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Herbivore Responses  Hogan 

Abstract:  Plants respond to herbivore damage with a bewildering array of 

metabolic responses. To what degree such responses are specific to particular 

herbivore species and how plants respond to multiple attackers are questions of 

extensive scientific debate because their answers are fundamental to the 

understanding of the ecological consequences of plant induced responses to 

herbivory. In a field experiment, I investigate the nature of secondary metabolite 

and defensive protein production in Solidago altissima when elicited by two different 

herbivore species, the larvae of the galling fly Eurosta solidaginis and the 

chrysomelid beetle Trirhabda virgata, individually or at the same time. The chemical 

analysis of leaf tissue reveals differential responses in both trypsin proteinase 

inhibitor production and volatile organic compound emission when goldenrod 

plants are damaged by either herbivore individually or the two in combination. Our 

findings suggest damage-specific elicitation and signal transduction for each 

herbivore individually and for when both attack simultaneously. 

 

Introduction 

Everyday plants face a unique challenge in their lives: they must obtain nutrients 

and reproduce, all without moving an inch, making them a seemingly easy target for 

herbivores and parasites. However, plants have evolved a number of ways of coping with 

their enemies. Three categories of plant defenses are currently differentiated by scientists 

studying plant-insect herbivore interactions (Karban and Baldwin, 1997). First, many 

plants have evolved to tolerate a certain degree of herbivore damage without a significant 

reduction in fitness (Stowe et al. 2000). Second, plants can have direct defenses such as 
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physical structures (e.g. thorns, spines and prickles) or chemicals that are toxic, anti-

digestive, or anti-nutritive to reduce their palatability to herbivores (Duffey and Karban, 

1996). A third category, indirect defenses, facilitates the top-down control of herbivore 

populations by providing food, shelter (e.g. ant plants) or prey-searching signals (volatile 

organic compounds (VOCs)) for their natural enemies (Karban and Baldwin, 1997). In 

this way, the plant becomes indirectly defended by organisms of the third trophic level.  

Any or all of these mechanisms might be utilized by a specific plant, and they may 

function synergistically or antagonistically (Bostock et al. 2001, Kessler and Baldwin 

2004).   

Direct and indirect chemical defenses are assumed to be costly for a plant to 

produce (Baldwin, 2001). Therefore, the production of these compounds is often 

dependent on induction by environmental stresses such as herbivore attack.  By this 

process, the plant is able to recommit resources from growth and reproduction to 

defending itself only when necessary (Herms and Mattson, 1992). The ecological effects 

of herbivore-induced chemical responses have been extensively studied in the past few 

decades. It has been found that these induced chemical responses do indeed provide 

plants with resistance against herbivores while maintaining fitness (Kessler and Baldwin, 

2004). Such induced resistance has been seen both directly through compounds that are 

toxic or inhibit protein digestion, such as nicotine (Baldwin and Zhang, 1997) and 

proteinase inhibitors (Glawe and Zavala, 2003), respectively, and indirectly by attraction 

of predators via VOCs (De Moraes, 2001; Dicke, 2000; Kessler and Baldwin, 2001), or 

the provision of food such as extrafloral nectar in ant plants (Heil et al. 2001). 

 3



Herbivore Responses  Hogan 

Novel research has examined the impact of these induced chemical responses on 

arthropod communities. However, few studies have investigated the effect of multiple 

herbivores feeding on the same plant at the same time (Rodriguez-Saona et al. 2005).  

Plant-mediated interactions of different herbivore species might be affected either by 

cross-resistance or facilitation, depending on the specificity of the herbivore elicitation 

and the functional specificity of plant defensive responses (Bostock et al 2001, Kessler 

and Baldwin, 2004). The metabolic specificities of such plant responses to multiple 

herbivores as well as their ecological consequences have rarely been studied yet are 

critical to understanding the role of plant traits in shaping arthropod community structure. 

Current research suggests that induced chemical responses involve a 

rearrangement of the plant’s metabolism, away from primary metabolism (e.g. growth 

and reproduction) and toward secondary metabolism (e.g. defensive compounds) as a 

mechanism to alleviate fitness costs of herbivory (Baldwin, 2001). Induced endogenous 

responses result from both mechanical damage and chemical elicitation from the saliva of 

herbivores, resulting in the differential expression of one or more chemical pathways 

(e.g. jasmonic acid, salicyclic acid, or ethylene). These metabolic pathways are often 

involved in “chemical cross-talk” which can be envisioned as a tunable dial of responses 

(Reymond and Farmer, 1998). In this model, specific mechanical and chemical elicitation 

from different herbivores acts on each of these chemical pathways to a different extent.  

For instance, in Nicotiana attenuata (tobacco) the mechanical damage plus chemical 

elicitation of Manduca sexta caterpillars induces a jasmonic acid (JA) (Halitschke et al 

2001) and ethylene burst, leading to the release of specific VOCs (Halitschke et al 2000, 

Kessler and Baldwin 2001), while at the same time attenuating nicotine production (Winz 
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et al 2001). However, mechanical damage without chemical elicitation causes an 

increased production of nicotine. While a direct nicotine defense might work against 

generalist herbivores, specialized attackers are likely resistant to such alkaloids.  

Therefore, in the case of chemical elicitation from these herbivores it was proposed that 

the plant responds by induced VOC production leading to an indirect defense rather than 

relying on direct defenses (Kahl et al. 2000). 

While pathway crosstalk may prove effective for plants in distinguishing and 

responding to generalist versus specialized herbivores, when two herbivores are attacking 

at the same time, the differing plant responses may have different ecological 

consequences. In some instances, it has been shown that a plant can respond 

independently and effectively to multiple simultaneous elicitations, for instance one that 

induces the JA and another which induces the salicylic acid (SA) pathway (Thaler et al. 

2001, Thaler et al. 2004). On the other hand, the response to one attacking herbivore may 

dominate the metabolic reconfiguration of the whole plant independently of the 

elicitation of the attacker. As a consequence, the plant response to one attacking pathogen 

or herbivore might compromise the responses to another herbivore or pathogen, leaving 

the plant more open to attack by secondary attackers (Voelckel and Baldwin, 2004, 

Kessler and Baldwin 2004, Rodriguez-Saona et al, 2005). 

In order to decipher the effects of cross-talking metabolic responses when two 

herbivores are actively feeding on a plant, we set up a series of field experiments in 

which goldenrod plants were attacked by both gall fly and beetle herbivores. Solidago 

altissima (Tall Goldenrod) is a target for many herbivore species (Root and Cappuccino, 

1992). Perhaps one of the most noticeable of these herbivores is gall flies, Eurosta 
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solidaginis, which are specialist herbivores that oviposit their eggs in the apical 

meristems of S. altissima. E. solidaginis larvae release chemicals which lead to the 

trapping of carbon based nutrients and the growth of large spherical ‘ball galls’ on the S. 

altissima stem around them (Anderson et al. 1989).  These galls nourish the larvae and 

protect them throughout the winter months until they are fully grown and ready to eclose 

the following spring (Irwin and Lee, 2000).  While these galls clearly procure nutrients 

from the plant, many questions can be asked about how they affect S. altissima secondary 

metabolism and thus its ability to defend against other herbivores. Preliminary data 

showed a strong induced resistance of goldenrod to T. virgata beetle larvae, another 

specialist herbivore, in response to their feeding activity (Kessler and Hogan, 

unpublished data). Although the exact biochemical processes have not yet been 

determined, changes in secondary metabolite production are likely to play a major role in 

this resistance.  

Scientists are begining to understand the biochemical signaling that mediates 

plant induced resistance to herbivores and pathogens. Different signaling pathways are 

induced by differential elicitation (Kessler and Baldwin, 2002). The methyl jasmonate 

signaling pathway is often upregulated in response to herbivory and has been shown to be 

crucial in plant wound responses in many species (Creelman and Mullet, 1997, Kessler 

and Baldwin 2002). Among other effects, the activation of this signaling pathway can 

lead to a reduction in the protein concentration of the leaves being attacked and also to an 

increase in the activity of proteinase inhibitors in the plant (Koiwa et al. 1997). Reducing 

protein content lowers the nutritive value of the leaf material that the herbivore 

consumes, while ingested proteinase inhibitors prevent the herbivore from being able to 
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break down the proteins it does obtain into usable peptides. This set of responses 

essentially leads to the starvation of herbivores feeding on the plant. In addition, jasmonic 

acid signaling in response to wounding increases the production of potentially toxic or 

antidigestive secondary metabolites which may contribute to the plants increased 

resistance (Duffey and Stout, 1996). The responses described above are typical and 

widespread in response to many chewing insect herbvivores. However, responses to 

specialist and piercing-sucking insect herbivores have been shown to frequently alter 

these typical responses through the crosstalk with other signaling pathways (McCloud 

and Baldwin, 1997, Thaler et al. 2004). The specific chemical responses facilitated by 

this pathway crosstalk are what I hope to decipher in this series of experiments. 

I hypothesize that the hormonal signaling elicited by ball gall forming E. 

solidaginis alters S. altissima’s secondary metabolite production in a different way than 

does the chewing damage of leaf beetle T. virgata. Three scenarios seem possible.  If E. 

solidaginis larvae dominate in altering the effect of plant wound signaling, then the host 

plant’s chemical defenses meant to ward off other herbivores, such as T. virgata, may be 

compromised, making the plant more vulnerable to attack by the beetle larvae. A second 

possibility would be that beetle damage acts to override the responsive signaling caused 

by E. solidaginis herbivory, which may alter the plant’s interaction with E. solidaginis. It 

may also be the case that the two elicitations cause an integrated response in the plant 

which is effective against both herbivores or that the two responses remain independent. 

 To determine the effects of E. solidaginis attack on S. altissima’s metabolic 

ability to respond to a second herbivore, we set up field experiments in Ithaca, NY from 

June-August 2006, involving attack by T. virgata beetles secondary to ball gall 
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formation. Leaf samples and headspace volatile emissions were collected from these 

plants, and used to test for differences in proteinase inhibitor activity, phenolic contents, 

and VOC production. 

Materials and Methods 

 
Field Experiments 

 Three field experiments were conducted (July 24, July 31, and August 7, 2006) at 

Cornell University’s Wipple Farm in Ithaca, NY. The field site was formerly a farm and 

is now mowed every few years, allowing goldenrod to remain the dominant plant species. 

On each of these days, sixteen S. altissima plants, which showed minimal damage to 

upper leaves, were selected within a ten square meter area, eight that had a naturally 

initiated ball gall and eight that did not.  Whether all or any of these plants are clonal is 

unknown. Five T. vigrata beetles were placed on the young upper leaves of half of the 

plants in each group and kept in this area with mesh bags (“BREATHER”, Palm Tree 

Packaging Inc. Apopka, FL). The beetles were left to feed on the plants for four days and 

then removed. To the other eight plants, similar mesh bags were applied, but with no 

beetles. Therefore, each of these three trials, there were four treatments, e.g. control, 

beetles only, gall only, beetle and gall. (n = 4 for each treatment)   

 After four days, volatile organic compound emissions were collected using the 

protocol described below. Following volatile emission collection, four young leaves from 

near the top of each plant, 4-6 inches above gall level, where the beetles and/or mesh 

bags had been placed, were collected and immediately placed in liquid nitrogen for 

transportation and preservation. These leaf tissue samples were stored at -80 degrees 

Celsius until they were extracted for compound analysis.  
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Protein Extraction Assays 

 While still frozen in liquid nitrogen, approximately 150μg of leaf material was 

ground manually in a 2mL Eppendorf tube. To these crushed samples, 300μl of 

extraction buffer (1L 0.1M Tris-Cl ph 7.6, 50g PVPP, 2g phenylthio urea, 5g diethyl 

dithiocarbamate, 18.6g Na2EDTA) was added. The samples were vortexed and then 

centrifuged for 20 minutes at 4 degrees Celsius at 13000rpm. Proteins remain in the 

supernatant, which was transferred into a new vial.  The protein concentration of the 

supernatant was assayed utilizing Bradford reagent and a BioTek 96-well 

photospectrometer as explained below. 

 

Protein Assay 

 10μl of supernatant from protein extraction was diluted in 90μl of ddH20 to which 

200μl of Bradford reagent (SIGMA) was added.  Samples were tested in triplicate in 96 

well plates along with IgG standards (from bovin serum, SIGMA) of known 

concentration. Concentrations were measured in a BioTek 96-well photospectrometer at 

595nm after 10 minutes of incubation and 30 seconds of shaking. Assays of each sample 

and standard were replicated three times and the measurements were averaged to 

determine concentration using a linear standard curve. 

 

Proteinase Inhibitor Assays 

 Radial diffusion assays (Jongsma et al. 1994) were utilized to determine the 

concentration of proteinase inhibitors (PI) in the protein extracts.  Agarose gels (1.8% in 
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0.1M Tris-Cl buffer) were made containing 0.002g/ml of trypsinase (added at 50°C) and 

poured into three inch square plates. Nine 4mm evenly spaced holes were bored into the 

gels after they solidified.  On each gel, five of these holes were used to measure the 

diffusion of standards (Soybean Trypsin PI, SIGMA) with known concentrations; the 

other four were used for leaf extracts. 35μl of standard or protein extract was added to 

each of these holes and allowed to diffuse for 14-16 hours at 4°C. 25ml of a staining 

solution (48mg Fast Blue B salt, 0.5ml water, 0.1M Tris-Cl to final volume 90ml added 

to 24mg APNE dissolved in 10ml N,N-dimethylformamide) (Jongsma et al. 1994) was 

then poured over the gels and the plates incubated for 55 minutes with the solution at 

37°C. Everywhere on the gel where the trypsinase is active and APNE is broken down, a 

dark violet staining can be observed. In areas that contained diffused trypsin PI’s, this 

reaction is inhibited and the gel remains clear. Thus, the diameter of the inhibition zone is 

directly correlated with the activity of trypsin PIs in the plant sample. After incubation, 

the staining solution is washed off with water and the diameters of the inhibition zones 

are measured and related (log function) to those of original standards (soybean trypsin PI 

(SIGMA)) that were applied simultaneously on the same agar reaction plate. 

 

Phenolic Extraction Assays 

 While still frozen in liquid nitrogen, approximately 50μg of leaf material was 

separated and ground manually in 2mL Eppendorf tubes. To these crushed samples, 

750μl of 80% methanol:water extraction buffer was added. Samples were incubated at 

4°C with constant shaking for two hours. Samples were then centrifuged for 20 minutes 

at 4°C at 13000rpm and the supernatant taken off for HPLC analysis. These samples were 

 10



Herbivore Responses  Hogan 

run on a Hewlett Packard 1100 series HPLC to determine identity and quantity of 

phenolic compounds present. The HPLC was equipped with a Gemini C18 reverse phase 

column (Phenomenex, 150 x 4.60mm, 3 micron). Acidified water (0.25% H3PO4) and 

acetonitril were used in a gradient as mobile phase as described elsewhere (Keinanen et al 

2001). Caffeic acid derivatives (including chlorogenic acid) and flavonoids (including 

rutin) were identified and quantified by comparing retention times and UV spectra of the 

samples with those of authentic standards for chlorogenic acid and rutin, using 

Chemstation software. Unidentified caffeic acid derivatives and flavonoid compounds 

were treated as chlorogenic acid and rutin equivalents, respectively, in the quantitative 

analysis. 

 

VOC Emission Assays 

Plastic chambers (400mL, PE) were affixed to the top of each plant and attached 

via tubing to 12V air pumps (GAST® MOA-P101-VN) using an open-flow trapping 

design (Kessler and Baldwin, 2001). Headspace emissions from these plants were 

pumped from the chambers through ORBO-32 trapping vials filled with activated 

charcoal (SIGMA).  

 Volatile organic compounds were eluted from the charcoal traps using 300μl 

dichloromethane after spiking with tetraline solution (85.9ng/10ul toluene) that functions 

as an internal standard. The samples were stored in 1.5ml GC glass vials and run on a 

Varian 2200GC/MS/MS equipped with an autosampler and an AT-5ms capillary column 

(Alltech, 30m length, 0.25mm diameter). Compounds were quantified by relating their 

peak area to that of the internal standard tetraline. Compound identity was determined by 
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comparing the retention times and mass spectra of the compounds in the samples with 

those of authentic standards. 

 

Genotypic Differences in Phenolic Compound Production 

 To assess genotypic variation in phenolic production, clones from 12 different 

field populations were maintained under lab conditions for 2 months in single ramets in 

separate ½ gallon pots with metro-mix soil. The original clones were collected from 

populations around Ithaca, NY.  Each clone was grown for two months and the resulting 

new ramets were cut off and planted into separate pots.  2-4 replicate plants of each clone 

population were used for analysis. 100mg of leaf tissue from ech plant was harvested, 

extracted, and analyzed for phenolic compound content as described above.   

 

Statistical Analysis 

 Standard ANOVA analysis was used with treatments as independent factors and 

the compound concentrations as dependent variables. For proteinase inhibitor analysis, 

the proteinase inhibitor/protein (μg/g) concentration was the dependent variable and data 

were square root transformed to meet ANOVA requirements for equality of variance. For 

the phenolic assay, concentrations are provided in μg/g fresh mass and data were also 

square root transformed. For the volatile emissions, the dependent variable was relative 

signal intensity, using gas chromatography, compared to an internal tetraline standard. 

Data transformation was performed by calculation of the natural log to meet ANOVA 

requirements. 
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Means of treatments were compared using a Student-Newman-Keuls post hoc test 

of an ANOVA. If means of treatments were only compared to the mean of the control 

treatment (pre-planned contrast) Fisher’s protected least significant difference (PLSD) of 

an ANOVA was used for statistical evaluation.  

 
 
Results 
 
 Trypsin proteinase inhibitor (TPI) assays revealed variant concentrations of PIs in 

leaf samples that were subjected to different herbivore treatments (ANOVA, F=7.113, 

P=0.0063, Figure 1).  Plants naturally attacked by galling flies showed a marginally 

significant increase in TPI activity compared to undamaged control plants (Fisher’s 

PLSD of an ANOVA, P = 0.052), while there is no elevated TPI production in plants 

attacked by beetles (Fisher’s PLSD Post hoc of an ANOVA, P = 0.78). Plants attacked by 

both galls and beetles show a significant decrease in TPI production relative to the 

control (Fisher’s PLSD Post hoc of an ANOVA, P = 0.025). 
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Figure 1.  Mean Trypsin Protein Inhibitor activity (+SEM) in tissue from undamaged 
control plants, plants with beetle damage, plants with ball galls, and plants attacked by 
both galling flies and beetles (B+G). Different letters designate significantly different 
means [P<0.05] as informed by a Student-Newman-Keuls post hoc test of an ANOVA. 
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Figure 2. Mean concentration (+SEM) of A) chlorogenic acid and B) rutin from 12 
different clonal populations (A-L) that were undamaged. 
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In contrast to the TPI activity, the production of none of the analyzed phenolic 

compounds was altered in response to the various herbivore attack treatments suggesting 

that there is no herbivore-induced alteration of phenolic production in S. altissima. 

However, significant genotypic variation was observed for a number of phenolic 

compounds including up to a 14-fold difference in chlorogenic acid [ANOVA, F = 2.299, 

P = .0597] and as much as a 35-fold difference in rutin [ANOVA, F = 2.432, P = .0485] 

content when the constitutive phenolic content of twelve S. altissima clones was 

compared. (Figure 2) 

Volatile organic compound assays reveal a number of different categories of plant 

response. The emission of certain compounds, such as E-2-hexenal, was upregulated in 

plants with galls independent of the additional beetle attack, but were not induced by 

beetle feeding [ANOVA, F = 4.280, P = 0.0313] (Figure 3A). Other compounds such as 

an Unknown Compound at retention time (RT) 8.844 min showed similar upregulation in 

plants only attacked by beetles [ANOVA, F = 5.126, P = 0.0185] (Figure 3B). 

Some volatile compounds show a trend toward upregulation in beetle + gall 

treatments, such as α-Pinene [ANOVA, F = 2.302, P = 0.1337] (Figure 3C). Other 

compounds, such as a not yet identified compound at RT 8.709 min, are specifically 

inhibited by galls, even when beetles are present, but are unaffected when beetles alone 

are attacking the plant [ANOVA, F = 2.279, P = 0.1363] (Figure 3D). 
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Figure 3. Mean relative signal intensity +SEM) of A) E-2-Hexenal, B) Unknown 
compound at RT 8.8, C) α-pinene, and D) Unknown Compound at RT 8.7 emitted from 
the headspace of undamaged control plants and plants damaged by T. virgata beetles, E. 
solidaginis gall fly larvae, and by both herbivores (B+G). Stars designate VOC emissions 
significantly different [P<0.05] from the control as informed by a Fisher’s PLSD of 
ANOVA. The compounds shown in this figure represent different categories of responses 
to each type of herbivore damage. 
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The production of a number of compounds was either upregulated or inhibited 

significantly by specific treatments. Table 1 shows all the compounds whose production 

was significantly altered after herbivore attack. More compounds are expected to be 

differentially regulated in response to herbivore damage but were not statistically 

apparent due to the low sample sizes. 

 
Table 1. Effect of Herbivore Attack on Volatile Compound Emissions. Compounds 
whose production was significantly altered, as informed by ANOVA, in response to 
herbivore attack are organized in four response categories. 
 

Herbivory and Effect RT Compound 

Gall Upregulated 7.87 E-2-hexenal 
 18.891 Camphor 
 17.996 Unknown Sesquiterpene 
   
Beetle Upregulated 8.844 Unknown Compound 
 12.143 Trans-ocimene 
 15.227 Unknown Green Leaf Volatile 
 16.391 Unknown Green Leaf Volatile 
 18.891 Farnesene 
   
B+G Upregulated 9.878 α-Pinene 
 15.015 Unknown Compound 
 17.605 cis-jasmone 
 18.78 Unknown sesquiterpene 
   
Gall Inhibited 8.709 Unknown compound 

 
 
 
 
Discussion 
 
 Our results demonstrate specific responses to damage by different herbivore 

species both in terms of trypsin proteinase inhibitor (TPI) production and VOC 

emissions. This suggests that the plants are able to detect and specifically respond to 

unique elicitors from different herbivores, in this case gall flies and beetles. 

 18



Herbivore Responses  Hogan 

 Upregulation of TPI activity in plants with galls is very distinctive. This suggests 

that the presence of galls elicits signaling pathways in a way that directly leads to 

production of TPIs. In other plant species a strong involvement of jasmonate signaling in 

the elicitation of PI production has been demonstrated (Thaler et al. 2004; Halitschke et 

al. 2003), which suggests an involvement of this wound signaling pathway in S. 

altissima’s response to E. solidaginis as well. However, in plants attacked by T. virgata, 

no such upregulation is seen. Therefore, it appears that plants are able to distinguish 

between and specifically respond to beetle versus gall fly damage. This ability to 

distinguish between different herbivores, for instance lepidopteran larvae, has been 

shown in past studies (Voelckel and Baldwin, 2004). It would follow then, that beetle 

attack likely induces a different series of chemical pathways, leading to a response 

distinct from that to gall flies. Here it is important to note that Trirhabda beetles are 

unaffected by TPIs, a type of serine protease inhibitor, because they primarily rely on 

cysteine proteases for protein digestion (Gruden and Strukelj. 1998). A very specific 

response, e.g. producing only cysteine protease inhibitors in response to beetle damage, 

can be hypothesized. However, further studies remain to be done to study the changes in 

cysteine proteinase inhibitor activity in goldenrod being attacked by Trirhabda beetles. 

 One of the most interesting results of our PI analysis was the discovery that, 

though significantly upregulated in plants with galls, and unaffected in plants with beetle 

damage, TPIs were in fact significantly less active in plants with both beetle and gall fly 

damage. This suggests that the goldenrod is responding in an entirely different way when 

being fed upon by both beetles and gall fly larva as opposed to one or the other. To my 

knowledge this is the first time such a specific alteration of secondary metabolite 
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production has been observed in response to two herbivore species. Previous studies 

suggested either an integration of responses through pathway crosstalk (Thaler et al. 

2004), an imprint of the response to one herbivore over that of another herbivore species 

(Voelckel and Baldwin 2004), or that the PI response to one herbivore was unaffected by 

attack of a second (Rodriguez-Saona et al, 2005). It is likely the independent elicitations 

are inducing independent chemical pathways, which through the process of pathway 

crosstalk are causing unique responses. Whether this response is specifically adaptive, or 

simply the result of mixed signals is unknown, however it does have interesting 

implications for the interactive chemical signaling pathways in plants. 

 Similar results were discovered in volatile organic compound emission data. Once 

again, specific compounds seemed to be specifically reduced based on different 

treatments. Indeed, the goldenrod were not just emitting certain compounds in response 

to herbivore attack, but rather responding individually to gall flies and beetles. Multiple 

compounds, such as trans-ocimeme, farnesene, and a few other unknown green leaf 

volatiles were distinctly upregulated only in plants attacked by beetles and not in those 

with ball galls. Likewise, other compounds including E-2-hexenal, camphor, and an 

unknown sesquiterpene were upregulated only in plants with gall damage, but not those 

that had beetle elicitation as well. Still other compounds, such as α-pinene, were 

upregulated most significantly in the plants that had both beetle and gall damage. 

 These findings once again suggest specific responses to specific elicitations. It is 

clear that goldenrod can distinguish between beetle and gall fly elicitors, and that these 

elicitations result in specific signal transduction. This results in differential pathway 

crosstalk, likely inducing different promoters and leading to specific metabolic responses 
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to each treatment. Such differences in transcriptional response to differing herbivores has 

been observed in Arabidopsis with phloem feeding aphids and a pathogen (De Vos and 

Van Oosten, 2005).   

 It should be noted that, since galling occurred naturally, the treatment cannot be 

assumed to be randomly assigned.  Rather, it is plausible that gall flies selected plants 

with specific genotypes or gene expression to oviposit their eggs.  This is one minor 

limitation of our method and leaves open the possibility that gall flies can tell which 

plants are most able to defend again their larvae and choose not to ovitposit in these 

specific genotypes.   

To what extent this specificity in the plant’s response has an ecological function 

remains unknown. However, one could hypothesize significant consequences of specific 

VOC signals for the plant’s indirect defenses. Past research has demonstrated a plant’s 

ability to use VOCs to attract the predators of its herbivores (Takabayashi and Sabelis, 

2006). T. vigrata beetles and E. solidaginis gall flies are both specialists on goldenrod, 

but have very different predators. Gall larvae are most susceptible to parasitoids 

(Thompson, 1994), whereas beetles are more likely to be fed upon by predatory bugs of 

the family pentatomidae (Evans, 1982). Given this, it could be beneficial to the 

goldenrod’s indirect defenses to respond specifically to each attacking herbivore in terms 

of volatile emissions to attract different predators and parasitoids. 

 Given the induced difference in TPIs and VOCs we found, it was surprising not to 

also find significant differences in induced phenolic activity amongst the different 

treatments. Five caffeic acid derivatives, including chlorogenic acid, as well as five 

flavonoids, including rutin, were analyzed for treatment specific induction. However, 

 21



Herbivore Responses  Hogan 

none of the compounds were induced by herbivore damage. We have reason to believe, 

however, that an inducible response may have occurred but was masked by natural 

genetic variation in phenolic production. 

To examine this possibility, we analyzed the variation in production of both 

chlorogenic acid and rutin in 12 different clonal popultions of goldenrod, harvested from 

the field and maintained in the lab. Significant variation in both chlorogenic acid and 

rutin production was found amongst these lines (Figure 2), suggesting that the difference 

was genetic. We suspect that this natural variance in phenolic production masked induced 

effects in our other experiments. This can be remedied in the future by performing our 

experiments with clonal plants. 

In summary, we observe the ability of Solidago altissima to recognize and 

distinguish between individual chemical and physical elicitations from two specialist 

herbivores, Trirhabda vigrata and Eurosta solidaginis. These herbivores differentially 

induce the plant leading to specific chemical pathway cross-talk, specific signal 

transduction and induction of secondary metabolite production. Although the underlying 

transcriptional and biochemical mechanisms are far from being understood we 

hypothesize significant effects of the specific plant responses for the interaction of the 

plant with its arthropod community on multiple trophic levels.  
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