
Firebreak: An IP Perimeter Defense Architecture
Paul Francis

Cornell University
Ithaca, NY USA

francis@cs.cornell.edu

FORWARD: This paper was submitted as is to (and
rejected by) Hotnets ’04, and then never submitted
anywhere else. I stopped working on the idea when I
came to realize that the model being put in place by
major ISPs, based for instance on the Riverhead/Cisco,
is quite similar to the Firebreak model. The main
difference is that Firebreak is cross-ISP, and has a
different control model, but I doubt that this difference
is really compelling in practice.

ABSTRACT
After many years of research, the Distributed Denial of
Service (DDoS) problem remains essentially unsolved,
both in industry and in research. Industry solutions
rely primarily on beefing up the bandwidth near the
attack target, and/or on intercepting traffic at proxies
while keeping the target IP address secret. The former
approach is expensive, and the latter amounts to
“security through obscurity”. Existing research
solutions, on the other hand, have so far proven
economically infeasible. We propose an architecture,
called the firebreak, based on IP-level indirection.
With firebreak, target IP addresses are simply
unreachable from ISP customer networks and endhosts.
Rather, IP packets are addressed to proxies deployed
near the edge using IP anycast, and from there are
tunneled using the target IP addresses. This use of IP
indirection, as well as the use of IP anycast and
tunneling to deploy firebreak, is the main research
contribution of firebreak. This paper describes the
firebreak architecture, discusses its pros and cons, and
suggests directions for future work.

1 Introduction
In spite of the fact that DDoS is one of the most serious
problems facing the Internet today, no effective and
viable solutions exist. Practically speaking there are
two basic approaches in effect today. One is simply to
have more bandwidth and server capacity than the
attacker. We understand that Microsoft, to a large
extent, protects itself this way [1]. This approach is
perhaps, at least for the time being, adequate for very
rich companies, but is not feasible for small companies
or individuals. In any event, this is clearly not a good
long-term strategy even for rich companies.

The second practical approach is offered by CDNs like
Akamai. Here, DNS is used to direct HTTP queries to
proxies richly deployed around the Internet. By their
sheer scale, these proxies can absorb a DDoS attack
(or, almost equivalently, a surge in legitimate traffic).
This approach requires that the origin server IP address
be kept secret. It also requires that the DNS
infrastructure be large enough that it itself cannot be
attacked. Indeed, this DNS was apparently the target
of a recent attack on Akamai (June 15, 2004). The
attack was reported to have a small but noticeable
impact on Akamai’s service.

Alternatively, if an attacker somehow learns the IP
address of the origin server of the web service it wishes
to attack, then it could bypass Akamai’s proxy defenses
altogether, especially for active content, which is
difficult to serve out of web proxies. This amounts to
security through obscurity, which is widely considered
to be a bad security policy.

On the research side, two broad approaches have been
identified. One is traceback/pushback, whereby routers
cooperate to discover the sources of an attack
(traceback) [2][3][4] and install filters to remove the
bad traffic as near to the sources as possible (pushback)
[5][6]. [7] suggests that the main weakness of these
approaches is that they cannot adequately distinguish
the good traffic from the bad.1 While there is some
truth to this, we believe that there is still value in such
filtering, in part because they offload the targets so that
the targets can still reasonably service traffic (good and
bad), but also because the filters will still remove more
bad traffic than good, primarily because of their
proximity to the bad sources.

Our objection to the traceback/pushback approaches, as
well as to [7], is much more pragmatic: they require
too tight a coupling with the routing fabric. The
traceback/pushback functionality, whether
implemented in routers or boxes sitting next to routers,
needs to exist in multiple points on the path between
attacker and target to be effective. This in turn requires
close cooperation between ISPs (and therefore

1 [7] also has a nice and succinct description of the
referenced traceback, pushback, and overlay
approaches which we don’t repeat here.

Page 2

agreement between ISPs on what protocols to use,
among other things). Such approaches require a lot of
economic lift to get off the ground.

The other broad research approach is to deploy some
kind of overlay [8][9][12]. These approaches
overcome the deployment problems associated with the
more router-oriented approaches, but have other
shortcomings. [7] argues that the authentication secrets
[8] and[9] use are shared among too many components,
and are therefore subject to compromise. Once again,
our objections are more pragmatic. SOS [8], Mayday
[9], and Si3 [12] all require users to traverse an overlay
that provides some form of protection. But these
approaches require either that the target IP address
remain secret, or that there is router-based protection in
the vicinity of the target to defend against attackers.
After all, attackers have no motivation to try to reach
the target via the overlay (or via web proxies, as with
the CDN approach). They can bypass the overlay
(proxies) by sending packets directly to the IP address
of the target. The argument that SOS and Mayday
make is that such router filtering can be lightweight
and therefore deployed in high-speed core routers, but
we remain somewhat skeptical of this argument.
Routers are highly constrained to do a minimum
amount of processing, so even relatively simple
filtering is a hard sell. In addition, these schemes
require changes to legitimate endhosts to use the
overlays. [12] suggests an alternative using IP-level
indirection to avoid changes to endhosts, and is similar
to firebreak in this regard. However, the approach they
outline requires per-flow state and NAT operations in
existing edge routers.

2 Firebreak Architecture

As should be apparent from the above discussion, one
of the primary goals of Firebreak is to design a DDoS
defense that is deployable in both a technical and
economic sense. Towards this end, we want a solution
that requires no changes to endhosts or current router
software. We want a solution for which a viable
business model exists and can support whatever initial
infrastructure investments are necessary. We also
recognize that DDoS is an arms race─we don’t expect
a silver bullet. Rather we expect to make the cost of
defending against reasonable attacks as small as
possible (and certainly much smaller than the damage
caused by such an attack).

Beyond this, we take it as a given that the point of
defense, that is the boxes where attack packets are
filtered, should be as near the source as possible.
There are two reasons for this. First, the further away
the defense is from the target, the more bandwidth
there is to absorb the attack. Second, the closer each

box is to the source, the fewer sources each box has to
filter against. Towards this end, the solution should be
deployable across multiple ISPs. This in turns means
that minimal or no coordination be required between
ISPs deploying the solution.

The key concept behind firebreak is the use of IP-level
indirection. The basic idea is that source end hosts
(friend and foe alike) simply cannot send IP packets
directly to target hosts (e.g. in Figure 1, packets from
host S addressed to T1). IP reachability simply does
not exist─IP packets addressed to the target are
dropped by legacy routers very near the source.
Instead, packets must be addressed to intermediate
boxes, called firebreak boxes (or more typically just
firebreaks) deployed near the edge. The firebreaks
map these firebreak addresses into the target
addresses, and tunnel the packets to the target. For
instance, in Figure 1, S addresses packets to F12, which
gets delivered to a nearby firebreak (FS). The
firebreak maps F1 into the target address T1, and
tunnels the packet to the target using its own unicast
address FSu as the source address of the outer header.
If the target itself is incapable of de-tunneling these
packets, a proxy placed in the physical path near the
target can do it (or, if necessary, the firebreak could
NAT the packet). Reverse packets actually take a
different path back, as explained in Section 1.2.

(anycast)

S FS T1
S,F1

S, F1
FSu,T1

FT

F1,S
F1,S
T1,”FB”

(option 1)

F1,S
(option 2)

Figure 1: Packets between non-protected host S and
(protected) target T1. Option 1 is where T1 cannot
spoof its source address, option 2 is where it can.

DDoS monitor functions exists at the target (though
firebreaks may feed statistics to the monitors to aid
them). Normally firebreaks simply pass all traffic to
the target. When a monitor detects an attack or an
overload, however, it sends control messages to the
appropriate firebreaks (e.g. to address Fu) requesting
the appropriate defensive action (later we discuss what
this may be). It may turn out for instance that some
firebreaks do not have any or many attackers behind
them, and therefore don’t need to be told anything.

2 Host S may have obtained address F1 through DNS,
for instance.

Page 3

Of course, we don’t expect to see firebreaks
immediately deployed at every edge router in the
Internet, so we need a strategy for incremental
deployment of firebreaks (accepting that the initial
deployment in any event must be big enough and
disperse enough to absorb a sizable attack). For this,
IP anycast is proposed [10]. All firebreaks advertise
the complete set of firebreak addresses into the routing
fabric. As a result, packets addressed to any firebreak
address are routed to a nearby firebreak. If a firebreak
fails or is taken out of service, IP routing will failover
to another, operational firebreak.

In fighting forest fires, a firebreak is a long swath of
cleared vegetation that contains the fire within some
region of the forest, as far as possible from protected
resources like homes. We view our network firebreak
as a long swath of protection that contains DDoS
attacks near the sources and far from the targets. The
firebreak can also be viewed as a “reverse firewall”. A
firewall is deployed near the protected target, and is
dedicated to protecting only that target. An individual
firebreak, by contrast, is deployed near a set of sources,
protects all targets (partially), and each target controls
that aspect of the firebreak that pertains to itself.

Though there are many details yet to examine, let’s see
how this basic architecture addresses the problems
outlined so far. The target IP addresses do not need to
be kept secret, because the edge routing infrastructure
won’t allow packets to reach them. No router changes
are required, either near the target or throughout the
routing fabric. As such, no special coordination is
required between ISPs. Indeed the firebreak can be
deployed along the same economic model as a CDN,
though extensive coordination is required between the
CDN and the ISPs where it deploys. No changes are
required to non-protected hosts, because IP anycast is
used to direct client packets to nearby firebreaks.
Protected hosts must either be modified or front-ended
by in-the-path proxies, but we believe it is reasonable
to assume that firebreak customers would be willing to
do this.

3 Design Details

1.1 Route manipulation

At the core of firebreak is making targets unreachable
from endhosts but not firebreaks. Indeed, this aspect of
firebreak is applicable to any overlay-based DDoS
scheme, including Akamai’s, as it eliminates the need
for keeping target addresses secret and for having
router-level protection near the target.

Because firebreaks would not be deployed in all ISPs,
lets refer to ISPs that have deployed firebreaks as

Firebreak ISPs (F-ISP) and ISPs that have no deployed
firebreaks as Non-firebreak ISPs (NF-ISP). Preventing
packets from NF-ISPs from reaching targets is straight-
forward: simply refrain from advertising those prefixes
from F-ISPs to NF-ISPs. Alternatively, the F-ISP
could advertise the target prefixes, but immediately
forward those packets into a black hole at the peer.
The disadvantage of the former approach is that the
NF-ISP could potentially on its own forward target
packets to the F-ISP─the latter approach avoids this.

Route manipulation within an F-ISP is more involved,
because some hosts (firebreaks) must have IP
reachability to targets, while other hosts (users) must
not. Figure 2 shows a simplified but for our purposes
accurate topology of a single POP (Point of Presence)
within an ISP. ISPs typically consist of multiple such
POPs. A POP usually contains at least two types of
routers: Access Routers (AR) are used to aggregate
customer networks and feed into a smaller number of
higher capacity Core Routers (CR). Core Routers have
long distance links to other POPs within the same ISP,
and to other ISPs.

 Figure 2 also shows three valid deployment options for
firebreaks (labeled FB). In the first, the firebreaks are
attached to access routers, but via an interface that is
distinct from the interfaces used to aggregate
customers. In this deployment, the filtering rules in the
access router are configured such that packets received
via a customer interface and destined to a target prefix
are dropped. Off-the-shelf routers have these filtering
capabilities, but the problem is that turning them on
slows down router performance. Especially, there may
be many target prefixes, so a large number of filtering
rules might be required in the access routers.

CR CR

AR AR AR AR

To customer networks

To other
POPs To peer

ISPs
To peer
ISPs

Core Routers

Access Routers

POP
FB

FB FB

Figure 2: An ISP POP with three firebreak
deployment options

In the second option, the firebreaks are attached to core
routers. The disadvantage to this deployment is that

Page 4

the firebreak is now further away from the source
(customer), and so has to discriminate among a larger
number of sources (i.e. all those feeding into the POP,
rather than those feeding into one or a few access
routers). The advantage of this deployment, however,
is that forwarding rules, rather than filtering rules, can
be used. Specifically, BGP is manipulated so that the
access routers have no forwarding table entries for the
target prefixes at all. Or, if the access routers use
default routes to the core routers, they are given
explicit forwarding table entries for the target prefixes,
but the packets are forwarded to a black hole. Either
way, since the normal forwarding function is used to
prevent access to targets, the access routers operate at
normal full speed.

In the third option, forwarding rules are used as
described in the previous paragraph, but rather than
attach the firebreaks to the core routers, they are
attached at the link layer to high speed switches used to
interconnect the various routers within the POP. The
advantage here is that the firebreaks can see which
access router handled the packet, and so have better
source discrimination. Multiple firebreaks may be
deployed at a single switch through any number of
techniques (manipulating “ARP” tables in the access
routers, through VLANs, or with an L3 load balancer).

Deployment with IPv6

While this paper is primarily written with IPv4 in
mind, it is worth mentioning that there is a mode of
operation with IPv6 (non standard) that would greatly
simplify the firebreak. Specifically, the IPv6 address
space could be split in two, half for targets and half for
firebreaks, with a simple mapping between them (i.e.
the flipping of a single bit). This mapping would be
defined as a standard, and coded into the fast path of
access routers. In this model, the network
administrator would only need to identify the customer
interfaces on the access router, which would then do
the proper filtering.

1.2 Packet formats

Now we give a more complete description of how
packets are forwarded through firebreaks. We have
several requirements for our approach. First, the
recipient of a packet must know to send a return packet
from inspecting only the contents of the received
packet. Clearly legacy hosts must be able to do so in
the standard way. Second, a protected target must be
able to initiate connections and still remain protected.
Third, the recipient of a packet, if a protected target,
must learn the unicast address of the traversed
firebreak, so that it may send control messages if
necessary. Finally, where possible the addresses of the
inner IP header must not change E2E. The exception

to this is where the protected host is a legacy host, and
an in-the-path proxy translates the headers. The
remaining description assumes no such proxy.

To accomplish these goals, protected hosts always
transmits packets with their firebreak address as the
source address. If the protected host is not able to
spoof its source address (for instance because an edge
router drops source spoofed packets), then it must
tunnel its packets to a nearby firebreak (option 1 in
both Figure 1 and Figure 3). It can do this by
transmitting the tunneled packet to a generic firebreak
address (shown as “FB”).

(anycast)

T2 F2 T1 F2, F1
F2u,T1

F1

F1, F2
T1,”FB”

(option 1)

F2, F1
T2,”FB”

F1, F2
F1u,T2

F1, F2
(option 2)

F1, F2
F1u,T2

Figure 3: Packets between two protected hosts.
Option 1 is where T1 cannot send source spoofed
packets. Option 2 is where it can. (The same
applies to T2.)

When a firebreak receives a packet from a protected
host for a non-protected host, it simply strips the outer
header and forwards the packet (Figure 1). When a
firebreak transmits a packet to a protected host, the
inner header is the same as that received. The
destination IP address in the outer header is that of the
target host, as mapped from the received firebreak
address. The source IP address in the outer header is
the unique unicast address of the firebreak. This is
stored by the target host (or a monitor acting on its
behalf) to later send control messages to the firebreak.
Note that firebreaks can and presumably would be
themselves protected by the firebreak, so the IP address
they use is actually their unique anycast firebreak
address.

Looking at Figure 1 and Figure 3, it should be clear
that either end could have initiated the packet exchange
with the headers shown. Note also that a protected
host, as an initiator, does not need to know if the
destination is a protected host or not. The firebreak
must know, but firebreaks are required to know every
mapping in any event.

Finally, we note that this style of encapsulation
requires that all of a protected host’s traffic go through
nearby firebreaks ─ a potential bottleneck. For
communications with non-protected hosts (Figure 1),

Page 5

this can be avoided in cases where the target can
transmit packets with spoofed source addresses, which
in many but perhaps not all cases could be arranged.

1.3 Firebreak Control

As discussed previously, filtering rules in firebreaks
are controlled by monitors at the target. Specifically, a
given target T1 has the authority to install firebreak
rules that relate to itself, but does not have the authority
to install firebreak rules about any other target.
Therefore, targets must be authenticated by firebreaks.
This could be done by having the protected host
establish a secure connection with its nearest firebreak
(e.g., FT in figure 1), through which it forwards control
messages. Firebreaks could in turn authenticate control
messages between each other.

1.4 Firebreak defense rules

As already stated, we expect firebreak to evolve with
increasingly sophisticated attackers. Even so, a few
simple firebreak defense rules, outlined here, could go
a long way.

Note that a firebreak can over time build up knowledge
of what source addresses it legitimately expects to see
by monitoring successful TCP connections. If an
attack uses randomly chosen spoofed source addresses,
the firebreak could be told to filter all packets that
appear to be spoofed. A counter attack to this defense
would be for the attacker to spoof only addresses near
its own address. In this case, the firebreak could be
told to start locally completing TCP handshakes.

If the attacker does not spoof source addresses, and
appears to send legitimate traffic, the firebreak could
be told to fair-queue based on source IP, so that
legitimate users can get through. If the attack is so
large that even with fair queuing legitimate users don’t
get through, then higher-level authentication
mechanisms may be used. For instance, for web
applications, the firebreak could be told to start
transmitting web pages asking the human user to type
in a human-readable but not machine-readable code.

The point here is not to present an exhaustive list of
defense mechanisms, or even to pretend that we
understand what such an exhaustive list would look
like, but rather to illustrate that a firebreak could utilize
a rich and increasingly sophisticated set of defenses.

4 Firebreak Issues

In this section, we discuss a number of possible
objections to the firebreak architecture.

Doubles the number of addresses required: This is
basically true, and must be accepted as one of the costs
of DDoS protection. Having said that, we note that it is
possible for multiple targets to share the same firebreak
address if the firebreaks also use the port number to
map firebreak addresses to target addresses.

Scales poorly by the number of target addresses:
Since both edge routers and firebreaks maintain per
target address prefix information, it is important to
insure that target addresses are allocated from large
blocks of addresses dedicated to the targets. For
instance, each ISP that hosts protected targets (i.e. in
their data centers) could take target addresses from a
block dedicated to target addresses. Likewise firebreak
addresses should be allocated from corresponding
blocks, so that the firebreaks only essentially have to
map prefix block to prefix block.

Scales poorly by the number of firebreaks: One
objection might be that there are too many firebreaks
for any given controller to manage in a short amount of
time. Practically speaking, we doubt that this is an
issue. A controller should reasonably be able to install
filter rules in several hundred firebreaks per second.

Firebreaks introduce another point of failure: It is
true that if a firebreak goes down, all of the flows
traversing it will fail until routing can converge to a
new firebreak. However, we would expect to see
multiple firebreaks deployed per POP, so the loss of a
firebreak would almost always require only very local
re-routing, which can be done quite fast. In other
words, this problem can be mitigated by good
engineering.

The firebreak itself can be attacked: Obviously we
need to insure that the firebreak itself doesn’t introduce
new vulnerabilities (in the same sense that Akamai’s
use of DNS creates a vulnerability). Assuming that
monitors are indeed authenticated, and that the
firebreaks themselves are protected hosts, and of
course that there are enough firebreaks to absorb a
brute force attack, we don’t see an obvious way to
attack the firebreak. One approach might be to try to
spread attacks over many targets, attacking each just
enough to get it to trigger defenses in firebreaks. The
defense mechanisms themselves would slow down the
firebreaks, and might also cause some legitimate traffic
to be blocked through imperfect filtering. While we
clearly need to carefully engineer for this and other
possible attacks, we can at least say that we’ve raised
the bar for the attackers.

Initial firebreak deployment must be large: Even if
there is only one protected target, the initial firebreak
deployment must be large enough to repel the largest
expected attack. This could easily amount to hundreds

Page 6

of firebreaks over 10 or 20 ISPs. So while
mechanistically the firebreak is incrementally
deployable, in practice it is not. Having said that, we
believe our approach minimizes the amount of required
initial investment compared to approaches that require
changes to routers or client hosts.

Large-scale anycast is not well understood: We
have some concerns that large-scale anycast may have
some bad unintended interactions with global BGP.
For instance, having a large number of advertising the
same prefixes could result in a large number of BGP
events, which could in turn result in hold downs.
Given that BGP dynamics themselves are poorly
understood and constantly evolving, this is an area that
requires extensive experimentation.

5 Status and conclusions

The status of our work at this time is as follows. We
are working to deploy a general IP anycast
infrastructure (called PIAS, Proxy IP Anycast Service).
The software is implemented and working in the lab,
and we have preliminary approval for obtaining the
required IP address blocks. We expect to start a small
deployment soon. From this, we will be able to
experiment with IP anycast on a larger scale than
previously achieved. In the meantime, we are starting
to talk to ISPs in order to extend PIAS to include
firebreak functionality.

We are also interested in a number of extensions to
firebreak. For instance, as described in this document,
firebreak is appropriate for the “public” client/server
model of communications. In this model, firebreaks by
default take no defensive action unless otherwise
instructed by targets. A much more challenging
problem would be that of protecting “private” peer
hosts. In this model, firebreak behavior is the opposite:
don’t allow any packets unless otherwise told by the
target. This in turn means that standing filter state
always exists in firebreaks. This, as well as the fact
that there are potentially many more peers the servers,
presents significant scaling difficulties.

We are also interested in the use of firebreaks to
control worms. Because firebreaks are deployed
throughout the Internet, they are in a good position to
help detect worms or other port scanning activity.

Another thing to consider is whether the firebreak
model extends to intranets. The main problem here is
that intranets increasingly provide much or most of
their connectivity at layer 2, so it is not clear if the
firebreak model really applies.

Conclusions: This paper presents the firebreak
architecture, which uses IP-level indirection to

decouple senders from protected receivers at the IP
level. Through the use of IP anycast, routing policies,
and tunneling, we describe how the firebreak can be
deployed as a proxy infrastructure with no changes to
routers or sending endhosts, and with minimal changes
to routing policy configuration. We believe that the
firebreak is the most general and economically viable
approach to DDoS proposed so far.

References
[1] Private communications.

[2] S. Bellovin. ICMP Traceback Messages.
http://www.research.att.com/~smb/papers/draft-bellovin-
itrace-00.txt, Internet Draft), 2000.

[3] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
“Practical Network Support for IP Traceback,”. In Proc.
ACM SIGCOMM 2000

[4] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F.
Tchakountio, S. Kent, and W. Strayer. “Hash-Based IP
Traceback,” In Proc. ACM SIGCOMM 2001

[5] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V.
Paxson, and S. Shenker. “Controlling High Bandwidth
Aggregates in the Network,” Computer Communications
Review, 32(3), July 2002

[6] J. Ioannidis and S. Bellovin, “Implementing Pushback:
Router-Based Defense Against DoS Attacks,” In Network
and Distributed System Security Symposium, 2002

[7] Tom Anderson, Timothy Roscoe, David Wetherall,
“Preventing Internet Denial-of-Service with Capabilities,”
ACM Hotnets II, Nov. 2003

[8] A. Keromytis, V. Misra, and D. Rubenstein, “SOS:
Secure Overlay Services,” In Proc. ACM SIGCOMM 2002

[9] D. Andersen, “Mayday: Distributed Filtering for Internet
Services,” In Proc. of USITS 2003.

[10] C. Partridge, T. Mendez, W. Milliken, “Host
Anycasting Service”, RFC 1546, November 1993

[11] K. Gummadi, S. Saroiu, S. Gribble, “King: estimating
latency between arbitrary internet end hosts,” ACM
Sigcomm IMW 2002

 [12] Karthik Lakshminarayanan, Daniel Adkins, Adrian
Perrig, and Ion Stoica, “Taming IP Packet Flooding
Attacks,” ACM SIGCOMM HotNets-II, Cambridge, MA,
November 2003

