81 < 0.0001 

LAC -0.014 ± 0.086 0.987 -0.16 0.87 
YST 1.120 ± 0.084 3.064 13.27 < 0.0001 

ACE+LAC 0.602 ± 0.086 1.826 6.97 < 0.0001 

ACE+YST 1.378 ± 0.083 3.968 16.61 < 0.0001 

LAC+YST 1.141 ± 0.082 3.129 13.87 < 0.0001 

ACE+LAC+YST 1.270 ± 0.083 3.559 15.26 < 0.0001 

Analysis of deviance for Experiment(vial): χ22 = 367.93, p < 2.2 x 10-16 
 
astandard error 
P-values below the threshold are bolded. 
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Table S2.1C. Microbial treatment effect on pupation and eclosion time distribution shape 

Treatment 
Pupation Eclosion 

Skewness Kurtosis Skewness Kurtosis 

Axenic 
skew = 0.63154,  
z = 8.16090,  
p = 3.324 x 10-16 

kurt = 2.5632,  
z = -3.8453,  
p = 0.0001204 

skew = 1.1559,  
z = 13.3350, 
p < 2.2 x 10-16 

kurt = 4.9370,  
z = 7.5279,  
p = 5.155 x 10-14 

ACE 
skew = 1.4526,  
z = 13.9400, 
 p < 2.2 x 10-16 

kurt = 6.5036,  
z = 9.1271,  
p < 2.2 x 10-16 

skew = 1.3758,  
z = 13.5040,  
p < 2.2 x 10-16 

kurt = 5.1519,  
z = 7.1994,  
p = 6.05 x 10-13 

LAC 
skew = 0.75575,  
z = 8.77260,  
p < 2.2 x 10-16 

kurt = 2.8148,  
z = -1.2101,  
p = 0.2263 

skew = 0.995,  
z = 10.804,  
p < 2.2 x 10-16 

kurt = 3.7046,  
z = 3.5312,  
p = 0.0004137 

YST 
skew = 1.0856,  
z = 10.5910,  
p < 2.2 x 10-16 

kurt = 5.3998,  
z = 7.0930,  
p = 1.313 x 10-12 

skew = 0.44015,  
z = 4.91990,  
p = 8.66 x 10-7 

kurt = 3.7181, 
 z = 3.2819,  
p = 0.001031 

ACE + LAC 
skew = 1.077,  
z = 11.327,  
p < 2.2 x 10-16 

kurt = 5.3551,  
z = 7.5245,  
p = 5.292 x 10-14 

skew = 1.7202,  
z = 15.5100,  
p < 2.2 x 10-16 

kurt = 6.8955,  
z = 9.5624,  
p < 2.2 x 10-16 

ACE + YST 
skew = 0.82543,  
z = 9.04410,  
p < 2.2 x 10-16 

kurt = 4.2327,  
z = 5.0514,  
p = 4.386 x 10-7 

skew = 0.63815, 
z = 7.17800,  
p = 7.073 x 10-13 

kurt = 3.08720,  
z = 0.63387,  
p = 0.5262 

LAC + YST 
skew = 1.1518,  
z = 11.6320,  
p < 2.2 x 10-16 

kurt = 6.4887,  
z = 8.9211,  
p < 2.2 x 10-16 

skew = 0.51589,  
z = 5.99600,  
p = 2.023 x 10-9 

kurt = 4.4441,  
z = 5.5318,  
p = 3.17 x 10-8 

ACE + LAC + 
YST 

skew = 1.3636,  
z = 13.3130,  
p < 2.2 x 10-16 

kurt = 4.9863,  
z = 6.8362,  
p = 8.132 x 10-12 

skew = 0.35846,  
z = 4.29100,  
p = 1.779 x 10-5 

kurt = 2.7491,  
z = -1.6526,  
p = 0.09842 

Kolmogorov-

Smirnov tests 

Pupation Eclosion 

D statistic p-value D statistic p-value 
ACE - Axenic 0.2736 < 2.2 x 10-16 0.2347 < 2.2 x 10-16 
LAC - Axenic 0.08423 0.0010 0.0311 0.6761 
YST - Axenic 0.5896 < 2.2 x 10-16 0.5428 < 2.2 x 10-16 

ACE + LAC - 
Axenic 0.3861 < 2.2 x 10-16 0.3156 < 2.2 x 10-16 

ACE + YST - 
Axenic 0.6047 < 2.2 x 10-16 0.6781 < 2.2 x 10-16 

LAC + YST - 
Axenic 0.6119 < 2.2 x 10-16 0.5388 < 2.2 x 10-16 

ACE + LAC + 
YST - Axenic 0.5740 < 2.2 x 10-16 0.6081 < 2.2 x 10-16 

 
P-values below the threshold are bolded.
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Table S2.1D. Effect of microbial treatment and sex on fly weight and nutritional indices 
Analysis 
categories Weight Protein TAG Glucose Trehalose Glycogen 

ANOVA Effect 
test     

  

Treatment F7,122.53 = 16.75,  
p = 2.3 x 10-15 

F7,124.11 = 5.61,  
p = 1.2 x 10-5 

F7,124.02 = 62.41,  
p < 2.2 x 10-16 

F7,124.05 = 68.53,  
p < 2.2 x 10-16 

F7,124.22 = 12.46,  
p = 5.1 x 10-12 

F7,124.04 = 8.64,  
p = 1.3 x 10-8 

Sex F1,124.02 = 4933.70,  
p < 2.2 x 10-16 

F1,126 = 19.69,  
p = 2.0 x 10-5 

F1,126 = 43.22,  
p = 1.2 x 10-9 

F1,126 = 836.85,  
p < 2.2 x 10-16 

F1,1126= 68.70, 
p = 1.5 x 10-13 

F1,126 = 376.79,  
p < 2.2 x 10-16 

Interaction F3,124.09 = 8.11,  
p = 4.2 x 10-8 

F7,126 = 1.24,  
p = 0.2848 

F7,126 = 36.86,  
p < 2.2 x 10-16 

F7,126 = 10.08,  
p = 5.8 x 10-10 

F7,126 = 3.10,  
p = 0.0047 

F6,126 = 7.19,  
p = 3.1 x 10-7 

Analysis of 
Deviance       
Experimental 
replicate (Vial) 

X2
2 = 0.72,  

p = 0.6974 
X2

2 = 3.02,  
p = 0.221 

X2
2 = 23.25,  

p = 8.9 x 10-6 
X2

2 = 631.42,  
p < 2.2 x 10-16 

X2
2 = 94.21,  

p < 2.2 x 10-16 
X2

2 = 20.35,  
p = 3.8 x 10-5 

R2       
Marginal 0.947 0.211 0.702 0.812 0.394 0.578 
Conditional 0.952 0.304 0.747 0.881 0.825 0.704 
 
P-values below the threshold are bolded. 
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Table S2.1E. Structural equation model output for among-microbe interactions and their influence on 
Drosophila nutritional indices. 

i) Protein content – Female samples (Fisher’s C = 1.295, df = 2, p = 0.523) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Protein ACE -0.4200 2.0154 -0.0307 0.8352 
Protein LAC -1.7197 2.0957 -0.0951 0.4134 
Protein YST 5.7954 2.2936 0.3239 0.0127 
Protein ACE*LAC -0.2194 1.8894 -0.0179 0.9077 
Protein ACE*YST 3.5765 1.7824 0.3138 0.0469 
Protein LAC*YST 0.4653 0.9844 0.0626 0.6373 
Protein ACE*LAC*YST -1.3972 1.5684 -0.1615 0.3747 
YST ACE -0.2952 0.0614 -0.3862 < 0.0001 
LAC ACE -0.2628 0.0617 -0.3475 < 0.0001 
ii) Protein content – Male samples (Fisher’s C = 1.045, df = 2, p = 0.593) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Protein ACE -1.9905 2.8024 -0.1138 0.4788 
Protein LAC -0.4113 3.0130 -0.0175 0.8916 
Protein YST 2.0101 3.3455 0.0817 0.5490 
Protein ACE*LAC 1.9296 2.8328 0.1265 0.4970 
Protein ACE*YST 4.2620 2.0236 0.2953 0.0372 
Protein LAC*YST 1.0465 1.4651 0.1030 0.4764 
Protein ACE*LAC*YST -1.7050 2.3303 -0.1291 0.4657 
YST ACE -0.2398 0.0582 -0.3374 0.0001 
LAC ACE -0.2486 0.0611 -0.3338 0.0001 
iii) Glucose content – Female samples (Fisher’s C = 1.295, df = 2, p = 0.523) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Glucose ACE -0.1082 0.0682 -0.1741 0.1154 
Glucose LAC 0.0148 0.0709 0.0180 0.8350 
Glucose YST -0.5910 0.0777 -0.7272 < 0.0001 
Glucose ACE*LAC 0.0764 0.0639 0.1372 0.2346 
Glucose ACE*YST -0.0795 0.0604 -0.1536 0.1910 
Glucose LAC*YST -0.0056 0.0333 -0.0166 0.8668 
Glucose ACE*LAC*YST 0.0133 0.0533 0.0338 0.8037 
YST ACE -0.2952 0.0614 -0.3862 < 0.0001 
LAC ACE -0.2628 0.0617 -0.3475 < 0.0001 
iv) Glucose content – Male samples (Fisher’s C = 1.045, df = 2, p = 0.593) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Glucose ACE -0.0504 0.0462 -0.0957 0.2777 
Glucose LAC 0.1550 0.0496 0.2191 0.0022 
Glucose YST -0.4220 0.0551 -0.5693 < 0.0001 
Glucose ACE*LAC 0.1298 0.0467 0.2825 0.0063 
Glucose ACE*YST -0.0822 0.0333 -0.1892 0.0150 
Glucose LAC*YST -0.0648 0.0241 -0.2117 0.0083 
Glucose ACE*LAC*YST -0.1350 0.0385 -0.3393 0.0006 
YST ACE -0.2398 0.0582 -0.3374 0.0001 
LAC ACE -0.2486 0.0611 -0.3338 0.0001 
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v) Trehalose content – Female samples (Fisher’s C = 1.295, df = 2, p = 0.523) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Trehalose ACE -0.2915 0.0754 -0.5255 0.0002 
Trehalose LAC -0.3887 0.0784 -0.5299 < 0.0001 
Trehalose YST -0.4483 0.0858 -0.6178 < 0.0001 
Trehalose ACE*LAC 0.1031 0.0707 0.2075 0.1470 
Trehalose ACE*YST -0.1020 0.0667 -0.2207 0.1286 
Trehalose LAC*YST 0.0884 0.0368 0.2934 0.0178 
Trehalose ACE*LAC*YST 0.1168 0.0587 0.3329 0.0487 
YST ACE -0.2952 0.0614 -0.3862 < 0.0001 
LAC ACE -0.2628 0.0617 -0.3475 < 0.0001 
vi) Trehalose content – Male samples (Fisher’s C = 1.045, df = 2, p = 0.593) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Trehalose ACE -0.1052 0.0871 -0.1629 0.2297 
Trehalose LAC -0.3726 0.0937 -0.4297 0.0001 
Trehalose YST -0.6365 0.1040 -0.7005 < 0.0001 
Trehalose ACE*LAC -0.0388 0.0881 -0.0690 0.6600 
Trehalose ACE*YST -0.0661 0.0629 -0.1241 0.2952 
Trehalose LAC*YST 0.1239 0.0456 0.3302 0.0075 
Trehalose ACE*LAC*YST 0.1495 0.0725 0.3064 0.0412 
YST ACE -0.2398 0.0582 -0.3374 0.0001 
LAC ACE -0.2486 0.0611 -0.3338 0.0001 
vii) Glycogen content – Female samples (Fisher’s C = 1.295, df = 2, p = 0.523) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Glycogen ACE -0.0724 0.1345 -0.0729 0.5914 
Glycogen LAC 0.1846 0.1399 0.1406 0.1893 
Glycogen YST -0.1517 0.1531 -0.1168 0.3236 
Glycogen ACE*LAC 0.1448 0.1261 0.1628 0.2530 
Glycogen ACE*YST -0.3761 0.1190 -0.4547 0.0020 
Glycogen LAC*YST -0.1548 0.0657 -0.2870 0.0200 
Glycogen ACE*LAC*YST -0.0003 0.1047 -0.0004 0.9979 
YST ACE -0.2952 0.0614 -0.3862 < 0.0001 
LAC ACE -0.2628 0.0617 -0.3475 < 0.0001 
viii) Glycogen content – Male samples (Fisher’s C = 1.045, df = 2, p = 0.593) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

Glycogen ACE 0.3215 0.1371 0.3303 0.0206 
Glycogen LAC 0.3444 0.1470 0.2635 0.0207 
Glycogen YST -0.1050 0.1634 -0.0766 0.5219 
Glycogen ACE*LAC -0.0384 0.1384 -0.0453 0.7816 
Glycogen ACE*YST 0.0056 0.0988 0.0069 0.9553 
Glycogen LAC*YST -0.1444 0.0715 -0.2553 0.0456 
Glycogen ACE*LAC*YST -0.0484 0.1141 -0.0659 0.6718 
YST ACE -0.2398 0.0582 -0.3374 0.0001 
LAC ACE -0.2486 0.0611 -0.3338 0.0001 
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ix) TAG content – Female samples (Fisher’s C = 1.295, df = 2, p = 0.523) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

TAG ACE -0.8619 0.4261 -0.2779 0.0453 
TAG LAC -0.1071 0.4429 -0.0261 0.8094 
TAG YST 0.0214 0.4852 0.0053 0.9648 
TAG ACE*LAC -0.2136 0.3994 -0.0769 0.5938 
TAG ACE*YST -0.0476 0.3776 -0.0184 0.8999 
TAG LAC*YST 0.3802 0.2082 0.2256 0.0702 
TAG ACE*LAC*YST -0.0362 0.3327 -0.0185 0.9135 
YST ACE -0.2952 0.0614 -0.3862 < 0.0001 
LAC ACE -0.2628 0.0617 -0.3475 < 0.0001 
x) TAG content – Male samples (Fisher’s C = 0.988, df = 2, p = 0.61) 
Response Predictor Unstandardized 

coefficient  
SE Standardized 

coefficient  
P value 

TAG ACE 0.0026 0.4246 0.0004 0.9952 
TAG LAC -0.4702 0.4553 -0.0551 0.3037 
TAG YST 6.3893 0.5064 0.7152 < 0.0001 
TAG ACE*LAC -0.7518 0.4287 -0.1352 0.0820 
TAG ACE*YST 0.6317 0.3061 0.1201 0.0411 
TAG LAC*YST 0.8681 0.2215 0.2344 0.0001 
TAG ACE*LAC*YST 0.6113 0.3535 0.1268 0.0862 
YST ACE -0.2398 0.0582 -0.3400 0.0001 
LAC ACE -0.2486 0.0611 -0.3369 0.0001 

 
P-values below the threshold are bolded. 
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Table S2.1F. Effect of administered microbial fermentation products on Drosophila feeding, survival, 
weight, and nutritional indices 

i) Metabolite effect on feeding by day 
ANOVA effect test 
(Type III ANOVA) 

Ethanol (sqrt-
transformed) 

Acetic acid Lactic acid Acetoin 

Concentration F2,100 = 1.46,  
p = 0.2362 

F2,100 = 26.02,  
p = 8.0 x 10-10 

F2,103 = , 41.41 
p = 6.4 x 10-14 

F2,100 = 2.57,  
p = 0.0817 

Sex F1,100 = 204.93,  
p < 2.2 x 10-16 

F1,100 = 114.84,  
p < 2.2 x 10-16 

F1,102 = 138.09,  
p < 2.2 x 10-16 

F1,100 = 50.98,  
p = 1.5 x 10-10 

Day F3,306 = 318.40,  
p < 2.2 x 10-16 

F3,306 = 388.81,  
p < 2.2 x 10-16 

F3,300 = 138.09,  
p < 2.2 x 10-16 

F3,306 = 301.96,  
p < 2.2 x 10-16 

Concentration*Sex F2,100 = 0.29,  
p = 0.7489 

F2,100 = 0.77,  
p = 0.4668 

F2,102 = 0.73,  
p = 0.4863 

F2,100 = 3.33,  
p = 0.0397 

Concentration*Day F6,306 = 4.06,  
p = 0.0006 

F6,306 = 1.33,  
p = 0.2454 

F6,300 = 4.05,  
p = 0.0006 

F6,306 = 2.94,  
p = 0.0084 

Sex*Day F3,306 = 42.62,  
p < 2.2 x 10-16 

F3,306 = 56.17,  
p < 2.2 x 10-16 

F3,301 = 57.15,  
p < 2.2 x 10-16 

F3,306 = 9.49,  
p = 5.2 x 10-6 

Concentration*Sex*Day F6,306 = 1.13,  
p = 0.3462 

F6,306 = 0.96,  
p = 0.4561 

F6,300 = 1.02,  
p = 0.4108 

F6,306 = 2.18,  
p = 0.0452 

Analysis of deviance     
Experimental replicate c2

1 = 6.855,  
p = 0.0088 

c2
1 = 2.054,  

p = 0.1519 
c2

1 = 0.561,  
p =  0.4537 

c2
1 = 98.164,  

p < 2.2 x 10-16 
R2     
Marginal 0.741 0.765 0.782 0.503 
Conditional  0.766 0.792 0.799 0.801 
ii) Metabolite effect on final survival 
Effect test 
(Wald’s c2) 

Ethanol  Acetic acid Lactic acid Acetoin 

Concentration c2
2 = 7.686,  

p = 0.0214 
c2

2 = 11.859,  
p = 0.0027 

c2
2 = 9.470,  

p = 0.0088 
c2

2 = 1.575,  
p = 0.4550 

Sex c2
1 = 2.148,  

p = 0.1428 
c2

1 = 0.582,  
p = 0.4457 

c2
1 = 6.066,  

p = 0.0138 
c2

1 = 0.076,  
p = 0.7834 

Concentration*Sex c2
2 = 1.620,  

p = 0.4448 
c2

2 = 5.382,  
p = 0.0678 

c2
2 = 2.536,  

p = 0.2815 
c2

2 = 3.752,  
p = 0.1532 

Total food consumed c2
1 = 1.807,  

p = 0.1789 
c2

1 = 0.000,  
p = 0.9955 

c2
1 = 4.535,  

p = 0.0332 
c2

1 = 3.146,  
p = 0.0761 

Analysis of deviance     
Experimental replicate c2

1 = 0,  
p = 0.9999 

c2
1 = 2.864,  

p = 0.091 
c2

1 = 6.235,  
p = 0.0125 

c2
1 = 0,  

p = 0.9992 
iii) Metabolite effect on fly weight 
ANOVA effect test 
(Type II ANOVA) 

Ethanol (sqrt-
transformed) 

Acetic acid 
(sqrt-
transformed) 

Lactic acid Acetoin 

Concentration F2,99 = 0.119,  
p = 0.8883 

F2,100 = 6.102,  
p = 0.0032 

F2,87 = 1.434,  
p = 0.2439 

F2,100 = 2.584,  
p = 0.0805 

Sex F1,101 = 39.105, 
p = 9.8 x 10-9 

F1,101 = 63.300,  
p = 2.7 x 10-12 

F1,88 = 9.188,  
p = 0.0032 

F1,96 = 83.452, p 
= 1.1 x 10-14 

Concentration*Sex F2,99 = 0.892,  
p = 0.4130 

F2,99 = 4.647,  
p = 0.0118 

F2,86 = 0.460,  
p = 0.6331 

F2,100 = 0.761,  
p = 0.4699 

Total food consumed F1,101 = 0.509, p F1,101 = 5.060, p F1,87 = 1.494,  F1,38 = 2.764,  
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= 0.4770 = 0.0267 p = 0.2248 p = 0.1046 
Analysis of deviance     
Experimental replicate c2

1 = 5.182,  
p = 0.0228 

c2
1 = 0.636,  

p = 0.4253 
c2

1 = 0,  
p = 1 

c2
1 = 0.081,  

p = 0.7759 
R2     
Marginal 0.487 0.488 0.363 0.474 
Conditional  0.562 0.510 0.371 0.564 
iv) Metabolite effect on TAG content   
ANOVA effect test 
(Type II ANOVA) 

Ethanol  Acetic acid Lactic acid Acetoin 

Concentration F2,98.32 = 0.073, 
p = 0.9293 

F2,99.32 = 5.822, 
p = 0.0041 

F2,85.69 = 1.180, p 
= 0.3122 

F2,99.04 = 0.775, 
p = 0.4636 

Sex F1,75.92 = 3.606, 
p = 0.0614 

F1,97.97 = 3.124, p 
= 0.0803 

F1,85.66 = 3.393, p 
= 0.0689 

F1,83.94 = 2.617, p 
= 0.1095 

Concentration*Sex F2,98.02 = 0.128, 
p = 0.8805 

F2,98.31  = 0.786, 
p = 0.4587 

F2,85.01 = 2.976, p 
= 0.0563 

F2,99.04 = 0.459, 
p = 0.6335 

Total food consumed F1,88.47 = 0.055, 
p = 0.8148 

F1,91.07 = 1.134, p 
= 0.2897 

F1,85.56 = 1.844, p 
= 0.1781 

F1,22.59 = 1.703, p 
= 0.2050 

Weight fly-1 F1,91.85 = 8.477, 
p = 0.0045 

F198.79  = 49.98, 
p = 2.2 x 10-10 

F1,85.43 = 41.40, 
p = 7.0 x 10-9 

F1, 99.90 = 33.19, 
p = 9.3 x 10-8 

Analysis of deviance     
Experimental replicate c2

1 = 0.089,  
p = 0.765 

c2
1 = 0,  

p = 1 
c2

1 = 15.017,  
p = 0.0001 

c2
1 = 0.043,  

p = 0.8353 
R2     
Marginal 0.320 0.436 0.350 0.341 
Conditional  0.338 0.441 0.524 0.426 
v) Metabolite effect on glucose content 
ANOVA effect test 
(Type II ANOVA) 

Ethanol  Acetic acid Lactic acid Acetoin 

Concentration F2,98.09 = 0.759, 
p = 0.4709 

F2,98.95 = 0.628, p 
= 0.5359 

F2,84.01 = 3.784, p 
= 0.0267 

F2,98.57 = 0.994, 
p = 0.3739 

Sex F1,99 = 42.031, p 
= 3.5 x 10-9 

F1,100 = 28.913, 
p = 5.0 x 10-7 

F1,83.9 = 32.465, 
p = 1.8 x 10-7 

F1,98.6 = 15.587, 
p = 0.0001 

Concentration*Sex F2,98.00 = 2.178, 
p = 0.1188 

F2,98.16 = 0.024, p 
= 0.9760 

F2,85.13 = 0.872, p 
= 0.4218 

F2,98.57 = 4.831, 
p = 0.0100 

Total food consumed F1,100 = 4.219, p 
= 0.0426 

F1,99 = 11.685, p 
= 0.0009 

F1,85.25 = 2.894,  
p = 0.0926 

F1,69.81 = 2.483,  
p = 0.1196 

Weight fly-1 F1,99.94 = 3.501, 
p = 0.0643 

F1,99.97 = 5.213, 
p = 0.0245 

F1,86.67 = 5.572, 
p = 0.0205 

F1,99.6 = 44.592, 
p = 1.4 x 10-9 

Analysis of deviance     
Experimental replicate c2

1 = 7.610,  
p = 0.0058 

c2
1 = 0.556,  

p = 0.4558 
c2

1 = 0,  
p = 1 

c2
1 = 12.286,  

p = 0.0005 
R2     
Marginal 0.535 0.476 0.576 0.575 
Conditional  0.612 0.499 0.576 0.708 
vi) Metabolite effect on protein content 
ANOVA effect test 
(Type II ANOVA) 

Ethanol Acetic acid Lactic acid Acetoin 

Concentration F2,98.09 = 2.223, 
p = 0.1137 

F2,99.29 = 7.939, 
p = 0.0006 

F2,85.5 = 2.874, p 
= 0.0619 

F2,99.44 = 0.763, 
p = 0.4690 
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Sex F1,99.8 = 38.28, p 
= 1.4 x 10-8 

F1,95.1 = 60.998, 
p = 7.5 x 10-12 

F1,86 = 35.555, p 
= 5.3 x 10-8 

F1,54.03 = 3.839, 
p = 0.0553 

Concentration*Sex F2,98.00 = 1.184, 
p = 0.3103 

F2,98.40 = 0.295, p 
= 0.7452 

F2,85.09 = 5.598, 
p = 0.0052 

F2,99.43 = 0.795, 
p = 0.4545 

Total food consumed F1,100 = 3.117, p 
= 0.0805 

F1,83.09 = 0.085, p 
= 0.7714 

F1,86.60 = 1.804, p 
= 0.1826 

F1,2.67 = 0.500, p 
= 0.5362 

Weight fly-1 F1,100 = 0.273, p 
= 0.6023 

F1,96.5 = 38.171, 
p = 1.5 x 10-8 

F1,87 = 87.384, p 
= 8.7 x 10-15 

F1,98.43 = 0.169, 
p = 0.6821 

Analysis of deviance     
Experimental replicate c2

1 = 6.976,  
p = 0.00826 

c2
1 = 0,  

p = 1 
c2

1 = 0,  
p = 1 

c2
1 = 0,  

p = 1 
R2     
Marginal 0.633 0.814 0.799 0.105 
Conditional  0.693 0.814 0.802 0.106 

 
P-values below the threshold are bolded. 
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Table S2.1G. Effect of microbiota member presence on SCFA content 
Analysis categories Acetic acid Propionic acid Butyric acid Total 
Tukey test     
Axenic-F AB AB AB AB 
Axenic-M a a b a 
ACE-F B B B B 
ACE-M a a b a 
LAC-F AB AB AB AB 
LAC-M a a b a 
YST-F AB A A A 
YST-M a a a a 
ACE+LAC-F AB AB AB AB 
ACE+LAC-M a a b a 
ACE+YST-F A AB B AB 
ACE+YST-M a a ab a 
LAC+YST-F AB AB AB AB 
LAC+YST-M a a ab a 
ACE+LAC+YST-F AB AB AB AB 
ACE+LAC+YST-M a a ab a 
ANOVA Effect test     
sex F1,39.34 = 0.0025, 

p = 0.9607,  
ω2 = - 0.015 

F1,39.33 = 0.0881, 
p = 0.7681, 
ω2 = -0.012 

F1,39.35 = 0.0635, 
p = 0.8023, 
ω2 = -0.011 

F1,39.29 = 0.0704, 
p = 0.7921, 
ω2 = -0.013 

ACE F1,37.91 = 0.3776, 
p = 0.5424, 
ω2 = - 0.010 

F1,39.91 = 0.1708, 
p = 0.6816, 
ω2 = -0.011 

F1,39.90 = 3.1695, 
p = 0.0826, 
ω2 = 0.025 

F1,39.93 = 0.0010, 
p= 0.9747,  
ω2 = -0.014 

LAC F1,37.91 = 0.8531, 
p = 0.3612, 
ω2 = - 0.003 

F1,39.91 = 1.0488, 
p = 0.3120, 
ω2 = 4.5e-06 

F1,39.90 = 0.6764, 
p = 0.4157, 
ω2 = -0.004 

F1,39.93 = 1.1419, 
p= 0.2917,  
ω2 = 0.001 

YST F1,37.91 = 9.1564, 
p = 0.0043, 
ω2 = 0.125 

F1,39.91 = 8.3138, 
p = 0.0063, 
ω2 = 0.093 

F1,39.90 = 18.024, 
p = 0.0001, 
ω2 = 0.197 

F1,39.93 = 10.511, 
p= 0.0024, 
ω2 = 0.136 

ACE*sex F1,39.38 = 1.5957, 
p = 0.2139, 
ω2 = 0.008 

F1,39.37 = 14.659, 
p = 0.0005, 
ω2 = 0.178 

F1,39.40 = 1.5576, 
p = 0.2194, 
ω2 = 0.007 

F1,39.32 = 6.9104, 
p= 0.0122, 
ω2 = 0.085 

LAC*sex F1,39.38 = 0.0064, 
p = 0.9365, 
ω2 = - 0.015 

F1,39.37 = 0.0027, 
p = 0.9590, 
ω2 = -0.013 

F1,39.40 = 2.0504, 
p = 0.1601, 
ω2 = 0.012 

F1,39.32 = 0.0068, 
p= 0.9345, 
ω2 = -0.014 

YST*sex F1,39.38 = 1.3405, 
p = 0.2539, 
ω2 = 0.004 

F1,39.37 = 1.3654, 
p = 0.2496, 
ω2 = 0.005 

F1,39.40 = 7.9497, 
p = 0.0075, 
ω2 = 0.082 

F1,39.32 = 0.0125, 
p= 0.9117, 
ω2 = -0.014 

ACE*LAC F1,39.92 = 1.9286, 
p = 0.1726, 
ω2 = 0.014 

F1,39.93 = 5.7471, 
p = 0.0213, 
ω2 = 0.062 

F1,39.92 = 0.8445, 
p = 0.3636, 
ω2 = -0.002 

F1,39.94 = 3.7050, 
p= 0.0614, 
ω2 = 0.039 

ACE*YST F1,39.92 = 3.2895, 
p = 0.0772, 
ω2 = 0.035 

F1,39.93 = 0.1624, 
p = 0.6891, 
ω2 = -0.011 

F1,39.92 = 1.8160, 
p = 0.1854, 
ω2 = 0.009 

F1,37.95 = 1.1702, 
p= 0.2858, 
ω2 = 0.003 

LAC*YST F1,39.92 = 1.0515, 
p = 0.3113, 
ω2 = 0.001 

F1,39.93 = 2.8748, 
p = 0.0978, 
ω2 = 0.024 

F1,39.92 = 1.7766, 
p = 0.1901 , 
ω2 = 0.009 

F1,39.94 = 2.6080, 
p= 0.1142, 
ω2 =  0.023 

ACE*LAC*sex F1,39.40 = 0.1534, F1,39.40 = 1.3125, F1,39.42 = 4.2188, F1,39.35 = 0.0017, 
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p = 0.6975, 
ω2 = - 0.013 

p = 0.2589, 
ω2 = 0.004 

p = 0.0467, 
ω2 = 0.038 

p= 0.9671, 
ω2 =  -0.014 

ACE*YST*sex F1,39.40 = 0.4364, 
p = 0.5127, 
ω2 = - 0.008 

F1,39.40 = 0.0809, 
p = 0.7776, 
ω2 = -0.012 

F1,39.42 = 0.5096, 
p = 0.4795, 
ω2 = -0.006 

F1,39.35 = 0.1985, 
p= 0.6584, 
ω2 = -0.011 

LAC*YST*sex F1,39.40 = 0.3572, 
p = 0.5535, 
ω2 = - 0.010 

F1,39.40 = 0.4912, 
p = 0.4875, 
ω2 = -0.007 

F1,39.42 = 0.0219, 
p = 0.8830, 
ω2 = -0.012 

F1,39.35 = 0.4627, 
p= 0.5004, 
ω2 = -0.008 

ACE*LAC*YST F1,39.93 = 0.4910, 
p = 0.4875, 
ω2 = - 0.008 

F1,39.93 = 0.0063, 
p = 0.9370, 
ω2 = -0.013 

F1,39.93 = 1.5815, 
p = 0.2158, 
ω2 = 0.007 

F1,39.95 = 0.0252, 
p= 0.8746, 
ω2 = -0.014 

ACE*LAC*YST*sex F1,39.42 = 3.6614, 
p = 0.0630, 
ω2 = 0.041 

F1,39.41 = 0.1656, 
p = 0.6863, 
ω2 = -0.011 

F1,39.44 = 0.1699, 
p = 0.6824, 
ω2 = -0.010 

F1,39.36 = 2.0081, 
p= 0.1643, 
ω2 = 0.015 

Analysis of Deviance     
Vial replicate X2

1 = 14.40,  
p = 0.0001 

X2
1 = 13.20,  

p = 0.0003 
X2

1 = 12.88,  
p = 0.0003 

X2
1 = 19.23,  

p = 1.16 x 10-5 
R2     
Marginal 0.244 0.274 0.341 0.262 
Conditional 0.586 0.649 0.662 0.695 
 
The post hoc Tukey test was implemented to assess differences in SCFA content between treatments for 
each sex. Uppercase letters are used to represent the ranking of female samples and lowercase letters are 
used to distinguish the rankings for male samples. Significant p-values were bolded and influential effect 
sizes were italicized. P-values below the threshold are bolded.  
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Table S2.1H. Moderation effect of individual SCFA content and microbiota members on individual 
nutritional indices 

i) TAG ~ Acetate 
ANOVA Effect test Female Male 
ACE F1,29.11 = 7.954, p = 0.0086 F1,30.06 = 55.596, p = 2.6 x 10-8 
LAC F1,29.02 = 0.166, p = 0.6864 F1,30.01 = 0.225, p = 0.6390 
YST F1,29.22 = 4.527, p = 0.0419 F1,30.16 = 602.769, p < 2.2 x 10-16 

[Acetate] F1,30.22 = 0.455, p = 0.5049 F1,31.80 = 1.755, p = 0.1948 
ACE*[Acetate] F1,29.16 = 0.647, p = 0.4276 F1,30.01 = 23.248, p = 3.9 x 10-5 
LAC*[Acetate] F1,29.36 = 1.212, p = 0.2798 F1,31.12 = 0.170, p = 0.6831 
YST*[Acetate] F1,29.22 = 0.271, p = 0.6064 F1,30.28 = 0.416, p = 0.5240 
ACE*LAC F1,29.03 = 0.146, p = 0.7048 F1,30.06 = 12.789, p = 0.0012 
ACE*YST F1,29.27 = 0.055, p = 0.8166 F1,30.09 = 23.741, p = 3.3 x 10-5 
LAC*YST F1,29.07 = 1.623, p = 0.2127 F1,30.42 = 21.530, p = 6.2 x 10-5 
ACE*LAC*[Acetate] F1,29.00 = 0.580, p = 0.4524 F1,30.86 = 4.630, p = 0.0394 
ACE*YST*[Acetate] F1,29.53 = 0.080, p = 0.7797 F1,31.03 = 17.940, p = 0.0002 
LAC*YST*[Acetate] F1,29.41 = 0.914, p = 0.3468 F1,30.10 = 1.793, p = 0.1906 
ACE*LAC*YST F1,29.06 = 0.727, p = 0.4010 F1,30.28 = 4.781, p = 0.0366 
ACE*LAC*YST*[Acetate] F1,29.56 = 2.103, p = 0.1576 F1,30.33 = 0.691, p = 0.4125 
Analysis of Deviance   
Experimental replicate X2

1 = 11.45,  
p = 0.0007 

X2
1 = 5.73,  

p = 0.0167 
R2   
Marginal 0.233 0.929 
Conditional 0.532 0.946 
ii) Glucose ~ Acetate  
ANOVA Effect test Female (ln-transformed) Male (ln-transformed) 
ACE F1,29.42 = 2.988, p = 0.0944 F1,30.20 = 2.148, p = 0.1531 
LAC F1,29.08 = 2.958, p = 0.0961 F1,30.04 = 5.118, p = 0.0311 
YST F1,29.75 = 69.513, p = 2.8 x 10-9 F1,30.47 = 169.154, p = 5.7 x 10-14 
[Acetate] F1,30.63 = 0.792, p = 0.3803 F1,28.74 = 1.078, p = 0.3079 
ACE*[Acetate] F1,29.83 = 1.189, p = 0.2844 F1,30.06 = 0.018, p = 0.8938 
LAC*[Acetate] F1,30.24 = 0.445, p = 0.5099 F1,31.89 = 3.185, p = 0.0839 
YST*[Acetate] F1,30.06 = 0.033, p = 0.8572 F1,30.75 = 1.929, p = 0.1748 
ACE*LAC F1,29.19 = 2.767, p = 0.1069 F1,30.23 = 2.611, p = 0.1165 
ACE*YST F1,30.02 = 11.299, p = 0.0021 F1,30.31 = 4.688, p = 0.0384 
LAC*YST F1,29.38 = 0.859, p = 0.3617 F1,31.18 = 1.460, p = 0.2361 
ACE*LAC*[Acetate] F1,29.04 = 1.613, p = 0.2142 F1,31.90 = 0.027, p = 0.8707 
ACE*YST*[Acetate] F1,30.62 = 0.487, p = 0.4907 F1,32.00 = 1.281, p = 0.2661 
LAC*YST*[Acetate] F1,30.59 = 0.452, p = 0.5062 F1,30.32 = 0.012, p = 0.9141 
ACE*LAC*YST F1,29.28 = 0.135, p = 0.7161 F1,30.83 = 1.206, p = 0.2806 
ACE*LAC*YST*[Acetate] F1,30.78 = 2.505, p = 0.1237 F1,30.93 = 1.241, p = 0.2739 
Analysis of Deviance   
Experimental replicate X2

1 = 0.034,  
p = 0.854 

X2
1 = 35.47,  

p = 2.6 x 10-9 
R2   
Marginal 0.684 0.814 
Conditional 0.703 0.819 
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iii) Protein ~ Acetate  
ANOVA Effect test Female Male  
ACE F1,29.65 = 0.191, p = 0.6650 F1,30.27 = 1.102, p = 0.3021 
LAC F1,29.16 = 0.003, p = 0.9564 F1,30.07 = 0.183, p = 0.6722 
YST F1,30.08 = 8.476, p = 0.0067 F1,30.61 = 2.782, p = 0.1055 
[Acetate] F1,27.86 = 1.729, p = 0.1992 F1,24.45 = 0.202, p = 0.6572 
ACE*[Acetate] F1,30.43 = 0.831, p = 0.3691 F1,30.09 = 0.378, p = 0.5434 
LAC*[Acetate] F1,30.68 = 0.772, p = 0.3864 F1,30.96 = 0.001, p = 0.9784 
YST*[Acetate] F1,30.65 = 3.378, p = 0.0758 F1,30.92 = 0.137, p = 0.7135 
ACE*LAC F1,29.37 = 0.206, p = 0.6537 F1,30.33 = 1.088, p = 0.3053 
ACE*YST F1,30.51 = 1.043, p = 0.3153 F1,30.43 = 1.471, p = 0.2345 
LAC*YST F1,29.69 = 0.768, p = 0.3880 F1,31.44 = 0.229, p = 0.6353 
ACE*LAC*[Acetate] F1,29.10 = 0.530, p = 0.4723 F1,32.00 = 1.453, p = 0.2368 
ACE*YST*[Acetate] F1,30.96 = 1.741, p = 0.1967 F1,31.69 = 0.113, p = 0.7395 
LAC*YST*[Acetate] F1,31.00 = 0.903, p = 0.3495 F1,30.41 = 0.052, p = 0.8218 
ACE*LAC*YST F1,29.47 = 0.040, p = 0.8429 F1,31.04 = 0.225, p = 0.6384 
ACE*LAC*YST*[Acetate] F1,30.99 = 0.374, p = 0.5452 F1,31.13 = 0.924, p = 0.3440 
Analysis of Deviance   
Experimental replicate X2

1 = 0,   
p = 1 

X2
1 = 0,  

p = 1 
R2   
Marginal 0.346 0.201 
Conditional 0.346 0.201 
iv) Glycogen ~ Acetate  
ANOVA Effect test Female Male  
ACE F1,29.65 = 2.034, p = 0.1643 F1,30.06 = 5.552, p = 0.0252 
LAC F1,29.16 = 1.837, p = 0.1857 F1,30.01 = 0.206, p = 0.6533 
YST F1,30.08 = 13.687, p = 0.0009 F1,30.18 = 1.836, p = 0.1855 
[Acetate] F1,27.86 = 0.483, p = 0.4929 F1,31.88 = 0.374, p = 0.5454 
ACE*[Acetate] F1,30.43 = 0.191, p = 0.6650 F1,30.02 = 0.212, p = 0.6488 
LAC*[Acetate] F1,30.68 = 0.252, p = 0.6194 F1,31.21 = 2.913, p = 0.0978 
YST*[Acetate] F1,30.65 = 0.339, p = 0.5645 F1, 30.31 = 0.014, p = 0.9053 
ACE*LAC F1,29.37 = 0.192, p = 0.6647 F1,30.07 = 1.364, p = 0.2520 
ACE*YST F1,30.51 = 3.616, p = 0.0667 F1,30.10 = 1.797, p = 0.1901 
LAC*YST F1,29.69 = 2.921, p = 0.0978 F1,30.46 = 2.026, p = 0.1648 
ACE*LAC*[Acetate] F1,29.10 = 0.199, p = 0.6586 F1,30.94 = 0.167, p = 0.6859 
ACE*YST*[Acetate] F1,30.96 = 0.447, p = 0.5089 F1, 31.12 = 0.364, p = 0.5508 
LAC*YST*[Acetate] F1,31.00 = 1.343, p = 0.2553 F1,30.11 = 0.716, p = 0.4040 
ACE*LAC*YST F1,29.47 = 0.001, p = 0.9824 F1,30.31 = 0.613, p = 0.4398 
ACE*LAC*YST*[Acetate] F1,30.99 = 0.691, p = 0.4121 F1,30.36 = 2.029, p = 0.1645 
Analysis of Deviance   
Experimental replicate X2

1 = 0,  
p = 1 

X2
1 = 3.96  

p = 0.0466 
R2   
Marginal 0.446 0.281 
Conditional 0.446 0.430 
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v) Trehalose ~ Acetate  
ANOVA Effect test Female (ln-transformed) Male (ln-transformed) 
ACE F1,29.39 = 0.816, p = 0.3738 F1,30.27 = 0.040, p = 0.8436 
LAC F1,29.08 = 1.384, p = 0.2489 F1,30.07 = 0.194, p = 0.6632 
YST F1,29.72 = 25.518, p = 2.1 x 10-5 F1,30.61 = 14.018, p = 0.0008 
[Acetate] F1,30.75 = 9.706, p = 0.0040 F1,24.45 = 0.255, p = 0.6183 
ACE*[Acetate] F1,29.77 = 7.690, p = 0.0095 F1,30.09 = 0.316, p = 0.5784 
LAC*[Acetate] F1,30.19 = 9.719, p = 0.0040 F1,30.96 = 0.152, p = 0.6990 
YST*[Acetate] F1,29.99 = 0.499, p = 0.4854 F1,30.92 = 0.065, p = 0.8006 
ACE*LAC F1,29.17 = 3.069, p = 0.0903 F1,30.33 = 1.165, p = 0.2890 
ACE*YST F1,29.97 = 6.471, p = 0.0164 F1,30.43 = 0.599, p = 0.4450 
LAC*YST F1,29.35 = 1.799, p = 0.1902 F1,31.44 = 7.366, p = 0.0107 
ACE*LAC*[Acetate] F1,29.04 = 2.895, p = 0.0995 F1,32.00 = 0.356, p = 0.5551 
ACE*YST*[Acetate] F1,30.57 = 1.088, p = 0.3051 F1,31.69 = 0.092, p = 0.7635 
LAC*YST*[Acetate] F1,30.52 = 0.407, p = 0.5285 F1,30.41 = 0.107, p = 0.7456 
ACE*LAC*YST F1, 29.26 = 0.129, p = 0.7219 F1,31.04 = 0.442, p = 0.5110 
ACE*LAC*YST*[Acetate] F1,30.72 = 0.005, p = 0.9420 F1,31.13 = 1.733, p = 0.1977 
Analysis of Deviance   
Experimental replicate X2

1 = 0.25,  
p = 0.6163 

X2
1 = 0, 

p = 1 

R2   
Marginal 0.585 0.394 
Conditional 0.614 0.394 
vi) TAG ~ Propionate 
ANOVA Effect test Female Male (sqrt-transformed) 
ACE F1,29.03 = 6.032, p = 0.0203 F1,30.06 = 30.458, p = 5.3 x 10-6 
LAC F1,29.11 = 0.060, p = 0.8077 F1,30.02 = 3.124, p = 0.0873 
YST F1,29.10 = 2.672, p = 0.1129 F1,30.26 = 397.131, p > 2.2 x 10-16  
[Propionate] F1,30.25 = 1.034, p = 0.3173 F1,31.33 = 0.054, p = 0.8172 
ACE*[Propionate] F1,29.46 = 0.599, p = 0.4451 F1,30.26 = 7.695, p = 0.0094 
LAC*[Propionate] F1,29.27 = 0.001, p = 0.9716 F1,30.75 = 0.010, p = 0.9207 
YST*[Propionate] F1,29.81 = 0.536, p = 0.4699 F1,31.17 = 1.032, p = 0.3174 
ACE*LAC F1,29.16 = 0.0002, p = 0.9877 F1,30.02 = 7.213, p = 0.0117 
ACE*YST F1,29.28 = 0.775, p = 0.3857 F1,30.13 = 3.546, p = 0.0694 
LAC*YST F1,29.03 = 1.431, p = 0.2413 F1,30.26 = 11.174, p = 0.0022 
ACE*LAC*[Propionate] F1,29.79 = 1.349, p = 0.2548 F1,30.70 = 3.355, p = 0.0767 
ACE*YST*[Propionate] F1,29.46 = 0.033, p = 0.8582 F1,30.97 = 1.043, p = 0.3151 
LAC*YST*[Propionate] F1,30.63 = 0.551, p = 0.4637 F1,31.32 = 0.037, p = 0.8484 
ACE*LAC*YST F1,29.34 = 0.514, p = 0.4790 F1,30.40 = 1.043, p = 0.3153 
ACE*LAC*YST*[Propionate] F1,29.28 = 0.040, p = 0.8425 F1,30.06 = 0.104, p = 0.7495 
Analysis of Deviance   
Experimental replicate X2

1 = 5.47,  
p = 0.0193 

X2
1 = 6.20, 

p = 0.0128 
R2   
Marginal 0.244 0.898 
Conditional 0.429 0.924 
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vii) Glucose ~ Propionate 
ANOVA Effect test Female Male (sqrt-transformed) 
ACE F1,29.16 = 0.135, p = 0.7159 F1,30.08 = 0.648, p = 0.4273 
LAC F1,29.36 = 4.994, p = 0.0332 F1,30.03 = 8.688, p = 0.0061 
YST F1,29.44 = 43.147, p = 3.1 x 10-7 F1,30.35 =137.028, p = 8.8 x 10-13 
[Propionate] F1,29.74 = 1.852, p = 0.1837 F1,31.65 = 0.813, p = 0.3741 
ACE*[Propionate] F1,30.79 = 0.002, p = 0.9679 F1,30.35 = 0.017, p = 0.8968 
LAC*[Propionate] F1, 30.04 = 0.816, p = 0.3734 F1,31.00 = 0.414, p = 0.5249 
YST*[Propionate] F1,30.98 = 2.409, p = 0.1308 F1,31.51 = 1.167, p = 0.2882 
ACE*LAC F1,29.56 = 4.224, p = 0.0488 F1,30.03 = 1.327, p = 0.2585 
ACE*YST F1,30.18 = 11.623, p = 0.0019 F1,30.18 = 2.251, p = 0.1439 
LAC*YST F1,29.11 = 2.322, p = 0.1384 F1,30.35 = 4.411, p = 0.0441 
ACE*LAC*[Propionate] F1,31.00 = 0.366, p = 0.5497 F1,30.93 = 0.210, p = 0.6499 
ACE*YST*[Propionate] F1,30.53 = 2.592, p = 0.1177 F1,31.29 = 0.063, p = 0.8035 
LAC*YST*[Propionate] F1,26.25 = 1.055, p = 0.3137 F1,31.69 = 0.000, p = 0.9971 
ACE*LAC*YST F1,30.34 = 0.417, p = 0.5235 F1,30.55 = 0.109, p = 0.7435 
ACE*LAC*YST*[Propionate] F1,30.34 = 1.193, p = 0.2833 F1,30.09 = 0.017, p = 0.8983 
Analysis of Deviance   
Experimental replicate X2

1 = 0,  
p = 1 

X2
1 = 3.00, 

p = 0.0834 
R2   
Marginal 0.628 0.768 
Conditional 0.628 0.810 
viii) Protein ~ Propionate 
ANOVA Effect test Female Male  
ACE F1,29.16 = 0.388, p = 0.5381 F1,30.26 = 1.475, p = 0.2339 
LAC F1,29.36 = 0.054, p = 0.8187 F1,30.09 = 0.203, p = 0.6557 
YST F1,29.44 = 14.851, p = 0.0006 F1,30.95 = 3.981, p = 0.0549 
[Propionate] F1,29.74 = 0.654, p = 0.4253 F1,30.65 = 0.270, p = 0.6070 
ACE*[Propionate] F1,30.79 = 0.817, p = 0.3730 F1,31.08 = 1.252, p = 0.2718 
LAC*[Propionate] F1,30.04 = 2.740, p = 0.1083 F1,32.00 = 0.357, p = 0.5543 
YST*[Propionate] F1,30.98 = 11.055, p = 0.0023 F1,30.52 = 0.774, p = 0.3859 
ACE*LAC F1,29.56 = 0.412, p = 0.5258 F1,30.15 = 1.138, p = 0.2946 
ACE*YST F1,30.18 = 2.117, p = 0.1560 F1,30.61 = 0.471, p = 0.4976 
LAC*YST F1,29.11 = 1.518, p = 0.2278 F1,31.03 = 0.101, p = 0.7522 
ACE*LAC*[Propionate] F1,31.00 = 1.367, p = 0.2513 F1,32.00 = 2.610, p = 0.1160 
ACE*YST*[Propionate] F1,30.53 = 5.631, p = 0.0241 F1,30.68 = 0.788, p = 0.3817 
LAC*YST*[Propionate] F1,26.25 = 2.470, p = 0.1280 F1,26.45 = 0.300, p = 0.5887 
ACE*LAC*YST F1,30.34 = 0.530, p = 0.4720 F1,31.60 = 0.303, p = 0.5861 
ACE*LAC*YST*[Propionate] F1,30.34 = 1.519, p = 0.2273 F1,30.35 = 0.746, p = 0.3945 
Analysis of Deviance   
Experimental replicate X2

1 = 0, 
p = 1 

X2
1 = 0, 

p = 1 
R2   
Marginal 0.457 0.256 
Conditional 0.457 0.256 
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ix) Glycogen ~ Propionate 
ANOVA Effect test Female Male  
ACE F1,29.16 = 3.263, p = 0.0812 F1,30.05 = 6.715, p = 0.0146 
LAC F1,29.36 = 1.484, p = 0.2328 F1,30.02 = 0.217, p = 0.6447 
YST F1,29.44 = 18.380, p = 0.0002 F1,30.21 = 1.252, p = 0.2721 
[Propionate] F1,29.74 = 0.284, p = 0.5981 F1,31.14 = 1.170, p = 0.2877 
ACE*[Propionate] F1,30.79 = 0.145, p = 0.7062 F1,30.21 = 0.967, p = 0.3334 
LAC*[Propionate] F1,30.04 = 0.623, p = 0.4361 F1,30.62 = 3.203, p = 0.0834 
YST*[Propionate] F1,30.98 = 1.601, p = 0.2152 F1,30.98 = 0.071, p = 0.7918 
ACE*LAC F1,29.56 = 0.571, p = 0.4560 F1,30.02 = 1.667, p = 0.2065 
ACE*YST F1,30.18 = 3.613, p = 0.0669 F1,30.11 = 2.313, p = 0.1388 
LAC*YST F1,29.11 = 4.109, p = 0.0519 F1,30.21 = 2.701, p = 0.1107 
ACE*LAC*[Propionate] F1,31.00 = 0.325, p = 0.5730 F1,30.57 = 1.426, p = 0.2416 
ACE*YST*[Propionate] F1,30.53 = 0.340, p = 0.5643 F1,30.79 = 0.158, p = 0.6941 
LAC*YST*[Propionate] F1,26.25 = 0.736, p = 0.3989 F1,31.10 = 0.009, p = 0.9268 
ACE*LAC*YST F1,30.34 = 0.011, p = 0.9182 F1,30.33 = 0.189, p = 0.6667 
ACE*LAC*YST*[Propionate] F1,30.34 = 2.587, p = 0.1181 F1,30.05 = 1.934, p = 0.1746 
Analysis of Deviance   
Experimental replicate X2

1 = 0, 
p = 1 

X2
1 = 7.56, 

p = 0.0060 
R2   
Marginal 0.483 0.279 
Conditional 0.483 0.500 
x) Trehalose ~ Propionate 
ANOVA Effect test Female (ln-transformed) Male (ln-transformed) 
ACE F1,29.07 = 0.007, p = 0.9320 F1,30.26 = 0.085, p = 0.7730 
LAC F1,29.20 = 1.861, p = 0.1829 F1,30.09 = 0.362, p = 0.5519 
YST F1,29.20 = 11.328, p = 0.0022 F1,30.95 = 11.648, p = 0.0018 
[Propionate] F1,30.93 = 2.714, p = 0.1096 F1,30.65 = 0.038, p = 0.8464 
ACE*[Propionate] F1,29.93 = 3.319, p = 0.0785 F1,31.08 = 0.131, p = 0.7198 
LAC*[Propionate] F1,29.52 = 0.341, p = 0.5639 F1,32.00 = 0.075, p = 0.7858 
YST*[Propionate] F1,30.40 = 2.145, p = 0.1533 F1,30.52 = 0.009, p = 0.9257 
ACE*LAC F1,29.30 = 2.671, p = 0.1129 F1,30.15 = 0.868, p = 0.3589 
ACE*YST F1,29.58 = 1.745, p = 0.1967 F1,30.61 = 0.939, p = 0.3401 
LAC*YST F1,29.05 = 4.912, p = 0.0347 F1,31.03 = 6.807, p = 0.0139 
ACE*LAC*[Propionate] F1,30.42 = 1.177, p = 0.2864 F1,32.00 = 1.260, p = 0.2700 
ACE*YST*[Propionate] F1,29.88 = 0.032, p = 0.8602 F1,30.68 = 0.013, p = 0.9117 
LAC*YST*[Propionate] F1,30.91 = 2.222, p = 0.1462 F1,26.45 = 0.703, p = 0.4092 
ACE*LAC*YST F1,29.68 = 0.838, p = 0.3674 F1,31.60 = 1.205, p = 0.2806 
ACE*LAC*YST*[Propionate] F1,29.60 = 0.007, p = 0.9363 F1,30.35 = 0.000, p = 0.9897 
Analysis of Deviance   
Experimental replicate X2

1 = 0.61, 
p = 0.4345 

X2
1 = 0, 

p = 1 
R2   
Marginal 0.429 0.399 
Conditional 0.485 0.399 
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xi) TAG ~ Butyrate  
ANOVA Effect test Female  Male  
ACE F1,29.02 = 11.610, p = 0.0019 F1,30.02 = 28.194, p = 9.7 x 10-6 
LAC F1,29.03 = 0.091, p = 0.7650 F1,31.05 = 0.468, p = 0.4990 
YST F1,29.05 = 7.143, p = 0.0122 F1,31.72 = 168.330, p = 3.1 x 10-14 
[Butyrate] F1,29.98 = 1.113, p = 0.2999 F1,29.95 = 0.066, p = 0.7994 
ACE*[Butyrate] F1,29.12 = 1.895, p = 0.1792 F1,30.04 = 0.435, p = 0.5146 
LAC*[Butyrate] F1,29.01 = 0.155, p = 0.6965 F1,30.33 = 0.032, p = 0.8584 
YST*[Butyrate] F1,29.16 = 0.912, p = 0.3476 F1,31.04 = 1.134, p = 0.2951 
ACE*LAC F1,29.08 = 0.182, p = 0.6727 F1,30.23 = 4.330, p = 0.0460 
ACE*YST F1,29.01 = 1.257, p = 0.2714 F1,30.06 = 9.371, p = 0.0046 
LAC*YST F1,29.01 = 0.030, p = 0.8637 F1,30.08 = 2.292, p = 0.1405 
ACE*LAC*[Butyrate] F1,30.25 = 0.472, p = 0.4973 F1,31.78 = 1.770, p = 0.1929 
ACE*YST*[Butyrate] F1,29.02 = 6.957, p = 0.0133 F1,31.32 = 0.867, p = 0.3588 
LAC*YST*[Butyrate] F1,29.14 = 1.651, p = 0.2090 F1,30.51 = 2.824, p = 0.1031 
ACE*LAC*YST F1,29.16 = 0.004, p = 0.9500 F1,31.97 = 5.565, p = 0.0246 
ACE*LAC*YST*[Butyrate] F1, 29.15 = 0.236, p = 0.6305 F1,31.41 = 0.186, p = 0.6695 
Analysis of Deviance   
Experimental replicate X2

1 = 12.84, 
p = 0.0003 

X2
1 = 0, 

p = 0.7386 
R2   
Marginal 0.281 0.879 
Conditional 0.590 0.887 
xii) Glucose ~ Butyrate 
ANOVA Effect test Female  Male  
ACE F1,29.06 = 0.112, p = 0.7404 F1,30.01 = 0.200, p = 0.6581 
LAC F1,29.09 = 2.510, p = 0.1239 F1,30.73 = 10.487, p = 0.0029 
YST F1,29.16 = 41.598, p = 4.6 x 10-7 F1,31.34 = 67.071, p = 2.8 x 10-9 
[Butyrate] F1,30.99 = 0.186, p = 0.6690 F1,31.76 = 0.992, p = 0.3268 
ACE*[Butyrate] F1,29.42 = 0.709, p = 0.4065 F1,30.02 = 1.355, p = 0.2536 
LAC*[Butyrate] F1,29.05 = 1.072, p = 0.3090 F1,30.22 = 0.793, p = 0.3804 
YST*[Butyrate] F1,29.52 = 1.912, p = 0.1772 F1,31.99 = 3.458, p = 0.0722 
ACE*LAC F1,29.29 = 1.056, p = 0.3126 F1,30.16 = 0.001, p = 0.9718 
ACE*YST F1,29.04 = 10.692, p = 0.0028 F1,30.04 = 1.670, p = 0.2061 
LAC*YST F1,29.04 = 0.479, p = 0.4944 F1,30.05 = 1.884, p = 0.1800 
ACE*LAC*[Butyrate] F1,30.38 = 1.820, p = 0.1873 F1,31.94 = 0.248, p = 0.6222 
ACE*YST*[Butyrate] F1,29.08 = 0.000, p = 0.9997 F1,30.92 = 2.975, p = 0.0945 
LAC*YST*[Butyrate] F1,29.49 = 0.443, p = 0.5108 F1,30.35 = 2.719, p = 0.1095 
ACE*LAC*YST F1,29.54 = 0.016, p = 0.8997 F1,31.83 = 0.004, p = 0.9522 
ACE*LAC*YST*[Butyrate] F1,29.51 = 0.307, p = 0.5839 F1,30.94 = 0.466, p = 0.5000 
Analysis of Deviance   
Experimental replicate X2

1 = 1.49, 
p = 0.2217 

X2
1 = 1.67, 

p = 0.1965 
R2   
Marginal 0.612 0.759 
Conditional 0.661 0.793 
  

 
 

 

   



 

294 

xiii) Protein ~ Butyrate 
ANOVA Effect test Female  Male  
ACE F1,29.16 = 0.140, p = 0.7111 F1,30.06 = 0.098, p = 0.7563 
LAC F1,29.23 = 0.001, p = 0.9729 F1,31.53 = 0.360, p = 0.5527 
YST F1,29.38 = 11.624, p = 0.0019 F1,32.00 = 0.328, p = 0.5706 
[Butyrate] F1,24.74 = 0.723, p = 0.4035 F1,22.88 = 2.488, p = 0.1285 
ACE*[Butyrate] F1,30.03 = 0.006, p = 0.9371 F1,30.08 = 0.751, p = 0.3931 
LAC*[Butyrate] F1,29.12 = 0.610, p = 0.4413 F1,30.52 = 1.053, p = 0.3129 
YST*[Butyrate] F1,30.17 = 2.140, p = 0.1539 F1,25.48 = 0.895, p = 0.3531 
ACE*LAC F1,29.73 = 0.017, p = 0.8960 F1,30.36 = 0.618, p = 0.4378 
ACE*YST F1,29.10 = 0.198, p = 0.6596 F1,30.12 = 1.896, p = 0.1787 
LAC*YST F1,29.12 = 0.609, p = 0.4416 F1,30.16 = 0.279, p = 0.6012 
ACE*LAC*[Butyrate] F1,14.72 = 0.616, p = 0.4450 F1,28.35 = 0.029, p = 0.8669 
ACE*YST*[Butyrate] F1,29.22 = 0.745, p = 0.3952 F1,31.85 = 0.003, p = 0.9545 
LAC*YST*[Butyrate] F1,30.25 = 0.008, p = 0.9290 F1,30.78 = 0.680, p = 0.4159 
ACE*LAC*YST F1,30.24 = 0.004, p = 0.9476 F1,30.21 = 0.134, p = 0.7168 
ACE*LAC*YST*[Butyrate] F1,30.17 = 0.052, p = 0.8217 F1,31.99 = 0.004, p = 0.9533 
Analysis of Deviance   
Experimental replicate X2

1 = 0, 
p = 1 

X2
1 = 0, 

p = 1 
R2   
Marginal 0.285 0.272 
Conditional 0.285 0.272 
xiv) Glycogen ~ Butyrate  
ANOVA Effect test Female  Male  
ACE F1,29.08 = 3.886, p = 0.0583 F1,30.01 = 6.741, p = 0.0144 
LAC F1,29.12 = 1.296, p = 0.2642 F1,30.37 = 0.024, p = 0.8788 
YST F1,29.21 = 23.094, p = 4.3 x 10-5 F1,30.76 = 0.816, p = 0.3735 
[Butyrate] F1,30.57 = 6.287, p = 0.0177 F1,31.73 = 2.098, p = 0.1574 
ACE*[Butyrate] F1,29.56 = 0.005, p = 0.9418 F1,30.01 = 1.882, p = 0.1803 
LAC*[Butyrate] F1,29.06 = 1.963, p = 0.1718 F1,30.10 = 0.098, p = 0.7569 
YST*[Butyrate] F1,29.68 = 2.146, p = 0.1534 F1,31.46 = 0.008, p = 0.9286 
ACE*LAC F1,29.39 = 3.780, p = 0.0615 F1,30.08 = 1.299, p = 0.2635 
ACE*YST F1,29.05 = 7.223, p = 0.0118 F1,30.02 = 2.084, p = 0.1593 
LAC*YST F1,29.06 = 8.440, p = 0.0070 F1,30.02 = 0.101, p = 0.7526 
ACE*LAC*[Butyrate] F1,28.41 = 1.487, p = 0.2327 F1,31.20 = 0.867, p = 0.3588 
ACE*YST*[Butyrate] F1,29.11 = 1.495, p = 0.2313 F1,30.46 = 0.100, p = 0.7543 
LAC*YST*[Butyrate] F1,29.65 = 1.465, p = 0.2357 F1,30.17 = 0.053, p = 0.8199 
ACE*LAC*YST F1,29.70 = 0.231, p = 0.6341 F1,31.07 = 0.048, p = 0.8273 
ACE*LAC*YST*[Butyrate] F1,29.66 = 0.060, p = 0.8088 F1,30.44 = 0.031, p = 0.8622 
Analysis of Deviance   
Experimental replicate X2

1 = 0.46, 
p = 0.4963 

X2
1 = 6.35, 

p = 0.0118 
R2   
Marginal 0.570 0.228 
Conditional 0.604 0.470 
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xv) Trehalose ~ Butyrate 
ANOVA Effect test Female (sqrt-transformed) Male (sqrt-transformed) 
ACE F1,29.16 = 0.000, p = 0.9847 F1,30.06 = 0.150, p = 0.7013 
LAC F1,29.23 = 1.376, p = 0.2503 F1,31.53 = 0.464, p = 0.5007 
YST F1,29.38 = 6.001, p = 0.0205 F1,32.00 = 2.776, p = 0.1055 
[Butyrate] F1,24.74 = 0.009, p = 0.9263 F1,22.88 = 0.283, p = 0.6000 
ACE*[Butyrate] F1,30.03 = 0.639, p = 0.4305 F1,30.08 = 0.025, p = 0.8766 
LAC*[Butyrate] F1,29.12 = 0.005, p = 0.9440 F1,30.52 = 1.568, p = 0.2201 
YST*[Butyrate] F1,30.17 = 0.310, p = 0.5817 F1,25.48 = 0.210, p = 0.6510 
ACE*LAC F1,29.73 = 4.091, p = 0.0522 F1,30.36 = 1.358, p = 0.2530 
ACE*YST F1,29.10 = 0.135, p = 0.7163 F1,30.12 = 0.363, p = 0.5515 
LAC*YST F1,29.12 = 5.802, p = 0.0226 F1,30.16 = 9.627, p = 0.0041 
ACE*LAC*[Butyrate] F1,14.72 = 0.285, p = 0.6017 F1,28.35 = 0.086, p = 0.7711 
ACE*YST*[Butyrate] F1,29.22 = 0.205, p = 0.6542 F1,31.85 = 0.184, p = 0.6707 
LAC*YST*[Butyrate] F1,30.25 = 0.027, p = 0.8699 F1,30.78 = 0.165, p = 0.6875 
ACE*LAC*YST F1,30.24 = 0.131, p = 0.7197 F1,30.21 = 0.014, p = 0.9070 
ACE*LAC*YST*[Butyrate] F1,30.17 = 0.143, p = 0.7078 F1,31.99 = 0.081, p = 0.7778 
Analysis of Deviance   
Experimental replicate X2

1 = 0, 
p = 1 

X2
1 = 0, 

p = 1 
R2   
Marginal 0.344 0.372 
Conditional 0.344 0.372 

  
P-values below the threshold are in bold. 
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APPENDIX C 

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

 

 

 

Figure S3.1. Metabolites associated with among-treatment differences. PLS-DA of (A) female 

and (B) male flies. Points are colored according to microbial treatment. Arrows represents the 

loadings with VIP scores > 1; only 8 of the 17 loadings are shown for female flies. The percent 

variation explained on each axis is displayed. Female PLS-DA: R2 = 0.17, Q2 = 0.10, RMSEE = 

0.31, R2 p = 0.001, Q2 p = 0.001. Male PLS-DA: R2 = 0.23, Q2 = 0.20, RMSEE = 0.30, R2 p = 

0.001, Q2 p = 0.001.  

A) Female flies B) Male flies
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1. CDP 2. Glutathione disulfide 
3. dCTP 4. Trehalose/sucrose
5. Fumarate 6. Aspartate
7. Lysine 8. CTP

−2

−1

0

1

−2 −1 0 1
PC1 (22%)

PC
2 

(2
2%

)

ACE
LAC
YST

Axenic

2

−1.0

−0.5

0.0

0.5

−1.5 −1.0 −0.5 0.0 0.5
PC1 (27%)

PC
2 

(1
6%

)
ACE
LAC
YST

Axenic

3
4

5
6

7

8

−0.5

0.0

0.5

−0.5 0.0 0.5 1.0
PC1 (29%)

PC
2 

(2
0%

)

ACE
LAC
YST

Axenic

1

12

3

4

5

6

7 8

Figure S1. Metabolites associated with among-treatment differences. PLS-DA of (A) female and (B) 
male flies. Points are colored according to microbial treatment. Arrows represents the loadings with 
VIP scores > 1; only 8 of the 17 loadings are shown for female flies. The percent variation explained 
on each axis is displayed. Female PLS-DA: R2 = 0.17, Q2 = 0.10, RMSEE = 0.31, R2 p = 0.001, Q2

p = 0.001. Male PLS-DA: R2 = 0.23, Q2 = 0.20, RMSEE = 0.30, R2 p = 0.001, Q2 p = 0.001. 
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Figure S2. Effect of microorganisms and co-associations on metabolite concentration. (A) Female flies. Metabolites (range scaled
concentrations) with q value < 0.2 and VIP score > 1 were analyzed by post hoc Tukey test results (letter rankings displayed). When 
there was not enough power to identify differences among-treatments, a full factorial ANOVA was implemented to identify treatment 
differences (only significant terms displayed). The estimated marginal means and 95% confidence intervals are displayed from 
ANOVA models. The dashed line indicates the grand mean for metabolite concentration and treatments with non-overlapping 
confidence intervals represent significant deviations from average. * p < 0.05; ** p < 0.01.
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Figure S3.2. Effect of microorganisms and co-associations on metabolite concentration. (A) Female flies. Metabolites (range scaled 

concentrations) with q value < 0.2 and VIP score > 1 were analyzed by post hoc Tukey test results (letter rankings displayed). When 

there was not enough power to identify differences among-treatments, a full factorial ANOVA was implemented to identify treatment 

differences (only significant terms displayed). The estimated marginal means and 95% confidence intervals are displayed from 

ANOVA models. The dashed line indicates the grand mean for metabolite concentration and treatments with non-overlapping 

confidence intervals represent significant deviations from average. * p < 0.05; ** p < 0.01. 
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Figure S2. Effect of microorganisms and co-associations on metabolite concentration. (B) Male flies. Metabolites (range scaled 
concentrations) with q value < 0.2 and VIP score > 1 were analyzed by post hoc Tukey test results (letter rankings displayed). When 
there was not enough power to identify differences among-treatments, a full factorial ANOVA was implemented to identify treatment 
differences (only significant terms displayed). The estimated marginal means and 95% confidence intervals are displayed from 
ANOVA models. The dashed line indicates the grand mean for metabolite concentration and treatments with non-overlapping 
confidence intervals represent significant deviations from average. * p < 0.05.
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Table S3.1.Sex differences in microbial-responsive metabolites. (A) ANOVA results of 

metabolite concentration by treatment. 

(I) Female flies 
Metabolite F statistics p value q value 
CDP 13.8 6.20E-09 9.24E-07 
Acetyl-aspartate 9.9 4.44E-07 2.53E-05 
Glutathione disulfide 9.7 5.09E-07 2.53E-05 
Lysine 9.2 9.82E-07 3.66E-05 
Phenyllactic acid 7.8 6.36E-06 1.90E-04 
dCTP 6.5 3.81E-05 9.46E-04 
Xanthosine 5.6 1.48E-04 3.16E-03 
Gluconate 5.5 1.76E-04 3.28E-03 
N-Acetyl-glutamate 5.1 3.19E-04 5.04E-03 
Glutathione 5.1 3.38E-04 5.04E-03 
Aspartate 4.9 4.59E-04 6.22E-03 
dCDP 4.5 8.64E-04 1.07E-02 
Alanine/Sacrosine 4.2 1.54E-03 1.64E-02 
Trehalose/Sucrose 4.2 1.54E-03 1.64E-02 
O-Acetyl-serine 3.5 5.26E-03 0.1 
CTP 3.4 6.41E-03 0.1 
3-Phosphoglycerate 3.0 1.24E-02 0.1 
Cysteine 2.8 1.72E-02 0.1 
Ornithine 2.9 1.52E-02 0.1 
2-Isopropylmalic acid 2.9 1.56E-02 0.1 
CDP-ethanolamine 2.8 1.71E-02 0.1 
Taurine 2.8 1.85E-02 0.1 
Thiamine 2.7 2.00E-02 0.1 
Hydroxyproline/Aminolevulinate 2.7 2.24E-02 0.1 
Aconitate 2.7 2.31E-02 0.1 
Cystathionine 2.7 2.16E-02 0.1 
dTDP 2.6 2.55E-02 0.1 
GMP 2.6 2.73E-02 0.1 
2,3-Dihydroxybenzoic acid 2.5 3.10E-02 0.2 
Proline 2.3 4.23E-02 0.2 
Citraconic acid 2.3 4.16E-02 0.2 
Ribose 2.4 3.82E-02 0.2 
Tyrosine 2.3 4.20E-02 0.2 
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Pantothenate 2.4 4.12E-02 0.2 
CDP-choline 2.3 4.23E-02 0.2 
p-Hydroxybenzoate 2.3 4.37E-02 0.2 
Fumarate 2.3 4.59E-02 0.2 
Citrulline 2.2 0.1 0.2 
Glutamate 2.1 0.1 0.2 
Allantoate 2.1 0.1 0.2 
Anthranilate 2.1 0.1 0.2 
Lactate 2.1 0.1 0.3 
Fructose-6-phosphate 2.0 0.1 0.3 
Leucine/Isoleucine 2.0 0.1 0.3 
Serine 2.0 0.1 0.3 
Malate 2.0 0.1 0.3 
UTP 2.0 0.1 0.3 
Ser-Leu/Ile-Asp (SID) 1.9 0.1 0.3 
Acetyl-CoA 1.9 0.1 0.3 
CMP 1.9 0.1 0.3 
Glycine 1.8 0.1 0.3 
Glucose 1.8 0.1 0.3 
GDP 1.8 0.1 0.3 
Quinolinate 1.7 0.1 0.4 
UDP-D-glucose 1.7 0.1 0.4 
Hydroxyphenylpyruvate 1.7 0.1 0.4 
Hydroxyisocaproic acid 1.7 0.1 0.4 
Hypoxanthine 1.7 0.1 0.4 
Threonine/Homoserine 1.6 0.2 0.4 
Dihydroxy-acetone-phosphate 1.6 0.2 0.4 
D-Sedoheptulose-1/7-phosphate 1.6 0.2 0.4 
Ketoleucine 1.6 0.2 0.4 
sn-Glycerol-3-phosphate 1.6 0.2 0.4 
Acetyl-glycine 1.5 0.2 0.4 
Xanthine 1.5 0.2 0.4 
N-Acetyl-L-ornithine 1.5 0.2 0.4 
Ser-Asp (SD) 1.6 0.2 0.4 
UDP 1.5 0.2 0.4 
2-Keto-isovalerate 1.5 0.2 0.4 
Aminoadipic acid 1.5 0.2 0.4 
Valine/5-Aminopentanoic acid 1.5 0.2 0.4 
Histidinol 1.5 0.2 0.4 
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Glycerate 1.5 0.2 0.4 
S-Adenosyl-L-homocysteine 1.5 0.2 0.4 
4-Aminobutyrate 1.4 0.2 0.4 
Glucarate 1.4 0.2 0.4 
Glutamine 1.4 0.2 0.5 
UMP 1.4 0.2 0.5 
Oxaloacetate 1.4 0.2 0.5 
GTP 1.4 0.2 0.5 
Phenylpyruvate 1.3 0.3 0.5 
Succinate/Methylmalonic acid 1.3 0.3 0.5 
Pipecolic Acid 1.2 0.3 0.5 
Methionine 1.2 0.3 0.5 
Deoxyribose-phosphate 1.2 0.3 0.5 
Leu-Asp (LD) 1.2 0.3 0.5 
5-Phosphoribosyl-1-pyrophosphate 1.3 0.3 0.5 
Thiamine pyrophosphate 1.2 0.3 0.5 
FMN 1.2 0.3 0.5 
FAD 1.2 0.3 0.5 
Nicotinamide mononucleotide 1.1 0.4 0.6 
Adenine 1.1 0.4 0.6 
Pyrophosphate 1.1 0.4 0.6 
Erythrose-4-phosphate 1.1 0.4 0.6 
Delta-gluconolactone 1.0 0.4 0.6 
Xanthosine-5-phosphate 1.1 0.4 0.6 
3-S-Methylthiopropionate 1.0 0.4 0.7 
IDP 1.0 0.4 0.7 
Ribose-5-phosphate 0.9 0.5 0.7 
Acetoacetate 0.9 0.5 0.7 
Cytosine 0.8 0.6 0.7 
Uracil 0.9 0.5 0.7 
Maleic acid 0.8 0.6 0.7 
Nicotinate 0.9 0.5 0.7 
Pyroglutamic acid 0.8 0.6 0.7 
Orotate 0.9 0.5 0.7 
Uric acid 0.9 0.5 0.7 
N-Carbamoyl-L-aspartate 0.9 0.5 0.7 
2-Keto-D-gluconate 0.9 0.5 0.7 
Biotin 0.8 0.6 0.7 
S-Methyl-5'-thioadenosine 0.9 0.5 0.7 
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IMP 0.9 0.5 0.7 
UDP-N-acetyl-glucosamine 0.8 0.6 0.7 
Phosphoenolpyruvate 0.8 0.6 0.8 
NADP+ 0.8 0.6 0.8 
Histidine 0.8 0.6 0.8 
2-Aminooctanoic acid 0.7 0.6 0.8 
ATP 0.7 0.6 0.8 
NADPH 0.8 0.6 0.8 
Kynurenic acid 0.7 0.6 0.8 
Val-Asp (VD) 0.7 0.6 0.8 
Octoluse bisphosphate 0.7 0.7 0.8 
4-Phosphopantothenate 0.7 0.7 0.8 
Cyclic-AMP 0.7 0.7 0.8 
2-Oxo-4-methylthiobutanoate 0.6 0.7 0.8 
Hydroxyphenylacetic acid 0.7 0.7 0.8 
Indole-3-carboxylic acid 0.6 0.7 0.8 
Glyceraldehdye-3-phosphate 0.7 0.7 0.8 
3-Phospho-serine 0.6 0.7 0.8 
Xanthurenic acid 0.6 0.8 0.8 
Pro-Glu (PE) 0.7 0.7 0.8 
6-Phospho-D-gluconate 0.7 0.7 0.8 
dTMP 0.6 0.8 0.8 
dAMP 0.6 0.7 0.8 
AMP 0.6 0.7 0.8 
dGDP 0.6 0.7 0.8 
UDP-D-glucuronate 0.7 0.7 0.8 
dGMP 0.6 0.8 0.8 
Riboflavin 0.6 0.8 0.8 
Citrate/isocitrate 0.6 0.8 0.8 
Alpha-ketoglutarate 0.5 0.8 0.9 
N-Acetyl-L-alanine 0.5 0.8 0.9 
NADH 0.5 0.8 0.9 
Fructose-1,6-bisphosphate 0.5 0.8 0.9 
dCMP 0.5 0.9 0.9 
Ribulose-5-phosphate 0.4 0.9 0.9 
Pro-Asp (PD) 0.4 0.9 0.9 
Sedoheptoluse bisphosphate 0.3 0.9 0.9 
Asparagine 0.2 1.0 1.0 
(ii) Male flies 
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Metabolite F statistics p value q value 
Phenyllactic acid 40.5 3.37E-16 5.02E-14 
Fumarate 13.8 6.24E-09 3.78E-07 
Glutathione disulfide 13.6 7.60E-09 3.78E-07 
NADPH 12.8 1.66E-08 6.17E-07 
Acetyl-CoA 10.4 2.35E-07 6.99E-06 
Aconitate 9.7 5.34E-07 1.33E-05 
Aspartate 5.9 9.05E-05 1.93E-03 
Citrate/isocitrate 5.5 1.82E-04 3.39E-03 
UDP-D-glucose 5.2 2.74E-04 4.54E-03 
Thiamine 4.9 4.79E-04 7.14E-03 
3-Phosphoglycerate 4.5 8.61E-04 1.17E-02 
Xanthosine 4.4 1.04E-03 1.30E-02 
UMP 4.0 1.99E-03 2.28E-02 
Acetyl-aspartate 3.9 2.51E-03 2.67E-02 
Pyrophosphate 3.7 3.50E-03 3.26E-02 
Nicotinamide mononucleotide 3.7 3.41E-03 3.26E-02 
5-Phosphoribosyl-1-
pyrophosphate 3.7 3.87E-03 3.39E-02 
UDP 3.5 5.33E-03 4.42E-02 
Hydroxyproline/Aminolevulinate 3.4 6.49E-03 0.1 
Proline 3.3 7.32E-03 0.1 
Lactate 3.2 8.93E-03 0.1 
N-Acetyl-L-alanine 3.0 1.15E-02 0.1 
ATP 3.0 1.20E-02 0.1 
4-Phosphopantothenate 2.9 1.47E-02 0.1 
Gluconate 2.5 3.04E-02 0.2 
Citraconic acid 2.5 3.28E-02 0.2 
Hydroxyisocaproic acid 2.4 3.68E-02 0.2 
IDP 2.4 3.81E-02 0.2 
Aminoadipic acid 2.4 4.03E-02 0.2 
3-S-Methylthiopropionate 2.3 4.17E-02 0.2 
O-Acetyl-serine 2.3 4.52E-02 0.2 
Tyrosine 2.2 0.1 0.3 
Glutamate 2.2 0.1 0.3 
Threonine/Homoserine 2.1 0.1 0.3 
Ribulose-5-phosphate 2.1 0.1 0.3 
D-Sedoheptulose-1/7-phosphate 2.1 0.1 0.3 
Glycerate 2.0 0.1 0.3 
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Malate 2.0 0.1 0.3 
Allantoate 2.1 0.1 0.3 
Acetoacetate 2.0 0.1 0.3 
6-Phospho-D-gluconate 2.0 0.1 0.3 
Pyroglutamic acid 1.9 0.1 0.3 
AMP 1.9 0.1 0.3 
UDP-N-acetyl-glucosamine 1.9 0.1 0.4 
p-Hydroxybenzoate 1.8 0.1 0.4 
N-Carbamoyl-L-aspartate 1.8 0.1 0.4 
FMN 1.8 0.1 0.4 
2,3-Dihydroxybenzoic acid 1.8 0.1 0.4 
Ribose-5-phosphate 1.8 0.1 0.4 
CMP 1.8 0.1 0.4 
Phosphoenolpyruvate 1.7 0.1 0.4 
Xanthine 1.7 0.1 0.4 
Erythrose-4-phosphate 1.7 0.1 0.4 
Riboflavin 1.7 0.1 0.4 
Alanine/Sacrosine 1.6 0.2 0.4 
Ornithine 1.6 0.2 0.4 
Xanthosine-5-phosphate 1.6 0.2 0.4 
Fructose-6-phosphate 1.6 0.2 0.4 
CDP-choline 1.6 0.2 0.4 
Maleic acid 1.5 0.2 0.4 
Ketoleucine 1.5 0.2 0.4 
2-Oxo-4-methylthiobutanoate 1.5 0.2 0.4 
Histidine 1.5 0.2 0.4 
Glucarate 1.5 0.2 0.4 
NADP+ 1.5 0.2 0.4 
Pro-Glu (PE) 1.5 0.2 0.5 
dGDP 1.5 0.2 0.5 
Fructose-1,6-bisphosphate 1.4 0.2 0.5 
Acetyl-glycine 1.4 0.2 0.5 
Succinate/Methylmalonic acid 1.4 0.3 0.5 
4-Aminobutyrate 1.3 0.3 0.6 
UTP 1.3 0.3 0.6 
dGMP 1.3 0.3 0.6 
3-Phospho-serine 1.2 0.3 0.6 
Lysine 1.2 0.3 0.7 
sn-Glycerol-3-phosphate 1.2 0.3 0.7 
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Delta-gluconolactone 1.2 0.3 0.7 
Kynurenic acid 1.2 0.3 0.7 
Deoxyribose-phosphate 1.2 0.3 0.7 
Glutamine 1.1 0.4 0.7 
Uric acid 1.1 0.4 0.7 
Citrulline 1.1 0.4 0.7 
Glycine 1.1 0.4 0.7 
Indole-3-carboxylic acid 1.1 0.4 0.7 
Dihydroxy-acetone-phosphate 1.1 0.4 0.7 
Ser-Asp (SD) 1.1 0.4 0.7 
Trehalose/Sucrose 1.1 0.4 0.7 
IMP 1.1 0.4 0.7 
Taurine 1.1 0.4 0.7 
Adenine 1.1 0.4 0.7 
GMP 1.0 0.4 0.7 
GDP 1.0 0.4 0.7 
CDP-ethanolamine 1.0 0.4 0.7 
2-Keto-isovalerate 1.0 0.4 0.7 
Orotate 1.0 0.4 0.7 
N-Acetyl-glutamate 1.0 0.4 0.7 
CDP 1.0 0.4 0.7 
Leucine/Isoleucine 0.9 0.5 0.7 
Ribose 1.0 0.5 0.7 
S-Methyl-5'-thioadenosine 1.0 0.5 0.7 
Ser-Leu/Ile-Asp (SID) 1.0 0.5 0.7 
Octoluse bisphosphate 0.9 0.5 0.7 
Thiamine pyrophosphate 0.9 0.5 0.7 
Histidinol 0.9 0.5 0.7 
Glyceraldehdye-3-phosphate 0.9 0.5 0.7 
Hydroxyphenylacetic acid 0.9 0.5 0.7 
dTDP 0.9 0.5 0.7 
Nicotinate 0.9 0.5 0.7 
Hypoxanthine 0.9 0.5 0.7 
2-Isopropylmalic acid 0.9 0.5 0.7 
Serine 0.8 0.6 0.8 
Cysteine 0.8 0.6 0.8 
Oxaloacetate 0.8 0.6 0.8 
Asparagine 0.8 0.6 0.8 
2-Aminooctanoic acid 0.8 0.6 0.8 
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Quinolinate 0.8 0.6 0.8 
2-Keto-D-gluconate 0.8 0.6 0.8 
Pro-Asp (PD) 0.8 0.6 0.8 
Leu-Asp (LD) 0.8 0.6 0.8 
dCMP 0.8 0.6 0.8 
S-Adenosyl-L-homocysteine 0.8 0.6 0.8 
FAD 0.8 0.6 0.8 
N-Acetyl-L-ornithine 0.7 0.7 0.8 
Biotin 0.7 0.7 0.8 
Glutathione 0.7 0.7 0.8 
dTMP 0.7 0.6 0.8 
Sedoheptoluse bisphosphate 0.7 0.7 0.8 
Methionine 0.6 0.7 0.8 
Cystathionine 0.6 0.7 0.8 
dAMP 0.7 0.7 0.8 
Uracil 0.6 0.7 0.8 
Pipecolic Acid 0.6 0.7 0.8 
Anthranilate 0.6 0.7 0.8 
Glucose 0.6 0.7 0.8 
Cytosine 0.6 0.8 0.8 
Alpha-ketoglutarate 0.6 0.8 0.8 
Val-Asp (VD) 0.6 0.8 0.8 
CTP 0.6 0.8 0.8 
GTP 0.5 0.8 0.9 
NADH 0.5 0.8 0.9 
UDP-D-glucuronate 0.5 0.8 0.9 
Valine/5-Aminopentanoic acid 0.5 0.8 0.9 
Xanthurenic acid 0.5 0.9 0.9 
Pantothenate 0.4 0.9 0.9 
Cyclic-AMP 0.4 0.9 0.9 
dCDP 0.3 1.0 1.0 
Phenylpyruvate 0.2 1.0 1.0 
Hydroxyphenylpyruvate 0.1 1.0 1.0 
dCTP 0.0 1.0 1.0 

Treatment and residual degrees of freedom were 7 and 40, respectively. Metabolites with q 
values < 0.2 are shown in bold. 
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Table S3.1.Sex differences in microbial-responsive metabolites. (B) Metabolite classification 

and distribution by sex. 

ClassyFire subclass Metabolite Female Male 
Alcohols and 
polyols Pantothenate     
Alpha hydroxy 
acids and 
derivatives Lactate     
Amino acids, 
peptides, and 
analogues 

4-
Phosphopantothen
ate     

Amino acids, 
peptides, and 
analogues Acetyl-aspartate     
Amino acids, 
peptides, and 
analogues Alanine/Sacrosine     
Amino acids, 
peptides, and 
analogues Aspartate     
Amino acids, 
peptides, and 
analogues Cystathionine     
Amino acids, 
peptides, and 
analogues Cysteine     
Amino acids, 
peptides, and 
analogues Glutathione     
Amino acids, 
peptides, and 
analogues 

Glutathione 
disulfide     

Amino acids, 
peptides, and 
analogues 

Hydroxyproline/Am
inolevulinate     

Amino acids, 
peptides, and 
analogues Lysine     
Amino acids, 
peptides, and 
analogues N-Acetyl-glutamate     
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Amino acids, 
peptides, and 
analogues N-Acetyl-L-alanine     
Amino acids, 
peptides, and 
analogues O-Acetyl-serine     
Amino acids, 
peptides, and 
analogues Ornithine     
Amino acids, 
peptides, and 
analogues Proline     
Amino acids, 
peptides, and 
analogues Tyrosine     
Benzene and 
substituted 
derivatives Phenyllactic acid     

Benzoic acids and 
derivatives 

2,3-
Dihydroxybenzoic 
acid     

Benzoic acids and 
derivatives p-Hydroxybenzoate     
Carbohydrates and 
carbohydrate 
conjugates 3-Phosphoglycerate     
Carbohydrates and 
carbohydrate 
conjugates 

5-Phosphoribosyl-
1-pyrophosphate     

Carbohydrates and 
carbohydrate 
conjugates CTP     
Carbohydrates and 
carbohydrate 
conjugates Gluconate     
Carbohydrates and 
carbohydrate 
conjugates Ribose     
Carbohydrates and 
carbohydrate 
conjugates Trehalose/Sucrose     
Dicarboxylic acids 
and derivatives Fumarate     
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Fatty acids and 
conjugates 

2-Isopropylmalic 
acid     

Fatty acids and 
conjugates Citraconic acid     
Fatty acyl 
thioesters Acetyl-CoA     
Nicotinamide 
nucleotides 

Nicotinamide 
mononucleotide     

Non-metal 
phosphates Pyrophosphate     
Nucleosides, 
nucleotides, and 
analogues NADPH     
Organic 
pyrophosphates dCDP     
Organosulfonic 
acids and 
derivatives Taurine     
Purine nucleosides Xanthosine     
Purine 
ribonucleotides ATP     
Purine 
ribonucleotides GMP     
Pyrimidine 
deoxyribonucleotid
es dCTP     
Pyrimidine 
deoxyribonucleotid
es dTDP     
Pyrimidine 
nucleotide sugars UDP-D-glucose     
Pyrimidine 
ribonucleotides CDP     
Pyrimidine 
ribonucleotides CDP-choline     
Pyrimidine 
ribonucleotides CDP-ethanolamine     
Pyrimidine 
ribonucleotides UDP     
Pyrimidine 
ribonucleotides UMP     
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Pyrimidines and 
pyrimidine 
derivatives Thiamine     
Tricarboxylic acids 
and derivatives Aconitate     
Tricarboxylic acids 
and derivatives Citrate/isocitrate     

Black and white cells correspond to presence and absence, respectively. 
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Table S3.2. Multivariate association between metabolome and microbiome.  
 
(a) Multivariate correlation with microbial abundance (CFU fly-1) 
Factor Female Male 

Effect size (R2) p value Effect size (R2) p value 
Log10(ACE + 1) 0.37 0.001 0.33 0.001 
Log10(LAC + 1) 0.01 0.841 0.13 0.040 
Log10(YST + 1) 0.04 0.392 0.13 0.056 

 
(b) Full factorial PERMANOVA results (df = 1,40) 
Factor Female Male 

F statistic (p) Effect size (R2) F statistic (p) Effect size (R2) 
ACE 6.60 (0.001) 0.10 8.57 (0.001) 0.11 
LAC 4.19 (0.001) 0.06 11.17 (0.001) 0.14 
YST 4.85 (0.001) 0.07 6.28 (0.001) 0.08 
ACE*LAC 2.87 (0.008) 0.04 3.93 (0.002) 0.05 
ACE*YST 3.86 (0.001) 0.06 3.29 (0.004) 0.04 
LAC*YST 1.43 (0.149) 0.02 2.50 (0.016) 0.03 
ACE*LAC*YST 2.63 (0.006) 0.04 1.30 (0.214) 0.02 
     

Values in bold correspond to significant results.
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Table S3.3. List of metabolites that differentiate by treatment.  
 

Metabolite Female Male 
Acetyl-aspartate 1.1 1.3 

Acetyl-CoA - 1.5 
Aconitate - 1.6 
Aspartate 1.2 - 

CDP 1.8 - 
CDP-choline 1.1 - 

CDP-ethanolamine 1.1 - 
Citrate/isocitrate - 1.8 

CTP 1.1 - 
Cystathionine 1.1 - 

Cysteine 1.1 - 
dCDP 1.1 - 
dCTP 1.4 - 

Fumarate 1.2 1.0 
Glutathione disulfide 1.5 1.2 

Lysine 1.2 - 
p-Hydroxybenzoate 1.1 - 

Phenyllactic acid 1.1 2.2 
Proline 1.0 - 

Trehalose/Sucrose 1.3 - 
Xanthosine - 1.4 

VIP scores > 1 displayed for each sex; - indicates values < 1. 
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Table S3.4. Correlation between nutritional indices and top microbial-responsive metabolites 

(i) Female flies 
Nutritional index Metabolite Rho S statistic p value q value 
Glucose Phenyllactic acid -0.653284 26808 1.72E-06 8.78E-05 
Glucose Proline -0.484428 24070 0.00074732 0.01905658 
Glucose p-Hydroxybenzoate -0.3150786 21324 0.03339784 0.42200769 
Glucose CTP -0.2378662 20072 0.11135834 0.56792753 
Glucose CDP -0.2138826 19683.1069 0.15349997 0.59713503 
Glucose Trehalose/Sucrose -0.2085106 19596 0.16391942 0.59713503 
Glucose Cystathionine -0.1834721 19190 0.2215247 0.70610999 
Glucose CDP-choline -0.1675661 18932.0838 0.26566368 0.7466606 
Glucose Fumarate -0.1467567 18594.6605 0.33043263 0.80247924 
Glucose Cysteine -0.1086065 17976.0543 0.47247203 0.85657504 
Glucose CDP-ethanolamine -0.1173605 18118 0.43605185 0.85657504 
Glucose dCTP -0.0827756 17557.207 0.58444651 0.89984998 
Glucose Aspartate -0.0781375 17482 0.60467639 0.89984998 
Glucose Lysine 0.05346901 15348 0.72340881 0.89984998 
Glucose dCDP -0.0670367 17302 0.65707948 0.89984998 

Glucose 
Glutathione 
disulfide 0.03225409 15692 0.83112988 0.96104433 

Glucose Acetyl-aspartate -0.0151047 16459.9231 0.92063689 0.96154404 
Protein CDP 0.34475315 10624.8276 0.01895994 0.32231905 
Protein CDP-choline 0.28375836 11613.8581 0.05599613 0.42200769 
Protein Acetyl-aspartate 0.22421851 12579.2968 0.13412816 0.57004467 
Protein p-Hydroxybenzoate 0.19346284 13078 0.19704707 0.66996003 
Protein CDP-ethanolamine 0.17804502 13328 0.23567602 0.70702805 
Protein CTP 0.14079556 13932 0.3495008 0.81020639 
Protein dCDP 0.13092815 14092 0.38456222 0.85272491 
Protein dCTP 0.09017733 14752.7745 0.55117732 0.89984998 
Protein Phenyllactic acid 0.08011101 14916 0.59555482 0.89984998 
Protein Cysteine -0.0554442 17114.0277 0.71438467 0.89984998 
Protein Proline 0.06333642 15188 0.67493576 0.89984998 

Protein 
Glutathione 
disulfide 0.02176997 15862 0.88566831 0.96104433 

Protein Trehalose/Sucrose -0.0237434 16600 0.87535388 0.96104433 
Protein Fumarate -0.0234416 16595.1055 0.87710959 0.96104433 
Protein Cystathionine -0.0326241 16744 0.82921784 0.96104433 
Protein Lysine 0.0120259 16020 0.93684041 0.96154404 
Protein Aspartate -0.0009251 16230 0.99543747 0.99543747 
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TAG Trehalose/Sucrose 0.27375887 11776 0.06589746 0.42200769 
TAG Phenyllactic acid 0.2657416 11906 0.07447195 0.42200769 
TAG p-Hydroxybenzoate 0.29805735 11382 0.04464034 0.42200769 
TAG Proline 0.27178538 11808 0.06793082 0.42200769 
TAG Cystathionine 0.22565526 12556 0.13137858 0.57004467 
TAG Cysteine 0.16331062 13566.9183 0.27816767 0.7466606 
TAG Fumarate -0.1542827 18716.6944 0.30595587 0.78018746 
TAG CDP -0.1129853 18047.0565 0.45469347 0.85657504 
TAG Acetyl-aspartate -0.1190426 18145.2753 0.43071178 0.85657504 
TAG dCDP 0.10477953 14516 0.48707208 0.85657504 
TAG CDP-choline -0.1071263 17952.0536 0.47856415 0.85657504 
TAG CTP 0.0986124 14616 0.51318246 0.87241019 

TAG 
Glutathione 
disulfide -0.0686401 17328 0.6493999 0.89984998 

TAG dCTP -0.0547726 17103.1369 0.71770057 0.89984998 
TAG Lysine 0.07332717 15026 0.62716155 0.89984998 
TAG CDP-ethanolamine -0.0241135 16606 0.87342216 0.96104433 
TAG Aspartate 0.01091582 16038 0.94269024 0.96154404 
(ii) Male flies 

Nutritional index Metabolite Rho S statistic p value q value 
Glucose Phenyllactic acid -0.63 26431.58 2.71E-06 3.25E-05 
Glucose Aconitate -0.38 22345.38 0.01 0.06 
Glucose Fumarate -0.34 21804.17 0.02 0.09 
Glucose Xanthosine -0.13 18396.03 0.37 0.60 
Glucose Citrate/isocitrate -0.11 17982.22 0.47 0.70 
Glucose Acetyl-aspartate 0.08 14873.14 0.58 0.70 

Glucose 
Glutathione 
disulfide -0.09 17630.00 0.56 0.70 

Glucose Acetyl-CoA 0.07 15096.00 0.65 0.71 
Protein Xanthosine -0.46 23680.91 1.28E-03 0.01 
Protein Fumarate 0.27 11888.87 0.07 0.25 
Protein Acetyl-CoA 0.24 12276.00 0.10 0.31 
Protein Acetyl-aspartate 0.23 12565.93 0.13 0.32 

Protein 
Glutathione 
disulfide 0.14 13876.00 0.34 0.58 

Protein Citrate/isocitrate -0.10 17848.20 0.51 0.70 
Protein Aconitate 0.08 14949.92 0.61 0.70 
Protein Phenyllactic acid -0.02 16499.04 0.91 0.91 
TAG Phenyllactic acid 0.70 4823.24 5.26E-08 1.26E-06 
TAG Acetyl-CoA -0.33 21518.00 0.03 0.11 
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TAG Aconitate 0.23 12482.77 0.12 0.32 

TAG 
Glutathione 
disulfide -0.21 19598.00 0.16 0.36 

TAG Xanthosine 0.20 12953.50 0.18 0.36 
TAG Acetyl-aspartate -0.18 19165.10 0.23 0.42 
TAG Fumarate 0.08 14956.96 0.61 0.70 
TAG Citrate/isocitrate 0.06 15255.88 0.70 0.73 

Correlations with q values < 0.2 are indicated in bold.  


