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Abstract 
We discuss the analogies that exist between models of infectious diseases 

and those of metapopulation dynamics. Both deterministic and stochastic 
approaches are considered. We apply the equivalent mathematical frame
work of the stochastic SIS epidemiological model and the Richard Levins 
classic metapopulation model to the computation of expected time to extinc
tion given an arbitrary initial number of colonized patches. We discuss the 
implications that result regarding the determination of the minimum viable 
metapopulation size. 
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1. Introduction 

Minimum viable population size is a key principle in population and conser
vation biology. The principle refers to the minimum number of individuals 
within an isolated population necessary to assure its long term persistence 
(Schaffer, 1981). 

This concept has been almost unexplored in a metapopulation context 
although there are some rough results on its estimation (Nisbet and Gurney, 
1982; Hanski, 1989, 1991). 

An alternative method that we explore in this note is based on the 
basic reproductive number Ro and the expected time to extinction TE for 
epidemiological models (Diekman et al., 1990; Anderson and May, 1991). 
We exemplify our approach using two simple deterministic metapopulation 
models of the patch occupancy type and then proceed to stochastic versions 
that permit the estimation of the minimum viable metapopulation size using 
recenfresults of Hernandez-Suarez (1996). 

Patch dynamics as a methodological algorithm has been widely appli
cable in epidemiology. Typically, a population of hosts is subdivided into 
discrete classes regarding its disease status. Thus a host population of size 
N is formed by adding together those individuals that are susceptible to the 
diseaseS, those that are infected and infectious I, and those that are recov
ered from the disease and are immune or dead R. More compartments are 
possible but here we are only concerned with the simplest subdivisions. The 
interested reader may consult Anderson and May (1991). 

In this context, the patches are the different individual types that inter
act with an organism, a pathogen, that invades and colonizes them. Empty 
patches correspond to susceptible individuals and colonized patches to infec
tive individuals. One of the main problems in epidemiology is to characterize 
the conditions that determine the invasibility of a host population by a dis
ease agent. In the next section we look in some detail to this problem and 
establish its conection with metapopulation ecology. 

1.2 Ro in deterministic models 

The basic reproductive number is one of the most important theoretical 
concepts developed in epidemiology. It measures the number of secondary 
infections that a single infectious individual produces when introduced in a 
completely susceptible population (Diekman et al., 1990). If this number 
is above one, the disease spreads in the host population. Otherwise, no 
epidemic outbreak ensues and the disease dies out. 



......................................................................... 4 

The basic reproductive number, usually denoted by the symbol Ro, is 
an invasion criterion: it determines if a pathogen will be able to survive in a 
host population once it is introduced. It is important to point out that Ro 
is computed assuming that all individuals in the population are susceptible 
since it measures the ability of the pathogen to spread initially. It is obvi
ous that whenever a disease invades a susceptible population, the number of 
infected individuals increases and the number of susceptible individuals de
creases. This hypothesis is supported by a time scale argument: within the 
time scale at which the infection process occurs, and given a large popula
tion size, demographic and infection processes have negligible impact on the 
number of susceptibles in the population. In general, Ro does not provide 
information on the long term persistence of the disease although in simple 
cases it does. Some of these cases are discussed below. 

In a metapopulation context, Ro may be interpreted as the number 
of newly colonized patches arising from a single colonization event- in an 
otherwise empty habitat or set of patches. As in the case of epidemics, one 
has to assume that at the beginning of the invasion the number of empty 
patches is large and that extinction and colonization have a negligible impact 
in the total number of empty patches. 

2. Levins' metapopulation model 

We start our analysis with the metapopulation model proposed by Levins 
(1969). This model assumes that N, the total number of available patches, 
is a constant. Let U and 0 denote the number of unoccupied and occupied 
patches respectively. Immediately upon colonization of an empty patch the 
organisms achieve their carrying capacity, thus reaching their demographic 
equilibrium within each patch. Assume that at this equilibrium, each patch 
produces a total of {3 propagules per unit time. Therefore {30 represents 
the total number of propagules produced by all occupied patches per unit 
time. These propagules find unoccupied patches at a rate proportional to 
their frequency U /N, thus unoccupied patches are 'lost' to colonization at 
a rate -{30U /N per unit time, while occupied patches increase at the same 
number per unit time. If we assume that occupied patches become extinct at 
a rate e then eO is the number of occupied patches that go extinct per unit 
time (i.e., TE = 1/e is the expected time to extinction of any given patch). 
Also, suppose that extinct occupied patches are immediately available for 
colonization at the same rate at which they go extinct, implying a closed 
system. The equations that govern this system are: 
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d u 
-U = -{30- +eO 
dt lV ' 
d u 
dt 0 = {30 lV - eO. 

Dividing both equations by lV and defining 0/lV = p, we note that 
U IN= 1- p, and the equations reduce to Levins' metapopulation model: 

d 
dtp = {3p(1- p)- ep. (1) 

Levins' model postulates that the total number of (homogeneous) patches 
N is constant. These assumptions permit to dynamically follow the propor
tion of occupied patches instead of their actual number; also they allow us 
to characterize the whole dynamics with two parameters: f3 and e. 

For Levins' model Ro = f3 I e. Colonization of empty patches is success
ful whenever Ro = f3 / e > 1. This condition also determines the existence 
of a nontrivial equilibrium point p* = 1 - ej {3. Since we are following pro
portions the value el f3 is the fraction of the patch population that is empty 
(uncolonized). As long as this proportion is not equal to one, the coloniza
tion of patches will be successful (the equilibrium p* will exist and will be 
globally asymptotically stable). 

Suppose that due to environmental or anthropogenic pressures the ex
tinction rate e is increased to e + h ( i. e., TE is decreased form 1 j e to 1 I ( e +h)). 
We want to determine the maximum possible rate h~ that still allows p* to 
be positive, that is, the rate that guarantees persistence of occupied patches. 
Thus we want 

{3 
--h >1, 
e+ 

assuming that Ro = f3 / e > 1. Solving for h, rearranging terms, and using 
the defiilltion of Ro we obtain 

h~ = e(Ro- 1). 

Therefore, we conclude that h < h~ is a necessary condition to escape ex
tinction. If the number of patches in the metapopulation is N, then we can 
define the critical rate of patch extinction as Nh~. If this rate is exceeded, 
then the empty available patches generated by the extinction process would 
not be colonized and the metapopulation will disappear. 

To appreciate the importance of Ro as an extinction/persistence indica
tor, we rescale time by taking as a unit the average time to extinction 1 I e. 
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With this rescaling Levins' equation stands 

d 
dTp = Rop(1- p)- p, 

with T the new rescaled time. 

Obviously, in this deterministic setting, regardless of the initial propor
tion of colonized patches, if Ro < 1, p--+ 0 and if Ro > 1, p--+ 1-e/ {3. Once 
again, these properties hold because in this model succesfull colonization 
( Ro > 1) implies long term persistence. 

2.1 The minimum viable metapopulation size 

The next model also assumes that N, the total number of available patches 
is a constant. As before, let U and 0 denote the number of unoccupied and 
occupied patches respectively. Since N is constant we can write U = N- 0. 

As before {30 represents the total number of propagules produced by 
all the individuals in the occupied patches. These propagules now find un
occupied patches at a rate proportional to U (not to U /N as in the Levins' 
model). The colonization rate is given by -{30U per unit time, and occupied 
patches increase by the same number per unit time. Let eO be the number 
of occupied patches that go extinct per unit time and suppose that extinct 
occupied patches are immediately available for colonization at the same rate. 
The equations that govern this system are: 

d 
dt U = -{30U +eO, 

d 
dt 0 = {30U- eO. 

(2) 

The threshold condition corresponding to this model is 

- {3N 
Ro=-. 

e 

As before, invasion is successfull if and only if Ro > 1. In this case the 
threshold parameter is Ro = {3Nje. Note also that since Ro > 1 is a threshold 
condition for invasion it provides a formula for the minimum metapopulation 
fraction of empty patches u; / N needed to have a successful invasion of an 
empty habitat, and persistence. Observe that, at the start of an invasion 
N ~ U, i.e. the total number of patches is approximately equal to the 
number of empty patches. With this in mind define 

q; =U:/N=; 
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as the critical fraction of empty patches such that if U IN > q~ invasion 
takes place (moreover, it can be shown that in this case, as in Levins' model, 
the invasibility threshold is also the long term persistence threshold for the 
metapopulation). On the other hand, if U IN< q~ the metapopulation goes 
extinct. As expected, the greater the magnitude of f3 I e, the smaller the 
minimum viable metapopulation fraction q~ need be. q~ can also be thought 
of as the minimum fraction of patches in a meta population needed to ensure 
its persistence at a positive equilibrium level. If U IN were smaller that 
q~, the parameter flo would be less than 1, and the metapopulation would 
become extinct . 

To illustrate the nature of q~ as a minimum metapopulation size to 
escape extinction, we rescale time into units of average time to extinction 
11 e, as we did in the previous section: The equation that results is 

!p = (3: p(l - p) - p, 

with T the rescaled time and p = 0/N. 

Obviously, regardles of the initial proportion of colonized patches, if 
UIN < q;, p --t 0 and if UIN > q~, p --t 1- elf3N. 

3. Stochastic models of infectious diseases 

During a disease invasion process, a relatively small number of infective indi
viduals constitute the initial 'colonizing' population from which an epidemic 
outbreak may develop. Moreover, the initial infective size together with Ro 
and N, determine the so-called average infective population before extinction 
characterized as the average population size achieved during the time that 
the disease was present in the population. It is intuitively obvious that under 
an stochastic regime, the initial infective size i 0 should be very important 
determinant for the fate of the epidemic. We have discussed in section 2 the 
analogies between the SIS and Levins' metapopulation deterministic models 
where the asymptotic dynamics depends on f3 and e but not on p(O) = i 0 , the 
initial proportion of occupied patches. In this section we present the stochas
tic versions and address the problem of successful colonization of patches in 
the context of metapopulation dynamics. 

3.1 Model formulation 

The stochastic version of the SIS model (Bailey, 1975) is described here 
in the terminology of patch-dynamics. We present the most basic formula-
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tion avoiding technical details. We recommend to consult Bailey (1975) and 
Nasell (1993) for complete information. 

Let I ( t) represent the number of occupied patches at timet in a metapop
ulation with a fixed number of patches N. I(t) can take values 0, 1, 2, ... , N. 
Thus, for m, n = 0, 1, ... , N the transition probabilities can be written as 

Pmn(s, t) = P[I(t) = njl(s) = m], 0 ~ s ~ t, 

where Pmn(s, t) is the probability that I(t) =nat timet given that I(s) = m 
at times. The transition rates of the process are 

where 

Pm,m+l(t, t + 8t) = Am8t + o(8t), 

Pm,m-l(t, t + 8t) = flm8t + o(8t) 

Am = ,Bm(1 - m/ N), Jlm = em. 

(3) 

These rates make Model (3) the stochastic analogous of Model (1) with ,8 
the propagule production rate, and e the patch extinction rate. 

Now, given a (small) initial number of newly colonized patches i0 , and 
given f3 and e (in other words, given Ro) and a future timeT, what is the 
proportion ofT in which there are i (i = 1, ... , N) occupied patches? 

The stochastic process (3) is a Markov process with a unique absorbing 
state (stationary distribution) at 0, that is, the probability of extinction in 
infinite time is 1 (hardly a useful result). To compute meaningful statistics of 
Model (3), e.g. TE the expected time to extinction, one sets a timeT in the 
future, and looks at the time evolution of the realizations of the stochastic 
process within that time interval conditioned on not being absorbed (Caven
der, 1978) obtaining the so-called quasi-stationary distribution (QSD) of the 
process. This distribution gives the (conditional) proportion of the time that 
the process spends in each state. From it, the expected time to extinction 
TE can be estimated (Nisbet and Gurney, 1982). 

We use a technique developed by Hernandez-Suarez (1996) to compute 
the distribution of the proportion of the time that the process spent in each 
state given any i 0 . This method consists in modifying the original Markov 
process defined by (3) to one without absorbing states, but where state 0 is 
now a reflecting state to io (i.e. the original initial propagule size). We will 
denote this approach by MMP (modified Markov process). 

In Figure 1 we present the comparison between the quasi-stationary 
distribution of the process (3), and that obtained through MMP for the cases 
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Ro > 1 and Ro < 1. The MMP approach is sensitive to changes in the initial 
population size (inoculum). 

Nisbet and Gurney (1982) and Renshaw (1991) discuss a particular ap
proximation to the quasi-stationary distribution from which TE can be com
puted. It can be shown (Hernandez-Smirez, 1996) that this approximation is 
a modification of the Markov process (3) to one where state 0 is a reflecting 
state to state 1. Using this approximation the expected time to extinction 
can be estimated (Table 1). 

Alternatively, MMP allows the calculation of TE as follows. Let II' = 
(1r1 , ... , 7rN) the limiting distribution of the modified Markov process (MMP) 
characterized above. Assume that the process· evolves for a large time T. 
Then 1ri is the total proportion of the time T that the process spends in 
state i. In particular 1r1 is the proportion of time that the MMP was in state 
1. Thus, the average time to extinction of the original process (3) can be 
computed as (Hernandez-Suarez, 1996) 

1 1 
TE=--=-. 

7r1Jll 1r1e 
(4) 

Expression (4) allows the computation of TE. The dependence of the initial 
propagule size (i.e., initial infectious population) is implicit in 1r1 . 

Table 1 shows the estimated values of TE for the Nisbet and Gurney 
approach and MMP. The former consistently under-estimates the expected 
time to extincion for io > 1. The inaccuracy of this approximation is, not 
surprisingly, worst for large initial populations. In Figure 2 we show the 
expected time to extinction TE as a function of Ro for the MMP approach 
compared with the one predicted by Nisbet and Gurney (1982) and Renshaw 
(1991). It is obvious that this method produces estimates of TE that are 
insensitive to differences in io. Note that the approximation suggested by 
Nisbet and Gurney (1982) and with the MMP above coincide if i 0 = 1. 

4. Discusion 

Epidemiology and ecology share the methodological substrate of patch 
dynamics. This common background can be used to adapt and adopt in 
reciprocity technics and conceptual basis for the description, analysis and 
explanation of particular phenomena. In this work we have shown that the 
epidemiological concepts of threshold parameters can be applied to metapop
ulation dynamics. The concept of minimum viable metapopulation size has 
been used as example. The results shown here were developed within the 
context of epidemiology. The classical SIS model has a long tradition in this 
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area and many results are available both of the stochastic and determinis
tic type. We are still far from understanding even this basic model but the 
available results can be applied successfully to better explain metapopulation 
dynamics and persistence. 

Models dealing with population extinction processes have usually focus 
on single populations to model the effects of demographic, environmental 
and genetic stochasticity (e.g., Richter-Dyn and Goel, 1972; Goodman, 1987; 
Wissel and Stocker, 1991, Lande 1993). However, real populations usually 
have a geographic structure composed of a finite number of interconnected 
subpopulations forming a metapopulation system. This system can go ex
tinct simply because all local populations happen to become extinct at the 
same time (an analog to the concept of demographic stochasticity in single 
population models). This process has been termed inmigration-extinction 
stochasticity by Hanski (1991) and have been shown to be specially impor
tant for metapopulations with a small number of subpopulations (Nisbet and 
Gurney 1982). Using a different approach, inspired by epidemiological mod
els, we have shown a interesting alternative for the estimation of the expected 
time to extinction that underscores the importance of immigration-extinction 
stochasticity. 

For the sake of simplicity and mathematical tractability, we have illus
trated our approach using a simple metapopulation model, of the patch oc
cupancy type, where no local population dynamics is included. However, this 
could be extended to more complicated models incorporating different patch 
types (e.g., Hanski and Gyllenberg, 1993; Marquet and Velasco-Hernandez 
1996). At present, the model can provide a good approximation to under
stand the process of extinction of plant populations by considering that each 
site or patch is the size of a single individual (Tilman, 1994). We hope 
our approach will spur theoretical and empirical work on this subject, thus 
underscoring the importance of epidemiological theory for metapopulation 
ecology. 
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Figure and Table Captions 

FIGURE 1 Distribution of the proportion of time that the system spends 
in state i conditioned to non-extinction (MMP). The numbers 1, 2, 5 and 10 
indicate the approximation to the distribution for i 0 = 1, 2, 5,10 respectively, 
using formula (4). The distribution of the QSD approximation (insensitive 
to changes in i 0 ) is also shown; a) Distribution for Ro = 1.2 and total patch 
size N = 50. b) Distribution for Ro = 0.9 and total patch size N = 50. 

FIGURE 2 Expected time to extinction TE as a function of Ro for the 
'Nisbet and Gurney' (line 1) and MMP (continuous lines) approaches. The 
numbers in the left hand side vertical axis correspond to i 0 , the initial pop
ulation size (MPP). Both approximations are identical for io = 1. 

TABLE 1 Values of TE, mean time to extinction for the Nisbet and Gurney 
approximation (T~), the MMP approximation (T~) and the average com
puted over a sufficiently large number of realizations of the process (TE); 
io indicates the initial propagule size (Nisbet and Gurney approximation is 
insensitive to i 0 and does not change value for fixed Ro and N); a) Results 
for Ro = 1.2 and total patch size N = 50; b) Results for Ro = 0.9 and total 
patch size N =50. 
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Table 1 

a) Ro = 1.1, N =50 

zo TQ 
E 

TM 
E r* E 

1 3.429 3.429 3.520 

2 5.683 5.509 

5 9.649 9.575 

10 12.638 12.727 

b) Ro = 0.9, N = 50 

io TQ 
E 

TM 
E r* E 

1 2.179 2.179 2.183 

2 3.517 3.601 

5 5.845 5.729 

10 7.718 7.691 

Version 4/11/1996 
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