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FORWARD:  This paper was submitted as is to (and 
rejected by) Hotnets ’04, and then never submitted 
anywhere else.  I stopped working on the idea when I 
came to realize that the model being put in place by 
major ISPs, based for instance on the Riverhead/Cisco, 
is quite similar to the Firebreak model.  The main 
difference is that Firebreak is cross-ISP, and has a 
different control model, but I doubt that this difference 
is really compelling in practice. 

ABSTRACT 
After many years of research, the Distributed Denial of 
Service (DDoS) problem remains essentially unsolved, 
both in industry and in research.  Industry solutions 
rely primarily on beefing up the bandwidth near the 
attack target, and/or on intercepting traffic at proxies 
while keeping the target IP address secret.  The former 
approach is expensive, and the latter amounts to 
“security through obscurity”.  Existing research 
solutions, on the other hand, have so far proven 
economically infeasible.  We propose an architecture, 
called the firebreak, based on IP-level indirection.  
With firebreak, target IP addresses are simply 
unreachable from ISP customer networks and endhosts.  
Rather, IP packets are addressed to proxies deployed 
near the edge using IP anycast, and from there are 
tunneled using the target IP addresses.  This use of IP 
indirection, as well as the use of IP anycast and 
tunneling to deploy firebreak, is the main research 
contribution of firebreak.  This paper describes the 
firebreak architecture, discusses its pros and cons, and 
suggests directions for future work. 

1 Introduction 
In spite of the fact that DDoS is one of the most serious 
problems facing the Internet today, no effective and 
viable solutions exist.  Practically speaking there are 
two basic approaches in effect today.  One is simply to 
have more bandwidth and server capacity than the 
attacker.  We understand that Microsoft, to a large 
extent, protects itself this way [1].  This approach is 
perhaps, at least for the time being, adequate for very 
rich companies, but is not feasible for small companies 
or individuals.  In any event, this is clearly not a good 
long-term strategy even for rich companies. 

The second practical approach is offered by CDNs like 
Akamai.  Here, DNS is used to direct HTTP queries to 
proxies richly deployed around the Internet.  By their 
sheer scale, these proxies can absorb a DDoS attack 
(or, almost equivalently, a surge in legitimate traffic).  
This approach requires that the origin server IP address 
be kept secret.  It also requires that the DNS 
infrastructure be large enough that it itself cannot be 
attacked.  Indeed, this DNS was apparently the target 
of a recent attack on Akamai (June 15, 2004).  The 
attack was reported to have a small but noticeable 
impact on Akamai’s service.   

Alternatively, if an attacker somehow learns the IP 
address of the origin server of the web service it wishes 
to attack, then it could bypass Akamai’s proxy defenses 
altogether, especially for active content, which is 
difficult to serve out of web proxies.  This amounts to 
security through obscurity, which is widely considered 
to be a bad security policy. 

On the research side, two broad approaches have been 
identified.  One is traceback/pushback, whereby routers 
cooperate to discover the sources of an attack 
(traceback) [2][3][4] and install filters to remove the 
bad traffic as near to the sources as possible (pushback) 
[5][6].  [7] suggests that the main weakness of these 
approaches is that they cannot adequately distinguish 
the good traffic from the bad.1  While there is some 
truth to this, we believe that there is still value in such 
filtering, in part because they offload the targets so that 
the targets can still reasonably service traffic (good and 
bad), but also because the filters will still remove more 
bad traffic than good, primarily because of their 
proximity to the bad sources.   

Our objection to the traceback/pushback approaches, as 
well as to [7], is much more pragmatic:  they require 
too tight a coupling with the routing fabric.  The 
traceback/pushback functionality, whether 
implemented in routers or boxes sitting next to routers, 
needs to exist in multiple points on the path between 
attacker and target to be effective.  This in turn requires 
close cooperation between ISPs (and therefore 

                                                           
1 [7] also has a nice and succinct description of the 
referenced traceback, pushback, and overlay 
approaches which we don’t repeat here. 
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agreement between ISPs on what protocols to use, 
among other things).  Such approaches require a lot of 
economic lift to get off the ground. 

The other broad research approach is to deploy some 
kind of overlay [8][9][12].  These approaches 
overcome the deployment problems associated with the 
more router-oriented approaches, but have other 
shortcomings.  [7] argues that the authentication secrets 
[8] and[9] use are shared among too many components, 
and are therefore subject to compromise.  Once again, 
our objections are more pragmatic.  SOS [8], Mayday 
[9], and Si3 [12] all require users to traverse an overlay 
that provides some form of protection.  But these 
approaches require either that the target IP address 
remain secret, or that there is router-based protection in 
the vicinity of the target to defend against attackers.  
After all, attackers have no motivation to try to reach 
the target via the overlay (or via web proxies, as with 
the CDN approach).  They can bypass the overlay 
(proxies) by sending packets directly to the IP address 
of the target.  The argument that SOS and Mayday 
make is that such router filtering can be lightweight 
and therefore deployed in high-speed core routers, but 
we remain somewhat skeptical of this argument.  
Routers are highly constrained to do a minimum 
amount of processing, so even relatively simple 
filtering is a hard sell.  In addition, these schemes 
require changes to legitimate endhosts to use the 
overlays.  [12] suggests an alternative using IP-level 
indirection to avoid changes to endhosts, and is similar 
to firebreak in this regard.  However, the approach they 
outline requires per-flow state and NAT operations in 
existing edge routers. 

2 Firebreak Architecture 

As should be apparent from the above discussion, one 
of the primary goals of Firebreak is to design a DDoS 
defense that is deployable in both a technical and 
economic sense.  Towards this end, we want a solution 
that requires no changes to endhosts or current router 
software.   We want a solution for which a viable 
business model exists and can support whatever initial 
infrastructure investments are necessary.  We also 
recognize that DDoS is an arms race─we don’t expect 
a silver bullet.  Rather we expect to make the cost of 
defending against reasonable attacks as small as 
possible (and certainly much smaller than the damage 
caused by such an attack).   

Beyond this, we take it as a given that the point of 
defense, that is the boxes where attack packets are 
filtered, should be as near the source as possible.  
There are two reasons for this.  First, the further away 
the defense is from the target, the more bandwidth 
there is to absorb the attack.  Second, the closer each 

box is to the source, the fewer sources each box has to 
filter against.  Towards this end, the solution should be 
deployable across multiple ISPs.  This in turns means 
that minimal or no coordination be required between 
ISPs deploying the solution.   

The key concept behind firebreak is the use of IP-level 
indirection.  The basic idea is that source end hosts 
(friend and foe alike) simply cannot send IP packets 
directly to target hosts (e.g. in Figure 1, packets from 
host S addressed to T1).  IP reachability simply does 
not exist─IP packets addressed to the target are 
dropped by legacy routers very near the source.  
Instead, packets must be addressed to intermediate 
boxes, called firebreak boxes (or more typically just 
firebreaks) deployed near the edge.  The firebreaks 
map these firebreak addresses into the target 
addresses, and tunnel the packets to the target.  For 
instance, in Figure 1, S addresses packets to F12, which 
gets delivered to a nearby firebreak (FS).  The 
firebreak maps F1 into the target address T1, and 
tunnels the packet to the target using its own unicast 
address FSu as the source address of the outer header.  
If the target itself is incapable of de-tunneling these 
packets, a proxy placed in the physical path near the 
target can do it (or, if necessary, the firebreak could 
NAT the packet).  Reverse packets actually take a 
different path back, as explained in Section 1.2. 

(anycast) 

S FS T1 
S,F1 

S, F1  
FSu,T1 

FT 

F1,S 
F1,S 
T1,”FB” 

(option 1) 

F1,S 
(option 2) 

Figure 1: Packets between non-protected host S and 
(protected) target T1.  Option 1 is where T1 cannot 
spoof its source address, option 2 is where it can. 

DDoS monitor functions exists at the target (though 
firebreaks may feed statistics to the monitors to aid 
them).  Normally firebreaks simply pass all traffic to 
the target.  When a monitor detects an attack or an 
overload, however, it sends control messages to the 
appropriate firebreaks (e.g. to address Fu) requesting 
the appropriate defensive action (later we discuss what 
this may be).  It may turn out for instance that some 
firebreaks do not have any or many attackers behind 
them, and therefore don’t need to be told anything. 

                                                           
2 Host S may have obtained address F1 through DNS, 
for instance. 
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Of course, we don’t expect to see firebreaks 
immediately deployed at every edge router in the 
Internet, so we need a strategy for incremental 
deployment of firebreaks (accepting that the initial 
deployment in any event must be big enough and 
disperse enough to absorb a sizable attack).  For this, 
IP anycast is proposed [10].  All firebreaks advertise 
the complete set of firebreak addresses into the routing 
fabric.  As a result, packets addressed to any firebreak 
address are routed to a nearby firebreak.  If a firebreak 
fails or is taken out of service, IP routing will failover 
to another, operational firebreak. 

In fighting forest fires, a firebreak is a long swath of 
cleared vegetation that contains the fire within some 
region of the forest, as far as possible from protected 
resources like homes.  We view our network firebreak 
as a long swath of protection that contains DDoS 
attacks near the sources and far from the targets.  The 
firebreak can also be viewed as a “reverse firewall”.  A 
firewall is deployed near the protected target, and is 
dedicated to protecting only that target.  An individual 
firebreak, by contrast, is deployed near a set of sources, 
protects all targets (partially), and each target controls 
that aspect of the firebreak that pertains to itself. 

Though there are many details yet to examine, let’s see 
how this basic architecture addresses the problems 
outlined so far.  The target IP addresses do not need to 
be kept secret, because the edge routing infrastructure 
won’t allow packets to reach them.  No router changes 
are required, either near the target or throughout the 
routing fabric.  As such, no special coordination is 
required between ISPs.  Indeed the firebreak can be 
deployed along the same economic model as a CDN, 
though extensive coordination is required between the 
CDN and the ISPs where it deploys.  No changes are 
required to non-protected hosts, because IP anycast is 
used to direct client packets to nearby firebreaks.  
Protected hosts must either be modified or front-ended 
by in-the-path proxies, but we believe it is reasonable 
to assume that firebreak customers would be willing to 
do this. 

3 Design Details 

1.1 Route manipulation 

At the core of firebreak is making targets unreachable 
from endhosts but not firebreaks.  Indeed, this aspect of 
firebreak is applicable to any overlay-based DDoS 
scheme, including Akamai’s, as it eliminates the need 
for keeping target addresses secret and for having 
router-level protection near the target. 

Because firebreaks would not be deployed in all ISPs, 
lets refer to ISPs that have deployed firebreaks as 

Firebreak ISPs (F-ISP) and ISPs that have no deployed 
firebreaks as Non-firebreak ISPs (NF-ISP).  Preventing 
packets from NF-ISPs from reaching targets is straight-
forward: simply refrain from advertising those prefixes 
from F-ISPs to NF-ISPs.  Alternatively, the F-ISP 
could advertise the target prefixes, but immediately 
forward those packets into a black hole at the peer.  
The disadvantage of the former approach is that the 
NF-ISP could potentially on its own forward target 
packets to the F-ISP─the latter approach avoids this. 

Route manipulation within an F-ISP is more involved, 
because some hosts (firebreaks) must have IP 
reachability to targets, while other hosts (users) must 
not.   Figure 2 shows a simplified but for our purposes 
accurate topology of a single POP (Point of Presence) 
within an ISP.  ISPs typically consist of multiple such 
POPs.  A POP usually contains at least two types of 
routers:  Access Routers (AR) are used to aggregate 
customer networks and feed into a smaller number of 
higher capacity Core Routers (CR).  Core Routers have 
long distance links to other POPs within the same ISP, 
and to other ISPs. 

 Figure 2 also shows three valid deployment options for 
firebreaks (labeled FB).  In the first, the firebreaks are 
attached to access routers, but via an interface that is 
distinct from the interfaces used to aggregate 
customers.  In this deployment, the filtering rules in the 
access router are configured such that packets received 
via a customer interface and destined to a target prefix 
are dropped.  Off-the-shelf routers have these filtering 
capabilities, but the problem is that turning them on 
slows down router performance.  Especially, there may 
be many target prefixes, so a large number of filtering 
rules might be required in the access routers. 

CR CR 

AR AR AR AR 

To customer networks 

To other 
POPs To peer  

ISPs 
To peer  
ISPs 

Core Routers 

Access Routers 

POP 
FB 

FB FB 

 
Figure 2:  An ISP POP with three firebreak 
deployment options 

In the second option, the firebreaks are attached to core 
routers.  The disadvantage to this deployment is that 



Page 4 

the firebreak is now further away from the source 
(customer), and so has to discriminate among a larger 
number of sources (i.e. all those feeding into the POP, 
rather than those feeding into one or a few access 
routers).  The advantage of this deployment, however, 
is that forwarding rules, rather than filtering rules, can 
be used.  Specifically, BGP is manipulated so that the 
access routers have no forwarding table entries for the 
target prefixes at all.  Or, if the access routers use 
default routes to the core routers, they are given 
explicit forwarding table entries for the target prefixes, 
but the packets are forwarded to a black hole.  Either 
way, since the normal forwarding function is used to 
prevent access to targets, the access routers operate at 
normal full speed. 

In the third option, forwarding rules are used as 
described in the previous paragraph, but rather than 
attach the firebreaks to the core routers, they are 
attached at the link layer to high speed switches used to 
interconnect the various routers within the POP.  The 
advantage here is that the firebreaks can see which 
access router handled the packet, and so have better 
source discrimination.  Multiple firebreaks may be 
deployed at a single switch through any number of 
techniques (manipulating “ARP” tables in the access 
routers,  through VLANs, or with an L3 load balancer).   

Deployment with IPv6 

While this paper is primarily written with IPv4 in 
mind, it is worth mentioning that there is a mode of 
operation with IPv6 (non standard) that would greatly 
simplify the firebreak.  Specifically, the IPv6 address 
space could be split in two, half for targets and half for 
firebreaks, with a simple mapping between them (i.e. 
the flipping of a single bit).  This mapping would be 
defined as a standard, and coded into the fast path of 
access routers.  In this model, the network 
administrator would only need to identify the customer 
interfaces on the access router, which would then do 
the proper filtering. 

1.2 Packet formats 

Now we give a more complete description of how 
packets are forwarded through firebreaks.  We have 
several requirements for our approach.  First, the 
recipient of a packet must know to send a return packet 
from inspecting only the contents of the received 
packet.  Clearly legacy hosts must be able to do so in 
the standard way.  Second, a protected target must be 
able to initiate connections and still remain protected.  
Third, the recipient of a packet, if a protected target, 
must learn the unicast address of the traversed 
firebreak, so that it may send control messages if 
necessary.  Finally, where possible the addresses of the 
inner IP header must not change E2E.  The exception 

to this is where the protected host is a legacy host, and 
an in-the-path proxy translates the headers.  The 
remaining description assumes no such proxy. 

To accomplish these goals, protected hosts always 
transmits packets with their firebreak address as the 
source address.  If the protected host is not able to 
spoof its source address (for instance because an edge 
router drops source spoofed packets), then it must 
tunnel its packets to a nearby firebreak (option 1 in 
both Figure 1 and Figure 3).  It can do this by 
transmitting the tunneled packet to a generic firebreak 
address (shown as “FB”). 

(anycast) 

T2 F2 T1 F2, F1  
F2u,T1 

F1 

F1, F2 
T1,”FB” 

(option 1) 

F2, F1 
T2,”FB” 

F1, F2 
F1u,T2 

F1, F2 
(option 2) 

F1, F2 
F1u,T2 

Figure 3:  Packets between two protected hosts.  
Option 1 is where T1 cannot send source spoofed 
packets.  Option 2 is where it can.  (The same 
applies to T2.) 

When a firebreak receives a packet from a protected 
host for a non-protected host, it simply strips the outer 
header and forwards the packet (Figure 1).  When a 
firebreak transmits a packet to a protected host, the 
inner header is the same as that received.  The 
destination IP address in the outer header is that of the 
target host, as mapped from the received firebreak 
address.  The source IP address in the outer header is 
the unique unicast address of the firebreak.  This is 
stored by the target host (or a monitor acting on its 
behalf) to later send control messages to the firebreak.  
Note that firebreaks can and presumably would be 
themselves protected by the firebreak, so the IP address 
they use is actually their unique anycast firebreak 
address. 

Looking at Figure 1 and Figure 3, it should be clear 
that either end could have initiated the packet exchange 
with the headers shown.  Note also that a protected 
host, as an initiator, does not need to know if the 
destination is a protected host or not.  The firebreak 
must know, but firebreaks are required to know every 
mapping in any event. 

Finally, we note that this style of encapsulation 
requires that all of a protected host’s traffic go through 
nearby firebreaks ─ a potential bottleneck.  For 
communications with non-protected hosts (Figure 1), 
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this can be avoided in cases where the target can 
transmit packets with spoofed source addresses, which 
in many but perhaps not all cases could be arranged.   

1.3 Firebreak Control 

As discussed previously, filtering rules in firebreaks 
are controlled by monitors at the target.  Specifically, a 
given target T1 has the authority to install firebreak 
rules that relate to itself, but does not have the authority 
to install firebreak rules about any other target.  
Therefore, targets must be authenticated by firebreaks.  
This could be done by having the protected host 
establish a secure connection with its nearest firebreak 
(e.g., FT in figure 1), through which it forwards control 
messages.  Firebreaks could in turn authenticate control 
messages between each other.  

1.4 Firebreak defense rules 

As already stated, we expect firebreak to evolve with 
increasingly sophisticated attackers.  Even so, a few 
simple firebreak defense rules, outlined here, could go 
a long way.  

Note that a firebreak can over time build up knowledge 
of what source addresses it legitimately expects to see 
by monitoring successful TCP connections.  If an 
attack uses randomly chosen spoofed source addresses, 
the firebreak could be told to filter all packets that 
appear to be spoofed.  A counter attack to this defense 
would be for the attacker to spoof only addresses near 
its own address.  In this case, the firebreak could be 
told to start locally completing TCP handshakes. 

If the attacker does not spoof source addresses, and 
appears to send legitimate traffic, the firebreak could 
be told to fair-queue based on source IP, so that 
legitimate users can get through.  If the attack is so 
large that even with fair queuing legitimate users don’t 
get through, then higher-level authentication 
mechanisms may be used.  For instance, for web 
applications, the firebreak could be told to start 
transmitting web pages asking the human user to type 
in a human-readable but not machine-readable code. 

The point here is not to present an exhaustive list of 
defense mechanisms, or even to pretend that we 
understand what such an exhaustive list would look 
like, but rather to illustrate that a firebreak could utilize 
a rich and increasingly sophisticated set of defenses. 

4 Firebreak Issues 

In this section, we discuss a number of possible 
objections to the firebreak architecture. 

Doubles the number of addresses required:  This is 
basically true, and must be accepted as one of the costs 
of DDoS protection.  Having said that, we note that it is 
possible for multiple targets to share the same firebreak 
address if the firebreaks also use the port number to 
map firebreak addresses to target addresses. 

Scales poorly by the number of target addresses:  
Since both edge routers and firebreaks maintain per 
target address prefix information, it is important to 
insure that target addresses are allocated from large 
blocks of addresses dedicated to the targets.  For 
instance, each ISP that hosts protected targets (i.e. in 
their data centers) could take target addresses from a 
block dedicated to target addresses.  Likewise firebreak 
addresses should be allocated from corresponding 
blocks, so that the firebreaks only essentially have to 
map prefix block to prefix block.  

Scales poorly by the number of firebreaks:  One 
objection might be that there are too many firebreaks 
for any given controller to manage in a short amount of 
time.  Practically speaking, we doubt that this is an 
issue.  A controller should reasonably be able to install 
filter rules in several hundred firebreaks per second.  

Firebreaks introduce another point of failure:  It is 
true that if a firebreak goes down, all of the flows 
traversing it will fail until routing can converge to a 
new firebreak.  However, we would expect to see 
multiple firebreaks deployed per POP, so the loss of a 
firebreak would almost always require only very local 
re-routing, which can be done quite fast.  In other 
words, this problem can be mitigated by good 
engineering.  

The firebreak itself can be attacked:  Obviously we 
need to insure that the firebreak itself doesn’t introduce 
new vulnerabilities (in the same sense that Akamai’s 
use of DNS creates a vulnerability).  Assuming that 
monitors are indeed authenticated, and that the 
firebreaks themselves are protected hosts, and of 
course that there are enough firebreaks to absorb a 
brute force attack, we don’t see an obvious way to 
attack the firebreak.  One approach might be to try to 
spread attacks over many targets, attacking each just 
enough to get it to trigger defenses in firebreaks.  The 
defense mechanisms themselves would slow down the 
firebreaks, and might also cause some legitimate traffic 
to be blocked through imperfect filtering.  While we 
clearly need to carefully engineer for this and other 
possible attacks, we can at least say that we’ve raised 
the bar for the attackers. 

Initial firebreak deployment must be large:  Even if 
there is only one protected target, the initial firebreak 
deployment must be large enough to repel the largest 
expected attack.  This could easily amount to hundreds 
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of firebreaks over 10 or 20 ISPs.  So while 
mechanistically the firebreak is incrementally 
deployable, in practice it is not.  Having said that, we 
believe our approach minimizes the amount of required 
initial investment compared to approaches that require 
changes to routers or client hosts. 

Large-scale anycast is not well understood:  We 
have some concerns that large-scale anycast may have 
some bad unintended interactions with global BGP.  
For instance, having a large number of advertising the 
same prefixes could result in a large number of BGP 
events, which could in turn result in hold downs.  
Given that BGP dynamics themselves are poorly 
understood and constantly evolving, this is an area that 
requires extensive experimentation. 

5 Status and conclusions 

The status of our work at this time is as follows.  We 
are working to deploy a general IP anycast 
infrastructure (called PIAS, Proxy IP Anycast Service).  
The software is implemented and working in the lab, 
and we have preliminary approval for obtaining the 
required IP address blocks.  We expect to start a small 
deployment soon.  From this, we will be able to 
experiment with IP anycast on a larger scale than 
previously achieved.  In the meantime, we are starting 
to talk to ISPs in order to extend PIAS to include 
firebreak functionality. 

We are also interested in a number of extensions to 
firebreak.  For instance, as described in this document, 
firebreak is appropriate for the “public” client/server 
model of communications.  In this model, firebreaks by 
default take no defensive action unless otherwise 
instructed by targets.  A much more challenging 
problem would be that of protecting “private” peer 
hosts.  In this model, firebreak behavior is the opposite: 
don’t allow any packets unless otherwise told by the 
target.  This in turn means that standing filter state 
always exists in firebreaks.  This, as well as the fact 
that there are potentially many more peers the servers, 
presents significant scaling difficulties. 

We are also interested in the use of firebreaks to 
control worms.  Because firebreaks are deployed 
throughout the Internet, they are in a good position to 
help detect worms or other port scanning activity. 

Another thing to consider is whether the firebreak 
model extends to intranets.  The main problem here is 
that intranets increasingly provide much or most of 
their connectivity at layer 2, so it is not clear if the 
firebreak model really applies. 

Conclusions:  This paper presents the firebreak 
architecture, which uses IP-level indirection to 

decouple senders from protected receivers at the IP 
level.  Through the use of IP anycast, routing policies, 
and tunneling, we describe how the firebreak can be 
deployed as a proxy infrastructure with no changes to 
routers or sending endhosts, and with minimal changes 
to routing policy configuration.  We believe that the 
firebreak is the most general and economically viable 
approach to DDoS proposed so far. 
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