STATIC RESTRICTION OF THE GOTO STATEMENT*

T. Bishop, M. Bodenstein,

and R. Conway

TR77-325

Department of Computer Science
Cornell University
Ithaca, NY 14853

* This work was supported in part by the National Science Foundation
under grant MCS77-08198.



Static Restriction of the GOTO Statement*

T. Bishop, M. Bodenstein, and R. Conway
Department of Computer Science
Cornell University

Although GOTOs in general have been indicted, it 1is
actually the case that some uses of the GOTO are more
destructive of good program structure than others.
Particularly in languages designed before the age of
enlightenment, a flat prohibition of the use of the GOTO can
necessitate various circumlocutions that are not
conspicuously superior to that which they replace. Recently
ve have defined a PL/I dialect which retained the GOTO (for
reasons of compatibility) but which attempted to exclude its
most damaging uses by means of two sinmple restrictions:

1. The target of a GOTO must come after the

GOTO statement -- so all branches are
forward.
2. A branch cannot enter a compound

construction, i.e. a DO-loop, a DO-group
(non-iterative) or SELECT-group.

For example:

A: DO;

14z

G3:G0TO L3;

B: DO;
G1: GOTO L1L1;
G2: GOTO L2;
L1:;
13:;
END B;

12:;

G4: GOTO L4;

END Aj;

St atements G1 and G2 are allowable, but G3 1is not (it
violates restriction 2) and G4 1is not (it violates
restriction 1). In the course of implementing a compiler
for this language, we realized that the second restriction
has some interesting properties.

* This work was supported in part by the National Science
Foundation under grant MCS77-08198.



The question arises in the static enforcement of the
second restriction. The restriction can be enforced
dynamically (checked at runtime -- PL/C has done so for
years), but we consider it preferable to detect violation
from syntactic analysis of the program text, without
requiring its executionx It is possible to do so, but the
algorithm is not entirely obvious, and it possesses some

surprising characteristics.

Note first that there can be numerous GOTO statements
referring to the same target label, and that these GOTOs can
be at different nesting levels, so long as none are at a
lower (outer) nesting level than the target. Then note that
the static nesting level of GOTO and target alone are not

sufficient to determine violation of restriction 2. For
example:
C: DO;
D: DO;
G5: GOTO L15;
END D;
E: DO;
L5:;
END E;
END C;

G5 violates restriction 2 since it attempts to enter
construction E, although D and E are at the same static
nesting level. A more complicated example is shown below:

R: DO;
G6: GOTO L;
S: DO;
G7: GOTO L;
T: DO;
G8: GOTO L;
END T;
G9: GOTO L;
END S;
U: DO;
G10: GOTO L;
END U;
L:s
END R;

All of +the GOTOs in this example have a common target and

all are valid.

* Most ALGOL compilers enforce restriction 2 statically by
shielding the loop body statement(s) in a "scope." Any
references from outside the loop to a label within the
loop go unresolved and are reported at the end of the
procedure. We prefer to report illegal label placement
at the point of label definition.



Each target label and the GOTO references to that label
are obviously completely independent of every other label
and its references, so each constitutes a separate checking
problem and it is sufficient for us to examine the problen
here in terms of a single label and its references.

Definition: A "reference-label set k" consists of target
label k, and n>=1 GOTO references to label k.

The set may be considered to end with the definition of

label k =-- any later reference is clearly invalid due to
restriction 1. A non-trivial set must begin with a
reference to label k. So the interesting case for

discussion is a set of one or more references to k, followed
by the definition of k itself. All other checking is
obvious and trivial.

Presumably, each GOTO should be checked to see that it
is not inconsistent with its predecessors in the set, and
the definition must be checked to see if its position (with
respect to nesting level) is consistent with the preceding
references.

There are several possible ways of accomplishing this
checking, but all reasonable algorithms must capitalize on

the implications of the following lennmas:

Definition: We use the term "block" to mean a compound
construction in a progranm -- a compound
statement, a loop or a SELECT group in PL/I
terms.

Notation: Let Rik denote the ith reference to label k.

Let Dk denote the definition of 1label k.

Let Sik denote the set of blocks that are open at
the point of Rik. Note that Rik is internal to
every block in Sik.

Let Bk denote the innermost block containing Dk.

lemnma_1: Reference Rik and definition DXk satisfy
restriction 2 if and only if Bk is a member of
Sik.

Proof:

(=>): If Bk is not a member of Sik, then Rik is not internal
to. Bk, hence Rik 1is an "entering reference" --
improper under restriction 2.

(<=) : If Bk is a nmember of Sik, then Rik is internal to Bk
and the reference is valid under restriction 2.



For a complete reference-label set to be valid with
respect to restriction 2, it follows from Lemna 1 that Bk
must be a member of Sik, for all i=1,2,...,D. That is, the
definition must be valid with respect to all the preceding
references. What is initially surprising 1is to discover
that Stk dominates all of these sets:

Lemna_2: References Rik, i=2,3,-..,n, and defipnition Dk
satisfy restriction 2 if and only if Bk is a
member of Si1ik.

(=>) : follows directly from lLemma 1.

(<=) : (by contradiction) Assume Rik and Dk don't satisfy
restriction 2 for some i,i=2,3,---,0-. By Lemma 1, Bk
is not a member of Sik. Since Dk occurs after Rik (by
the assumption that restriction 1 is satisfied), the
only way this can occur is if Bk is not yet open at
the point of Rik. (It could not already be closed.)
But this implies Bk is likewise not yet open at the
point of R1k, since R1k precedes Rik. Hence Bk is not
a member of S1k. But we assumed Bk is a member Sik.
Therefore our assumption of an Rik that doesn't
satisfy restriction 2 must be invaligd.

In effect, Lemma 1 says that a reference to a label is
legal if and only if it 1is internal to the block that
contains the label definition, while Lemma 2 states that if
a reference and a label are intermal to some block, then all
points between the two are internal to that block.

The surprising consequence of Lemma 2 is that
references after the first require no checking whatsoever.
It 1is not possible for subsequent references to be

inconsistent with the first reference, nor is it possible
for them to influence the validity of the subsequent
definition.

Given these lemmas, all that is required is some method
of recording the nesting structure that exists at the time
of the first reference, and then verifying that the
subsequent definition is positioned in one of the blocks
that was open at the time of the first reference. There are
various ways to do this. TFor example:



IHh
(2]

each procedure do

if stmt is "GOTO Ki" and this is first reference to Ki
then (* record nesting level and block number of *)
(* first reference *)
first_reference_nesting(i) =
nest_level of current_block
first_reference_block (i) = current_block

if stmt is "DO"
then (* make the new block a son of the current *)
(* block *)
father_block = current_block
current_block = next_available_node
next_available_node = next_available_node + 1
father of current_block = father_block
nest_level of current_block =
(nest_level of father_block) + 1

if stmt is " ENDY
then (* make the father of the current block the *)
(* new current block *)
current_block = father of current_block
father_block = father of current_block

if stmt is "Ki:" A
then (* trace up the tree from the node where the ¥)
(* first reference occurred to the level of *)
(* the current node *)
difference = first_nesting_level(i) -
nest_level of current_block.
ancestor_block = first_reference_block (1)
for j = 1 to difference do
ancestor_block = father of ancestor_block

(* if the current block is an ancestor of the %)
(* first reference block, the label is valid *)
if ancestor_block # current_block
then error (‘*illegal label position')
else (¥ label is okay ¥)

end



The above algorithm actually maintains a tree
representing the nesting structure of the blocks. Another
algorithm could use an idea from Knuth. Assume that the
maximum number of first level blocks within a single block
(naximum number of "sons" for a given "father") is n. Then
the father of node z 1is tz/nd and its sons are nz, nz+1,
nz+2, .- ,nz+n-1. When the label definition is
encountered, verify that the node where the label definition
occurred (z1) is smaller than the node where the first

reference occurred (zr). Then, if 21 = tzr/n*¥*difference!
(vhere difference 1is coaputed as in the above algorithm),
the label definition is valid. Again, it's simply a matter

of recording the nesting structure of the various blocks and
verifying that the block where the label definition occurred

is an '"ancestor" of the block containing the first
reference.
References
1. Conway, R-, "PL/CS - A Highly-Disciplined Subset of
pL/C", SIGPLAN Notices, December 1976.
2. Knuth, Donald E., The Art of Computer Programming,
Volume III, Addison-Wesley, PP- 144-145, 1973.

3. Djikstra, E-W., "GOTO Statement Considered Harnful",
Communications of the ACM, March 1968, pp 147-148.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif

