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DNA and RNA are very important biological molecules. Both are highly negatively-

charged. Positively-charged ions can bind to them through electrostatic interactions. 

The interaction between DNA (or RNA) molecules is affected by these ions. In this 

research, we investigate the physical mechanism of ion-mediated inter-DNA and inter-

RNA interactions using a variety of X-ray techniques and other analytical tools. In our 

experiments, we focus on the property of short strand (20 or 25 base pair) DNA and 

RNA due to their great potential in novel therapeutic applications. The major 

experimental technique involved in this research is Small Angle X-ray Scattering 

(SAXS). We explore this method to measure interactions between freely-moving 

nucleic acids in solution. We demonstrate the impact of positively-charged ions on the 

interactions between short double-stranded DNA (or RNA) molecules through a series 

of experiments and theoretical models. The valence of the ion ranges from divalent 

(Mg
2+

), trivalent (such as cobalt hexamine and cobalt sepulchrate) to tetravalent 

(spermine). The results show that not only ionic strength but also the valence, size and 

hydration level of the ions as well as geometry of nucleic acids play important roles in 

the inter-nucleic acid interaction. This research provides insight into the physical 

mechanism of like-charge attraction and establishes the physical basis of DNA (or 

RNA) packaging achieved by small ions. 
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CHAPTER 1 

 

Introduction 

    The research presented in this thesis focuses on the mechanism of ion-mediated 

DNA-DNA (or RNA-RNA) attraction with the goal of establishing the basis for 

potential therapeutic applications that rely on DNA (or RNA) packaging. DNA and 

RNA are negatively-charged chains of varied length. A key challenge in developing 

modern therapeutics is to package these chains into a small volume for delivery. To 

optimize packaging requires a thorough understanding of how these charged chains 

interact with each other. The interactions are mediated by external agents which 

usually are certain ligands. Unfortunately, the underlying physical mechanism of like-

charge attraction is still not well understood at the level of physics. Here we provide 

insights into this topic. In particular we are most interested in short (20~30 base pair) 

DNA (and RNA) molecules primarily because of great potential of RNA interference 

pathway [1, 2, 3] in which 21 ~ 25 base pair (bp) RNA molecule plays an important 

role in gene expression (described in 1.1). These short double-stranded RNA 

molecules may be used for promising therapeutics due to their ability to target and 

silence specific genes. In this research, we use both experimental and theoretical tools 

to investigate how small ions, from monovalent to tetravalent, affect the interactions 

between short double-stranded DNA (or RNA) molecules.  

 

1.1 Biological roles of DNA and RNA 

    DNA or Deoxyribonucleic acid carries the required genetic information that 

allows living organisms to function and replicate. DNA is most commonly a linear 
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polymer in eukaryotes (in human cells, DNA in the nucleus is about 2~3 meters long), 

and a circular polymer in prokaryotes. The information carrying units of DNA are 

called genes. The exact number of genes in human DNA is still uncertain. The most 

widely recognized information that is stored in the genes is the amino acid sequence 

for proteins.  The relevant DNA sequence is copied (transcribed) into a 

complementary RNA sequence (called messenger RNA). This RNA copy is translated 

into chains of amino acids that fold into proteins to perform cellular functions.  

    Clearly, the primary function of DNA is in storage of genetic information. In 

contrast, RNA participates in many cellular functions that surpass transcription and 

translation. RNA plays an active role by catalyzing biological reactions, controlling 

gene expression, or sensing and communicating responses to cellular signals. To be 

more specific, as a typical example, there is a lot of interest in the growing field of 

small interfering RNA (siRNA) research. In biological systems, siRNA, sometimes 

also known as silencing RNA, is a class of double-stranded RNA molecules, 20-25 

nucleotides in length. Those short double-stranded (ds) RNA molecules are involved 

in the RNA interference (RNAi) pathway that mediates sequence-specific silencing of 

gene expression. RNAi was initially discovered in Caenorhabditis elegans [1] then in 

mammalian cells [2, 3]. The proposed process of RNAi pathway begins with long 

dsRNA (usually >100bp) that triggers the whole process. This long dsRNA is chopped 

by RNAse enzyme into 21-23 nucleotide (nt) RNA (the siRNA) molecules. These 

short siRNAs are incorporated into a specific biological complex and guide it to 

―silence‖ target genes by cleaving the corresponding mRNA and stopping protein 

production. The detailed mechanism is much more complicated than described above 

and is not well understood. 
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1.2 Secondary structures of DNA and RNA 

    Most functional DNA occurs in a double-stranded (ds) form which is of main 

interest to this research. dsDNA consists of two helical chains (strands) coiled around 

each other. Each unit of this backbone, known as a nucleotide, consists of a phosphate, 

base and sugar residue. The nucleotides are connected by ester bonds to form the 

backbone. There are four types of bases—adenine (A), cytosine (C), guanine (G) and 

thymine (T). In dsDNA, each base on one strand forms hydrogen bonds with one 

specific type of base on the other strand as shown in figure 1.1. For example, A pairs 

with T, and G pairs with C. Exceptions to this Watson Crick base pairing will not be 

discussed in this thesis.  Genetic information is encoded in the sequence of bases in a 

particular chain.   

    dsDNA exists in many possible conformations including A-DNA, B-DNA, and Z-

DNA forms. Only B-DNA (right-handed) and Z-DNA (left-handed) have been 

observed in functional organisms; B-DNA is the most common form found under 

normal cellular conditions. Figure 1.2 (right) shows a model of a 25 base pair (bp) B-

DNA. B-DNA has a helical pitch of 34 Å and a radius of 10 Å. Because each 

phosphate group carries one electron charge, DNA is highly negatively charged. The 

linear surface charge density is -2e/3.4Å, resulting in a very strong electric field on the 

surface. Another important structural feature of the molecule is the formation of 

grooves in the base paired structures. The bigger 22 Å wide groove, is called the major 

groove. The 12 Å wide groove is called the minor groove.  Since the edges of the 

bases are more accessible in the major groove it usually serves as an important protein 

binding site.  
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Figure 1.1 Watson-Crick base-pairing in double-stranded DNA 

Source: http://www.dna-sequencing-service.com/wp-content/uploads/2010/09  

 

 

 

 

 

 

 

 

 

 

http://www.dna-sequencing-service.com/wp-content/uploads/2010/09
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    Like DNA, RNA is also a chain of nucleotides. However there are major 

differences in the chemical structure of DNA and RNA. First, the 2-deoxyribose sugar 

in DNA is replaced in RNA by the alternative pentose sugar ribose. Second, RNA uses 

the base uracil (U) in place of DNA‘s thymine (T). Both uracil and thymine base pair 

with A.   Unlike DNA, most naturally occurring RNA molecules are single-stranded. 

Single-stranded RNA molecules can fold into complex three-dimensional structures 

which enable specific functions in the cell, including sensing and interacting with 

small ions [4]. However, for the purposes of this thesis, we are primarily interested in 

the properties of double-stranded RNA molecules, because of their utility to the RNAi 

process discussed in 1.1). In comparison to dsDNA, dsRNA is usually in the A-form 

which is a wider right-handed spiral with a shallow wider minor groove and a 

narrower deeper major groove (see figure 1.2, left side). The surface charge density 

thus is -2e/2.8Å which is greater than that of dsDNA. As a result, the counterion 

binding pattern differs from that of DNA, an important feature discussed in chapter 5.    
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Figure 1.2 structure of 25bp A-RNA and B-DNA 

25bp A-form RNA is shown in the left panel and B-DNA is on the right. Note the 

difference in configuration and charge density. A-RNA is a shorter and fatter cylinder 

with deeper major groove compared to B-DNA.  
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1.3 DNA condensation 

    DNA condensation is the process of compacting DNA molecules in vitro or in 

vivo. The mechanism of DNA condensation is of great interest and importance to 

biology, physics, and therapeutics. Biologically, DNA molecules in cells are tightly 

compacted in a highly concentrated state. The volume fraction of DNA in viruses and 

chromatin is very high (15% ~ 60%) [5]. In eukaryotic cells, long double-stranded 

DNA molecules (of the order of magnitude of meters in length) wrap around 

positively charged proteins to neutralize the negative charge along the DNA backbone. 

This complex is subsequently organized into long but compact structures called 

chromatin (See figure 1.3).  However, DNA condensation can also be induced by the 

addition of small quantities of multivalent ions, raising interesting (and unresolved) 

questions about ion-induced attraction between like-charged objects [6, 7, 8]. Clearly 

ions can play a major role in compacting the polyelectrolyte chain. Although it is 

likely that correlations between condensed counterions may ultimately be responsible 

for attraction, the exact mechanism has not yet been determined. In addition to 

understanding the physics of this process, we note its importance to therapeutic 

processes, such as gene delivery, which requires therapeutic DNA to be packaged in a 

very small volume.  To manipulate the DNA in such a controllable manner, it is 

important to first obtain a fundamental understanding of how counterions mediate 

interactions between DNA molecules.      
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Figure 1.3 dsDNA packaged into nucleus 

Long dsDNA is packaged into higher order structure chromosome and then fit into 

small nucleus. For human being, the total length of DNA is around 2~3 meters while 

the diameter of nucleus is only several micrometers.  

Source: 

http://employees.csbsju.edu/hjakubowski/classes/ch331/dna/oldnastructure.html 

 

 

http://employees.csbsju.edu/hjakubowski/classes/ch331/dna/oldnastructure.html
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    DNA condensation can be induced in vitro either by entropy, applying an external 

force to bring the DNA molecules together or by enthalpy, inducing attractive 

interactions between the DNA molecules. The former can be achieved by increasing 

the osmotic pressure by „crowding‟, e.g. decreasing the available volume by 

introducing neutral polymers in the presence of monovalent salts. In this case, the 

forces pushing the double helices together result from entropic random collisions with 

the crowding polymers surrounding DNA condensates. Salt is required to neutralize 

DNA charges and decrease DNA-DNA repulsion. The second possibility is realized 

by adding multivalent cationic charged ligands (multivalent cations, polyamines, or 

proteins, etc) to induce attractive interactions between DNA molecules. A 

comprehensive review of condensation of DNA by multivalent cations is provided in 

ref 9.  

    Many experimental studies have probed small ion induced DNA condensation 

[10-12] in vitro. Most experimental investigations use DNA molecules whose length 

exceeds the DNA persistence length (~150bp). Since bending or twisting of the DNA 

strand must be considered to derive a complete solution to the problem, the use of long 

DNA increases the complexity of the system, and limits comparison with theoretical 

models. Unraveling the effects of mechanical degrees of freedom and electrostatics 

can be quite challenging. Therefore, in order to focus on electrostatics and avoid 

mechanical complication, we use 25bp DNA for this research. These DNA duplexes 

are significantly shorter than the persistence length and allow us to focus on 

electrostatic contributions to DNA condensation. 

 

1.4 Goal of this research 
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To obtain a better physical picture of DNA condensation, it is important to 

understand the underlying mechanism of ion-induced compaction. Using small ions 

instead of using proteins to condense DNA for genetic material delivery has the 

advantage of avoiding possible side effects such as immune rejection from cells of the 

living body. In this research we investigated DNA-DNA interactions in solutions 

containing ions with a variety of valences, ionic strengths, sizes and hydration levels 

(discussed in chapter 4, 5, 6, 7).  

We also explored the similar process of RNA condensation, focusing on short 

double-stranded RNA due to its important role in RNAi pathway as described in 

section 1.1.  We would like to understand how electrostatic interactions between short 

dsRNA molecules are mediated by the small cations that condense DNA very 

effectively (see figure 1.4).  Surprisingly, although dsDNA and dsRNA have similar 

structures and charge densities they behave quite differently in the presence of 

multivalent ions. Our research suggests that therapeutic strategies developed to 

manipulate dsDNA may not be effective for dsRNA (discussed in detail in chapter 5). 

Results of parallel experiments on dsRNA and dsDNA provide insight into the 

underlying mechanism of ion-induced DNA condensation and reveal the distinct 

properties of dsRNA molecules.  
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Figure 1.4 dsDNA/dsRNA condensation induced by trivalent ions 

Long strand DNA in ionic solutions can condense into torus form by adding certain 

trivalent ions [13]. Short dsDNA has similar property but how about short dsRNA? 

We would like to know under the same ionic condition, do RNAs and DNAs behave 

similarly? 
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1.5 Thesis overview 

    In chapter 2, I introduce all the X-ray scattering and fluorescence techniques 

employed in this research. A computational method to calculate scattering profiles (or 

form factors) of 25bp DNA is also demonstrated in chapter 2. Chapter 3 covers the 

relevant theoretical models of DNA-ion interactions and DNA condensation. Chapter 

4 presents experimental results illustrating interactions between DNA duplexes in 

solutions containing divalent ions, specifically illustrating that end-to-end stacking is 

the preferred interaction mode. Chapter 5 presents experimental results on multivalent 

ion induced interactions between RNA duplexes, demonstrating the importance of 

nucleic acid geometry to the condensation process. The next chapter outlines a 

strategy for counting the number of trivalent ions present as inter-duplex interactions 

result in attractive forces. We discuss methods for measuring important properties of 

these ions, including hydration in chapter 6. Results show that in addition to 

electrostatic interactions, the hydration of highly charged ions plays an important role 

in DNA condensation. Finally, I propose some interesting follow-up projects for this 

research in chapter 7. Some preliminary results are shown in chapter 7 as well. A 

conclusion of this research is drawn in chapter 8.  
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CHAPTER 2 

 

Experimental techniques and computation methods 

    The major experimental techniques involved in this research include Small Angle 

X-ray Scattering (SAXS), multiple-Energy Anomalous Small Angle X-ray Scattering 

(mE-ASAXS), and X-ray Absorption Fine Structure (XAFS). The basic principles of 

these techniques are outlined in this chapter. A numerical approach to compute the 

scattering profile (form factor) of DNA molecule in solution using the Debye formula 

is also introduced in this chapter. Results of these computations can be directly 

compared with experimentally obtained scattering profiles. 

 

2.1 X-ray Scattering Methods—SAXS, ASAXS, mE-ASAXS 

2.1.1 Introduction 

    Small-angle X-ray scattering (SAXS) is a well-established X-ray technique. The 

elastic scattering of X-rays (wavelength 0.1~0.2 nm) by the sample is recorded at very 

low angles (typically 0.1 - 10°). Since this angular range corresponds to real space 

dimensions of order 2π/q, the scattering profile contains information about the shape 

and size of macromolecules or characteristic distances associated with partially 

ordered materials. Typically SAXS is sensitive to macromolecular features on length 

scales between 5 and 25 nm, and of repeat distances in partially ordered systems of up 

to 150 nm [1]. This method is complementary to X-ray crystallography or Nuclear 

magnetic resonance (NMR) spectroscopy which produce higher resolution (on the 

order of magnitude of Å) macromolecular structures. The greatest advantage of SAXS 

is its use in solution and for all sizes of macromolecules. In the case of biological 
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macromolecules such as proteins, crystallization and freezing are usually required for 

X-ray crystallography but not for SAXS. When the molecular weight is greater than 

~30,000Da, NMR methods encounter problems but this is not an issue for SAXS. On 

the other hand, SAXS has its own limitations. For example, the spatial averaging due 

to the random orientation of dissolved or partially ordered molecules leads to a loss of 

information in SAXS measurements. 

 

2.1.2 Theoretical background 

Small Angle X-ray Scattering (SAXS) 

    In this research SAXS is primarily used to report interactions between short 

double-stranded DNA (or RNA) molecules. The structures of DNA and RNA are 

already well-known and were briefly described in chapter 1. SAXS experiments 

measure the total scattering profile [2, 3] 

 

where N is a scale factor or number density of the molecules, Q = 4πsinθ/λ is the  

momentum transfer and 2θ is the scattering angle. The form factor P(Q) = <F
2
>  

represents the scattering of a single macromolecule,  is the 

scattering amplitude or mathematically, the Fourier transform of the electron density 

distribution of the molecule, < > indicates an average over all DNA orientations 

(spherical approximation),  is called 

structure factor which reports inter-molecule ordering. For a system of monodisperse 

spherical or nearly spherical molecules, the formula above reduces to [2, 4] 
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Within this approximation the total intensity equals the product of the form factor and 

structure factor. The effect of the structure factor is most pronounced in the low Q 

regime and can become prominent when strong interaction between molecules is 

present.  

    The form factor P(Q) reports the scattering when interaction between the 

molecules is neutralized or can be ignored. It can be determined either experimentally 

or theoretically. Experimentally, as described in chapter 4, we use scattering profile of 

a dilute solution (0.1mM) of DNA as the form factor. Theoretically, P(Q) can  be 

calculated from the Debye formula by summing over the scattering from all the atom 

pairs involved. A detailed demonstration of this approach is described in section 2.1.3, 

including a description of a program written to carry out this computation. More 

information about implementing this program can be found in the appendix. The form 

factor can also be computed from publically available software packages, such as 

CRYSOL [5]. However, these packages were designed primarily for proteins which 

have differing solvent shells than nucleic acids which have differing solvent shells.  

    Once total scattered intensity I(Q) and form factor P(Q) are obtained, it is 

straightforward to extract the structure factor S(Q) to determine the strength of inter-

particle interaction.  Qualitatively, we obtain the interaction information by 

comparing I(Q) and P(Q). This approach is illustrated in figure 2.1: the profiles I(Q) 

and P(Q) are scaled to match at mid-Q and high-Q regimes where the structure factor 

does not contribute to the measured scattering.  Strong inter-molecule repulsion is 

indicated by the sharp peak in I(Q) in the leftmost panel. The “Bragg distance” equals 

2π/Qmax where Qmax represents the peak position corresponding to the mean inter-

molecular distance. Weak repulsion is reflected by the low Q downturn of I(Q) with 
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respect to P(Q) in the second panel while weak attraction manifests itself as the low Q 

upturn in the fourth panel. When attraction and repulsion are almost “neutralized”, 

I(Q) and P(Q) match at low Q. One of the most convenient ways to quantify the 

interaction between molecules is to calculate the second virial coefficient A2 from the 

experimentally-determined structure factor S(Q). A2 > 0 signifies repulsive 

interactions while A2 < 0 implies intermolecular association.  
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Figure 2.1 form factor and total scattered profile 

The form factor (black dash line) and total scattering profile (blue line) are matched at 

mid-to-high Q regime. The deviation at low Q regime can be used to inform about 

inter-molecule interactions as indicated in each of the four panels above. 
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Anomalous Small Angle X-ray Scattering (ASAXS) 

    ASAXS reports the distribution of counterions around dsDNA/dsRNA [6, 7]. 

Since the scattering from the ions cannot be neglected relative to the scattering from 

the DNA, the total scattering intensity is expressed as follows: 

 

where Q is momentum transfer defined above, N is the excess number of ions, E is the 

energy of incident X-ray beam, F(Q) is the Fourier transform of the electron density 

distribution of nucleic acid or ion, f is the scattering power or scattering factor of 

nucleic acid or ion. Note that the total scattered intensity depends on both Q and E. 

This dependence is critical if ions are selected with accessible absorption edges; in this 

case the ion scattering factor f is energy- dependent. Near the ion absorption edge, the 

ion scattering factor f can be decomposed into three terms—a real part f
‘
(E), an 

imaginary part f
‘‘
(E) and the energy-independent solvent-corrected scattering factor f0: 

 

The real part reflects the changes in scattering intensity close to resonant edge and the 

imaginary part represents the changes in sample absorption. Both factors can be 

obtained by measuring X-ray fluorescence from a buffer solution containing the 

energy-dependent scattering element of interest. ASAXS exploits the energy 

dependence of scattering to extract spatial information about the ion distribution, as 

illustrated in figure 2.2. First, two energies are chosen with Eoff well below the 

absorption edge and Eon close to, but below the edge. Second, subtraction of two 

scattering profiles acquired at Eon and Eoff removes the energy-independent term. The 

energy-dependent anomalous signal ΔI(Q,E) which contains information about 

counterion distribution around DNA/RNA has the form: 
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This anomalous signal can be loosely interpreted as the Fourier transform of the 

electron density distribution of the ions modified by the form factor of nucleic acid. 

The reason to have  in the formula above is because the  term is much smaller 

than the DNA (or RNA) scattering term FNA and thus ignored. Likewise, all the 

scattering from non-resonant ions is small comparing to DNA (or RNA) scattering and 

only contributes to energy-independent term which is cancelled out by the subtraction. 
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Figure 2.2 a sketch of principle of ASAXS  

Scattering profiles measured at two different energies are subtracted to yield 

anomalous signal. The anomalous signal contains the information about the counterion 

distribution around dsDNA (see text for details).  
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Multiple-Energy Anomalous Small Angle X-ray Scattering (mE-ASAXS) 

    The multiple-Energy Anomalous Small Angle X-ray Scattering (mE-ASAXS) is a 

newly-developed technique that can be used to directly compute the excess number of 

ions around macromolecules [8]. The procedure is summarized below.  

    According to basic scattering theory [1 and references within] we have f
‘‘ 

<< f
‘ 

when the X-ray energy is close to but below the ion absorption edge. Therefore the 

total scattered intensity I(Q, E) defined in previous sub-section can be expanded into 

quadratic form of f
‘
(E) while ignoring f‘‘(E): 

 

where 

 

 

 

We measured the scattering profile at multiple (5~7) energies below the absorption 

edge. We used the program CHOOCH [9] (see chapter 6, illustrated in figure 2.3) to 

determine the dependence of f‘ on energy.  In principle, at each fixed Q, a quadratic 

fit of I(Q, E) with respect to f‘(E) yields a(Q), b(Q) and c(Q). Note that  is much 

smaller than all other terms, therefore a(Q) is negligible. The excess number of ions is 

then derived by observing the relationship such that  

 

 is used to obtain the relationship above. The values of b(Q=0) and 

c(Q=0) can be computed by two approaches. First, the full scattering profile can be 

decomposed into the sum of two curves: b(Q) and c(Q). Once the latter curves have 
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been obtained, either GNOM [10] fit or Guinier fit is used to extrapolate the values of  

b(Q=0) and c(Q=0). Alternatively, GNOM fit (or Guinier fit) applied to the total 

scattering profile I(Q,E) provides I(Q=0, E).  Both b(Q=0) and c(Q=0) can be derived 

from a linear fit of I(Q=0, E) with respect to f‘(E). Consistent results are achieved 

using either method.  Furthermore, to get the number of ions, an absolute calibration 

of the scattering intensity is required. Scattering from water can be used as a calibrant, 

as described in ref [11]. For monovalent and divalent counterions, the results are in 

good agreement with the number of ions predicted by Nonlinear Poisson Boltzmann 

approach. 
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Figure 2.3 energy selection by CHOOCH for mE-ASAXS 

A program called ―CHOOCH‖ is used to select multiple energies below the absorption 

edge of the ion of interest for mE-ASAXS experiment. The example above is the plot 

of anomalous scattering factor versus X-ray energy around cobalt K-edge. 
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    A faster implementation of this method can be applied when only two distinct 

energies E1 and E2 are selected. Under the assumption that f‘‘ can be neglected, the 

number of ions N is derived directly from the original expression of I(Q,E). 

 

Even if water calibration is unavailable, this method can report the relative number of 

ions and can be used to compute changes of ion numbers quickly.  

 

2.1.3 Computational background—form factor computation 

Derivation of Debye formula 

    The form factor of a macromolecule (defined above as scattering profile of an 

isolated molecule) can be determined by computation using the Debye formula, as 

illustrated in detail in ref [1]. The implementation is as follows: For a system with 

atoms at positions r1, r2,…, rN, the total scattering amplitude takes the form 

 

where Fj(Q) is the scattering amplitude of each atom and the exponential term reflects 

phase modification due to differing locations of the atoms. The scattering intensity is 

the absolute square of the amplitude averaged over all possible orientations: 

 

This expression can be separated into two terms—the first has no phase factor when j 

= k, the second one, an interference term, depends on the phase which is a function of 

rjk = rj – rk. The scattering intensity can be written as 
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where δ is the phase that depends on orientation of the atom. When the atom is 

approximated as a sphere, δ will vanish and the scattering intensity will be 

independent of orientation. The spherical average yields: 

 

When N is very large, the interference term dominates the single term. This was first 

derived by Debye [1] and the method is named after him. It is widely used for 

computing the scattering profile of a composite particle system.  

Form factor calculation 

    As described above, accurate computation of the form factor requires that we 

include a contribution from the nucleic acid as well as from the counterions that 

surround it.  In this project, calculation of form factor of 25bp DNA in monovalent 

salt solution is performed based on counterion distribution around DNA determined by 

Nonlinear Poisson Boltzmann model (discussed in chapter 3). The result is then 

compared with the measured form factor (at low [DNA]) to validate the model. To 

compute the theoretical form factor of DNA in solution, solvent effects must also be 

included.  The excluded volume prescribed by CRYSOL [5] is assigned to each atom 

of DNA and counterions for the computation. An extra volume of hydration around 

DNA is also predicted according to ref [5]. Therefore, hundreds of dummy hydration 

shell atoms are placed randomly into the solvent accessible region around the DNA 

molecule. Once the concentrations and coordinates of all DNA atoms, counter-ions 

and dummy hydration shell atoms are available, the form factor can be computed 
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using the Debye formula. This computation is repeated 30-40 times to randomize the 

placement of hydration shell atoms. These results are averaged to generate the final 

scattering profile. The theoretical form factors calculated based on nonlinear Poisson 

Boltzmann approach are plotted together with the experimental form factor in figure 

2.4. With properly chosen parameters of ion radius r and dielectric constant d, a good 

match is obtained. A detailed description of how to use the software which computes 

these curves is provided in the appendix. 
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Figure 2.4 computed versus experimental determined form factor 

Theoretical scattering profiles obtained based on APBS for different ion radius are 

compared with experimental form factor. All three calculated curves match the 

experimental form factor well. R=2 seems to give the best match.  
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2.1.4 Experimental setup 

    All SAXS experiments that contributed to this research were carried out at C1 or 

G1 station at Cornell High Energy Synchrotron Source (CHESS).  Details of the 

experimental setup are provided in ref [6, 12, 13].  ASAXS/mE-ASAXS experiments 

were carried out at the C1 station where X-ray energy is tunable. A sketch of the 

experimental setup for SAXS (as well as ASAXS and mE-ASAXS) is shown in figure 

2.5. The X-ray beam size and position are adjusted by the upstream slits and optimized 

to avoid parasitic scattering from guard slits that are closest to the sample. The beam 

size at the sample is ~1.5 mm wide and ~0.7 mm high at C-line (~0.5mm diameter at 

G-line). For static SAXS measurement, the DNA/RNA sample is contained in an 

acrylic sample cell, with sample volume 25 ~ 40 µL. This cell is sealed with ultra-thin 

(~0.7 µm) silicon nitride windows [14] fabricated at Cornell Nanoscale facility (CNF). 

After the sample, the scattered X-ray beam passes through an evacuated flight tube 

which is ~1m long and the scattering profile is captured by a home-made CCD camera 

behind the flight tube. An example of the scattering geometry is shown in figure 2.5 as 

well. The direct beam downstream is blocked by a motorized beamstop at the back of 

the flight tube to protect the CCD detector. For all the measurements, radiation 

damage of the sample caused by X-ray exposure is checked at the very beginning and 

the optimum exposure time is chosen accordingly to maximize the signal to noise 

ratio. 
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Figure 2.5 a sketch of SAXS setup 

X-ray beam is incident and then scattered by the sample. The scattering angle is 2θ. A 

beam stop is placed right in front of CCD camera. The beam stop protects the CCD, 

which captures scattering image, from direct incidence of the beam. An example of 

scattering image is shown on the right side. 
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2.2 X-ray fluorescence Methods—X-ray Absorption Fine Structure (XAFS) 

    A brief introduction of X-ray Absorption Fine structure (XAFS) technique [15] is 

provided in this section. To avoid duplication, please refer to chapter 6 for the 

experimental setup for XAFS.  

 

2.2.1 Theory 

    X-ray Absorption Fine structure (XAFS) includes both Extended X-Ray 

Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure 

(XANES). XAFS measures absorption coefficient μ(E) of a given material as a 

function of incident beam energy. An x-ray beam with high energy resolution is 

incident on the sample and both the incident and transmitted X-ray intensity denoted 

by I0 and IT are recorded. The incident X-ray energy is incremented gradually in steps 

of 1~4eV. The relationship between IT and I0 is in a very simple form:  

 

where d is the thickness of the sample.  The absorption coefficient μ(E) is easily 

obtained from the formula above. If the incident X-ray energy matches the binding 

energy of electron of the atom of interest (e.g. the X-ray energy is at an absorption 

edge) within the sample, X-ray absorption by the sample increases sharply. A 

significant drop of the transmitted X-ray intensity will be measured. On the other 

hand, when the incident X-ray energy is not close to absorption edge, the absorption 

coefficient µ(E) varies with 1/E
3
. A plot of µ(E) versus E around the absorption edge 

generates the XAFS spectrum.  
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Figure 2.6 principle of XAFS 

Atoms (and molecules) can absorb X-ray radiation. At absorption edge, the energy of 

the photon is used to generate a photoelectron. The presence of these photoelectrons in 

the material has an effect on the overall pattern of absorption of X-rays as described in 

the text.  
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    The EXAFS spectrum covers the energy range from 300eV to more than 1000eV 

above absorption edge while the XANES spectrum is within 300eV of (above) the 

edge. In the XANES regime, the mean free path of the photoelectron is high, which 

produces multiple scattering effects. In the EXAFS regime, the mean free path is 

limited thus single scattering is the major process. The physical process that occurs at 

an absorption edge is illustrated in figure 2.6 using K-edge absorption as an example. 

The absorbed photon ejects a core photoelectron from the absorbing atom, leaving 

behind a core hole. The energy of the ejected photoelectron should be equal to that of 

the absorbed photon minus the binding energy of the initial core state. The ejected 

photoelectron, which can be treated as a forward-propagating wave, interacts with 

electrons in the surrounding non-excited atoms and generates backward-propagating 

electron waves. The two waves interfere with each other and the interference pattern 

shows up as a modulation of the measured absorption coefficient causing the 

oscillation in the XAFS spectra. A simplified plane-wave single-scattering theory has 

been used for interpretation of XAFS spectra while modern methods demonstrate that 

curved-wave corrections and multiple-scattering effects cannot be neglected [15 and 

references within]. An example of XAFS curve is sketched in figure 2.7. 
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Figure 2.7 a sketch of the XAFS spectrum  

The black curve represents the pattern of XAFS spectrum which contains both the 

XANES and EXAFS regimes. The absorption edge is shown as the strongest peak. 

The red lines indicate how the data are normalized as described in text.  
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2.2.2 Applications 

    XAFS spectra are especially sensitive to the chemical state, and the distances, 

coordination number and species of the atoms surrounding the selected element of 

interest. Therefore, XAFS provides a practical, and relatively simple, way to 

determine the chemical state and local atomic structure for a selected atomic species. 

XAFS samples can be gases, solids or liquids since the synchrotron X-ray beam is 

intense enough to penetrate through the sample. XAFS is routinely used in a wide 

range of scientific fields, including biology, environmental science, and materials 

science [15 and references within]. In this research, XAFS is used to measure the ion 

solvation. The technique is capable of probing the first few solvent shells around the 

central solute atom [16]. This hydration measurement by XAFS is discussed in chapter 

6. The XANES region of XAFS reports information about hydration.  

 

2.3 Conclusion 

    Experimental X-ray techniques including SAXS, ASAXS, mE-ASAXS, XAFS are 

summarized in this chapter. These techniques are employed to measure DNA-DNA 

(or RNA-RNA) interaction, counterion distribution around DNA/RNA and excess 

number of ions associated with DNA. This chapter also discussed a method for 

computing the form factor using the Debye formula. Agreement of predicted and 

measured scattering profiles provides a direct validation of the models that predict the 

ion distribution around DNA. In this research, Nonlinear Poisson Boltzmann models 

are tested and a very good agreement between experiment and theory is achieved.                            

. 
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CHAPTER 3 

 

Theoretical modeling 

    DNA and RNA helices produce strong electric field near their surfaces that are 

important for biological functions. It is very challenging to model the electrostatics of 

DNA (or RNA) because this very high surface charge density can also alter the 

properties of the associated ions. For example, when multivalent ions are introduced 

into solutions containing DNA or RNA, correlations between ions can occur, and must 

be accounted for, further increasing the difficulty of modeling. However, there have 

been many theoretical methods proposed since early last century, to model the 

electrostatic interaction between polyelectrolytes mediated by small ions in solution 

and association between polyelectrolytes and counterions. Some models include 

counterion condensation theory pioneered by Manning [1], Poisson Boltzmann theory 

[2 and references within], ion-bridging model [3] and electrostatic zipper model [4, 5]. 

In this chapter the principles of those models are reviewed. 

 

3.1 Counterion condensation theory 

    For long, highly-charged, rod-like polyelectrolytes in salt solution, the ions 

condensed at the surface of the polyelectrolytes lead to a reduction or renormalization 

of the surface charge. This effect, as well as a description of the more dilute 

counterion atmosphere at greater distances from the surface, using Debye-Huckel 

(DH) theory [6], was first pointed out by Manning [1]. This theory assumes that the 

counterions ―condense‖ onto the polyelectrolytes until the linear surface charge 

density is reduced below certain critical value. In this model the polyelectrolyte is 
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assumed to be an idealized line charge with zero radius, infinite length, and uniform 

charge density. The condensed counterion layer is assumed to be in physical 

equilibrium with the ionic atmosphere surrounding the polyelectrolyte. The 

uncondensed mobile ions in the ionic atmosphere are treated within the Debye-Huckel 

approximation. A sketch illustrating the assumptions of this Manning condensation is 

shown in figure 3.1. 
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Figure 3.1 a sketch of the basic framework of Manning‘s condensation theory 

L is the length of the polyelectrolyte and assumed to be infinitely long. The radius a of 

the polyelectrolyte is assumed to be infinitely small. The condensed region is within 

the cylinder of radius R. Counterions outside of this region are treated by Debye-

Huckel theory. 
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    To fully understand this counterion condensation theory, the Debye-Huckel 

approximation is introduced briefly below. These concepts are also helpful in 

understanding the Poisson-Boltzmann theory introduced in the next section. In a more 

general setting, consider an electrolyte solution with dielectric constant ε. The 

molecules with positive charge +q and negative charge –q are treated as spheres with 

diameter a. The charge density profile is ρ(r) and the electrostatic potential φ(r) 

satisfies the Laplace equation  in the region 0 < r < a, and Poisson 

equation  when r > a. If the Boltzmann distribution 

 where  is used, the Poisson equation can be 

rewritten in the non-linear Poisson Boltzmann form 

 

When , the equation above is linearized to the Helmholtz equation (the 

Debye-Huckel approximation) with the inverse of Debye length defined as 

 . This equation can be solved analytically and the solution of the 

electrostatic potential falls exponentially in the regime r > a where nonlinear screening 

takes effect.    

    Under the assumption and approximation at the beginning of this section, 

Manning predicted that counterion condensation is triggered when , where 

z is the valence of the counterion,  is called Bjerrum length and b is 

length per charge (e/b is the backbone charge density). Note that ionic strength is 

almost always low comparing to the surface charge density of dsDNA/dsRNA. The 

surface counterion concentration can be calculated as [7] 
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in the excess low salt limit, where . For dsDNA, with a = 10Å, b = 1.7Å, 

 = 7.14Å, the surface counterion concentration can be calculated explicitly using the 

formula above with ion valence z plugged in. The complete ion distribution profile can 

also be derived as [7] 

 

Manning‘s original approach gives a simple picture of counterion condensation. It 

holds well for monovalent ions but not for divalent or trivalent ions where ion-ion 

correlations cannot be neglected. Additionally some of its assumptions such as treating 

dsDNA/dsRNA as infinitely-long cylinder are not quite appropriate. However, though 

this approach seems to be oversimplified and not rigorous, counterion condensation 

can be demonstrated using more complicated methods [7, 8, 9]. 

   

3.2 Poisson Boltzmann approach 

Basic form 

    The Poisson Boltzmann equation is a nonlinear partial differential equation that 

describes electrostatic interactions between molecules in ionic solutions. In the field of 

biology, PB theory has been widely used to analyze fundamental nucleic acid 

processes [10], RNA folding [11], ligand binding and protein association to nucleic 

acids [12]. This is the most conceptually simple and popular method used to calculate 

the electrostatic potential in the electrolyte solution. The PB equation is written as 

follows 
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where ρ(r) is the density of fixed, external charges (charges on DNA/RNA molecule in 

our case) and eqi and ni are the charge and average number density of electrolyte ions 

of each kind, respectively. This equation can be solved analytically only in its 

linearized form for low electrostatic potentials as mentioned in the previous section 

when discussing the Debye-Huckel approximation. Numerical approaches such as 

Monte Carlo or Finite Difference can be applied to solve the equation in its nonlinear 

form with appropriate boundary conditions. The Poisson Boltzmann theory has been 

successful in predicting ionic profiles close to planar and curved surfaces along with 

the resulting forces and it works very well for DNA in monovalent salt (Na
+
, K

+
, Rb

+
) 

solution. Adaptive Poisson Boltzmann Solver (APBS) [13], a software package for 

evaluating electrostatic properties of nanoscale biomolecular systems, was 

implemented based on Poisson Boltzmann equation (PBE).  

Limitations 

    The Poisson Boltzmann theory is a mean-field theory in which the density of 

electrolyte ions depends on the mean-field potential  through the Boltzmann 

distribution. Its application is limited to cases where ion density fluctuations [14] and 

ion-ion correlations [15, 16] are not significant and thus can be neglected [17]. The 

long-wavelength fluctuation dominates the high temperature regime while short range 

correlation usually governs the low temperature regime. It has long been argued that 

the PB theory should not be used for the calculation of the free energy of a small, 

spherical ion in an electrolyte solution, which is influenced predominantly by ion-ion 

correlations. Therefore mean field theory fails to explain the attraction effect between 
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like-charged objects. In particular, DNA condensation mediated by trivalent ions 

cannot be simply modeled using PB theory. Two theories that are more suitable for 

explaining DNA condensation are summarized in 3.3 and 3.4. 

Extensions 

    A successful modification of traditional Poisson Boltzmann theory is called size-

modified Poisson Boltzmann theory. One of the biggest limitations of PB theory is 

that it assumes point-like ions in thermodynamic equilibrium and neglects statistical 

correlation and steric effect of the ions. As a result, it strongly overestimates the ionic 

concentrations close to charged surface, which can easily exceed the maximal allowed 

coverage by orders of magnitude. Many efforts have been made to model size effects 

in electrolyte solutions. Those theories use a variety of different strategies. One simple 

and straightforward size-modified Poisson Boltzmann approach was proposed in ref 

[18]. The effect of steric repulsion is included, by adding a steric correction term to the 

expression of the entropy and at low ionic concentration the original PB equation is 

recovered.  The modified Poisson Boltzmann for a symmetric z:z electrolyte system 

is written as  

 

where  is the total bulk volume fraction of the positive and negative ions. 

In the limit of low ionic concentration, , the equation above is reduced to the 

standard PB equation and when  (Debye-Huckel limit) it reduces to the 

linearized PB equation as expected. The key improvement here is in the case of large 

electrostatic potential , the surface ionic concentration is always bounded by 

 similar to the case of close packing while it is unbound in the standard PB 
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framework. This is particularly important when considering the absorption of large 

ions on charged surfaces. Analytical expressions for the potential and ion 

concentrations can be obtained from the size-modified equation. Another sized-

modified PB theory to model DNA with monovalent ion competition was developed 

by Doniach group at Stanford University, CA [19].  

 

3.3 Electrostatic Zipper Model 

This model can be applied to explain the trivalent ion-induced DNA condensation and 

resistance of dsRNA to condensation by trivalent ions [4, 5]. It has to be first pointed 

out that divalent ions such as Mg
2+

, Ca
2+

 do not induce condensation of dsDNA 

despite their high affinity to the phosphate backbone of DNA. In contrast, trivalent 

ions such as cobalt compounds, or the polyamine spermidine, are widely used for 

condensing DNA in the lab. These trivalent ions can form distinct surface charge 

patterns by binding into DNA grooves [20 and references within]. The surface charge 

pattern is proposed to determine the specificity and energetics of DNA condensation. 

As shown in figure 3.2, negatively-charged helical lines of phosphates and positively-

charged counterions absorbed in the grooves form stripes of positive and negative 

charges. Two DNA molecules close to each other can align such that closely opposing 

stripes have complementary charges along the length of DNA-DNA contact. This 

creates a ―zipper‖ which pulls the molecules together via electrostatic attraction. This 

type of interaction is highly dependent on the geometry of the macromolecule. The 

attraction occurs only if the counterions inside the groove are still ―accessible‖ from 

the outside. The strength of the attraction depends on the distribution of counterions 

between two grooves, the helical pitch H and the axial shift z.  



 

46 

 
 

Figure 3.2 electrostatic zipper model  

The dsDNA molecules are modeled as cylinders. Two DNA molecules associate with 

each other facilitated by favorable surface pattern of charges.  
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    Mathematically, in this model, double-stranded DNA is assumed to have a 

cylindrical shape. The phosphate strands are approximated by two helical lines of 

charges and absorbed counterions are described by a three-state model, described 

below. In the theory of counterion condensation, as well as many other models that 

claim to explain attraction between like-charge objects, it is assumed that all the 

counterions are freely mobile even when they are close to the highly-charged 

macromolecule.  However, this does not work for the DNA-trivalent ion system. In 

the electrostatic zipper model the fixed, absorbed and condensed ions were treated 

separately from those freely-diffusing ions which are modeled using Debye-Huckel 

theory. Based on the assumptions above, the free energy of interaction can be written 

explicitly. The results predict that though the charge of DNA molecule is not fully 

neutralized by  counterions bound in the groove, the helices can still attract in the 

―electrostatic zipper‖ fashion (see figure 3.2). On the other hand, mathematically, this 

model proves that counterion associated with phosphate backbone reduces the 

attraction between DNA molecules due to weaker charge separation, which is 

consistent with the observation that Mg
2+

 or Ca
2+

 ions do not induce DNA 

condensation. Experiments on DNA condensation driven by cobalt hexamine or 

spermine carried out in our group are described in detail in chapter 5, 6, 7. 

 

3.4 Bridges-and-clinches model 

    This model can also be used to explain the results of DNA (or RNA) condensation 

experiments discussed in the following chapters. Even though the originally published 

bridges-and-clinches model deals with DNA condensation by small molecules with 

specific structure [3], it provides some insights on DNA condensation mechanism in 
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another perspective.  

    Two assumptions are made in this model. The first is that there exists stronger 

binding force between DNA strand and counterions than the association force that 

Manning condensation theory predicts. More specifically, DNA charge neutralization, 

which is a prerequisite for DNA condensation, can be induced by multivalent cations 

bound to the DNA double-helix. While such association is often regarded as the 

Manning counterion condensation driven by classical Coulomb interactions, other 

types of interactions often play a major role. In particular, formation of reversible salt 

and hydrogen bonds could occur between counterions and negatively-charged oxygens 

on the DNA strand. These bonds can be quite strong, much stronger than what 

Manning‘s counterion condensation theory would predict, since the local dielectric 

constant (on the bond-length scale) is much lower than the bulk macroscopic dielectric 

constant of water. The strong distance dependence of the dielectric constant defines 

the short-range character of the DNA-counterion interactions. The second assumption 

is that the DNA molecule is semi-rigid, e.g. its contour length is longer than its 

persistent length (~50nm) and much longer than its thickness. Under this assumption 

DNA strand can be treated as a sequence of nearly straight fragments of length smaller 

than persistent length but greater than the thickness of the strand.  

    Based on the two assumptions above, counterions can associate either with one 

DNA strand (serve as ―clinches‖ inside the groove) or with two DNA strands (serve as 

―bridges‖ grabbing two DNA strands together when they are close enough to each 

other). Those ―bridging‖ counterions are the major driving force of DNA 

condensation. Note that the negative charge of DNA is neutralized by the ―clinching‖ 

ions, but condensation requires a fair amount of counterions to ―bridge‖ DNA 
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molecules. There is competition between serving as clinches and serving as bridges.  

In other words, charge neutralization and ion condensation are anti-correlated. The 

association constants of both can be calculated under reasonable assumptions 

according to ref 3.  

 

3.5 Conclusion 

    Great efforts have been devoted to investigating inter-DNA interactions mediated 

by small ions with different valence, ranging from +1 (such as Na
+
, K

+
) to +4 (such as 

spermine). Counterion condensation theory and Poisson Boltzmann theory are two of 

the most important and widely used theories that model the ion distribution around 

polyelectrolytes in solution. Both models describe DNA association with low valence 

counterions but are unsuccessful when considering multivalent (valence >2) 

counterions. For these more highly charged ions, statistical ion-ion correlations and 

steric effects cannot be ignored. Electrostatic zipper model and bridges-and-clinches 

model are introduced in this chapter. These two theories are more suitable for the 

DNA-trivalent ion system. 
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CHAPTER 4 

 

End-to-end stacking measurement 

This chapter is published.  

L. Li, S. A. Pabit, J. S. Lamb, H. Y. Park, and L. Pollack, Appl. Phys. Lett. 92, 223901 

(2008). 

Abstract 

    Recent experiments suggest that short DNA strands associate by end-to-end 

stacking. Here, we report interactions between DNAs with modified ends.  DNA 

duplexes, 20 bp long, were capped with short T4 loops at 2, 1 or 0 ends, and were 

placed in solutions containing 20mM Mg
2+

. Association was observed only in 

constructs with non-capped ends. DNA-DNA interactions were characterized by 

measuring variations in small angle X-ray scattering (SAXS) curves at the lowest 

scattering angles. Second virial coefficients were computed from the SAXS data. Our 

results confirm that end-to-end stacking plays an important role in short strand DNA-

DNA interactions. 

 

Introduction 

    -helical segments of 

proteins, self assemble into precisely designed structures that regulate life. Since the 

phosphate backbones of DNA and RNA are highly negatively charged, charge 

compensation must be provided by counterions, ranging from small cations like K
+
 or 

Mg
2+

, to basic polyamines or proteins. Counterions play a critical role in modulating 

interhelical interactions, providing electrostatic screening for these highly charged 
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polymers, and even facilitating the attraction of like charged strands under certain 

ionic conditions [1,2,3]. A recent review [4] traces the evolution of theories of 

counterion localization around charged cylinders, beginning with the pioneering mean 

field theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) and leading to 

sophisticated computational models [Ref. 4 and references within]. Most of these 

models take into account the breakdown of mean field theories in the presence of the 

large charge density (~2e/3.4Å) or high surface electrostatic potential of DNA 

molecules. Different origins for attractive forces are predicted, ranging from hydration 

through ionic correlations.  

    In an effort to provide experimental data for comparison to the numerous and 

often conflicting theories, we have undertaken studies of interactions between short 

DNA strands as a function of valence and concentration of ions in solution [3,5]. The 

use of short, rigid (far less than a persistence length) helices enables comparisons with 

models that account for the atomically detailed structure of DNA. In the past, such 

studies have provided new information about the distribution of mono-, di- or tri- 

valent ions around DNA strands.  Additional experimental studies of the small angle 

scattering of solutions containing short duplexes, revealed an unexpected inter-helical 

attraction in solutions containing more than a threshold level of divalent counterions 

[5]. Consideration of end effects [6-9] and previous study of B-DNA crystal formation 

[10] led us to conjecture that short DNA helices were able to ‗stack up‘ in an end-to-

end configuration, though the exact mechanism was not revealed. The notion of 

favorable end-to-end stacking [3] of short DNA strands, facilitated by base stacking of 

hydrophobic ends, was also highlighted in a recent publication [11], suggesting an 

intriguing biological origin for these forces.  Computation of the magnitude of the 
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base stacking energies validated the proposal of end-to-end stacking. Here, we 

describe experimental evidence of end-to-end stacking of short DNA strands, obtained 

by measurement on DNA helices that are ‗capped‘ at one or both ends to partially or 

completely block end-to-end association.   

 

Experimental techniques 

    The strength of forces between DNA strands was assessed from small angle X-ray 

scattering (SAXS) profiles of solutions containing DNA. All measurements were 

carried out at the C1 station of the Cornell High Energy Synchrotron Source (CHESS) 

using the experimental setup described in Ref. 12. The measured scattering intensity 

I(Q) (in which , 2θ is the scattering angle and λ is the x-ray 

wavelength) is the product of a form factor P(Q), reflecting the electron density 

distribution within each scattering element (each DNA strand) and an inter-molecule 

structure factor S(Q), which reports on interactions between DNAs. The form factor 

for each construct was extracted from measurements carried out in very dilute 

solutions where the intermolecular interactions are negligible, as explained in Ref. 3. 

Analysis of DNA-DNA interactions using SAXS was discussed extensively in Ref. 5. 

 

Sample preparation 

    The presence of end-to-end stacking of short DNAs was tested by studying DNA-

DNA interactions in solutions containing 20 base-pair long DNAs (~76 Å), terminated 

with T4 loops at 2, 1, or 0 ends, DNA ―dumbbells‖, DNA ―semi-dumbbells‖ or short 

dsDNA with unmodified ends (figure 4.1).  All single-strand DNA oligomers for this 

experiment were purchased from Integrated DNA Technologies (IDT), Coralville, IA.  
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The ―dumbbell‖ DNA with 20bp stem ―capped‖ at both ends was constructed [13-15] 

by base-pairing two DNA hairpins at equal molar amounts with T4 loop at one end of 

the stem and a 4-nt complementary overhang at the other end. Double-strand 20bp 

DNA and 20bp duplex DNA with T4 loop at only one end were used as control. 

Standard annealing procedures provided by IDT were applied. Each DNA sample was 

hydrated and dialyzed against 20mM MgCl2 solution buffered at 1mM NaMOPS pH 

7. 
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Figure 4.1 (a) ―Dumbbell‖ DNA, consisting of a 20bp duplex capped by T4 loop at 

both ends, was constructed by inter-molecular base pairing of two hairpins. (b) ―Semi-

dumbbell‖ DNA, consisting of a 20bp duplex capped by a T4 loop at one end, was 

constructed by intra-molecular base paring of a 44 nt long single-strand of DNA. (c) 

20bp double-stranded DNA was constructed by annealing together two 

complementary strands.  
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Results 

    Shape differences at the lowest angles of the scattering profiles are easily assessed 

by matching the curve amplitudes in the high Q regime [5] where scattering is nearly 

identical for all constructs.  The presence of the terminal loops leads to small 

differences between scattering profiles for the constructs. However, direct comparison 

of the scattering profiles acquired at the lowest DNA concentration of 0.1 mM shown 

in figure 4.2, which correspond to molecular form factors, indicates that the 

differences are nearly negligible.  As the DNA concentration increases a clear 

difference between scattering from ―dumbbells‖, ―semi-dumbbells‖ and ―double-

stranded‖ DNA is measured in the low Q regime, characteristic of S(Q) measurements 

(figure 4.2). The strength of inter-molecular interactions can be quantified by 

extracting the second virial coefficient (A2) of each DNA system. Based on the 

equation below [16], 

 

where c represents the concentration of DNA in unit of g/ml and M is the molecular 

weight of DNA respectively, A2 can be obtained by linear fit once the structure factor 

profile S(Q) is extracted from the experimental data. As described above, the 

scattering profiles collected at the lowest DNA concentration, 0.1mM, were used as 

form factors P(Q). S(c, Q=0) was calculated by extrapolation of the low Q region of 

S(Q). The linear fit of  versus c (figure 4.3) yields the A2 values for 

―dumbbell‖, ―semi-dumbbell‖ and ―double-strand‖ DNA solutions: 1.4e-4, -2.2e-4, -

5.9e-4 (mol ml g
-2

) respectively. The latter two, negative values of A2 suggest that the 

―semi-dumbbell‖ and ―double-strand‖ exhibit weak attraction at 20mM Mg
2+

, 
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consistent with the previous observation that the low Q upturn occurs when 

[Mg
2+

]>10mM [5]. The smaller negative (but larger absolute) value of A2 of dsDNA 

solution reflects the fact that the attraction between dsDNA molecules is stronger than 

that between ―semi-dumbbell‖ DNA molecules under the same ionic conditions. 

Interestingly, the slightly positive A2 indicating marginal repulsion is observed in 

solutions of ―dumbbell‖ DNAs, in which the end-to-end stacking effect is expected to 

be suppressed by the T4 loops capping both ends of DNA. To summarize our 

experimental data, both the magnitude and the sign of the attraction vary for the 

different constructs. The long range correlations in three types of DNA model systems 

are distinct presumably due to molecular structural differences. 
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Figure 4.2 Scattering profiles I(Q) were measured for each sample at four different 

DNA concentrations: 0.1mM, 0.2mM, 0.6mM, and 1.0mM. For each concentration, 

curves were normalized in the high Q regime to highlight differences in curve shape in 

the low Q region (see text).   
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Figure 4.3 The inverse of the structure factor S(Q=0) is plotted as a function of DNA 

concentration (g/ml).  A linear fit was performed to derive the second virial 

coefficient from these data. ―Dumbbell‖ DNA shows marginal repulsion (A2>0) while 

weak attraction (A2<0) is observed in ―semi-dumbbell‖ and double-strand DNA.  
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Discussion 

    It is more accurate to interpret the result of A2 analysis by exploring the definition 

and physical meaning of the second virial coefficient. A2 is defined [16] as  

 

where Na is Avogadro‘s number, M is the molecular weight, V represents the 3-D 

space in which the integral is carried out, and  is the intermolecular potential, 

which depends on the relative position of two molecules. It is evident from the above 

expression that, at a fixed temperature T, the only factor affecting the sign of A2 is the 

intermolecular potential. If  is, on balance, more positive than negative over all 

space, the factor  also exhibits more positive values and A2 tends to be 

positive. A more positive  means two molecules will experience stronger 

repulsion as the interparticle distance decreases below the equilibrium distance which 

minimizes the intermolecular potential. A similar argument can be made for the 

opposite case of attraction. Interpretation of both the sign and magnitude of A2 is a 

simple way to quantify and compare intermolecular potentials. Our results suggest 

that, even in the presence of 20 mM Mg
2+

, the interactions between ―dumbbell‖ DNAs 

are slightly repulsive, while interactions between dsDNAs at the same concentration 

are attractive. Modeling of the potential using APBS [17] does not indicate a buildup 

of charge around the T4 loop; we therefore propose that the observed attraction results 

from the favorable free energy provided by the interaction between hydrophobic ends. 

These base pairs are exposed only in uncapped constructs; the T4 loop blocks this type 

of contact between adjacent strands.  This result is consistent with measurements on 

―semi-dumbbell‖ DNA, which indicate weaker attraction (smaller A2) than dsDNA, 
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due to the presence of one cap. It is important to point out that at (fixed) room 

temperature it is the potential profile that influences the sign and magnitude of A2. The 

molecular weight also plays a role in determining the magnitude of A2 but it is much 

less significant in our case.  

 

Conclusion 

    In conclusion, we have investigated the behavior of ―dumbbell‖, ―semi-dumbbell‖ 

and ―double-strand‖ 20bp DNA molecules mediated by divalent counterions through 

SAXS experiments. Measurements of the second virial coefficient show distinct 

interaction modes among these three DNA model systems. Both the structure of the 

DNA molecule and the electrostatic screening of Mg
2+

 result in modification of the 

intermolecular potential, which along with temperature, sets the value of A2. Our study 

also highlights the importance of end-to-end base stacking in short strand DNA-DNA 

interaction, while lateral (side by side) attraction is not ruled out, it may in fact depend 

on achieving a critical strand length [11]. 
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CHAPTER 5 

 

Double-stranded RNA resists condensation 

This chapter is published. 

L. Li, S. Pabit, S. Meisburger, and L. Pollack, Phys. Rev. Lett. 106, 108101 (2011) 

Abstract 

    Much attention has focused on DNA condensation because of its fundamental 

biological importance. The recent discovery of new roles for RNA duplexes demands 

efficient packaging of dsRNA for therapeutics. Here we report results of UV 

spectroscopic and SAXS studies of short DNA and RNA duplexes in the presence of 

trivalent ions. Under conditions where UV studies find significant condensation of 

DNA duplexes into (insoluble) precipitates, RNA duplexes remain soluble. Although 

complementary SAXS experiments clearly show multivalent ion association to both 

RNA and DNA, we conclude that the differing surface topologies of RNA and DNA 

may be crucial in generating the attractive forces that result in precipitation.  

 

Introduction 

    The attraction of like-charged objects is an important theme in polymer physics, 

biology and biotechnology.  It is remarkable that, despite its uniform, large negative 

charge, double stranded DNA precipitates from dilute solution when even small 

numbers of multivalent ions are introduced [1]. Much effort has been expended 

investigating the nature of this multivalent ion-induced attraction because of its 

relevance to DNA packaging, either in viruses [2] or for applications in non-viral gene 

delivery [3]. Here, we extend these studies to duplex RNA. Recent attention has 
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focused on dsRNA because of its role in RNA interference (RNAi) [4].  In this 

process, low quantities of short RNA duplexes set into motion a molecular machine 

that exerts powerful control over gene expression. The nucleotide sequence encoded 

by the short duplex is used to target and destroy mRNA containing a complementary 

sequence. RNAi is an ideal vehicle for novel therapeutic applications by targeting and 

silencing specific genes. The ability to tightly package (condense) numerous, short 

RNA duplexes is an important prerequisite for optimal design of these next- 

generation therapeutics [5].  

    There is no universally accepted explanation of the physical origin of like-charge 

attraction. Because mean field theories, such as those based on the Poisson Boltzmann 

equation, do not predict attractive forces, there is intense theoretical interest in 

developing more sophisticated models.  Numerous mechanisms (see recent reviews 

[6] and references within) have been proposed to explain ion-induced attraction of 

dsDNA strands, including counter-ion correlations, models that account for ion-

bridging, attraction resulting from hydration forces, or from precisely coordinated 

patterns of charge distributions which form an electrostatic zipper.   

    With the sudden interest in short dsRNA, we have undertaken a biophysical study 

comparing DNA condensation to RNA condensation. Using ionic conditions that 

cause short DNA helices to aggregate, we have attempted to identify similar phases in 

RNA. Surprisingly, dsRNA resists condensation.  The strikingly different behavior 

of these identically charged systems provides important clues about the physics of like 

charge attraction.  

    Although complementary strands of RNA or DNA easily combine to form stable, 

double helices, chemical differences between RNA and DNA drive RNA helices into 
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the A-form, while DNA helices assume the B-form. The former is shorter and wider, 

with a deep major groove that is of the order of the radius of the helix. By comparison, 

the B-form helix is more cylindrical, and the depth of the major and minor grooves is 

more uniform. Finally, the linear charge density of the A-form helix is 2 e per 2.8 Å, 

while that of the B-form helix is 2 e per 3.4 Å. Previous work shows that monovalent 

and divalent counterions penetrate into the major grooves of the RNA, more fully 

compensating the overall negative charge of the molecule [7].  As a result, screening 

of the large negative charge of the RNA duplex occurs at lower bulk ionic strength 

than for DNA.  If attraction were solely determined by the degree of charge 

compensation, one might expect RNA to condense more readily than DNA; we 

observe the opposite.  

 

Sample preparation 

    The small trivalent ion Cobalt hexammine (Co-hex, Co(NH3)6
3+

) is one of the 

most powerful condensing agents of DNA [8, 9].  This ion has radius of 3Å and a 

nearly spherically distributed surface charge. Even small quantities can precipitate 

dsDNA from dilute solution at room temperature.  Co-hex has also been used in RNA 

folding studies [10].   

    Here, we examine the role of trivalent Co-hex ions in RNA and DNA charge 

screening efficiency and condensation. We use two established experimental 

techniques—UV absorption and Small Angle X-ray Scattering (SAXS)—to probe the 

condensation of nucleic acid duplexes from dilute solution, driven by the addition of 

small quantities of Co-hex.  Identical experiments were carried out on both DNA and 

RNA duplexes.  
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    To measure the condensing power of Co-hex, 25bp DNA and RNA were dialyzed 

against buffer containing 20mM NaCl and 1mM NaMOPS at pH 7, respectively.  

This low monovalent salt background ensures that added Co-hex will be maximally 

effective in condensing the sample [8].  Calibrated amounts of Co-hex, between 0 ~ 

6mM in solution, were added to each tube, and the mixed solutions were stored at 4
o
C 

for 2 hours. Subsequently, each tube was centrifuged at 10,000 rpm (~8000 g)  for 

10min e.g. [8]. The supernatant was collected and absorbance at 260 nm was 

measured for each sample in a UV spectrophotometer (Cary 50 Bio, Varian, Inc., 

Walnut Creek, CA). The fraction of precipitated nucleic acid can be calculated by 

direct measurement of the change in UV absorption of the supernatant.  Since the A-

helical form is shorter than the B-helical form, we compared 25bp RNA with both 25 

and 16bp DNA, to control for any length-dependent effects of condensation. 

    Synchrotron small angle x-ray scattering (SAXS) reports the strength of inter-

molecular interactions. The presence of either repulsive or attractive forces between 

particles results in distinctive modulation of the scattering profiles at the lowest angles 

[11]. These experiments were carried out at C1 station at Cornell High Energy 

Synchrotron Source (CHESS). The experimental setup is described in Ref. [12]. 

Single strand DNA and RNA oligomers were purchased from Integrated DNA 

Technologies (Coralville, IA) and Dharmacon Inc. (Chicago, IL), respectively. DNA 

samples for SAXS studies were prepared as described in Refs. [11, 13] using 

equilibrium dialysis to establish a fixed bulk ion concentration. All SAXS buffers 

contain 100 mM NaCl in addition to varying amounts of Co-hex.  Identical protocols 

were employed in preparing RNA samples. Because the competitive association of 

Co-hex to DNA is a strong function of NaCl concentration [8], the increased 
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concentration of monovalent ions relative to the UV studies allows measurements of 

soluble DNA over a broader range of Co-hex concentrations, and enables a more 

detailed comparison of Co-hex interactions with DNA as opposed to RNA.   

 

Results and discussion 

UV spectroscopy 

    Figure 5.1 shows results of UV absorption measurements of RNA and DNA as a 

function of (added) Co-hex. These curves clearly indicate that dsRNA precipitation by 

Co-hex is much less favorable than dsDNA precipitation. For trivalent ion 

concentrations below 1 mM, almost no RNA precipitates, in contrast to DNA. In the 

presence of 4mM Co-hex, 85% of 25bp DNA molecules condense while ~80% of 

RNA molecules remain in the supernatant. Only for Co-hex concentrations in excess 

of 10 mM do we measure significant RNA condensation. 
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Figure 5.1 The concentration of DNA and RNA molecules in the supernatant as a 

function of [Co-hex] is calculated from UV absorption. Short, 16 and 25 bp DNA 

molecules are more easily condensed than 25 bp RNA. The 16 bp DNA, used as a 

control, indicates that the changing length of the double stranded nucleic acid has a 

smaller effect in generating condensation than the type of nucleic acid used.  
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SAXS 

     One possible explanation of these data is that many fewer Co-hex ions bind to 

RNA than to DNA:  the negative charge of RNA is not effectively screened by these 

counterions. To test for this eventuality, SAXS was used to measure inter-duplex 

interactions [11]. SAXS profiles of solutions containing DNA and RNA were 

measured under carefully controlled ionic conditions, beginning at 100 mM Na
+
, 

where weak repulsion between nucleic acids is measured [7]. For these studies, the 

duplex concentration is maintained at 0.6 mM, more than an order of magnitude below 

the regime where liquid crystalline behavior is expected e.g. [14].  Since Co-hex is a 

trivalent ion, it very effectively competes with monovalent Na [12]. Its strong 

electrostatic attraction to the DNA enhances localized screening of the duplex charge 

[15] and dramatically reduces electrostatic repulsion between neighboring duplexes. 

Because Co-hex condenses DNA so efficiently, the higher NaCl concentration present 

in the SAXS studies ensures that samples can be prepared without aggregation. SAXS 

studies carried out on mixed phase samples, containing both soluble DNA and 

aggregates, are difficult to interpret [13]. In 100 mM NaCl, the onset of aggregation 

occurs in DNA with about 1 mM (free) Co-hex [12]. Figure 5.2 shows the results of 

SAXS studies on DNA (Fig. 5.2a) and RNA (Fig 5.2b) as a function of free Co-hex 

concentration [12]. To evaluate the magnitude of inter-particle interference, the high 

angle (or Q) regions of scattering profiles are matched with the form factor [11, 16], 

which represents the scattering of an isolated duplex. Repulsion/attraction between 

particles is indicated by a decrease/increase of the scattering profile relative to the 

form factor at the lowest angle [11].  
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Figure 5.2 To assess inter-particle interactions, solution SAXS profiles of (a) DNA 

and (b) RNA samples in Cobalt hexamine are compared with the form factor, the 

scattering from non-interacting molecules (at infinite dilution). Only marginal 

repulsion between DNA molecules is measured when [Co-hex] ~ 0.8mM. 

Comparatively, the sharp and smooth low Q upturn in (b) can be interpreted as end-to-

end stacking of RNA molecules when Co-hex is present at concentrations above 

0.5mM (see supplementary material, Ref. [7] for a detailed discussion of this effect).  
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    In the absence of Co-hex (100 mM NaCl), SAXS profiles of both nucleic acids 

indicate clear repulsion, consistent with previous work [7, 11]. The diverging behavior 

of DNA (Fig 5.2a) and RNA (Fig 5.2b) becomes apparent when small amounts of Co-

hex are introduced. Scattering profiles for DNA in 100 mM NaCl plus 0.5 mM Co-hex 

still decrease at the lowest angles, consistent with repulsive forces. Around 0.8 mM 

Co-hex electrostatic interactions between duplexes are nearly neutralized. (Small 

amounts of Co-hex have dramatic effects on DNA. Near ~ 0.8 mM Co-hex, inter-

DNA interactions rapidly change from repulsive to attractive. One concern might be 

potential changes to the amplitude of the scattering resulting from the closer 

association of co-hex (replacing Na) in the ion cloud. The effects of ion cloud 

scattering are almost always dominated by the hydration shell of the nucleic acid. The 

replacement of a few Na ions with several co-hex ions, will lead to a negligible change 

in scattering amplitude, compared to that from the nucleic acid itself and its hydration 

shell.) 

    Figure 5.2b shows an identical experimental series, performed with dsRNA 

instead of dsDNA. As expected, RNA duplexes repel in the presence of 100 mM 

NaCl.  In 100 mM NaCl plus 0.5 mM Co-hex, where repulsion between DNAs is still 

evident, the SAXS profiles of RNA duplexes display a strong increase in low angle 

scattering, consistent with end-to-end stacking. To stack, two helices must come into 

close contact, thus the appearance of end-to-end stacking signals significant reduction 

in electrostatic repulsion, consistent with our previous observation that ions more 

effectively screen dsRNA than dsDNA [7, 17]. However, as opposed to precipitates, 

which are insoluble, these end-to-end stacked molecules remain soluble and are 

readily detected by solution SAXS. (A more detailed analysis of the energetics can be 
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carried out [7, 16].) Validation of end-to-end  stacking (as opposed to close packing 

of DNA into hexagonal arrays  described in Ref. [13] and its supplemental 

information) is achieved by comparison of scattering profiles of Figure 5.2 to 

computations of pairs of RNA duplexes arranged either end-to-end, or in a side-by-

side manner that would be more consistent with DNA packing in hexagonal arrays 

(Figure 5.3). End-to-end stacking of short nucleic acid duplexes has also been 

observed in work carried out by others [14, 17]. The seemingly conflicting results of 

UV absorption and SAXS measurement lead to the well-defined fundamental 

question—if, as the SAXS data suggest, RNA‘s charge is more effectively screened 

than DNA‘s, why is DNA more susceptible to precipitation by Co-hex than RNA? To 

answer this question, we must consider how the ions bind to the nucleic acid. 
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Figure 5.3 Solution SAXS data of RNA samples in NaCl or Co-hex are displayed 

along with scattering profiles that simulate RNA duplex association in different 

modes. The purple and cyan curves represent the configurations of RNAs, stacked 

either end-to-end or placed side-by-side to mimic relative placement in close 

hexagonal arrays, respectively. The end-to-end stacking model is in better agreement 

with experimental SAXS profiles, though clearly not all duplexes participate in 

stacking interactions.  
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Models 

    Computations of the potential around DNA or RNA duplexes [18] show that the 

major groove of A-RNA has a higher negative potential than the minor groove while 

the opposite is true for B-DNA. These different potentials have a profound impact on 

the spatial distribution of ions around RNA or DNA. Comparison of experimentally 

determined ion-distributions with models (based on the non-linear Poisson-Boltzmann 

equation, which are valid for monovalent ions) confirms that counterion distributions 

reflect these differences. Monovalent ions are localized to the RNA major groove, 

while they are more uniformly distributed around DNA [7].  In contrast to 

monovalent ions, experimental studies of Co-hex suggest that this trivalent ion prefers 

to bind in the major groove of both nucleic acids. For B-DNA, support for this binding 

pattern comes from NMR [19], capillary electrophoresis [20] and x-ray 

crystallographic [21] studies. Notably, the Guanines in the DNA major groove provide 

a preferential binding site for Co-hex [19]. Other important factors in determining 

binding sites may include the observed dehydration of Co-hex ions around DNA [22].  

Although fewer studies have focused on Co-hex binding to RNA, solution NMR 

studies [23] find Co-hex ions buried deep within the major groove of a short stem 

loop. We therefore propose that the observed differences in condensation arise from 

the dramatically different geometries of the underlying nucleic acid structures. This 

picture is consistent with two models for condensation. In the first, competition 

between inter and intra molecular ion bridging explains why condensation forces (inter 

molecular bridging [24, 25]) and charge screening efficiency (intra molecular binding 

[25]) should be anti-correlated.  Therefore, one possible explanation of the resistance 

of RNA to condensation arises from the more favorable binding of Co-hex to the RNA 
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major groove compared to DNA.  Second, in the electrostatic zipper model [26], the 

surface of the nucleic acid presents a pattern of alternating positive and negative 

charges. This alternating pattern can result in attraction if adjacent molecules pack so 

that opposing charged surfaces are in contact.   There may be a significant difference 

in RNA+ion and DNA+ion surface charge due to differences in geometry.  For 

example, the depth of the DNA major groove is ~8 Å, comparable to the 6 Å diameter 

of Co-hex molecule: Co-hex molecules bound in the DNA major groove remain 

―accessible‖ from outside. The DNA molecules can be condensed when the surface 

charge patterns are electrostatically in register with each other. In contrast, although 

RNA's identical negative charge is also strongly screened, the trivalent ions have the 

potential to bury themselves too deep within the major groove to be ―visible‖ at the 

surface.   

    Either geometric model of nucleic acid association is consistent with results from 

both absorption and scattering experiments. We note that the hydration structure of 

DNA and counterions also play an important role in DNA condensation [27], and 

could lead to a measurable difference in RNA and DNA condensation behavior since 

the RNA surface is more polar [28] and hence more hydrated, than the DNA surface.  

 

Conclusion 

    Both SAXS and absorption measurements lead us to propose that the interaction 

modes of nucleic acids depend on the geometric details of charge arrangement in each 

system, highlighting the important role of molecular structure in condensation. Under 

conditions where DNA precipitates readily, the well-buried Co-hex ions inside the 

major groove of RNA contribute to charge neutralization but ultimately lend 
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aggregation resistance to RNA duplexes. These readily testable results should provide 

the basis for further molecular dynamic (MD) simulations of multivalent-ion mediated 

interactions between like-charged nucleic acids and may provide guidance to 

overcome the many challenges associated with packaging duplex RNA for therapeutic 

applications.  
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CHAPTER 6 

 

Counting trivalent ions and measuring hydration 

Abstract 

    Using Multiple-Energy Anomalous Small Angle X-ray Scattering (mE-ASAXS), 

we count the number of trivalent ions associated with 25 bp double-stranded DNA 

during the early stages of DNA condensation. Two different trivalent cobalt 

compounds were employed:  cobalt hexamine chloride (co-hex), and cobalt 

sepulchrate chloride (co-sep). Although both compounds effectively condense DNA, 

the condensing power of co-sep is almost twice as much as that of co-hex:  more 

DNA precipitates from solution when a fixed amount of co-sep is added, relative to 

addition of the same amount of co-hex.  Our measurements reveal that, under 

comparable experimental conditions, the number of excess counterions is similar for 

the two compounds, thus differences in condensing power do not appear to be related 

to electrostatic charge compensation. Previously, changes in condensing power were 

explained by ion hydration differences. In complementary studies, we probed the 

hydration level of the counterions using X-ray Absorption Fine Structure (XAFS). The 

combined results indicate that, despite the similar electrostatic response of the 

systems, the more hydrated counterion species (co-hex) has a smaller condensing 

power,  

 

Introduction  

    It has long been recognized that DNA condensation can be induced by the addition 

of even small number of trivalent ions [1].  Clues to the underlying mechanism of this 
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like-charge attraction lie in observing differences in condensation behavior when ions 

with different physical properties are employed. Thus studies of DNA condensation 

have been carried out in the presence of different small trivalent cobalt-amine 

compounds, including cobalt hexamine (co-hex) and cobalt sepulchrate (co-sep). Both 

are powerful condensing agents of double-stranded DNA (dsDNA) [2]. But co-sep has 

more hydrophobic CH2 groups than co-hex. The hydration levels between the two 

compounds are expected to be different. Differences in the chemical and physical 

properties of those molecules were extensively discussed in reference [3], in an effort 

to explain their differing condensing powers. Light scattering experiment suggests that 

co-sep molecule condense high-molecular-weight calf thymus DNA about twice as 

effectively as co-hex despite the same valence of the two cobalt counterions [3]. 

However, a number of important parameters have evaded detection, such as the 

number of excess trivalent ions resulting from the presence of the DNA.  Here, using 

different SAXS techniques [4], we count excess ions and measure the strength of 

attraction they mediate between short 25-bp DNA duplexes.  Surprisingly, we find 

that the excess numbers of co-sep and co-hex ions are very similar when the bulk ionic 

strength of the solution is fixed. This observation raises the question why dsDNA 

would be more prone to condensation by co-sep than co-hex? 

    In addition to the prevailing electrostatic arguments, it has been proposed that the 

hydration structure of DNA and counterions may have a strong impact on ion-DNA 

association and inter-DNA attraction [5]. Hydration forces between DNA molecules, 

either attractive or repulsive, were measured directly by the osmotic stress method [5, 

6]. The release of ordered water solvent around DNA and/or ions into the bulk 

solution is one of the major sources of entropy increase of the system and has been 
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linked with hydration forces. Likewise, it is proposed that the effectiveness of ion-

induced DNA condensation is highly affected by the hydration pattern of the DNA-ion 

surface. Co-hex in solution is highly hydrated while co-sep has a much lower 

hydration level [3]. Changes in hydration that accompany ion binding to DNA have 

been reported [7]. Here, we explore the possibility of probing the difference of 

hydration structure between co-hex and co-sep ions that are bound with DNA via the 

well-established technique of X-ray Absorption Fine Structure (XAFS) [8, 9].  

 

Experimental Techniques 

mE-ASAXS  

    Solution Anomalous Small Angle X-ray Scattering (ASAXS) can investigate the 

spatial distribution of counterions around macro-molecules [10] when the counterions 

have electron binding energies that are accessible to synchrotron x-rays. For ASAXS 

experiments SAXS profiles are measured at two different energies; the first is far 

below the ion absorption edge and the second is close to, but just below the absorption 

edge. The energy-dependent term which represents the counterion spatial distribution 

can be obtained by subtraction of the two scattering profiles with proper fluorescence 

correction.  All energy independent terms cancel in this subtraction.   

 Multiple-Energy Anomalous Small Angle X-ray Scattering or mE-ASAXS is a 

natural extension of ASAXS. SAXS profiles are measured at multiple different 

energies (5 in this experiment) carefully selected below the absorption edge. The total 

scattered intensity I(Q, E) is thus dependent on both X-ray energy E and momentum 

transfer Q = (4π/λ)sinθ, where λ is X-ray wavelength and 2θ is scattering angle. The 

ion scattering factor consists of one energy-independent term f0 and two energy-
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dependent terms f‘(E) and f‘‘(E). Ignoring the latter term f‘‘ which accounts for 

absorption, thus is negligibly small below the edge, the total scattered intensity I(Q, E) 

can be expressed in terms of f‘(E)  in standard quadratic form  

 

where 

 

 

 

Because changes in the scattering factor are so small compared to the absolute values 

of the scattering factors, the coefficient of the second order term is small and this term 

is negligible. A linear fit of I(Q,E) with respect to f‘(E) yields the coefficients of the 

linear and constant terms which then can be used to derive the excess number of 

associated ions as shown below 

 

The procedure was described extensively in ref [4] 

 

XAFS  

    We used X-ray Absorption Fine Structure (XAFS) spectroscopy to measure the 

hydration level of counterions both in solution and absorbed to the DNA. XAFS 

probes the first few hydration shells around selected atom by measuring the absorption 

coefficient profile over a range of X-ray energies that are very close to the absorption 

edge [11]. The absorption coefficient of an atom usually decreases as the X-ray energy 

increases (~1/E
3
). However, at an absorption edge, this coefficient increases sharply 
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because the incident photon is absorbed by the atom resulting in an electronic 

transition to a higher energy state. The photoelectron generated by this process can be 

treated as an outgoing wave which is reflected by the local structure to produce 

ingoing waves. The interference between the ingoing and outgoing wave generates an 

oscillation pattern above the absorption edge. The XANES (X-ray absorption near 

edge structure) region, in which multiple scattering dominates, covers the energy 

range 5~200eV above edge while the EXAFS (extended X-ray absorption fine 

structure) region ranges from ~200eV to 1000eV above the edge. From the XAFS 

pattern we extract information about the structure of nearest neighbor atoms to the 

absorbing atom of interest. Spectra from different samples can be compared if they are 

normalized to have the same step height and zero background (below the edge).  This 

normalization is carried out by regressing a line to the region below and above the 

absorption edge, subtracting the pre-edge line from the entire data set and dividing by 

the absorption step height.   

    Here, we use XAFS to monitor the hydration levels of co-hex and co-sep ions 

associated with dsDNA [11]. We also measured the absorption spectrum of co-en 

(cobalt ethylenediamine) associated with DNA since it was previously reported that 

this ion has the hydration level in between that of co-hex and co-sep [3].   

 

mE-ASAXS setup 

    The mE-ASAXS measurements were carried out at the C1 station of the Cornell 

High Energy Synchrotron Source (CHESS). Full details about the experimental setup 

are provided in Ref. [12]. Briefly, the beam energy is carefully selected using a 

double-crystal monochromator. The energy can be scanned over a large range and the 
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energy resolution of the experiment is 2 eV. The beam size was determined by slits to 

be ~1.5mm wide and ~0.7mm high. All DNA samples were contained in acrylic 

sample cells, with volume of 25 ~ 40 uL, sealed with ultra-thin (~0.7 um) silicon 

nitride windows.  After interaction with the sample, the scattered X-ray beam passed 

through a 1-m long, evacuated flight tube. A CCD camera was placed at the exit of the 

flight tube and used to record scattering profiles. The direct beam was blocked by a 

motorized beamstop to prevent damage to the CCD detector. Energies for 

measurements were determined by transmission scans of Co-containing buffer 

solutions. The program CHOOCH [13] was used to determine values of f‘ and f‘‘ from 

transmission scans as described in Ref [4]. Based on results from CHOOCH, we 

selected five different energies (7.614keV, 7.664keV, 7.705keV, 7.714keV, 7.722keV) 

for this study (see figure 6.1), which give us within an order of magnitude variation in 

f‘. SAXS profiles were acquired both on DNA-containing samples, as well as 

matching buffers for background subtraction. An additional fluorescence correction 

was applied to the data, as described [12]. Finally, due to inter-DNA interactions, low 

angle data were modulated by a structure factor S(Q). Thus, great care was taken to 

avoid this low Q region. We analyzed data over Q range between 0.044Å to 0.055Å, 

including as much information as possible while at the same time avoiding the Q 

region affected by structure factor. Finally, to obtain the ion number in absolute units, 

the scattering intensity at zero-angle I(Q=0) was scaled to number of electrons squared 

using the calibrated scattering signal from water [14].  
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Figure 6.1 conversion of fluorescence scan by ―CHOOCH‖ 

These plots show the real part of the anomalous scattering factor f‘ for Cobalt ions 

obtained by the program CHOOCH. Five energies are chosen for the mE-ASAXS 

measurement.  
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XAFS setup 

    X-ray absorption spectra were also acquired at the CHESS C1 station using a Si 

(111) double-crystal monochromator. Higher harmonics were reduced by detuning the 

monochromator by 50%~60%. The Cobalt absorption at K-edge was found at 

7.726keV using both 1mM cobalt solution contained in mylar capillary and a cobalt 

foil. Spectra were measured by scanning the X-ray energy from 7.65keV to 8.1keV.  

Step sizes of 5eV were used between 7.65 and 7.71keV. Higher resolution 2eV steps 

were employed in the critical region between 7.71 and 7.74keV. Above 7.74 keV and 

up to 8.1 keV, the step size was increased to 4eV. For these measurements, the beam 

diameter was set to less than 1 mm. The K-edge XAFS spectra were acquired in 

transmission mode and 1mm-diameter mylar tubes were used as DNA/cobalt sample 

container.  The X-ray fluorescence was collected using 4 vortex detectors.  

 

Sample preparation 

    Single-stranded 25mer DNA oligomers were purchased from Integrated DNA 

Technologies (Coralville, IA) and then annealed to form double-stranded DNA using 

standard annealing protocol as previous described [14]. All 25bp dsDNA samples for 

mE-ASAXS experiments were dialyzed against co-hex or co-sep buffers (0.5mM co-

hex, and 0.5mM co-sep, respectively where no condensation of DNA was observed) 

containing 100mM NaCl and 1mM NaMOPS at pH=7 except for NaCl control 

samples which contain no cobalt compounds. The concentration of DNA is maintained 

at 0.6mM which was determined by UV Spectroscopy (Cary 50 Bio, Varian, Inc., 

Walnut Creek, CA).  The solutions were brought to a total volume ~30uL for mE-

ASAXS measurement. The dialyzed DNA samples containing 0.5mM bulk 
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concentration of co-hex, co-sep as well as co-en (cobalt ethylenediamine, another 

trivalent ion, DNA condensing agent) as a control was used for hydration 

measurement by XAFS. The hydration level of freely-moving co-en is higher than co-

sep but lower than co-hex.  

 

Results and discussion 

    SAXS profiles of DNA + co-hex (0.5mM bulk concentration of co-hex), DNA + 

co-sep (0.5mM bulk concentration of co-sep) and DNA + NaCl (100mM bulk 

concentration of NaCl) are shown in figure 6.2. All curves were acquired at X-ray 

energy = 7.514keV which is below the Co absorption edge. For comparison the curves 

are intensity normalized at Q = 0.1(Å
-1 

).  The effect of inter-particle repulsion is 

easily seen in the low Q downturns of the sample. A Guinier fit is performed to obtain 

I(Q=0) for each of the 5 energies over a specific Q range. This range was carefully 

selected to lie above the region where inter-particle interactions modify the scattering 

profile (in figure 6.2 where the 3 curves start to deviate from each other). The upper 

bound for this fit is consistent with measurements on non-interacting particles. Guinier 

fits for DNA/co-hex and DNA/co-sep samples at 5 energies are shown in figure 6.3 (a) 

and (b), respectively. From these fits, the value of I(Q=0) was obtained. This value is 

plotted as a function of X-ray energy in figure 6.4. The number of excess ions 

associated with DNA can be extracted from linear fits to these points as described in 

Ref [4]. We find 6.7±0.8 excess ions for co-hex, in agreement with our previous 

findings using ICP [10]. A comparable number, 7.0±1.3 ions is measured for co-sep.  
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Figure 6.2  

SAXS profiles of DNA dialyzed against 100mM NaCl, 0.5mM co-hex, and 0.5mM 

co-sep solutions (buffered at 100mM NaCl, 1mM NaMOPS, pH = 7), respectively, are 

shown in this figure. They are normalized at Q = 0.1 Å
-1

. DNA molecules repel each 

other in all three samples with the strongest repulsion observed in DNA + NaCl. The 

structure factors at Q = 0 are very close for DNA + co-hex and DNA + co-sep sample 

(see text).   
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Figure 6.3  

Solution SAXS profiles of DNA dialyzed against 0.5mM Co-hex and 0.5mM Co-sep 

buffer in 100mM NaCl and 1mM NaMOPS at pH 7, respectively. SAXS curves were 

measured at 5 different energies below the absorption edge. Guinier fit was performed 

over the Q range within 0.044 ~ 0.055Å
-1

 optimized from theoretical form factor. 
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Figure 6.4  

I(Q=0) for 5 different X-ray energies were obtained by Guinier fit for DNA + co-hex 

and DNA + co-sep samples. A plot of I(Q=0) versus the real part of anomalous 

scattering factor is shown above. A linear fit is then performed to determine the 

magnitudes of b-term and c-term at Q = 0 which are used to compute ion numbers.  
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    We measured the X-ray absorption spectra of DNA samples dialyzed against co-

hex, co-en and co-sep. To prepare these samples, 0.6mM DNA duplex was dialyzed 

against 0.5mM co-hex (co-en and co-sep) buffer containing 100mM NaCl and 1mM 

NaMOPS at pH 7. These concentrations were selected so that the majority of cobalt 

ions in the sample would be associated with DNA molecules. We measured 8~15 

absorption curves for each sample and the averaged XAFS spectra are shown in figure 

6.5. The shape difference in the XANES regime (inset of figure 6.5) suggests that the 

hydration patterns of those 3 ions are very different [11, 16] (private communication 

with Prof. Serena DeBeer in Chemistry Department at Cornell University). Co-hex is 

still hydrated, which is consistent with the findings in ref [17, 5, 6]. The dramatic 

shape changes in this regime of the spectrum suggest that Co-sep is the least hydrated 

of the three. A similar trend is observed for ions freely moving in the buffer [3]. Thus, 

since no differences in the spectrum of DNA-absent vs. DNA-present samples were 

detected, we deduce that the binding of the cobalt ion to DNA does not change ion 

hydration.  
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Figure 6.5  

Solution XAFS spectra at Cobalt edge for DNA-bound co-hex, co-en, and co-sep ions 

are plotted together. The spectra are normalized and background subtracted for 

comparison. The inset represents the XANES regime of XAFS spectrum which 

provides information about hydration level of these three ions.  
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    Taken together, these results suggest that the hydration level of the DNA-

counterion interface has an impact on the effectiveness of DNA condensation. Co-sep 

and co-hex have identical charge (+3), very similar size and chemical structure. 

Moreover, according to mE-ASAXS measurements, the number of co-sep bound to 

DNA is very close to that of co-hex. The only biggest difference between the two 

cobalt compounds is the hydration level. Co-sep is more hydrophobic probably due to 

the extra CH2 groups. It has been found that the freely-moving co-hex is more 

hydrated than co-sep in the buffer [3]. The XANES pattern further suggests that co-

hex is still highly hydrated when it‘s bound to DNA but co-sep is much less. Other 

experimental evidence shows that there is a hexagonal packing with ~8Å separation 

between DNA surfaces in the condensed DNA phase mediated by co-hex [17]. Both 

findings indicate that co-hex induced DNA condensation is more affected by hydration 

structure at DNA/counterion surfaces than co-sep. Therefore we propose that the 

higher condensing power of co-sep than co-hex is from their distinct hydration 

structures primarily for two reasons. First, with fewer extra water layers around co-

sep, the cost of rearranging ordered water molecules is lower during the short-range 

association between DNA molecules. Second, when the counterion is more hydrated, 

the effective size of the counterion is increased hence the effective charge density of 

the ion is decreased. The effective local dielectric constant is increased due to more 

surrounding polarized water molecules. Consequently the charge screening effect of 

less hydrated co-sep is stronger than co-hex. Therefore, the long-range attraction 

between DNA strands induced by co-sep is stronger even though there are about the 

same excess numbers of co-sep and co-hex associated with DNA. In summary, the 

effects of both entropy and enthalpy support our proposal above—DNA condensing 
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power of co-sep is enhanced relative to co-hex because of its reduced hydration level.   

 

Conclusion 

    In this paper, we report measurements of excess number of trivalent ions around 

DNA, just prior to the condensation threshold. Despite differences in hydration of co-

hex and co-sep ions, similar numbers are associated to DNA. Thus, it appears that 

electrostatic contributions to DNA condensation are similar for these two ions. To 

understand why the condensing power of co-sep on DNA is almost twice as much as 

co-hex, we then investigated the hydration level of these cobalt-amine compounds as 

they bind to DNA molecules. Co-hex is more hydrated than co-sep as is the case when 

both are freely mobile in solution. This confirms the proposal that hydration structure 

at DNA and counterion surface should be taken into account throughout the DNA 

condensation process [18].  
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CHAPTER 7 

 

Future work 

    In this chapter, I summarize some of the experiments and research projects that 

might be suited for a continuation of this research. Some preliminary results are listed 

in this chapter as well. 

  

7.1 DNA and RNA condensation by spermine  

    Different behavior of dsDNA and dsRNA in co-hex solution highlights the 

importance of nucleic acid geometry to condensation. It would be worthwhile to 

investigate RNA condensation using other known powerful condensing agents for 

DNA. Spermine, +4 positively-charged, is one perfect candidate with known structure 

(PDB ID: SPM). A sketch of the structure of spermine is shown in figure 7.1. The 

length of spermine is ~17Å and the width is 3 ~ 4Å. It‘s been shown that spermine is a 

very effective condensing agent for DNA [1] (even more effective than co-hex). 

Similar UV-spec and SAXS experiments as described in chapter 5 were carried out on 

DNA and RNA with spermine. One key difference in SAXS measurement is that the 

DNA/RNA samples were prepared by adding spermine to the solution directly rather 

than equilibrium dialysis as in the case of co-hex. Solution containing 20mM NaCl + 

1mM NaMOPS with pH = 7 was used as buffer for both UV and SAXS experiments. 

This solution is used because the condensing power of spermine at DNA is too large 

and the dialysis will precipitate all the DNA molecules out of the supernatant.  
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Figure 7.1 structure of spermine molecule  
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    The result of UV spectroscopy experiment is shown in figure 7.2. SAXS curves 

are presented in figure 7.3. The powerful DNA condensing agent does not condense 

RNA much even at concentration as high as 30mM. Both DNA and RNA molecules 

strongly repel each other when spermine concentration is between 0.5mM and 2mM. 

The behavior of DNA molecules is understandable since some of them have been 

precipitated out of solution by spermine and what‘s left in the supernatant repel each 

other. However, there‘s no precipitation of RNA observed, they still repel each other 

in spermine solution in contrast to the observation that RNAs attract each other 

significantly in co-hex solution. It was proposed that spermine ions reside in DNA 

major groove [2] and thus neutralize the negative charge of DNA. However, it is likely 

that spermine is not strongly associated with RNA since both the major and minor 

grooves are too narrow for spermine. Therefore this suggests that the negative charge 

of RNA is even not neutralized by spermine. It would be interesting to repeat this 

experiment and use RNA strands with different lengths to measure any length-

dependence of the interaction between RNA molecules. 
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Figure 7.2 dsDNA/dsRNA condensation induced by spermine 

Most of the 25bp DNA molecules are precipitated out of the solution when spermine 

concentration reaches about 1mM. In contrast, most 25bp RNA molecules remain in 

the supernatant even with extremely high spermine concentration.  
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Figure 7.3  

SAXS profiles of DNA and RNA are measured in solutions with different spermine 

concentrations. Both DNA and RNA molecules strongly repel each other in the 

supernatant.  
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7.2 Wide Angle X-ray Scattering 

    Wide Angle X-ray Scattering (WAXS) is an X-ray diffraction technique that can 

be used to provide higher resolution structural information of polymers than SAXS. 

The experimental setup of WAXS technique is very similar to that of SAXS except 

that the distance from sample to the detector is usually much shorter (~30cm in 

WAXS shown in figure 7.4 versus ~100cm in SAXS) so that the diffraction pattern 

can be recorded at large angles. The resolution can reach about ~20Å. Solution WAXS 

provides a direct measure of macromolecular conformation in solution and one-

dimensional (1D) “fingerprints” of 3D structure that are directly relatable to atomic 

configuration by Fourier transform [3]. 
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Figure 7.4 a picture of WAXS experimental setup at G-line CHESS 

Comparing to SAXS, the flight tube is much shorter. The length of flight tube is 

~30cm in WAXS experiment.  
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    WAXS scattering profiles provide additional conformational information about 

DNA (or RNA)-ion structures, specifically reporting on length scales shorter than 

those accessible by SAXS. Figure 7.5 shows the extended angular range of these 

experiments, accessing Q ranging from 0.1 ~ 0.8 (1/Å). The WAXS curves of DNA, 

shown in figure 7.5 display several interesting features, notably a peak at Q = 0.5 

(1/Å).  When compared with the results of ref 3 we attribute this peak to helical inter-

strand pair distance correlations. The peak broadens slightly as the co-hex 

concentration is increased, likely caused by the structural difference between DNA-ion 

system and DNA helix itself. Figure 7.5 also shows similar curves acquired on RNA. 

In striking contrast to DNA in 100 mM NaCl, the scattering curve of RNA-NaCl is 

almost flat from Q = 0.32(1/Å) to Q = 0.45(1/Å). These shape changes arise from the 

fact that A-RNA helix is ―broader‖ and more compact than B-DNA. When dsRNA is 

dialyzed against co-hex, a noticeable peak at around Q = 0.48(1/Å) is generated. We 

speculate that this is due to the constructive interference between ―effective‖ helix 

radius modified by co-hex and major/minor groove spacing. The peak shift from Q ~ 

0.4 (1/Å) (though it is hard to assign given the small amplitude variation) to Q ~ 0.48 

(1/Å) indicates a reduction of the diameter of the RNA-ion structure comparing to 

RNA helix itself as illustrated by figure 7.6. 
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(a) 

 
(b) 

 

Figure 7.5 

WAXS curves for DNA (a) and RNA (a) samples containing different amount of co-

hex. For DNA samples, as the co-hex concentration increases, the shoulder between Q 

= 0.4 (1/Å) and Q = 0.6 (1/Å) becomes flatter. For RNA, the change is much more 

significant. The underlying cause of this dramatic change is worth investigating. 
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Figure 7.6 

When co-hex binds into the major groove of dsRNA, we propose that the effective 

radius of the RNA molecule is reduced as indicated by the white and yellow double-

arrows.  
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    The underlying mechanism of this big change in RNA WAXS profile is still not 

clear. A simple, qualitative and speculative proposal is provided above but more 

convincing evidence is required. It might also need some efforts in modeling and 

computation power may also be necessary to solve this puzzle quantitatively. 

 

7.3 End-to-end stacking: RNA dumbbell 

    Similar to the DNA dumbbell experiment in chapter 4, RNA dumbbells were 

made with duplex length of 6bp, 8bp and 16bp. SAXS experiments were carried out 

on RNA dumbbells to investigate the length-dependence of interactions. The reason to 

use dumbbell RNA rather than normal double-stranded RNA is to avoid end-to-end 

stacking which is known to be prominent between short dsRNA molecules (see 

chapter 5). The protocol for sample preparation is the same as that described in chapter 

4 except that 6bp and 8bp RNA dumbbell molecules were made by directly self-

folding from one single strand with 16 nucleotides and 20 nucleotides, respectively. 

To account for the difference of number of phosphate charges, RNA concentrations 

for 6bp, 8bp, 16bp are maintained at 1.0mM, 0.9mM, 0.6mM, respectively. Second 

virial coefficients of RNA dumbbells were calculated in 100mM K
+
, 0.5mM Mg

2+
, 

1mM Mg
2+

 and 10mM Mg
2+ 

solutions and shown as a function of both the ion 

concentration and length of RNA duplex in figure 7.7. Two features can be easily 

observed. First, RNA dumbbells repel at 100mM K
+
 and at the low concentrations of 

Mg
2+

. The strongest repulsion is observed between the smallest (6bp duplex) RNA 

dumbbell molecules at the low ionic strength of Mg
2+

. Shorter RNA molecules also 

have greater changes in the second virial coefficient when ionic strength of Mg
2+

 

changes. Second, 6bp (and 8bp) RNA dumbbells aggregate when [Mg
2+

] reaches 
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10mM. This is unexpected since end-to-end stacking is blocked. Moreover, this type 

of interaction is also length-dependent and favors short strands since 16bp RNA 

dumbbell molecules still repel each other (remember that 20bp DNA dumbbells repel 

each other when [Mg
2+

] = 10mM according to chapter 4). It is also possible that Mg
2+

 

may disrupt the confirmation of short RNA dumbbells, which could potentially be 

investigated by WAXS experiment. 
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Figure 7.7 plot of second virial coefficients of RNA-K
+ 

and RNA-Mg
2+

 versus ion 

concentration 

Shorter RNA dumbbells repel strongly with each other at lower Mg
2+

 concentration 

compared to longer RNA dumbbells. However, in the solution containing 10mM 

Mg
2+

, shorter RNA dumbbells aggregate. In contrast longer RNA dumbbells still repel 

each other weakly.  
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CHAPTER 8 

 

Conclusion 

    

    In this research we used a well-characterized 25bp DNA (or RNA) as the model 

system to study DNA (or RNA) condensation for the reasons described in chapter 1. 

We first studied the mode of inter-DNA interaction in Mg
2+

 solution since we‘ve 

already accumulated knowledge about DNA-DNA interaction mediated by 

monovalent counterions (Na
+
, specifically) and had some preliminary experimental 

data with Mg
2+ 

[1]. We tried to examine whether DNA molecules attract each other 

side-by-side or end-to-end. We made DNA ―dumbbells‖ by capping both ends of 

dsDNA using a 4T loop and measured interactions between these dumbbells in Mg
2+

 

and compare the result with that of regular dsDNA. Interestingly, we observed that 

under the same ionic conditions, when regular DNAs attract, ―dumbbell‖ DNAs repel. 

Considering that end-to-end stacking should be blocked when both ends are capped, 

we proposed that dsDNA molecules attract each other in the fashion of end-to-end 

stacking rather than side-by-side alignment mediated by Mg
2+

. Mg
2+

 doesn‘t condense 

DNA in normal conditions (room temperature, 1 atm) since in order to achieve DNA 

condensation, side-by-side attraction is usually a requirement. This proposal is 

consistent with evidences from other experiments [2, 3] and it establishes the basis for 

further experiments.  

    Cobalt hexamine (co-hex), a small trivalent ion, is known to be a very effective 

DNA condensing agent. We are interested in indentifying the driven force of co-hex 

mediated DNA condensation. We carried out the parallel experiments on both dsDNA 
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and dsRNA to provide a clearer and more complete picture of nucleic acid 

condensation. One of the key differences between these two molecules is that dsDNA 

is usually in B-form while dsRNA adopts A-form. We propose that the configuration 

difference causes different behavior in condensation process. An unexpected result is 

observed—under conditions when DNAs condense, RNAs resist condensation while 

prior to the onset of condensation RNA stack end-to-end but DNA molecules do not. 

These results, together with theoretical models described in chapter 3, suggest that 

configuration does play a key role in condensation as discussed in detail in chapter 5. 

Similar experiments were performed on spermine-induced condensation. The 

preliminary data are shown in chapter 7—DNA condenses but RNA does not. 

According to SAXS measurements, RNAs repel strongly in spermine solution which 

indicates that RNA charges are not even neutralized by spermine. It is very likely that 

spermine cannot bind into the major groove of RNA. The research on DNA (and 

RNA) condensation further implies that biophysical methods to package DNA may 

not be directly applied in packaging RNA for therapeutic applications. 

    Following up with the condensation experiment, we would like to know how 

many excess counterions associated with DNA are needed to precipitate DNA from 

solution. The problem was solved by using the technique of multiple-energy ASAXS 

(mE-ASAXS). The scattered intensity is a function of anomalous scattering factor 

which in turn is a function of X-ray energy. The coefficients obtained by linear 

regression of the scattered intensity with respect to scattering factor are used to derive 

the excess number of ions bound to DNA. The excess number of co-hex bound with 

DNA is around 6. Under the same ionic condition, the number of co-sep, another DNA 

condensing agent with valence +3, is also around 6 according to chapter 6. In terms of 
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electrostatics, co-hex and co-sep-driven DNA condensation is very similar but the 

condensing power of co-sep is twice as great as co-hex. Then we measure the 

hydration level of bounded co-sep and co-hex and observe that co-hex is more 

hydrated than co-sep, consistent with the case when they are mobile in solution. 

Consequently we propose that the hydration patterns affect the condensing power 

since hydration structure has been known as an important driven force for inter-DNA 

attraction. It is likely that the cost of water restructuring during the condensation 

process is reduced when co-sep is the condensing agent.  

     

The key observations and conclusions are summarized below: 

1. dsDNA molecules can attract side-by-side or stack end-to-end in solution. 

Short dsDNA molecules tend to stack end-to-end in solution mediated by small 

monovalent and divalent ions (Na
+
, Mg

2+
, etc). The strength of this interaction 

is length-dependent. 

2. dsDNA can be precipitated by co-hex, co-sep and spermine. This effect is 

stronger for longer DNA molecules and is associated with side-by-side 

attraction.  

3. Co-hex binds into major grooves of both DNA and RNA. The stronger 

attraction between RNAs than DNAs in co-hex solution is due to end-to-end 

stacking. The configuration of nucleic acid affects the effectiveness of ion-

induced condensation. This is confirmed by the results of spermine-induced 

condensation experiments. 

4. The number of ions bound to DNA is similar for co-sep and co-hex but the 

condensing power of co-sep is much stronger. Therefore, both electrostatics 
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and hydration level of DNA-ion system have impact on the effectiveness of 

ion-induced DNA condensation.   

5. Nonlinear Poisson Boltzmann theory can be used to model monovalent and 

divalent ions distribution around DNA. But more complicated models are 

needed to solve trivalent ion distribution due to the strong ion-DNA binding 

and ion-ion correlation.    
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APPENDIX 

How to run the code to obtain form factor (collaboration project with Baker group) 

This is a readme file about how to use the program to generate the scattering profile 

(form factor) of 25bp DNA in salt solution with monovalent counterions using Debye 

formula. The program consists of three executive files—―read_5columndata.exe‖, 

―write_solvent.exe‖, and ―saxs_calculation.exe‖. All three files together with other 

example files (see below) are saved in the folder ―code‖ (There are 7 files in total in 

this folder with three of them executive files and four example input/output files for 

test). A step-by-step protocol to compute form factor is provided below: 

1. Get counterion concentration map from Nathan Baker‘s group generated by 

APBS. This should be in the format of txt file with data of counterion in 5 

columns. The first three columns are x, y, z, coordinates of the ion. The fourth 

column is concentration number and the fifth is the element of the ion.  

2. This is a step depending on the computation power of the computer. To save 

running time I usually do it—manually delete those ions that are too far away 

from DNA molecule in the txt file. Those ions contribute very little in the 

scattering profile but will cause the running time of calculation much longer. 

One example of the number-reduced ion concentration map generated using 

radius 2 and dielectric constant 2 is ―ion_r2d2.txt‖ which is about 116kB. This 

is the input for ―read_5columndata.exe‖ for further number reduction. 

3. Again this is another number reduction step similar to the previous one. You 

don‘t have to worry about this huge computation power is provided. 

―read_5columndata.exe‖ will take the ion concentration map (for example, 

ion_r2d2.txt) as the input file and output a file of ions with concentrations 
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higher than certain predefined threshold. Those are the ions close to DNA 

molecule and will contribute most to the scattering profile. This threshold 

should be estimated from the original ion concentration map to include enough 

counterions around DNA but minimize the future computation time. Try and 

error works here and the threshold I use for the specific example provided in 

this appendix is 5. Run ―read_5columndata.exe‖ with ―ion_r2d2.txt‖ in the 

same folder and follow the instruction in the program and choose a name for 

the output file. One example is ―output_r2d2.txt‖ in the ―code‖ folder. 

4. Build dummy hydration shell atoms around DNA molecule. Dummy hydration 

shell atoms are placed around DNA within certain predefined thickness. The 

region containing the hydration shell atoms will be a rectangular block 

eliminating the original cuboid defined by the DNA molecule. The default 

thickness is 2Å and step of the grid is 1Å. The random placement is 

implemented later in the Debye formula calculation (see step 6 below). Right 

now, the whole region with predefined thickness will be filled with those 

hydration shell atoms with neighboring distance 1Å by running the executive 

file ―write_solvation.exe‖. This program will ask you for the border of the 

DNA molecule in x, y, z coordinates. The default values provided in the 

questions asked after the program runs are for 25bp DNA molecule of which 

the 5-column data are in the file ―BDNA25_5c.txt‖. There‘s no input file for 

―write_solvation.exe‖. The output file will contains 5-column data of hydration 

shell atoms placed in the region defined by the border of DNA and thickness 

input.          
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5. Combine the output files from step 3 and step 4 as well as the original DNA 5-

column data file ―BDNA25_5c.txt‖ into one single file. This will be the input 

file for the form factor calculation by Debye formula. One example file is 

―opt_r2d2_sol.txt‖ in the ―code‖ folder.  

6. Run the file ―SAXS_calculation.exe‖ using the combined file from step 5 as 

the input file, ―opt_r2d2_sol.txt‖ for example. A series questions will be asked 

after the program runs. Most of them are rather straightforward and the default 

values work very well. You‘re welcome to use values other than the defaults 

and test the results. One of them asks for the coverage ratio of dummy 

hydration shell atom placement and the default is 0.8. The use of this value is 

to define how much percentage of the region will be filled by the HS atoms. 

The position will be selected randomly for each run. Choose a name for the 

output file which will contain two columns—the first column is the Q-value 

defined according to your answers to the questions in the program and the 

second column contains the corresponding unnormalized scattering intensity. 

The output file can be loaded into MATLAB and plotted out. One example is 

shown in figure 2.7. 

 

 

 

 

 

 

 


