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Cloud computing has emerged as an economically attractive utility model for

computational resources. An increasing number of industries, from businesses

to governments, are embracing cloud computing. However, the economic ben-

efits of the cloud computing model come at a price: the loss of control over how

services and applications can use computing resources. In other words, cloud

computing is fundamentally provider-centric. Cloud providers (the providers

of computational resources), not cloud users (the consumers of computational

resources), dictate rules and policies governing how computational resources

can be used. For large enterprise application workloads, adhering to cloud

provider rules and policies may be prohibitive. This dissertation explores the

question: how can large enterprise workloads efficiently utilize and control

computational resources from a variety of providers in the cloud computing

model?

The main contributions of this dissertation relate to a fundamental change to

the cloud computing model. Instead of a provider-centric model, we propose a

user-centric model in which the cloud user can maintain control over how com-

putational resources obtained from cloud providers can be used. We have de-

vised a new abstraction, called cloud extensibility, to enable the implementation

of provider-level functionality by cloud users. Leveraging cloud extensibility,

we describe steps towards a user-centric cloud computing model that grants

cloud users—including large enterprises—control over resources obtained from



one or more cloud providers. We call this new model the supercloud model.

More specifically, we focus on three key areas in which current provider-

centric cloud computing models do not expose the necessary control or lack the

features to support large enterprise workloads without significant reconfigura-

tion effort. First, clouds are not interoperable, restricting workloads to a single

provider and hindering incremental migration to the cloud. Second, clouds lack

support for complex enterprise network configurations, including flow policies

between application components and low-level network features (e.g., IP ad-

dresses, multicast, VLANs). Finally, high utilization of cloud resources cannot

be applied through techniques like oversubscription, and existing techniques

do not apply well to common workload patterns.

We subsequently make three contributions, embodied in the design, im-

plementation and evaluation of three systems that leverage cloud extensibility.

Cloud extensibility itself is instantiated in the first system, a nested virtualiza-

tion layer called the Xen-Blanket. The Xen-Blanket additionally enables cloud in-

teroperability by homogenizing existing cloud interfaces and services. The sec-

ond system, VirtualWire, provides a virtual network abstraction to support com-

plex enterprise networks in which the cloud user manages the network control

logic. Finally, we present Overdriver, a system that enables high resource utiliza-

tion through memory oversubscription and the handling of the resulting—often

transient and unpredictable—memory overload. Together, these three systems

are important steps towards superclouds.
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CHAPTER 1

INTRODUCTION

A vast array of industries—government, medical, financial, military and

consumer—heavily rely on the computational power of data centers. Services

and applications, including storage and analytics on data from payroll and in-

ventory, email, content distribution, and Web front ends for customer interac-

tion are all powered by computational resources in data centers. Increasingly,

data centers are providing computational resources as an on-demand comput-

ing utility in a model that has come to be known as the cloud computing model,

or simply cloud computing.

Unfortunately, the attractive on-demand characteristics offered by cloud

computing come at a price: a loss of control over resources. Services and ap-

plications running “in the cloud” must follow rules defined by the provider of

the resources, and different providers may insist on different rules. In other

words, cloud computing is fundamentally provider-centric, or governed by rules

and policies defined by resource providers. Unfortunately, the larger and more

complex the application workload, the more effort is required to conform the

workload to provider rules. Enterprise workloads, which are defined by appli-

cations and the services and infrastructure required to support them, are large

and complex. For example, a customer facing Web service may interact with

components that monitor the health of the service, upgrade software compo-

nents, patch vulnerabilities, balance load between workers, and enforce firewall

rules or intrusion detection invariants on the network. Conforming an enter-

prise workload to provider rules is prohibitive and can lead to lock-in. In this

dissertation, we ask the research question: how can large enterprise workloads ef-
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ficiently utilize and control large quantities of on-demand resources from a variety of

providers in the cloud computing model?

Through research and exploration of this question, we have devised a new

abstraction, cloud extensibility, that fundamentally changes the way that re-

sources can be utilized and controlled in the cloud computing model. With

the cloud extensibility abstraction, the enterprise utilizing cloud resources can

define its own, custom rules that fit its workload. As such, cloud extensibility

transforms the provider-centric cloud computing model into a fundamentally

user-centric model. In this dissertation we describe a new, user-centric cloud

computing model based on cloud extensibility that we call the supercloud model,

and investigate how it can enable enterprise workloads to take advantage of

cloud computing.

1.1 Superclouds: A Universal System

As part of the growing trend towards the commoditization of computing re-

sources, cloud computing is often compared to other utility models, like electric-

ity. Akin to power generators, cloud providers offer massive amounts of com-

puting resources. However, unlike the electricity utility model, in which con-

sumers are generally agnostic to where power is generated, cloud users (con-

sumers) are tightly coupled to the providers’ infrastructures and must adhere

to the varying specifications (e.g., virtualization stack and management APIs)

of the corresponding cloud provider. As it stands, the current cloud computing

model resembles the “War of the Currents” of the late 1880s [89], where direct

current (DC) power distribution was tightly coupled to a local generator.
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We investigate a cloud infrastructure that is akin to Westinghouse’s “uni-

versal system”—the foundation of modern day power generation, distribution,

and commoditization. In the “universal system,” Westinghouse showed how

power—using Tesla’s transformer—can be generated and consumed in many

different voltages [89]. Consumers, in such a model, only care about the avail-

ability of power as it can simply be transformed into the correct voltage. This

way, consumers are able be completely agnostic to where and how the electricity

is being generated. The “universal system,” thus, demonstrated how to decou-

ple power generation from consumption. This decoupling was a corner piece to

creating power distribution networks and, ultimately, the commoditization of

electricity.

In a similar fashion, the supercloud model described in this dissertation

forms a cloud distribution layer that is not bound to any provider or physical

resources. On the surface, users of a supercloud see a collection of computing

resources, similar to the current cloud computing model (Section 1.2). Beneath

the surface, the supercloud “transforms” multiple underlying cloud offerings

into a universal cloud abstraction. The supercloud specifies and fully controls

the entire cloud stack, independent from the providers’ infrastructure. A super-

cloud, thus, decouples cloud providers and users.

By decoupling the task of managing physical infrastructure from the ser-

vice abstraction implemented by the supercloud, computing resources are fur-

ther pushed toward commoditization. Superclouds enable a service abstrac-

tion market on top of cloud providers (currently inhabited by companies like

Rightscale [58]) to grow by introducing the potential for more flexibility and

control. Furthermore, superclouds enable an environment within which novel
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systems and hypervisor-level research and experimentation can be performed.

Superclouds enable the research and development of new, seamless multi-cloud

applications and new, highly customized cloud environments. As the market

for customized, cloud-agnostic services grows, superclouds will affect not just

cloud users, but the entire cloud ecosystem.

1.2 Cloud Computing Background

The cloud computing model is characterized in part by access to computing

resources as a utility. In this respect, cloud computing can be considered an

instantiation of a research vision that dates back to the 1960’s and the first time-

sharing systems [59], called utility computing [69, 77].

Computing resources made available as a utility in the cloud computing

model are owned and managed by cloud providers. Cloud providers, some-

times referred to simply as clouds, run massive data centers consisting of racks

upon racks of servers connected in a network. At the time of writing, each

server in a data center may contain one or more central processing units (CPUs)

with dozens of computational cores, hundreds of gigabytes (GB) of memory,

terabytes (TB) of storage in the form of magnetic disks or solid state drives

(SSDs), and several network interface cards (NICs) that connect the server to

one or more networks supporting bandwidths exceeding 10 gigabits per second

(Gbps).

In the cloud computing model, as defined by the National Institute of Stan-

dards and Technology (NIST) [112], cloud providers offer these computational

resources as a service. The focus of this dissertation is on a service model known
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as Infrastructure-as-a-Service (IaaS).1 In an IaaS cloud, a cloud provider makes

computational resources available in the form of a virtual machine abstraction.

A virtual machine (VM) is a computer implemented in software that executes in-

structions to run programs, just like a physical machine. As such, a VM contains

a complete software stack, from operating system to application. The represen-

tation of a VM on disk is called a VM image, whereas a running instantiation of

the VM image is called a VM instance.

The cloud provider runs software on each server, called a hypervisor or virtual

machine monitor (VMM), that runs and manages one or more VMs in strict isola-

tion from one another. The hypervisor multiplexes physical resources among

VMs by assigning virtual resources to VMs. Virtual resources are software

equivalents of physical resources such as CPU, memory, and network band-

width, and are ultimately backed by physical resources. The total amount of

virtual resources assigned to VMs can exceed the physical resources, and this

strategy is often employed to increase physical resource utilization. A primer

on virtualization, the technique in which a hypervisor supports the VM abstrac-

tion, appears in Appendix A.

The entity that obtains resources (CPU, network, storage) from a cloud

provider is called a cloud user. In an IaaS cloud, a cloud user obtains resources

in the form of access to a VM created by the cloud provider. The cloud user

pays for the VM per some—often small—unit of time. For example, Table 1.1

shows the price per hour for several different VM configurations from the Ama-

1NIST defines three service models for cloud computing. In the Software as a Service (SaaS)
model an application run by the provider is offered as a service. In the Platform as a Ser-
vice (PaaS) model, a framework that supports programs written in a particular language or
paradigm is offered as a service. The Infrastructure as a Service (IaaS) model is the most flexible,
because fundamental computing resources (e.g., CPU, memory, network, storage) are offered as
a service.
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Amazon EC2

Type CPU (ECUs) Memory (GB) Disk (GB) Price ($/hr)

Small 1 1.7 160 0.08

Large 4 7.5 850 0.32

Extra Large 8 15 1690 0.64

Cluster 4XL 33.5 23 1690 1.30

Rackspace

Type CPU (vCPUs) Memory (GB) Disk (GB) Price ($/hr)

1GB 1 1 40 0.06

8GB 4 8 320 0.48

15GB 6 15 620 0.90

30GB 8 30 1200 1.20

Table 1.1: The cost per hour of VMs from Amazon EC2 and Rackspace in
September 2012. For EC2, an ECU is an “EC2 Compute Unit”,
the equivalent CPU capacity of a 1.0 – 1.2 GHz 2007 Opteron or
2007 Xeon processor. For Rackspace, vCPUs are the equivalent
of 2.5 GHz Xeon processors.

zon Elastic Compute Cloud (EC2) [29] and Rackspace [31], two popular cloud

providers. This fine-grained, on-demand pricing model allows cloud users to

scale up or down their applications by requesting or releasing VMs. The cloud

user also interacts with the hypervisor-level software run by the cloud provider

through provider-specific interfaces. For example, some providers allow the

cloud user to invoke a provider function to save the running memory state of a

VM to disk. Other features offered by the provider may simplify management

for a cloud user or improve performance.

A cloud user may be an individual, a small organization, or a large enter-

prise. Thus, the amount of resources required by the cloud user can vary greatly.

A 2011 survey of over 400 small to large enterprises found that 90% were in-
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terested in the cloud for a variety of reasons, including agility, scalability, and

cost [8]. A cloud user running large and complex workloads will face more

challenges adapting to the cloud computing model than those running small

and simple workloads. Therefore, in the next section and throughout this dis-

sertation, we investigate research questions and present abstractions that enable

cloud computing to support would-be cloud users that are themselves large en-

terprises.

1.3 Challenges for Enterprise Workloads in the Cloud

Enterprise workloads, or the workloads for which large enterprises need compu-

tational resources are made up of applications and the services and infrastruc-

ture required to support them. They can consist of hundreds or thousands of

machines that run applications (e.g., Web, payroll, inventory) and services (e.g.,

monitoring, software patching and update) to manage deployments at large

scale. Enterprise workloads also involve sophisticated network components

(e.g., protocol accelerators, firewalls, intrusion detection systems) and custom

network configurations to route traffic between applications and services. Vast

quantities of resources are typically provisioned to run enterprise workloads.

We ask the questions: can part or all of an enterprise workload migrate to the

cloud? Can the cloud computing model support large enterprise workloads?

Large enterprises face numerous challenges that prevent them from fully

embracing cloud computing. First, enterprise workloads must often be re-

engineered to run on a particular cloud provider and interact with the cloud’s

management infrastructure. Such engineering effort is costly and must be done
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independently for each cloud provider. Second, the complex networks common

in enterprise workloads are rarely supported in existing clouds. Finally, enter-

prise deployments rarely utilize their provisioned resources efficiently, making

it difficult for them to utilize cloud resources in an efficient and cost-effective

manner.

To address these challenges, we investigate and apply a new cloud extensibil-

ity abstraction. Cloud extensibility enables cloud users to modify the cloud by

augmenting its hypervisor-level functionality. As described in Chapter 3, cloud

extensibility can be enabled on current clouds by leveraging an additional layer

of virtualization via nested virtualization. Ultimately, by applying cloud exten-

sibility to existing clouds, enterprises may overcome the challenges that hinder

the migration of their workloads to the cloud. The remainder of this section

describes each challenge in more detail, as well as how we leverage cloud ex-

tensibility to address each challenge.

1.3.1 Lack of interoperability between clouds.

Fundamentally, clouds do not offer uniform and compatible interfaces and envi-

ronments that are necessary for enterprise workloads to span multiple clouds.

In other words, they lack homogeneity. In particular, a single VM image can-

not be deployed—unmodified—on any IaaS cloud. Even worse, there is no

consistent set of hypervisor-level services across providers. Existing efforts to-

wards multi-cloud homogeneity such as standardization (e.g., Open Virtual-

ization Format [63]) are inherently provider-centric. Standardization approaches

will likely be limited to simple cloud attributes like VM image format. More
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complex standards that facilitate interoperability between clouds may never

come to fruition.

The challenge is in enabling a cloud user to create a uniform environ-

ment across heterogeneous clouds, without special support from the provider,

thereby enabling the VMs comprising enterprise workloads to be deployed on

any IaaS cloud. Specifically, we address the research question: How can a cloud

user homogenize clouds without relying on providers to implement standards or any

additional support?

To support enterprise workloads, an approach towards interoperability be-

tween clouds must maintain the powerful VM abstraction that defines IaaS

clouds, enabling the same VM image to run on multiple clouds. Further-

more, the technique must afford the cloud user the flexibility to implement

hypervisor-level services that may span multiple clouds. For example, it must

be possible to implement a service that performs live VM migration between

clouds. Finally, the technique must not rely on standardization so as to be ap-

plicable to existing clouds. Unfortunately, current techniques do not meet these

requirements. Middleware, such as IBM’s Altocumulus [109] system homoge-

nizes IaaS clouds like Amazon EC2 [29] into a Platform-as-a-Service (PaaS) [112]

abstraction, which is a higher level abstraction that lacks the flexibility of the

VM abstraction provided by IaaS clouds. Rightscale ServerTemplates [58] can

run on any cloud but cannot utilize hypervisor-level features (e.g., live VM mi-

gration) between clouds. Eucalyptus [68] and OpenStack [30] are open-source

cloud computing systems that can enable private infrastructures to share an API

with Amazon EC2 and Rackspace respectively, but also do not allow the user to

implement their own multi-cloud hypervisor-level features. Finally, the RESER-
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VOIR project [131] relies on standardization.

With cloud extensibility, a user can homogenize cloud offerings. By homoge-

nize, we mean a user can provide a uniform interface and set of services across

heterogeneous cloud providers, thus facilitating interoperability between them.

Instead of standardization, which is by definition provider-centric, we propose

a user-centric approach that gives users an unprecedented level of control over

the virtualization layer. As an instance of this approach, we introduce the Xen-

Blanket, a thin, deployable virtualization layer that can homogenize diverse, ex-

isting cloud infrastructures. We have deployed the Xen-Blanket across a public

cloud, Amazon’s EC2; a separate enterprise cloud; and a third private setup

at Cornell University. The Xen-Blanket is an instantiation of cloud extensibil-

ity; it enables cloud users to implement hypervisor-level functionality on third-

party clouds, including live VM migration, oversubscription, and ultimately

can reduce costs for users. We describe our approach to address the lack of in-

teroperability between clouds, embodied in the Xen-Blanket, in more detail in

Chapter 4.

1.3.2 Lack of control in cloud networks.

Enterprise deployments are notoriously difficult to extract from the network

infrastructure they run on. They are not simply the sum of the installed applica-

tions (e.g., web server + application server + database), but also include flow poli-

cies that are encoded in arcane network configurations and middleboxes [146]

(e.g., firewall, intrusion detection system, and load balancers). Furthermore,

they contain dependencies on low-level network features (e.g., IP addresses,
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multicast, and VLANs). Virtual network abstractions provided by systems like

VL2 [75], NetLord [118], and Nicira [14] are rich and support many of the in-

tricacies of enterprise workloads. However, in these systems, the control logic,

responsible for encoding flow policies in the virtual network, is implemented

by the provider. Users are fundamentally limited; they can only interact with

the control logic using cloud-specific, high-level APIs.

The challenge is in providing a virtual network abstraction within clouds

such that an enterprise cloud user has the control to configure the virtual net-

work, thereby enabling enterprise workloads—and their networks—to run on

one or more clouds. Specifically, we address the research question: What virtual

network abstraction should a cloud provider expose to allow an enterprise deployment

and its network to be migrated—without modification—to the cloud?

To support enterprise workloads, an approach towards cloud networking

must exhibit a rich network abstraction to cloud users. The exposed network

abstraction must support features and protocols—layer 2 (data link layer) pro-

tocols, for example—common in enterprise workloads. The technique must not

require modification of guest VMs, which can be prohibitive for large enter-

prise workloads. Finally, it must be possible and straightforward to specify the

complex flow policies encoded in network components that are part of enter-

prise workloads. Unfortunately, existing approaches do not meet these require-

ments. Rich virtual network abstractions [14] are emerging in current clouds,

which leverage OpenFlow [110] and, more broadly, software defined networks

(SDN) [78, 98, 126]. However, they are provider-centric. A cloud user must in-

teract with a cloud-defined interface to configure the network and therefore can

only configure the network in particular ways. Other systems, like Amazon Vir-

11



tual Private Cloud (VPC) [1] do not support layer 2 protocols. vCider [22] and

VPN-Cubed [24] support layer 2 protocols in the cloud and even provide some

control over the network topology, but require configuration in the guest oper-

ating systems. CloudSwitch [3] operates in an isolation layer that avoids guest

operating system configuration, but does not facilitate the implementation of

flow policies in the cloud.

Cloud extensibility enables an enterprise user to deploy virtual infrastruc-

ture to support complex aspects of an enterprise workload, such as its net-

work configuration. We propose and investigate a virtual network abstraction

in which the cloud user—not the provider—is responsible for the virtual net-

work control logic. As an instance of this approach, we present VirtualWire, a

system that can subsequently reduce or eliminate the network re-engineering

effort required to migrate an enterprise workload to the cloud. On VirtualWire,

users directly run their own virtualized equivalent of network devices (such as

switches, routers, middleboxes), and configure them using low-level device in-

terfaces, identically to physical network devices. Behind an API that mimics the

act of plugging networking cables into network interface cards, the provider’s

role is reduced to maintaining location-independent point-to-point connections.

Using VirtualWire, we have migrated a 3-tier application and its complex net-

work topology onto EC2 and achieved performance close to a native EC2 de-

ployment, avoiding reconfiguration. VirtualWire maintains the network topol-

ogy and flow policies even as components move. We have performed cross-

cloud live migration of VMs and network components making up an enterprise

workload between Cornell and EC2 with minimum downtime. We describe our

approach that affords cloud users more control over cloud networks, embodied

in VirtualWire, in more detail in Chapter 5.
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1.3.3 Lack of efficient resource utilization.

Enterprise deployments often provision enough resources to support peak load

conditions. As a consequence, resource utilization is low most of the time. En-

terprise deployments present an opportunity for oversubscription in order to in-

crease utilization. An enterprise workload is oversubscribed if the aggregate

amount of resources actually allocated to its VMs is less than the amount of re-

sources that were requested. Oversubscription can lead to overload, a situation in

which resource demands exceed the amount of allocated resources. While over-

load can happen with respect to any resource, memory overload is particularly

devastating to application performance. Existing techniques are heavyweight

and not well suited to transient overload.

The challenge is in allowing an enterprise deployment to exploit over-

subscription to increase resource utilization in the cloud. At the same time

overload—particularly memory overload—must be managed, regardless of

whether the overload is an unexpected transient burst or a predictable sustained

phase change. Specifically, we address the research question: How can enterprise

workloads exploit memory oversubscription in the cloud, while handling performance

degradation due to memory overload?

To address the lack of efficient resource utilization through memory over-

subscription, a viable approach must be able to preserve the performance of

enterprise workloads even through times of overload. A technique should be

able to react quickly to handle transient bursts. It should also be able to alleviate

more sustained periods of unusually high load. Unfortunately, existing systems

do not meet these requirements. Most existing approaches to handle memory

overload due to oversubscription utilize live VM migration [57, 122] to adjust
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the physical resource utilization in the data center. Such techniques cannot react

to transient overload, which is common in oversubscribed deployments. Sand-

piper [158] initiates migrations based on utilization thresholds. Andreolini et

al. [37] use a trend analysis, while Stage and Setzer [138] advocate long-term

migration plans. Alternatively, Disco [73] and MemX [86] use network mem-

ory [27, 36, 62, 71, 106, 123] during memory overload, but cannot alleviate sus-

tained periods of overload with high performance.

Cloud extensibility grants an enterprise cloud user the ability to oversub-

scribe cloud resources, such as memory, if desired. As such, the cloud user

can implement novel strategies to handle memory overload, whether because

of transient bursts or sustained phase changes. We propose and investigate an

approach where overload is treated as a continuum that includes both transient

and sustained overloads of various durations. As a result, overload mitigation

approaches can also be viewed as a continuum, complete with tradeoffs with re-

spect to application performance and data center overhead. As an instance of a

continuum-based approach to handling overload, we present Overdriver, a sys-

tem that adaptively takes advantage of these tradeoffs, using a threshold-based

strategy to switch between using network memory to handle transient over-

loads and live VM migration to handle sustained overloads. Overdriver mit-

igates all overloads while maintaining close to well-provisioned performance.

Furthermore, under reasonable oversubscription ratios, where transient over-

load constitutes the vast majority of overloads, Overdriver requires less excess

space and generates significantly less network traffic than a migration-only ap-

proach. We describe our approach to address the lack of efficient cloud resource

utilization, embodied in Overdriver, in more detail in Chapter 6.
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1.4 Contributions Towards a Supercloud Model

Through investigation of the three challenges in the previous section (Sec-

tion 1.3), this dissertation describes our research towards the universal system

described in Section 1.1. In particular, our research contributions center around

defining and exploring the supercloud model for cloud computing. Superclouds

embody an approach to cloud computing that is fundamentally different from

what currently exists. Rather than relying on cloud providers to dictate the

format, functionality, and limitations of cloud computing, we propose that this

responsibility be shifted to the cloud user. More specifically, we propose that

cloud users control their own supercloud.

As shown in Figure 1.1, in the supercloud model, an enterprise cloud user

maintains the ability to manage and efficiently run workloads on any cloud, re-

gardless of whether the user owns the infrastructure. Rather than redesigning

an enterprise deployment for the cloud, superclouds can be customized to fit

the enterprise. The complexity of migrating enterprise workloads to the cloud

using the supercloud model is dramatically reduced when compared to the cur-

rent cloud model. Resources from multiple clouds appear to be part of a single

cloud offering, all under the control of the (enterprise) cloud user. The cloud

offering can support complex, custom enterprise networks and apply oversub-

scription techniques for efficiency. Furthermore, different enterprise cloud users

can each deploy one or multiple superclouds that remain completely indepen-

dent from one another.

The core contribution of this dissertation, then, is the investigation of the

new supercloud model for cloud computing. We have researched this model
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Superclouds	  

Third-‐Party	  
Clouds	  

Enterprise	  
Workloads	  VM	   VM	   VM	  

Supercloud	  1	  

VM	   VM	  VM	  …	  

Cloud	  Interoperability	  
(The	  Xen-‐Blanket)	  

User	  Control	  of	  Cloud	  
Networks	  

(VirtualWire)	  

Efficient	  Cloud	  
Resource	  
U;liza;on	  
(Overdriver)	  

Supercloud	  2	  

Figure 1.1: The steps towards superclouds that are detailed in this disser-
tation are illustrated in this Figure. Each system is a part of a
supercloud and addresses a specific challenge pertaining to the
migration of enterprise deployments to the cloud.

by introducing cloud extensibility, which enables a cloud user to implement

hypervisor-level functionality. We describe cloud extensibility in detail, show

how it can be applied across heterogeneous cloud providers, and directly or in-

directly leverage it to instantiate the vision of superclouds. We then make three

key contributions towards superclouds, described in detail in Chapters 4–6, re-

spectively. Each contribution appears in Figure 1.1 in the context of a super-

cloud. We present:

• Cloud Interoperability: a user-centric approach to homogenize clouds, or

provide a uniform interface and set of services across heterogeneous cloud

providers, embodied by the Xen-Blanket,

• User Control of Cloud Networks: a virtual networking abstraction for

the cloud that enables the cloud user to implement the network control

logic and therefore control all aspects of the cloud network, embodied in

VirtualWire, and
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• Efficient Cloud Resource Utilization: an approach to handle memory

overload that enables high utilization of cloud resources through over-

subscription by handling the entire continuum of transient to sustained

overload, embodied in Overdriver.

1.5 Organization

The remainder of this dissertation is organized as follows. The scope of the

problem—including a characterization of enterprise workloads—and method-

ology is described in Chapter 2. Cloud extensibility, the enabling abstraction for

superclouds, is presented in Chapter 3. Chapter 4 addresses the lack of interop-

erability in clouds and presents the Xen-Blanket. Leveraging the Xen-Blanket,

Chapter 5 tackles the networking aspect of enterprise workloads and their de-

ployment on third-party clouds with VirtualWire. Chapter 6 describes efficient

use of memory resources through oversubscription and handling overload with

Overdriver. Chapter 7 surveys related work, Chapter 8 describes future work,

and Chapter 9 concludes.
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CHAPTER 2

SCOPE AND METHODOLOGY

This chapter describes the problem scope and methodology of this disser-

tation. We are researching how large enterprises can efficiently utilize cloud

resources from a variety of cloud providers. In order to define the scope of the

problem, we first characterize enterprise workloads in the context of research

challenges. Then, we describe our methodology for evaluating and validating

our research contributions.

2.1 Scope: Understanding Enterprise Workloads

Enterprise workloads typically consist of a set of applications and the services

and infrastructure required to support them. Enterprise workloads can in-

clude storage systems, data analytics, payroll and inventory applications, email

servers, Web proxies, and Wide Area Network (WAN) optimizers among other

components. Further, enterprise workloads may consist of hundreds or thou-

sands of servers that communicate with each other [136] in complex patterns

that reflect elaborate deployment architectures. Even a seemingly simple, stand-

alone customer facing Web service may interact with a number of services. For

instance, it is common to run monitoring agents in the virtualization stack [25],

in the OS [108], or in the application itself. Agents may be running to manage

and schedule software upgrades or interact with other systems to apply secu-

rity patches. Additionally, enterprise workloads include infrastructure, such as

network middleboxes [52] that may balance load between workers or enforce

firewall rules and intrusion detection invariants on the network.
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In this section, we define the scope of the problem. In particular, we describe

how the characteristics of enterprise workloads make them unsuitable for cur-

rent state-of-the-art clouds (Section 1.2). We identify the characteristics of enter-

prise workloads in the context of the three challenges enumerated in Section 1.3.

First, in Section 2.1.1, we describe how cloud interoperability and the flexibility

to define the cloud environment is crucial for enterprise cloud users. Second,

in Section 2.1.2, we investigate the network infrastructure that is included in

an enterprise workload and motivate the need for control over cloud networks.

Finally, in Section 2.1.3, we examine the opportunities for oversubscription in

enterprise workloads and characterize the overload that must be handled in or-

der to achieve efficient resource utilization.

2.1.1 Enterprise Workloads Need Cloud Interoperability

An enterprise cloud user would achieve several benefits from a uniform hy-

pervisor interface that encompasses many different cloud providers. If a sin-

gle VM image can be deployed on every cloud, tasks common to enterprise

workloads, such as image management, upgrading, and patching, are simpli-

fied. If any service offered by one cloud were available in any other cloud,

enterprises would not feel locked in to a particular vendor. In a 2011 survey

of over 400 enterprises, 25% cited provider lock-in and lack of interoperabil-

ity as the top inhibitors preventing them from moving to the cloud [8]. Homo-

geneity, by which we refer to a uniform environment between heterogeneous

clouds, would enable hypervisor-level resource management techniques and

cloud software stacks that truly span providers, offering enterprises the control

to manage cloud resources as they see fit to exploit their full potential.
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Existing clouds lack homogeneity in three ways. First, VM images—the on-

disk representations of VMs and the building blocks of cloud applications—

cannot be easily instantiated on different clouds. Despite proposed standards,

cloud providers continue to use different formats. For example, Amazon EC2

uses the Amazon Machine Image (AMI) format, while Rackspace uses the Open

Virtualization Format (OVF) [63]. Second, clouds are diverse in terms of the

services they provide to VMs. For example, Amazon EC2 provides tools such

as CloudWatch (integrated monitoring), AutoScaling, and Elastic Load Balanc-

ing, whereas Rackspace contains support for VM migration to combat server

host degradation and CPU bursting to borrow cycles from other instances.

Third, a class of resource management opportunities that exist in a private cloud

setting—in particular, tools that operate at the hypervisor level—are not consis-

tently available between providers. For example, there is no unified set of tools

with which enterprises can specify VM co-location on physical machines [159],

page sharing between VMs [81, 145], or resource oversubscription [154].

The desire for a homogeneous interface across cloud providers is not a call

for standardization. We distinguish between provider-centric and user-centric ho-

mogenization. Standardization is an example of provider-centric homogeniza-

tion, in which every cloud provider must agree on an image format, services,

and management interfaces to expose to enterprise cloud users. Standards are

emerging; for example, Open Virtualization Format (OVF) [63] describes how

to package VM images and virtio defines paravirtualized device interfaces.

However, until all clouds (e.g., Amazon EC2, Rackspace, Google Compute En-

gine, Microsoft Azure, to name a few) adopt these standards, VM configurations

will continue to vary depending on the cloud they run on. Even worse, it is

unlikely—probably infeasible—that the vast array of current and future services
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available to VMs will become standardized across all clouds. Attempts at stan-

dardization often lead to a set of functionality that represents the “least common

denominator” across all participating providers. Many enterprises will still de-

mand services that are not in the standard set and cloud providers will continue

to offer services that differentiate their offering. As a result, standardization, or

provider-centric homogenization, is not sufficient.

In contrast, we consider user-centric homogenization, in which enterprise

cloud users can homogenize the cloud and customize it to match their needs.

User-centric homogenization allows enterprises to select their own VM image

format and services, then transform every cloud to support it. The enterprise

is not tied into a “least common denominator” of functionality, but quite the

opposite: even completely customized services and image formats can be de-

ployed. The enterprise can then develop management tools that work for their

VMs across their (now homogenized) cloud. For example, an enterprise cloud

user can experiment with new features like high availability [61] across clouds

and perhaps achieve high availability even in the case of an entire provider fail-

ing.

Finally, any system that implements user-centric homogenization should be

universally deployable on clouds as they currently exist to have greatest im-

pact. A system that enables user-centric homogenization cannot be dependent

on emerging features that are not standard across all clouds. For example, at

the time of writing this dissertation, low-overhead nested virtualization primi-

tives in the Turtles Project [43] have been incorporated in two popular VMMs:

Xen [41] and KVM [96]. However, these primitives are not exposed by any cloud

providers, and therefore cannot be assumed by systems providing user-centric
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Function Application

Policy-based rout-
ing through mid-
dleboxes

• Network Intrusion Detection Systems (Honypots, Snort [132])
• Firewalls, load balancers, transparent proxies
• Protocol Acceleration (Snoop [39], Interceptor [9], BigIP [2])
• IPv6 Tunnels [53]

Layer 2 support
• VLAN (VLAN Trunking Protocol [55], Isolation, VoIP)
• Broadcast (Microsoft Network Load Balancing [13])
• Fail-over (PaceMaker [15], Sun Cluster [16])
• Discovery (Link Layer Discovery Protocol [28])
• Storage Area Network (Fibre Channel over Ethernet [7], ATA over

Ethernet [87])

(L2 and L3) Multi-
cast support

• Network Virtualization (VXLAN [105])
• Fail-over (Linux-HA [11], Hot Standby Router Protocol [104],Vir-

tual Router Redundancy Protocol [120])
• Load Balancing (Microsoft Network Load Balancing [13])

Table 2.1: Features used by enterprise deployments, commonly unsup-
ported by existing clouds

homogenization. Chapter 4 describes a system that homogenizes existing cloud

interfaces and services, thus facilitating enterprise workloads even across mul-

tiple clouds.

2.1.2 Enterprise Workloads Need To Control the Network

Enterprise deployments require not just a virtual network abstraction in the

cloud, but they require access to the control logic for the virtual network. To

support this claim, we examined data from a large organization that routinely

performs migration of enterprise workloads between data centers and various

cloud infrastructures.1 Using this data, we conducted a qualitative study of

twenty-six large (production) enterprise migration efforts, each ranging from

800 to over 6,000 (physical and virtual) machines.2 Our study included de-

1The name of the large enterprise is omitted for anonymity.
2We note that these were a combination of physical-to-virtual and virtual-to-virtual migra-

tions as part of data center outsourcing engagements.
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ployed applications, network elements (e.g., firewalls, switches, routers), logi-

cal dependencies, security and resource requirements, service level agreements,

and projected outages. We also conducted a number of interviews with experts

involved in the migration efforts. In this subsection, we highlight our key find-

ings. Unfortunately, due to the sensitivity of the data, we only provide qualita-

tive reports, rather than raw data.

Network Dependencies. Enterprise deployments not only have strong de-

pendencies on network protocols (examples of which appear in Table 2.1), but

also on how the network is managed. Administrators and the tools they use

often rely on vendor-specific features such as the Cisco command-line interface

(CLI) [21] and the Encapsulated Remote Switched Port Analyzer (ERSPAN) [4].

Migrating to a cloud requires (1) network protocol support by the provider, and

(2) modification of existing configuration and management tools to work with

the cloud APIs. We observed that applications and their management tools of-

ten need to be fundamentally re-architected to fit the target cloud model.

Network-Encoded Flow Policies. Within the network of an enterprise deploy-

ment, network flows travel—often transparently—through middleboxes, such

as firewalls and protocol accelerators (Table 2.1). These flow policies are encoded

in low-level, local configurations of network components, including switches,

routers, and middleboxes themselves. Migrating enterprise workloads to a

cloud requires (1) extracting these local configurations and (2) translating them

into the semantics (and APIs) exposed by the cloud. These requirements im-

ply that the cloud provider’s virtual network abstraction must contain robust

support for flow policies, which is not currently the case across all mainstream
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clouds.

Globally Unavailable View of Configurations. Enterprise deployments are

further complicated by their sheer size, often spanning thousands of hosts and

applications. We observed a consistent absence of a single knowledge base that

captures all configurations. While there have been attempts to capture such a

global view [48], they are rarely applied effectively. Migrating to a cloud thus

requires (1) full understanding of global configurations and (2) ensuring that

the migration fully adheres to any embedded policies (e.g., security, isolation,

and QoS).

Reconfiguring an enterprise application to fit one of the existing cloud vir-

tual network models can be avoided if the enterprise cloud user is responsible

for its virtual network’s control logic. In particular, given an appropriate vir-

tual network abstraction, the enterprise can completely reproduce the intrica-

cies of the physical network without translation or global network knowledge.

Towards this goal, we discuss a design alternative that allows an application

and virtualized analogue of its network components to be migrated—without

modification—to the cloud in Chapter 5.

2.1.3 Enterprise Workloads Need Efficient Resource Utilization

Oversubscribing resources, or granting more resources than actually exist, is

one technique to achieve efficiency in enterprise cloud workloads. However,

oversubscription must not cause overload in the VMs comprising the work-

load. In this section, we first describe various causes of memory overload, with
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particular focus on overload due to oversubscription. Second, we justify the

claim that an opportunity for memory oversubscription exists in enterprise de-

ployments through analysis of data center logs from a large enterprise.3 Finally,

we experimentally examine the characteristics of overload caused by oversub-

scription to conclude that overload is a continuum, with transient overloads

dominating.

Types of Overload. A VM is overloaded if the amount of memory allocated to

the VM is insufficient to support the working set of the application component

within the VM. There are two main causes of memory overload. The first cause

of memory overload is that a VM does not request sufficient resources to handle

its working set, including the case in which the running application component

has a memory leak. We assume that the VM should have requested more re-

sources to eliminate this type of overload.

We thus only focus on investigating, minimizing and possibly eliminating

overload caused by oversubscription; we assume that the VM, if allocated all

resources it requested, would not experience overload. We call the amount of

memory that the cloud dedicates to a VM the memory allocation. If the VM’s

memory allocation is less than requested, then we say the machine hosting the

VM is oversubscribed. Oversubscribing memory while preserving performance

is possible because application components running in VMs do not require a

constant amount of memory, but experience application-specific fluctuations

in memory needs (e.g., change in working set). In practice, memory oversub-

scription can be accomplished by taking memory away from one VM to give to

another through memory ballooning [145], transparent page sharing [145], or

3Once again, we omit the name of the enterprise to preserve anonymity.

25



other techniques [81]. If the aggregate memory demand of VMs sharing an ma-

chine exceeds the amount of memory on the machine, overload must be man-

aged so that a VM continues to execute as if it has the amount of memory it

requested.

Opportunities for Oversubscription. To justify the opportunity for memory

oversubscription in enterprise workloads, we examine log data from a num-

ber of production enterprise data centers, which tend to be well-provisioned.

The log data covers a number of performance metrics (including CPU, memory,

and disk usage) for a large data center that hosts diverse applications, includ-

ing Web, financial, accounting, and customer relationship management (CRM).

The collected performance data is typically used by the various data centers to

analyze application resource usage in order to identify resource contention and

to assess the need for workload rebalancing.

Two indicators are generally used by data centers to identify whether a

server is having memory overload problems: page scan rate and paging rate.

Paging rate is the primary indicator because it captures the operating system’s

success in finding free pages. In addition, the page scan rate captures the rate

at which the operating system is searching for free pages, providing an early

indicator that memory utilization is becoming a bottleneck.

In well-provisioned data centers, overload is unpredictable, relatively rare,

uncorrelated, and transient, indicating that an opportunity exists for memory

oversubscription. To support this claim, we processed performance logs from

100 randomly selected servers. Each log is 24 hours long, while each point in

the trace is the average paging rate over a fifteen-minute interval. This is the
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Figure 2.1: Count of simultaneously overloaded servers out of 100 ran-
domly selected servers over a single representative day. Each
point represents the number of overloaded servers during the
corresponding 15 min. interval.

finest granularity of the log data; thus, sub-fifteen-minute information is not

available to us without additional server instrumentation. To capture transient

overload bursts that may appear as low paging rates when averaged over the

entire fifteen-minute interval, we define overload as an interval with a non-zero

paging rate.

We analyzed the data in three different ways. First, we looked at the preva-

lence of overload (irrespective of its duration) across the 100 servers. We ob-

served that overload is rare: only 28 of the servers experience some kind of

memory overload. Second, we studied the frequency of simultaneous overload.

Figure 2.1 shows a time series plot of the count of overloaded servers over the

24-hour measurement period. The figure shows that at most 10 servers were si-

multaneously overloaded. However, the average over the 24-hour period is 1.76
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Figure 2.2: Memory overload distribution of 100 randomly selected
servers over a single representative day.

servers, suggesting that servers sharing machines are unlikely to experience cor-

related overload. Finally, we studied the duration of overload. Figure 2.2 shows

the cumulative distribution function (CDF) of the duration of memory overload

(using both metrics—page rate and scan rate). By definition, the figure only

looks at the servers that experienced overload in one or more 15-minute inter-

vals. The figure shows that 71% were overloaded for one interval, 80% (71% +

9%) up to two intervals, 92.5% (71% + 9% + 12.5%) up to 3 intervals (15 min,

30 min, 45 min respectively). In other words, most overloads we studied were

transient, but sustained overloads did exist.

Overload Due to Oversubscription. To safely exploit memory oversubscrip-

tion, we must understand the characteristics of overload as oversubscription is

increased. We would like to analyze real data center logs again, however, we
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do not have access to traces from a data center that currently employs memory

oversubscription.

Instead, we introduce a realistic application and workload in an environ-

ment within which we can experiment with different levels of oversubscrip-

tion and gather fine-grained data at both application and system level. We use

the SPECweb20094 banking benchmark to run on a LAMP5 Web sever to pro-

vide a realistic client load. SPECweb2009 models each client with an on-off pe-

riod [150], classified by bursts of activity and long stretches of inactivity. Each

client accesses each Web page with a given probability, determined from ana-

lyzing trace data from a bank in Texas spanning a period of 2 weeks including

13+ million requests [139]. SPECweb2009 is intended to test server performance

with a fixed client load, so, by default, client load is stable: whenever one client

exits, another enters the system. This makes the benchmark act like a closed

loop system. Real systems rarely experience a static number of clients, so, in

order to better approximate real workloads, we use a Poisson process for client

arrivals and departures. We choose Poisson processes for the clients as a con-

servative model; real systems would likely have more unpredictable (and tran-

sient) spikes.

We next examine the effect of oversubscription on the duration of overload.

To do so, we varied the VM’s memory allocation to simulate oversubscription

and ran the SPECweb2009 Web server with Poisson processes for client arrivals

and departure set so that the arrival rate is 80% of the service rate. Each experi-

ment lasted for 10 minutes. The measurement granularity within an experiment

is 10 seconds. Each point in the graph is the average of 75 experiments.

4http://www.spec.org/web2009/
5Linux, Apache, MySQL, PHP
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Figure 2.3: These two graphs form a memory overload probability profile
for the web server component of the SPECweb2009 banking
application under a variety of different oversubscription levels,
including both the frequency and duration of overload.

From this experiment, we construct a probability profile for the application

VM under different memory allocations. As expected, Figure 2.3(a) shows an in-

crease in the probability of overload as memory becomes constrained. However,

in addition to the frequency of overload, we are also interested in the prevalence
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of each overload duration. Figure 2.3(b) shows a CDF of the duration of over-

load. We see that even at high memory oversubscription ratios, most overload

is transient: 88.1% of overloads are less than 2 minutes long, and 30.6% of over-

loads are 10 seconds or less for an allocation of 512 MB. If the VM memory is

increased to 640 MB, 96.9% of overloads are less than 2 minutes long, and 58.9%

of overloads are 10 seconds.

To conclude, there is an opportunity to employ memory oversubscription

within enterprise workloads; however, memory overload increases with mem-

ory oversubscription. Memory overload is not solely sustained or transient, but

covers a spectrum of durations. Even at high oversubscription levels, transient

overloads dominate. We design a system to safely oversubscribe memory in an

enterprise cloud deployment in Chapter 6.

2.2 Methodology: Experimental Environments and Workloads

In this dissertation, we investigate how large enterprise workloads can effi-

ciently utilize cloud resources from a variety cloud providers. For each chal-

lenge, our methodology involves the design, implementation and evaluation of

a system. Each system is an instance of an aspect of our user-centric approach

and a step towards an instance of a supercloud. The evaluation of each system

provides evidence to support the claims made in our approach.

In this chapter, we describe some of the environments within which we eval-

uate our systems. We also describe several example applications that we use to

simulate various aspects of enterprise workloads.
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2.2.1 Cloud Environments

We have run our systems on three different environments: Amazon EC2 [29], an

enterprise cloud, and a private setup at Cornell. However, to maintain consis-

tency throughout the evaluation, we limit the evaluation to two environments.

As described further in Chapters 3 and 4, we employ the use of nested virtualiza-

tion, or one layer of virtualization on top of another. In the rest of this subsec-

tion, we describe the environments—both single-layer and nested—that we use

throughout this dissertation.

Amazon EC2. Amazon EC2 is a popular public Infrastructure as a Service

(IaaS) cloud. VM images must be in the Amazon Machine Image (AMI) format

to be able to run on EC2. On EC2, we instantiate VMs in one of three different

sizes. Small instances have 1.7 GB memory, 1 EC2 Compute Unit, 160 GB in-

stance storage and a 32-bit platform. Medium instances have 3.75 GB memory,

2 EC2 Compute Units, 410 GB instance storage and a 64-bit platform. Clus-

ter Compute Quadruple Extra Large (Cluster 4XL) instances have 23 GB memory,

33.5 EC2 Compute Units, 1690 GB of local instance storage and a 64-bit plat-

form. Communication speed between VMs varies depending on the instance

size. Small and medium instances are classified as “moderate” performance;

they can achieve at most 1 Gbps throughput on the network. Cluster 4XL in-

stances are connected to each other using a 10 Gbps Ethernet.

EC2 utilizes a customized version of the Xen hypervisor [41]. Therefore, it

uses paravirtualization [41, 152] as a virtualization technique. A brief primer

on paravirtualization appears in Appendix A. Both small and medium EC2 in-

stances are both paravirtualized (PV) guests. Cluster 4XL instances are hard-
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ware assisted (HVM) guests, also referred to as fully virtualized.

Cornell. We have constructed a testbed at Cornell that uses physical rack

mounted servers connected by a 1 Gbps network. Each physical server con-

tains two six-core 2.93 GHz processors Intel Xeon X5670 processors,6 24 GB of

memory, and four 1 TB disks. The software stack on each machine consists of

a 64-bit Xen version 3.1.2 running a 64-bit CentOS 5.5 in the control domain.

We can instantiate VMs with a variety of resource—memory and virtual CPU

(VCPU)—configurations. Furthermore, in this setup, VMs can be instantiated

in paravirtualized (PV) or fully virtualized (HVM) mode. With hardware virtu-

alization support in the Xeon X5670 processor, HVM is expected to outperform

PV, because of reduced hypervisor involvement. In particular, the processor in-

cludes support for extended page tables (EPT) in which a guest VM can manage

its own page tables without involving the hypervisor.

An Enterprise Cloud. Using physical servers with similar specifications to

those at Cornell, we have installed a virtualization environment that uses

KVM [96] instead of Xen. In this setup, we only instantiate HVM guests.

Nested Environments. We leverage nested virtualization as a mechanism to

enable cloud extensibility, as described further in Chapters 3 and 4. We depict

the different nested combinations by specifying both the hypervisor (e.g., Xen,

KVM) and the type of interface the guest is using (e.g., PV, HVM). For example,

Figure 2.4 shows four common environments within which we evaluate our

systems. Native represents an unmodified Linux [19] running on bare metal.

6Hyperthreading causes the OS to perceive 24 processors on the system.
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Figure 2.4: Environments with 0, 1, and 2 layers of virtualization

HVM represents a standard single-layer Xen-based virtualization setup using

full, hardware-assisted virtualization. PV represents a standard single-layer

Xen-based virtualization setup using paravirtualization. As further described

in Chapter 4, Xen-Blanket consists of a paravirtualized virtualization setup in-

side of an Xen-based HVM setup. We have performed experiments using KVM

as the hypervisor with comparable results, but—for the most part—focus on a

single hypervisor for a consistent evaluation.

2.2.2 Sample Workloads

We have designed and implemented several systems to support our claims per-

taining to the migration of enterprise workloads to the cloud. Enterprise work-

loads are often sensitive and difficult to obtain for experimentations. Those that

34



may be available are also difficult to evaluate at scale. In this subsection, we de-

scribe the common applications and tools we use to simulate particular aspects

of enterprise workloads on our systems.

SPECweb2009. As described in the previous section, SPECweb20097 is a com-

mon 3 tier Web application benchmark. We use the banking application, which

consists of a front-end Web server, a scalable application logic tier, and a back-

end database. In SPECweb2009, the back-end database is simulated; no data is

actually stored. The tiers may be run each in a different VM or all in the same

VM. SPECweb2009 generates load for a configurable number of customers, or

simultaneous sessions. Using an on-off model [150], classified by bursts of ac-

tivity and long stretches of inactivity, each customer places load on the applica-

tions. The customer pattern of access used in the SPECweb2009 benchmark is

based from an analysis of trace data from a bank in Texas spanning a period of

2 weeks including 13+ million requests [139].

Using SPECweb2009, we can simulate an enterprise application, part of an

enterprise workload, under different load conditions. By running experiments

with steady client load, the performance of the application is classified in terms

of request latency. A valid SPECweb2009 run involves 95% of the page requests

to compete under a “good” time threshold (2s) and 99% of the requests to be

under a “tolerable” time threshold (4s).

RUBiS. Like SPECweb2009, RUBiS [66] is a benchmark with three VMs rep-

resenting the Web tier, application server tier, and database tier, respectively.

Instead of the application being a bank, as in SPECweb2009, RUBiS is an online

7http://www.spec.org/web2009/
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auction application benchmark. The performance of the application is measured

similarly to SPECweb2009. Based on latency, the number of “good requests” (la-

tency within 2000 ms) are calculated under various client loads (simultaneous

sessions).

To better represent the network complexity that can arise in enterprise work-

loads, we add two VMs running software firewalls (iptables [12]) between

each of the 3 RUBiS tiers. Like many real applications, the VMs each have a

hard-coded configuration—route table entries and IP addresses—that compli-

cates their migration to the cloud using traditional methods.

netperf. To stress the networking aspects of enterprise workloads, we use

netperf, a tool that generate Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP) traffic to measure either throughput or latency. Us-

ing netperf we send traffic through complex network paths, including phys-

ical and virtual switches, routers, and other network components. UDP traffic

is generated with UDP STREAM or UDP RR modes for latency measurements.

Similarly, TCP traffic is generated with TCP STREAM or TCP RR modes. We

generally send 1400 byte packets to avoid Maximum Transmission Unit (MTU)

issues.

2.3 Summary

Enterprise workloads can be complex both in terms of the applications they

involve as well as the infrastructure they are dependent on. First, enterprise

workloads require a flexible, uniform environment that spans multiple cloud
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providers. They may need to implement their own hypervisor-level services

that span clouds to facilitate management or migration to the cloud. Second, en-

terprise workloads have complex network topologies and policies that may be

encoded deep inside low-level device configurations. Finally, enterprise work-

loads contain opportunities for memory oversubscription, but exhibit a range

of memory overload behavior. In particular, memory overload may consist of a

transient burst or may occur over a sustained period of time.

Enterprise workloads with these characteristics face serious challenges be-

fore they can be migrated to the cloud. A user-centric approach grants the en-

terprise cloud user the control it needs to migrate to the cloud, without costly

redesign. In the remainder of this dissertation, we describe the design, imple-

mentation and evaluation of the systems we used to validate our user-centric su-

percloud approach, using the environments and under the workloads described

in this chapter.
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CHAPTER 3

CLOUD EXTENSIBILITY: AN ENABLING ABSTRACTION

“Nature is a mutable cloud which is always and never the same.”

—Ralph Waldo Emerson

Whereas Infrastructure as a Service (IaaS) clouds once provided a simple

bare-bones VM abstraction, they have now evolved to include diverse, feature-

rich offerings. On the surface, this is advantageous: cloud users on Amazon

EC2, for example, enjoy tools such as CloudWatch (integrated monitoring), Au-

toScaling, and Elastic Load Balancing. Beneath the surface, however, users are

constrained: cloud provider features are rapidly becoming synonymous with

vendor lock-in [32, 38], which is a symptom of a larger problem. Users are

completely dependent on the provider for any hypervisor-level features. Tools

and techniques at the hypervisor-level—enabling increased portability, avail-

ability [61], security [65], efficiency [154] and performance [92]—are impossi-

ble for cloud users to implement themselves. As a direct consequence, cloud

users cannot build superclouds, or user-defined cloud environments, on exist-

ing clouds.

The current state of clouds resembles a point in the evolution of operating

system (OS) kernels. In particular, extensible systems (such as exokernels [67],

SPIN [45], and VINO [135]) emerged to solve certain limitations in monolithic

kernels. These systems were motivated, in part, by applications’ inability to de-

fine their own tailored hardware abstractions, just as applications on existing

clouds are unable to define their own virtual and physical hardware abstrac-

tions.
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In this chapter, we argue that the abstraction of an extensible cloud is essen-

tial for building superclouds. At the same time, we point out that the deploy-

ment of an extensible cloud must not depend on support from cloud providers.

For example, current calls for standardization across multiple cloud providers

may never be implemented due to social and legal challenges. In this disserta-

tion, we focus on the technical challenges and related scientific contributions.

3.1 The Existing Cloud Abstraction

The uses of clouds are extensive: users range from a person deploying a sin-

gle VM to an entire information technology (IT) department or enterprise de-

ploying hundreds or thousands of VMs. A rich array of services, third-party

cloud management tools [58], and middleware [51,109] operate at the VM-level

to provide useful high-level functionality to cloud users. However, beneath

this superficial VM-level veneer, the deployment of efficient, portable, innova-

tive applications—especially by large enterprise cloud users attempting to effi-

ciently manage a workload that spans clouds—is being hindered by two main

shortcomings that manifest as a lack of control: immutable hypervisors and

buried hardware.

Immutable Hypervisors: By immutable hypervisors, we mean that the user

cannot change the hypervisors. The hypervisor, or virtual machine monitor

(VMM), in existing clouds is controlled by the provider, leaving users with little

or no say as to what hypervisor-level functionality is implemented or exposed.

For example, no cloud currently exists with a hypervisor that allows users to
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Abstraction Level Feature

Existing Clouds
Application monitoring
Auto-scaling
Non-live migration

Mutable Hypervisor

Page sharing [81, 145]
Overdriver [154]
Revirt [65]
Remus [61]
Live migration [57]
Cross-provider live migration

Exposed Hardware

vSnoop [92]
Superpages [121]
Page coloring [93]
Non fate-sharing
Unsupported paravirtualization

Table 3.1: Cloud abstractions and extensions they enable

maximally utilize their VMs through techniques like page sharing [81, 145] or

aggressive oversubscription [154]. Live VM migration [57] between multiple

clouds—public or private—is virtually impossible. Innovative hypervisor-level

techniques for high availability [61] or intrusion detection [65] are unavailable,

while further customization and experimentation at this level is stifled.

Buried Hardware: Existing clouds bury the details of hardware beneath a vir-

tual machine abstraction. Users must depend on the provider to expose every-

thing from efficient I/O interfaces to physical fate-sharing information. More-

over, users cannot implement hardware-dependent tricks to squeeze the best

performance out of the rented resources. Time-sensitive tasks, such as TCP ac-

knowledgment [92], are difficult. Superpage [121] utilization is not efficient on

virtual memory that may not be contiguous, and performance opportunities

like page coloring [93] are also lost.
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Figure 3.1: General extensibility architecture. U and P denote user and
provider installed modules, respectively.

Table 3.1 provides examples of cloud extensions, some of which may or

may not be currently available. However, there is a large set of features—

spanning performance, security, and portability—that require a mutable hyper-

visor. That is, some features require users to modify the hypervisor. A further

set of performance-related features require control or visibility at the hardware

level. It is important to note that despite advocating for mutability, we believe

that IaaS clouds should continue to provide a VM abstraction. This approach

is fundamentally different from that of cloud operating systems that expose an

OS process instead of VM abstraction [151].
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3.2 The Design Space for Extensible Clouds

The general components of an extensible cloud are shown in Figure 3.1. Like

existing IaaS clouds, an extensible cloud ultimately exposes a VM-like interface,

upon which cloud users can run VMs. Unlike existing clouds, the VM-like in-

terface can be customized and user-defined hypervisor-level functionality can

be introduced to directly interface with the hardware. Thus, an extensible cloud

exposes both a mutable hypervisor and the underlying hardware.

We consider the hypervisor to be made up of a number of modules that in-

teract to make up the inner workings of the cloud provider. The provider likely

implements modules that multiplex hardware and enforce protection, such as

isolated containers that protect cloud users from one another (Figure 3.1). Mod-

ules that implement functionality essential to the operation of the cloud, such

as protection and accounting, are immutable; users cannot modify them. Some

modules may be modified by users and are therefore mutable; others, imple-

menting innovative or experimental interfaces, may be supplied by the cloud

user. For example, the cloud user may modify a VM migration module to ig-

nore temporary state or may implement a networking module from scratch that

enables layer-2 connectivity. Modules depicted within a dotted box require ac-

cess to the hardware.

There are a number of design alternatives for arranging the components in

Figure 3.1. These alternatives, shown in Figure 3.2, are largely inspired by sem-

inal work on extensible kernels.
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(a) Download extension modules into VMM (b) Export hardware through VMM

(c) Add another VMM

Figure 3.2: Three design alternatives for extensible clouds. The shading
scheme is identical to Figure 3.1.

Download Extensions into the VMM: SPIN [45] and VINO [135] are two sys-

tems from the 1990’s in which extensions, or grafts, can be downloaded into the

kernel, and run safely. Safety is provided mostly at the language level, using

techniques like safe languages (Modula-3) and software fault isolation. An ex-

tensible cloud architecture that adopts this design is shown in Figure 3.2(a). The

hypervisor becomes mutable by allowing user-defined or user-modified mod-
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ules to be downloaded into the kernel. Similar to the extensible OSs, this must

be done safely, such that other modules, especially immutable provider mod-

ules, are protected. Since modules are executing in the hypervisor with privi-

lege, they can be granted direct access to the hardware.

Expose Hardware through the VMM: Exokernel [67] is a system that achieves

extensibility by exposing hardware directly to applications, to the extent that the

actual hardware names and addresses are visible to applications. Management

of the hardware, traditionally done by the OS kernel, is performed by a library

OS (libOS) that can be completely custom-built and linked into the application.

The kernel, on the other hand, only enforces protection between applications,

which can be complex [91]. With the renewed interest in virtualization in the

early 2000’s, paravirtualization revisited many of these ideas, with the Denali

isolation kernel [152] exposing much of the hardware, and implementing the

traditional OS as a library, linked into the application. Xen [41] also adopted a

paravirtualization approach and argued that full virtualization is not desirable

when a guest OS needs to see real physical resources. Figure 3.2(b) shows a de-

sign in which the cloud provider exposes hardware to a “libVMM” under the

control of a cloud user—analogous to a libOS on top of an Exokernel. The hard-

ware is not buried, but exposed to the libVMM, which is completely mutable.

Add Another VMM: Interest in nested virtualization is increasing as virtual-

ization becomes ever more ubiquitous. Furthermore, nested virtualization has

been shown to perform well; for example, the Turtles Project [43] has achieved

performance within 6–8% of single-level virtualization for some workloads.

Figure 3.2(c) shows how nested virtualization can be leveraged for extensibil-
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ity in the cloud. When a user leases a VM instance, it installs a mutable, second

layer hypervisor to run on top of the cloud provider’s VM abstraction. The

providers’ and users’ modules are implemented in the first and second layer

hypervisors, respectively. It should be noted that the techniques used by the

Turtles Project require modifications to the bottom-most hypervisor in order to

expose virtualization hardware extensions to VMs.

Nested virtualization fundamentally differs from the previous two design

alternatives. On the one hand, using nested virtualization, the hardware re-

mains buried under the virtual machine abstraction, preventing a cloud user

from implementing the class of performance-enhancements described in Sec-

tion 3.1. On the other hand, nested virtualization has enormous potential for

incremental deployment, even without provider cooperation. As an alternative

to existing nested virtualization systems that require lower-layer VMM modifi-

cations, techniques such as paravirtualization can be applied inside a standard

fully virtualized or even paravirtualized guest VM. As such, this mutable, sec-

ond layer hypervisor implements an extensible cloud that can be deployed on

existing cloud platforms without requiring provider involvement. Nested vir-

tualization offers a compelling extensible cloud architecture. However, can such

an architecture perform well?

3.3 Will a Deployable Extensible Cloud Perform?

As discussed above, the nested virtualization approach has the advantage of

rapid deployment on existing clouds. In many cases, nested virtualization can
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Figure 3.3: Virtualization configurations

achieve reasonable performance without provider support or involvement.

For the following experiments, we assume standard, hardware-assisted hy-

pervisors that run at the lowest layer, similar to the fully virtualized (HVM)

instances available from Amazon EC2. Existing clouds do not contain the hy-

pervisor extensions required to virtualize the processor features supporting vir-

tualization [43]. Instead, we must use other techniques to implement the second

layer hypervisor, such as paravirtualization (e.g., Xen [41]), binary translation

(e.g., VMWare [140]), or full emulation (e.g., QEMU).1 Our experiments focus

on using paravirtualized Xen,2 and were performed at Cornell on our machines

with 24 GB of RAM and dual 6-core 2.93 GHz Intel Xeon X5670 processors. The

virtualization configurations that we compare are described in Figure 3.3.

Table 3.2 shows the results of some lmbench [111] microbenchmarks over

the various setups (Figure 3.3). As expected, all arithmetic operations, like dou-

1Results from experimentation with QEMU are not shown due to the poor performance of
full emulation, which was up to two orders of magnitude slower.

2While Xen paravirtualization somewhat limits compatibility, we note that it is very popular;
for instance, a large fraction of Amazon EC2’s offerings are indeed paravirtualized.
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Single Nested
Baseline PV HVM KVM PV / HVM PV / KVM

double div (ns) 7.19 7.55 7.61 7.41 7.57 7.35
null call (µs) .19 .37 .21 .20 .37 .38

fork proc (µs) 65.17 249.70 78.89 86.52 280.39 336.93

Table 3.2: Microbenchmarks using lmbench
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Figure 3.4: Disk throughput using dd

ble division (shown), are minimally affected by virtualization. Simple opera-

tions like null system calls, are achieved in fully virtualized configurations with-

out hypervisor support, and thus have matching performance. Paravirtualiza-

tion, on the other hand, invokes the hypervisor on the system call, which must

be redirected back up to the guest OS. Nesting does not introduce any extra

overhead beyond that of paravirtualization (PV). However, in nested environ-

ments, process fork generates 12–30% additional overhead over PV by inducing

traps into the lowest layer hypervisor.

I/O typically stresses a virtualized system because of the inefficiencies of
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Figure 3.5: Network receive throughput using netperf

emulation required to fully virtualize I/O devices and handle interrupts. To de-

termine the overhead introduced by the second-layer hypervisor, we conducted

experiments with disk I/O and network I/O. In the first experiment, we mea-

sure the performance of disk I/O by writing 1.6 GB of data to a disk partition

with the standard Unix tool dd using blocks of size 256 K. Each result is the av-

erage of 5 trials. Figure 3.4 shows the throughput of the disk. We find that, for

disk I/O, nested virtualization does not cause significant overhead, achieving

90% of native throughput, largely due to caching.

In the second experiment, we measure the performance of network I/O. The

network device typically generates more interrupts and requires more OS inter-

action than a disk, making it a more stressful test for virtualized environments.

We ran netperf in each setup in order to determine how fast a guest could

receive TCP network traffic generated from another machine across a 1 Gbps

network. Each result is the average of 10 trials. Figure 3.5 shows the results.
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Figure 3.6: Screenshot of Xen booting on Amazon EC2

Considering a single layer of virtualization, it is immediately obvious that full

virtualization (HVM, KVM) incurs a dramatic performance hit. HVM performs

particularly poorly, achieving only 40% of the baseline throughput.3 PV, which

bypasses device emulation by using paravirtualization, achieves performance

matching the baseline. This suggests that the poor performance of the nested

setups is largely due to the device emulation of the first layer hypervisor. For

instance, whereas the single layer of KVM virtualization reduced throughput

by 47%, the second layer only reduces it by a further 9%.

3This is a known limitation of network virtualization in Xen due to inefficient I/O remap-
ping [114].
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3.4 Summary

Cloud providers are diverse and complex and lend themselves toward ven-

dor lock-in. Users cannot implement sophisticated, custom applications that

require VMM- and HW-level control. In particular, cloud users cannot build

superclouds. In this chapter, we discussed cloud extensibility as an approach to

address these limitations.

Transforming existing clouds into extensible clouds is within reach using

nested virtualization as an extensibility layer. In experiments, we showed that

nested virtualization overhead is within acceptable limits given its relative ease

of deployment. However, we also discovered that paravirtualized I/O drivers,

especially network drivers, are essential to eliminate the bottleneck presented

by device emulation.

In the following chapters, we show how to overcome I/O bottlenecks and

demonstrate an extensible cloud deployed on existing clouds, including Ama-

zon EC2 (Figure 3.6), an enterprise cloud, and private cloud infrastructure at

Cornell. We leverage extensibility to build superclouds; in particular, extensibil-

ity enables the homogenization, support for enterprise networks, and efficiency

through oversubscription on existing clouds.
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CHAPTER 4

TOWARDS CLOUD INTEROPERABILITY: THE XEN-BLANKET

To create superclouds, it is crucially important that a VM image, and sub-

sequently a VM instance, can run—unmodified—on any cloud. Furthermore,

hypervisor-level features, such as VM monitoring, must be available on all

clouds. In this chapter, we investigate cloud extensibility and use it to create

a uniform cloud environment across clouds. In other words, we use cloud ex-

tensibility to homogenize multiple clouds as the first step towards superclouds.

Instead of relying on cloud providers to change their environments, we ex-

plore a user-centric approach, in which users are able to run their unmodified

VMs on any cloud without any special provider support. Towards this goal,

we present the Xen-Blanket, a system that transforms existing heterogeneous

clouds into a uniform user-centric homogeneous offering. The Xen-Blanket con-

sists of a second-layer hypervisor that runs as a guest inside a VM instance on a

variety of public or private clouds, forming a Blanket layer. The Blanket layer ex-

poses a homogeneous interface to second-layer guest VMs, called Blanket guests,

and is completely user-centric and customizable. The Xen-Blanket, therefore,

is an instantiation of an extensible cloud. Inside the Blanket layer, users can

implement hypervisor-level techniques and management tools, like VM migra-

tion, page sharing, and oversubscription. Meanwhile, the Blanket layer contains

Blanket drivers that allow it to run on heterogeneous clouds while hiding inter-

face details of the underlying clouds from Blanket guests.

Existing nested virtualization techniques (like the Turtles project [43]) focus

on an efficient use of hardware virtualization primitives by both layers of vir-

tualization. This requires the underlying hypervisor—controlled by the cloud
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provider—to expose hardware primitives, like Intel’s VMX [103] and AMD

SVM [160]. At the time of writing this dissertation, no publicly available cloud

currently offers such primitives. In contrast, the Xen-Blanket can be deployed

on existing third-party clouds, requiring no special support, and instead using

software techniques for the Blanket layer virtualization. Thus, the contributions

of the Xen-Blanket are fundamentally different: the Xen-Blanket enables compe-

tition and innovation for products that span multiple clouds, whether support is

offered from cloud providers or not. Further, the Xen-Blanket enables the use of

unsupported features such as oversubscription, CPU bursting, VM migration,

and many others.

The Xen-Blanket has been deployed on both Xen-based and KVM-based hy-

pervisors, on public and private infrastructures within Amazon EC2, a separate

enterprise cloud, and Cornell University. The Xen-Blanket has successfully ho-

mogenized these diverse environments. For instance, we have migrated VMs

to and from Amazon EC2 with no modifications to the VMs. Furthermore,

the user-centric design of the Xen-Blanket affords users the flexibility to over-

subscribe resources such as network, memory, and disk. As a direct result, a

Xen-Blanket image on EC2 can host 40 CPU-intensive VMs for 47% of the price

per hour of 40 small instances with matching performance. Blanket drivers

achieve good performance: network drivers can receive packets at line speed

on a 1 Gbps link, while disk I/O throughput is within 12% of single level par-

avirtualized disk performance. Despite overheads of up to 68% for some bench-

marks, Web server macrobenchmarks can match the performance of single level

virtualization (i.e., both are able to serve an excess of 1000 simultaneous clients)

while increasing CPU utilization by only 1%.
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In this chapter, we make four main contributions:

• We describe how user-centric homogeneity can be achieved at the hyper-

visor level to enable multi-cloud deployments, even without any provider

support.

• We enumerate key extensions to Xen, including a set of Blanket drivers and

hypervisor optimizations, that transform Xen into an efficient, homoge-

nizing Blanket layer on top of existing clouds, such as Amazon EC2.

• We demonstrate how the Xen-Blanket can provide an opportunity for sub-

stantial cost savings by enabling users to oversubscribe their leased re-

sources.

• We discuss our experience using hypervisor-level operations that were

previously impossible to implement in public clouds, including live VM

migration between an enterprise cloud and Amazon EC2.

This chapter is organized as follows. Section 4.1 introduces the concept

of a Blanket layer, and describes how the Xen-Blanket provides a user-centric

homogenized layer, with the implementation details of the enabling Blanket

drivers in Section 4.2. Some overheads and advantages of the Xen-Blanket are

quantified in Section 4.3, while qualitative practical experience is described in

Section 4.4. The chapter is summarized in Section 4.5.

4.1 The Xen-Blanket

The Xen-Blanket leverages nested virtualization to form a Blanket layer, or a sec-

ond layer of virtualization software that provides a user-centric homogeneous
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Figure 4.1: The Xen-Blanket, completely controlled by the user, provides
a homogenization layer across heterogeneous cloud providers
without requiring any additional support from the providers.

cloud interface, as depicted in Figure 4.1. A Blanket layer embodies three im-

portant concepts. First, the bottom half of the Blanket layer communicates with

a variety of underlying hypervisor interfaces. No modifications are expected or

required to the underlying hypervisor. Second, the top half of the Blanket layer

exposes a single VM interface to Blanket (second-layer) guests such that a sin-

gle guest image can run on any cloud without modifications. Third, the Blanket

layer is completely under the control of the user, so functionality typically im-

plemented by providers in the hypervisor, such as live VM migration, can be

implemented in the Blanket layer.

The bottom half of the Xen-Blanket ensures that the Xen-Blanket can run

across a number of different clouds without requiring changes to the underly-

ing cloud system or hypervisor. The bottom half is trivial if the following two
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assumptions hold on all underlying clouds. First, if device I/O is emulated,

which means the hypervisor exposes an interface to virtual devices identical to

physical devices, then the Blanket hypervisor does not need to be aware any

provider-specific device interfaces. Second, if hardware-assisted full virtual-

ization for x86 (called HVM in Xen terminology) is available, then the Blanket

hypervisor can run unmodified. However, these assumptions limit the number

of clouds that the Blanket layer can cover; for example, we are not aware of any

public cloud that satisfies both assumptions.

The Xen-Blanket relaxes the emulated device assumption by interfacing with

a variety of underlying cloud device I/O interfaces, each of which use a vir-

tualization technique called paravirtualization (See Appendices A and B for

further detail). Paravirtualized device I/O has proved essential for perfor-

mance and is required by some clouds, such as Amazon EC2. However, there

is currently no standard paravirtualized device I/O interface. For example,

Xen-based clouds, including Amazon EC2, require device drivers to commu-

nicate with Xen-specific subsystems1 (the details of Xen appear in Appendix B),

whereas KVM-based systems expect device drivers to interact with the hyper-

visor through virtio interfaces. The Xen-Blanket supports such non-standard

interfaces by modifying the bottom half to contain cloud-specific Blanket drivers.

On the other hand, the Xen-Blanket does rely on support for hardware-

assisted full virtualization for x86 on all clouds. Currently, this assumption

somewhat limits deployment opportunities. For example, a large fraction of

both Amazon EC2 and Rackspace instances expose paravirtualized, not HVM

interfaces, with Amazon EC2 only offering an HVM interface to Linux guests

1Since 2011, Xen has supported a virtio device interface [125], but as of 2012, no Xen-based
cloud providers we are aware of support virtio.
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in 4XL-sized cluster instances. EC2 does, however, expose an HVM interface

to other sized instances running Windows, which we believe can also be con-

verted to deploy the Xen-Blanket. Further efforts to relax the HVM assumption

are discussed as future work in Chapter 8.3.2.

The top half of the Blanket layer exposes a consistent VM interface to (Blan-

ket) guests. Guest VMs therefore do not need any modifications in order to run

on a number of different clouds. In order to maximize the number of clouds that

the Xen-Blanket can run on, the top half of the Xen-Blanket does not depend on

state of the art nested virtualization interfaces (e.g., the Turtles Project [43], Graf

and Roedel [74]). The Xen-Blanket instead relies on other x86 virtualization

techniques, such as paravirtualization or binary translation. For our prototype

Blanket layer implementation we chose to adopt the popular open-source Xen

hypervisor, which uses paravirtualization techniques when virtualization hard-

ware is not available. The Xen-Blanket subsequently inherits the limitations

of paravirtualization, most notably the inability to run unmodified operating

systems, such as Microsoft Windows.2 However, this limitation is not funda-

mental. A Blanket layer can be constructed using binary translation (e.g., a

VMWare [140]-Blanket), upon which unmodified operating systems would be

able to run. Blanket layers can also be created with other interfaces, such as De-

nali [152], alternate branches of Xen, or even customized hypervisors developed

from scratch.

The Xen-Blanket inherits services that are traditionally located in the hyper-

visor or privileged management domains and allows the user to run or mod-

ify them. For instance, users can co-locate VMs [159] on a single Xen-Blanket

2Despite the limitations of paravirtualization and the increasingly superior performance of
hardware assisted virtualization, paravirtualization remains popular. Many cloud providers,
including Amazon EC2 and Rackspace, continue to offer paravirtualized Linux instances.
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instance, share memory pages between co-located VMs [81, 145], and oversub-

scribe resources [154]. If Xen-Blanket instances on different clouds can commu-

nicate with each other, live VM migration or high availability [61] across clouds

become possible.

4.2 Blanket Drivers

The Xen-Blanket contains Blanket drivers for each of the heterogeneous inter-

faces exposed by existing clouds. In practice, the drivers that must be imple-

mented are limited to dealing with paravirtualized device interfaces for net-

work and disk I/O. As described in Section 4.1, Blanket drivers reside in the

bottom half of the Xen-Blanket and are treated by the rest of the Xen-Blanket as

drivers interacting with physical hardware devices. These “devices” are subse-

quently exposed to guests through a consistent paravirtualized device interface,

regardless of which set of Blanket drivers was instantiated.

This section is organized as follows: we present background on how par-

avirtualized devices work on existing clouds. Then, we describe the detailed

design and implementation of Blanket drivers. Finally, we conclude with a dis-

cussion of hypervisor optimizations for the Xen-Blanket and a discussion of the

implications of evolving virtualization support in hardware and software.
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Figure 4.2: Guests using paravirtualized devices implement a front-end
driver that communicates with a back-end driver (a). In HVM
environments, a Xen Platform PCI driver is required to set
up communication with the back-end (b). The Xen-Blanket
modifies the HVM front-end driver to become a Blanket driver,
which, with support of Blanket hypercalls, runs in hardware pro-
tection ring 1, instead of ring 0 (c).

4.2.1 Background

To understand Blanket drivers, we first give some background as to how par-

avirtualized device drivers work in Xen-based systems.3 First, we describe de-

vice drivers in a fully paravirtualized Xen, depicted in Figure 4.2(a). The Xen-

Blanket uses paravirtualization techniques in the Blanket hypervisor to provide

guests with a homogeneous interface to devices. Then, we describe paravirtu-

alized device drivers for hardware assisted Xen (depicted in Figure 4.2(b)), an

underlying hypervisor upon which the Xen-Blanket successfully runs.

3A discussion of the paravirtualized drivers on KVM, which are similar, is postponed to the
end of Section 4.2.2.
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Xen does not contain any physical device drivers itself; instead, it relies on

device drivers in the operating system of a privileged guest VM, called Do-

main 0, to communicate with the physical devices. The operating system in

Domain 0 multiplexes devices, and offers a paravirtualized device interface to

guest VMs. The paravirtualized device interface follows a split driver architec-

ture, where the guest runs a front-end driver that is paired with a back-end driver

in Domain 0. Communication between the front-end and back-end driver is

accomplished through shared memory ring buffers and an event mechanism

provided by Xen. Both the guest and Domain 0 communicate with Xen to set

up these communication channels.

In hardware assisted Xen, or HVM Xen, paravirtualized device drivers are

called PV-on-HVM drivers. Unlike paravirtualized Xen, guests on HVM Xen

can run unmodified, so by default, communication channels with Xen are not

initialized. HVM Xen exposes a Xen platform Peripheral Component Intercon-

nect (PCI) device, which acts as a familiar environment wherein shared memory

pages are used to communicate with Xen and an interrupt request (IRQ) line is

used to deliver events from Xen. So, in addition to a front-end driver for each

type of device (e.g. network, disk), an HVM Xen guest also contains a Xen plat-

form PCI device driver. The front-end drivers and the Xen platform PCI driver

are the only Xen-aware modules in the HVM guest.

4.2.2 Design & Implementation

The Xen-Blanket consists of a paravirtualized Xen inside of either a HVM Xen or

KVM guest. We will center the discussion around Blanket drivers for Xen, and
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discuss the conceptually similar Blanket drivers for KVM at the end of this sub-

section. Figure 4.2(c) shows components of Blanket drivers. The Blanket layer

contains both a Xen hypervisor as well as a privileged Blanket Domain 0. Guest

VMs are run on top of the Blanket layer, each containing standard paravirtu-

alized front-end device drivers. The Blanket Domain 0 runs the corresponding

standard back-end device drivers. The back-end drivers are multiplexed into

the Blanket drivers, which act as set of front-end drivers for the underlying hy-

pervisors.

There are two key implementation issues that prohibit standard PV-on-HVM

front-end drivers from acting as Blanket drivers.4 First, the Xen hypercalls re-

quired to bootstrap a PV-on-HVM PCI platform device cannot be performed

from the Blanket Domain 0 hosting the Blanket drivers because the Blanket Do-

main 0 does not run with the expected privilege level of an HVM guest OS. Sec-

ond, the notion of a physical address in the Blanket Domain 0 is not the same as

the notion of a physical address in a native HVM guest OS.

Performing Hypercalls

Typically, the Xen hypervisor proper runs in hardware protection ring 0, while

Domain 0 and other paravirtualized guests run their OS in ring 1 with user

spaces in ring 3. HVM guests, on the other hand, are designed to run unmodi-

fied, and can use non-root mode from the hardware virtualization extensions to

run the guest OS in ring 0 and user space in ring 3. In the Xen-Blanket, in non-

root mode, the Blanket Xen hypervisor proper runs in ring 0, while the Blanket

4Our implementation also required renaming of some global variables and functions to avoid
namespace collisions with the second-layer Xen when trying to communicate with the bottom-
layer Xen.
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Figure 4.3: The PV-on-HVM drivers can send physical addresses to the un-
derlying Xen, whereas the Blanket drivers must first convert
physical addresses to machine addresses.

Domain 0 runs in ring 1, and user space runs in ring 3 (Figure 4.2(c)).

In normal PV-on-HVM drivers, hypercalls, in particular vmcall instruc-

tions, are issued from the OS in ring 0. In the Xen-Blanket, however, Blanket

drivers run in the OS of the Blanket Domain 0 in ring 1. The vmcall instruction

must be issued from ring 0. We overcome this by augmenting the second-layer

Xen to contain Blanket hypercalls that issue their own hypercalls to the underly-

ing Xen on behalf of the Blanket Domain 0.

Physical Address Translation

Guest OSs running on top of paravirtualized Xen, including Domain 0, have a

notion of physical frame numbers (PFNs). The PFNs may or may not match the

actual physical frame numbers of the machine, called machine frame numbers
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(MFNs). The relationship between these addresses is shown in Figure 4.3. How-

ever, the guest can access the mapping between PFNs and MFNs, in case it is

necessary to use a real MFN, for example, to utilize DMA from a device. HVM

guests are not aware of PFNs vs. MFNs. Instead, they only use physical frame

numbers and any translation necessary is done by the underlying hypervisor.

For this reason, PV-on-HVM device drivers pass physical addresses to the

underlying hypervisor to share memory pages with the back-end drivers. In

the Xen-Blanket, however, the MFN from the Blanket Domain 0’s perspective,

and thus the Blanket drivers’, matches the PFN that the underlying hypervisor

expects. Therefore, Blanket drivers must perform a PFN-to-MFN translation

before passing any addresses to the underlying hypervisor, either through hy-

percalls or PCI operations.

Blanket Drivers for KVM

The implementation of Blanket drivers for KVM is very similar. Paravirtual-

ized device drivers in KVM use the virtio framework, in which a PCI device

is exposed to guests, similar to the Xen platform PCI device. Unlike the Xen

platform PCI device, all communication with the underlying KVM hypervisor

can be accomplished as if communicating with a physical PCI device. In par-

ticular, no direct hypercalls are necessary, simplifying the implementation of

Blanket drivers. The only modifications required to run virtio drivers in the

Xen-Blanket are the addition of PFN-to-MFN translations.
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4.2.3 Hypervisor Optimizations

The Xen-Blanket runs in non-root mode in an HVM guest container. As virtu-

alization support improves, the performance of software running in non-root

mode becomes close to running on bare metal. For example, whereas page table

manipulations would cause a vmexit, or trap, on early versions of Intel VT-x

processors, a hardware feature called extended page tables (EPT) has largely

eliminated such traps. However, some operations continue to generate traps, so

designing the Blanket layer to avoid such operations can often provide a perfor-

mance advantage.

For example, instead of flushing kernel pages from the TLB on every con-

text switch, the x86 contains a bit in the cr4 control register called the “Page

Global Enable” (PGE). Page Global Enable allows certain pages to be mapped as

“global” so that they do not get flushed automatically. Xen enables then disables

the PGE bit in order to flush the global TLB entries before doing a domain switch

between guests. Unfortunately, these cr4 operations each cause vmexits to

happen, generating high overhead for running Xen in an HVM guest. By not

using PGE and instead flushing all pages from the TLB on a context switch,

vmexits are avoided, because of the EPT processor feature in non-root mode.

4.2.4 Implications of Future Hardware and Software

As discussed above the virtualization features of the hardware, such as EPT, can

have a profound effect on the performance of the Xen-Blanket. Further improve-

ments to the HVM container, such as the interrupt path, may eventually replace

hypervisor optimizations and workarounds or enable even better performing
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Blanket layers.

Other hardware considerations include thinking about non-root mode as a

place for virtualization. For example, features that aided virtualization before

hardware extensions became prevalent, such as memory segmentation, should

not die out. Memory segmentation is a feature in 32 bit x86 processors that

paravirtualized Xen leverages to protect Xen, the guest OS, and the guest user

space in the same address space to minimize context switches during system

calls. The 64 bit x86 64 architecture has dropped support for segmentation ex-

cept when running in 32 bit compatibility mode. Without segmentation, two

address spaces are needed to protect the three contexts from each other, and

two context switches are required on each system call, resulting in performance

loss.

On the software side, support for nested virtualization of unmodified

guests [43] may begin to be adopted by cloud providers. While this devel-

opment could eventually lead to fully virtualized Blankets such as a KVM-

Blanket, relying on providers to deploy such a system is provider-centric: every

cloud must incorporate such technology before a KVM-Blanket becomes feasi-

ble across many clouds. It may be possible, however, for exposed hardware

virtualization extensions to be leveraged as performance accelerators for a sys-

tem like the Xen-Blanket.

4.3 Evaluation

We have built Blanket drivers and deployed the Xen-Blanket on two underlying

hypervisors, across three cloud providers. In this section, we first examine the

64



Figure 4.4: We run benchmarks on four different system configurations in
order to examine the overhead caused by the Xen-Blanket. Na-
tive represents an unmodified CentOS 5.4 Linux. HVM rep-
resents a standard single-layer Xen-based virtualization solu-
tions using full, hardware-assisted virtualization. PV repre-
sents a standard single-layer Xen-based virtualization solu-
tions using paravirtualization. Xen-Blanket consists of a par-
avirtualized setup inside of our Xen-Blanket HVM guest.

overhead incurred by the Xen-Blanket. Then, we describe how increased flexi-

bility resulting from a user-centric homogenization layer can result in significant

cost savings—47% of the cost per hour—on existing clouds, despite overheads.

4.3.1 Overhead

Intuitively, we expect some amount of degraded performance from the Xen-

Blanket due to the overheads of running a second-layer of virtualization. We

compare four different scenarios, denoted by Native, HVM, PV, and Xen-Blanket
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(Figure 4.4). The Native setup ran an unmodified CentOS 5.4 Linux. The

next two are standard single-layer Xen-based virtualization solutions using full,

hardware-assisted virtualization (HVM, for short) or paravirtualization (PV, for

short), respectively. The fourth setup (Xen-Blanket) consists of a paravirtual-

ized setup inside an HVM guest.5 All experiments in this subsection were per-

formed on a pair of machines connected by a 1 Gbps network, each with two

six-core 2.93 GHz Intel Xeon X5670 processors,6 24 GB of memory, and four 1

TB disks. Importantly, the virtualization capabilities of the Xeon X5670 include

extended page table support (EPT), enabling a guest OS to modify page tables

without generating vmexit traps. With the latest hardware virtualization sup-

port, HVM is expected to outperform PV, because of reduced hypervisor in-

volvement. Therefore, since the Xen-Blanket setup contains a PV setup, PV can

be roughly viewed as a best case for the Xen-Blanket.

System Microbenchmarks

To examine the performance of individual operations, such as null system calls,

we ran lmbench [111], a microbenchmark suite, in all setups. In order to dis-

tinguish the second-layer virtualization overhead from CPU contention, we en-

sure that one CPU is dedicated to the guest running the benchmark. To clarify,

one VCPU backed by one physical CPU is exposed to the guest during single-

layer virtualization experiments, whereas the Xen-Blanket system receives two

VCPUs backed by two physical CPUs: one is reserved for the second-layer Do-

main 0 (see Figure 4.2(c)), and the other one for the second-layer guest.

5We have also run experiments on KVM with comparable results, but focus on a single un-
derlying hypervisor for a consistent evaluation.

6Hyperthreading causes the OS to perceive 24 processors on the system.
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Native HVM PV Xen-Blanket

Processes (µs)

null call 0.19 0.21 0.36 0.36
null I/O 0.23 0.26 0.41 0.41
stat 0.85 1.01 1.19 1.18
open/close 1.33 1.43 1.84 1.86
slct TCP 2.43 2.79 2.80 2.86
sig inst 0.25 0.39 0.54 0.53
sig hndl 0.90 0.79 0.94 0.94
fork proc 67 86 220 258
exec proc 217 260 517 633
sh proc 831 1046 1507 1749

Context Switching (µs)

2p/0K 0.40 0.55 2.85 3.07
2p/16K 0.44 0.57 3.03 3.46
2p/64K 0.45 0.66 3.18 3.46
8p/16K 0.74 0.85 3.60 4.00
8p/64K 1.37 1.18 4.14 4.53
16p/16K 1.05 1.10 3.80 4.14
16p/64K 1.40 1.22 4.08 4.47

File & Virtual Memory (µs)

0K file create 4.61 4.56 4.99 4.97
0K file delete 3.03 3.18 3.19 3.14
10K file create 14.4 18.1 19.9 28.8
10K file delete 6.17 6.02 6.01 6.08
mmap latency 425.0 820.0 1692.0 1729.0
prot fault 0.30 0.28 0.38 0.40
page fault 0.56 0.99 2.00 2.10

Table 4.1: The Xen-Blanket achieves performance within 3% of PV for sim-
ple lmbench [111] operations, but incurs overhead up to 30%
for file creation microbenchmarks.

Table 4.1 shows the results from running lmbench in each of the setups.

For simple operations like a null syscall, the performance of the Xen-Blanket is

within 3% of PV, but even PV is slower than native or HVM. This is because
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Figure 4.5: Network I/O performance on the Xen-Blanket is comparable
to a single layer of virtualization.

a syscall in any paravirtualized system first switches into (the top-most) Xen

before being bounced into the guest OS. We stress that, for these operations,

nesting Xen does not introduce additional overhead over standard paravirtu-

alization. All context switch benchmarks are within 12.5% of PV, with most

around 8% of PV. Eliminating vmexits caused by the second-layer Xen is es-

sential to achieve good performance. For example, if the second-layer Xen uses

the cr4 register on every context switch, overheads increase to 70%. Worse, on

processors without EPT, which issue vmexits much more often, we measured

overheads of up to 20×. For maximizing performance, it is crucial to use mod-

ern hardware and to carefully design second-layer hypervisor software to avoid

expensive instructions.
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Figure 4.6: CPU utilization while receiving network I/O on the Xen-
Blanket is within 15% of a single layer of virtualization.

Blanket Drivers

Device I/O is often a performance bottleneck even for single-layer virtual-

ized systems. Paravirtualization is essential for performance, even in fully-

virtualized environments. To examine the network and disk performance of

the Xen-Blanket, we assign each of the configurations one VCPU (we disable

all CPUs except for one in the native case). Figure 4.5 and Figure 4.6 show the

UDP receive throughput and the corresponding CPU utilization7 under vari-

ous packet sizes. We use netperf [90] for the throughput measurement and

xentop8 in the underlying Domain 0 to measure the CPU utilization of the

guest (or Xen-Blanket and guest). The CPU utilization of the native configu-

ration is determined using top. Despite the two layers of paravirtualized de-

7Errorbars are omitted for clarity: all CPU utilization measurements were within 1.7% of the
mean.

8xentop is a CPU monitoring tool that is packaged with Xen [26].

69



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0  5  10  15  20  25

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

Number of Jobs

Xen-Blanket
PV

HVM
Native

Figure 4.7: The Xen-Blanket can incur up to 68% overhead over PV when
completing a kernbench benchmark.

vice interfaces, guests running on the Xen-Blanket can still match the network

throughput of all other configurations for all packet sizes, and receive network

traffic at full capacity over a 1 Gbps link. The Xen-Blanket does incur more CPU

overhead because of the extra copy of packets in the Blanket layer.

We also ran the standard Unix tool dd to get a throughput measure of disk

I/O. System caches at all layers were flushed before reading 2GB of data from

the root filesystem. Native achieved read throughput of 124.6 MB/s, HVM

achieved 86.3 MB/s, PV achieved 76.6 MB/s, and the Xen-Blanket incurred an

extra overhead of 12% over PV, with disk read throughput of 67.6 MB/s. Unlike

naı̈ve approaches that use device emulation, previously evaluated in Section 3.3,

Blanket drivers achieve good performance for I/O operations.
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Figure 4.8: The Xen-Blanket can incur up to 55% overhead over PV when
performing the dbench filesystem benchmark.

Macrobenchmarks

Macrobenchmarks are useful for demonstrating the overhead of the system un-

der more realistic workloads. For these experiments, we dedicate 2 CPUs and 8

GB of memory to the lowest layer Domain 0. The remaining 16 GB of memory

and 22 CPUs are allocated to single layer guests. In the case of the Xen-Blanket,

we allocate 14 GB of memory and 20 CPUs to the Blanket guest, dedicating

the remainder to the Blanket Domain 0. Unlike the microbenchmarks, resource

contention does contribute to the performance measured in these experiments.

The kernbench9 CPU throughput benchmark operates by compiling the

Linux kernel using a configurable number of concurrent jobs. Figure 4.7 shows

the elapsed time for the kernel compile. With a single job, the Xen-Blanket stays

9http://freecode.com/projects/kernbench, version 0.50
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within 5% of PV, however, performance falls to about 68% worse than PV for

high concurrency. The performance loss here can be attributed to a high num-

ber of vmexits due to APIC (Advanced Programmable Interrupt Controller)

operations to send inter-processor-interrupts (IPIs) between VCPUs. Despite

this overhead, the flexibility of the Xen-Blanket enables reductions in cost, as

described in Section 4.3.2.

The dbench10 filesystem benchmark generates load on a filesystem based on

the standard NetBench [113] benchmark. Figure 4.8 show the average through-

put during load imposed by various numbers of simulated clients. Figure 4.9

shows the average latency for ReadX operations, where ReadX is the most com-

mon operation during the benchmark. PV and the Xen-Blanket both experi-

ence significantly higher latency than HVM. The advantage of HVM can be

attributed to the advantages of hardware memory management because of ex-

tended page tables (EPT). The Xen-Blanket incurs up to 55% overhead over PV

in terms of throughput, but the latency is comparable.

Finally, we ran the banking workload of SPECweb2009 for a web server mac-

robenchmark. For each experiment, a client workload generator VM running

on another machine connected by a 1 Gbps link drives load for a server that

runs PHP scripts. As SPECweb2009 is a Web server benchmark, the back-end

database is simulated. A valid SPECweb2009 run requires 95% of the page re-

quests to compete under a “good” time threshold (2s) and 99% of the requests

to be under a “tolerable” time threshold (4s). Figure 4.10 shows the number of

“good” transactions for various numbers of simultaneous sessions. VMs run-

ning in both PV and Xen-Blanket scenarios can support an identical number of

10http://dbench.samba.org/, version 4.0
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Figure 4.9: The average latency for ReadX operations during the dbench
benchmark for Xen-Blanket remains comparable to PV.

simultaneous sessions.11 This is because the benchmark is I/O bound, and the

Blanket drivers ensure efficient I/O for the Xen-Blanket. The SPECweb2009 in-

stance running in the Xen-Blanket does utilize more CPU to achieve the same

throughput, however: average CPU utilization rises from 4.3% to 5.1% under

1000 simultaneous client sessions. Of the benchmarks shown, SPECweb2009

best represents a real enterprise workloads; on this benchmark, the Xen-Blanket

performs well.

11PV and Xen-Blanket run the same VM and thus the same configuration of this complex
benchmark. We omit a comparison with native and HVM to avoid presenting misleading results
due to slight configuration variation.
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Figure 4.10: The Xen-Blanket performs just as well as PV for the
SPECweb2009 macrobenchmark.

4.3.2 User-defined Oversubscription

Even though running VMs in the Xen-Blanket does incur overhead, its user-

centric design gives a cloud user the flexibility to utilize cloud resources sub-

stantially more efficiently than possible on current clouds. Efficient utilization

of cloud resources translates directly into monetary savings. In this subsection,

we evaluate oversubscription on the Xen-Blanket instantiated within Amazon

EC2 and find CPU-intensive VMs can be deployed for 47% of the cost of small

instances.

Table 4.2 shows the pricing per hour on Amazon EC2 to rent a small instance

or a quadruple extra large cluster compute instance (cluster 4XL). Importantly,

while the cluster 4XL instance is almost a factor of 19 times more expensive

than a small instance, some resources are greater than 19 times more abundant
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Type CPU (ECUs) Memory (GB) Disk (GB) Price ($/hr)

Small 1 1.7 160 0.085

Cluster 4XL 33.5 23 1690 1.60

Factor 33.5× 13.5× 10× 18.8×

Table 4.2: The resources on Amazon EC2 instance types do not scale up
uniformly with price. The user-centric design of Xen-Blanket
allows users to exploit this fact.

(e.g. 33.5 times more for CPU) while other resources are less than 19 times more

abundant (e.g 10 times more for disk). This suggests that if a cloud user has a

number of CPU intensive VMs normally serviced as small instances, it may be

more cost-efficient to rent a cluster 4XL instance and oversubscribe the memory

and disk. This is not an option provided by Amazon; however, the Xen-Blanket

is user-centric and therefore gives the user the necessary control to implement

such a configuration. A number of would-be small instances can be run on the

Xen-Blanket within a cluster 4XL instance, using oversubscription to reduce the

price per VM.

To illustrate this point, we ran a CPU-intensive macrobenchmark,

kernbench, simultaneously in a various numbers of VMs running inside a

single cluster 4XL instance with the Xen-Blanket. We also ran the benchmark

inside a small EC2 instance for a comparison point. The benchmark was run

without concurrency in all instances for consistency, because a small instance

on Amazon only has one VCPU. Figure 4.11 shows the elapsed time to run the

benchmark in each of these scenarios. Each number of VMs on the Xen-Blanket

corresponds to a different monetary cost. For example, to run a single VM, the

cost is $1.60 per hour. 10 VMs reduce the cost per VM to $0.16 per hour, 20 VMs
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Figure 4.11: The Xen-Blanket gives the flexibility to oversubscribe such
that each of 40 VMs on a single 4XL instance can simultane-
ously complete compilation tasks in the same amount of time
as a small instance.

to $0.08 per VM per hour, 30 VMs to $0.06 per VM per hour, and 40 VMs to $0.04

per VM per hour. Running a single VM, the benchmark completes in 89 seconds

on the Xen-Blanket, compared to 286 seconds for a small instance. This is ex-

pected, because the cluster 4XL instance is significantly more powerful than a

small instance. Furthermore, the average benchmark completion time for even

40 VMs remains 33 seconds faster than for a small instance. Since a small in-

stance costs $.085 per VM per hour, this translates to 47% of the price per VM

per hour. It should be noted, however, that the variance of the benchmark per-

formance significantly increases for large numbers of VMs on the same instance.

In some sense, the cost benefit of running CPU intensive instances inside

the Xen-Blanket instead of inside small instances simply exploits an artifact of

Amazon’s pricing scheme. However, other benefits from oversubscription are
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Figure 4.12: Co-location of VMs to improve network bandwidth is an-
other simple optimization made possible by the user-centric
approach of the Xen-Blanket.

possible, especially when considering VMs that have uncorrelated variation in

their resource demands. Every time one VM experiences a burst of resource

usage, others are likely quiescent. If VMs are not co-located, each instance must

operate with some resources reserved for bursts. If VMs are co-located, on the

other hand, a relatively small amount of resources can be shared to be used for

bursting behavior, resulting in less wasted resources.

Co-location of VMs also affect the performance of enterprise applications,

made up of a number of VMs that may heavily communicate with one an-

other [136]. To demonstrate the difference that VM placement can make to net-

work performance, we ran the netperf TCP benchmark between two VMs.

In the first setup, the VMs were placed on two different physical servers on

the same rack, connected by a 1 Gbps link. In the second, the VMs were co-

located on the same physical server. Figure 4.12 shows the network throughput.
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The co-located servers are not limited by the network hardware connecting the

physical machines. By enabling co-location, the Xen-Blanket can increase inter-

VM throughput by a factor of 4.5. This dramatic result is without any modi-

fication to the VMs. The user-centric design of the Xen-Blanket enables other

optimization opportunities, including CPU bursting, page sharing and resource

oversubscription, that can offset the inherent overhead of the approach.

4.4 Experience with Multi-Cloud Migration

The Xen-Blanket homogenizes and simplifies the process of migrating a VM be-

tween two clouds managed by two different providers. While it is currently

possible to migrate VMs between multiple clouds, the process is cloud-specific

and fundamentally limited. For example, it is currently impossible to live mi-

grate [57, 122] a VM between cloud providers. We give a qualitative com-

parison to illustrate the difficulty faced in migrating a Xen VM from our pri-

vate Xen environment to Amazon EC2 with and without the Xen-Blanket. We

also show how one can reintroduce live migration across multi-clouds using

the Xen-Blanket. In our experiment, we use a VM housing a typical legacy

LAMP-based12 application that contained non-trivial customizations and ap-

proximately 20 GB of user data.
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Figure 4.13: Comparison between the steps it takes to migrate (offline) an
image into Amazon’s EC2 with and without the Xen-Blanket
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4.4.1 Non-Live Multi-Cloud Migration

Figure 4.13 summarizes the four steps involved in a migration: modifying the

VM’s disk image to be compatible with EC2, bundling or compressing the im-

age to be sent to EC2, uploading the bundled image, and launching the image at

the new location. In both scenarios, bundling, uploading and launching took

one person about 3 hrs. However, the modify step caused the scenario without

the Xen-Blanket to be much more time consuming: 24 hrs additional work as

compared to no additional work with the Xen-Blanket.

Migrating a VM image from our private setup to Amazon EC2 is relatively

straightforward given the Xen-Blanket. No image modifications are required,

so the process begins with bundling, or preparing the image to upload for use

in EC2. The image was compressed with gzip, split into 5 GB chunks for Ama-

zon’s Simple Storage Service (S3), and uploaded. Then, we started an EC2 in-

stance running the Xen-Blanket, retrieved the disk image from S3, concatenated

the pieces of the file, and unzipped the image. The VM itself was created using

standard Xen tools.

Without the Xen-Blanket, there currently exists a EC2-specific process to cre-

ate an Amazon Machine Image (AMI) from an existing Xen disk image, roughly

matching the bundle, upload, and launch steps. Before that, two modifications

were required to our VM image. First, we had to modify the image to contain

the kernel because no compatible kernel was offered by EC2.13 This task was

complicated by the fact that our private Xen setup did not have the correct tools

12Linux, Apache, MySQL, and PHP
13Before July 2010, Amazon EC2 only allowed a limited selection of a few standard kernels

and initial ramdisks for use outside the image. After July 2010, Amazon EC2 began to support
kernels stored within the image.
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to boot the kernel within the image. Second, we had to shrink our 40 GB disk

image to fit within the 10 GB image limit on EC2. This involved manually ex-

amining the disk image in order to locate, copy, and remove a large portion

of the application data, then resizing the VM’s filesystem and image. After the

modifications were complete, we used an AMI tool called ec2-bundle-image

to split the VM image into pieces and then compressed, split and uploaded the

relocated data to S3. We then started an EC2 instance with our new AMI, config-

ured it to mount a disk, and reintegrated the user data from S3 into the filesys-

tem.

It should be noted that subsequent launches of the migrated VMs do not re-

quire all of the steps outlined above. However, if a modified or updated version

of the VM is released, the entire process must be redone. Even worse, we expect

migrating to other clouds to be similarly arduous and provider-specific, if pos-

sible at all. In contrast, using the Xen-Blanket, the migration process will always

be the same, and can be reduced to a simple remote copy operation.

4.4.2 Live Multi-Cloud Migration

Live migration typically relies on memory tracing: a hypervisor-level technique.

Such techniques are not available across clouds.14 The Xen-Blanket enables im-

mediate implementation of live migration across cloud providers. We have ex-

perimented with live migration between an enterprise cloud and Amazon EC2.

We note that since live migration between two clouds is not currently possi-

ble without provider support or the Xen-Blanket, we do not have a comparison

14While some providers expose an interface for users to use live migration within their own
cloud, as with other provider-centric approaches, standardization may take years.
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Figure 4.14: Xen-Blanket instances are connected with a layer-2 tunnel,
while a gateway server VM provides DNS, DHCP and NFS
to the virtual network, eliminating the communication and
storage barriers to multi-cloud live migration.

point to present.

Beyond the ability to implement hypervisor-level features like memory trac-

ing, there are two key challenges to implement live multi-cloud migration on

the Xen-Blanket. First, Xen-Blanket instances in different clouds are in different

IP subnets, causing communication issues before and after Blanket guest migra-

tions. Second, Xen-Blanket instances in different clouds do not share network

attached storage, which is often assumed for live VM migration.

To address the networking issues, each Xen-Blanket instance runs a virtual

switch in Domain 0 to which the virtual network interfaces belonging to Blanket

guest VMs are attached. A layer-2 tunnel connects the virtual switches across

the Internet. The result is that VMs on either of the two Xen-Blanket instances

appear to be sharing a private LAN. A few basic network services are useful
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to introduce onto the virtual network. A gateway server VM can be run with

two virtual network interfaces: one attached to the virtual switch and the virtual

network; the other attached to the externally visible interface of the Xen-Blanket

instance. The gateway server VM, shown in Figure 4.14, runs dnsmasq15 as a

lightweight DHCP and DNS server.

Once VMs on the Xen-Blanket can communicate, the storage issues can be

addressed with a network file system, such as NFS [133]. NFS is useful for live

VM migration because it avoids the need to transfer the entire disk image of

the VM at once during migration. In our setup, the gateway server VM also

runs an NFS server. The NFS server exports files onto the virtual network and

is mounted by the Domain 0 of each Xen-Blanket instance. Both Xen-Blanket in-

stances mount the NFS share at the same location. Therefore, during VM migra-

tion, the VM root filesystem image can always be located at the same filesystem

location, regardless of the physical machine.

With Xen-Blanket VMs able to communicate, maintain their network ad-

dresses, and access storage within either cloud, live VM migration proceeds

by following the typical procedure in the Blanket hypervisor. However, while

we have successfully live-migrated a VM from an enterprise cloud to Amazon

EC2 and back, this is simply a proof-of-concept. It is clearly inefficient to rely on

a NFS disk image potentially residing on another cloud instead of a local disk.

Moreover, the layer-2 tunnel only connects two machines. We discuss a more

sophisticated networking solution in which the cloud user implements the con-

trol logic in Chapter 5. Wide-area live migration techniques [46], can also be

implemented and evaluated on the Xen-Blanket.

15http://www.thekelleys.org.uk/dnsmasq/doc.html
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4.5 Summary

Current IaaS clouds lack the homogeneity required for users to easily deploy

services across multiple providers. This prevents a user from deploying su-

perclouds. We explored an alternative to standardization, or provider-centric

homogenization, in which cloud users have the ability to homogenize the cloud

themselves. In this chapter, we presented the Xen-Blanket, a system that enables

user-centric homogenization of existing cloud infrastructures.

The Xen-Blanket leverages a second-layer Xen hypervisor—completely con-

trolled by the user—that utilizes a set of provider-specific Blanket drivers to

execute on top of existing clouds without requiring any modifications to the

provider. Blanket drivers have been developed for both Xen and KVM based

systems, and achieve high performance: network and disk throughput remain

within 12% of paravirtualized drivers in a single-level paravirtualized guest.

The Xen-Blanket is currently running on Amazon EC2, an enterprise cloud, and

private servers at Cornell University. The Xen-Blanket project website is located

at http://xcloud.cs.cornell.edu/, and the code for the Xen-Blanket is

publicly available at http://code.google.com/p/xen-blanket/.

However, the homogeneous VM interface provided by the Xen-Blanket is

not sufficient to build superclouds. Initial VM migration experiments, were

successful at moving VM images between the three different sites with no mod-

ifications to the images, but exposed the inability of existing clouds to support

network configuration. In the next chapter, we use the extensibility enabled by

the Xen-Blanket to address network issues in the clouds.

Similarly, we have only scratched the surface in terms of the efficient use of
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cloud resources. We have exploited the user-centric nature of the Xen-Blanket to

oversubscribe resources and save money on EC2, achieving a cost of 47% of the

price per hour of small instances for 40 CPU-intensive VMs, despite the inherent

overheads of nested virtualization. In Chapter 6, we look at oversubscription of

memory for even higher efficiency.
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CHAPTER 5

TOWARDS USER CONTROL OF CLOUD NETWORKS: VIRTUALWIRE

In order to build superclouds, existing clouds must be extended to support

complex networks, such as those encountered in enterprise deployments. In this

chapter, we leverage cloud extensibility and the Xen-Blanket to enable the cloud

user to implement the network control logic necessary to support enterprise

networks in existing third-party clouds.

Increasingly, cloud providers are interested in exposing virtual network ab-

stractions to users, in an attempt to reduce or eliminate the manual, application-

specific network reconfiguration often required for migrating enterprise work-

loads. Existing network virtualization systems (including VL2 [75], Net-

Lord [118], and Nicira [14]) provide users with a private, virtual network ad-

dress space, but limit the users’ control over the virtual network. More specifi-

cally, the control logic, responsible for implementing flow policies in the virtual

network, is implemented by the provider, as shown in Figure 5.1(a). Users can

only interact with the control logic using well defined, high-level APIs.

In this chapter, we argue that implementing the control logic in the provider

creates an unnecessary burden, both for the user and provider of a virtual net-

work. Users must adapt network management and configuration techniques or

tools to work with the features and APIs exposed by the cloud provider. There-

fore, the migration of enterprise deployments and their complex networks and

flow policies still requires non-trivial reconfiguration efforts. Furthermore, the

provider shoulders the responsibility of implementing and managing a virtual

network and its broad spectrum of features (e.g., addressing, routing, protocol

support, flow policies) that may differ for each enterprise workload.
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Figure 5.1: Virtual network control logic implemented by a) the provider
or b) the user

To radically simplify the migration process, we present VirtualWire. Vir-

tualWire is a system that provides a virtual network abstraction in which the

user—not the provider—implements the control logic of the virtual network, as

depicted in Figure 5.1(b). Users directly run their own virtualized equivalent of

network devices (such as switches, routers, middleboxes), and configure them

using low-level device interfaces, just like configuring a physical network. The

API with the underlying system is simple. It consists of specifying the peerings

between different virtual network interfaces of virtual network components in

a process that mimics the act of plugging networking cables into network in-

terface cards. The physical locations of all network components and the details

of the underlying physical network are hidden from the user; a migrating en-
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terprise deployment appears to maintain its network configuration without any

changes to the way the network is managed or configured. Furthermore, consis-

tent management of the network—virtual or physical—enables an incremental

strategy for migration: even small parts of the network can be virtualized and

run on third-party infrastructure.

With this simple interface, the cloud provider’s task of managing the vir-

tual network is reduced to ensuring efficient delivery of network traffic across

paired virtual interfaces (as specified by the user), independent of their physi-

cal location. VirtualWire achieves this by managing connectors at the hypervisor

level. Connectors consist of two endpoints, each associated with a virtual net-

work interface as the bottom-half in a split-device model. All packets from one

endpoint are tunneled to exactly one other endpoint using VXLAN’s [105] wire

format for encapsulating data link layer (L2) Ethernet frames in network layer

(L3) IP packets.1 When components are migrated, the affected connectors inde-

pendently update their state to ensure traffic continues to be tunneled correctly

between endpoints.

Inherent to VirtualWire is an assumption that virtualized software equiv-

alents of physical network components exist and can be configured using

the tools and techniques used on the physical components (discussed in Sec-

tion 5.1.1). The performance implications of this assumption and techniques to

incrementally enhance mission-critical parts of the network to use more efficient

network designs and distributed component implementations are discussed in

Section 5.1.5.

To date, we have implemented VirtualWire in Xen [41] to transparently inter-

1VXLAN is an emerging encapsulation standard towards enabling virtual L2 network seg-
ments to extend across layer 3 networks.
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cept packets from virtual network interfaces and tunnel them across the physi-

cal network. We have also migrated deployments that rely on VLANs, IP mul-

ticast, and encoded flow policies through transparent middleboxes, to Ama-

zon EC2 (a third-party cloud) by leveraging an open-source nested virtualiza-

tion approach [155]. We have migrated a 3-tier application configured to use

multiple firewall middleboxes onto EC2, achieving performance within 9% of

a native EC2 deployment. We have even migrated deployments using not-yet-

ubiquitous OpenFlow-enabled [110] switches. To demonstrate the consistency

of the virtual network regardless of physical location, live VM migration is en-

abled by VirtualWire across one or more third-party clouds, not only for servers

but also for network components. In particular, we have performed live VM mi-

gration from our local environment to Amazon EC2—with no changes to VMs

or the network topology—incurring downtime as low as 1.4 s.

In this chapter, we make the following contributions:

• a new virtual network abstraction that places the control logic of the vir-

tual network under user control to maintain complex network flow poli-

cies,

• a practical strategy for incremental migration to the cloud or upgrade of

the enterprise network,

• an application of nested virtualization to extend the user’s virtual network

across one or more third-party clouds, and

• a demonstration of the preservation of the virtual network throughout live

VM migrations of virtual servers and network components between our

local setup and Amazon EC2.
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The rest of this chapter is organized as follows. Section 5.1 and Section 5.2

describe the design and implementation of VirtualWire, respectively. Section 5.3

evaluates VirtualWire, including live VM migration between clouds; Section 5.4

concludes.

5.1 VirtualWire

This section describes the high-level design of VirtualWire, and highlights how

providing a virtual network abstraction in which users can implement the con-

trol logic of their virtual network results in low management overhead and en-

ables incremental migration in a real-world enterprise migration scenario. We

also discuss the evolution of a VirtualWire virtual network to achieve high per-

formance and limitations of this approach.

A virtual network in VirtualWire has a split architecture by design, illus-

trated in Figure 5.2. The cloud user is responsible for configuring the user layer,

made up of virtual network components, while using a simple API to attach con-

nectors between the virtual network interfaces on components. Connecters are

optimized network tunnels that maintain the virtual network topology regard-

less of where virtual network components and servers are located; the provider

implements the connector abstraction in the provider layer.

5.1.1 User Layer: Network Components

In VirtualWire, users run and configure isolated software modules called vir-

tual network components, which contain configurable software implementations
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Figure 5.2: VirtualWire

of switches, routers, and middleboxes. Many software implementations of net-

work components exist (e.g., Open vSwitch [126], Click router [97], XORP [82]),

but it is most important for enterprise migration efforts that the software com-

ponents can be configured identically to physical components. As computing

infrastructure becomes ever more virtualized, hardware vendors have an in-

centive to release such virtual network components. For example, Cisco has

released the Nexus 1000V series of production virtual switches [56] that can be

managed identically to physical switches, using the Cisco command-line inter-

face (CLI) [21], Simple Network Management Protocol (SNMP) [83], and tools

like the Encapsulated Remote Switched Port Analyzer (ERSPAN) [4] and Net-

Flow [10]. Although not production, NetSim [18] contains software implemen-

tations of 42 routers and 6 switches to train Cisco network operators. Similarly

the Olive JUNOS [5] implementation for training on Juniper devices runs on
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FreeBSD.

Virtual network components can execute on—and migrate between—a va-

riety of physical hosts. Regardless of what host a virtual network component

is moved to, it will continue to perform according to its local configuration,

which matches the configuration of the physical network component it has re-

placed. Packets are sent and received through one or more virtual network in-

terfaces, which are analogous to physical ports on a device. In most cases, users

specify that a virtual network interface of one component is connected (using a

connector; see Section 5.1.2) to an interface of another component, allowing the

components to interact on the virtual network.

5.1.2 Provider Layer: Connectors

The provider links virtual network interfaces on virtual network components

together as specified by the user with connectors. Connectors have two endpoints,

each bound to a virtual network interface. The binding between endpoint and

virtual network interface is configured by an endpoint manager residing on the

physical machine. This binding does not change, even if a network component

is migrated to another physical machine. On migration, the local configuration

of endpoints is updated to ensure the virtual network topology is maintained

(see Section 5.1.3).

Encapsulation. Connectors are layer-2-in-layer-3 network tunnels. A layer 2

packet sent on a virtual network interface enters its associated endpoint, which

encapsulates the full packet (with the entire MAC header, including VLAN tags)
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Figure 5.3: VirtualWire encapsulation

in a UDP packet; the 44 byte header is shown in Figure 5.3. The encapsulation

used by endpoints is similar to the wire format in VXLAN [105]; however, un-

like VXLAN, the header encodes a 32-bit connector ID instead of a network seg-

ment (e.g., a VXLAN Network Identifier (VNI) [105] in VXLAN terminology).

The target IP address and port number correspond to the physical network ad-

dress of the target endpoint manager. Upon receipt of a packet, the endpoint

manager strips the outer headers, examines the connector ID, and forwards the

packet to the target endpoint. Figure 5.4 details the path of a packet in Virtual-

Wire. In order to maintain the network topology, every endpoint sends packets

to exactly one other endpoint. If an endpoint is migrated, the migration process

ensures the relevant endpoint configuration is updated to address encapsulated

packets to the correct endpoint manager (further discussed in Section 5.1.3).
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The extra 44 bytes added to each packet introduces a risk of fragmentation.

To address this, the endpoint supports path maximum transmission unit (MTU)

discovery, similar to Network Virtualization using Generic Routing Encapsula-

tion (NVGRE) [137], such that a server can deduce the reduced MTU and avoid

fragmentation of packets after encapsulation. For example, on a standard Eth-

ernet network, the 1500 byte MTU is reported as 1456 bytes; on a network with

jumbo frames enabled, the 9000 byte MTU is reported as 8956 bytes.

Since encapsulated packets are unreliable, it is possible that they may get

dropped by the network for a number of reasons, including downtime during

migration of a component or endpoint. This is akin to the unreliability of Ether-

net, in which packets are delivered in best-effort fashion. If greater reliability is

desired, a reliable transport protocol may be used to implement a connector.

Optimizations. Connectors between virtual network components running on

the same host are automatically collapsed by the endpoint manager. In particu-

lar, the endpoint manager configures the endpoints to route packets directly to

the co-located endpoint, rather than encapsulating self-addressed packets (see

Figure 5.4). If, at a later time, one of the virtual network components is migrated

to a different physical host, the endpoint manager re-enables encapsulation.

Extenders. Similarly, connectors also automatically extend across cloud net-

works and firewalls. Instead of addressing encapsulated packets directly to the

recipient endpoint manager, packets are rerouted to an extender. An extender is

a server (or set of servers) that both acts as an endpoint manager and maintains

a permanent virtual private network (VPN) tunnel to another cloud. As shown

in Figure 5.4, an extender may be local (co-located with an endpoint). Pack-
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Figure 5.4: Path of a packet in VirtualWire
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ets arriving at an extender are automatically sent across the VPN tunnel, where

they enter a new endpoint that encapsulates the packet and sends it to the tar-

get endpoint manager. From the point of view of the network components, the

extender is invisible: the two network components remain logically connected.

If the virtual network components migrate to the same cloud, the extender will

no longer be used.

5.1.3 Connector Management

VirtualWire exposes a simple interface made up of two operations, connect

and disconnect, which create and destroy connectors between the virtual

network interfaces on virtual servers and network components. Similarly, Vir-

tualWire exposes a connect and disconnect for extenders. These interfaces

augment the typical VM creation and destruction interfaces exposed by existing

cloud managers (e.g., OpenStack [30], Eucalyptus [68], vSphere [25]). No addi-

tional configuration database is required by the cloud manager to keep track of

connectors and endpoints; management of endpoint and connectors is intrinsi-

cally distributed.

For example, on migration, each host system is responsible for ensuring that

endpoints are updated so that the logical network topology is maintained. Up-

dating an endpoint consists of modifying the destination or source addresses

used for encapsulation. Affected endpoints include both endpoints associated

with every connector attached to the migrating component. Further, migration

may necessitate the use of extenders where they were previously unnecessary

or obviate their use in situations where they were being utilized. Connectors
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are automatically attached/detached to/from existing extenders if necessary.

5.1.4 Incremental Migration

The key to incremental migration of an enterprise application is the ability to

move a subset of the servers and network components into VirtualWire, while

allowing them to interact with the remainder of the (still-physical) servers and

network components. To achieve this, a physical network appliance called a

VirtualWire gateway can be used to bridge the virtual and physical networks.

A VirtualWire gateway is a middlebox in the physical enterprise network that

also hosts VirtualWire endpoints and communicates with other servers hosting

VirtualWire components. Figure 5.5 shows a physical deployment partially mi-

grated into VirtualWire, where a subset of the servers and their corresponding

Top-of-Rack (ToR) switch are migrated. Traffic entering the gateway on a par-

ticular physical port flows into an associated VirtualWire endpoint hosted by

the gateway. From the point of view of the physical and virtual network com-

ponents on either side of the gateway, the gateway is transparent: traffic sent

down a network cable from one component will arrive at the next component

on the same interface as if both were still in the physical network. There can

be many gateways in the remaining physical network; this is dependent on the

network topology and order in which components are migrated.
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Figure 5.5: VirtualWire gateway

5.1.5 Discussion

Physical Interface Limitations. Although a virtual network component can

support an identical number of virtual network interfaces as its physical coun-

terpart, the physical host running the virtual component may have far fewer

physical network interfaces than virtual, directly impacting performance. For

example, a physical switch may have 32 ports, all capable of achieving 1 Gbps.

When the switch is moved to VirtualWire, the virtual switch may be hosted on

a physical machine with a single 1 Gbps interface. The virtual switch will still

have 32 ports, but is now only capable of achieving 1 Gbps—in aggregate—

due to the limitations of the physical interface. There are three approaches to

alleviating this performance bottleneck: co-locating network components, im-

plementing distributed components, and evolving performance-critical parts of
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the network.

Co-location. Co-location of virtual network components onto a single net-

work host causes connectors to automatically eliminate encapsulation. Simi-

larly, co-located components do not have a throughput limit imposed by the

physical network link. At a larger scale, co-location of network components

onto the same cloud can also significantly improve performance; cross data-

center links are not only lower performance, but incur additional monetary

charges. Poor placement of severs and components leads to many expensive

crossings, known as traffic trombones. The migration processes should, in gen-

eral, optimize the placement of connected components; however, such place-

ment optimizations are not discussed in this dissertation.

Distributed Components. During the incremental migration of an enterprise

deployment, it may be difficult to efficiently place network components and

servers to maximize co-location if some components are heavily shared. For ex-

ample, consider a deployment containing a central switch acting as a bottleneck

on the path between a large number of servers. Replacing the switch with a dis-

tributed virtual switch (e.g., VMware vSphere Distributed Switch (DVS) [144])

can allow data to flow directly to the next connected component in the virtual

network, bypassing the bottleneck. In VirtualWire, distributed components can

coexist with non-distributed components (e.g., an external gateway), maintain-

ing the logical network topology.

Evolving the VirtualWire Network. Beyond co-location or incrementally

reimplementing network components with distributed versions, multiple net-
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work components can be collapsed into one. For instance, if a number of

switches in the original deployment were logically operating as a single big

switch (e.g., Juniper Network’s Virtual Chassis), only one (possibly distributed)

component is required in the virtual network. Furthermore, in VirtualWire, sub-

sections of the network which are well understood can be collapsed, while more

complex subsets can remain functionally intact without modification.

5.2 Implementation

We have implemented VirtualWire on an enterprise cloud, infrastructure at Cor-

nell, and Amazon EC2, where we do not have control of the underlying in-

frastructure. We leverage virtualization as an effective starting point to im-

plement virtual network components, with connectors at the hypervisor level

(Figure 5.7). We further leverage nested virtualization [43, 155] to transparently

implement VirtualWire across different clouds.

5.2.1 Nested Virtualization Background

As described in Chapter 3, cloud extensibility allows extensions to be imple-

mented across a mixture of public and private clouds. We deploy VirtualWire

on existing clouds by leveraging the Xen-Blanket. As described in Chapter 4, the

Xen-Blanket consists of a modified Xen [41] hypervisor that runs—without spe-

cial support—on top of a variety of cloud providers. We install the Xen-Blanket

across two types of clouds: private, where we had access to the underlying

physical infrastructure, and public (specifically Amazon EC2), where we did
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Figure 5.6: Nested Virtualization

not have access to the physical infrastructure or hypervisor. This configuration

is depicted in Figure 5.6. In the private setting, we run the Xen-Blanket hyper-

visor directly on the hardware. In the public setting, we run the Xen-Blanket

in nested mode. As a result, a configurable virtualization environment, called

a Blanket layer, is created across a number of different physical environments in

which we implement VirtualWire.

Guest VMs on the Blanket layer are assigned virtual network interfaces that

use paravirtualized Xen split (front- and back-end) network drivers. Each guest

virtual network interface is a front-end with a corresponding back-end in the

control domain (Domain 0) of the Blanket layer. All guest VM packets pass

through the back-end interface.
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Figure 5.7: Implementation

5.2.2 Network Components

We implement network components in Xen-Blanket guest VMs. For example,

Figure 5.7 shows two servers connected to a switch component. The switch

component is implemented by running the standard Linux software bridge in a

Xen-Blanket guest VM configured with two virtual network interfaces. To run a

server or component VM on any Xen-Blanket hypervisor on any cloud, we place

virtual disk images containing the root filesystem of VMs in a globally accessi-
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ble NFS share.2 Virtualization enables live migration of VMs between physical

servers with virtually no downtime; as shown in Section 5.3.3, VirtualWire ex-

tends live migration across third-party clouds.

We relax the isolation of the VM for some network components, like the

Linux software bridge. Instead, we implement the switch in Domain 0, as

shown in Figure 5.8(a), and avoid two additional packet copies required to

transfer a packet into and out of a guest VM. Because the switch is a simple com-

ponent, migration is achieved by remotely reconfiguring Linux bridges with the

brctl command, which is used to set up, maintain, and inspect the Ethernet

bridge configuration in the Linux kernel [50]. However, complex network com-

ponents cannot be as easily implemented or migrated in Domain 0.

5.2.3 Connectors

Connector endpoints are bound to back-end guest interfaces using a software

bridge in the Xen-Blanket Domain 0, as shown in Figure 5.7. The back-end in-

terface of a migrating VM will attach to a similar bridge, and the VM migration

process is modified to ensure that the local endpoint will be moved and attached

to the new bridge upon the completion of the VM migration operation.

Endpoint tunneling is performed via the endpoint manager kernel module.

We implemented tunneling in a Domain 0 kernel module to reduce the number

of context switches required when compared to a userspace implementation,

such as vtun [47], a popular Linux tunneling solution, which uses the network

tap, tunnel (TAP/TUN) [100] mechanism. The TAP/TUN mechanism allows
2Providing an efficient mechanism to access VM disk images from any cloud is a subject of

future work.
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Figure 5.8: Implementation optimizations
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/* create a new endpoint N on instance A that receives
packets on AdrA and sends packets to AdrB */

echo "<N> <AdrA> <AdrB>" > /proc/vw/create
/* return current endpoint config */
cat /proc/vw/<N>
/* update endpoint send config (e.g. other end migrated) */
echo "<AdrC>" > /proc/vw/<N>
/* destroy the endpoint (e.g. this end migrated) */
echo "<N>" > /proc/vw/destroy

Figure 5.9: The proc interface to control VirtualWire endpoints.

packets from the kernel to be routed to userspace for processing. However,

a kernel implementation is especially important on the Xen-Blanket because

nested virtualization magnifies the cost of context switches [155]. Inside the

kernel module, each endpoint has an associated socket and thread to listen for

UDP packets received on the external interface, but destined for the endpoint.

Outgoing packets are intercepted and encapsulated in UDP packets as described

in Section 5.1.2, then sent through Domain 0’s external interface.

If both endpoints of a connector are co-located on the same Xen-Blanket in-

stance, the endpoint manager instructs the endpoints to forgo encapsulation.

Instead, the back-end virtual interfaces from the network components are con-

nected through a software bridge in Domain 0, called an endpoint bridge. The

configuration after collapsing one endpoint is depicted in Figure 5.8(b). End-

points are collapsed even when a virtual network component is implemented in

Domain 0. Figure 5.8(c) shows the configuration if all three VMs are co-located

and the switch is implemented in Domain 0.
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5.2.4 Management and Configuration

We implemented an interface in the /proc filesystem in the endpoint manager

kernel module, shown in Figure 5.9, through which endpoints are controlled.

This interface provides a convenient mechanism to create and destroy them as

needed. It is also used by the VM migration process to update endpoints.

We modified the Xen live VM migration process [57] to include endpoint mi-

gration. Usually, during VM migration, a VM container is created at the destina-

tion host. Then, memory is copied in several rounds before the VM is stopped,

copied, and resumed at the destination. In VirtualWire, a migrating VM has a

number of endpoints directly connected to its back-end interfaces. When a new

VM container is created at the destination host, endpoints are created on the

destination host, each of which are configured to send encapsulated packets to

their sister endpoint. After the VM is stopped and copied to the destination, the

configuration of every sister endpoint is updated to send encapsulated packets

to the new endpoints; the original endpoints are deleted.

Unlike live VM migration within a traditional subnet, a migrating VM does

not end up behind a different switch port from the perspective of the logical

network. Thus, no unsolicited Address Resolution Protocol (ARP) messages

need to be generated. The VM migration process is identical even when VMs

migrate across subnets.
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5.2.5 Gateway

We implement a VirtualWire Gateway with a physical aggregation switch at-

tached to a general purpose physical server. The aggregation switch provides

the large number of physical ports required to replace port-heavy physical net-

work components. The server hosts a software endpoint implementation, iden-

tical to that on any other server, that uses an uplink to the network to commu-

nicate with other VirutalWire components.

5.3 Evaluation

In this section, we evaluate VirtualWire, first evaluating the performance of a 3-

tier enterprise application migrated to Amazon EC2. Then, we demonstrate in-

dependence of the network from physical location by performing live migration

of VMs and network components from our local environment to Amazon EC2.

Finally, we describe microbenchmarks and the performance of VirtualWire.

5.3.1 Experimental Setup

To evaluate VirtualWire, we use resources at our local institution as well as from

Amazon EC2.

Local Testbed. In our local environment, we use up to two physical machines

connected by a 1 Gbps network, each containing two six-core 2.93 GHz proces-

sors, 24 GB of memory, and four 1 TB disks. Each machine runs Xen with 2
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VCPUs and 4 GB of memory dedicated to Domain 0. On this underlying sys-

tem, we use HVM instances configured with 22 VCPUs and 12 GB of memory

to run Xen-Blanket and VirtualWire.

Amazon EC2. In Amazon EC2, we use up to six Cluster Compute Quadru-

ple Extra Large instances, each with 23 GB memory, 33.5 EC2 Compute Units,

1690 GB of local instance storage, a 64-bit platform, and a 10 Gigabit Ethernet

between instances.

Both environments use the Xen-Blanket patches for nested virtualization. The

Xen-Blanket Domain 0 is configured with 8 VCPUs and 4 GB of memory. All

guests (DomUs) are paravirtualized instances configured with 4 VCPUs and

2 GB of memory, and can run either on a single layer of virtualization in the

local environment or nested within a Xen-Blanket instance. An NFS server run-

ning at our local setup provides VM disk images; VMs on Amazon EC2 access

the NFS server through a VPN tunnel. For most of the experiments, we use

netperf to generate 1400 byte packets in UDP STREAM and UDP RR modes

for throughput and latency measurements, respectively.

5.3.2 Migrating an Enterprise Application

In this subsection, we use VirtualWire to facilitate the migration of an applica-

tion to the cloud and quantify the performance implications. As an application,

we run the RUBiS [66] benchmark with three VMs representing the Web tier,

application server tier, and database tier, respectively. To better represent the
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Figure 5.10: Performance of migrated RUBiS application

complexity that can arise in enterprise applications, we add two VMs running

software firewalls (iptables [12]) in between each tier. Like many real appli-

cations, the VMs each have a hardcoded configuration—route table entries and

IP addresses—that complicates their migration to the cloud using traditional

methods.

Figure 5.10 shows the number of “good requests” (latency within 2000 ms)

using the RUBiS application under various client load (simultaneous sessions).

We examine four scenarios. The first two scenarios require manual modifica-

tions to the network configuration of each VM, but represent best-case scenarios

in terms of application performance. The baseline is obtained by running each

VM directly in an Amazon EC2 medium instance. The nested baseline runs an

identically provisioned VM inside a Xen-Blanket instance, and therefore repre-

sents a best-case given nested virtualization overheads.

The other two scenarios are configurations of VirtualWire and require no mod-
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ifications to the guest VMs. The first scenario, VirtualWire naı̈ve, introduces a

sixth VM that runs a virtual switch. Connectors are configured between each

of the five VMs and the switch VM. The second scenario, VirtualWire distributed,

replaces the switch VM with a distributed switch component as discussed in

Section 5.1.5 and further evaluated in Section 5.3.6. In this configuration, Virtu-

alWire achieves within 4% of the nested baseline and 9% of the baseline. User

control over the cloud network enables enterprise workloads with customized

network configurations, such as the RUBiS workload evaluated in this subsec-

tion, to run with good performance without requiring modifications.

5.3.3 Live Migration

In this subsection, we evaluate the ability of components and servers in Vir-

tualWire to undergo live VM migration while maintaining the virtual network

topology both within a single cloud and between clouds. Because we are un-

aware of other systems that enable cross-provider live migration, we do not

compare the performance of migration in VirtualWire to other systems. For

these experiments, we migrate a VM that is continuously receiving netperf

UDP throughput benchmark traffic from another (initially co-located) VM. The

network topology includes a virtual switch, also co-located, between the two

VMs and implemented in Domain 0 for performance. For each experiment, we

report the average (and standard deviation) application downtime and the total

time the migration operation took to complete from 6 identical runs. Applica-

tion downtime is calculated by examining periodic output from the netperf

benchmark.3

3The frequency of the periodic output is set to 0.1 s, so we cannot measure downtime less
than 0.1 s.
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Downtime Duration

Non-nested 0.7 [0.4] 19.86 [0.2]
Nested 1.0 [0.5] 20.04 [0.1]
Nested w/ endpoints 1.3 [0.5] 20.13 [0.1]

Table 5.1: Mean [w/standard deviation] downtime (s) and total duration
(s) for local live VM migration

Downtime Duration

Local to Local 1.3 [0.5] 20.13 [0.1]
EC2 to EC2 1.9 [0.3] 10.69 [0.6]
Local to EC2 2.8 [1.2] 162.25 [150.0]

Table 5.2: Mean [w/standard deviation] downtime (s) and total duration
(s) for live VM migration

The performance time of live migration of a VM (receiving netperf UDP

traffic) between two machines in our local setup is shown in Table 5.1. The VM

and its netperf partner VM were both run on a single layer of virtualization

(non-nested) or nested setup (nested and nested w/ endpoints) before and after the

migration. To isolate the nesting overhead from endpoint migration overhead,

VirtualWire connectors are not used between the two VMs in the non-nested and

nested experiments; instead, the physical network is bridged. We find a 43%

increase in downtime and an 0.9% increase in total duration due to nesting.

The added task of migrating VirtualWire endpoints introduces an additional

43% increase in downtime (30% over nested), but a negligible increase in total

duration.

Table 5.2 quantifies the performance of live migration across clouds while

maintaining the virtual network topology using a VirtualWire connector. We

compare the performance of single-cloud live migration within our local nested
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Figure 5.11: Throughput over time between two VMs migrating to Ama-
zon EC2

setup (Local to Local) and within Amazon EC2 (EC2 to EC2) to multi-cloud migra-

tion between the two (Local to EC2). Within one cloud, local or EC2, the latency

between the instances is within 0.3 ms, whereas across clouds it is about 10 ms.

VPN overhead limits throughput across clouds to approximately 230 Mbps. The

10 Gbps network between our EC2 instances leads to significantly reduced total

migration time when compared to local; however, the downtime was compara-

ble. Live migration of a VM (receiving netperf UDP traffic) between our local

nested setup and Amazon EC2 has a downtime of 2.8 s and a total duration

of 162.25 s on average, but variation is high: the duration ranged from 48 s to

8 min. For an idle VM, the performance of the network between machines has

little effect: the downtime during live migration between two local machines

and from local to EC2 is 1.4 s on average.

We ran two more experiments,4 shown in Figure 5.11 and Figure 5.12, to

4We could not measure both the throughput and latency from a single experiment using
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Figure 5.12: Latency over time between two VMs migrating to Amazon
EC2.

identify the throughput and latency over time for the test deployment as the

recipient VM and then the switch and the sender VM were live migrated to

Amazon EC2, respectively. Migration of the switch did not affect throughput

because its Domain 0 implementation was trivial to migrate. This experiment

demonstrates that connectivity and network topology are maintained, indepen-

dent of physical location. However, as expected, significant degradation in the

throughput and latency occurs when not all components are co-located on the

same cloud.

5.3.4 Microbenchmarks

Nesting Overhead. We isolate the overhead VirtualWire incurs due to Xen-

Blanket nested virtualization using a netperf process in the Domain 0 of one

netperf.
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Latency Agg. CPU Util.

Single Dom0 63 µs 61%
Single DomU 86 µs 88%
Nested Dom0 96 µs 97%
Nested DomU 210 µs 196%

Table 5.3: Network latency comparison in nested and non-nested virtual-
ization settings
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Figure 5.13: Tunnel throughput comparison

physical machine across the 1 Gbps link in the local setup. We identify the

throughput, latency and CPU utilization when network packets are received

by a single-layer Domain 0 (single dom0), inside a guest running on the first

layer (single domU), on the Xen-Blanket Domain 0 (nested dom0), or in-

side a guest running on the Xen-Blanket (nested domU). Throughput mea-

surements UDP throughput is maintained at line speed in all cases, while TCP

throughput decreases by 6.7% for nested domU. However, as shown in Ta-

ble 5.3, the latency increases sharply with a corresponding increase in CPU uti-

lization due to extra packet copies and context switching.

114



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 4 8 16

A
g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Number of Endpoints

Figure 5.14: Scalability of VirtualWire endpoints in a single nested Do-
main 0

Connectors. VirtualWire connectors are implemented in a kernel module and

therefore avoid the high penalty for context switches experienced in the Xen-

Blanket. Figure 5.13 compares the performance of connectors with various soft-

ware tunnel packages. tinc [20], OpenVPN [124], and vtun [47] are open-

source VPN solutions that create tunnels between Linux hosts. On our local—

both nested and non-nested—1 Gbps setup, we measure the UDP performance

of a VM sending data to another VM through the tunnel. The baseline is a

measurement of the direct (non-tunneled) link between the VMs. The kernel-

module approach of VirtualWire connectors pays off: while connectors increase

throughput by a factor of 1.55 over the popular open-source tunneling software

vtun in a non-nested scenario, it achieves a factor of 3.28 improvement in a

nested environment.

Endpoint Scalability. In VirtualWire, a network component with many ports,

such as a switch or router corresponds to a DomU with many virtual network

interfaces and many endpoints. All endpoints terminate at the same Domain 0
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Connector w/o Extender Connector w/ Extender

Throughput Avg. Latency Throughput Avg. Latency

Local to Local 929.52 Mbps 0.24 ms 233.00 Mbps 0.30 ms
EC2 to EC2 1012.80 Mbps 0.27 ms 230.83 Mbps 0.31 ms
Local to EC2 n/a n/a 239.96 Mbps 10 ms

Table 5.4: Performance of connectors with and without extenders

and are connected to the DomU. Figure 5.14 shows scalability of endpoints in

a single nested Domain 0. We measure endpoint scalability by increasing the

number of interfaces with endpoints in the DomU and run several simultane-

ous netperf UDP throughput tests over each connector from another host.

The 1 Gbps bandwidth becomes split between the individual connectors, but in

aggregate remains high for at least 16 endpoints.

Extenders. VirtualWire uses OpenVPN [124] to create extenders so that con-

nectors can span clouds. Table 5.4 shows the performance (measured with

netperf) between instances on our local nested setup or EC2 with and with-

out extenders. As previously discussed (Figure 5.13), OpenVPN introduces sig-

nificant overhead; when used as an extender, throughput and average latency

suffered by up to 25%. Across clouds, where extenders must be used, we also

see higher latency. This result underscores the importance of co-locating heavily

communicating VMs on a single cloud, rather than across clouds when possible.
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Figure 5.15: Effects of component chaining on throughput and latency

5.3.5 Component Chain Length

We examine the effects of chain-length within a VirtualWire network topology

on throughput and latency with and without optimizations. We restrict our

experiment to a single physical machine in the local environment to eliminate
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network congestion and jitter from the results. We vary the number of switches

in the VirtualWire topology between the netperf endpoints. The switches are

configured in a chain: each switch has two ports (thus, no cross traffic), while

the server VMs have a single interface.

We first examine the case in which components are on different instances.

We run five Xen-Blanket instances on a single physical machine, with 4 GB

of memory and 4 VCPUs each, each hosting one VM. Figure 5.15(a) and Fig-

ure 5.15(b) show that, as expected, the throughput slightly decreases and the

latency linearly increases as the chain length increases. By dropping all of the

switch VMs into the Domain 0 of their respective Xen-Blanket instances, we

found throughput was maintained with at least three switches on the path while

latency was reduced from approximately 237 µs to 119 µs per switch.

In the case where components are co-located in a single instance, endpoints

are collapsed and encapsulation is unnecessary. To evaluate this optimization,

we run a single Xen-Blanket instance with 14 GB of memory and 22 VCPUs

so that it can support up to five guests and Domain 0. Figure 5.16(a) and Fig-

ure 5.16(b) show the throughput and latency between the two servers with up

to three switch VMs interposing on the packets in four configurations: either en-

capsulating or collapsing endpoints, each with DomU or Domain 0 switches. By

avoiding encapsulation, endpoint collapse reduces latency by about 135 µs per

switch. Combined with Domain 0 switches, good performance is maintained

for all evaluated chain lengths. These results suggest that beyond co-locating

heavily communicating components on the same cloud, VirtualWire derives sig-

nificant benefit from co-locating components on the same instance.
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Figure 5.16: Effects of endpoint collapse and Domain 0 optimization in co-
located component chains

5.3.6 Distributed Components

In this subsection, we demonstrate how distributed components can overcome

performance limitations of centralized virtual network components. We run
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Figure 5.17: Proof-of-concept distributed virtual switch

netperf between four server VMs on four EC2 Xen-Blanket instances. All VMs

are connected to a virtual switch component running in Domain 0 on a fifth

EC2 Xen-Blanket instance. Traversing the switch, each pair of VMs can achieve

throughput of 1.39 Gbps on average. If two flows are active at the same time,

throughput is split between the two flows, dropping them to 720.5 Mbps each.

We demonstrate that a proof-of-concept distributed virtual switch (DVS) can

overcome this performance limitation. The DVS, shown in Figure 5.17, is con-

structed by running a Linux bridge on each of the four EC2 Xen-Blanket in-
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stances and manually linking them (with connectors) and configuring them to

act as a single switch. The configuration was done with ebtables [6], a tool

that enables transparent filtering of network traffic passing through a Linux

bridge. Using the DVS and avoiding the centralized component as a bottle-

neck, each pair of VMs achieve throughput of 1.77 Gbps on average regardless

of whether one or two flows are active. By eliminating centralized components

in performance critical parts of the network, an enterprise workload can run

efficiently, while maintaining the control logic for the cloud network.

5.4 Summary

At the time of writing this dissertation, clouds lack the support for complex

enterprise networks, which are essential for constructing superclouds. In this

chapter, we exploited cloud extensibility to provide support for enterprise net-

works in existing third party clouds.

We have presented VirtualWire, a virtual networking system that facilitates

the migration of enterprise deployments to the cloud by enabling cloud users to

implement the control logic of their virtual network. We have migrated a 3-tier

application and its complex network topology to EC2, unmodified, maintain-

ing within 9% of the performance of a native deployment. With VirtualWire,

Servers and network components can live migrate to EC2, experiencing as low

as 1.4 s of downtime. Although virtualized equivalents of software components

affect network performance, through a combination of virtual network compo-

nent placement, incremental introduction of distributed network components,

and adoption of ideas from state-of-the-art network virtualization architectures,
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VirtualWire is an efficient and practical first step towards the goal of enterprise

migration to the cloud.

VirtualWire is a crucial step towards superclouds. By using cloud exten-

sibility, in particular, with the Xen-Blanket and VirtualWire, superclouds can

support enterprise applications and their networks. In the next chapter, we will

describe how to efficiently utilize memory in superclouds.
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CHAPTER 6

TOWARDS EFFICIENT CLOUD RESOURCE UTILIZATION:

OVERDRIVER

Cloud extensibility affords a cloud user the opportunity to implement new

techniques to achieve high utilization of resources in superclouds. Low resource

utilization in enterprise deployments is due to the classical model of overprovi-

sioning, in which each VM is allocated enough resources to support relatively

rare peak load conditions. This problem is not unique to superclouds, but also

affects cloud providers.

Oversubscription of resources can increase utilization, however, without

complete knowledge of all future VM resource usage, one or more VMs will

likely experience overload. Overload is a situation in which the resource require-

ments of a VM exceed its resource allocation. While overload can happen with

respect to any resource machine, we focus on memory overload. The availabil-

ity of memory contributes to limits on VM density (the number of VMs per ma-

chine) and consolidation and as such, is an attractive resource for oversubscrip-

tion. In addition, recent pricing data for different configurations in Amazon’s

Elastic Compute Cloud (EC2) indicate that memory is twice as expensive as EC2

Compute Units.1 However, memory is typically not oversubscribed in practice

as much as other resources, like CPU, because memory overload is particularly

1We use Amazon’s pricing data from November 2010 as input parameters for a se-
ries of linear equations of the form pm × mi + pc × ci + ps × si = pricei, where mi, ci, si,
and pricei are pricing data for configuration i for memory, EC2 Compute Units, stor-
age, and hourly cost, respectively. Also, pm, pc, and ps are the unknown unit cost of
memory, EC2 Compute Units, and storage, respectively. Approximate solutions for the
above equations consistently show that memory is twice as expensive as EC2 Compute
Units. Particularly, the average hourly unit cost for memory is 0.019 cents/GB. This
is in contrast with an average hourly unit cost of 0.008 cents/EC2 Compute Unit and
0.0002 cents/GB of storage.
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devastating to application performance. Memory overload can be character-

ized by one or more VMs swapping its memory pages out to disk, resulting in

severely degraded performance. Whereas overload on the CPU or disk result in

the hardware operating at full speed with contention introducing some perfor-

mance loss, memory overload includes large overheads, sometimes to the point

of thrashing, in which no progress can be made.

Unless oversubscribed clouds (or superclouds) can manage memory over-

load, memory will be a bottleneck that limits the VM density that can be

achieved. In this chapter we investigate techniques to oversubscribe memory

while mitigating VM performance degradation due to memory overload.

As described in Section 2.1.3, there are two types of memory overload en-

countered in a cloud deployment caused by oversubscription. Through analysis

of data center logs from well-provisioned enterprise data centers, we conclude

that there is ample opportunity for memory oversubscription to be employed:

only 28% of machines experience any overload whatsoever, an average of 1.76

servers experience overload at the same time, and 71% of overloads last at most

only long enough for one measurement period (Section 2.1.3). Experimenting

with higher degrees of oversubscription on a Web server under a realistic client

load, we find, while the likelihood of overload can increase to 16% for a reason-

ably oversubscribed VM, the duration of overload varies. While overload occa-

sionally consists of long, sustained periods of thrashing to the disk, this is not

the common case: 88.1% of overloads are less than 2 minutes long (Section 2.1.3).

The fact that memory overload in an oversubscribed environment is a contin-

uum, rather than entirely sustained or transient, suggests that different types of

overload may be best addressed with a different mitigation strategy/technique.
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In this chapter, we identify tradeoffs between memory overload mitiga-

tion strategies. Any overload mitigation strategy will have an effect on ap-

plication performance and will introduce some overhead on the cloud itself.

Existing migration-based strategies [37, 94, 138, 158] address memory over-

load by reconfiguring the VM to resource mapping such that every VM has

adequate memory and no VMs are overloaded. VM migration is a heavy-

weight process, best suited to handle predictable or sustained overloads. The

overload continuum points to a class of transient overloads that are not cov-

ered by migration. Instead, we propose a new application of network mem-

ory [27,36,62,71,86,106,123] to manage overload, called cooperative swap. Coop-

erative swap sends swap pages from overloaded VMs to memory servers across

the network, instead of to the relatively poor performing disk. Unlike migra-

tion, cooperative swap is a lightweight process, best suited to handle unpre-

dictable or transient overloads. Each technique, cooperative swap or migration,

carries different costs, and addresses a different section of the overload contin-

uum, but neither technique can manage all types of overload. Both techniques

can be used in superclouds due to cloud extensibility.

Finally, we present Overdriver, a system that adaptively chooses between VM

migration and cooperative swap to manage a full continuum of sustained and

transient overloads. Overdriver uses a threshold-based mechanism that actively

monitors the duration of overload in order to decide when to initiate VM mi-

gration. The thresholds are adjusted based on VM-specific probability overload

profiles, which Overdriver learns dynamically. Overdriver’s adaptation reduces

potential application performance degradation, while ensuring the chance of

unnecessary migration operations remains low.
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For the mitigation techniques to work, excess space is required in the cloud,

whether it is as a target for migration or a page repository for cooperative swap.

Overdriver aggregates the VM-specific probability overload profiles over a large

number of VMs in order to provide insight into the amount and distribution of

excess space in the cloud. We have implemented Overdriver and evaluated it

when compared to either technique on its own to show that Overdriver suc-

cessfully takes advantage of the overload continuum, mitigating all overloads

within 8% of well-provisioned performance. Furthermore, under reasonable

oversubscription ratios, where transient overload constitutes the vast majority

of overloads, Overdriver requires 83% of the excess space and generates 46% of

the network traffic of a migration-only approach.

To summarize, this chapter makes three main contributions:

• We observe the overload continuum: memory overloads encountered in

enterprise deployments include, and will likely continue to include, both

transient and sustained bursts, although an overwhelming majority will

be transient.

• We show there are tradeoffs between memory overload mitigation strate-

gies that are impacted by the overload continuum, and propose a new

application of network memory, called cooperative swap, to address tran-

sient overloads.

• We design, implement and evaluate Overdriver, a system that adapts to

handle the entire memory overload continuum.

The rest of this chapter is organized as follows. Section 6.1 describes the

tradeoffs between mitigation techniques under different types of memory over-

load. Section 6.2 describes the design and implementation of Overdriver and
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Figure 6.1: Memory oversubscription

how it adaptively mitigates the damage of all types of memory overload. Sec-

tion 6.3 quantifies Overdriver’s effects on the application and the cloud, com-

paring it to systems that do not adapt to the tradeoffs caused by the overload

continuum. Finally, Section 6.4 summarizes the paper.

6.1 Overload Mitigation

As described in Section 2.1.3, a VM is overloaded if the amount of memory al-

located to the VM is insufficient to support the working set of the application

component within the VM. We focus on mitigating overload due to oversub-

scription, in the case where the cloud dedicates less memory to a VM than it

requested. Figure 6.1 shows an oversubscribed machine. The machine has 2 GB

of physical memory and has assigned two VMs with 2 GB of memory allocated

to each VM. This machine is oversubscribed—each VM only has 1 GB of physi-

cal memory backing its allotted 2 GB memory. If each VM only requires 1 GB of
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memory most of the time, this memory allocation is sufficient and performance

will not degrade due to oversubscription. However, if resource utilization of

one or both VMs increases such that they require more than 2 GB of memory in

aggregate, one or both will experience memory overload, and performance will

be significantly degraded.

In this section, we discuss strategies to mitigate overload. When considering

an overload mitigation strategy, the cost of the strategy can be measured in two

dimensions: the effect to the application that is experiencing overload and the

effect to the supporting cloud infrastructure caused by overhead intrinsic to the

strategy.

Application effects refer to the performance of the application that is ex-

periencing overload. Ideally, a mitigation strategy would sustain application

response time, throughput, or other performance metrics throughout the over-

load, so that the VM is unaware that it even took place. Cloud effects include the

overhead or contention introduced by the overload and the mitigation strategy.

Ideally, the resources used during the overload are no more than what would

have been actively used if no oversubscription was in effect. In this section, we

discuss the application and cloud effects of two different mitigation techniques:

VM migration and network memory.

6.1.1 VM Migration

Existing techniques to mitigate overload consist largely of VM migration tech-

niques that address overload by reconfiguring the VM to machine mapping

such that every VM has adequate memory and no VMs are overloaded [37, 94,
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138,158] (i.e. the VM memory allocation is increased, possibly up to the amount

originally requested by the cloud user). VM migration is a relatively heavy-

weight solution: it incurs delays before it goes into effect, and has a high, fixed

impact to the network infrastructure, regardless of the transience of the over-

load. For these reasons, migration strategies are usually designed to be proac-

tive. Trending resource utilization, predicting overload, and placement strate-

gies to minimize future overloads are key components of a migration strategy.

Despite these challenges, VM migration strategies are popular because once mi-

grations complete and hotspots are eliminated, all application components will

have adequate memory to return to the performance they would have enjoyed

without oversubscription.

Live migration boasts very low downtime: as low as 60ms for the migrating

VM [57]. However, in the best case, the time until completion of migration is

dependent on the speed at which the entire memory footprint of the migrating

VM can be sent over the network. In many settings, further migration delays

are likely to arise from the complexity of migration decisions. In addition to

computing VM placements for resource allocation, migration decisions may re-

quire analysis of new and old network patterns, hardware compatibility lists,

licensing constraints, security policies and zoning issues in the cloud. Even

worse, a single enterprise workload is typically made up of an elaborate VM de-

ployment architecture, containing load balancers, worker replicas, and database

backends, that may experience correlated load spikes [136]. A migration deci-

sion, in such case, has to consider the whole application ecosystem, rather than

individual VMs. This complexity can be reason enough to require sign off by a

human operator. Finally, in the worst case, the infrastructure required for effi-

cient VM migration may not be available, including a shared storage infrastruc-

129



ture, such as a SAN, and a networking infrastructure that is migration aware.

The effect that a migration strategy has on the cloud is mostly measured in

terms of network impact. Typically, VM migration involves sending the entire

memory footprint of the VM or more in the case of live migration (See Ap-

pendix B). This cost is fixed, regardless of the characteristics of the overload

that may be occurring2. A fixed cost is not necessarily a bad thing, especially

when considering long, sustained overloads, in which the fixed cost acts as an

upper bound to the network overhead. Migration also requires a high, fixed

amount of resources to be available at the target. The target must have enough

resources to support a full VM, including CPU and enough memory to support

the desired allocation for the migrating VM.

Coupled with the unbeatable performance of local memory available to a

VM after a migration strategy completes, the fixed cost to the cloud makes mi-

gration an attractive strategy to handle both predictable load increases, as well

as sustained overloads.

6.1.2 Network Memory

Two important results from Section 2.1.3 highlight a gap in the solution space

that existing migration-based solutions do not address. First, overload follows

unpredictable patterns. This indicates that, unless oversubscription policies

are extremely conservative, reactive strategies are necessary. Second, transient

2Live VM migration will send more than the few hundred megabytes to tens of gi-
gabytes of data comprising the VM’s memory footprint because it must re-transmit the
written working set in iterations. However, the network cost of live migration strategies
is still relatively fixed because live migration strategies impose a limit on the number of
iterations.

130



Tput (MB/s) Latency (µs)
Read Write Read Write

Network Mem 118 43.3 119 ± 51 25.45 ± .04
Local Disk 54.56 4.66 451 ± 95 24.85 ± .05

Table 6.1: Network memory vs local disk performance.

overload is, and will likely continue to be, the most common type of overload.

As described in Section 6.1.1, migration, when used reactively, has high delays,

and high network overhead for the relatively short lived transient overloads.

There is an opportunity to consider reactive strategies that focus on transient

overloads.

Network memory is known to perform much faster than disk [27, 36, 62, 71,

86, 106, 123], especially on fast networks, and has been applied to nearly every

level of a system. We propose and investigate cooperative swap, an application of

network memory as an overload mitigation solution in which VM swap pages

are written to and read from page repositories across the network to supple-

ment the memory allocation of an overloaded VM. Cooperative swap is entirely

reactive, and begins to mitigate overload when the very first swap page is writ-

ten out by the overloaded VM3. Its impact on the network is dependent on the

duration of overload. However, using cooperative swap does not match the

performance of local memory over the long term.

Table 6.1 shows the relative throughput of disk I/O vs. network memory.

These numbers were computed from running a sequential disk dump (using the

standard Unix tool dd) between the system (/dev/zero or /dev/null) and

a hard disk (/dev/sda1) versus a Linux network block device (/dev/nbd0)
3We do not use cooperative swap unless the VM has a reduced memory allocation due to

oversubscription. Otherwise, overload is the responsibility of the VM.
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attached to a ramdisk across the network. The network connecting physical

machines is 1 Gbps so can sustain a maximum rate of 125 MB/s. Both are block

devices and so should be affected by Linux equally in terms of overhead4. Each

result is the average of 20 runs of writing or reading 1 GB for the throughput test

and one 4 KB page for the latency test. Our setup consists of a server with a Xeon

5120 1.86 GHz dual core processor and a 133 GB SCSI disk with 7200 rpm. We

find that network memory is significantly faster than disk. Using cooperative

swap, short bursts of paging complete faster, allowing it to maintain application

performance through transient bursts of overload. However, cooperative swap

does not restore local memory and so cannot restore application performance to

where a cloud user would expect if oversubscription was not taking place.

Cooperative swap affects the cloud by sending memory pages back and forth

across the network. The amount of memory read or written from the network

is dependent on the length of the overload. This means that cooperative swap

is relatively cheap in terms of network overhead for transient overloads, but

could generate unbounded amounts of network traffic for sustained overloads.

The amount of pages that must be available from the remote page repositories is

also dependent on the duration of overload, however, this number is bounded

by the size of the VM’s originally requested memory size.

Reactivity, proportional network overhead to overload duration, and long-

term performance issues make cooperative swap an attractive solution for un-

predictable overloads and transient overloads, filling the gap in the solution

space left by existing migration strategies.

4Care was taken to eliminate caching effects as much as possible for the latency tests,
dropping the caches and writing 500 MB to the device between each latency test.
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Dom 0

Figure 6.2: The memory resources in the cloud are split into space for VMs
and excess space to mitigate overload, of which there are two
types: cooperative swap page repositories, and future migra-
tion targets. Resource allocation and placement of all resources
is performed by the control plane.

6.2 Overdriver

As seen in Section 6.1, the overload continuum leads to tradeoffs between mit-

igation strategies. We design a system that exploits these tradeoffs to manage

overload called Overdriver. Overdriver adaptively decides to use cooperative

swap for transient overloads and migration for sustained overloads.

Figure 6.2 shows the high-level components in Overdriver. Each physical
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machine (or Xen-Blanket instance) in the cloud (or supercloud) runs a hypervi-

sor and supports some number of guest VMs. Each physical machine also runs

an Overdriver agent in its control domain (Domain 0) that monitors the memory

overload behavior of the local guest VMs by measuring paging rate. Within the

Overdriver agent, the workload profiler locally learns a memory overload prob-

ability profile for each VM similar to that in Figure 2.3, which it then uses to

set adaptive thresholds on the length at which the overload is classified as sus-

tained. Using these thresholds, the overload controller decides which mitigation

strategy to employ for a given overload. A transient overload, defined as an

overload whose duration has not yet passed the threshold, is mitigated by redi-

recting the overloaded VM’s swap pages to cooperative swap page repositories,

rather than to the local disk. If the transient overload becomes sustained, char-

acterized when the duration of the overload exceeds the threshold, the over-

load controller initiates a migration operation, wherein one or more VMs are

migrated to perform an increase of the memory allocation of the overloaded

VM.

For either mitigation strategy to be useful, there must be some excess space in

the cloud. The excess space manager on each physical machine (or Xen-Blanket

instance) is responsible for dedicating some of the local excess space to act as

a target for migration, and some to act as a page repository for cooperative

swap from overloaded VMs throughout the cloud. The actual allocation and

placement of VMs and excess space, including page repositories, throughout the

cloud is performed by the control plane, which is similar to the one in [158]. The

control plane may run a proactive migration algorithm to avoid hotspots [158]

or to consolidate VMs [94].
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6.2.1 Deciding to Migrate VMs

Overdriver uses a threshold on the duration of overload to determine when to

classify an overload as sustained and to employ migration. Choosing an appro-

priate threshold is difficult, and a good choice depends on the overload charac-

teristics of the application VM. At one extreme, a very low threshold approaches

a migration-based overload mitigation strategy, with good application perfor-

mance but high cost to the cloud itself. On the other hand, setting the threshold

to be too large approaches a network memory-based strategy, with lower appli-

cation performance but also lower cost to the cloud. Intuitively, a good choice

for the threshold would be high enough that a vast majority of the overloads do

not require migration while being low enough that performance does not suffer

too much. A profile of the application VMs, including the probabilities of each

duration of overload, can help determine a reasonable value for the threshold.

In reality, an application VM profile that describes the probability of over-

load having a particular duration is not available. However, rather than se-

lecting a single threshold for all VMs, the overload manager starts with a fixed

threshold, then relies on the workload profiler to learn the probabilities of vari-

ous duration overloads to give a basis for reducing the threshold.

There are two challenges in learning a probability profile. First, in the case

of sustained overload where migration is employed, the overloaded VM will

be granted additional resources that will fundamentally change its overload be-

havior. In particular, the probability profile of the application VM will change,

requiring the learning process to start anew. Second, the learned probability

profile takes some time to converge. For example, we attempted to learn the

probability profile for a VM allocated 640 MB from the SPECweb2009 experi-
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ments in Section 2.1.3. For this scenario, at least 25 sustained overloads must

be witnessed before the learned profile becomes reasonable. Since the local pro-

file is useless after a migration takes place, the 25 sustained overloads must be

endured using only cooperative swap in order to learn a complete profile.

Despite these challenges, focusing only on the different durations of tran-

sient overloads, the workload profiler learns enough to reduce the threshold

without resorting to excessive migration. The workload profiler maintains a list

of buckets for each VM, corresponding to possible transient overload durations.

As the paging rates of a VM are monitored, the profiler maintains a count for

the number of times an overload of a specified duration is encountered in the

appropriate bucket. Once the number of measurements exceeds a base amount,

we begin to estimate a tighter bound on the migration threshold by computing

the distance from the mean in which transient overload is unlikely to occur. For

example, as a heuristic, we assume the distribution of transient overloads is nor-

mal, then compute µ + 3σ to be a new threshold. If the new threshold is lower

than the original threshold, we adopt the tighter bound to reduce the time until

migration is triggered for sustained overload.

6.2.2 Capacity Planning

Despite the limitations of the learned probability profiles, they can be sent to the

control plane, where they can be aggregated over a large number of VMs over

time. This can give insight into the quantity of excess space in the cloud needed

to handle overload and how to partition it between space for migration and

space for cooperative swap. The control plane, in return, informs each excess
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space manager how to subdivide its resources.

To demonstrate how probability profiles inform the subdivision of excess

space, consider a VM running the webserver component of the SPECweb2009

application described in Section 2.1.3, when allocated only 640 MB of memory.

According to its probability profile (Figure 2.3) this application VM has a 16%

chance of experiencing overload where 96% of the overloads are less than 1

minute in duration. In order for migration to handle sustained overload, we

assume that there must be enough excess capacity to have room to migrate a

full VM. Similarly, in order for cooperative swap to handle transient overload,

we conservatively assume that the sum of the overloaded VM’s current memory

allocation and the excess space that is required for cooperative swap is equal to

the non-oversubscribed allocation, regardless of how short the burst is.

Assuming the overload characteristics of all VMs are independent5, if p is the

probability of the most likely VM to have overload, we can compute a bound

on the probability that at most k VMs will experience simultaneous overload:

P {# overloaded VMs ≤ k} =
k∑

i=0

(
n
i

)
· pi · (1 − p)n−i,

where n is the number of VMs in the cloud. For example, consider an oversub-

scribed cloud supporting 150 VMs, all running the SPECweb2009 configuration

described above. Even if each VM is allocated 640 MB, rather than the 1024 MB

they would have requested, we would expect—with probability 0.97—that no

more than 3 VMs experience simultaneous sustained overload and no more than

31 VMs experience simultaneous transient overload. This, along with our as-

sumptions about how much excess space is required to satisfy a single overload

5VMs that make up a single application can experience correlated overload; however
the enterprise data in Section 2.1.3 indicates that overload is not highly correlated across
all VMs in a well provisioned data center.
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Figure 6.3: Overdriver allows more VMs to be supported by balancing
the amount of excess space needed for sustained and transient
overloads.

of either type, allows us to compute—with high probability—the amount of

each type of excess space needed to handle all overloads in the entire cloud.

Recognizing the overload continuum exists, and selecting the correct

amount of each type of excess space can allow an increase in the number of

VMs supported in the cloud. Assuming that migration and cooperative swap

can handle overload longer and shorter than one minute respectively while pre-

serving application performance, we numerically compute the total number of

VMs that can be run in the cloud under different oversubscription levels. We fix

the total amount of memory in the cloud as a constant just under 100 GB. For

each memory allocation, we input the likelihood of overload and the likelihood

that the overload is transient or sustained from Figure 2.3. The analysis itera-

tively increases the number of VMs and calculates the amount of excess needed

to handle the expected number of simultaneous overloads, in order to find the

maximum number of VMs that can be safely supported.
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Figure 6.4: The breakdown of cloud resources in terms of space for VMs,
excess space for migrations, and excess space for cooperative
swap.

Figure 6.3 shows the number of VMs that can be supported with high proba-

bility using Overdriver or a migration-only strategy. As memory becomes more

oversubscribed, more VMs can be run, but more excess space must be main-

tained to endure overload. Since cooperative swap consumes space propor-

tional to the overload duration, it allows more room for VMs than an approach

that uses migration to address all types of overload, including transient over-

load. To make this point clear, Figure 6.4 shows the breakdown of memory in

the cloud, with Overdriver saving 12% more of the cloud resources for VMs in

the 640 MB case. If the physical machines (or Xen-Blanket instances) are over-

subscribed too much, corresponding to VM allocations of only 512 MB in this

case, the excess space required to handle sustained overload through migration

begins to dominate, reducing the available memory to support additional VMs.

139



6.2.3 Discussion

The maintenance of excess space is a key issue when designing a system to han-

dle overload in the cloud. Where the various types of excess space are placed

throughout the cloud, when and how excess space is reclaimed after an over-

load, and how to combat fragmentation within excess space, are all important

questions to consider.

Each mitigation strategy imposes different constraints on how its portion of

excess space can be placed throughout the cloud. Excess space saved for coop-

erative swap in the form of page repositories has very few constraints on place-

ment: there is no requirement that swap pages are stored on the same physi-

cal machine (or Xen-Blanket instance); nor do the page repositories need many

other resources, such as CPU. On the other hand, excess space saved for migra-

tion has more constraints: there must be enough resources to support a full VM

co-located on a single physical machine (or Xen-Blanket instance), including

memory and CPU. Another mitigation strategy that we have not discussed is

memory ballooning [145], or modifying the memory allocation on the local ma-

chine. Excess space saved for ballooning has very limiting constraints, namely

that it must reside on the same physical machine (or Xen-Blanket instance) as

the VM that is experiencing overload. Resource allocation and placement algo-

rithms must adhere to each of these various constraints.

Overload occurs in a continuum of durations, but when it finally subsides,

the excess space that was being used for the overload must be reclaimed. The

reclaiming process can be proactive, in which excess space is pre-allocated be-

fore overload occurs, or reactive, in which resources are dynamically carved out

of the cloud on an as-needed basis. Regardless, policies for reclaiming resources
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are tightly integrated into VM placement and resource allocation, located in the

control plane.

Reclaiming memory resources for future migration operations may require

squeezing the memory allocations of VMs which may or may not have experi-

enced an overload, and care must be taken to ensure that the reclaiming process

does not trigger more overloads in a cascading effect. Reclaiming space in a co-

operative swap page repository, on the other hand, can be straightforward—if

the VM reads a swap page after overload subsides, that swap page can most

likely be deleted from network memory. Otherwise, if the swap page has not

been read, the swap page will remain outside of the VM. However, the swap

page can be copied to local disk and removed from network memory at any

time,6 although the performance of a future read of the page will suffer.

Resource reclaiming may also need to consider the fragmentation that occurs

within excess space. For example, after a migration completes, some resources

are allocated to the overloaded VM. The amount of resources awarded need not

be the original requested amount nor must they include all of the available re-

sources on the physical machine (or Xen-Blanket instance). More likely, there

will be some resources remaining that are insufficient to host a new VM, but

not needed by any of the running VMs. Filling the unused resources with co-

operative swap page repositories is one option to combat fragmentation, but

ultimately, some consolidation process involving migration will be necessary,

once again tightly integrated with VM placement and resource allocation.

6Depending on the fault tolerance policy, a swap page may already be on local disk (see
Section 6.2.4).
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6.2.4 Implementation

We have implemented Overdriver to run on Xen and the Xen-Blanket. We lever-

age Xen’s built-in support for live migration and implement cooperative swap

clients and page repositories from scratch. An Overdriver agent, written in

Python and running in Domain 0, locally monitors the paging rate of the VMs

on its physical machine (or Xen-Blanket instance) to detect and react to over-

load. Probability profiles are maintained in a straightforward manner, which

updates the migration threshold. Page repositories implementing excess space

for cooperative swap exist as C programs, executed in Xen’s Domain 0, that

pin memory to ensure that pages written and read do not encounter additional

delays. While much of the implementation is straightforward, given space con-

straints, we focus on some interesting implementation considerations for the

overload controller and the cooperative swap subsystem.

Overload Controller

As described in Section 6.2.1, the overload controller within the agent initiates a

migration operation after overload has been sustained past an adaptive thresh-

old. However, the implementation must be able to identify overload from nor-

mal behavior. Based on our observations of VMs that are using the paging sys-

tem, a very low paging rate tends to be innocuous, done occasionally by the op-

erating system even if there is no visible performance degradation. While any

paging may be a good indication of future overload, Overdriver uses a paging

rate threshold to determine whether overload is occurring.

Furthermore, the implementation must differentiate between a series of tran-
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sient overloads and a sustained overload which has some oscillatory behavior.

From our experiments inducing sustained overload, we observe oscillations that

can last for almost a minute. In order to correctly classify periods of oscillation

as sustained overload, Overdriver includes a sliding window. A configurable

number of time intervals within the window must have experienced overload

for Overdriver to identify sustained overload.

Cooperative Swap

A key factor in the performance of cooperative swap is where the client is im-

plemented. In order to remain guest-agnostic, we only consider implementa-

tions within the VMM or the control domain (Domain 0) of the hypervisor. We

have experimented with two different architectures. In the first, we leverage the

Xen block tap drivers [149] (blktap) as an easy way to implement cooperative

swap clients in user-space of Domain 0. When a VM begins to swap, Xen for-

wards the page requests into userspace, where the block tap device can either

read or write the pages to the network or the disk. We noticed that swapping

to disk, using a blktap driver in Domain 0 for the disk, was significantly out-

performing cooperative swap. The reason for this unexpected result was that

pages being written by the user-space disk driver were being passed into the

kernel of Domain 0, where they would enter the Linux buffer cache, and wait to

be written asynchronously. Asynchrony is especially well suited to cooperative

swap, because, unlike writes to file systems or databases, the pages written out

have no value in the case of a client failure. Furthermore, the buffer cache may

be able to service some reads. In order to take advantage of the buffer cache,

in addition to reducing context switch overhead, we decided to implement co-
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operative swap in the kernel underneath the buffer cache, similar to a network

block device (nbd).

Regardless of the location of the cooperative swap client, the implementa-

tion must provide some additional functionality to reading and writing pages

to and from page repositories across the network. We highlight two interest-

ing aspects of the implementation. First, cooperative swap clients must be able

to locate pages, which may or may not be on the same page repository, even

after a VM has migrated. In-memory state consists mainly of a per-VM hash

table, indexed by the sector number of the virtual swap device. Each entry in-

cludes the address of the page repository the page is stored at, a capability to

access the page, and the location of the page on disk. Both the data structure

and the swap pages on disk must be migrated with a VM. This is currently

done during the stop-and-copy portion of live migration, although a pre-copy

or post-copy live migration technique could be implemented for both the data

structure and disk pages. Second, it is important to ensure that failure of a re-

mote machine in the cloud does not cause failure of a VM that may have stored

a swap page there. Fortunately, there are several accepted mechanisms for reli-

ability in a system that uses network memory. By far the simplest is to treat the

page repositories across the network like a write-through cache [62, 71]. Since

every page is available on the disk as well as to the network, the dependency

on other machines is eliminated, and garbage collection policies are simplified.

Reads enjoy the speed of network memory, while writes can be done efficiently

through asynchrony. Alternative approaches exist, such as using full replication

of swap pages or a RAID-like mirroring or parity scheme [106,117], but they add

considerable complexity to failure recovery as well as garbage collection.
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6.3 Evaluation

We have argued that in order to enable high resource utilization using aggres-

sive memory oversubscription, it is necessary to react to overload, both transient

or sustained. In this section, we quantify the tradeoffs described in Section 6.1

in terms of the impact of each strategy on application performance, and in terms

of overhead to the cloud, most notably network and excess space overhead. We

also show that Overdriver successfully navigates this tradeoff, maintaining ap-

plication throughput to within 8% of a non-oversubscribed system, while using

at most 150 MB of excess space for transient overloads.

At a high level, we want to answer the following questions:

• Does Overdriver maintain application performance despite memory over-

loads?

• Does Overdriver generate low overhead for the cloud despite memory

overloads?

The answers to these questions clearly depend on the application, its traffic,

and the level of oversubscription employed. Ideally, we would like to deploy

Overdriver in a production cloud and experiment with varying oversubscrip-

tion levels to answer these questions. Unfortunately, we do not have access to a

production cloud, so we use three servers, each with a Xeon 5120 1.86 GHz dual

core processor, 32 GB of memory, and a 133 GB SCSI disk with 7200 rpm. For

the workload, we once again experiment with SPECweb2009. Instead of simu-

lating a realistic client workload as described in Section 2.1.3, we run a steady

base load of clients and inject bursts of various duration in order to evaluate the

performance of Overdriver in the face of different types of memory overload.
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Figure 6.5: Observed memory overload duration roughly matches the du-
ration of the injected client burst.

To be more precise, each SPECweb2009 experiment consists of a steady client

load of 250 simultaneous sessions being imposed upon a web server VM. The

VM, which initially requested 1024 MB, has only been allocated 512 MB of mem-

ory because of oversubscription, achieved by inflating the VM’s memory bal-

loon. The experiment lasts for 10 minutes. After waiting for 1 minute at the

steady state, a client burst is injected, increasing the number of simultaneous

sessions by 350 for a total of 600 sessions during bursts. The burst is sustained

for a configurable amount of time before the simultaneous sessions return to 250

for the remainder of the experiment. A longer client burst roughly corresponds

to a longer memory overload, as shown in Figure 6.5. We perform experiments

on a native cloud (e.g. not on superclouds) to best isolate performance during

overload. The physical machines used in the experiments have 4 GB of memory

each, while the memory allocation of Domain 0 is set at 700 MB.
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Through the experiments we compare how Overdriver handles overload

(identified as overdriver in each graph) to several other techniques. First,

as a best-case, we measure the performance of the application, had its VM been

well-provisioned. Then, the option of simply swapping pages out to disk (called

disk swap) is provided as a worst case for application performance, and a

baseline for cloud overhead. In between these two extremes we run a solely co-

operative swap approach (coopswap) and a solely migration-based approach

(migration). The migration approach has a number of factors, discussed ear-

lier, that make it difficult to compare against. Resource allocation and placement

are central to migration strategies, as is some sort of migration trigger. To avoid

these issues, we compare against an idealized migration scenario involving a

different VM co-located on the same physical machine as the overloaded VM.

On the first sign of overload, this other VM, which has a memory allocation

of 1024 MB, is migrated to another physical machine, releasing its memory for

use by the overloaded VM. In reality, VM allocations can be much larger than

1024 MB, resulting in longer delays before migration can complete and more

impact to the network. So, in some sense, the migration strategy we compare

against is a best-case scenario in terms of application impact and cloud over-

head.

Throughout the experiments, we configure Overdriver to monitor the VM

every 10 seconds, and consider time intervals where the paging rate is above

200 operations per second as periods of overload. The threshold used to trig-

ger migration is initially set at 120 seconds, with a sliding window parameter

requiring 8 out of the 12 measurements to be overloads (i.e. 120 seconds comes

from twelve 10 second monitoring periods and requires at least 80 seconds out

of a window of 120 seconds to trigger a migration).
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Figure 6.6: The effects of each mitigation technique on the SPECweb2009
application. Overdriver maintains application throughput
within 8% of that of a non-oversubscribed VM and an average
response time under 1 second for any length overload.

6.3.1 Application Effects

Figure 6.6 shows the performance degradation experienced by the application

under various overload mitigation strategies in terms of lost throughput and
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increase in average response time. First, we examine the aggregate throughput

over the 10 minute experiment. The experiment was run on a well-provisioned

VM to get a baseline for how many connections should have been handled if

no overload occurred, which was between 23 and 38 thousand connections, de-

pending on the length of the injected client burst. Figure 6.6(a) shows the per-

centage of that ideal throughput for each strategy. The first thing to notice is that

the throughput while using disk swap drops off dramatically, whereas degra-

dation is much more graceful using cooperative swap. Migration, on the other

hand, completes with nearly full performance, except for very small spikes re-

sulting in reductions in throughput performance for short periods of time, until

migration completes and benefits of migration can be seen. A less aggressive

solely migration-based strategy would degrade with disk swap until migra-

tion was triggered. Overdriver, on the other hand, begins to degrade grace-

fully along with cooperative swap, but then improves for longer overload as it

switches to rely on migration. A similar pattern can be seen with application re-

sponse time, shown in Figure 6.6(b). While longer overload periods cause coop-

erative swap to increase the average response time, Overdriver levels off when

migration is used. Disk swap is not shown on Figure 6.6(b) because it performs

significantly worse than other strategies; the average response time varies be-

tween 2.5 s and 16 s, depending on the overload duration. Overall, Overdriver

achieves a throughput within 8% of a well-provisioned, non-oversubscribed

VM, and an average response time under 1 second.

In terms of application throughput, we see that Overdriver degrades grace-

fully to a point, at which overload is sustained and warrants migration. The cost

of Overdriver to the application, while fairly low, is higher than a very aggres-

sive migration strategy, because Overdriver pays for the time spent deciding
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Threshold(s) Tput(%) Response Time (ms)
100 94.97 946
120 92.47 1249
150 93.76 1291
170 84.52 1189
200 84.85 1344

Table 6.2: As the threshold for migration increases, more performance
loss is experienced. This table shows the lowest percentage of
throughput achieved, and highest average response time, out of
all durations of overload.

whether the spike will be sustained. Cooperative swap drastically improves

performance while making this decision. As discussed earlier, especially given

the prevalence of transient overload, the number of migration operations re-

quired is also drastically reduced, affecting both the amount of excess space

required, and ultimately the number of VMs that can be supported in the cloud.

The choice of threshold has an effect on the application performance, be-

cause a higher threshold translates into an increased reliance on cooperative

swap. Table 6.2 shows application performance experienced by Overdriver as

the migration threshold due to sustained overload varies. As the threshold in-

creases above 120 seconds performance degrades. This performance degrada-

tion gives an idea of the performance that can be gained by adaptively learning

a tighter threshold.

6.3.2 Cloud Effects

The most immediately quantifiable impact to the cloud of the overload mitiga-

tion techniques we have described is in terms of the amount of traffic induced on

the network, and in terms of the amount of excess space required for migration
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Figure 6.7: Network traffic induced by various length load spikes using
cooperative swap versus disk swap.

or cooperative swap. We show that Overdriver can handle transient overloads

with a fraction of the cost of a purely migration-based solution. However, we

also show that Overdriver incurs additional costs for sustained overloads.

Figure 6.7 shows the amount of traffic sent and received during the experi-

ments described above (Section 6.3.1) for various length client bursts. The num-

ber of pages written to the cooperative swap page repositories increases fairly

linearly as the length of the overload increases. However, cooperative swap also

reads from the page repositories, which results in a further increase in network

traffic. Migration, on the other hand, exerts a fixed constant, which is almost

entirely written, regardless of the duration of overload. The fact that the value

on the graph is fixed at 1 GB is because that is the memory allocation of the VM

that is being migrated in this experiment. If a larger, 2 GB VM was migrated, we

would see the migration line at 2 GB instead. Overdriver follows the coopera-

tive swap line until the duration of overload exceeds its threshold, and it resorts
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Figure 6.8: Amount of excess space required for migration and coopera-
tive swap using Overdriver.

to migration. This causes a sharp increase by the memory allocation of the VM

(1 GB in this case) in the amount of data written to the network by Overdriver

for sustained overload. In other words, to get the benefit for transient over-

loads, Overdriver pays a cost for sustained overloads that is proportional to the

amount of time it used cooperative swap.

The amount of traffic over the network does not necessarily show the

amount of excess space that is required for cooperative swap. For example,
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Threshold(s) Traffic(GB) Space(MB)
100 2.1 424
120 3.6 549
150 4.4 554
170 5.6 568
200 6.1 590

Table 6.3: For sustained overloads, as the threshold for migration in-
creases, more overhead is accumulated while waiting for migra-
tion to happen. This table shows the maximum overhead for
cooperative swap in terms of traffic generated and excess space
required for a sustained overload.

some pages may be written, read, then overwritten, without consuming more

space at the page repository. Figure 6.8 quantifies the amount of excess space

required for migration and cooperative swap. Even though cooperative swap

may generate a virtually unbounded amount of network traffic for sustained

overload, the amount of space that is required remains reasonable. In particular,

the amount of space required does not increase above the amount of memory

that was withheld because of oversubscription. For transient overloads, Over-

driver must only use the modest amount of excess space for cooperative swap.

For sustained overloads, however, Overdriver uses both.

Similarly to application performance, cloud impact is also affected by the

threshold that Overdriver uses. Table 6.3 quantifies the increases in overhead for

a sustained overload that can be reduced by adaptively shrinking the threshold.

Finally, while Figures 6.7 and 6.8 quantify a tradeoff, and show how Over-

driver navigates the tradeoff for a single overload, they only provide a glimpse

into the tradeoffs that would appear if done at a cloud scale. In particular,

transient overloads are dominant, and so the modest savings that Overdriver

achieves in this graph must be multiplied by the number of transient over-
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Figure 6.9: The expected overhead given the dominance of transient over-
loads

loads, which should far outweigh the overhead incurred for the relatively rare

sustained overloads. Figure 6.9 shows that, using the probability profile for a

SPECweb2009 VM allocated 640 MB discussed in Section 2.1.3, Overdriver is

expected to save 46% network bandwidth and requires 83% less excess space

than migration only. Furthermore, as discussed in Section 6.2, the differences in

terms of how excess space is being used has far-reaching implications in terms

of additional costs related to maintaining excess space.

6.4 Summary

Oversubscription is one avenue towards maximizing the utilization of resources

in superclouds. As interest grows in oversubscribing resources in the cloud, ef-

fective overload management is needed to ensure that application performance

remains comparable to performance on a non-oversubscribed cloud. Through
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analysis of traces from an enterprise data center and using controlled experi-

ments with a realistic Web server workload, we confirmed that overload ap-

pears as a spectrum containing both transient and sustained overloads. More

importantly, the vast majority of overload is transient, lasting for 2 minutes or

less.

The existence of the overload continuum creates tradeoffs, in which various

mitigation techniques are better suited to some overloads than others. The most

popular approach, VM migration-based strategies, are well suited to sustained

overload, because of the eventual performance that can be achieved. Coop-

erative swap applies to transient overloads, where it can maintain reasonable

performance at a low cost.

We have presented Overdriver, a system that handles all durations of mem-

ory overload. Overdriver adapts its mitigation strategy to balance the tradeoffs

between migration and cooperative swap. Overdriver also maintains applica-

tion VM workload profiles which it uses to adjust its migration threshold and

to estimate how much excess space is required in the cloud to safely manage

overload. We show, through experimentation, that Overdriver has a reasonably

small impact on application performance, completing within 8% of the connec-

tions that a well-provisioned VM can complete under the continuum of over-

load, while requiring (under reasonable oversubscription ratios) only 15% of

the excess space that a migration-based solution would need.

Cloud extensibility enables each cloud user to decide which oversubscrip-

tion techniques are right for their enterprise workloads and provides the control

to implement them. For example, Overdriver and the functionality it relies on

(e.g. VM migration and cooperative swap) can run on Amazon EC2 by lever-
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aging the Xen-Blanket. Overdriver shows that safe oversubscription is possible,

opening the door for new systems that effectively manage excess space in the

cloud for the purpose of handling overload, ultimately leading towards a new

class of highly efficient, oversubscribed cloud deployments. The Overdriver

project webpage is available at: http://overdriver.cs.cornell.edu.
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CHAPTER 7

RELATED WORK

In this dissertation, we explored a new user-centric cloud computing model

called superclouds. We investigated an abstraction—cloud extensibility—that

enables cloud users to obtain unprecedented level of control over third-party

cloud resources. Cloud extensibility is influenced by related work on extensi-

ble operating systems and nested virtualization. Leveraging cloud extensibility,

we researched cloud interoperability, or how a cloud user can create a uniform

environment across cloud providers. While there are numerous other efforts to-

wards cloud interoperability, existing approaches do not enable the level of user

control of the Xen-Blanket. We researched how a cloud user can implement the

control logic of a cloud network. Related work that investigates virtual net-

working abstractions does not offer the level of control of VirtualWire. Finally,

we researched how a cloud user can efficiently utilize cloud resources through

memory oversubscription. Related work on handling memory overload typi-

cally utilizes either live VM migration or network memory but does not address

transient and sustained overloads differently. In this chapter, we discuss work

related to each of our contributions, the techniques they build on, and alternate

or complementary approaches.

7.1 Cloud Extensibility

We have described cloud extensibility as an abstraction that enables super-

clouds. Extensible clouds are influenced by prior work on extensible operating

systems. For example, SPIN [45] allows extensions to be downloaded into the

kernel safely using language features, while Exokernels [67] advocate hardware
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to be exposed to a library OS controlled by the user.

To avoid a provider-centric approach, like standardization, we focus on

nested virtualization as a deployable, user-centric approach to cloud extensi-

bility. Graf and Roedel [74] and the Turtles Project [43] are pioneers of enabling

nested virtualization with one or more levels of full virtualization, on AMD

and Intel hardware, respectively. Berghmans [44] describes the performance of

several nested virtualization environments. CloudVisor [161] explores nested

virtualization in a cloud context, but for security, where the provider controls

both layers.

7.2 Cloud Interoperability

We have explored how to enable a cloud user to homogenize, or provide a uni-

form environment across, third-party cloud providers. Our approach is em-

bodied in the Xen-Blanket. Other techniques exist to deploy applications across

multiple clouds, but none afford the user the flexibility or level of control of

user-centric approach embodied in the Xen-Blanket. There are also a number of

existing systems which exhibit the type of control needed for enterprise work-

loads but cannot be deployed on third-party clouds. These systems may be able

to be implemented in a supercloud.

Multi-Cloud Deployments

Using tools from Rightscale [58], a user can create ServerTemplates, which can

be deployed on a variety of clouds and utilize unique features of clouds without
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sacrificing portability. However, users are unable to homogenize the underlying

clouds, particularly hypervisor-level services.

Middleware, such as IBM’s Altocumulus [109] system homogenizes both

IaaS clouds like Amazon EC2 and Platform as a Service (PaaS) clouds like

Google App Engine into a PaaS abstraction across multiple clouds. However,

without control at the IaaS (hypervisor) level, the amount of customization pos-

sible by the cloud user is fundamentally limited.

The fos [151] operating system, deployed on EC2 and potentially deployable

across a wide variety of heterogeneous clouds, exposes a single system image

instead of a VM interface. However, users must learn to program their applica-

tions for fos; the familiar VM interface and legacy applications contained within

must be abandoned.

Eucalyptus [68] and AppScale [54] are open-source cloud computing sys-

tems that can enable private infrastructures to share an API with Amazon EC2

and Google App Engine respectively. However, the user cannot implement

their own multi-cloud hypervisor-level feature. OpenStack [30] is another open-

source implementation of an IaaS cloud, with the same limitation.

The RESERVOIR project [131] is a multi-cloud agenda in which two or more

independent cloud providers create a federated cloud. A provider-centric ap-

proach is assumed; standardization is necessary before federation can extend

beyond the testbed. With the Xen-Blanket, such an agenda could be applied

across existing public clouds.
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Controlling Clouds

OpenCirrus [51] is an initiative that aims to enable cloud targeted system level

research—deploying a user-centric cloud—by allowing access to bare hardware,

as in Emulab [153], in a number of dedicated data centers. However, OpenCir-

rus is not aimed at applying this ability to existing cloud infrastructures.

Cloud operating systems such as VMWare’s vSphere [142] allow the admin-

istrator of a private cloud to utilize a pool of physical resources, while pro-

viding features like automatic resource allocation, automated failover, or zero-

downtime maintenance. These features, which are examples of hypervisor-level

services, cannot easily be integrated with current public cloud offerings.

It may be possible to implement these systems, along with Eucalyptus [68]

and OpenStack [30], in a supercloud. This challenge are a subject of future re-

search, as discussed in Chapter 8.

7.3 User Control of Cloud Networks

We have explored how to enable a cloud user to manage the network control

logic in a cloud. Our approach is embodied in VirtualWire. New data center net-

work architectures are emerging that increase the flexibility of cloud networks.

Network virtualization promises an important step towards superclouds by de-

coupling the network from physical infrastructure. Like VirtualWire, a number

of network virtualization approaches exist, however, VirtualWire is unique in

that it places the control logic of the virtual network in the domain of the user,

and that it has been applied in superclouds.
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Enterprise Cloud Migration

Similar to VirtualWire, Virtual Private Networks (VPNs) are being applied to

enable enterprise deployments to migrate or extend into third party clouds. For

example, Amazon Virtual Private Cloud (VPC) [1] allows users to pick their

own IP addresses within a subnet connected to a private network via a VPN,

but does not support layer 2 protocols. vCider [22] and VPN-Cubed [24] sup-

port layer 2 protocols in the cloud and even provide some control over the

network topology, but require configuration in the guest operating systems.

CloudSwitch [3] operates in an isolation layer that avoids guest operating sys-

tem configuration, but does not facilitate the implementation of flow policies

in the cloud. VirtualWire allows a user to specify a virtual network topology

that can be maintained throughout migration, regardless of the physical loca-

tion of components. VirtualWire can benefit from applying the VM migration

optimizations across VPNs described in CloudNet [157].

Data Center Network Architecture

VirtualWire allows users to implement the control logic for their virtual net-

works. At the provider level, a number of network architectures have been

proposed to maximize flexibility and efficiency [35, 40, 76, 79, 80, 95, 119]. Two

network virtualization systems that achieve scale and performance are VL2 [75]

and NetLord [118]. OpenFlow [110] and, more broadly, software defined net-

works (SDN) [78, 98, 126] can produce efficient virtual networks [14]. A user in

VirtualWire can develop and test new applications of SDN, like Mininet [102], or

incrementally upgrade the control logic in their virtual network to benefit from

them. VirtualWire is the only system that enables users of third-party clouds to
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implement the network control logic.

Software Network Components

VirtualWire relies on the availability of software network component implemen-

tations. Open vSwitch [126] is a production quality, fully featured OpenFlow-

enabled software switch; Cisco’s 1000V [56] and NetSim [18] share interfaces

with physical Cisco network devices. Software routers are known for extensi-

bility [82, 97], and, with recent developments in server hardware, can achieve

very high performance [64]. VROOM [148] describes how to migrate soft-

ware routers for network management. Unlike VirtualWire, virtual routers in

VROOM are not running on general purpose servers or third-party clouds, but

on high-end routers with virtualization support.

Standards

VirtualWire performs encapsulation and adopts the Virtual eXtensible Local

Area Network (VXLAN) [105] wire format. VXLAN [105] and Network Virtu-

alization using Generic Routing Encapsulation (NVGRE) [137], are emerging to

use encapsulation to extend virtual segments even over layer 3 networks. Other

standards, such as Locator/ID Separation Protocol (LISP) [129], have been pro-

posed to separate device identification and network routing.
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7.4 Efficient Cloud Resource Utilization

We have explored how to enable efficient cloud resource utilization through

memory oversubscription and handling memory overload. Our approach is

embodied in Overdriver. Oversubscription is common, as are VM migration

and network memory, the two techniques used by Overdriver to handle mem-

ory overload.

Memory Oversubscription

The ability to oversubscribe memory is common in modern virtual machine

monitors. VMWare ESX server [145] was the first to describe memory balloon

drivers which provided a mechanism to remove pages from a guest OS by in-

stalling a guest-specific driver. Xen [41] also contains a balloon driver. Balloon

sizing can be done automatically with an idle memory tax [145] or as a more

sophisticated driver inside the guest OS [85]. While ballooning allows changes

to the allocation of machine pages, memory usage can also be reduced through

page sharing techniques: mapping a single page in a copy-on-write fashion to

multiple VMs. This technique was first described in VMWare ESX server [145]

and has subsequently been extended to similarity detection and compression

in Difference Engine [81]. Memory Buddies [159] is a migration-based strategy

that tries to place VMs to optimize for page sharing. Satori [116] is examin-

ing new mechanisms to detect sharing opportunities from within the guest OS.

These systems are great mechanisms for oversubscribing memory; however, a

robust system to reactively handle and mitigate overload, like Overdriver, is

necessary to maintain performance.
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Migration

VM migration has become very popular and is touted as a solution free

of residual dependency problems that have plagued process migration sys-

tems for years [115]. Stop-and-copy VM migration appeared in Internet sus-

pend/resume [99]. Compression has been noted as a technique to improve the

performance of migration, especially if the image contains lots of zeroes [134].

However, these techniques all impose significant downtimes for VMs. Live mi-

gration techniques, on the other hand, allow VMs to be migrated with minimal

downtime. Push-based live migration techniques are the most popular; im-

plementations include VMWare’s VMotion [122], Xen [57], and KVM [96]. Pull-

based live migration [85] has been evaluated and a similar mechanism underlies

the fast cloning technique in SnowFlock [101].

We do not discuss addressing memory overload by spawning VMs. If a

hosted service is structured to be trivially parallelizable, such that a newly ini-

tialized VM can handle new requests and share the load, spawning may be an-

other viable mechanism to alleviate memory overload. Work has been done to

maintain a synchronized hot spare [61] and to speed up cloning delays [101,128].

There are many migration-based approaches that try to achieve various

placement objectives, but they do not discuss maintaining excess space to han-

dle overload. Khanna et al. [94], use heuristics to try to consolidate VMs on

the fewest physical machines, while other approaches Entropy [84] and Van et

al. [141] aim for an optimal consolidation with the fewest migrations. Sand-

piper [158] uses migration to alleviate hotspots in consolidated data centers.

In an effort to eliminate needless migrations, Andreolini et al. [37] use a trend

analysis instead of triggering migration with a utilization threshold. Stage and
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Setzer [138] advocate long-term migration plans involving migrations of vary-

ing priority in order to avoid network link saturation.

Network Memory

Overdriver uses cooperative swap to address the paging bottleneck of over-

loaded VMs. Accessing remote memory on machines across a fast network

has been recognized to perform better than disk for some time [36], and this

concept has been applied to almost every level of a system. memcached [27]

leverages network memory at the application level. Cooperative caching [62]

gains an extra cache level in a file system from remote client memory. The

Global Memory System [71] uses a remote memory cache deep in the virtual

memory subsystem of the OS, naturally incorporating all memory usage in-

cluding file systems and paging. Nswap [123] and the reliable remote paging

system [106] focus specifically on sending swap pages across the network. Cel-

lular Disco [73] is a hypervisor that uses network memory to borrow memory

between fault-containment units called cells. Most similar to cooperative swap,

MemX [86] implements swapping to the network for a guest VM from within

the hypervisor. MemX is focused on extremely large working sets that do not fit

in a physical machine’s memory, whereas cooperative swap is designed to react

quickly to overload bursts, many of which are transient. Other techniques to in-

crease the performance of paging include the use of SSDs. However, addressing

the paging bottleneck is not enough to handle the entire overload continuum,

particularly sustained overloads.
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CHAPTER 8

FUTURE WORK

Superclouds embody a new environment in which enterprise workloads can

be deployed on one or more clouds. In this dissertation, we have investigated

three aspects of a supercloud. First, we researched how to enable a cloud user

to homogenize, or provide a uniform environment, across clouds, as a step to-

wards cloud interoperability. Second, we researched moving the control logic

of the network to be managed by the cloud user. Finally, we researched efficient

cloud resource utilization through memory oversubscription.

We also designed, implemented and evaluated an instance of each of the

three approaches, resulting in three systems: the Xen-Blanket, VirtualWire, and

Overdriver. Together these systems form an instance of a supercloud. In the

future, we plan to adopt entire cloud stacks, such as Eucalyptus [68] or Open-

Stack [30], to enhance our instance of a supercloud.

In addition, there are many interesting research directions that build on su-

perclouds. In this chapter, we focus on three key directions. First, superclouds

have an opportunity to more completely abstract away physical infrastructure

such that workloads on superclouds may not be aware of what underlying

cloud provider they are running on. In other words, superclouds can present

a seamless multi-cloud environment. Second, superclouds can be customized

to fit an enterprise workload to an extent that existing cloud providers cannot

attempt. Finally, there are interesting research challenges in supporting more

guests on superclouds and extending superclouds across more heterogeneous

cloud providers. In the remainder of this chapter, we briefly describe these fu-
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ture directions.

8.1 Seamless Multi-Cloud

Superclouds have the potential to significantly abstract away the existence of

multiple cloud providers. We have begun to show how superclouds can enable

interesting functionality that spans clouds, such as cross-provider live migra-

tion. New services and functionality offered by superclouds spanning network-

ing, storage, and high availability can further ensure a seamless, high perfor-

mance cloud environment that spans multiple clouds.

8.1.1 Upgrading the Virtual Network

VirtualWire enables a cloud user to implement a virtual network including the

network component configurations that encode the control logic in the network.

However, the virtual network may contain network components that are tied to

a single cloud provider. In particular, a virtual switch, router, or middlebox

that is difficult to re-implement in a distributed architecture may cause traffic

between two virtual servers on one cloud to cross to another cloud simply to

traverse the middlebox. We are investigating techniques to split an arbitrary

middlebox VM between clouds, with each piece processing traffic local to its

cloud.
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8.1.2 Storage

Our work towards superclouds reduces vendor lock-in by offering a unified, ho-

mogeneous cloud environment to cloud users. However, storage remains tied to

a single cloud provider. Accessing the highly available, virtually infinite storage

offered by one cloud provider from another cloud introduces latency and incurs

a financial penalty for data transfer into and out of each cloud. The lock-in risks

caused by cloud storage have been addressed in systems such as RACS [32],

in which RAID-like techniques stripe data across cloud providers. Superclouds

provide an opportunity to co-locate data with VMs that are likely to access the

data, while maintaining independence from any one cloud provider.

8.1.3 High Avavailability

While applications can be designed for high availability across clouds (and fa-

cilitated by services such as those provided by Rightscale [58]), arbitrary VMs

fundamentally lack support for high availability. Even if a cloud provider im-

plemented a high availability VM service, it will be limited to a single cloud

provider; the VM cannot withstand the failure of an entire cloud provider. Su-

perclouds span multiple clouds and therefore can implement high availability

strategies such as Remus [61] between cloud providers. Challenges include

minimizing cross-site traffic, adapting Remus-style protocols for WAN envi-

ronments, and designing provider-independent gateway points into the cloud

deployment. Some challenges have been addresses in PipeCloud [156] and Sec-

ondSite [130], but they do not enable cloud users on third-party clouds to utilize

them.

168



8.2 Custom Superclouds

Superclouds fundamentally change the incentive to design highly customized

cloud infrastructures. Whereas a cloud provider designs cloud services and in-

terfaces to support the maximum possible range of clients, a cloud user can de-

sign superclouds to efficiently support exactly the functionality that best suits

one or more workloads. This section describes several directions for research

into custom superclouds, by increasing the paravirtualization interface or intro-

ducing new abstractions.

8.2.1 Super-Paravirtualization

IaaS cloud platforms typically manage virtual machines as a “black box”, in

order to support a range of isolated customers. However, treating virtual ma-

chines as black boxes results in inefficiencies in almost every aspect of the cloud

infrastructure. For example, live VM migration imparts unnecessary overhead

to the network because in current black box approaches, the hypervisor can-

not differentiate between memory pages containing important system state and

those comprising ephemeral caches. Furthermore, resource allocation and over-

subscription policies and systems like Overdriver must guess the memory re-

quirements of each VM leading to poor utilization or poor performance.

Hypervisors that use paravirtualization, including the Xen-Blanket, do not

treat VMs strictly as black boxes. Instead, guest OSs can directly communicate

with the hypervisors. Paravirtualization is typically used to simplify the im-

plementation or improve the performance of tasks that require hypervisor in-
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tervention. For example, the guest OS asks the hypervisor for assistance when

performing I/O. We propose substantially expanding the interface between the

OS and hypervisor in order to both improve resource efficiency and offer new

services.

For example, the hypervisor can be extended to manage a single buffer cache

used to store disk pages from all VMs on a host, allowing it to remove redun-

dancy if VMs have similar disk state. While a typical OS greedily consumes all

available memory for caching, our approach allows the hypervisor to constrain

the amount of memory given to each VM, or to grant additional buffer cache

space from unused RAM. The result is more efficient use of system memory

and added control for the hypervisor. Our approach should also substantially

reduce VM migration time since ephemeral memory pages used for caching

can be easily skipped by the migration algorithm. In addition, we believe that

making operating systems aware that they are being migrated will offer new

optimization opportunities.

8.2.2 Memory Cloud

Overprovisioning of memory occurs because of difficulties in predicting the

memory usage of VMs. Truly elastic resources, such as storage, do not require

prediction: an abstraction of infinite storage is presented, while a VM pays for

what it actually uses. We are interested in pursuing the idea of truly elastic

memory or a memory cloud, in which elastic memory behaves like elastic stor-

age. With a memory cloud, VMs see a virtually unlimited amount of memory

and pay for only what they use. The underlying hypervisor-level software must
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maintain the illusion of infinite memory without VMs perceiving that some of

the memory may not be local. Techniques like those explored in Overdriver will

be essential, and emerging architectures with extremely fast inter-node commu-

nication, such as Blue Gene [88], may facilitate the implementation of an effi-

cient memory cloud abstraction.

8.3 Blanket Layer Virtualization

In this dissertation, we have described how cloud extensibility can be leveraged

for cloud interoperability. In particular, a Blanket layer can homogenize clouds

and enable superclouds. This section describes future work that augments the

Blanket layer to support a wider selection of guests and encompass more exist-

ing clouds.

8.3.1 Unmodified Guests on the Blanket Layer

The Xen-Blanket inherits the limitations of paravirtualization. In particular,

guest operating systems must be modified to run on a paravirtualized envi-

ronment. While standard Linux distributions contain support for paravirtual-

ization, other popular operating systems, such as Microsoft Windows, do not.

Without support from the underlying hypervisor (e.g., the Turtles Project [43]),

x86 hardware extensions for virtualization cannot be used. Instead of paravir-

tualization, binary translation (e.g., VMware [140]) can be used for the Blanket

layer. As such, unmodified operating systems can run on the Blanket layer. The

performance of binary translation in the Blanket layer, however, will likely suf-
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fer, especially for device I/O.

8.3.2 Blanket Layers in Paravirtualized Clouds

The Xen-Blanket assumes a fully virtualized (HVM) guest container in which

to run the Blanket layer. Even as clouds increasingly offer HVM guests for per-

formance and compatibility, many clouds, including Amazon EC2, continue to

offer a wide selection of paravirtualized instances. As future work, we plan

to investigate running a version of the Xen-Blanket to run on a paravirtualized

interface, while continuing to export a homogeneous interface to guests. Par-

avirtualizing the Blanket layer is technically feasible, but may encounter per-

formance issues in the memory subsystem where hardware features such as

Extended Page Tables (EPT) cannot be used and is another subject of future re-

search.

Further, we believe it is possible to support an unmodified guest using bi-

nary translation on a paravirtualized instance. The hypervisor in the Blanket

layer is a modified binary translating hypervisor. The hypervisor uses paravir-

tualized hypercalls to perform common tasks, such as memory management.

In the meantime, the instructions used by the unmodified guest as being dy-

namically translated to communicate with the Blanket layer and the underlying

hypervisor. By supporting a Blanket layer across all existing clouds, we increase

the applicability of superclouds.
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8.4 Summary

Superclouds enable an environment within which novel systems and hypervi-

sor level experimentation can be performed. Superclouds enable new, seamless

multi-cloud applications, that could lead to new deployment paradigms for en-

terprise workloads. Superclouds also enable new, highly customized cloud en-

vironments that could lead to better performance and better resource utilization

for certain mission-critical applications. As Superclouds span increasing num-

bers of cloud providers, they have the potential for impact across the entire

industry.
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CHAPTER 9

CONCLUSION

At the time of writing this dissertation, cloud computing is provider-centric;

cloud users do not have adequate control over the dictated format or available

services in the cloud. Furthermore, providers are not interoperable. Migrating

an enterprise workload to the cloud requires re-engineering effort every time

the workload is moved to a new cloud provider.

We have explored a fundamentally user-centric approach to cloud comput-

ing. In particular, we have proposed and investigated superclouds: a new,

user-centric model for cloud computing. Leveraging a new abstraction called

cloud extensibility, the cloud user—not the provider—maintains control over

the cloud, from VM format to services. Furthermore, cloud extensibility can be

applied to homogenize existing clouds for cloud interoperability. Control over

the cloud network can be exerted by cloud users rather than being mandated

by cloud providers. Cloud resources can be used efficiently through custom

oversubscription policies. Together this dissertation describes important steps

towards superclouds.

To validate our user-centric approach, we have described the design, im-

plementation and evaluation of three systems that together are steps towards

an instance of a supercloud. The Xen-Blanket is an instance of cloud extensi-

bility, enabling cloud interoperability. VirtualWire is an instance of user con-

trol of cloud networks. Overdriver is an instance of handling overload while

employing memory oversubscription to a achieve efficient utilization of cloud

resources.
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A supercloud is not bound to any provider or physical resources and there-

fore decouples the task of managing physical infrastructure from the service

abstraction in cloud computing. This decoupling is an important step toward

the further commoditization of computational resources. Additionally, super-

clouds facilitate research into novel systems and hypervisor level experimen-

tation. Superclouds enable seamless multi-cloud applications and highly cus-

tomized cloud environments. As the market for customized, cloud-agnostic

services grows, superclouds will affect not just cloud users, but the entire cloud

ecosystem.
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APPENDIX A

BACKGROUND ON VIRTUALIZATION

Virtualization is defined as the separation of a resource or request for a service

from the underlying physical delivery of that service [143]. Applied to servers,

virtualization is the process implemented by a virtual machine monitor (VMM),

or hypervisor, of exporting a virtual hardware interface that reflects the under-

lying machine architecture [145]. In other words, a hypervisor runs virtual ma-

chines (VMs). A VM is defined as an efficient replica of a computer system

in software, complete with all the processor instructions and system resources

(i.e., memory and I/O devices) [72]. Cloud providers use virtualization to im-

plement an Infrastructure as a Service (IaaS) cloud abstraction. In this appendix,

we give a brief primer to virtualization.

While the concept of virtualization can be applied to any hardware instruc-

tion set architecture (e.g., x86, ARM, PowerPC), the techniques used to virtual-

ize the hardware differ depending on the architecture. We focus on virtualiza-

tion techniques for the x86 because it is used by existing cloud providers [29,31].

As described further in Section A.2, the x86 presented some unique challenges

to virtualization, requiring the development of software virtualization tech-

niques. Despite the emergence of extensions to the x86 hardware that facilitate

virtualization [103, 160], software techniques remain popular. In Section A.3,

we discuss two software virtualization techniques for the x86: binary transla-

tion [140] and paravirtualization [41].
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A.1 A Historical Perspective

Virtualization was pioneered in the late 1960s by IBM with the Control Pro-

gram/Cambridge Monitor System CP-40/CMS [60], a precursor to the popular

VM/370 [60]. One of the initial uses of virtualization was time-sharing of a

single machine for multiple users; using virtualization, each user could run an

existing single-user operating system. Virtualization was therefore contempo-

rary to other time-sharing multi-user approaches of the 1960s such as the MUL-

TICS [59] operating system. Virtualization also found use as a mechanism to

test and develop systems, for example, an instance of the IBM VM hypervisor

could run on the IBM VM hypervisor. The successors of the VM/370 are still

used on mainframes in 2012.

As personal computers (PCs) became popular for server workloads, virtu-

alization remained only on mainframes. The reason for its absence on PCs is

because PCs used hardware architectures, like the x86, that did not easily lend

themselves to virtualization. It was not until over 30 years later that new virtu-

alization techniques were developed in software to overcome the virtualization

obstacles inherent in the x86 architecture. Subsequently, virtualization experi-

enced a renaissance, becoming widely popular on the x86 for utility/cloud com-

puting. Eventually, by 2006, 40 years after the first hypervisors were explored

by IBM, x86 hardware vendors introduced hardware extensions to support vir-

tualization. The history of virtualization, linked with utility/cloud computing,

is summarized in Table A.1.
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Virtualization Date Utility/Cloud computing

1965 Several efforts at MIT, including the
MAC system [69], aim for computer
power to be analogous to the electri-
cal distribution system.

IBM pioneers full system
virtualization with the CP-40 [60].

1967

IBM releases the VM/370 [60]. 1972

...

The first product to virtualize the x86
is released in VMware’s Virtual

Platform for x86 [147].

1999

VMware supports Windows in its
GSX x86 virtualization product [23].

2001 HP introduces the Utility Data Cen-

ter [70].

2002 Sun announces the N1 [17].

Xen is released to the open-source
community, using paravirtualization

to virtualize the x86 [41]

2003

AMD and Intel provide hardware
support for virtualizing the

x86 [103, 160]

2006 Amazon Web Services is launched, in
particular, the Elastic Compute Cloud
(EC2) [42].

2008 Eucalyptus [68] provides the first
open-source software for building
private clouds.

Table A.1: A subset of the important events in the history of virtualization
and utility computing. Both were pioneered in the 1960s for
mainframes, and both have experienced renewed interest in the
2000s, resulting in current clouds.

A.2 Virtualization Basics and x86 Issues

In 1974, Popek and Goldberg formally defined the requirements of system soft-

ware to be a hypervisor [127]. A hypervisor must faithfully reproduce the se-
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mantics of physical hardware (except for timing), execute a majority of instruc-

tions directly on hardware, and the hypervisor must maintain complete control

over physical resources [127]. The classical design for a hypervisor is known

as trap-and-emulate. In a trap-and-emulate system, privileged instructions exe-

cuted by the VM cause the processor to trap, or transfer control to the hypervi-

sor, which emulates the instruction on the virtual CPU (VCPU). Until recently,

trap-and-emulate was not possible on the x86 architecture.

A.2.1 Trap-and-emulate

Processor architectures contain privileged and unprivileged instructions. Priv-

ileged instructions are typically used by operating systems. For example, op-

erating systems manage memory through page table assignments or mask pro-

cessor interrupts from peripheral devices. If a privileged instruction is issued

while the processor is executing unprivileged code (e.g. user-space code), the

processor generates a trap, which transfers control to the operating system. The

operating system then decides how to handle the trap or terminates the appli-

cation.

The basic strategy of trap-and-emulate virtualization is to de-privilege the vir-

tual machine—including its operating system— and rely on the trap mechanism

to intercept attempts to use privileged instructions. In this way, the hypervisor

ultimately maintains control of physical resources at all times. During execu-

tion of the VM, the operating system may, for example, attempt to modify the

page tables in order to context switch between its user processes. In a trap-and-

emulate system, this instruction would trap to the hypervisor, which would
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emulate the instruction by modifying a page table structure maintained by the

hypervisor, instead of the hardware page tables. The hypervisor performs this

trick for every privileged instruction, throughout the execution of the VM.

A.2.2 x86 Issues

Unfortunately, the x86 instruction set architecture traditionally contained some

privileged instructions, which, when executed in unprivileged mode, did not

trap. Instead, some instructions simply have different semantics depending on

the privilege context of the executing program. For example, the “pop flags”

(popf) instruction, when executed in privileged context may change the state

in the processor that contains the result of a branch instruction (e.g., the zero flag

(ZF) ) or the state in the processor that contains enables and disables interrupts

on the processor (e.g., the interrupt flag IF). In unprivileged context, attempts

to modify the interrupt flag are suppressed; no trap is generated. Therefore,

the x86 architecture cannot be used in a strictly trap-and-emulate system. In-

stead, sophisticated software techniques, including binary translation and par-

avirtualization, were developed to virtualize the x86 instruction set architecture,

further discussed in Section A.3. A concise description of the issues with trap-

and-emulate in the x86 architecture appears in [33], in which hardware x86

virtualization techniques are compared with software techniques to virtualize

the x86.

By 2006, x86 hardware vendors introduced hardware extensions for virtual-

ization [103, 160], which contained a privilege level called non-root mode. In this

architecture, there are no privileged instructions that do not trap.1 Therefore, the
1Root mode and non-root mode are a different privilege scheme than the standard x86 priv-
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x86 architecture now supports the design of a classic trap-and-emulate hypervi-

sor. In Xen, a popular VMM, the use of hardware extensions for virtualization is

referred to as hardware-assisted virtualization (HVM). Despite the emergence

of these hardware extensions, software techniques for virtualization like binary

translation and paravirtualization are still used by many cloud providers on old

hardware or by nested virtualization solutions like the Xen-Blanket (Chapter 4).

A.3 Software x86 Virtualization Techniques

In order to surmount the inability of x86 to support the trap-and-emulate

technique for virtualization, new software-based x86 virtualization techniques

emerged at the turn of the 21st century. The leading two techniques are binary

translation and paravirtualization.

A.3.1 Binary Translation

One approach to handling x86 instructions in a VM that do not trap is to modify

the binary code of the VM such that it transfers control into the hypervisor, or

performs an action on behalf of the hypervisor. This technique, and variants of

it, are known as binary translation. A similar dynamic translation concept is used

in Just-in-Time (JIT) compilers, where Java bytecode is dynamically converted

to native x86 during runtime. VMware [140] is a virtualization company that

produces extremely popular virtualization platforms based on binary transla-

tion.

ilege levels, which are still present in both modes in processors with virtualization extensions.
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Binary translation allows most instructions to run natively on the processor,

with no interpretation. Therefore binary translation achieves high performance.

It can also support unmodified guest operating systems. However, the lack

of a popular open-source binary translation hypervisor has allowed other ap-

proaches (such as paravirtualization) to become popular.

A.3.2 Paravirtualization

Another approach to handling x86 instructions in a VM that do not trap is to

modify the code of the guest OS. Problem instruction sequences can be replaced

by hypercalls, or system calls into the hypervisor. Xen [41] is an open-source

hypervisor that uses paravirtualization to virtualize the x86.

Paravirtualization boasts high performance, especially for device I/O, where

large amounts of data can be transferred to the hypervisor (and subsequently

the I/O device) in a single call, instead of byte by byte, as is the case in many

emulated device strategies. However, paravirtualization suffers from the re-

quirement that the OS within the VM must be modified. As an example, there

is no support for Windows because it has not been modified to run on Xen.2

Despite this limitation, paravirtualization continues to be used by many cloud

providers including Amazon EC2.

2Paravirtualized device drivers have been developed for Windows, but binary translation or
hardware assisted virtualization are required to support the (unmodified) OS.
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A.3.3 Tradeoffs

The main advantage of binary translation over paravirtualization is that guests

can run unmodified. In particular, guests running operating systems that have

not been paravirtualized, such as Microsoft Windows, are supported with bi-

nary translation. On the other hand, the main advantage of paravirtualization

over binary translation is performance. Performance results between VMware

Workstation [140] (which uses binary translation) and Xen [41] (which uses

paravirtualization) have demonstrated the performance advantages. However,

quantitative performance comparisons with more robust VMware products,

such as ESX server [145], are forbidden due to due to the terms of the product’s

End User License Agreement [41].
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APPENDIX B

BACKGROUND ON XEN

Xen [41] is a popular open source virtual machine monitor (VMM). It has

been embraced by cloud providers such as Amazon EC2 and Rackspace. Xen

is also frequently used in academic research, due to its availability and open

source community. Xen originally used paravirtualization to virtualize the x86

instruction set architecture (ISA), but also supports unmodified guests, using

the x86 hardware extensions [103, 160].

B.1 Architecture

A Xen-based cloud consists of three parts, depicted in Figure B.1 First, the Xen

hypervisor proper is a thin software layer that multiplexes the bare hardware. Sec-

ond, the control domain, called Domain 0 (or Dom 0), interacts with the hypervi-

sor proper in order to implement most hypervisor-level functionality, including

the creation and destruction of guest VMs and VM live migration. Finally, guest

VMs, each of which are referred to as a Domain U (or Dom U), run on top of the

hypervisor. Guest VMs on Xen can be either paravirtualized or run unmodified

in hardware-assisted virtualization (HVM) mode. Typically, the cloud provider

manages Domain 0 and the hypervisor proper, while the cloud user controls the

Dom Us. The hypervisor proper and Domain 0 make up the Xen VMM and

their combination is often referred as “the Xen hypervisor”. Throughout this

dissertation, we use the term hypervisor proper to refer to the thin layer running

on bare metal and the terms hypervisor or VMM to refer to the hypervisor proper

and Domain 0.
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Xen	  Hypervisor	  

Dom	  0	   Dom	  U	  
(PV)	  

Dom	  U	  
(HVM)	   …	  

Figure B.1: In a Xen-based cloud, Domain 0 and the hypervisor proper
(light gray) are typically managed by the provider, whereas
guest VMs, called Dom U’s (dark gray) are controlled by the
user.

Like an operating system, the hypervisor proper multiplexes physical hard-

ware. Instead of running and switching between processes, the hypervisor

proper runs and switches between VMs. However, the mechanisms in the hy-

pervisor proper are identical to an operating system like Linux. For example,

the hypervisor proper interacts with the Advanced Programmable Interrupt

Controller (APIC) to register timer interrupts and implement scheduling poli-

cies. If the physical system contains multiple CPU cores, the APIC may also be

used to send interrupts from one processor to another, called Inter-Processor In-

terrupts (IPIs). For example, if a processor is changing context to run a different

VM, it may generate IPIs to all other processors so that they can invalidate any

cached page table entries.
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Figure B.2: Xen uses a split driver model to provide paravirtualized de-
vice I/O to guests.

B.2 Device I/O

Domain 0 maintains control of I/O devices, such as the network and disk. The

operating system running in Domain 0 runs standard device drivers to operate

the physical hardware. Domain 0 also acts as an intermediary for device access

from guest VMs, using a split driver architecture.

In Xen’s split driver architecture, shown in Figure B.2 each device driver is

split into a front-end and a back-end. The guest VM runs the front-end driver.

The back-end driver is run in Domain 0. Between the two is a paravirtualized

device interface. Communication between the front-end and back-end driver

is accomplished through shared memory ring buffers and an event mechanism

provided by Xen. Both the guest VM and Domain 0 communicate with Xen to
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set up these communication channels.

A guest VM using hardware assisted mode (HVM) in Xen can either use an

emulated or a paravirtualized device interface with Domain 0. Emulated de-

vices do not utilize the split-driver model. Instead a standard device driver is

used in the guest, and Xen handles traps that occur due to privileged instruc-

tions related to device access (See Appendix A for details on traps). The paravir-

tualized device interface for HVM guests, on the other hand, does utilize the

split driver model (Figure B.2). However, it requires the guest to run additional

modules to set up the machinery (e.g., shared memory ring buffers and event

mechanism) to enable communication between the front and back-end. In par-

ticular, Xen exposes a Xen platform Peripheral Component Interconnect (PCI) device

to HVM guests, which acts as a familiar environment wherein shared memory

pages are used to communicate with Xen and an interrupt request (IRQ) line

is used to deliver events from Xen. So, in addition to a front-end driver for

each type of device (e.g. network, disk), an HVM Xen guest also contains a Xen

platform PCI device driver. The front-end drivers and the Xen platform PCI

driver are the only Xen-aware modules in an HVM guest. This contrasts with a

paravirtualized guest, in which many subsystems in the modified OS (e.g., the

memory subsystem) are aware of Xen.

B.3 Live Migration

Live migration [57] is one of many hypervisor-level features implemented in

Xen and controlled from Domain 0. Live migration moves a running guest VM

instance from one Xen hypervisor to another with virtually no downtime. In
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Xen, the live migration mechanism is pre-copy, meaning the memory pages mak-

ing up the running instance are copied to the destination, while the VM is still

running on the source. The copying of memory pages is done in iterations. Xen

keeps track of the pages that have been modified, or dirtied, while each iteration

is taking place so that it can resend those pages the following iteration. After

a number of iterations, or if the number of dirty pages is sufficiently small, the

VM is suspended. A suspended VM is a VM in which no VCPUs are actively

running. At this time, the final dirty pages are copied to the destination, along

with the VCPU state and all other information in order for the VM to be re-

sumed on the destination. The VM downtime in live VM migration occurs from

the time the VM is suspended on the source to the time the VM is resumed on

the destination. The downtime can be as low as 60 ms, which is low enough to

go unnoticed for most applications running in the VM.

Typically, live VM migration is performed between two different physical

machines running Xen that are on the same subnet. After the VM migrates, the

switches in the network must learn that the MAC address belonging to the VM

now resides on a different physical machine. To trigger an update to the MAC

learning table in the switches, the VM generates an unsolicited ARP response

when it arrives at the destination. An ARP request is insufficient for VMs that

migrate outside of a subnet, as the IP routing must also be updated. For this

reason, live migration typically does not extend outside of a single subnet.
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APPENDIX C

GLOSSARY OF TERMS

binary translation: A software virtualization technique, used by VMware [140],

in which the binary code of VM running an unmodified operating sys-

tem is made to explicitly transfer control to the hypervisor for privileged

operations. See also virtualization, hypervisor, virtual machine (VM).

cloud: See cloud computing. See also cloud provider, cloud user.

cloud computing: According to the National Institute of Standards and Tech-

nology (NIST), cloud computing is a model for enabling ubiquitous, con-

venient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction [112]. See also re-

sources.

cloud computing model: See cloud computing.

cloud user: The entity that obtains resources (CPU, network, storage), often

for a fee, from a cloud provider. A cloud user may be an individual, a

small organization, or a large enterprise. See also virtual resources, cloud

provider.

cloud provider: The entity that makes computing resources made available as

a utility in the cloud computing model. Cloud providers, sometimes re-

ferred to simply as clouds, manage computing resources in the form of

massive data centers consisting of racks upon racks of servers connected
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in a network. See also cloud computing, server, resources.

cloud extensibility: See extensible cloud.

cooperative swap: An application of network memory as an overload mitiga-

tion solution in which VM swap pages are written to and read from page

repositories across the network to supplement the memory allocation of

an overloaded VM. See also network memory, memory overload, virtual ma-

chine (VM).

data center: A collection of computational resources (CPU, network, storage),

in the form of racks of servers typically connected with a network, along

with the physical infrastructure, power and cooling to operate them.

See [34] for best practices in data center design. See also server, physi-

cal infrastructure.

Domain 0: In Xen, the control domain that interacts with the hypervisor proper

in order to implement most hypervisor-level functionality. See also hy-

pervisor proper.

enterprise deployment: See enterprise workload.

enterprise workload: A set of applications and the services and infrastructure

required to support them. See also network components, physical infrastruc-

ture.

enterprise workload migration: Moving part or all of an enterprise workload—

originally running on physical or virtual infrastructure—to a cloud. See

also enterprise workload, cloud provider, physical infrastructure.
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extended page tables (EPT): An Intel processor feature that allows VMs to mod-

ify their own page tables and directly handle page faults, thereby avoid-

ing the overhead of interacting with the VMM for these operations [103].

See also virtual machine (VM), virtual machine monitor (VMM)

extensible cloud: A cloud in which cloud users are able to modify the abstrac-

tion implemented by a cloud provider by augmenting its hypervisor-

level functionality. See also cloud provider, cloud user, cloud computing.

flow policies: The paths—through switches, routers, and middleboxes—

packets follow through a complex network. Flow policies can be encoded

in low-level device configurations, including switches, routers, middle-

boxes and firewalls. See also network components, middlebox.

hardware-assisted virtualization (HVM): A mode of virtualization that Xen

uses to run unmodified guest VMs. See also virtual machine (VM).

homogenized clouds: Clouds which share a uniform interface and environ-

ment, supporting an identical VM image format and hypervisor-level

services. See also cloud provider, VM image, virtual machine (VM).

homogenization: The process of achieving a uniform interface and environ-

ment across clouds. See also homogenized clouds.

hyperthreading: An Intel processor feature that enables multiple threads to run

on each processor core [107].

Infrastructure-as-a-Service (IaaS): A type of cloud in which the cloud user “is

able to deploy and run arbitrary software, which can include operating

systems and applications” [112]. In practice, an IaaS cloud provider of-
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fers a virtual machine (VM) abstraction. See also cloud provider, cloud user,

cloud computing, virtual machine (VM).

guest: See virtual machine (VM).

hypervisor: For the purposes of this dissertation, a synonym for VMM. See also

virtual machine monitor (VMM).

hypervisor proper: In Xen, the thin software layer that multiplexes the bare

hardware, not including Domain 0. See also Domain 0.

live VM migration: Moving a running VM from one physical machine to an-

other with little or no interruption of service [57, 122]. See also virtual

machine (VM), server.

lock-in: A situation in which it is prohibitively expensive for a cloud user

to switch from one provider to another [32]. See also cloud user, cloud

provider.

machine memory: Physical memory on a physical machine. See also server.

memory ballooning: A technique that a VMM uses to reclaim memory from a

guest VM, allowing it to perform as if it had been configured with less

memory [145]. See also virtual machine monitor (VMM), virtual machine

(VM).

memory overload: See overload, applied to memory resources. Memory over-

load can be characterized by one or more VMs swapping its memory

pages out to disk, resulting in severely degraded performance. See also

page scan rate, paging rate.
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middlebox: Any device or server in a network performing functions other than

the standard functions of an Internet Protocol (IP) router on the path be-

tween a source host and destination host [52] (e.g., firewall, network ad-

dress translator (NAT), protocol accelerator, Wide Area Network (WAN)

optimizer). See also server, network component.

migration: See VM migration or enterprise workload migration.

multi-cloud: Spanning two or more cloud providers. See also cloud provider.

nested virtualization: A hypervisor that runs one or more other hypervisors

and their associated virtual machines as a guest of the underlying hyper-

visor [43]. See also hypervisor, virtual machine (VM).

network components: Switches, routers, and middleboxes, on the network

paths connecting servers in a data center. See also servers, middlebox.

network memory: Reading and writing memory on a machine across the net-

work for efficient paging [36].

resources: See physical resources or virtual resources.

overload: A situation in which a VM’s resource demands exceed the amount of

resources it has been allocated. See also page scan rate, paging rate.

overprovisioning: A technique in which each VM in an enterprise workload

is allocated enough resources to support relatively rare peak load condi-

tions. See also virtual machine (VM), enterprise workload, virtual resources.

oversubscription: A technique in which the amount of resources actually al-

located to the VMs comprising an enterprise workload is less than the
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amount of resources that were requested. See also virtual machine (VM),

enterprise workload, virtual resources.

page scan rate: The rate at which an OS scans memory to find free pages. A

high page scan rate indicates overload. See also overload, paging rate.

page sharing: A method VMMs use to eliminate redundant copies of pages

across VMs by mapping the same pages into multiple VMs and protect-

ing them with copy-on-write. [49, 145]. See also virtual machine (VM),

virtual machine monitor (VMM).

paging rate: The rate at which an OS writes memory pages to secondary storage

in order to free the memory for other uses. A high paging rate indicates

overload. See also overload, page scan rate.

paravirtualization: A software virtualization technique, used by Xen [41], in

which a guest operating system within a VM is modified to explicitly

transfer control to the hypervisor for privileged operations. See also vir-

tualization, hypervisor, virtual machine (VM).

physical infrastructure: The physical hardware components that make up a

data center, including servers, networking equipment and storage equip-

ment. See also server, network components.

physical machine: A computer containing physical resources upon which soft-

ware is executed. See also physical resources.

physical resources: Computational resources provided by physical infrastruc-

ture and machines, including CPU, memory, network, storage.
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processor core: The units in a processor that read and execute program instruc-

tions.

provider-centric: Defined and controlled by a cloud provider, rather than a

cloud user. See also user-centric, cloud provider, cloud user.

provider lock-in: See lock-in

server: See physical machine.

split driver: A paravirtualized device driver architecture, used by Xen, in which

a guest VM runs a front-end driver and Domain 0 runs a back-end driver.

The front- and back-end drivers communicate with a paravirtualized in-

terface. See also Domain 0, virtual machine (VM).

stop-and-copy VM migration: Suspending a VM on one physical machine and

resuming it on another physical machine [99]. See also live VM migration,

virtual machine (VM).

supercloud: A user-centric cloud computing environment that is not bound

to any provider or physical resources and can span multiple cloud

providers. See also user-centric, cloud provider, cloud computing.

sustained overload: Overload that lasts for a long duration. See also overload,

transient overload.

third-party cloud: A cloud provider that is not the same entity as the cloud user.

See cloud provider, cloud user.

traffic trombones: Network routing configurations that involve unnecessary

crossings of expensive network links.

195



transient overload: Short, unexpected bursts of overload. See also overload,

sustained overload.

user-centric: Defined and controlled by a cloud user, rather than a cloud

provider. See also provider-centric, cloud provider, cloud user.

vendor lock-in: See lock-in

virtualization: The separation of a resource or request for a service from the un-

derlying physical delivery of that service [143]. Applied to servers, vir-

tualization yields virtual machines. See also server, virtual machine (VM),

resources, virtual resources.

virtual machine (VM): An efficient replica of a computer system in software,

complete with all the processor instructions and system resources (i.e.,

memory and I/O devices) [72]. See also virtualization, server.

virtual machine monitor (VMM): A software layer that virtualizes hardware

resources, exporting a virtual hardware interface that reflects the under-

lying machine instruction set architecture [145]. See also virtual machine,

virtualization.

virtual resources: Virtual equivalents of physical resources, exposed to VMs by

the VMM, and ultimately backed by physical resources. See also virtual

machine monitor (VMM).

VM density: The number of VMs per physical machine. See also virtual machine

(VM), physical machine.

VM image: The representation of a VM on disk, including a description of its
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virtual devices (virtual network interfaces, virtual CPUs, virtual storage

devices) and the contents of its virtual storage devices. See also virtual

machine (VM).

VM instance: A running instantiation of a VM image, including its memory

allocation and virtual devices (virtual network interfaces, virtual CPUs,

virtual storage devices). See also virtual machine (VM), VM image.

VM migration: Moving a VM instance from one physical machine to an-

other [99]. See also live VM migration.
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