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ABSTRACT Serum prostate-specific antigen (PSA) concentrations are
now widely used to aid in the detection of prostate cancer. When prostate
cancer is present, PSA levels typically increase. But a number of benign
conditions will also cause elevated PSA levels and, conversely, prostate
cancer has been diagnosed in the absence of raised PSA.

We analyze one of the most extensive data sets currently available for longi-
tudinal PSA readings, obtained by an historical prospective study of frozen
serum samples from the Nutritional Prevention of Cancer Trial (Clark et
al., 1996). These data consist of serial readings for over 1200 men taken at
approximate six-month intervals over an 11 year period.

We fit a fully Bayesian hicrarchical changepoint model to the longitudinal
PSA readings. Our objectives include better understanding the natural
history of PSA levels in patients who have and have not been diagnosed
with prostate cancer and identifying subject-specific changepoints that are
indicative of cancer onset. With the goal of accurate early detection, we
perform a prospective sequential analysis to compare several diagnostic
rules, including a rule based on the posterior distribution of individual
changepoints.

1 Introduction

According the American Cancer Society Facts & Figures, prostate can-
cer is the most common cancer, excluding skin cancer, and the second
leading cause of cancer death in American men. Prostate cancer incidence
has tripled in the past decade, to an estimated 334,500 new cases in 1997,
largely due to increased detection by the use of serum prostate-specific anti-
gen (PSA) measurements. PSA is a glycoprotein produced by the prostate
gland that increases with the volume of the prostate. Many studies have
demonstrated the utility of PSA for detecting cancer. Catalona et al. (1991,
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1993) found that combining PSA levels with ultrasound and digital rectal
exam (DRE) significantly improved the detection of prostate cancer. They
interpreted PSA levels of 4 ng/ml (on the monoclonal scale) as arousing
suspicion of cancer. Oesterling et al. (1993) concluded from a prospective
study that PSA increases gradually among healthy men and, consequently,
suggested age-specific normal ranges for PSA. Recently, Carter et al. (1997)
supported the cutoff of 4 ng/ml for maintaining the detection of curable
prostate cancer. However, a single PSA measurement is an imprecise indi-
cator of disease status. Carter et al. (1992a, b) and Catalona et al. (1991,
1993, 1997) have reported that the proportion of men with prostate cancer
who have PSA levels less than 4 ng/ml is 20-35%, while 7-63% of men with-
out prostate cancer have PSA over 4 ng/ml. Similarly Gann et al. (1995)
and Whittemore et al. (1995) reported that the cutoff of 4 ng/ml has es-
timated sensitivities of 73-75% and specificities of 88-91% for detection of
prostate cancer in the next 4-7 years.

A longitudinal series of PSA measurements taken periodically from a sub-
ject may lead to the development of diagnostic criteria with much higher
sensitivities and specificities. Few published studies have investigated the
behavior of longitudinal PSA measurements. Carter et al. (1992a, b), Pear-
son et al. (1991, 1994) and Morrell et al. (1995) analyzed data obtained from
the Baltimore Longitudinal Study of Aging (BLSA). These data consisted
of series of PSA readings obtained from frozen blood samples collected
approximately bi-annually for 54 men. The series spanned the 7-25 years
before determination of prostate disease status, with a median number of
approximately 10 readings per person. They fit linear mixed effects mod-
els and concluded that the exponential growth rate of PSA is significantly
greater for cases prior to diagnosis than for controls, indicating that the
rate of change of PSA may be a more sensitive and specific marker for
prostate cancer than PSA levels. These investigators also used nonlinear
mixed effects models to estimate changepoints in the rate of increase of
the PSA trajectories for cases. They found that the transition from slow
to rapid increase typically occurred 7.3 and 9.2 years before diagnosis for
local and metastatic cancers, respectively.

A second longitudinal study was described by Whittemore et al. (1995),
based on data available from a screening program run by the Kaiser Per-
manente Medical Care Program (KPMC). They analyzed PSA trajectories
spanning 1-5 years for 320 men, with a median number of readings of ap-
proximately 4 per person. These investigators also fit linear and nonlinear
mixed effects models and found significant differences in the growth rate of
PSA between cases and controls, reporting that the transition from slow
to rapid growth occurred about 13-14.5 years before diagnosis. Moreover,
Whittemore et al. evaluated diagnostic rules based on absolute levels and
rates of change of PSA and concluded, surprisingly, that a single PSA mea-
surement was a more sensitive indicator of cancer within the next 7 years
than any index of change based on the entire trajectory. This result may
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be partially explained by the lack of readings near diagnosis in their data.

In this paper we investigate a much larger set of longitudinal PSA read-
ings obtained from frozen blood samples available for patients in the Nu-
tritional Prevention of Cancer Trial (NPCT). The NPCT is a randomized
double-blind cancer prevention trial using a nutritional dose of the essential
trace element selenium as the intervention agent. The results of a ten-year
follow up were described by Clark et al. (1996). The PSA data that we an-
alyze here consist of serial readings for 1210 men spanning up to 11 years
with a median number of readings of 4 per person; additional details are
given in Section 2. For comparison with the BLSA and KPMC studies,
we briefly describe the results of fitting linear and nonlinear mixed effects
models to our data in Section 3. However, the focus of this paper is the
fully Bayesian hierarchical changepoint model described in Section 4. Our
model is similar to that described by Carlin et al. (1992) and used by Lange
et al. (1992) for CD4 T-cell counts, but with a continuous changepoint as
in Stephens (1994). As does Stephens, we use our model to retrospectively
estimate changepoints, but we also consider our data as arising from an
historical prospective study (see, for example, Carter et al., 1997) and dy-
namically estimate the changepoints. This dynamic implementation enables
us to evaluate and compare various diagnostic rules using receiver operat-
ing characteristic (ROC) curves adapted for the longitudinal tests; we do
this in Section 5. Additional discussion appears in Section 6.

2 The NPCT PSA data

The NPCT investigated the utility of a nutritional dose of selenium for
preventing cancer. A total of 1736 patients at high risk of skin cancer were
randomized into efficacy and safety arms of the trial, with 1255 of these
being males with no prior history of prostate cancer. Blood samples were
collected and frozen semi-annually from trial participants. Our PSA data
were obtained using the Abbott IMX assay on the frozen samples from the
men in the trial. After removing PSA readings from samples taken after
diagnosis of prostate cancer, after the start of Proscar, which is known
to affect PSA levels, and after the trial unblinding date of Feb. 1, 1996,
our data consisted of 6659 readings for 1210 men. Of these men, 85 had
biopsy-confirmed diagnoses of prostate cancer and will be called the cases,
while the remainder will be called the controls. Note that because of the
historical prospective nature of our data, the PSA readings were typically
not used to aid diagnosis.

Figure 1 shows representative PSA trajectories from a sample of cases
and controls from NPCT data. The horizontal scale in these plots is labeled
as “Years Before Reference Date.” The reference date is defined as the
date of diagnosis for cases and the date of the last recorded reading for
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FIGURE 1. Typical PSA trajectories and for cases and controls. The thin lines
are linear interpolations of selected trajectories and the thick lines, one for each
graph, are the smoothed trajectories for all cases and controls.

Cases (N = 85) Controls (N = 1125)

Med. Av. Range Med. Av. Range

No. Readings 5.0 6.0 (1-19) 4.0 4.5 (1-20)
Time Span (yrs) 2.5 3.1  (0-10.8) 45 4.2 (0-11.6)

Ageat Ref. 720 725 (56.7-84.6) 70.5 68.9 (20.7-89.5)
Median PSA 5.3 100 (0.9-150.4) 1.1 1.6 (0-25.1)
YPR 30 33 (0-11.3) 25 3.2 (0-12.3)

TABLE 1.1. Summary of the NPCT PSA data. The median (Med.), average
(Av.) and range are given for key characteristics as described in the text.

controls (as in Pearson et al., 1994). Also shown are loess (Cleveland, 1988)
smooth fits to all 1125 controls and 85 cases. Similar graphs can be found
in Figures 1, 2 and 3 of Carter et al. (1992a), Figure 1 of Pearson et al.
(1994) and in Figure 1 of Whittemore et al. (1995). It is important to
note that there does appear to be a difference in the behavior of the PSA
trajectories for the two groups: those for the controls remain relatively flat,
whereas the trajectories for the cases appear to show more of an increasing
trend. These (apparent) differences in the PSA trajectories according to
prostate condition suggest that, indeed, longitudinal PSA readings can be
informative about prostate disease status.

Table 1.1 summarizes key characteristics of the NPCT data. Separately
for cases and controls, the median, average and range are given for the
number of readings per person, time span of the readings per person, age at
the reference date, and median PSA per person. Also summarized across all
readings for cases and controls is the years prior to the reference date (YPR)
at which the blood samples were taken. Although the NPCT data contain
readings for many more subjects, the number of readings per subject and
the time span of those readings fall between these values for the BLSA and
KPMC data.
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3 Mixed effects models

The analyses of both the BLSA and KPMC studies included mixed effects
models for the PSA trajectories. These models incorporate both population
and subject-specific effects and can capture the serial correlation expected
in the marker measurements recorded within a subject. The linear mixed
effects model is useful for describing the apparent differences in the PSA
trajectories for the cases and controls. The nonlinear mixed effects model
additionally permits the estimation of changepoints representing the time
at which cancer first affects the trajectories for the cases. Here we provide
an illustration of each type of model, its application to the NPCT data and
a brief comparison to the BLSA and KPMC results.

3.1 Linear mized effects model

Pearson et al. (1994) consider the following model:

In(PSA;; +1) = (Bo + bos) + P1 Case; + (B2 + ba;) PriorYears;;
+ 33 Case; x PriorYears;; + (B4 + bas) PriorYears%j
+ (5 Case; x PriorYears?j + Bs RefAge; + €;; (3.1)

Here, ¢ indexes the subject and j indexes the observation within that sub-
ject. “Case;” equals 1 if subject ¢ has been diagnosed with prostate cancer
and 0 otherwise, and “RefAge;” is the age of subject ¢ at the reference date
(recall that the reference date is the date of diagnosis for cases and the date
of the last reading for controls). Also “PriorYears” denotes years prior to
the reference date with a negative sign attached. (This sign convention is
needed so that the slope coefficients 3> and 3 will be nonnegative in situ-
ations such as those depicted in Figure 1.) The population or fixed effects
are denoted by fs and are unknown constants to be estimated. The ran-
dom or subject-specific effects bg; and by; permit the intercept (Bo + bos)
and slope (B2 + bz;) to vary across subjects. The vectors {(bos, b2:)} are as-
sumed to be independently distributed as multivariate normal with mean
0 and arbitrary variance-covariance matrix. The errors {¢;;} are modeled
as independent and identically distributed normal random variables with
constant (but unknown) variance 0. The inclusion of the predictor RefAge
adjusts for the effect of age at the reference date on the PSA levels (see
Oesterling et al., 1993, for results concerning the effect of age on PSA lev-
els). The transformation In(PSA + 1) is used by Whittemore et al. (1995)
and implies linear growth on the log scale, which might be justified both
biologically by the exponential growth of malignancies and statistically as
an approximate variance stabilizing transformation. (The addition of one
is to diminish the influence of extremely small PSA readings.)

We fit model (3.1) to the NPCT data using restricted maximum likeli-
hood (Lindstrom and Bates, 1988, 1990). The population median fits are
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shown in Figure 2. The approximately horizontal fits are for control sub-
jects and the increasing curves are for case subjects. The effect of age at
diagnosis in this model is to shift the fitted curves upwards for greater
ages: for both cases and controls the three lines correspond to ages at the
reference date of 50, 65 and 80 years as the PSA levels increase. All es-
timated coefficients are highly statistically significant with the exception
of (34, corresponding to the quadratic term for controls. The slope of the

20

— Age at Reference = 50
~— Age at Reference = 65
--- Age at Reference = 80

PSA
1‘0 15

5

Years before reference
FIGURE 2. The population median PSA trajectories predicted by model (3.1)
for the preliminary NPCT data. The approximately horizontal fits are for control
subjects and the increasing curves are for case subjects.

In(PSA+1) curves, here either 3, for controls or F, + (3 for cases, is termed
the exponential growth rate or “velocity” of the PSA and is of primary in-
terest. For these data the estimated exponential growth rate is 0.01 (se
= 0.005) for controls and 0.21 (0.021) for cases. Using models similar to
(3.1), approximate exponential growth rates for the BLSA data are 0.037
for controls and 0.20 for cases (se not available from published reports),
while the corresponding estimates are 0.03 (0.004) and 0.16 (0.012) for the
KPMC data. All three studies show a significant difference between the
growth rates for PSA for the cases and controls.

3.2 Nonlinear mized effects model

Assuming that at one time the cases were cancer-free and hence controls,
it is reasonable to seek a changepoint in the PSA trajectories that indi-
cates the time when a malignancy first affects the PSA readings. Similar
to Whittemore et al. (1995), one model that we have fit is

ln(PSAiJ’ + l) =
Bo; + 61 (PriorYears;; — t;) +



1. Retrospective and prospective changepoint identification 7

0; (PriorYears;; — t;) sgn(PriorYears;; — ;) + €5, (3.2)

where sgn is the sign function, y;, f2; and t; are subject-specific param-
eters, i.e. Bo; = Bo + bos, 02; = Pa + ba; and t; = a + ai, {(boib2is i)}
are independent multivariate normal vectors with mean zero, and the er-
rors are independent and normally distributed. The interpretation of the
parameters for the trajectory for subject 7 is that 6o; is the overall level,
6, is the average slope, f; is half the difference in slopes before and after
the changepoint, and t; is the changepoint. (This particular parameter-
ization was chosen for its numerical properties for detecting changes in
slope, see Seber and Wild, 1989, Sec. 9.4.1.) Thus the level, changepoint,
and slopes before and after the changepoint are modeled as random. We
smoothed the transition between the linear regimes by replacing sgn(z) with
h(z,v) = (2% + v)'/*/z, where 7 is a small positive smoothing parameter
(see Seber and Wild, 1989, Sec. 9.4.1).

Figure 3 shows the median maximum likelihood fit of this model to the
PSA trajectories for 84 cases from the NPCT data set (y = 1). (The two
PSA readings of 167.4 and 133.3 for one case were omitted.) The population

In(PSA + 1)

Years before reference
FIGURE 3. The In(PSA + 1) trajectories for 84 cases from the NPCT data set
and the median fit from the model (3.2).

parameters are highly significant in this model. The median changepoint is
4.45 years before diagnosis, and all subjects’ estimated changepoints (i.e.
{; = & + &;) are before diagnosis. The transition time of 4.45 years be-
fore diagnosis is considerably less than the values of 7-9 and 13-14 years
obtained by Pearson et al. (1994) and Whittemore et al. (1995). This dif-
ference might be explained by the fact that these data involved a selected
population actively participating in a clinical trial with frequent physician
visits. Residual plots (not shown) confirm that this model provides an ad-
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equate fit to these data.

4 Bayesian hierarchical changepoint model

Although the nonlinear mixed effects model accomodates serial correlation
and subject-specific changepoints in the PSA trajectories, there are dif-
ficulties associated with these models. For most standard fitting routines,
model (3.2) can be fit to the cases only and cannot be used to predict when
in the future the changepoint may be encountered by controls. Also, these
fitting routines tend to rely on smoothness of the model function and hence
require smoothing at the transition point. Furthermore, linear approxima-
tions in fitting may create biases in the estimates of the random effects
(Breslow and Lin, 1995). A Bayesian model is appealing because it has
the benefits of the mixed effects model and enables prediction of change-
points for controls, is easily fit using Monte Carlo Markov chain (MCMC)
techniques, and, most importantly, provides an immediate answer to the
question “What is the probability that this subject has encountered his
changepoint?” For example, if PSA levels react immediately to the under-
lying prostate condition, then this question is equivalent to “What is the
probability that prostate cancer has initiated in this subject?” The an-
swer that the Bayesian model provides is the probability assigned prior to
the current time by the posterior distribution of the particular sub ject’s
changepoint.
We use a segmented linear regression model for the transformed PSA:

In(PSA;; + 1) = ag; + a1i x5 + (b — a1:)(@ij — t:)7 + e

where z;; is the age of subject ¢ at j-th reading, and 2zt = zif 2 > 0
and 0 otherwise. Note that our predictor here is age, rather than years
prior to the reference date. This allows incorporation of the dependence on
age and obviates the need for the concept of a “reference date” as used in
Section 3. The intercept aq;, slope before the changepoint ai;, slope after
the changepoint b; and the changepoint ¢; are all random effects.

The full model, including the specification of the prior distributions, is

shown below.
(a"") <a°), 0, ~ MVN{(O‘“), Qa} (4.3)
a1 (831 (23]
(a0> ~ MVN 1 ’ 100 0
o1 .02 0 10000
1 0\
( .0001)] ’ 5}

0
bi}ﬁ, Ty X N(ﬁ, Tb) I(bZ > 08)

Qaer[S
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8 ~ N{(.15, 3600)
75 ~ Gamma(48.0, .0133)
tilpe, 70~ Nlp, 71)
u: ~ N(80, 0.10)
. ~ Gamma(47.0, 4700)
e,:,-l'r,» ~ N(O, ’Ti)
 ~ Gamma(5.0, 0.25).

The subject-specific parameters are conditionally independent, as are the
within-subject errors. All normal distributions are parameterized in terms
of a mean and a precision: thus Qg isa 2x2 precision matrix, and 7s, 7 and
r; are precisions. The precision matrix Q, follows a Wishart distribution,
as parameterized in Press (1982, Chapter 5), for example. The slope after
the changepoint, b;, is constrained to be larger than 0.08, a conservative
value consistent with previous estimates of the exponential growth rate for
cases. This restriction facilitates the model’s distinction between ay; and b;.
Because of the conjugate structure, it is straightforward to fit this model
using the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith,
1990), as described in Slate and Cronin (1997), Cronin et al. (1994) and
Cronin (1995).

The prior information used for this analysis is drawn from the PSA liter-
ature, particularly Carter et al. (1992a, b), Pearson et al. (1994), Oesterling
et al. (1993) and Whittemore et al. (1995). This prior information about
the PSA trajectories is best conveyed via the plots in Figure 4, which show
the .1, .5. and .9 quantiles of the In(PSA + 1) and PSA trajectories implied
by the chosen prior distributions. Note in particular, the changepoint is
typically at about age 80.

50 &0 i & % 160 50 & 70 & % 160
Age Age

FIGURE 4. The 0.1, 0.5 and 0.9 quantiles of the In(PSA+1) and PSA trajectories

implied by the prior distributions given in equations (4.3).

Figure 5 shows the prior and posterior distributions based on the data for
the 1210 men for selected population parameters after 100,000, 900,000 and
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one million iterations of the Gibbs sampler. These kernel density estimates
are based on 1000 sampled points obtained after lagging successive iterates
by up to 75. For all population parameters. the posterior distributions are
much less diffuse than the prior distributions. The characteristics of these
distributions depend on the mix of cases and controls in the data set.
The NPCT data is nearly 93% controls. The posterior mode of the mean
of the slopes before the changepoint, a;, is approximately 0.015, whereas
the mean of the slopes after the changepoint, 8, has mode about 0.14.
The parameter p; is the mean age at the changepoint (cancer onset) and
has mode approximately 87, substantially higher than the prior mean of
80 years. This shift in the distribution of . is not surprising given that
controls dominate the data set. Because there are few PSA readings taken
at ages above 80 (less than 5%), the posterior for u; indicates that many
subjects have yet to experience their changepoint.
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FIGURE 5. The prior (wide dashes) and posterior distributions of selected popu-
lation parameters after 100,000 (dotted), 900,000 (dashed) and one million (solid)
iterations of the Gibbs sampler.

4.1 Retrospective changepoint identification

The posterior distribution of the changepoint for each case subject can
be used to estimate the age of cancer onset. Similarly, the posterior dis-
tribution of the changepoint for a control subject summarizes all current
information about when onset is likely to occur for this subject (and this
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distribution may indicate that onset has already occurred despite the lack
of diagnosis). Figure 6 shows two sample PSA trajectories, one for a case
subject and one for a control, and the corresponding posterior distributions
for the changepoints. The variability in the posterior distribution for the
changepoint for the control subject is nearly the same as the variability in
the prior distribution. The posterior exhibits some right skewness and has
mode at about age 90, which is well beyond the range of the PSA data
available for this subject. The posterior distribution of the changepoint for
the case subject, however, is quite peaked and centered at about age 64.
Thus the model fit indicates that this case experienced his changepoint
before entering the trial. Note that his first PSA is above 4 ng/ml.
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FIGURE 6. The PSA trajectories (top panel) and prior (dashed) and posterior
{solid) distributions of the changepoint for selected case and control subjects.

4.2 Prospective changepoint identification

In practice it is of interest to assess the probability that the changepoint
has occurred for a subject with each new PSA reading. Figure 7 illustrates
the evolution of the posterior distribution of the changepoint for the case
subject whose PSA trajectory is given in Figure 6. Model (4.3) was first fit
to all 1210 subjects, and then the PSA readings for this case were added to
the data set one-by-one and the posterior distribution of this changepoint
was computed each time. The probability that onset has occurred by the
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age of the current reading is estimated by the proportion of 1000 sampled
changepoints (at lags of 75) less than this age and is indicated by “Pr ="
in the figure. The “rugs” in the graphs depict the sampled points. The
early estimated onset probabilities follow the fluctuation of the initial PSA
readings, but climb rapidly once the PSA begins a consistent increase. By
the eighth PSA reading there is a probability of approximately 90% that
onset has occurred, yet diagnosis was not made for at least 1.5 years later.
The modal estimate of the age of onset is about 64 years.

Pr=0.324 Pr=0.245 Pr=0.229 Pr=0.372
. g g :
2e :E :E :2
S 1H &2 HH
g g g g
g 0 100 0 g 40 60 80 100 120 140 g 40 8 80 100 120 W0 : 40 60 80 100 120 140 180
Pr=0.272 Pr=0.521 Pr=0.69 . Pr=0.897
§ g < s
z § g 8
i i it it
! £ 5 H
g 4 80 B0 00 120 140 180 g 40 60 80 100 120 140 gm 4 6 80 100 120 140 160 g 40 B0 80 100 120 140
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is i j £
5 \ H 8
: . o \ § -
° 4 80 80 100 20 QK) 0 & 7 20 0 100 o 85 e e 0 75

FIGURE 7. The evolution of the posterior distribution of the changepoint for the
case subject illustrated in Figure 6. The vertical line is the age of the current
PSA reading.

5 ROC Methodology

Figure 7 suggests a diagnostic rule that declares that the changepoint has
occurred once the curmulative posterior probability of onset exceeds a spec-
ified threshold. The performance of this rule can be compared to that of
other diagnostic rules by examining the ROC curves. To do so, the notions
of sensitivity and specificity must be extended from the usual context of a
one-time test to a series of longitudinal tests. Murtagh and Schaid (1991),
Murtagh (1995) and Emir et al. (1995) have discussed longitudinal ROC
curves. We describe and apply a method similar to that of Slate and Cronin
(1997).
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Specificity is the probability of a negative test given the subject is disease-
free. In the longitudinal setting, we define specificity as an average of in-
dividual specificity rates, where the specificity rate for a subject is the
probability of a negative test while the subject is free of disease. To esti-
mate specificity, we restrict attention to the control subjects and, for each
of these, estimate the specificity rate as the proportion of negative tests.
Then the estimated specificity is the average of the estimated rates:

§pec; = proportion of negative tests for control subject ¢
spec = average of the Spec;.

The estimated specificity rates are equally weighted when computing the
estimate of the overall specificity.

The sensitivity of a test is the probability that the test is positive (in-
dicates that disease is present) given that disease is indeed present. In the
longitudinal context, sensitivity depends on the proximity of the test to
disease onset. For example, a negative test one month after onset is not
comparable to a negative test five years after onset. Moreover, & positive
test result ends the series of tests. To account for this time dependence, we
use K -period sensitivity, which is the probability that a test based on data
available K time periods from an origin is positive given that disease is
(ultimately) present. The appropriate choice of origin depends on the con-
text and will often vary across individuals. In our PSA setting, we use the
time of diagnosis as the origin with K extending backward in time. Thus
our estimate of K-period sensitivity is the proportion of case subjects who
test positive according to the most recent test that can be formed using
(potentially) all readings taken prior to K years before diagnosis.

We compare three diagnostic rules here: the threshold rule, a one-year
slope rule, and the posterior probability. The threshold rule gives a positive
result if the most recent PSA reading exceeds a cutoff. The one-year slope
rule gives a positive result if the increase per year in PSA, as determined
from the two most recent readings (typically 6-12 months apart for the
NPCT data) exceeds a cutoff. The posterior probability rule gives a positive
result for subject i at time ¢ if the posterior probability that t; is less than
t exceeds a cutoff.

Using these definitions of sensitivity and specificity for the longitudinal
setting, the ROC curves shown in Figure 8 result for a subset of 54 cases
and 54 controls matched on various characteristics for the NPCT data.
The curves for the posterior probability rule were obtained by first fitting
the model to all 1210 subjects, and then separately adding each of the 108
subjects in the matched data, one reading at a time, and computing the
requisite posterior probability. In this data set, the slope rule emerges as
markedly inferior. The posterior probability rule performs at least as well
as the threshold rule for all specificities of serious interest (> 80%), and
the superiority appears greater for the large values of K.
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6 Discussion

For detecting cancer onset, we have emphasized the posterior distribu-
tion of the subject-specific changepoint as it evolves in time. The Bayesian
framework is ideal here because this posterior distribution allows us to an-
swer, for each subject, the question “What is the probability that cancer
is present now?” Furthermore, upon diagnosis, the posterior distribution
of the slope after the changepoint, b;, may be valuable for the selection
of appropriate therapy. The size of this slope may distinguish aggressive
from slow-growing tumors and hence aid the decision of whether to remove
the cancer or to pursue watchful waiting. We are currently compiling tu-
mor grade and stage information for the prostate cancers that have been
detected in the NPCT participants. By including these variables as covari-
ates in the Bayesian model, we will be able to assess differences in the PSA
trajectories for aggressive and slow-growing tumors.

One potentially confounding factor in our data is the presence of benign
prostatic hyperplasia (BPH), an enlargement of the prostate that will also
cause elevated PSA levels. Carter et al. (1992a, b) showed that PSA levels
increase at a faster rate among BPH cases than among controls, but that
this rate of increase is nonetheless significantly less than that among cancer
cases. Diagnoses of BPH are available for some subjects in the NPCT data,
but it is believed much of the incidence has not been reported and that
among men in the age group of our cohort, BPH is the rule rather than the
exception. In our analysis, we categorized the men diagnosed with BPH as
controls.

It is also of interest to use PSA to monitor for recurrence among men who
have undergone radiotherapy for prostate cancer. Slate and Cronin (1997)
investigated one- and two-changepoint Bayesian models in this context.
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