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There are many aspects of social, colonial, and individual behavior that are

puzzling and difficult to understand. Mathematical models provide an ideal

tool for understanding the possible behaviors of systems under different hy-

potheses, often providing surprising insights about the actual effects of different

model pieces. We use a number of different types of theoretical, mathematical

and computational models to examine a few areas of insect and social behav-

ior related to cooperation. First we consider a self-organized storage pattern

in the comb of honey-bees. This pattern makes the colony more efficient and

helps facilitate the survival and normal development of the brood (young bees).

We explore how the colony level patterns can emerge and be maintained by

thousands of bees performing tasks using simple rules that rely only on local

information. We discuss how the results of these models demonstrate gaps in

the current knowledge of honey bee behavior and motivate further research on

queen movement patterns.

We then explore the evolution of restraint for the parasitoid wasp Hyposoter

horticola, which parasitizes host egg clusters but utilizes only 30% of the eggs in

each cluster. Since natural selection favors individuals with more offspring, it

is puzzling that these wasps do not use more of the available resources. We use

both theoretical models and empirical results to explore several plausible ex-

planations for this behavior. We first consider whether the wasp’s parasitism is

reduced by physical/physiological constraints. Then, we explore selective pres-



sures that might favor submaximal parasitism behavior and discuss the most

reasonable explanation for sub-maximal parasitism by H. horticola.

Last, we explore the related, but more general question of the evolution of

cooperative behaviors. We use the iterated prisoner’s dilemma to model the

benefits and costs of cooperation for repeated interactions. We classify the pop-

ulation dynamics for interacting strategies to understand the conditions that

favor greater levels of cooperation. We then explore the bifurcations of the sys-

tem. These bifurcations show where small changes to parameter values produce

qualitatively (and sometimes drastically) different population dynamics.
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CHAPTER 1

INTRODUCTION

Cooperative behaviors are generally thought of as actions that impart a ben-

efit to the group at a personal cost to the individual. These sort of behaviors

have puzzled biologists, economists, behavioral scientists, ecologists, and social

and political scientists for decades. Selfish individuals would seemingly benefit

from being greedy and non-coorperative, but it is common to find cooperation

in societies and ecosystems and many of these systems rely on this cooperation

for their continued existence. In our society today we are more and more con-

nected with each other and that provides opportunities for increased levels of

generosity, but also wider reaching and more visible harm from greed. There is

always a need for cooperation in societies, but we are encountering new chal-

lenges of changing human connectivity and it is more important than ever that

we gain a better understanding of how we can facilitate and encourage gen-

erous and cooperative actions for the benefit of everyone. Climate change is

a great example of a problem whose solution requires the cooperation of large

groups of people but where individuals have motivation not to do their part.

We contribute to this conversation by considering three specific (but unrelated)

questions about individual behavior and the mechanisms that maintain cooper-

ation under each set of circumstances.

Ecology is the study of how organisms interact with each other and their

environments. The interactions are often complex and occur at different scales.

For example, there are several species of small reef fish, often referred to as

cleaner fish, that groom larger fish by removing dead skin and ectoparasites.
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The host fish refrains from eating the cleaner fish and benefits from the cleaning,

and the small fish gets an easy meal. Can we understand the implications of the

mutually beneficial relationship for the relative population sizes for both cleaner

fish and the larger ‘hosts’.

Ecologists strive to understand similar larger implications of interactions be-

tween species for the composition, distribution, amount, and state of organisms

within and among ecosystems. Targeted experiments can help us understand

the direct interactions between individuals or the effects of the environment

on specific species, but a theoretical framework is required to understand how

micro-scale interactions combine to create different ecosystem compositions and

population fluctuations.

Evolutionary biology studies the evolutionary processes that have produced

the diverse array of species that currently inhabit the earth. We focus on the be-

havioral end of evolutionary biology which considers how certain behaviors

may have evolved in response to the environment or other pressures. When

these pressures are interactions with other species, we enter the realm of behav-

ioral ecology which considers how species coevolve in response to each other.

In my work, I use mathematical models to test theoretical hypotheses about

the interactions or evolutionary pressures that create observed, larger scale pat-

terns. I am specifically interested in understanding cooperation, restraint and

collective behaviors. I work closely with biologists to develop a set of reason-

able hypotheses that could explain the phenomenon of interest. I then formulate

these hypotheses as mathematical models, and use existing data and targeted
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experiments to formulate and parametrize each model. These models make

predictions that I compare with the biological data. In this way, I am able to

consider abstract theories, make concrete predictions and understand whether

each hypothesis is theoretically reasonable. I use a diverse set of mathematical

and modeling tools, with an emphasis on game theory, computer-based simula-

tion modeling, and dynamical systems analysis. This dissertation is comprised

of three, somewhat disjoint, projects that are connected by their relevance to

cooperative-like behaviors, with a focus on insect behavior.

Chapter 2 focuses on how self organization in honey bees can create bene-

ficial patterns of storage in the comb. Self-organization is a process by which a

global order arises from local interactions. Bees work together in many colony

activities with each of thousands of bees following a fairly simple set of rules

that combine to create beneficial colony-level structures. I consider a storage

pattern that is formed on the inner combs of the hive. On these sheets of comb,

the developing brood are clumped together into a central brood region, with

pollen stored nearby, and honey in the periphery. Previous modeling work on

these comb patterns discovered rules that can create a self-organized pattern on

empty comb, but did not consider whether the self-organized patterns can be

maintained after the brood mature and start to vacate their cells.

The currently accepted model of self-organized cell allocation pattern for-

mation [18] does not maintain observed comb patterns, so I consider alternative

hypotheses that could maintain the allocation patterns. I start the model with

a well formed pattern and implement three sets of rules governing comb stor-

age related bee behavior. These include simple rules for how the queen moves
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across the comb and what criteria she uses to decide if an empty cell is accept-

able for a new brood, where honey and pollen are placed when brought into

the comb, and how honey and pollen are consumed from storage. I find a set

of simple rules that maintain the self-organized storage patterns over realistic

seasonal time-frames. This work motivates additional experimental work that

is essential to truly understanding the maintenance of the comb pattern.

In chapter 3, I consider the reasonable evolutionary causes for submaximal

resource use by the parasitoid wasp Hyposoter horticola in the Åland islands of

Finland. The puzzle here is that the wasp parasitizes clusters of host eggs, but

utilizes just a small fraction (roughly 30%) of each cluster, ignoring many seem-

ingly good hosts, and marking the cluster to deter other wasps from using it.

H. horticola lays it’s eggs within the host butterfly larvae and it’s offspring are

dependent on the host throughout their larval development. I first use exper-

imental data to consider whether the wasp is able to parasitize all of the eggs

in the cluster. To do this we determine if the wasp has enough eggs and time

to parasitize more hosts, the hosts are all available at the same time, the wasp

can access all eggs in the mounded cluster, and if the hosts have undetected

immunological defenses that eliminate some of the parasitoid eggs or larvae.

We find that it is unlikely that the wasp’s parasitism frequency is limited by

physical or physiological constraints.

Since the wasp appears to be physically able to parasitize more eggs, the fre-

quency of parasitism must be beneficial for some reason, otherwise the wasps

would evolve higher parasitism rates. There are multiple established evolu-

tionary theories that explain the evolution of submaximal resource use for other
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species. The most relevant and notable theories are prudence, risk-aversion,

and optimal foraging. For H. horticola, prudence takes the form of reduced par-

asitism to increase local host densities in future generations, and risk-aversion

would mean parasitizing smaller fractions of multiple clusters to reduce the

risk of losing all offspring. Both of these hypotheses turn out not to be applica-

ble to H. horticola because of the large and well mixed populations of H. horticola

in the Åland islands. The most plausible reason is that the wasp leaves each

cluster after parasitizing a third of the eggs because this optimizes the wasp’s

limited time and gives her offspring the best chance of survival. My work elim-

inates many seemingly plausible hypotheses for the cause of this submaximal

parasitism and suggests the most likely explanation for this behavior.

In chapter 4, I examine cooperation more generally by exploring the poten-

tial for stable levels of cooperation in the stochastic iterated prisoner’s dilemma.

I start by considering the interactions of just two strategies: any contender

against the reigning champion. If the reigning champion is fairly cooperative

but relatively unforgiving of defections, frequently retaliating by not cooperat-

ing after they opponent does not cooperate, then more cooperative contender

strategies will be able to win and take over. If the reigning champion is too

forgiving, then less cooperative strategies will take over. Thus, to end up with

more cooperative populations, the strategies must not be too forgiving of defec-

tions.

We then consider a population with 3 types of people: everyone is either

nice, mean, or police-like. Nice individuals are giving and cooperative with ev-

eryone, mean individuals take as much as they can from everyone, and police

5



retaliate against mean individuals and are nice when someone is nice to them.

Our goal is again to explain the conditions that favor cooperation. The prevail-

ing strategy depends on how forgiving the nice individuals are, how damaging

the mean individuals are and the frequency of mistakes in the interactions (e.g.

I mistakenly think you were mean to me when you meant to be nice). We again

find that the population is taken over by more cooperative individuals if the nice

strategy is not too forgiving of defections. When the nice individuals are more

forgiving, stable populations with at least some cooperators are still possible. In

this case, the population could settle to a state where there are enough police to

keep the burglars from significantly harming the nice volunteers, and all three

types have steady and non-zero population sizes. The prevailing strategy (or

strategies) depends not only on the relative benefits and costs of cooperation,

but also on how many mistakes the police make, and how forgiving the nice

individuals are.

In this dissertation, I present studies of cooperative-like behaviors in three,

very different, contexts. This is not a comprehensive study of cooperation, but

does provide a deeper level of understanding about these types of cooperative

behaviors. Colonies work together to create important colony-level organiza-

tion and we explain how this organization can be maintained by thousands of

bees following simple, local rules. This demonstrates the importance of under-

standing how self-organization can maintain order. Somewhat unrelatedly, par-

asitoids must somehow ensure that they do not wipe out their hosts and thus

cause their own extinction in the process. Thus submaximal resource use bene-

fits the species, but comes at a large cost to individuals who reduce parasitism.

Under these circumstances there must be some mechanism that maintains low
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parasitism rates (which are cooperative-like). Last, repeated interactions be-

tween individuals facilitate greater levels of cooperation despite the personal

costs associated with cooperating. We explicitly describe the conditions under

which cooperative strategies dominate the population and refine our under-

standing of population dynamics of cooperative, non-cooperative and retalia-

tory strategies in populations. This work adds to our current understanding of

the maintenance of cooperation in three diverse contexts.
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CHAPTER 2

LOCAL BEHAVIORAL RULES SUSTAIN THE CELL ALLOCATION

PATTERN IN THE COMBS OF HONEY BEE COLONIES (APIS

MELLIFERA)

Abstract

In the beeswax combs of honey bees, the cells of brood, pollen, and honey have

a consistent spatial pattern that is sustained throughout the life of a colony.

This spatial pattern is believed to emerge from simple behavioral rules that

specify how the queen moves, where foragers deposit honey/pollen and how

honey/pollen is consumed from cells. Prior work has identified a set of such

rules can explain the formation of the allocation pattern starting from an empty

comb. We show that these rules cannot maintain the pattern once the brood start

to vacate their cells and bees refill these cells. We propose new, biologically re-

alistic rules that better sustain the observed allocation pattern over time. Specif-

ically, we consider an alternate model formulation of brood density-dependent

honey and pollen consumption and an alternate model of queen movement

which biases her walk toward the center of the comb in response to heat gradi-

ents on the surface of the comb. We analyze the three resulting models by per-

forming hundreds of simulation runs over many gestational periods and a wide

range of parameter values. We develop new metrics for pattern assessment and

employ them in analyzing pattern retention over each simulation run. Applied

to our simulation results, these metrics show alteration of an accepted model

for honey/pollen consumption based on local information can stabilize the cell
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allocation pattern over time. We also show that adding global information, by

biasing the queen’s movements towards the center of the comb, expands the

parameter regime over which pattern retention occurs.

2.1 Introduction

Honey bee colonies benefit from a high degree of internal organization, in which

thousands of bees work together to make decisions and create stable, colony-

level patterns. Elements of colony-level organization and decision making rely

on individual bees performing fairly simple actions; for example, foraging bees

perform waggle dances that recruit others to desirable foraging locations in ap-

propriate densities [31], and new colonies collectively choose the best nest cavity

based on information gathered by many individual bees [95]. In this paper, we

consider how the actions of individual bees can cause the self-organized cre-

ation and maintenance of a colony-level storage pattern for brood, honey, and

pollen in a colony’s combs.

Seeley and Morse (1976) described a general cell allocation pattern in the

nests of honey bees: a dense brood clump surrounded by cells storing pollen,

and with honey stored in periphery cells, mostly in the upper region of the comb

[94]. This distribution of different types of cells confers several benefits to the

colony. First, it helps ensure that a colony’s brood are raised at the proper tem-

perature. Tautz et al. (2003) showed that the temperature at which pupae are

incubated has a significant impact on their ability to perform foraging functions

as adults [104]. Fehler et al. (2007) connected temperature, colony efficiency,

9



and brood density by demonstrating that brood areas with larger percentages of

open cells require more attention from workers in order to maintain an optimal

brood rearing temperature [34]. Starks and Gilley (1999) deepened this connec-

tion between the temperatures and brood health in their observation that that

worker bees themselves act to shield brood from temperature fluctuations by

positioning themselves on particularly warm areas on the interior of the hive’s

walls [101]. Camazine (1990) argued that along with worker behavior, the phys-

ical distribution of different cell types can act to maintain proper temperature

by suggesting that concentrating brood cells near the middle of the nest helps

insulate the larvae from fluctuating environmental conditions [20]. Thus, an

advantageous positions of brood cells frees workers from needing to perform

some thermoregulation tasks.

Second, maintaining a ready supply of pollen near developing brood in-

creases work efficiency by the nurse bees in a colony. Cralsheim et al. (1992)

showed that the primary consumers of pollen are nurse bees which feed the

brood [26], and Camazine (2001) noted that pollen storage near brood cells

would theoretically reduce the time and energy spent by nurse bees in retrieving

stored pollen [19]. Taken in total, the existing literature presents a convincing

case for the effectiveness of a densely populated region of brood cells imme-

diately surrounded by a ring of pollen storage cells, with honey storage cells

filling the remainder of the comb.

Much work has been done to understand how this pattern is created within

the nest, but none of this research has considered pattern maintenance after

brood begin to vacate their cells. These newly emptied cells are then refilled
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with brood, pollen or honey. Originally, it was believed that the pattern arises

because each bee follows an internal blueprint, placing each product in its asso-

ciated cells according to an overall plan [94, 93, 119, 18]. Camazine refuted this

argument by observing that when empty comb is inserted into the brood re-

gion it is initially filled with both pollen and honey, but that fairly quickly these

cells are emptied and filled with brood [18]. This observation led to cellular

automata models [18, 19] and simplified differential equation models [20, 59]

of self-organized pattern formation in which the storage patterns result from

each bee following simple behavioral rules that do not rely on global informa-

tion about the nest. These models are able to explain the creation of an idealized

self-organized pattern on an initially mostly-empty sheet of comb, but they only

consider the first 20 days or a single brood generation; the simulations based on

these models stop before the first bees vacate their brood cells.

A more recent model for the storage pattern developed by Johnson (2009)

combines the idea of self-organization with gravity-based templates (i.e.,

blueprint-like rules) which bias the movement of nectar handlers towards the

top of the comb and help produce a more realistic pattern with honey stored

near the top of the comb [60]. This model includes two kinds of global informa-

tion, templates for nectar storage and brood cells, but it too only considers the

pattern formation before young bees start to vacate their cells (the first 20 days).

In this section we present an agent-based model that uses simple, local, bio-

logically relevant rules to maintain storage patterns over multiple brood cycles.

We start with the model developed by Camazine in 1991 [18], which can create

a self-organized pattern on a nearly empty comb (now referred to as model 1)
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and change some of the rules in biologically reasonable ways to create models

that both initially create and then steadily maintain the comb allocation patterns

once young bees begin to vacate their cells (models 2 and 3).

Our first modification is in the implementation of a rule that specifies that

consumption of nectar and pollen is brood-density dependent. This behav-

ioral rule is based on the observation that most of the stored pollen and a good

amount of the stored honey are consumed by nurse bees feeding the brood [26].

These bees typically start their search for pollen or honey from a brood cell and

would find nearby food cells more frequently than far away cells. In our model

pollen, a storage cell can hold up to 15 loads of pollen or 25 loads of honey. In

model 1 [18], when a bee is searching for a cell from which to consume nec-

tar or pollen, the cell is chosen randomly from all of the cells in the comb, and

the number of loads taken is linearly proportional to the local density of brood

within a preset radius of up to four cells. Thus, when a cell is chosen, a greater

number of loads are taken if there are many brood cells nearby. We argue that

this is not realistic, because nurse bees cannot carry more nectar or pollen than

other bees. Instead, they are more likely to choose cells close to the brood. Thus,

we propose modifying the implementation of this rule to linearly increase the

probability of choosing cells near brood based on the local brood density and

then take only one load each time the cell is chosen (models 2-3). Thus cells

near brood are more likely to be chosen but only one load is taken from each

chosen cell.

Our second modification is in the way that the queen moves as she deposits

brood (model 3). In the original model (model 1, based on [18]) and model
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2, each time the queen moves she choses a random direction and moves one

step. We consider the option that she senses heat gradients on the surface of the

comb and modifies her direction of movement based on these heat gradients.

These heat gradients result from a colony-level effort to maintain an acceptable

temperature for brood survival and development [34, 104]. The workers in the

colony maintain the temperature in the brood region by heating the caps of indi-

vidual brood cells [16], entering empty cells within the brood region and heating

adjacent brood through the cell walls [62], creating evaporative cooling [49], and

using their own bodies to make a heat-shield [101]. These thermoregulatory ac-

tions, focused on the brood region, can create thermal gradients across the nest

[57] that are qualitatively similar to the gradients measured in colonies of bees

[8]. When the comb is full, as will be the case for most of our modeling, there

is a well established temperature gradient from center to edge [63]. It has been

shown repeatedly that bees are aware of and change their behavior in response

to the temperatures that they experience [42, 113] and it is reasonable to be-

lieve that the queen can sense these thermal gradients and respond accordingly.

There has been no research done on the queen’s specific response to thermal

gradients so we model them according to our best intuition and present this as

an open question in honey bee behavior.

2.2 Methods

In a comb that has a well formed cell allocation pattern, the actions of the bees

can either maintain or destroy this pattern over time. The difference between

maintenance and destruction lies in the choice of parameters for key functions,
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as well as in implementation choices for important pieces of the model. Since

a significant amount of work has already been done on the formation of the

pattern, we will focus on the ability of simple rules to maintain the storage pat-

tern over realistic timeframes of multiple brood cycles. We begin by outlining

the overall structure and computational aspects of the simulator and parame-

ter selection scheme (Section 2.2.1). We then detail the three main components

of the models we compare: queen movement and oviposition (Section 2.2.2),

nectar/pollen collection and deposition (Section 2.2.3), and nectar/pollen con-

sumption by all bees (Section 2.2.4). Finally, we will confirm that the proposed

rules are also able to form the pattern on a nearly empty comb.

2.2.1 Model implementation

We implement the models using an agent based simulation model in Matlab

[69]. The modeled comb is 45 cells wide by 75 cells tall with hexagonal cells,

which matches the approximate number of cells on one side of a full depth

Langstroth frame. We simulated a season of 60 days or 3 brood cycles, with

a 12 hour day-night cycle. The simulation has hour-long time steps, where for-

agers deposit honey and pollen during the day, and bees consume honey and

pollen and the queen lays eggs into suitable cells during all hours.

At the beginning of each hour, we determine the number of eggs the queen

attempts to lay as she walks along the comb (see Section 2.2.2), and the amount

of honey and pollen deposited and consumed (see Section 2.2.3). In order to

avoid simulation artifacts caused by some tasks being preferentially performed
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before others, we randomize the sequencing of deposition, consumption and

oviposition events each hour. Brood mature in approximately 21 days and then

vacate their cells [119], so in the model, the 21-day-old immature bees are ran-

domly partitioned into 24 equally sized groups (up to rounding error), one of

which vacates its cells at the end of each hour.

Unless specified, each model run was initiated with a completely full comb

with an ideal pattern of a center region of brood, surrounded by a ring of pollen,

and honey in all remaining cells. The assignment of type to each cell is deter-

ministic and constant across all simulations. The brood region is a circular disk

centered in the middle of the comb with radius 18 cell lengths. Around this

brood region is a ring of pollen 4 cell lengths wide. The rest of the comb is filled

with honey. Each storage cell has the capacity to contain up to 25 loads of honey

or 15 loads of pollen. This is consistent with [91] and is between the estimates

used in [18] and [60]. The initial amount of nectar in each pollen and honey cell

was chosen uniformly randomly from the ranges of 1−15 loads and 1−25 loads,

respectively. Similarly, the initial age of each brood cell is chosen uniformly ran-

domly from 1 − 21 days. While developing the model, we explored multiple

capacities and found that changing the capacity of the honey and pollen cells

within the established ranges (pollen: 15−20 loads per cell, honey: 20−40 loads

per cell) did not qualitatively change the resulting allocation patterns.

Other parameter estimates for this system are somewhat speculative, so we

consider a wide range of values for each model parameter. To sample the pa-

rameter space efficiently and enable analysis of model sensitivity to variation

in parameter values, we used a Latin hypercube sampling structure. Latin hy-
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Parameter Description Estimate Range
n Queen’s cell visitation rate (cells per

hour)
60 [18] 60 – 120

rb Brood requirement radius (cells) 4 [18] 1 – 4
rn Preferential nectar consumption radius

(cells)
4 [18] 1 – 4

ω Average honey collection (loads per day) 833 (Sec. 2.2.3) 1000 – 4000
ρph Ratio of pollen collection to honey collec-

tion
0.21 [18] 0.2 – 1.0

ρp Ratio of pollen consumption to pollen
collection

0.99 [18] 0.9 – 1.1

ρh Ratio of honey consumption to honey
collection

0.59 [18] 0.9 – 1.1

χ Temporal distribution of daily nectar
and pollen collection: uniform constant
(χ = 0), uniform random (χ = 1) and
Markov clumped random (χ = 2)

NA 0 – 2

k Model 1: Ratio of honey/pollen taken
from cells fully surrounded by brood
cells to honey/pollen taken from cells
with no brood neighbors

10 [18] 5 – 20

k Models 2 and 3: Ratio of probability
that a cell fully surrounded by brood
cells is chosen for nectar consumption to
the probability that a cell with no brood
neighbors is chosen

10 [18] 5 – 20

Table 2.1: Parameters used in simulations of models 1- 3 and the sensitivity analysis. The
estimates from the literature were used as a starting point for parameter ranges.
The reasoning for the given ranges based on the literature estimates are given
within the relevant model description sections. For example, for queen cell vis-
itations, the estimate is for the number of eggs laid per hour, so we inflated it
to account for the queen rejecting cells, then extended the range for sensitivity
testing. Similar reasoning explains the elevated range for w. The values for
ρph, ρp, ρh apply most directly to the pattern formation phase of colony devel-
opment, and were modified for the full comb.

percube sampling chooses m equally likely values for each parameter and then

randomly selects (without replacement) from these values to create a unique

parameter set for each of the m model runs [11, 32]. We create 200 unique pa-

rameter sets that we use to analyze all three models. Ranges for the key param-

eters in the model (Table 2.1) were chosen based on the relevant literature, with

ranges extended to acknowledge uncertainty in parameter estimates. Reason-

ing for particular parameter choices is included in the related model sections
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below.

As discussed in Section 2.1, we consider three agent-based models. While

the details of each will be elaborated below, the main components and their

similarities and differences are as follows:

Model 1: The queen performs a random walk across the comb and attempts to

oviposit in suitable cells. Workers attempt to deposit honey and pollen in cells

sampled uniformly randomly from all cells which are empty or partially full

of the same material. Workers attempt to consume honey and pollen sampled

uniformly randomly from all cells, with the number of loads taken proportional

to the local density of brood cells.

Model 2: The queen performs a random walk across the comb and attempts

to oviposit in suitable cells. Workers attempt to deposit honey and pollen in

cells sampled uniformly randomly from all cells. Workers attempt to consume

1 load of honey or pollen at a time, with the probability a cell will be selected

proportional to the number of neighboring brood cells.

Model 3: The queen performs a random walk biased towards the center of

the comb and attempts to oviposit in suitable cells. Workers attempt to deposit

honey and pollen in cells sampled uniformly randomly from all cells. Workers

attempt to consume 1 load of honey or pollen at a time, with the probability a

cell will be selected proportional to the number of neighboring brood cells.

When mathematically defining the exact mechanisms by which these ex-
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tractions, depositions and ovipositions occur, it is convenient to have sym-

bols to refer to certain classes of cells. At every time t, we can partition the

cells of the comb into four subsets: E(t), the empty cells; H(t), cells contain-

ing honey; P(t), cells containing pollen; B(t), cells containing brood. We define

N = (45)(75) = 3375 to be the total number of cells on the comb.

2.2.2 Queen movement and egg laying

In order to capture the variability in the queen’s walk across the comb, we use

one of two probability distributions to model the direction of her movement:

(1) uniform distribution on the interval [−π, π] (random walk)

(2) wrapped Gaussian distribution with mean θ and standard deviation σ on

[−π, π] (biased random walk).

In both cases, the mean θ = 0 represents the angle pointing the queen from her

current position towards the center of the comb. Once a direction is chosen, the

queen moves to the nearest cell in that direction.

While the uniform angle distribution is relatively straightforward, the exact

mechanism by which we introduce a bias in the queen’s movements towards

the center of the comb is important. For simplicity, we implement an affine

scaling of the standard deviation of the distribution as a function of the queen’s
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distance from the center of the comb of the form

σ = σo − (σo − σc)
d

dmax
, (2.1)

where d is the distance in cell lengths from the center of the cell on which the

queen is currently located to the center of the cell in the center of the comb, and

dmax =
√

222 + 372 is the maximum distance from any cell to the center of the

comb. The tunable parameters σo and σc describe the desired standard devia-

tion when the queen is located at the center (origin) and corners of the comb,

respectively. With σo sufficiently large, the wrapped Gaussian produces nearly

uniformly random angles when the queen is near the center of the comb. If

σo > σc, the queen’s movement becomes increasingly biased towards the center

of the comb as she moves farther away from it. We set σ0 = 5 and σ1 = 2.828.

With this choice, the queen visits cells at the edge of the comb roughly half

as many times as cells near the center of the comb. Figure 2.2.2(a) shows the

number of visit to each cell for a typical random walk by the queen, and Figure

2.2.2(b) shows the number of visit to each cell for a typical biased random walk.

The number of cells visited by the queen in one hour, n, is determined by the

Latin hypercube sampling for each model run and is between 60 and 120 cells

per hour. This parameter range was chosen because the queen lays between

1000 and 2000 eggs in a day, with is equivalent to 42 − 84 eggs per hour [74,

12, 18]. We selected a range from 60 − 120 cells visited per hour because many

attempts to lay eggs fail either because the cell is already in use or because it is

too far from the nearest brood cell. In an empty comb the queen will lay roughly

the desired maximum number of eggs and in a more full comb her efficiency

decreases as she spends more time searching for suitable cells. The set of cells

A(t) which the queen finds acceptable are empty and within radial distance rb
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(a) Random walk (b) Biased random walk

Figure 2.1: Density maps of the number of queen visits per cell for
1,000,000 steps of the queen according to an example of the
a) random walk and b) biased random walk. Red cells were
visited most often and blue cells were visited least often.

from a brood cell. In symbols,

A(t) = {e : e ∈ E(t), min
b∈B(t)

d(e, b) ≤ rb}, (2.2)

where E(t) is the set of empty cells at time t, and d(x, y) is the Euclidean distance

measured in cell lengths between the center of cell x and the center of cell y. This

distance threshold rb is varied in the Latin hypercube sampling design between

1 and 4. The upper end of this range was chosen to match Camazine’s model

[18] and the shorter distances test the sensitivity of the models to this parameter.
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2.2.3 Nectar and pollen collection and deposition

Both honey and pollen are deposited into cells which are empty or partially

filled with the same substance as is being deposited. Pollen foragers and honey

storers examine multiple cells when depositing loads of food [17] and deposit

less honey and pollen when the comb is full [96]. To be consistent with these

observations, each forager selects cells uniformly randomly from all comb cells

and is allowed up to 6 attempts to find a suitable cell. Modeling deposition in

this way serves two purposes. First, workers do not need to have global infor-

mation about the location of all honey and/or pollen cells at a given time as

they would if the cells were chosen randomly from the available honey/pollen

cells and empty cells. Second, a worker aborting the search for an appropriate

cell on this comb approximates the worker going to find an empty cell on an-

other comb when the simulated comb is becoming overly full. This creates the

random deposition with the desired decreased deposition rate for full combs.

We note that this interpretation of how to model pollen and honey deposition

conforms to the descriptions in Camazine [19].

In order to describe deposition in our agent-based model, we must describe

the collection and deposition rates in terms of actions of individual bees. We

calculate the number of individual loads of honey and pollen that are deposited

into the comb each hour from established yearly totals and measured bee load

capacity. A typical colony collects 60 kg of honey in a season, with 40 mg of

honey in each load, 180 days in the summer season, and approximately 10 sheets

of comb per colony [18, 19]. This results in approximately 833 loads on average

entering each sheet of comb in the hive every day. This estimate was then in-
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creased to account for the fact that, in our models, many attempts to deposit

honey are unsuccessful because the chosen cells are full or partially full of the

wrong substance. For each model run, the average number of loads of honey

collected per hour ω was determined by uniform sampling between 1000 and

4000 loads per day for the Latin hypercube setup. The average number of loads

of pollen collected per hour is chosen by Latin hypercube sampling [71, 11] as

a fraction of the collected honey, ρph ∈ [.2, 1] so the total amount of pollen col-

lected in a season is ρphω. The ratio ρph has been observed to be about 0.26 [18].

Our model extends this range to look at the sensitivity and consider potential

changes in storage ratios for the full comb within the simulated nest.

Pollen and honey availability depends on seasonally variable flowers and

weather dependent favorable foraging conditions. To capture this, we consider

three different types of temporal variability in nectar foraging, with the method

chosen at random for each model run. The amount of honey and pollen col-

lected per day are either

(1) constant in time and equal ω and ωρph, respectively. This represents an

unrealistic environment with favorable foraging conditions each day and

a constant amount of honey and pollen available each day.

(2) drawn uniformly randomly from [0, 2ω] and [0, 2ωρph], respectively. This

represents an environment where foraging can occur each day, and there

is always some honey and pollen available, but the daily amount varies

somewhat from day to day.

(3) subject to a Markov process in which the amount of honey and pollen col-

lected are either identically zero or equal to 2ω and 2ωρph, respectively,
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with probability 0.70 that the amount collected on a given day will be

the same as the amount collected the day before. This represents an en-

vironment where there spans of several days with unfavorable weather

for foraging but on good days a constant amount of nectar and honey are

available.

The transition probability in the Markov process model was chosen to cre-

ate realistic fluctuations in food availability. This could be refined, but for our

model we decided to keep this element fairly simple. In all of these cases, the to-

tal amount of food collected during the modeled season is set to the predefined

amounts for each type of food. The daily amounts were then used to calculate

the hourly collection rates which is simply one twelfth of the daily collection

rates.

2.2.4 Nectar and pollen consumption

Food consumption is modeled by randomly choosing a cell in the comb and

taking a load out of this cell if it contains the desired food type. We assume that

consumption depends heavily on the number of nearby brood. The dimension-

less brood density within distance rn at a cell c is given by

Drn(c) =
|{b : b ∈ B(t), d(b, c) ≤ rn}|

3rn(rn + 1)
, (2.3)

where B(t) is the collection of brood cells at time t, and d(b, c) is the Euclidean

distance measured in cell lengths from the center of cell b to center of cell c. The

denominator is given by the observation that the total number of cells whose
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centers are within rn cell lengths a the center of a given cell on a hexagonal grid

is 6 + 12 + . . . + 6rn = 6(1 + 2 + . . . + rn) = 6rn(rn + 1)/2 (excluding the chosen cell

itself).

The brood density dictates honey and pollen consumption in all models con-

sidered. In model 1, cell choice is uniformly random and the number of loads

of nectar taken from a selected cell c is linearly dependent on the local brood

density Drn(c).

P(cell c chosen) =
1
N

(2.4)

nL = min(loads left, b1 + Drn(c)(k − 1)e). (2.5)

In models 2 and 3, cell choice is linearly proportional to the local brood den-

sity, and the number of loads of honey or pollen taken from a selected cell is

constant.

P(cell c chosen) ∝ 1 + Drn(c)(` − 1) (2.6)

nL = 1. (2.7)

In all models, cell choice for honey or pollen removal is taken over all comb

cells, regardless of whether a cell is (partially) filled with the desired type of

food or not. If the desired type is not found in the chosen cell, then another cell

is chosen, with up to six cells being checked before the process is abandoned

and the model moves on to the next task. Note that in both methods workers

do not need to have global information as to the location of all honey and/or

pollen cells at a given time.

Camazine originally set rn = 1 and k = 10 [18]. Here we have expanded these
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definitions to rn ∈ [1, 4] and k ∈ [5, 20] in order to determine the sensitivity of

each model to these parameters.

The amount of honey and pollen consumed over the entire modeled sea-

son is calculated as a ratio of amount foraged. Consumption is assumed to be

constant throughout the season, and during all hours of the day. The ratios of

pollen and honey consumption to collection (ρp and ρh, respectively) were cho-

sen to be in the range of 0.9 − 1.1 since our interest is in pattern maintenance

after the comb fills. This range allows us to consider the phase when much of

the incoming honey is being deposited in other non-brood combs. Within the

nest, central combs contain brood and other combs are mostly used for the stor-

age of honey [94]. Colonies have mechanisms that ensure that foraging does

not exceed available storage capacity, which include comb building and colony

splitting to create a new colony [119]. These mechanisms, combined with the

use of a small number of combs for brood, should maintain the rate of incoming

honey and pollen to these brood combs to, on average, replace the consumed

honey and pollen. Thus on these combs, we expect to see ratios of consumption

to collection close to 1 after the comb is full and the pattern is established. Oth-

erwise, in time, the comb would become either overfull or completely empty.

2.2.5 Brood and Pollen Ring metrics

To assess the level of pattern retention during the simulation runs, we devel-

oped two metrics that describe the compactness of the brood region and the

level of definition of the pollen ring (or gap of empty cells). The brood metric is
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the average number of adjacent brood for each brood cell.

mb(t) =
1
|B(t)|

∑
b∈B(t)

|{x : x ∈ B(t), 0 < d(x, b) ≤ 1}|, (2.8)

where B(t) is the collection of brood cells at time t, and d(x, b) is the Euclidean

distance measured in cell lengths from cell x to cell b. Note that mb(t) is unde-

fined if |B(t)| = 0, that is, if there are no brood on the comb at time t. We observed

qualitatively that in simulations with brood compactness metric mb ≥ 5.25, the

brood cells are sufficiently dense to fit the observed pattern.

The pollen metric is the average distance from each honey cell to the nearest

brood cell, i.e., the smallest number of cells visited when traveling from a honey

cell to the nearest brood cell.

mp(t) =
1
|H(t)|

∑
h∈H(t)

min{d(b, h) : b ∈ B(t)}, (2.9)

where H(t) is the collection of cells containing honey at time t, and d(b, h) is

the Euclidean distance measured in cell lengths from the center of cell b to the

center of cell h. Note that mp(t) is undefined if |H(t)| = 0, that is, if there are no

cells storing honey on the comb at time t. In this case we observed that pollen

metric mp ≥ 12 indicates a well-formed pollen ring, i.e., one that forms a strong

separation of honey cells from brood cells. In combination, these two metrics

accurately describe how well the allocation adheres to the desired pattern. We

use these metrics to assess the sensitivity in the model predictions over a range

of reasonable parameter values.
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2.2.6 Pattern Formation

In addition to testing pattern maintenance, we investigate the ability of each

model to create the desired pattern on a nearly empty comb (similar to [19]).

We perform the same simulations as above, but now set the initial comb storage

pattern to be mostly empty with a clump of 7 brood cells (one brood cell with

6 adjacent brood cells) in the center of the comb. The parameter value ranges

for some parameters were adjusted for the formation phase. We considered 100

parameter sets with the radius for the brood requirement (rb) restricted to 2-4

since radii of 1 resulted in no new brood in the full (pattern sustenance model).

We also restricted the ranges on the ratio of pollen collected to honey collected

(ρph ∈ (.21, .45)), the expected ratio of pollen consumption to pollen collection

(ρp ∈ (.9, 1.08)), the expected ratio of honey consumption to honey collection

(ρh ∈ (0.49, 0.69), and the preferential consumption pressure near brood cells

(k ∈ (5, 15)). These adjusted and narrower parameter ranges helped us look

at the pattern formation locally near measured parameter estimates when the

comb is being filled early in the season or in a new nest.

2.2.7 Sensitivity testing

We performed a global sensitivity analysis to assess the relative impact of each

parameter on pattern retention for each of the 3 models. Because parameter

estimates are uncertain, parameter ranges included maximum values up to a

factor of 5 times larger than baseline values. For a complete list of parameters

and their ranges, see Table 2.1. As Latin hypercube sampling is an efficient way
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of sampling a large parameter space and our model is computationally inten-

sive, we employed the same multidimensional hypercube used for parameter

determination in our sensitivity testing [71, 11]. For each model scenario, 200

randomized parameter sets were generated by our hypercube. For each of these,

we simulated 60 days; model metrics were then computed for days 20− 60, and

the values averaged. This time window includes multiple brood gestation pe-

riods, but omits transient dynamics due to comb initialization. We discard any

run in which the brood clumping or pollen ring metric were undefined at any

time between day 20 and day 60, leaving N1, N2 and N3 viable runs for models

1, 2, and 3 respectively. Recall that the brood clumping and pollen ring metrics

are undefined when there are no honey cells and no pollen storage cells, respec-

tively, on the comb. These scenarios can occur, for instance, if the ratio of honey

consumption to collection ρh is relatively large and relatively small, respectively.

After preprocessing the data, we scale each parameter value so that it is a

percent of the observed parameter range in the Ni simulation runs, with 0.00

representing the minimum value and 1.00 representing the maximum value.

We then perform multiple linear regression on the scaled data. We discard the

intercept information from the linear regressions for both the pollen ring and

brood region metrics, but note that the inclusion of this information in the re-

gression is critical; without it, the least-squares method will produce a linear

function for which each metric is equal to 0 when all parameters are equal to

zero which is clearly not appropriate in the system modeled here.

We must interpret the remaining components, the so called elasticities of the

metrics, with the scalings we have performed in mind. An elasticity value of
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2 indicates that increasing the corresponding parameter from the bottom of its

range to the top of its range increases the metric by 2 on average. (Notice that

the the average metrics have not been scaled, so they should not be interpreted

as percentages.) Similarly, an elasticity value of -3 indicates that increasing the

corresponding parameter from the bottom of its range to the top of its range

decreases the metric by 3 on average.

2.3 Results

Our results show that the cell allocation patterns of brood, pollen, and honey

can be maintained over multiple brood gestation cycles by simple behavioral

rules. To compare pattern retention across the 3 models, we first generated 200

parameter combinations using Latin hypercube sampling over the parameter

ranges featured in Table 2.1. For each parameter combination, 3 separate 60

day simulations of the comb were completed, one for each model, with the ini-

tial state of each simulation being the ideal cell allocation pattern described in

Section 2.2.1.

Comb snapshots: We begin by examining the cell allocation pattern across the

comb. In Figure 2.2, we plot the comb at several points in time for models 1 –

3. The simulation run featured in each figure maximized the product mp · mb,

where mp and mb are the pollen ring and brood clumping metrics, respectively,

averaged over days 20 – 60. While this product of averaged metrics is just one

way we might define good performance in a simulation, we have found that it

is a good indicator of pattern retention. Moreover, it is simple both in its form
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Figure 2.2: Snapshots of the simulation run for each model which maxi-
mized the product of time-averaged metrics mb · mp with con-
tents plotted at day 20, 40 and 60 in columns 1, 2, and 3, re-
spectively. Cells containing brood are blue; cells containing
pollen are green; cells containing honey are brown; empty
cells are white. Darker shades of each color represent older
brood or fuller honey and pollen cells. For model 1 (row 1):
n = 61, rb = 2, rn = 2, ω = 3475, ρph = 0.9638, ρp = 0.9151, ρh =

1.0668, χ = 1, k = 10. For model 2 (row 2): n = 97, rb = 4, rn =

1, ω = 1150, ρph = 0.2764, ρrp = 0.9362, ρh = 1.0970, χ = 0, k = 15.
For model 3 (row 3): n = 90, rb = 3, rn = 1, ω = 1000, ρph =

0.9719, ρp = 1.0206, ρh = 0.9854, χ = 0, k = 16.
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and its computation. We average only after the first 20 days so as to not allow

the initial ideal pattern to unduly influence the value of the averaged metrics.

Monitoring the simulations at days 20, 40, and 60 in Figure 2.2 allows us to

easily compare across all 3 models. In Figure 2.2 (row 1), we see that model

1 has a fairly well defined and compact brood region at day 20. By day 40,

this region has deteriorated, with the brood being both more diffuse and with

honey storage cells occurring more frequently in the brood region. At day 60,

the region containing brood has expanded considerably and is fair less densely

populated with brood cells than at the previous snapshots. Pollen and honey

storage cells are intermixed throughout the comb.

We compare these trends to the behavior of model 2 in Figure 2.2. Here we

observe a compact brood region and well defined pollen ring across the 60 days

of simulation. Some honey storage cells do encroach on the brood region, but

most of these are converted to brood cells between snapshots, indicating the

phenomenon is transient. A likely scenario is that the cell containing honey was

recently vacated by an immature bee; due to preferential removal, this cell stays

empty or almost empty much of the time, which increases the probability that

the queen will lay an egg in it when she is next at the cell. Figure 2.2 shows that

model 3 produces qualitatively similar results to model 2.

Metric time series comparison: In order to tease apart quantitative differences

in qualitatively similar patterns, we plot the pollen ring and brood clumping

metrics over time in Figure 2.3. Here we plot only the 20 simulations runs for

each model that maximize the product mp · mb, where again mp and mb are the
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Figure 2.3: Trajectories of the brood clumping metric and pollen ring met-
ric the 20 best simulation runs for each model. Recall that if the
brood clumping metric is above 5.25 and the pollen ring metric
is above 12, then the pattern is considered to be well formed.

pollen ring and brood clumping metrics, respectively, averaged over days 20 –

60. Under model 1, the brood clumping metric seems to stabilize up to proba-

bilistic fluctuations after day 20, albeit it to a value that is below our threshold

of mb(t) = 5.25. This agrees well with our observations in Figure 2.2: model 1

produces a brood region up to and including day 60, but the region is relatively

diffuse. Most traces of the pollen ring metric are monotonically decreasing up to

probabilistic effects even up to day 60. This is good agreement with our results

in Figure 2.2, as we noted that the diffuse brood region is increasingly infiltrated

by honey storage cells. We note that one trace of the pollen ring metric exhibits

a wild swing from low to high over the course of 20 days. In this simulation,
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Figure 2.4: Brood clumping and pollen ring metrics on day 60 for each of
the 200 simulations of models 1, 2 and 3. The gray region rep-
resents metric combinations that result in a poorly defined cell
allocation pattern.

the comb contains no honey storage cells from day 11 to day 14. When a few

honey storage cells begin to appear day 14, they are at first quite close to the

brood patch, but as new groups of brood begin to emerge, the average distance

between the few honey cells and the remaining immature brood cells begins to

grow quite quickly, leading to a spuriously high metric. As the vacated brood

cells begin to fill with honey at approximately day 40, the pollen ring metric

begins to decrease to a more reasonable range, both because these new honey

storage cells are relatively close to the brood cluster, and because a larger num-

ber of honey storage cells implies that outliers contribute less to the average

minimum distance from honey to brood. This example and others like it mo-

tivate us to disregard any simulation run which at any point has an undefined

pollen ring or brood clumping metric, as the metrics of these simulations cannot

be trusted to convey accurate information about the retention of the pattern.

Metric space comparison: Note that Figure 2.3 shows both models 2 and 3 ex-

hibit brood clumping and pollen metrics that are relatively constant and above
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their respective thresholds from day 20 to day 60. As there is relatively little

change over time in the brood clumping and pollen metrics, we can sacrifice

the temporal component of the data in Figure 2.3 and plot each of the 20 runs

for each model in metric space as seen in Figure 2.4. Here we plot the average

brood clumping metric versus the average pollen ring metric for all simulation

runs which do not have undefined pollen ring or brood clumping metric at any

time between day 20 and day 60 for each of the 3 models. All averages are per-

formed over the interval from day 20 to day 60. Similar to Figure 2.3, a point in a

gray region in Figure 2.4 represents a simulation run in which one or both of the

metrics averaged from day 20 to day 60 was below threshold. We note that al-

though the results in Figure 2.3 might lead us to expect that there are simulation

runs of model 1 in which the average brood clumping metric between day 20

and day 60 is above threshold (and similarly for the pollen ring metric), Figure

2.4 indicates that no simulation run of model is above threshold with respect

to both averaged metrics. After introducing the revised honey/pollen rule in

model 2, we observe 9 simulation runs that are above threshold with respect to

both metrics. The parameter combinations leading to this outcome are listed in

Table 2.2. If in addition we bias the queen’s movement towards the center of

the comb as in model 3, we observe 16 simulation runs that are above threshold

with respect to both metrics. The parameter combinations leading to this out-

come are listed in Table 2.3. The significance of the parameter combinations that

lead to pattern retention in models 2 and 3 will be discussed in Section 2.4.

Figure 2.3 seems to indicate that there is a significant difference between the

mean of the time-averaged pollen ring and brood clumping metrics of model 1

and the corresponding means of models 2 and 3. We can quantitatively confirm
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Run No. n rb rn ω ρph ρp ρh χ k mp mb

1 108 3 1 1420 0.5 1.07 1.05 1 9 5.32 12.5
2 97 2 3 1945 0.76 0.99 1.08 1 19 5.29 12.51
3 70 4 3 3370 0.33 0.94 1.09 0 18 5.3 12.84
4 75 2 3 2275 0.67 1.08 0.92 0 14 5.26 12.26
5 116 3 1 3520 0.81 1.06 1.04 0 16 5.38 12.22
6 112 2 1 3445 0.73 0.99 0.95 0 13 5.29 12.29
7 88 3 1 1210 0.32 1.06 0.99 1 9 5.3 12.72
8 119 4 4 1165 0.57 1.03 1 1 19 5.33 12.03
9 97 4 1 1150 0.28 0.94 1.1 0 15 5.34 12.94

Table 2.2: Model 2 parameter contributions that result time averaged metrics mp and mb

that are both above their respective thresholds.

Run No. n rb rn ω ρph ρp ρh χ k mp mb

1 102 4 4 1885 0.94 0.96 1.03 0 12 5.4 12.22
2 90 4 2 1930 0.51 0.96 1.08 0 16 5.29 12.88
3 90 3 1 1000 0.97 1.02 0.99 0 16 5.41 13.07
4 110 3 3 2140 0.88 0.92 0.97 0 15 5.43 12.85
5 108 3 2 3580 0.22 1.05 1.02 0 14 5.26 12.1
6 118 4 2 2440 0.36 0.9 1.01 2 14 5.43 12.66
7 89 2 3 1300 0.25 1.03 1.1 0 9 5.49 12.5
8 103 3 1 1015 0.68 1.06 0.92 2 9 5.38 12.27
9 112 2 1 3445 0.73 0.99 0.95 0 13 5.47 12.06
10 88 3 1 1210 0.32 1.06 0.99 1 9 5.32 13.08
11 79 4 3 3790 0.24 0.99 0.91 1 19 5.25 12.01
12 104 2 2 3415 0.41 0.98 0.93 1 17 5.31 12.24
13 70 2 2 2830 0.64 0.91 1.01 2 6 5.49 12.2
14 105 3 1 3865 0.37 0.95 1.09 1 9 5.38 12.88
15 101 1 4 3220 0.97 1 1.05 0 17 5.44 12.25
16 99 1 3 1585 0.95 1.02 1.02 2 9 5.32 12.39

Table 2.3: Model 3 parameter contributions that result time averaged metrics mp and mb

that are both above their respective thresholds.

this intuition by performing one-way ANOVA. The results for the test applied

to the time-averaged pollen ring metric are seen in Figure 2.4. We preprocess

the data by removing every run in which the pollen ring metric was undefined

at any time between day 20 and day 40. Recall that the pollen ring metric is un-

defined when there are no honey storage cells on the comb. We conclude form

the results of the ANOVA test that it is highly unlikely that the observed pollen

ring metrics from models 1, 2, and 3 are drawn from distributions with the same

mean. A multicomparison test shows that the mean time-averaged pollen met-
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Source DF Sum of squares Mean squares F ratio F probability
Within groups 2 7.2365 3.61825 24.51 8.08 × 10−11

Between groups 441 65.1077 0.14764
Total 443 72.3442

Table 2.4: One-way ANOVA test results for the average pollen ring metric over day 20 to
day 60. It is highly unlikely that the average pollen ring metrics from the simu-
lation runs of models 1, 2, and 3 were drawn from distributions with the same
mean. ANOVA tests for average brood clumping were even more pronounced.

ric of model 1 is significantly different than that of models 2 and 3, while the

mean time-averaged pollen metric of models 2 and 3 are not significantly dif-

ferent. We performed an identical analysis for the brood clumping metric and

found an even more pronounced difference between the models.

Sensitivity testing: As discussed in Section 2.2.7, the use of Latin hypercube

sampling for parameter selection enables us to perform a straightforward sen-

sitivity analysis via multiple linear regression. A graphical summary of this

analysis is seen in Figure 2.5. Here we include only the analysis of models 1 and

2, because the sensitivity profiles of models 2 and 3 are qualitatively similar.

For both models 1 and 2, the brood clumping metric is relatively inelastic

with respect to most parameters, with the notable exception in both models be-

ing the brood clumping metric’s dependence on n, the number of oviposition at-

tempts per hour. In both models, increasing the number of oviposition attempts

per hour increases the average brood clumping metric. This agrees with our in-

tuition, as increasing the number of oviposition attempts per hour increases the

likelihood that the queen will be place an egg in a recently vacated brood cell.

The elasticity of the pollen ring metric varies quite widely between model 1

and model 2. For most parameters, an identical increase in parameter value in
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Figure 2.5: Sensitivities for models 1 and 2. The sensitivity of models 2 and
3 were qualitatively similar. The “elasticity” is the proportional
change in the value of the metric relative to the change in the
parameter value. A positive elasticity indicates that the metric
increases with the parameter while a negative elasticity indi-
cates that the metric decreases with increases in the parameter.
See Table 2.1 for parameter definitions and ranges.

model 1 and model 2 will on average simply result in a larger decrease in the

pollen ring metric in model 1 than in model 2. However, there are cases where

identical parameter increases will result in an increase in pollen ring metric in

model 2 and a decrease in pollen ring metric in model 1. Perhaps most notable

is the parameter k. Recall that in model 1, the parameter k represents the num-

ber of loads of honey/pollen that will be removed from a cell completely sur-

rounded by brood if it is chosen for consumption, while in model 2, the param-

eter k represents the ratio of the probability that a cell completely surrounded

by brood will be chosen for consumption to the probability that a cell with no

brood neighbors will be chosen for consumption. The elasticities of k in models

1 and 2 are markedly different. Increasing k in model 1 leads to a substantial

decrease in the pollen ring metric, while increasing k in model 2 results in a

moderate increase in the pollen ring metric.
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The elasticity analysis also features some results that might seem at first

counterintuitive. For instance, increasing rb, the upper bound on the minimum

distance from a brood cell at which the queen will oviposit, results on average in

a decrease in both brood clumping metric in both model 1 and model 2. While

it might at first seem that larger rb would result in a denser brood region, our

results here show that larger rb more often allows the queen to oviposit well out-

side the current brood region, thus lowering the brood clumping metric. With

that being said, many simulation runs with rb = 1 eventually had no brood on

the comb, and so were not included in this sensitivity analysis. This is especially

relevant in model 1, where all simulations with rb = 1 eventually had no brood

on the comb. Together, these illuminate a natural tension: there is a parameter

threshold below which the patten disintegrates, but on average increasing the

parameter decreases one or both of the parameter metrics. It bears remember-

ing that the elasticities featured in Figure 2.5 are simply linear fits over the entire

observed parameter range. We allow, and expect, the parameters to have non-

linear effects on the metrics that are not captured by this sensitivity analysis, as

well.

Model validation: While our work here is primarily focused on pattern reten-

tion over multiple brood gestation cycles, it is also important to confirm that

the models investigated here are capable of forming the cell allocation pattern

from a nearly empty comb. Our modeling framework contains the same general

pattern formation processes that Camazine described [18], but to check that our

models would in fact create the initial pattern of a compact brood region sur-

rounded by a ring of pollen, we performed simulations starting with an empty

comb for all three models for the first twenty days. Figure 2.6 shows an example
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(a) Model 1 (b) Model 2 (c) Model 3

Figure 2.6: Day 20 of a simulation run demonstrating that each model is
able to create the desired pattern on an empty sheet of comb.
Model 1 has parameters n = 79, rb = 3, ρh = 3, ω = 1930, ρph =

0.2536, ρp = 1.0436, ρh = 0.6799, χ = 2, k = 13, model 2 used
parameters n = 79, rb = 3, ρh = 3, ω = 1930, ρph = 0.2536, ρp =

1.0436, ρh = 0.6799, χ = 2, k = 13, and model 3 used parameters
n = 86, rb = 3, ρh = 4, ω = 1480, ρph = 0.3748, ρp = 1.0345, ρh =

0.6900, χ = 2, k = 10.

of a well formed pattern for each model at day 20. For model 1, our simulations

reproduced Camazine’s results [18]. All three models are able to form the initial

pattern for a range of parameter values. The final pattern is not perfect, but the

compact brood region forms and the pollen ring is visible.

Given the stochastic nature of the simulation, there is the natural question as

to whether a given simulation of a particular parameter combination is repre-

sentative of the behavior in general. Figure 2.7 shows metric traces for 20 sim-

ulations of one parameter combination applied to models 2 and 3. The traces

of both metrics are relatively tight, and in particular, all traces are qualitatively
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similar in that all exceed the metric thresholds most of the time. All brood met-

rics were within 15% of the mean, and all pollen ring metrics were within 5% of

the mean.

2.4 Discussion

This study is the first to consider how cell allocation patterns can be maintained

over multiple brood gestation cycles. We acknowledge that our work here is a

drastic simplification of what is a rich and complex natural phenomenon, and

that the patterns created and maintained by the models we present in many

cases capture only some of the qualitative aspects of cell allocations observed

in the wild. For instance, we ignore the existence of other combs in the colony,

the highly complex and variable availability of nectar and pollen, the extreme

shifts in colony population over the course of a season, anisotropies introduced

by gravity, and myriad other effects. Yet it is exactly this extreme simplifica-

tion that makes our results interesting; pattern formation and retention, at least

in a qualitative sense, are achievable with only a few simple rules. Below we

present the level to which pattern retention occurs in each of the three models

and discuss the significance of the rules and information that were necessary to

introduce in order to achieve a given level of pattern retention.

Figure 2.2 shows anecdotally that model 1 is not capable of maintaining the

pattern over a 60 day period, while models 2 and 3 are. In order to more pre-

cisely discuss the quality of an observed pattern, we have introduced a brood

clumping metric mb(t) in Equation 2.8 and a pollen ring metric mp(t) in Equation
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Figure 2.7: To test the consistency of the model, 20 replicate simulations
were performed for the parameter sets that resulted in the
highest average metrics for models 2 (left panels) and model
3 (right panels). For model 2, this was n = 97, rb = 4, ρh = 1, ω =
1150, ρph = 0.2764, ρp = 0.9362, ρh = 1.097, χ = 0, k = 15. For
model 3: n = 90, rb = 3, ρh = 1, ω = 1000, ρph = 0.9719, ρp =

1.0206, ρh = 0.9854, χ = 0, k = 16. Trajectories of the brood
clumping metric (top panels) and pollen ring metric (bottom
panels) for these twenty simulations show a tight fit for the
pollen ring metric with a mean average metric (over the last
40 days) of 12.98 ± 0.30 S.D. for model 2, and 12.64 ± 0.23 S.D.
for model 3 with all of the runs maintaining an average brood
clumping metric above the desired 5.25. The brood metric is
more variable with a mean metric of 5.13 ± 0.17 S.D. for model
2, and 5.14±0.15 for model 3. Only six model 2 and four model
3 runs had an average brood clumping metric above the de-
sired 5.25, but all of the runs had an average brood clumping
metric above 4.79.
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2.9. We average these metrics over days 20 to 60 to form mp and mb, respectively,

in order to discard transients and smooth out stochastic effects. Through obser-

vations of well formed patterns and the associated brood clumping and pollen

ring metrics, we say that a simulation with mb ≥ 5.25 and mp ≥ 12 exhibits a well

formed pattern.

These thresholds for the pattern metrics agree with anecdotal evidence. Of

the 200 simulation runs of model 1 performed, none exhibited a well formed

pattern. To make model 2, we modify model 1 to by changing the honey/pollen

consumption rules as described in Section 2.2.4. Here we observe 9 of the 200

simulation runs exhibit a well maintained pattern. We emphasize that rules

for oviposition, honey/pollen consumption, and honey/pollen deposition in

model 2 are based solely on local information available to each bee. The 9 pa-

rameter combinations that resulted in a well formed pattern in model 2 are listed

in Table 2.2. It is tempting to interpret the data listed there as definitive indica-

tors of the types of parameter combinations that are amenable to model 2 main-

taining the desired pattern. But we take any such interpretation with a grain

of salt, as our sampling is probabilistic in nature and our parameter space is

very large. With this warning in mind, we can make several observations. We

note that n, the number of oviposit attempts made by the queen in an hour, is

between 70 and 119. The observed minimum here is roughly 20% higher than

the minimum allowable value, perhaps indicating that small values of n lead

to poor pattern retention. This would agree well with the sensitivity analysis

of model 1 featured in Figure 2.5(b). Similarly, the parameter rb, the maximum

distance from an existing brood cell at which the queen will oviposit, never as-

sumes value rb = 1. Here we can be more definitive, because each model 1

42



simulation in which rb = 1 results in a comb without brood cells at some time

between day 20 and day 60. The parameter ω, representing the number of loads

of honey/pollen collected per day, achieves a large portion of its range, as do

parameters ρph, ρp, and ρh. Interestingly, the nectar collection schedule indictor

χ, never assumes value χ = 2 which would indicate that honey/pollen collection

was subject to a Markov process. This may indicate that model 2 is not capable

of maintaining the pattern in the presence of such variability. Finally, parame-

ter k, representing the strength of preferential choice of honey/pollen cells near

brood, does not assume values in the bottom 25% of its allowable range, per-

haps indicating that pattern retention fares better when stronger preference is

given to cells near brood. This is in good agreement with the sensitivity analysis

featured in Figure 2.5(b).

In model 3, we incorporate the preferential consumption rule of model 2

and additionally bias the queen’s random walk towards the center of the comb

as described in Section 2.2.2. While we have presented literature that details

several behaviors of honey bees perform in response to temperature and tem-

perature gradients, there has been, to our knowledge, no work on the effect

of temperature gradients on the queen’s walk. Thus, while we may speculate

that the queen may be using such gradients to inform her movements across

the comb and hope that empiricists investigate this hypothesis, we must for the

time being treat the queen’s biased random walk as an introduction of global in-

formation into the model and acknowledge that this introduction makes pattern

formation and retention somewhat less impressive.

We observe that 16 of the 200 simulation runs of model 3 exhibit a well
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formed pattern. These parameter combinations are listed in Table 2.3. As with

model 2, the parameter n, the number of oviposit attempts made by the queen

in an hour, does not assume any value in roughly the bottom 20% of its allow-

able range. Note that in contrast to model 2, the parameter rb, the maximum

distance from an existing brood cell at which the queen will oviposit, assumes

values in its allowable range. Similarly, the nectar collection schedule indica-

tors χ and k, representing the strength of preferential choice of honey/pollen

cells near brood, now assume values in their full range. In all, these expan-

sions in parameter ranges which result in a well formed pattern together seem

to indicate that pattern retention is more robust in model 3 than in model 2.

Much of our current understanding of self-organization in biological sys-

tems is on the emergence of global order from initial disorganization through

local interactions between individuals [20, 18, 19, 91]. Our work extends this

conversation to consider the additional requirements for maintaining order af-

ter it has been established. In some systems, maintenance could reasonably be

expected from any process which can create order. However in honey bees,

the rules change fairly significantly after the initial pattern formation phase and

make it more difficult to maintain the pattern than to form it on an empty comb.

This is likely the case for many other patterns in nature. We hope this work

opens a larger discussion about whether the local interactions maintaining or-

der are the same as those that initially allowed for self-organization, or whether

new mechanisms must be investigated.
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CHAPTER 3

THE PUZZLE OF SUB-MAXIMAL RESOURCE USE BY A PARASITOID

WASP

Abstract

Heritable traits that increase individual fitness will dominate a population. It is

therefore puzzling when individuals use just a small fraction of limited avail-

able resources. Submaximal resource use has been studied extensively for a va-

riety of exploiter-resource systems, but typically these investigations consider

only one of the many plausible explanations for the behavior. We study this

question by considering all plausible reasons that the well-characterized and

extensively-studied specialist parasitoid wasp, Hyposoter horticola, might para-

sitize only a third of the eggs in each of its host’s egg clusters and then apply

a deterrent marking which is respected by other H. horticola females. First we

consider the possibility that the parasitoid is prevented from parasitizing all the

hosts by biological constraints, such as egg limitation and physical inaccessi-

bility of some hosts, by testing four hypotheses using experimental approaches.

Next, we consider the possibility that selection favors submaximal parasitism by

testing three hypotheses (e.g optimal foraging, cooperative benefits of unpara-

sitized hosts, and avoiding density-dependent hyperparasitism) using a combi-

nation of theoretical models and experimental data. We find that for H. horticola,

the most reasonable explanation is that submaximal resource use and deterrent

markings maximize the wasps foraging efficiency across a landscape.
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3.1 Introduction

There are strong individual benefits to being greedy, so for exploiter-resource

relationships to persist, something must keep the exploiter from overexploit-

ing its resource [73, 67, 120]. This could be a biological constraint that lim-

its how many, or which, resources are exploitable. For instance, phenological

asynchrony between an exploiter and its prey [40, 47, 111], or spatial refuge for

the prey [28] would protect a fraction of the prey population. Alternatively,

the exploiter may practice submaximal resource consumption. For example, a

predator might increase its lifetime fitness through prudent resource use [118],

or individuals could use bet-hedging strategies to increase geometric mean fit-

ness [27], or, a parasite could be very selective in its choice of hosts [13]. Among

exploiters, those that are parasites have the most direct motivation to make sure

the hosts can survive long enough to support or transmit their offspring. Sub-

maximal resource use in this context means parasitizing just a fraction of the

hosts, when many more could be parasitized.

We examine submaximal resource use as it relates a specific kind of para-

site, i.e. the parasitoid wasp, Hyposoter horticola in the Åland islands of Finland.

Parasitoids are parasitic insects that are free living as adults, but live, while de-

veloping, attached to or within a single host organism, which eventually kill

the host. Hyposoter horticola is an egg-larval parasitoid of the butterfly Melitaea

cinxia. The wasps locate host egg clusters in the weeks before they are ready

to be parasitized [107], use landmarks to remember their locations [110], para-

sitize a fraction of hosts in each egg cluster when the eggs near hatching and

become susceptible, then mark the egg cluster to deter other females [24]. In
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this way, H. horticola parasitizes roughly one third of nearly every host clus-

ter on the landscape [108] with each cluster parasitized by a single female [24].

Our goal in this paper is to explain why H. horticola, which is clearly resource

limited, parasitizes such a low fraction of the available hosts, takes the time to

mark the clusters it parasitizes, and, when considering a new cluster, respects

the deterrent markings of other wasps of the same species.

This puzzling set of behaviors could theoretically persist under a number

of basic evolutionary scenarios. In this paper, we consider seven plausible rea-

sons for submaximal parasitism by H. horticola (Table 3.1). We carefully consider

each hypothesis and use a combination of theoretical, empirical, and modeling

evidence to show that many of these hypotheses cannot explain parasitism re-

straint for H. horticola. This sort of careful comparative analysis of multiple plau-

sible behavioral hypotheses with experimental data and empirical observations

is rarely attempted. Each behavioral hypothesis has been studied individually

as it relates to particular systems, but not altogether for the same system. This is

because, in many systems, there is insufficient data for testing multiple hypothe-

ses or the interactions between species are prohibitively complex, resulting in

intractable models. The M. cinxia – H. horticola system is an ideal model system

because the interaction between the species is direct, with one parasitoid sup-

ported by and eventually killing a single host, and has been extensively studied

over 15 years [66, 108, 109]. Understanding the cause of submaximal parasitism

in this system could help advance understanding of the evolution of restraint in

exploitation more generally. In addition, the careful study of restraint in such a

tractable system contributes to the larger literature on submaximal exploitation.
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Hypothesis Short Explanation Test
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Wasp Egg 
Limitation

To parasitize the full host cluster, the wasp must 
have enough eggs. There is strong selective 
pressure toward not being egg-limited, but it is 
possible that the wasp is unable to produce more 
eggs.

Data from 
Couchoux 
et. al. (in 

prep)

Host Egg 
Architecture

The host eggs are laid in mounded piles, and the 
wasp may not be able to oviposit into the inner 
eggs of the cluster. In this case, there would be 
strong selective pressure toward longer 
ovipositers, but this might not be possible.

Experiment 
1

Host Egg 
Defense

The host eggs may protect themselves against 
parasitism in ways that are hard to detect (such 
as killing parasitoid eggs quickly after 
oviposition).

Experiment 
2

Ephemeral 
resource

There is a short window of opportunity during 
which host eggs are susceptible to parasitism. It is 
possible that only a fraction of the eggs are 
available at a time, or that the eggs are 
susceptible for such a short period of time that 
the wasp cannot parasitize them all. 

Experiments 
3 and 4
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Cooperative 
benefits

The gregarious host caterpillars depend on group 
cooperation for foraging and developing an 
adequate winter nest for survival. If parasitism 
decreases host performance and too many 
caterpillars are parasitized it is possible that the 
whole cluster will suffer severely.

Experiment 
5

Optimal 
Foraging

Over time the wasp experiences decreasing 
parasitism efficiency at a given egg mass, and 
after a while, it is beneficial for the wasp to spend 
time and energy finding an unparasitized cluster.

Model 
results and 
Experiment 

6

Avoiding 
Hyperparasitism

The wasp might parasitize a small fraction of the 
cluster to avoid heavy losses due to density-
dependent hyperparasitism. 

Experiments 
2 and 7

Table 3.1: An overview of the hypotheses that will be tested with a short
explanation of each and the main test of the hypothesis.
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3.1.1 Potentially Plausible Explanations

Multiple physical and physiological limitations could restrict the wasp’s abil-

ity to parasitize hosts (see table 3.1). First, the wasp may be egg limited with

only enough eggs at a given time to parasitize a third of a host egg cluster, or

only enough eggs in its lifetime to parasitize a small fraction of encountered

hosts resulting in choosiness about which hosts to accept [13, 48]. Second, the

butterfly mounds its eggs in piles and this physical arrangement may protect

the inner eggs from parasitism [50, 115, 53]. Third, the individual eggs are only

susceptible to parasitism for a short period of time. If the eggs develop asyn-

chronously, then many of them could be in a non-susceptible phase while the

wasp is present [41, 40, 14]. Alternatively, if the eggs mature synchronously

the wasp may only have enough time to parasitize a small fraction of the hosts.

Last, the host eggs may have immune defenses that kill the wasp egg/larvae

or otherwise prevent the wasp from ovipositing. One problem with all of these

physical/physiological constraints is that while all of them would explain why

only a fraction of the eggs are parasitized, none of them explain why the wasp

spends precious time applying a deterrent marking to host clusters or why other

individuals respect the marking when it is present.

If none of the above mechanisms constrains parasitism, the wasps are phys-

ically/physiologically able to parasitize more host eggs in each cluster and we

must then look at evolutionary pressures that could select for wasps exhibiting

restraint. Submaximal exploitation in other resource-exploiter systems is sup-

ported by a number of classical ecological or evolutionary explanations: pru-

dent predation [98, 117], bet-hedging [37, 38, 54], and optimal foraging [103].
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Prudent predation/parasitism is a form of group selection and is based on

the idea that restrained harvesting strategies increase resource availability for

future generations. For this to benefit the individuals practicing prudence, the

species must live in small subpopulations with extremely limited mixing [98,

117]. The ideal circumstance for prudence is a territorial predator consuming a

stationary resource that is renewed from within the predator’s range [72] with

a ratio of benefits to costs of prudence that is large compared to the ratio of

maximum number of individuals in each territory (the group) to the number

of territories (or groups) [105]. Prudence explains reduced predation in some

predator-prey systems [118], but does not work in many systems because of the

strict requirements for territoriality and resource renewal [46] and the relative

delay in and weakness of the benefit compared to other factors such as increased

number of offspring resulting from increased resource use [72].

Due to these strict requirements, the parasitoid wasp H. horticola is far from

the ideal system for the prudent predation theory. Individual wasps have large,

overlapping ranges with a small number of distinct populations and a large

number of wasps in each population. Though the host butterfly lives as loosely

connected networks of local populations in a fragmented landscape [44], the

wasp disperses widely among the local host populations. There are two lines of

evidence suggesting this. First, they are found in virtually all local host popula-

tions, colonizing new host populations the same year they originate even when

these new populations are at least one kilometer from other known populations

[108]. Second, while there is allelic variation in microsatalite markers when H.

horticola is sampled throughout Åland, there is little evidence of spatial genetic

structure across the Åland islands [61]. Thus, prudence is unlikely to be favored
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in this system.

Another possibility is that the wasps are parasitizing a small fraction of each

cluster so that they can reduce their risk by spreading their eggs between mul-

tiple host clusters or multiple habitat patches. Bet-hedging (or risk aversion) is

the idea that highly variable survival rates give individuals who decrease the

variability in the survival of their offspring a competitive advantage. There are

two basic kinds of variability of survival that can lead to risk aversion: spa-

tial and temporal. In temporally variable environments, behaviors that reduce

the year-to-year variability in survival increase the geometric fitness [38]. Seed

banks are an example of this type of risk spreading [22, 114]. In spatially struc-

tured environments with larger population sizes, risk-averse behaviors that re-

duce an individual’s within year variability in fitness do not appreciably in-

crease the expected fitness of the genotype because the gene is effectively al-

ready spread across the landscape. If the population size is extremely small,

then bet-hedging decreases the probability of extinction of a particular geno-

type in a population [37, 54] and can have selective benefits. When populations

are extremely small, risk-averse lineages may have a competitive advantage,

but when the population becomes larger this advantage disappears.

H. horticola parasitizes roughly a third of the eggs in each host cluster. The

host nests have spatial and temporal variability in the chance of whole cluster

mortality due to summer drought, winter severity, and predation [64, 106]. The

observed parasitism rates could reflect a choice to divide a limited number of

eggs among multiple clusters to decrease survival variability. For one wasp,

dividing her eggs among more clusters might reduce the variance in offspring
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[54]. But selection acts on the mean fitness of alleles, so the geometric mean fit-

ness of any one female isn’t the quantity that matters. What matters is the total

reproductive success of all females carrying the allele, and since the population

of H. horticola wasps is large the expected fitness would remain virtually the

same. Thus, selection would not favor this type of risk averse behavior. In ad-

dition, risk-aversion would not explain why deterrent markings are employed

and respected.

The third possible theory is optimal foraging, which assumes that the for-

aging behavior of individuals evolves to maximize their fitness [84]. In a het-

erogeneous landscape, foraging individuals must make decisions about how to

move through the landscape and optimize their fitness in response to the local

abundance of resources. If a forager depletes resources in an area, then the indi-

vidual will experience diminished efficiency as it spends longer at a particular

site. An individual who is foraging optimally will balance this decreasing ef-

ficiency against the time and energy costs of searching for new foraging sites

[21]. At some point, the expected efficiency of relocating will equal the current

efficiency in the site, and at this point it will be beneficial to leave the site to

find another. Optimal foraging models maximize net energy gained per unit

time for the predator and are especially useful when there is variability or de-

pletion in prey quality or abundance at a site. These models typically require

that the individual’s fitness depends on the foraging behavior, is passed on to

offspring, and evolves more quickly than relevant conditions change [84]. There

are many examples where predators leave a foraging location before resources

are depleted because of diminished foraging efficiency [87, 72, 88]
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For H. horticola, there would be some optimal time to leave one host egg

cluster to search for another, unparasitized, cluster. This optimal leaving time

would determine the fraction of the cluster parasitized. For optimal foraging to

predict submaximal exploitation, individuals must suffer decreased efficiency

or increased costs when they spend too long parasitizing a larger fraction of

each host cluster. The cost of leaving is that there is competition over host clus-

ters and there is a good chance that the wasp will not find another suscepti-

ble host cluster. The most basic optimal foraging model that we will consider

posits that H. horticola experiences decreasing efficiency with additional time

at a cluster because it is more likely to encounter host eggs that it has already

parasitized. In addition, there are two, more specialized, density-dependent

costs that could further decrease the parasitism rates. The first is that highly

parasitized nests of gregarious host larvae may not be able to function as they

should, and suffer higher rates of whole cluster mortality. The second is if

the hyperparasitoid Mesochorus stigmaticus (parasitoid of the parasitoid) of Hy-

posoter horticola responds positively to local parasitoid density, spending more

time at highly parasitized clusters. For the gregarious behavior model it would

be beneficial to apply and respect deterrent markings. Either optimal foraging

model could explain why deterrent markings are applied and respected if the

wasps are marking as a signal to themselves (which happens to be beneficial to

other wasps as well).
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June:
Butterfly 
lays eggs 
in clusters

3 weeks 
later: 
Wasp lays 
eggs  
inside 30% 
of hosts 

Days later: 
Host 
hatches into 
caterpillars, 
some 
contain 
wasp 
larvae. 

Over the 
next few 
weeks: 

Some wasp 
larvae are 
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within the 

caterpillars.

September:
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Butterfly

Wasp's 
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most one adult 
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from each 
caterpillar
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Parasite

Wasp
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Figure 3.1: Diagram of key species interactions between the host M. cinxia,
the parasitoid H. horticola and its parasitoid M. stigmaticus.
Drawings of the wasp and butterfly were creates by Zdravko
Kolev, photographs by Saskya van Nouhuys

3.1.2 Research System

The host of the parasitoid H. horticola is the checkerspot butterfly Melitaea cinxia

(Lepidoptera: Nymphalidae) which has a Eurasian distribution. In the Åland

islands of Finland it lives in small and extinction prone populations in networks

of habitat patches of small dry meadows [110, 108, 66]. Suitable habitat for the

butterfly is comprised of about 4000 habitat patches within an area 3500 km2

[82, 45]. There are 300 to 500 local butterfly populations and all habitat patches

are surveyed each year [44].

Individual butterflies lay clusters of 150-200 eggs on the leaves of the host

plants (Plantago lanceolata and Veronica spicata) in June [66, 108]. These eggs take

approximately two to three weeks to develop. Shortly before hatching, most
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of the local host populations of M. cinxia in Åland become parasitized by H.

horticola, which is a mobile, and solitary egg-larval endoparasitoid wasp [108,

66, 61, 107]. Hyposoter horticola has no hosts other than M. cinxia [97]. Females

typically spend 20 to 60 minutes at each host cluster, parasitize roughly a third

of the eggs, then mark the leaves around the egg cluster. This mark deters other

conspecific wasps from parasitizing the remaining eggs [24].

All host eggs then hatch into caterpillars, some of which contain the para-

sitoid larvae. The caterpillars spin a communal silken web on the food plants.

During the summer, the hyperparasitoid, Mesochorus stigmaticus, parasitizes

some of the H. horticola larvae contained in the caterpillars. The caterpillars

continue to live gregariously and in the fifth larval instar at the end of the sum-

mer when they diapause through the winter in a dense silken nest [108, 66].

In the spring, they moult twice and the fully developed caterpillars disperse to

pupate for 2-3 weeks under vegetation. Just before pupation of the caterpillar

would happen, the parasitoid and hyperparasitoid consume the host, kill it, and

pupate. The butterflies and the wasps emerge in early June.

3.2 Methods and Results

In the following sections we present both the tests and the results of each hy-

pothesis for submaximal parasitism (Table 3.1). We start by considering four

possible biological reasons that the wasp might not physically or physiologi-

cally be able to parasitize all of the host eggs in a cluster.
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3.2.1 Wasp egg limitation

Parasitoids which are egg limited (i.e. they don’t have enough eggs to parasitize

all of the hosts they encounter in a patch or lifetime), often reduce their para-

sitism rates by becoming choosy about which hosts they will accept [13, 48].

If H. horticola females did not have enough eggs at any one time to parasitize

a full host egg cluster then that would explain observed parasitism rates but

would not explain the deterrent marking behavior. H. horticola has a 10 day

pre-ovipositional period in which eggs are developing and the wasp does not

actively forage. Once mature, female wasps contain about 550 eggs (x̄ = 550, SD

= 173) in their ovaries and oviducts [25]. Thus, each wasp generally has plenty

of eggs to parasitize the 100 to 200 host eggs in each host cluster.

3.2.2 Host Egg Cluster Architecture (Experiment 1)

Some insects effectively protect their eggs from parasitism by creating a mound

where inner eggs are inaccessible to the parasitoid ovipositor [50, 115, 53] with

up to half of the eggs protected in the inner layers of optimally shaped piles [36].

Since M. cinxia butterflies lay their eggs in mounds, the inner eggs may be pro-

tected from parasitism by H. horticola. We test this hypothesis (experiment 1) by

comparing rates of parasitism of hosts from each part of the cluster (inner and

outer).1 Eleven host egg clusters were laid on plants by lab-reared butterflies

under laboratory conditions and exposed to parasitism in the laboratory by one

1Experiment 1 was designed by S. van Nouhuys, performed by L. Salvaudon and analyzed
by K. J. Montovan
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H. horticola wasp each (see Appendix A.1 for more details). Seven wasps were

used for this experiment, with three wasps each parasitizing a single cluster

and the other four parasitizing two clusters each. Immediately after parasitism

the outer layer of eggs was separated from the rest of the cluster. Both groups

were reared to second instar and individuals were dissected to determine the

parasitism level. The overall mean parasitism frequency for the clusters was

46% (±18% SD). The difference between the mean parasitism frequency of the

two groups was −5.2% (±14.6% SD) with inner and outer eggs being parasitized

equally. The wasps parasitized both groups of eggs and there is no meaning-

ful difference in the parasitism rates. Thus, there is no evidence that mounding

protects the inner eggs.

3.2.3 Host egg immunological defense (Experiment 2)

Hosts often defend themselves against endoparasitoids by encapsulating para-

sitoid eggs or small larvae [65]. Encapsulation of H. horticola by M. cinxia has

never been observed (van Nouhuys, personal observation) and generally the

immune response of very young insects (embryo) is weak [39, 33]. However, it

is possible that if parasitoid eggs are encapsulated or killed in another way at

a very early stage they would not be detected upon dissection. If this were the

case we might expect that such early investment in immune response, which

comes at a cost [92, 2] would be absent from M. cinxia populations that lack the

parasitoid H. horticola.

To test this hypothesis, we compared the rate of parasitism by H. horticola
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from Åland presented with egg clusters from Åland and egg clusters from Mo-

rocco (experiment 2).2 Hyposoter horticola is not present in the Moroccan popu-

lation of M. cinxia. The only known parasitoid of that population is Cotesia meli-

taearum (van Nouhuys, personal observation), which is also present in Åland,

and which parasitizes older M. cinxia larvae [61]. Thus, in Morocco the hosts

would not benefit from investment in early defense mechanism against the par-

asitoid.

For this experiment caterpillars were collected from several nests in the Mo-

roccan highlands and also Åland, then were reared under laboratory conditions

to pupation (see details in Appendices A.1 and A.2). Both types of butterflies

(from Åland and Morocco) were mated and allowed to laid eggs on potted host

plants Veronica spicatta. When the eggs were about two weeks old and just about

ready to hatch, we exposed them to parasitism, each by a single wasp from

Åland. We dissected the host larvae when 1-2 weeks old to determine the para-

sitism frequency in each host egg cluster. In total 26 egg clusters (11 from Åland

and 15 from Morocco) were parasitized, each by a different wasp from the Åland

population (see Table A.1 for summary results).

We compared the fraction of M. cinxia eggs parasitized in clusters from

Åland and Morocco by wasps from Åland using a t-test. The wasps parasitized

eggs from both origins at the same frequency (28% ± 17% SD, t = −0.0047, d f =

19.458, p = 0.9963). Thus, we do not find evidence that there is locally evolved

resistance in Åland restricting the parasitism.

2Experiment 2 was designed by S. van Nouhuys, performed by S. van Nouhuys and C. Cou-
choux, and analyzed by C. Couchoux
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(a) Yellow (b) Creamy (c) Speckled (d) Grey-topped (e) Black-topped

Figure 3.2: Photographs of an egg from each visual maturity classes

3.2.4 Ephemeral resource use (Experiments 3 and 4)

Temporal asynchrony of the adult parasitoids with the susceptible stage of the

host can create a short ‘window of opportunity’ [41, 40, 14]. Hyposoter horticola

parasitizes its hosts while they are newly formed larvae still in the egg. Melitaea

cinxia eggs start out as bright yellow, and when a cluster is completely bright

yellow the wasps won’t (or can’t) parasitize it. As the eggs mature they change

to a creamy color, then develop a couple of dark specks, then the top of the

egg turns grey and later, just before the host larvae emerges, the top of the egg

is nearly black. Figure 3.2 shows pictures of eggs in each of these five visible

developmental phases. The host larvae become susceptible shortly before they

emerge from their eggs. When the larvae start to hatch, the wasps are no longer

interested in the cluster. If the window of opportunity for parasitism is short,

and the eggs hatch asynchronously, then the parasitoid may only have enough

time to parasitize a small fraction of the host eggs in a cluster before they hatch.

For example, if it takes the wasp one minute to parasitize each egg in a 100

egg cluster but all of the eggs in the cluster are only available for 30 minutes,

then a wasp would be able to parasitize only 30% of the cluster before the entire
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cluster hatches. Alternatively, host eggs may develop at slightly different rates,

so it is likely that some eggs become susceptible first, and as they develop and

hatch, others become available. Thus, if the wasp spent only a limited amount

of time at a cluster, only a fraction would be available for parasitism. For ex-

ample, again say there is a cluster of 100 eggs, but now eggs are susceptible to

parasitism for 100 minutes, but at any time only 30 eggs are ‘ripe’. Then a wasp

visiting the egg mass could parasitize all of the susceptible eggs (30% of the

cluster), and would then have to decide whether to wait for others to develop

or move on to another cluster.

In order to test the hypothesis that the wasps are constrained by the devel-

opmental rate of the host egg, we first determined which visible phases of egg

development are parasitized by the wasp (experiment 3).3 19 host egg clusters

were exposed to parasitism, each by a single H. horticola wasp (see Appendix

A.1 for details on how the wasps and host egg clusters were obtained). 11

wasps were used for the experiment, two parasitized three egg clusters, four

each parasitized two clusters, and four parasitized a single cluster. Directly af-

ter parasitism the eggs were separated based on visual appearance into four

groups: yellow/creamy, speckled, grey-topped, and black-topped.

The fraction of eggs parasitized in different categories of egg maturity were

compared using a generalized linear model with a binomial error distribution

and logic link function in the statistical software R [86]. Whether or not an egg

was parasitized was modeled as a function of the cluster id and the maturity of

the egg classified into four groups (creamy, speckled, grey-topped, and black-

topped, see Fig. 3.2). We found that all of the egg maturity levels tested were

3I designed, performed and analyzed this study
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susceptible to parasitism. The wasps would not probe the cluster until the eggs

were more mature, so we were unable to test the susceptibility of less mature

eggs (yellow). There was no significant difference in the parasitism of the four

developmental phases of the eggs, but the levels of parasitism were significantly

different in some of the clusters. This could be due to a number of factors unre-

lated to the development of the eggs (e.g. slight changes in lighting or laboratory

conditions, differences between wasps, accessibility of egg cluster, etc.).

Now that we know that the last four categories of eggs are susceptible to par-

asitism, we want to determine if the wasp is limited by the fraction of the cluster

that is in a susceptible phase or by the total time each cluster is susceptible. To

answer both questions, I took hourly photographs of ten egg clusters over the

last one to five days of development (experiment 4). For each cluster, I made a

conservative estimate of the number of hours that essentially all of the eggs in

the cluster were in one of the last three visible phases of development (speckled,

almost black topped, black topped). The minimum window of susceptibility of

an egg cluster was approximately 28 hours (mean=64 hours, standard devia-

tion=38 hours). Wasps can probe approximately 1 egg per minute (computed

in Appendix A.3). This window of opportunity is long enough for the wasps

to find the cluster and parasitize much more than 30% of the host eggs. Thus,

we did not find that the wasps were constrained by the rate of development of

eggs, or synchrony of egg development in a cluster.

Therefore, the wasps have enough eggs in the ovary and oviduct to para-

sitize a whole cluster. All of the eggs in the cluster are physically accessible to

the ovipositor, and the eggs are susceptible to parasitism for more time than the
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wasp attends to the cluster. Although it is conceivable that some hidden factor

could be keeping females from parasitizing more hosts than they do, we have

tested all the factors for which there is any evidence in this system or others, so

the reasonable assumption is that the female could parasitize more host eggs.

The observed 30% frequency is then a behavioral decision rather than the re-

sult of a physical/physiological constraint. The following models consider the

plausible evolutionary reasons that the wasp might behave in this way.

3.2.5 Cooperative benefits of unparasitized hosts (Experiment

5)

Many insect species that live gregariously during development, even those that

are not social as adults, benefit from being in large groups as larvae [23]. Meli-

taea cinxia, the host of H. horticola, lives gregariously through their whole larval

development and group size is positively associated with development rate,

foraging success, and overwintering survival [106, 64]. In general, parasitized

insects which continue to grow after being parasitized may perform poorly due

to the cost of harboring the developing parasitoid larva [15, 83]. In a gregarious

setting, if parasitized individuals are frail and do not contribute as much to the

group, then the individual fitness of all members of highly parasitized groups

could decline. This reduced fitness could favor the evolution of parasitoid re-

straint.

To determine the effect of parasitism frequency on host performance, we
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manipulated the fraction of larvae parasitized in a nest in a replicated laboratory

experiment and measured the rate of development, size at diapause, production

of silk, and size at pupation of the hosts and parasitoid (experiment 5).4 The host

egg clusters were laid by M. cinxia butterflies under laboratory conditions on

potted plants, then exposed to parasitism in the field, and brought back to the

laboratory. Since young parasitized M. cinxia caterpillars are indistinguishable

from unparasitized ones the actual fraction parasitized of each constructed nest

was not known until the end of the experiment. To ensure a well distributed

range of group parasitism frequencies, groups of a set size were constructed by

mixing caterpillars from field parasitized clusters with caterpillars that were not

exposed to parasitism. Aggregate groups of larvae were left undiluted, mixed

1:1, or from only unparasitized host nests. For the pre-diapause study, we used

newly hatched caterpillars to construct 39 composite replicated groups of 40

larvae ranging in parasitism from 0 to 65%. They developed in these groups

under laboratory conditions, making their silken winter nest, and going into

diapause. At diapause, the larvae were weighed and dissected to determine the

actual fraction parasitized in each nest. To assess the winter silk, the groups of

caterpillars were sorted (blind to the level of parasitism) into 5 groups based

on the amount of silk produced. Post-diapause larval growth was determined

using another set of 30 lab-reared and field-parasitized composite groups of 25

larvae with 0 to 60% of host larvae parasitized in each group. These larvae were

monitored as they developed from breaking diapause until metamorphosis.

Parasitism frequency did not have an effect on the rate of development to

diapause of the host (p − value = 0.3211) or post-diapasue to pupation for H.

4Experiment 5 was designed by Saskya van Nouhuys, and performed and analyzed by
David Muru.
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Figure 3.3: A box plot of the distribution of parasitism rates that result
each index of winter silk production. Silk production is mea-
sured on a scale of 1 (least silk) to 5 (most silk). The group
with the highest amount of silk production (5) is significantly
different from the 4 lesser categories (p < 0.001) according to
ANOVA analysis in R [86].

horticola (R2 = 0.03906), the weight at diapause of M. cinxia (R2 = 0.009408)

or pupation of H. horticola (R2 = −0.004704), or mortality of H. horticola (R2 =

−0.02778). Somewhat surprisingly, we found that larval groups with the highest

fraction parasitized created the most silk for their winter nests (Fig 3.3). We did

not test the actual performance of the winter nests but believe that the amount

of silk is a fairly good indicator of the quality of the winter nest [64].

3.2.6 Optimal Foraging (Model results and Experiment 6)

There are many examples where predators leave a foraging location before re-

sources are depleted because of diminished foraging efficiency [87, 72, 88]. H.
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Figure 3.4: For any process involving random selection with replacement
(like for H. horticola) there is a growing chance that the same
item will be encountered multiple times. The green line shows
the number of times the wasp probes the cluster, while the red
line shows the total number of eggs probed (at least once). In
this figure, we assume that the wasp lays an egg every time it
probes. As the wasp parasitizes more eggs in the cluster the
number of singly parasitized hosts increases to a maximum at
N/d then decreases as these hosts become multiply parasitized.
This creates a decreasing parasitism efficiency (number of hosts
parasitized per unit time spent). This figure was created by
Saskya van Nouhuys.

horticola experiences diminishing foraging efficiency as it spends more time at a

host cluster because it becomes more likely to encounter previously parasitized

hosts and only one wasp larvae can develop within each host. H. horticola is

much larger than the host eggs and probes eggs randomly, making multiple

somewhat haphazard passes across the eggs, and continuing to probe a few

times when its ovipositor is no longer near eggs before turning around to make

another pass [Montovan, Pers. Obs.]. Thus the wasp randomly probes eggs,
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with seemingly no way to avoid encountering previously parasitized host eggs,

which are not useful for the parasitoid. As H. horticola spends more time at an

egg cluster it parasitizes a greater fraction of the eggs and it becomes more likely

that the wasp will probe eggs that it has already parasitized (Figure 3.4). Since

only one H. horticola larvae can develop within each host, the wasp’s efficiency

(number of ovipositions per unit time) decreases as it spends more time at each

egg cluster. We hypothesize that under some circumstances this simple man-

ifestation of optimal foraging would be enough to explain the 30% parasitism

frequency of H. horticola.

In order to test the idea, we construct an optimal foraging model. We esti-

mate the fraction of hosts parasitized (g(t)) when the wasp spends t minutes at

a host cluster containing α host eggs using a Poisson distribution. This distri-

bution expresses the probability that a particular egg is probed when the wasp

spends t minutes probing the cluster. We use the probing efficiency, b (in eggs

probed per minute at a cluster) to calculate that the wasp probes approximately

bt eggs during its visit. Then, according to the poisson distribution, the prob-

ability that an egg is not probed is e−λ where lambda is the expected number

of events in the timeframe, i.e. the number of eggs the wasp probes divided

by the number of eggs in the cluster. Thus, the expected parasitism frequency is

g(t) = 1−e
−bt/α . Since α is large, this is a reasonable approximation to the more re-

alistic binomial distribution. We estimate b from laboratory data (see Appendix

A.3 for details). The expected number of the eggs in the cluster that are probed

at least once is

αg(t) = α(1 − e
−bt/α) (3.1)
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This parasitism frequency function assumes that only one wasp parasitizes

each cluster and that if the host is parasitized multiple times, one, and only one

wasp larvae survives. In this case, wasps might try to avoid laying multiple

eggs in each host because it is a waste of time and eggs. On the other hand, if

multiple parasitisms of the same host kills all the wasp larvae, then there would

be stronger selection for individuals that avoid super parasitism (through egg-

checking or lower parasitism rates). To understand the frequency or multiply

parasitized hosts, we expose host eggs to parasitism and dissect the host larvae

soon after hatching to count the number of parasitoid eggs they contain (exper-

iment 6). We expose host egg clusters (laid on potted plants by M. cinxia butter-

flies from Åland) to parasitism in the laboratory to parasitism by one wasp or

multiple wasps and also put the eggs in the field to be parasitized. A total of 35

parasitized clusters were then dissected to determine the likelihood of multiple

parasitisms (superparasitism) within single host larvae. These dissections show

that although only one wasp reaches maturity within a given host, superpar-

asitism does occur and is detectable in the lab. The observed superparasitism

rates were compared to the expected rates under the assumptions of random

probing (solid black line in Fig. 3.5) and were found to be lower than expected

assuming purely random oviposition for all treatments: parasitized by a single

wasp, multiple wasps, or in the field by an undetermined number of wasps.

Since the wasp appears to probe the eggs randomly (and somewhat haphaz-

ardly), this suggests that the wasp is able to detect previously parasitized eggs

and avoid superparasitism to some extent.

We tested this hypothesis by fitting the same data set to a non-linear model

of random probing with a probability z of detecting previous parasitism and
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Figure 3.5: Frequency of M. cinxia host larvae containing multiple H. hor-
ticola eggs from a lab study with a single parasitoid (blue tri-
angles), multiple parasitoids (orange squares), and field para-
sitism in Åland, Finland (pink diamonds). The solid black line
is the expected fraction containing multiple eggs if oviposition
happens randomly and the wasp does not check eggs for prior
parasitism. The dotted grey line shows the best fit line for the
data, where the fitted parameter (z) is the expected probability
of detecting a previous parasitism and not laying an egg (here
z = 0.7471, p − value < 0.001).

avoiding superparasitism. We found that the wasp detects and successfully

avoids superparasitism approximately 75% of the time (dotted grey line in Fig.

3.5). The detection probability is significantly different than zero (p − value <

0.001). See Appendix A.4 for more details about the model.

Given the clear avoidance of superparasitism, it seems likely that there is

an increased probability that all larvae will die in multiply parasitized hosts.

To consider this possibility, we will look at the two two extremes. Above we
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defined the fraction parasitized (g(t)) according to the assumption that each

parasitized host (multiply or singly) supports one wasp larvae. We now will

consider what happens at the other end of the spectrum when multiply para-

sitized hosts yield no wasp larvae. For this we define g2(t) to be the fraction of

the cluster that is parasitized exactly once.

According to the poisson distribution with an additional probability of de-

tecting previous parasitism (z), the fraction parasitized once is g2(t) = e−λ
z (ezλ − 1)

where λ =bt /α (see more details about how we derived this expression in Ap-

pendix A.4). The expected number of host eggs parasitized exactly once is then

αg2(t) =
αe−

bt/α

z
(e

btz/α − 1) (3.2)

We use these parasitism functions (g(t) and g2(t)) to calculate the parasitism

efficiencies for both scenarios: the expected number of hosts parasitized per

unit time in a cluster. A similar approach was employed for parasitoids forag-

ing for hosts in [55], however, this study was focused on confirming the model

through experiments and did not explicitly define the equation g(t). Often the

cost of searching for new resources is included in optimal foraging models [21].

In our model we include the cost of searching in terms of time, but ignore any

difference in mortality between time spent searching and ovipositing because

the main causes of death for the parasitoid are roughly uniformly present dur-

ing both searching and parasitizing. To get the parasitism efficiency (w(t)), we

divide the number of eggs parasitized in each cluster (αg(t) or αg2(t)) by the to-

tal time the wasp spends searching for (ts) and parasitizing (t) each cluster. The

searching time (ts) is the time to the next susceptible and unparasitized cluster,

so it will depend on the local host and parasitoid density and will be greater
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Parameter Estimate Source
b, probing efficiency 0.81 − 1.12 eggs/minute Appendix A.3
α, number of eggs per cluster 100-200 [108]
t, time at cluster (min) 20-60 van Nouhuys, Pers. Obs.
ts, searching time (min) unknown, best guess: > 30

Table 3.2: Parameter estimates from the literature or experimental data.

when there is more competition over host clusters. The time spent probing each

cluster (t) is the wasp’s decision variable on which selection acts. As the lo-

cal parasitoid density increases relative to the local host density, competition

over host clusters will be more intense and wasps will encounter and increased

number of parasitized, marked, and thus unavailable clusters before eventually

finding a host cluster at the right phase of maturity and not already parasitized.

w(t) =
αg(t)
ts + t

=
α(1 − e−

bt/α)
ts + t

(3.3)

w2(t) =
αg2(t)
ts + t

=
αe−

bt/α(e
btz/α − 1)

z(ts + t)
(3.4)

We use these models to predict optimal parasitism frequencies. To maximize

the fitness with respect to t, we differentiate w(t) and solve for t when dw(t)
dt = 0,

and d2w(t)
dt2 < 0. The functions were too complex to solve analytically, so we found

the optimal value of t using the numerical solver FindRoot in Mathematica [1].

This required us to define each parameter explicitly, and made it necessary to

individually look at the effects of each parameter on the optimal frequency of

parasitism. To understand these effects, we varied one parameter at a time. All

other parameters were held constant at α = 200 eggs/cluster, b = 1 egg/min,
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and ts = 0.5 hours. For the second model, the probability of detecting previous

parasitism was held constant at z = 0.7471.

Figure 3.6 shows the resulting optimal fraction parasitized for both para-

sitism functions, g(t) (solid lines) and g2(t) (dashed lines), over realistic ranges of

α (Fig 3.6a) and b (Fig 3.6b). When super parasitism kills all wasp larvae (dashed

lines) the optimal parasitism rate is lower and approaches 62.8% for large ts. The

model predicts that as host clusters get larger (bigger alpha), the fraction para-

sitized should decrease slightly and if the wasp probes the eggs more quickly

(bigger b), the fraction parasitized should increase slightly. We see that the op-

timal fraction parasitized is not very sensitive to changes in α or b. Since there

is a large amount of uncertainty in the value of ts, two ranges (small and large)

were investigated (Fig 3.6c and 3.6d). For small values of ts and realistic values

of α and b, both models predict an optimal fraction parasitized close to the ob-

served 30%. However, the optimal parasitism rate is sensitive to the search time

ts, which is a parameter that we do not know. For the model based on g(t), rela-

tively small parasitism frequencies are only predicted when the searching time

ts is fairly short, otherwise, the model predicts much more parasitism than is

observed for this system. Including death due to superparasitism in our model

(dashed lines) lowers the optimal parasitism rates and creates a larger range of

search times, ts, for which we would expect to see the wasp parasitize close to

30% or each cluster. Thus, optimal foraging with decreasing efficiency due to

random probing can explain the observed submaximal parasitism frequencies

if the wasp’s searching time is relatively short. If superparasitism kills all wasp

larvae contained in the host then slightly longer search times could also result

in parasitism frequencies close to 30%.
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Figure 3.6: Numerically determined optimal values for t (amount of time
spent probing each host egg cluster) over a range of realistic pa-
rameter values for the optimal foraging model with parasitism
function g(t) (Eqn. 3.3) shown as a solid line, and g2(t) (Eqn.
3.4) shown as a dashed line. For each graph one variable was
varied and the rest were held constant at α = 200 eggs, b = 0.9
eggs per minute, ts = 0.5 hours. These plots show how the op-
timal parasitism frequency changes with a) α, b) b, and c) the
searching time for the next cluster, ts, when searching times are
fairly short and d) much longer timeframes.

3.2.7 Avoiding Hyperparasitism (Experiments 2 and 7)

Just as parasitism can affect the evolution of host behaviors, hyperparasitism

can change the behavior of parasitoid hosts, potentially causing reduced para-

sitism in order to avoid positively density dependent hyperparasitism [7, 30].

Hyposoter horticola has one hyperparasitoid, Mesochorus stigmaticus. This soli-

tary endoparasitoid probes second to fourth instar M. cinxia host caterpillars,
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laying eggs inside any first or second instar H. horticola larvae contained inside.

Multiple M. stigmaticus females visit host nests over several weeks during the

summer, spending minutes to hours exploring and parasitizing the wasp larvae

inside their butterfly hosts [van Nouhuys unpublished data]. Most host clus-

ters are hyperparasitized with the frequency of hyperparasitism ranging from

0% (very rarely) to 51% of local populations of H. horticola larvae being hyper-

parasitized [66]. Our question is whether there is evidence that pressures of

hyperparasitism can theoretically cause selection for reduced fraction of hosts

parasitized by H. horticola, and whether there is evidence that this occurs in this

system.

We look at this question in three different ways. First, we consider whether

hyperparasitism by M. stigmaticus is in fact density-dependent (experiment 7).

Then, we combine the observed density-dependent hyperparasitism pressures

with our optimal foraging model (Eqn. 3.3) from section 3.2.6 to determine how

large an effect this additional pressure might have on the wasp’s behavior. Last,

we compare the parasitism frequencies of H. horticola from populations with

(Åland) and without (Estonia) M. stigmaticus to see if the population has a lower

parasitism frequency in the presence of the hyperparasitoid (experiment 2).

We determined the hyperparasitism frequency for a range of parasitism fre-

quencies in two different ways. First, we collected 16 nests that experienced

natural parasitism and hyperparasitism in the autumn of 2007, kept them in the

laboratory for winter diapause, reared them in the spring, and then counted the

emerging number of M. cinxia, H. horticola, and M. stigmaticus.5 Each nest was

from a different local host population. Second, to extend the observed levels of

5These experiments were designed and performed by S. van Nouhuys.
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parasitism and standardize for nest size and location, in the summer of 2009 we

constructed nests of 60 M. cinxia prediapause caterpillars that ranged in frac-

tion parasitized by H. horticola from ten to sixty percent, and placed them in

the field to be naturally hyperparasitized by M. stigmaticus.6 The groups were

constructed by mixing caterpillars from egg clusters that had been placed in the

field to be parasitized naturally by H. horticola with caterpillars from egg clus-

ters of the same laboratory origin that had not been exposed to parasitism. Nests

containing naturally parasitized caterpillars were left undiluted (N= 7), diluted

1:1 (N= 7), and diluted 2:1 (N=7). The nests were randomized and placed in nat-

ural locations in five different habitat patches. After three weeks in July (when

M. stigmaticus is active in the field) the nests were brought back into the labo-

ratory and reared. The number of caterpillars that became adult butterflies, H.

horticola or M. stigmaticus, were recorded.

The data suggest that wasps suffer higher hyperparasitism losses for para-

sitizing more hosts (Fig 3.7a). The host clusters had a 72.2% chance of being

hyperparasitized by M. stigmaticus. To understand the effects of hyperpara-

sitism on the wasp’s expected number of offspring, we consider the fraction

of hosts within each cluster that were parasitized by H. horticola and not hyper-

parasitized by M. stigmaticus and thus emerge as H. horticola (H(p)) as a function

of the initial fraction that were parasitized by H. horticola, p (Fig 3.7b). We fit a

second order polynomial curve with a intercept at (0, 0) because it would be

nonsensical for a larger fraction to emerge as H. horticola than were originally

parasitized (p). The second order linear model determines whether the data has

a linear or second order relationship. The second order term was not significant

6This experiment was designed and performed by S. van Nouhuys, and both experiments
were analyzed by K. J. Montovan.
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(p = 0.29). Thus, the best fitting function for H. horticola offspring production as

a function of the frequency of H. horticola parasitism (p) is the line y = 0.4573331p

(shown in Fig 3.7b, p − value < 0.001).

The expected fraction of hosts that yield H. horticola is then the fraction that

emerge from non-hyperparasitized clusters plus the fraction that emerge from

hyperparasitized clusters.

H(p) = 0.278p + 0.722(0.4573p) = 0.6082p (3.5)

The data supports a hyperparasitism function that linearly decreases the

benefits of high parasitism frequencies to the wasp. This would affect the pop-

ulation sizes, but would not change the predicted optimal foraging strategy. We

show this by demonstrating how hyperparasitism (H(p) would fit into the op-

timal foraging model presented earlier (Eqn. 3.3). This is accomplished simply

by using H(p) to modify the fraction of the cluster that becomes H. horticola.

wh(t) =
αH(p)
ts + t

=
αH(1 − e

−bt/α)
ts + t

= 0.6082w(t)

Since the data for the first test of this hypothesis is noisy, we confirm the

results by using an entirely different approach to test whether parasitism fre-

quency has evolved in response to density-dependent hyperparasitism. To do

this we compare the behavior of H. horticola from Åland with those from an area

free of M. stigmaticus (experiment 2).7 In Estonia, the parasitoid H. horticola is

present but M. stigmata, the hyperparasitoid, is absent (van Nouhuys, personal

observation). We collected M. cinxia from an Estonian population that is 250 km
7This experiment was designed by S. van Nouhuys and performed by S. van Nouhuys and

C. Couchoux
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(b) Fraction of hosts parasitized and not
hyperparasitized

Figure 3.7: a) The fraction of H. horticola that are hyperparasitized by M.
stigmaticus as a function of the cluster parasitism frequency.
Hyperparasitism is density-dependent and increases with p,
the fraction parasitized by H. horticola. The fitness of H. hor-
ticoladepends on the number of hosts parasitized by H. horti-
cala that are not hyperparasitized. Gray circles show clusters
that were not found by the hyperparasitoid. Figure b) shows
the fraction of each host cluster that is parasitized by H. horti-
cola and not hyperparasitized as a function of the fraction orig-
inally parasitized by H. horticola. Two functions were tested for
goodness of fit (linear and second order polynomials with (0,0)
intercepts). The best fit function is y = 0.4573x (R2 = 0.8198).

by sea from Åland and well outside of the distance that H.horticola can travel

over water. There, the butterflies feed on Veronica spicata, and live in a simi-

lar climate to Åland, though the landscape structure is less fragmented [70]. If

H. horticola has evolved to parasitize at a low frequency to avoid a positively

density dependent hyperparasitoid in Åland, then we might expect individuals

from the Estonian population not to exhibit such a constraint, and to parasitize

a larger fraction of the hosts in each cluster.

76



Åland Åland Estonia Estonia

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Åland Estonia Åland Estonia

Parasitism rate by treatment

Wasp origin

P
ar

as
iti

sm
 ra

te

Egg origin

Figure 3.8: The fraction parasitized by H. horticola from Åland and Estonia
of M. cinxia egg clusters from Åland and Estonia. In an analysis
of variance there are no significant differences between treat-
ments.

We collected 11 post diapause M. cinxia nests from Paldiski, Estonia in spring

2012. The larvae were reared to pupation into butterflies or wasps. The rearing,

egg collection, and experimental protocol are described in Appendix A.2. In the

fully crossed experiment, H. horticola from Åland were offered M. cinxia eggs

from Åland (n = 11) and M. cinxia eggs from Estonia (n = 10) and wasps from

Estonia were offered M. cinxia eggs from Åland eggs (n = 14) and M. cinxia eggs

from Estonia (n = 14). A different wasp was used to parasitize each egg cluster.

We compared the frequency of parasitism in egg clusters from the two origins by

wasps from the two origins using a generalized linear model with the statistical

software R [86]. The frequency of parasitism of the egg cluster was modeled as

a function of egg cluster origin (Åland, Estonia), wasp origin (Åland, Estonia)

and the interaction between wasp and egg origin. See table A.1 for the mean

and standard deviation of the fraction parasitized for each treatment.

On average the fraction parasitized was 36% of the eggs in a cluster. This
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ranged from 0.08 to 0.74, which is a larger spread than we usually find because

the egg clusters were relatively small and the weather was cloudy so the wasps

did not behave consistently under the laboratory conditions. There was no dif-

ference in the frequency of parasitism between egg origins or between wasp

origins, and no interaction between egg and wasp origin (Fig. 3.8). The data

do not support the hypothesis that H. horticola wasps from Åland behave dif-

ferently than those from Estonia. Thus, there is no evidence that wasps from

Åland have evolved restrained parasitism behaviors because of pressure from

the hyperparasitoid M. stigmaticus.

3.3 Discussion

Host-parasitoid relationships are tightly coupled so there is strong selection for

the host to develop defenses against parasitism. Specialist parasitoid wasps

(such as H. horticola) experience this strong pressure to develop ways around

the hosts defenses. This can lead to an arms race between the host and the

wasp. This type of antagonistic coevolution can lead to a variety of outcomes

including the Red Queen dynamic, in which both organisms evolve to keep up

with the other, but neither ever gets ahead [90, 68].

We would expect that simple biological constraints would be an effective

deterrent only if the parasitoid is not well adapted to the host, or is unable to

adapt in the necessary ways. Since H. horticola has an extremely narrow host

range, probably entirely limited to M. cinxia and certainly limited to M. cinxia

in the study area, we were not surprised to find that the wasp is physically able
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to parasitize all of the eggs in a cluster. That is, Hyposoter horticola typically has

enough eggs, is not prevented from oviposition by the mounded egg architec-

ture, short window of susceptibility or asynchrony in the development of eggs

within each cluster. While it is possible that a fraction of the hosts have defenses

against parasitoid which prevent parasitism or killed the wasp before our detec-

tion, our comparison with eggs from Morroco, which does not have H. horticola,

does not support this idea.

One complication to these findings is that although each wasp generally has

enough eggs to parasitize all of the hosts in multiple clusters, it could still be egg

limited in its lifetime. This kind of parasitoid egg limitation causes some para-

sites to be selective in host use patterns, thus leaving many hosts unparasitized

in order to find the best hosts [13, 48]. However, H. horticola is large compared

with the host eggs and probing happens haphazardly making it unlikely that

wasp has any information about the quality of particular eggs that it could use

to choose among eggs within each host cluster. The wasps could be reserving

eggs for better egg clusters, but we do not think that this is the case because H.

horticola treats large and small clusters the same [24]. Furthermore, choosiness

due to lifetime egg limitation would not explain why wasps leave a deterrent

marking that other individuals respect.

We have shown that the wasp is not constrained by biology and is able to

parasitize all of the eggs in any host egg cluster. Thus a behavioral explanation

is most likely to explain why it does not parasitize more of each cluster. Theo-

retically, prudence and risk-aversion are not applicable to this system because

in Åland, H. horticola has large population sizes that are reasonably well-mixed
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across the landscape. Experimentally we have shown that the development and

survival of wasps from highly parasitized clusters are similar with those from

lesser parasitized nests.

There was no evidence that survival and fitness decrease for more heavily

parasitized cluster. Although M. cinxia caterpillars live gregariously and rely on

cooperative contributions to survive, the fraction parasitized did not affect the

pre-diapause or post-diapause developmental rates or weights of the M. cinxia

caterpillars. The most surprising result in this experiment, which warrants fur-

ther study, was that highly parasitized clusters produced significantly more silk

for their winter nests. This suggests that the parasitoid might induce the host to

invest more into nest building than it would otherwise. Parasitoids are known

to induce host behaviors that benefit the parasitoid [43]. In this case, the in-

duced behavior could increase the chances that these clusters survive through

winter at some energy/resource cost to the hosts later in life.

Optimal foraging models show the most promise for explaining restraint in

resource use. We considered an optimal foraging model, which assumes that

selection favors wasps that leave each cluster at the optimal time. In the most

basic model, their efficiency decreases solely because the wasp probes randomly

and only one larvae can develop within each host. As the wasp spends more

time at the cluster she finds fewer and fewer eggs that she has not yet para-

sitized. The model with one parasitoid surviving in each parasitized host pre-

dicts drastically submaximal parasitism frequencies close to the observed 30%,

only when the searching time required to find the next susceptible and unpar-

asitized cluster is short (around 30 minutes). When all wasp larvae die in mul-
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tiple parasitized hosts then the optimal parasitism rate lowered and, based on

our data determined probability of avoiding superparasitism, never gets about

63% even for very long search times. Adding the effects of hyperparasitism to

either model does not change these results.

The predictions of the optimal foraging models depend sensitively on the

local density of hosts and H. horticola wasps. Since only one wasp parasitizes

each cluster, the number of clusters it must check before finding one that is both

susceptible and not already parasitized will depend on the local density of host

egg clusters and foraging wasps. Thus, the search time, ts, will vary spatially

as a function of these densities. Estimates for ts are currently unknown. There

is indirect evidence that supports conflicting views of the intensity of compe-

tition. First, essential every host cluster is parasitized in the landscape even

though it is available for a relatively short period of time (one to several days in

a one year life cycle). This suggests that there is a high level of competition over

clusters. Secondly, H. horticola wasps locate host clusters in advance, remember

their locations, and monitor these clusters as they develop [110]. Multiple indi-

viduals know about and compete for each cluster (Couchoux and van Nouhuys,

in prep). This suggests that there is a large degree of competition over clusters,

but also that wasps are likely to secure multiple clusters. If they expected to

parasitize at most one cluster in their lifetime then we would expect to see them

finding and guarding host clusters to ensure that they will get to parasitize at

least one cluster. Further studies of the level of competition are needed to con-

clusively understand this mechanism.

To test the idea that density-dependent hyperparasitism may have led to
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the evolution of low rates of parasitism, we compared parasitism frequencies

in Åland to those in regions that lack the hyperparasitoid and found that there

were no significant differences in parasitism frequencies of H. horticola individ-

uals from Estonia and Åland. Thus, while density dependent hyperparasitism

would explain the deterrent marking behavior, there is no evidence to support

the idea that the wasp should have or has evolved lower parasitism frequencies

in the presence of the hyperparasitoid M. Stigmaticus.

Within a relatively low range of searching times, ts, optimal foraging theo-

ries explain both the fraction parasitized, and the deterrent marking of clusters.

These models assume that the wasp leaves each cluster when additional para-

sitism would reduce its expected fitness. Thus if another (essentially identical)

wasp approaches the same, now previously parasitized, cluster, it will also max-

imize its fitness by leaving to search for another cluster. Explaining why wasps

would take the time to perform deterrent markings is more difficult. It could be

that the wasps leave the marking for themselves, and that others pay attention

to it because it benefits them too. Other parasitoids are known to mark clus-

ters and modify their search behavior in response to these pheromone markings

[81, 10, 35, 102], and that some parasitoids recognized their own markings and

use them to inform their actions [52].

In addition to the cost of wasted eggs and time laying multiple eggs in the

same host, there could be additional costs related to what happens within hosts

that have been parasitized more than once. For other species of parasitoids,

avoidance of multiply parasitizing hosts is associated with changes in patch ex-

ploitation strategy [112]. We know that only one H. horticola can develop within
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each host, but it is unknown what happens within multiply parasitized hosts.

There are a few distinct options: a) only the first parasitoid larvae survives, b)

one of the parasitoid larvae survives, c) both/all parasitoids die and the host

survives, or d) the host and parasitoids all die. If the first parasitoid larvae kills

all additional larvae, then there would be less motivation to mark the cluster

unless the wasp left it for themselves. It is more likely that one of the later

three options actually occurs, and that parasitism by another wasp would kill

some (or all) of the first wasp’s larvae, providing strong pressure for avoid-

ing superparasitism [99, 85, 56] by parasitizing a smaller fraction of the cluster

and applying and respecting deterrent markings. In our second optimal forag-

ing model we see that if all parasitoids die in multiply parasitized hosts and

the wasp cannot effectively avoid superaparasitism then the optimal parasitism

rate is between 18% and 60% for all realistic parameter values and approaches

63% for very long search times.

Any time an individual restricts its own use of an available resource that it

needs to survive and reproduce we wonder about what motivations that indi-

vidual might have. This paper illustrates that while there are potentially many

plausible explanations for submaximal resource use, nature is complicated and

careful examination can show that many explanations are not reasonable. We

have carefully considered all reasonable hypotheses for submaximal parasitism

by Hyposoter horticola and show that most of them are not plausible. We con-

clude that the only reasonable explanation is that the H. horticola practices sub-

maximal parasitism and deterrent markings as a way to forage optimally for

hosts, but recognize that the plausibility of this hypothesis is dependent on

a relatively short searching time ts. There are many other parasitoids, espe-
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cially egg parasitoids, that utilize just a small fraction of the available hosts

(e.g. [27, 53, 89, 116]) and it is likely that some of them have similar evolution-

ary causes for their behaviors, but few parasitoid systems have been studied

well enough to know. This work illuminates the relative importance and limita-

tions of accepted theories for submaximal resource use. In this, as in many cir-

cumstances, individual selection (though optimal foraging and efficiency opti-

mization or another mechanism) is a stronger motivator than bet-hedging (risk-

aversion) or group selection and should be carefully considered when thinking

about the evolutionary causes of any submaximal resource use.
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CHAPTER 4

COOPERATION IN A REPETITIVE AND OFTEN MISTAKEN WORLD

Abstract

Altruistic individuals incur a cost for helping others so we would expect that

under most reasonable circumstances natural selection should select against al-

truism. Why then are cooperative and altruistic behaviors so common in social

and biological systems? In this chapter we will focus on the conditions under

which direct reciprocity through repeated interactions supports the evolution

of cooperation. Despite extensive work to understand cooperative behaviors, a

rigorous overarching theory for cooperation through direct reciprocity remains

elusive. We use simplified models to provide analytical insights about the evo-

lution and stability of cooperation that help explain results from more complex

computer simulations. We fully classify the population dynamics for a pop-

ulation consisting of any two stochastic reactive strategies. For populations

with three set strategy types (non-cooperative defectors, mistaken tit-for-tat,

and generous tit-for-tat), we describe the stability of each fixed point and find

that the level of generosity in the generous tit-for-tat strategy can drastically

change the population dynamics.
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4.1 Introduction

The prevalence of altruistic behaviors in humans and animals is deeply puzzling

because they impart benefits to an opponent at a personal cost to the cooperator.

Cooperative dilemmas arise when individuals interact with others and are bet-

ter off in a situation of mutual cooperation than mutual defection, but yet there

is an incentive to defect. This incentive could be of three forms: i) it is better to

defect when playing against a cooperator, ii) it is better to defect when playing

against a defector, or iii) it is better to be the defector when a cooperator and

defector interact [6, 29, 77]. Non-cooperation is most tempting when all three

conditions are met, which happens in the class of games known as the prisoner’s

dilemma. This makes the prisoner’s dilemma a particularly compelling context

for understanding the evolution of altruism [76, 77].

In the prisoner’s dilemma, two individuals independently choose to cooper-

ate (C) or defect (D). As a convention the cooperator gets a reward, R, each time

it interacts with another cooperator, and a sucker payoff, S , against a defector.

A defector suffers a punishment, P, when playing against another defector, and

gets a temptation, T , when interacting with a cooperator. We restrict out work

to the well studied payoffs T = 5,R = 3, P = 1, S = 0 which were originally

defined by Robert Axelrod [3, 4] (shown in Table 4.1). Thisensures that a pair

C D
C 3, 3 0, 5
D 5, 0 1, 1

Table 4.1: The Axelrod 5 − 3 − 1 − 0 payoff matrix.

86



of cooperators does better than a pair of defectors and also that defection is the

dominant strategy for both players, i.e. for a single game, each does better by

defecting regardless of what their opponent does. We are interested in repeated

interactions so it is worthwhile to note that these payoffs also ensure that mutual

cooperation (payoff R = 3) is better on average than retaliatory cycles (alternat-

ing between payoffs of S = 0 and T = 5).

Defecting is the dominant strategy for the prisoner’s dilemma which means

that each player should selfishly defect. So how can we understand high levels

of cooperation in real-world prisoner’s dilemma interactions? Direct reciprocity

(through repeated interactions), indirect reciprocity (through reputations), spa-

tial selection, multi-level selection and kin-selection all can favor cooperation

[77]. We focus our work on direct reciprocity through repeated interactions.

With repeated interactions players can adjust their strategy in response to their

opponent’s last action (i.e. a reactive strategy). This provides an opportunity for

individuals to play strategies that reward cooperation and punish defection.

The repeated prisoner’s dilemma has been studied extensively but there are

still many open questions related to the population dynamics of multiple com-

peting strategies. In the early 1980s, Robert Axelrod considered optimal strate-

gies for the repeated prisoner’s dilemma and showed that when there is a high

enough probability that players will interact again, there is no best strategy, i.e.

if the opponent’s strategy is known, a response strategy can be carefully crafted

to exploit its weaknesses and win the repeated game [5]. Since there is no sin-

gle best strategy for the iterated prisoner’s dilemma, Axelrod set out to find

the best strategy among those designed to do well by inviting experts to sub-
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mit strategies to a computer tournament. He found that the strategy with the

highest average score was tit-for-tat (T FT ) which is a strategy that cooperates in

the first round and copies the opponents last choice for all other rounds [3, 4].

This strategy cooperates with cooperators and others playing T FT , but defects

against defectors and is thus able to benefit from mutual cooperation without

being exploited by defectors.

Although tit-for-tat does well in Axelrod’s computer tournaments, it has a

fatal flaw: two competing T FT individuals who make occasional mistakes can

get stuck in long retaliatory cycles where they alternate between payoffs S = 0

and T = 5. This is worse than always cooperating (R = 3 > 5+0
2 ). Since real

(non-computer) individuals make mistakes it is reasonable to ask what the best

strategy would be when individuals make occasional mistakes. To answer this

question, Bendor et. al (1991) performed a round-robin tournament similar to

Axelrod’s except that there were occasional mistakes. They found that tit-for-tat

was outcompeted by a more generous (forgiving) version of T FT [9]. Generous

tit-for-tat (GT FT ) is a stochastic strategy which cooperates after the opponent

cooperated and cooperates after an opponent defects with probability q.

In general, stochastic strategies are defined by the probabilities that the

player cooperates after the opponent cooperated (p) and cooperates after the

opponent defected (q). Each strategy is represented as an ordered pair (p, q)

within a continuous strategy space of reactive strategies. This space includes

the non-stochastic strategies tit-for-tat, (T FT , p = 1, q = 0), always defect (AllD,

p = 0, q = 0) and always cooperate (AllC, p = 1, q = 1) as well as all possi-

ble probabilistic responses to the opponents last move (0 < p < 1, 0 < q < 1).
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The stochasticity creates a diverse array of potential strategies while still being

analytically tractable. The expected payoffs of repeated interactions between

two stochastic strategies are calculated using the stationary distribution of the

associated Markov process as described in [75].

This provides a way to compare the fitnesses of different stochastic strate-

gies in a population, but to understand how the frequency of each strategy will

change we need a population model. One way to model the relative frequencies

of each strategy is to assume that the population size of the strategy changes

in proportion to the difference between the strategies’ fitness and the average

fitness across the population. The standard model for this type of population

chance is defined by the replicator replicator equations [51]. Let xi represent

the proportion of the population playing strategy i. Then, if a population has n

strategies, then the expected payoff for strategy i is

fi =

n∑
i=1

Ei jx j (4.1)

where Ei j is the expected payoff of strategy i against strategy j. The change in

population frequency for strategy i is

ẋi = xi( fi − φ) (4.2)

where φ is the average fitness of the population, i.e. φ =
∑n

i=1 xi fi. Since each xi is

a proportion, xn = 1 −
∑n−1

i=1 xi. This simplifies the system to n − 1 dimensions.

In 1992, Nowak and Sigmund used replicator equations to investigate the

population dynamics of competing stochastic strategies by performing com-

puter simulations of 99 randomly chosen stochastic strategies plus one strat-

egy close to T FT [79]. These simulations showed the mixed population was
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quickly taken over by strategies that are close to AllD. Then, a strategy close

to T FT takes over. The population then shifted to a more generous T FT strat-

egy. Nowak and Sigmund found that, for the Axelrod 5 − 3 − 1 − 0 payoffs, this

GT FT strategy is typically close to (1, 0.3). This strategy is generous enough to

end costly retaliatory cycles fairly quickly, but is not overly sensitive to exploita-

tion by defectors. In their simulations, GT FT was not taken over by any other

strategies.

We reproduced this model and found that while a large fraction of the sim-

ulation runs eventually end up at a generous T FT strategy, the rest end stop at

a non-cooperative strategy near AllD (Figure 4.1). The difference seems to be

the presence of a strategy that is close enough to T FT to enable the population

to become predominately generous T FT (Figure 4.2).1 It is not well-understood

why the end states in Figure 4.1 are confined to the regions near AllD and near

generous T FT . In this chapter, we provide analytical results to help explain

the general behavior of the simulation models. Since the interesting popula-

tion changes typically occur when there are mainly two strategies (a reigning

champion and a new contender), we start by looking at the population dynam-

ics between any two competing stochastic strategies. Our analytical results fully

classify the evolutionary population dynamics for any two competing strategies

according to the replicator equations. We characterize the dynamics and find

envelope functions for the region where bifurcations can occur. This work pro-

vides intuition about interacting strategies that is helpful when consider more

complex systems with more than two distinct strategies.

We then consider the possibility that three main strategies are driving the

1Danielle Toupo performed the modeling and created both of these figures.
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Figure 4.1: The final strategy for each of 500 simulation model runs, with
the same model as described in [79]. Each simulation starts
with a population with 99 random strategies (p, q) and the
strategy mistaken T FT (1 − ε, ε). For all 500 simulations the
prevailing strategy in the end is either close to AllD, (0,0), or
generous T FT , (1,0).

population dynamics. We focus on the strategies always defect (AllD : (0, 0)),

mistaken tit-for-tat (ε − T FT : (1 − ε, ε)) and generous tit-for-tat (GT FT : (1, q̂)).

We determine the population dynamics for different probabilities of mistakes

(ε) and forgiveness (q̂) and show that the level of cooperation in the population

depends on the initial population densities of all three strategies, the level of

generosity (q̂), and probability of mistakes (ε).
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Figure 4.2: Results from the simulation model described in [79], with each
simulation starting with a population with 99 random strate-
gies (p, q) and the strategy mistaken T FT (1 − ε, ε). Each dat-
apoint shows the fraction of 600 simulation model runs that
reach a cooperative end state. Once the added strategy is close
enough to T FT essentially all of the simulation runs have a co-
operative end-state.

4.2 Two-strategy Iterated Prisoner’s Dilemma

In the simulations of Nowak and Sigmund [79] of populations of 100 strate-

gies, the population tended to contain one prevailing strategy (with all other

strategies existing at very low population densities). In this circumstance, a

thorough understanding of how a prevailing strategy will perform against any

single contender could help us understand the observed end-states in the more

complicated simulation model.
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Figure 4.3: All possibilities for two-strategy replicator dynamics. x is the
proportion of the population that uses strategy S 1, ẋ is the
change in the population proportion of strategy S 1. When
x̃ < (0, 1), strategy S 1 takes over when d

dx ẋ|x=0 > 0 (bottom left
and middle panels) and strategy S 2 takes over when d

dx ẋ|x=0 < 0
(top left and middle panels). When 0 < x̃ < 1, the two popu-
lations stably coexist at an intermediate level if d

dx ẋ|x=0 > 0 (top
right panel) and are bistable if d

dx ẋ|x=0 < 0 (bottom right panel).

We consider the possible population dynamics for two interacting strategies:

a set strategy (the reigning champion) S 2 = (p2, q2) against any other contend-

ing strategy, S 1 = (p1, q1). Let x be the proportion of the population that is the

strategy S 1, then 1 − x is the proportion of the population that plays strategy

S 2. For this two player interaction, the replicator equations (equations 4.1 and

4.2) produce a one-dimensional system where ẋ is at most a degree-three poly-

nomial in terms of x. The points x = 0 and x = 1, which correspond to single

strategy populations, are always fixed points. The change in population density

for strategy S 1 is:

ẋ = x(xE11 + (1 − x)E12 − φ) (4.3)
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with average fitness φ:

φ = x(xE11 + (1 − x)E12) + (1 − x)(xE21 + (1 − x)E22) (4.4)

Here ẋ is a degree-three polynomial in terms of x, which always has fixed

points for single-strategy populations (x = 0 or x = 1). There are four distinct

types of behavior when both populations start with non-zero densities. These

can be characterized by the location of the nontrivial fixed point (x̃ , 0, x̃ , 1)

and the slope of ẋ when x = 0 (i.e. d
dx ẋ|x=0). The possible types of population

dynamics for the function ẋ are shown in Figure 4.3 and are:

• strategy S 1 always takes over when d
dx ẋ|x=0 > 0 and x̃ < (0, 1).

• strategy S 2 always takes over when d
dx ẋ|x=0 < 0 and x̃ < (0, 1).

• both strategies coexist when d
dx ẋ|x=0 > 0 and x̃ ∈ (0, 1).

• the strategies are bistable, with initial population densities determining

which takes over. This happens when d
dx ẋ|x=0 < 0 and x̃ ∈ (0, 1).

To understand the population dynamics for the prisoner’s dilemma with the

Axelrod payoffs (Table 4.1) by plotting the reigning champion strategy (S 2) in

the p − q plane (Figure 4.4). We then divide the strategy space according to the

dynamics of strategy S 2 against contending strategies located in each region. As

described above, there are up to four distinct regions: the competing strategy,

S 1, 1) eliminates S 2 (green regions in Fig. 4.4), 2) is eliminated by S 2 (pink re-

gions in Fig. 4.4), 3) coexists with S 2 (blue regions in Fig. 4.4), and 4) is bistable

with S 2 (yellow regions in Fig. 4.4).
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Figure 4.4: Population dynamics for two competing strategies. The strat-
egy S 2 is plotted as a red point (and referred to as ‘red’ in re-
gion labels) and the regions describe what happens when S 2

competes with any strategy S 1 contained in that region. We
have plotted two examples: one with S 2 above the critical
curve (subplot 4.5(a)), and the other with S 2 below the criti-
cal curve (subplot 4.5(b)). The illustrated patterns are consis-
tent for all choices of S 2 that are sufficiently far from the critical
curve (between the blue and green regions). When the com-
peting strategy S 1 falls in the pink region strategy S 2 will take
over. When S 1 falls in the green region, it will eliminate S 2.
The blue/yellow regions show contour plots of the value of
the intermediate equilibrium x̃. In these regions the popula-
tions could stably coexist (blue) or be bistable (yellow) where
the the initial population densities determine which strategy is
eliminated.
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For most choices of S 2, the boundaries between these regions are defined by

two curves: the line through S 2 and (1, 0), and a ‘critical curve’ which depends on

the choice of S 2, and runs from about (p = 1/4, q = 0) to (p = 1, q = 1/3). Figure

4.4 shows these regions for two choices of s̃. These figures show characteristic

regions and dynamics that generally hold when S 2 is far enough above (Fig 4.4a)

or below (Fig 4.4b) the critical curve. Strategies that are well above the critical

curve are replaced by less cooperative strategies (in the green region of Fig 4.4a).

Strategies that are well below the critical curve are replaced by more generous

strategies (in the green region of Fig 4.4b). When S 2 competes with a strategy

on the other side of the curve the two populations could either coexist at an

intermediate level (blue regions in Fig 4.4) or be bistable with the strategy with

a high enough initial population density eliminating the other (yellow region

in 4.4).The contour lines show the value of x̃ which define the fraction of S 1 in

the mixed equilibrium in the blue region and the threshold initial population

density for strategy S 1 in the yellow region.

This population model predicts that the population will move from more co-

operative strategies (like AllC) to less cooperative strategies (like AllD). Likewise

the population will move from more aggressive retaliatory strategies (like not-

so-nice T FT , (0.8, 0)) towards more generous retaliatory strategies (like GT FT ).

When the strategy S 2 is near the curved boundary, the regions become more

complex but the possible dynamics are still the same. Figure 4.5 shows two

examples of the regions that arise when S 2 is near the critical curve.

The critical curve plays an important role for the dynamics, so it is important

that we understand how this curve changes with the choice of S 2. This curve
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Figure 4.5: Population dynamics for two competing strategies close to the
critical curve. When S 2 (the red dot) is close to the critical
curve, a bifurcation occurs and a new pair of regions appear.
These figures illustrate examples of the population dynamics
that occur when S 2 is close to the critical curve. In a) S 2 is just
above the critical curve and in b) S 2 is just below the critical
curve. There is another bifurcation when S 2 crosses the critical
curve.

occurs when the non-trivial (x , 0, x , 1) fixed point x̃ equals one. In Figure 4.6

the critical lines for a range of strategies S 2 are overlaid. We find that the critical

curves are contained in an envelope bounded below by the critical curve for the

strategy AllC, (1, 1),

f1 =
4p − 3 +

√
5 − 4p

4
(4.5)

and above by the critical curve for strategy AllD, (0, 0),

f2 =
6p − 5 +

√
13 − 12p

6
(4.6)

Both of these curves are shown in black in figure 4.7. There is a third important

line which is where the critical curve is when points are very close to the curve

(either above or below). This line is the critical curve f for the strategy (1, 0) and
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Figure 4.6: Plots of the critical curves for eleven strategies along a line. The
strategies are plotted as colored dots with the associated criti-
cal curve shown in the same color. The critical curve divides
the strategy space into two regions with qualitatively different
population dynamics between the set strategy and strategies in
that region. As s̃ moves along each ray starting near (1, 0) the
critical curve changes only slightly, with most variation further
from the ray of interest.

is plotted in gray in Figure 4.7. We find that the equation for this line is

f =
1
9

(
p − 9(1 − p) +

18(1 − p) + p2

β
+ β

)
(4.7)

where β = 27(1 − p)p + p3 + 9
√

33
√
−(1 − p)2(24(1 − p) + p2).

Nowak and Sigmund discovered similar curves when they looked at the

adaptive dynamics of this game. They discovered that if the population evolves

(collectively) toward nearby strategies with the highest individual fitness, then

the population’s strategy will become more cooperative when below this criti-

cal curve, and will become less cooperative when above the critical curve [75].

This matches what we see using the more general replicator equations which
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Figure 4.7: The envelope functions f1 (4.5) and f2 (4.6) for the critical
curves that define regions with distinct dynamics are plotted
in black. The grey line, f (4.7), is the boundary that is actually
approached as the strategies get close (or into) the envelope re-
gion.

consider not only evolution to nearby strategies but the ability of any strategy

to invade and flourish.

In summary, we find that for two strategy populations, when generous

strategies are too generous AllD will prevail. Thus, counterintuitively, for pop-

ulations to stably maintain cooperation it is important that individuals be only

somewhat forgiving of non-cooperation. Some level of forgiveness in the T FT

strategy is helpful when there are mistakes, but forgiving defection too often

provides an opening for AllD to take over. We see this in the two-strategy inter-

actions in that when the population is below the critical curve (i.e. not too forgiv-

ing), more cooperative strategies will vanquish their less cooperative counter-

parts. When strategies are above the curve (i.e. more forgiving), less cooperative

99



strategies will prevail.

4.3 Dynamics of three strategies

Now that we have a careful classification of the dynamics of a two player inter-

action, it is time to move on to the realm of three-strategy types. The interactions

for three strategies have been well characterized but are very complicated and it

is hard to draw conclusions from the current analysis [100]. For this reason, we

reanalyze the system of equations for three particular strategies of interest and

provide results for this reduced system. These strategies are non-cooperation

(AllD: (0, 0)), tit-for-tat with occasional mistakes (ε − T FT : (1 − ε, ε)), and gen-

erous tit-for-tat (GT FT : (1, q̂)). The parameter ε is the probability that ε − T FT

will make a mistake and not copy their opponent’s last move. p̂ is the probabil-

ity that generous T FT (GT FT ) forgives the opponent and cooperates after being

defected against. We explore the effects of different levels of forgiveness (q̂) and

mistakes (ε) on the population dynamics.

We use the standard replicator equations to represent the population dy-

namics. Let the fraction of the population that are AllD, ε − T FT , and GT FT , be

x1, x2, x3, respectively with x3 = 1 − x1 − x2. The replicator equations express the

change in the population densities, i.e. ẋ1, ẋ2, ẋ3 (explicitly defined in equations

4.1 and 4.2). We find the fixed points, by solving ẋ1 = 0 and ẋ2 = 0 for x1 and

x2. There are seven possible fixed points (x∗1, y
∗
2) for this system. The three trivial

fixed points representing populations consisting of a single-strategy are always

present: all defectors (1, 0), all ε − T FT (0, 1), and all GT FT (0, 0). Three of the
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fixed points, when they exist, are a mix of two strategies: (x1, 1−x1), (x1, 0), (0, x2).

The last fixed point, when it is in the region, is a mix of all three strategies: i.e.

(x1, x2), where x1 + x2 < 1. We then compute the Jacobian matrix analytically and

calculate the trace and determinant at each of these fixed points to determine

the stability of each point. We determine the location and stability of each fixed

point analytically as a function of q̂ and ε and consider the dynamics within the

region 0 ≤ q̂ ≤ 1, 0 ≤ ε ≤ .2. The range for ε is restricted to be small because it

is supposed to be a strategy close to T FT , and this is only true for small values

of ε. Figure 4.8 shows stability diagram for GT FT in terms of the parameters q̂

and ε.

  

GTFT AllD

   -TFTStability of GTFT

0.5

0

1

0 0.2

0.35
0.4

Unstable 
Node

Saddle

Stable 
Node

0.5

Always a 
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Always a 
stable node

Figure 4.8: The triangle shows a diagram of the fixed population propor-
tions. The triangle’s corners represent the single-strategy pop-
ulations. Along the edges the population consists of two strate-
gies. The one interior fixed point is a mix of all three strategies.
An example stability diagram is included for GT FT over rea-
sonable values of ε and q̂.

We see that ε − T FT is always a saddle (i.e. never an end state) and that AllD

is always a stable node, so for all reasonable ε and q̂, there is always the pos-

sibility that the population will be taken over by AllD if there is a high enough

initial density of defectors. Generous T FT is stable when it is not too gener-

ous (q̂ < .35). This matches the results of Nowak and Sigmund where a mixed

population of 100 randomly chosen strategies will initially be taken over by a
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strategy close to AllD, then, if there is a strategy close enough to T FT , this retal-

iatory strategy will prevail for a short time until it is finally taken over by a more

generous strategy (GT FT ) with p̂ ≈ 0.3 that prevails for the rest of time [79]. This

strategy is generous enough to end costly retaliatory cycles fairly quickly, but is

retaliatory enough to not be overly sensitive to exploitation by defectors and is

not taken over by any other strategies.

Figure 4.9 shows a bifurcation diagram of the regions with qualitatively dif-

ferent dynamics as well as representative phase portraits for each part of the

state space. In all cases defectors will become prevalent if the initial population

of AllD is large enough (what we mean by large enough depends on the choices

of ε and q). As we change ε and q̂, the second stable node changes. For less

generous (small q̂) GT FT strategies, the population converges to all GT FT if the

initial density of AllD is small enough. For intermediate levels of generosity (the

orange region of Fig 4.9), the second stable fixed point is a mix of ε − T FT and

GT FT . When GT FT is very forgiving and ε−T FT does not make many mistakes

(the white region of Fig 4.9), the second stable fixed point is a mix of all three

strategies. The conceptual diagrams in Figure 4.9 do not show the locations of

the fixed points accurately, as the fixed points change with q̂ and ε.

4.4 Discussion

In this work we find that for both two and three strategy populations, when

generous strategies are too generous AllD will prevail. Thus, counterintuitively,

for populations to stably maintain cooperation it is important that individuals
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Figure 4.9: Bifurcation diagram of ε−q parameter space for the population
densities of strategies AllD (proportion x1, p = 0, q = 0), ε−T FT
(proportion y, p = 1 − ε, q = ε), and GT FT (proportion x3 =

1 − x1 − x2, p = 1, q = q̂). The associated stabilities of each fixed
point sketched in the region where green points are saddles,
blue points are stable spirals, purple points are stable nodes,
red points are unstable nodes, and orange points (non shown
here) are unstable spirals. Only the general location of the fixed
point (e.g. on a certain edge) is accurate. The exact locations
depend on the parameters q̂ and ε.

be only somewhat forgiving of non-cooperation. Some level of forgiveness in

the T FT strategy is helpful when there are mistakes, but forgiving defection too

often provides an opening for AllD to take over. We see this in the two-strategy

interactions in that when the population is below the critical curve (i.e. not

too forgiving), more cooperative strategies will vanquish their less cooperative

counterparts. When strategies are above the curve (i.e. more forgiving), less
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cooperative strategies will prevail.

The next phase of this work is to consider three competing strategies with

mutation. The addition of mutation may add enough complexity to produce

stable cycles of cooperation, where the population oscillates between almost ev-

eryone being cooperative to almost everyone being non-cooperative to almost

everyone being retaliatory (with occasional mistakes) and back to almost every-

one being cooperative. These cycles of cooperation have been reported for more

complex populations [78, 80, 58], and raise questions about long term stability

of cooperative strategies. Now that we have a better analytical understanding

of the interactions between strategies, our goal is to find the simplest situation

where true limit cycles occur so that we can analytically describe the minimal

requirements for cooperative cycles. We will start by considering three compet-

ing stochastic strategies with mistakes in the retaliatory strategy and mutation

between subpopulations. A slightly more complex variant of this system has

been shown to have population cycles, so we think that it is reasonable to think

that a population with three competing stochastic strategies reproducing ac-

cording to the replicator-mutator equations might be the simplest system which

will exhibit cooperative cycles.
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APPENDIX A

HYPOSOTER HORTICOLA EXPERIMENTAL AND MODELING DETAILS

A.1 General Experimental procedures

Unless noted otherwise, the hosts used in experiments are obtained from a lab

population of M. cinxia which are augmented each year with M. cinxia collected

during the spring population census, and reared to pupation under controlled

laboratory conditions. This produces adult M. cinxia, H. horticola and M. stig-

maticus. After adults emerge, the female H. horticola are maintained in the labo-

ratory, fed honey water (3:1), until they are needed for the experiment (at least

2 weeks).

The adult butterflies are few honey water (3:1), mated, and allowed to lay

egg clusters on potted plants. To do this the M. cinxia butterflies are placed in

cages (3 females + 8 non-sibling males) for one day to mate. After mating, 2 fe-

males are put in a cage with a host plant (Plantago lanceolata or Veronica spicata) to

lay eggs. The laying cages are checked daily and when an egg cluster is found,

the plant is removed. The plants with egg clusters are stored until the eggs are

close to susceptible. They are then exposed to parasitism in the laboratory or

are placed in a habitat patch in the field to be parasitized by H. horticola.

For parasitism in the laboratory, a female wasp is placed in a 40 by 40 by 50

cm cage containing a plant with susceptible butterfly eggs on it and allowed to

parasitize the egg cluster. We observed each of the parasitism event. After the
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wasp has parasitized and left the host egg cluster, we move the egg cluster to a

Petri dish and wait 1 to 3 days for the host eggs to hatch. Host larvae are then

typically dissected to determine the parasitism rate in each host egg cluster.

A.2 Experiment 2: Åland, Estonia, Morocco Population com-

parison study

For this experiment, host caterpillars were collected from several nests of each

of two populations in the Moroccan highlands in autumn 2011, and several pop-

ulations throughout Åland. They were kept in diapause under laboratory con-

ditions until spring 2012. In the spring of 2012, we collected 11 post-diapause

M. cinxia nests from Paldiski, Estonia.1. Then we reared all the caterpillars in

the laboratory until they pupated. This produced adult M. cinxia from Åland,

Morocco and Estonia, adult H. horticola from Åland and Estonia, and adult M.

stigmaticus from Åland.

To obtain host egg clusters from all three origins, M. cinxia butterflies from

each region were placed in cages (3 females + 8 non-sibling males from the same

region) for one day to mate. After mating, 2 females (from the same region)

were put in a cage with a host plant (Veronica spicata) to lay eggs. The laying

cages were checked daily and when an egg cluster was found, the plant was

removed. The plants with egg clusters were stored until the eggs were suscep-

tible and used in the behavioral experiment. After adults emerge, the female

1This study was designed and performed by XX: Saskya? Christelle?
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Host origin Wasp origin n µp ± σp

Åland Åland 11 28% ± 21%
Åland Estonia 14 35% ± 18%
Estonia Åland 10 43% ± 17%
Estonia Estonia 14 38% ± 18%
Morocco Åland 15 28% ± 18%

Table A.1: Summary of results from the Åland, Estonia, Morocco para-
sitism comparison study. n is the number of host clusters par-
asitized and dissected for that group. µp is the mean fraction
parasitized for each group, and σp is the standard deviation of
the fractions parasitized for each group.

H. horticola were maintained in the laboratory, fed honey water (3:1), until they

were approximately two weeks old and were then used in the experiment to

parasitize a single egg cluster. The adult M. stigmaticus were not used in this

experiment.

For each trial of the experiment, a female wasp was put in a 40 by 40 by 50

cm cage containing a plant with susceptible butterfly eggs on it and allowed to

parasitize the egg cluster. We used a different wasp for each host cluster and

observed each of the parasitism events. After the wasp had parasitized and left

the host egg cluster, we moved the egg cluster to a Petri dish and waited 1 to

3 days for the host eggs to hatch. When the host larvae were 1-2 weeks old,

we dissected them to determine the parasitism rate in each host egg cluster. In

total 64 egg clusters were parasitized, each by a different wasp from the chosen

population. See table A.1 for more details and summary results.
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A.3 Probing efficiency

The probing efficiency (b) is an important parameter for the optimal foraging

model. It is not possible to estimate this parameter directly because of the tiny

size of the eggs, mounded host egg architecture, and indistinguishable nature of

probing and ovipositing. Instead, we use the model developed in section 3.2.6,

p = 1−e−bt/α to relate the total time spent probing a single cluster (t) and number

of eggs in the cluster (α) to the fraction of eggs parasitized (p).2

We observed Åland H. horticola wasps probing and ovipositing into 36 host

egg clusters under laboratory conditions. The total time spent probing the eggs

(t) was recorded for each cluster. After the hosts emerged, they were counted

and dissected to determine the number of hosts parasitized in each cluster. We

performed logistic regression in the statical package R [86] using glm with a

binomial error function and logic link function. We fit a model that predicts the

parasitism of individual eggs based on the average time per egg (t/alpha) spent

at the cluster. We find that the best estimate for b is 0.96 (p < 0.001), and the 95%

confidence interval for b is [0.81, 1.12].

A.4 Experiment 6: Detecting previous parasitism

To calculate the expected probability of multiply parasitized hosts we first con-

sider the expectations according to the poisson process. The probability that a

2The data for this analysis was collected by K. J. Montovan and C. Couchoux and analyzed
by K. J. Montovan.
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Figure A.1: Plot of the fraction of each cluster parasitized as a function of
the average time per egg (t/α) that the wasp spent at the clus-
ter. The black curve is the best fit line with b = 0.96, and the
grey lines correspond to the curves bounding the 95% confi-
dence interval for b (b = .81 and b = 1.12).

host is probed k times is

P(n = k) =
λk

k!
e−λ

where λ is the mean number of probes per host. The wasp probes b eggs per

minute so in t minutes the wasp probes bt eggs, which is divided by the number

of eggs in the host cluster (α), i.e. λ = bt
α

.

If the wasp is unable to detect prior parasitism in a host, then the probability

that a host egg is parasitized only once is

P(n = 1) = λe−λ.

If the wasp instead detects the prior parasitism with probability z and does not

lay an egg when prior parasitism is detected, then the probability that a host
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egg is parasitized only once is

P̂(n = 1) = λe−λ + z
λ2

2!
e−λ + z2λ

3

3!
e−λ + . . .

= λe−λ
(
1 +

zλ
2!
+

(zλ)2

3!
+ . . .

)
=

λe−λ

zλ

(
zλ +

(zλ)2

2!
+

(zλ)3

3!
+ . . .

)
=

e−λ

z

∞∑
j=1

(zλ) j

j!

=
e−λ

z
(ezλ − 1)

For our models we assume that the fraction of the cluster parasitized is p =

1 − e−λ. We can then rewrite the above probabilities of superparasitism in terms

of p.

P̂(n = 1) =
1 − p

z
((1 − p)−z − 1) (A.1)

Then the probability that an egg is multiply parasitized is

P̂(n > 1) = p −
1 − p

z
((1 − p)−z − 1) (A.2)

We determine the parameter z using the nonlinear (weighted) least-squares

estimates to fit our data on the frequency of superparasitism to our model (the

data are shown in Figure 3.5). We find that z is significantly different from zero

indicating that the wasps do detect previously parasitized hosts and effectively

avoid superparasitism some of the time (p − value < 0.0001). The estimate is

z = 0.74714, i.e. the wasps detect previous parasitism approximately 75% of the

time.
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