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On finding the most effective ways to minimize the traffic congestion and disaster 

threat over an urban or regional evacuation network, the focus of this study is to 

develop a set of analytical tools and computational methods for seeking optimal 

allocation of existing network capacity and connectivity.  The core problem posed in 

this text is a network optimization problem with regard to two lane-based planning 

strategies: lane reversal on roadway sections and crossing elimination at intersections.  

These strategies supplement one another by increasing capacity in specific traffic 

directions and creating an interruption-free traffic environment throughout the 

network. 

 

The joint consideration of these strategies greatly increases the problem complexity 

and combinatorial effect.  A Lagrangian-relaxed, tabu-based solution method has been 

developed to solve this otherwise intractable problem, which takes advantage of 

Lagrangian relaxation for problem decomposition and complexity reduction and 

whose algorithmic design is based on the principles of tabu search metaheuristic. 

 

The requirement of emergency vehicle assignment is also incorporated into the above 

modeling and solution framework, which creates a bi-objective evacuation network 

optimization problem.  A lexicographic optimization approach is developed to identify 



the Pareto-optimal set of routing and network solutions for scenario analysis and 

decision making. 

 

The set of evacuation planning models and solution methods have been tested and 

evaluated with both numerical examples and an evacuation case study in Monticello, 

Minnesota with varying network settings and conditions.  The evaluation results prove 

the applicability, reliability and robustness of the developed methodology in both 

theoretical and practical network circumstances and provide useful insights and 

directions for further research. 

 

Keywords:  Evacuation planning, lane reversal, crossing elimination, network 

optimization, discrete and combinatorial optimization, multi-objective optimization, 

Lagrangian relaxation, tabu search 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

The journey of a thousand miles starts from where one stands. 
—Lao Tzu 

 
 

Warnings of natural and man-made hazardous events in the U.S. happen at least once 

a day and there are numerous resulting evacuations each year (Golding and Kasperson, 

1988).  Natural disasters include, for example, hurricanes, earthquakes, floods, 

tornadoes and so on; man-made hazardous incidents may be in principle identified as 

two types, technological failures and intentional malevolence.  Technological fires, 

hazardous material spills, and nuclear radiation accidents, to name a few, belong to the 

technological failures; intentional malevolence typically refers to terrorist attacks.  

Evacuation, as an intuitive and practically effective emergency rescue measure, has 

long been used and is expected to be enhanced to protect human populations against 

hazardous situations caused by these natural and man-made disasters. 

 

When the state of technology permits accurate prediction or detection of disastrous 

events, for example, hurricanes or tornadoes, evacuation is an effective pre-impact 

tool for reducing the threat from the hazard; when predictions are not feasible, as in 

the case of fire or terrorist attack, evacuation still serves a variety of emergency 

functions as a post-impact measure (Lindell and Perry, 1991).  A well-defined and 

manageable plan is one of the prerequisites for successful implementation of a large-

scale evacuation.  The purpose of an evacuation plan is to maximize the utilization of 

an existing transportation system for evacuation of a threatened population and hence 
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to minimize the exposure and potential fatalities of the population from the impending 

or occurring disaster. 

 

1.1  The context of evacuation practices 

 

The last three decades have seen significant research effort in developing 

methodologies and implementing technologies for emergency evacuation planning.  In 

the U.S., interest in evacuation planning was invigorated by the nuclear power plant 

accident occurring at Three Mile Island, Pennsylvania in March 1979.  As part of a 

series of governmental responses, a number of research projects concerning 

evacuation modeling and clearance time estimation for nuclear radiation emergencies 

and other hazardous events have been sponsored by government agencies, such as the 

Federal Emergency Management Agency (FEMA), the Nuclear Regulatory 

Commission (NRC) and the U.S. Army Corps of Engineers. 

 

More recently, Hurricane Katrina, the third worst hurricane in U.S. history, struck the 

Gulf Coast in August 2005, resulting more than 1,800 deaths and estimated $81.2 

billion loss of property†.  The evacuation prior to and just after this hurricane is widely 

regarded as a failure of emergency response and management.  Several post-disaster 

investigations have cited evacuation failures as a major contribute to the death toll in 

the city of New Orleans. 

 

                                                 
† Source: The United States Congress (2006). A Failure of Initiative: Final Report of the Select 
Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina. 
Government Printing Office, Washington, D.C.  Accessed at <http://www.gpoaccess.gov/katrinareport/ 
fullreport.pdf>, March 2008. 
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When Hurricane Rita approached the Texas coastline one month later, residents 

threatened by this hurricane were keenly aware of the disastrous results caused by 

Hurricane Katrina.  The result was the largest emergency evacuation in the U.S. 

history and perhaps the largest traffic jam.  In the city of Houston and its metropolitan 

area, though the state and local emergency management officials successfully set up 

and implemented the evacuation routes based on previous hurricane experiences, the 

roadway system was still overwhelmed by the enormous and unprecedented numbers 

of fleeing vehicles.  The recorded traffic observations showed that the whole state 

highway system in the vicinity of the city became gridlocked after the evacuation 

order was announced, and the heavy traffic snarling the roadways lasted for about 48 

hours. 

 

When evacuation plans fail, it reduces people’s willingness and confidence in 

following and cooperating with evacuation orders and plans in the future.  A recent 

behavioral survey conducted by the Harvard School of Public Health on 2,029 adults 

residing in high-risk hurricane areas in eight states found that about one third of the 

sampled population would choose not to evacuate during a future hurricane period.  

Among the sampled population, there are 36 percent of the people believing that 

“evacuation could be dangerous” and 54 percent believing that “roads are too crowded 

to leave” (Blendon et al., 2006).  This survey result emphasizes that the safety and 

efficiency of current evacuation practices may not have reached the level people 

expect.  In addition, the evacuation effectiveness can be discounted by people’s 

uncooperative behavior and extra challenges may face emergency management 

professionals in devising and implementing evacuation plans to deal with future 

disasters. 
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The hurricane survey and many other post-disaster investigations on evacuation 

experiences repeatedly confirmed the fact that the current state of evacuation planning 

and management was not as prepared for such mass emergency situations as had been 

previously assumed to warrant a safe and reliable evacuation process.  The lessons 

learned from those historical evacuation events consequently caused evacuation 

managers, planners and researchers to reconsider and reexamine the effectiveness and 

efficiency of existing evacuation policies and procedures and called for greater efforts 

on this developing yet immature research subject. 

 

In the past, evacuation planning and management has been viewed as the 

responsibility of emergency management and law enforcement agencies.  While state 

and local transportation agencies have been involved in evacuation activities to some 

degree, their work could be usually characterized as peripheral support (Urbina and 

Wolshon, 2003; Wolshon, et al., 2005).  However, there is increasing awareness that 

evacuation by nature is a transportation activity.  Efforts to improve evacuation 

planning and capacity building have been renewed by local, state and regional 

transportation authorities.  This includes evacuation demand forecasting and 

management, evacuation traffic analysis and modeling, evacuation routing and 

network management, application of intelligent transportation systems for evacuation 

operation and control, etc. 

 

This viewpoint of modeling and improving an evacuation process as a special 

transportation system has been recognized since late 1990s, and apparently stimulated 

after two major hurricanes, Hurricanes Georges in 1998 and Floyd in 1999.  The 

lessons learned from the two mass evacuation instances that carried out statewide and 

state-crossing traffic movements as well as the experiences gained from other large-
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scale emergency management cases indicated that many transportation-related 

efficiency and safety issues would be frequently encountered yet not satisfactorily 

addressed at the current state of evacuation practice.  The need has been called for a 

higher level of involvement of transportation professionals in planning and managing 

an evacuation process. 

 

1.2  Evacuation travel characteristics 

 

While evacuation is inherently a transportation process, it creates unique challenges 

that are not encountered in conventional transportation planning and management 

experiences.  The sole purpose of an evacuation is to seek safety, rather than any other 

social or productive activities.  Thus an evacuation plan must be enacted with the aim 

of helping the threatened population to escape from the forthcoming or occurring 

disastrous event to safe areas or helping them reduce the life-threatening risk to a 

minimum level.  This special travel purpose yields different characteristics of travel 

demand generation, distribution and behavior in an evacuation network from that in a 

daily commuting traffic network. 

 

Evacuation time, which may be either total evacuation time or network clearance time, 

is the primary concern of evacuation managers.  Total evacuation time refers to the 

sum of individual evacuation time over the whole evacuating population in a given 

emergency area.  Network clearance time is a more straightforward time indicator, 

denoting the time it takes to evacuate the last people since the evacuation onset. 

 

Evacuation is a unique, one-time transportation activity under emergency situations, 

and evacuees may not have sufficient experience and adequate information to make 
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proper routing and other travel choices.  Their travel decisions and other evacuation-

related judgments are highly dependent on their own perceptions of the risk, as well as 

the information transferred from their social networks and the authority.  Due to the 

unpredictability and suddenness of disasters, their perceived and received information 

is often inaccurate and incomplete.  As a result, travel behavior of evacuees is 

uncertain and disordered compared to their ordinary travel activities. 

 

The amount of generated evacuating travel from a disaster area may reach a surge 

level in a short time after an evacuation order is announced to the public or a potential 

threat is perceived by the population.  This exceedingly high rate of travel demand 

often cannot be accommodated by the existing transportation network capacity that 

was designed for the daily commuting traffic.  In some cases, disasters may have 

damaged the transportation network or cut off some important corridors in the network.  

The useable network connectivity and capacity may be considerably limited and needs 

to be re-evaluated. 

 

Many travel choices, such as destination choices, vary with the nature, location, 

magnitude and strength of a hazardous event.  Destinations often are not well 

understood by evacuees in advance of the occurrence of a disaster and are also subject 

to change during the course of an evacuation. 

 

The whole evacuation planning process consists of several interrelated components, 

including delimitation of the emergency planning zone, estimation of the amount and 

distribution of evacuating demand, identification of shelter locations or safe zones, 

configuration, coordination and operation of transportation modes and evacuation 

routes, and so on.  An evacuation plan needs to be developed prior to the full 
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determination of the geographic scale and magnitude of a forthcoming disastrous 

event.  Therefore, evacuation planning must also incorporate the vulnerability and 

survivability of the available transportation infrastructure and equipment as well as 

other supplying resources to the variable and uncertain threats of the disaster.  This 

study is not intended to tackle all these issues arising in evacuation modeling and 

planning.  Instead, it focuses on how to utilize an existing urban or regional ground 

transportation network, so as to enhance the evacuation performance under an 

integrated evacuation management framework, in which efficiency is our focal point. 

 

1.3  Problem statement 

 

In this study, we propose and formulate an evacuation network optimization problem 

from the perspective of traffic network operation and control.  It can be regarded as a 

specific short-term, tactic-level network design problem with a goal of seeking an 

optimal lane-based network configuration, so as to minimize the total evacuation time 

or network clearance time for a potentially threatened area. 

 

Given a variety of types of emergency contexts, evacuation planning models may be 

distinguished in terms of their applicable geographical scales and time spans.  An 

emergency situation caused by a fire, for example, may only need an evacuation 

covering the residents in its neighborhood.  On the other hand, the nuclear power 

industry uses a circle of 10-mile radius surrounding a nuclear power plant as the 

emergency planning zone for protecting the people against direct exposure to the 

radioactive plume in case of nuclear power reactor accidents.  The largest scale of 

evacuation may be caused by hurricanes, which may affect very large regions. 
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Evacuation planning may deal with either short-term or long-term issues.  A short-

term evacuation plan needs to be enacted quickly, as an emergency response to an 

identified or predicted hazardous event.  A long-term evacuation plan, on the other 

hand, is generally proposed for a potential emergency area in which some natural 

disaster may have frequently occurred in history and is expected to occur again in a 

foreseeable future. 

 

Our proposed model is applicable to short-term evacuations in an urban or regional 

context.  The model focuses on two lane-based network control measures for 

enhancing the traffic system performance: roadway lane reversal and intersection 

crossing elimination.  The two lane-based measures alter the capacity and connectivity 

properties of an evacuation network on its roadway sections and at its intersections, 

respectively. 

 

Lane reversal is not a new concept.  The use of lane reversal results in the co-called 

traffic “contraflow” or “counterflow” operation.  It has been early used as a traffic 

control solution to accommodate the unbalanced traffic demand between the two 

driving directions of a congested roadway section.  A number of lane reversal studies 

concerning its design, efficiency, feasibility and safety issues can be seen in, for 

example, MacDorman (1965), Glickman (1970), Hemphill and Surti (1974), and 

Caudill and Kuo (1983).  An update on the development of lane reversal techniques 

and applications as well as its current state of planning and engineering practices was 

recently provided by Wolshon and Lambert (2004).  In evacuation cases, the traffic 

direction of the inbound lanes of some designated roadways may be reversed for the 

overwhelming outbound traffic with the goal of increasing the outbound capacity.  

This lane-reallocation strategy has been used extensively in the states along the 
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Atlantic and Gulf Coasts of the U.S. for hurricane evacuations since the first time it 

was implemented in Georgia during the period of Hurricane Floyd in September 1999 

(Urbina and Wolshon, 2003).  In state and regional evacuations, contraflow operation 

is typically applied to the major arteries (i.e., interstate and state highways). 

 

Crossing elimination at intersections has attracted relatively little attention for 

evacuation planning and management.  Cova and Johnson (2003) suggested using this 

measure as a lane-based routing strategy for emergency evacuations to reduce traffic 

control delays (e.g., delays due to traffic signals and stop signs) at intersections.  The 

basic rationale of applying the crossing elimination for evacuation is to convert an 

intersection with interrupted flow situations to an uninterrupted flow facility by 

prohibiting some turning movements through blocking lane entries and limiting flow 

directions.  Without the stop-and-go traffic control setting, the intersection capacity for 

those allowable traffic movements is significantly expanded. 

 

The benefits from implementing the intersection crossing-elimination strategy for 

evacuation management are threefold.  First, it is a desirable control measure to 

increase the traffic throughput capacity at intersections so as to better serve the 

exceedingly high traffic demand under emergency conditions.  Second, it channels 

traffic flow along certain routes and improves traffic safety under emergency 

situations.  Third, in the case of a post-disaster evacuation, it may become a critical 

and necessary remedy measure for intersection traffic control when the traffic signal 

and communication system fails due to widespread power outages.  Such a system 

failure often occurs in the evacuation cases of no-notice disasters.  In the aftermath of 

the 1985 Mexico City earthquake, for example, most of the traffic signals in the city 
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network were not functional because of the loss of electric power, damage of traffic 

sensors, and communication interruption (Ardekani and Hobeika, 1988). 

 

 

(a) (b)

(c) (d)

(e) (f)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Examples of joint lane-reversal and crossing-elimination settings 

 

The two network control strategies may be jointly used to improve the network 

performance and reduce the evacuation time for urban emergency evacuations.  The 
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integration of these two capacity-increasing strategies has greater potential in 

optimizing evacuation networks than the application of either of them solely.  Several 

examples of the joint operation of lane reversal and crossing prevention are illustrated 

in Figure 1.1.  Researchers and practitioners have realized the need and importance of 

such a joint operation in an evacuation network.  Tuydes and Ziliaskopoulos (2006), 

for example, noted in a network contraflow optimization study that the traffic control 

configurations at intersections and interchanges should be reset to maximize the 

efficiency of traffic movements resulted from the contraflow operation.  However, no 

study so far has explicitly addressed this integrated evacuation network optimization 

problem with both the lane-reversing and crossing-elimination settings. 

 

Another important emergency planning requirement is the emergency logistics, or in a 

simpler manner, the emergency vehicle assignment.  Supply, equipment, and 

emergency management, law enforcement and medical personnel as well as special 

technical experts need to be promptly transported into the disaster area (Sivanandan et 

al., 1988).  In many cases, although the aerial transportation plays an important role in 

transporting personnel and resources into the disaster site, its operation is often subject 

to the insufficient capacity and limited accessibility as well as the clement weather 

conditions.  An efficient emergency logistics system is of the utmost importance to 

emergency relief efforts under either pre-disaster or post-disaster situations. 

 

However, the current state of practice in the emergency vehicle assignment is far 

below the satisfactory level.  In fact, the most heavily criticized aspect of the official 

emergency response to hurricanes is the inefficient emergency logistics system 

(Holgíun-Veras et al., 2007).  In some hurricane cases, it took up to 2 to 3 weeks to 
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deliver critical supplies and equipments to the disaster site, which is unacceptable by 

all the ways. 

 

In view of this requirement, we must reserve one or more inbound routes in the 

evacuation network to ensure a smooth and efficient ground transportation channel for 

emergency vehicles.  The simplest objective for this requirement may be to find one or 

more fastest routes and assign the emergency vehicle fleet to these reserved routes.  

Inevitably, this extra requirement poses a decision-making conflict with the evacuation 

network optimization objective, in that the emergency vehicle routing demands the 

roadway capacity with an inbound direction and potentially creates more traffic 

crossing points with the outbound evacuating traffic at the intersections along the 

assigned emergency vehicle route. 

 

Given these problem objectives and requirements, our goal is to create tools for 

effective network evacuation planning.  We focus on a detailed network representation 

where turning movements are represented explicitly (and can be prohibited) and link 

directions and capacities are treated as decision variables in the model.  An 

optimization model is formulated to represent the problem, and an effective solution 

method is developed for the optimization.  Use of the model is demonstrated in a case 

study involving evacuation of the area around a nuclear power plant. 

 

1.4  Thesis outline 

 

The remainder of this dissertation is organized as follows.  In Chapter 2, relevant 

previous research work is reviewed.  This includes traffic flow and travel choice 

modeling mechanisms for evacuation networks as well as discrete network design 
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models and solution strategies, which form the basis for the modeling of optimal 

network problems presented in this work. 

 

In Chapter 3, we discuss the modeling rationales and problem formulations.  The first 

model is proposed for an evacuation network optimization problem with lane reversal 

and crossing elimination operations.  The second is an extension of the first problem 

with an additional consideration of emergency vehicle assignment in an evacuation 

plan.  Within these models, we elaborate the network representation, travel behavior 

assumptions, system objectives, and model structure for the evacuation network 

optimization and emergency vehicle assignment problems. 

 

Solving these optimal evacuation network problems poses a very challenging 

computational task.  Chapter 4 presents an integrated Lagrangian relaxation and tabu 

search heuristic to solve these otherwise intractable problems.  This method takes 

advantage of Lagrangian relaxation for problem decomposition and complexity 

reduction and its algorithmic design is guided by the principles of the tabu search 

metaheuristic.  An illustrative problem is provided to interpret the rationale and 

effectiveness of the proposed solution method. 

 

The algorithmic procedure of the proposed solution method is then calibrated and 

tested in Chapter 5 with several synthetic and realistic evacuation networks.  In 

Chapter 6, we then apply the model to solve a realistic evacuation problem for the area 

surrounding a nuclear power plant.  The effectiveness and efficiency of the solution 

procedure is evaluated and compared to selected methods in the literature. 
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Finally, modeling and computing experiences from this study are summarized in 

Chapter 7.  Some concluding remarks and suggestions for future research are also 

included. 
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CHAPTER 2 
 

EVACUATION PLANNING AND OPTIMAL NETWORK DESIGN 
 
 
 

All experience is an arch to build upon. 
—Henry Brooks Adams 

 
 

The literature review presented in this chapter can be grouped into two focus areas.  

The first part summarizes emergency evacuation planning methods and applications, 

discusses the problems encountered in developing and applying the existing models, 

and finally evaluates the gap between the latest research progress and the demanding 

requirements from the present evacuation problems.  The second part synthesizes 

research results from previous network design studies, providing modeling and 

algorithmic insights as well as computational experiences for developing the problem 

formulation and solution strategies in this study. 

 

This joint discussion of different research areas provides the technical platform of the 

modeling and solution methodologies used in this research. 

 

2.1  Evacuation planning models 

 

Regional evacuation planning models may be categorized into two types: optimized-

based and simulation-based models.  An optimized-based model is typically of the 

functional form of a network flow or design problem and can be directly used to 

search for the optimal evacuation plans.  This approach tells “what to” do in making 

an evacuation plan.  Simulation-based models function as a “what if” methodology 
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and can be used to evaluate a set of pre-specified candidate plans.  In the following 

subsections, we discuss simulation approaches first, followed by optimization models. 

 

2.1.1  Simulation-based models 

 

Evacuation planning must be based on the behavioral intentions of the individuals who 

perceive themselves at risk (Johnson and Zeigler, 1983).  Emergency evacuation is a 

complex, interactive travel process between the overwhelmingly large evacuating 

demand and the relatively scarce transportation supply.  The behavioral characteristics 

of individual evacuees, e.g., their responses to the emergency situations and their 

behaviors in travel choices, may be difficult to be precisely quantified in an analytical 

way.  Therefore, simulation, which is capable of modeling an evacuation process in a 

detailed, disaggregated and distributed manner, has been used in evacuation planning 

tool.  In what follows, a number of specific evacuation simulation models are briefly 

described in a chronological order, and the evacuating behavior modeling mechanisms 

within these models are highlighted. 

 

The earliest emergency evacuation simulator arising in the literature may be NETVAC 

(Network Emergency Evacuation), due to Sheffi et al. (1981, 1982).  NETVAC is a 

macroscopic evacuation traffic simulation model, which was originally designed for 

modeling traffic flow patterns and estimating clearance times in hazardous events 

caused by nuclear power plant accidents.  The evacuation-specific traffic modeling 

mechanisms in NETVAC include its queue formation and route selection processes, 

both of which are modeled at an aggregate level.  Some commonly used evacuation 

management strategies, for example, intersection controls and lane operation measures, 

were included as the evacuation planning options in customizing planning scenarios.  
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To take into account the abnormal routing behaviors in emergency situations, the 

authors specified the route choice probabilities with the arriving drivers at an 

intersection in terms of a combination of two factors, a prior knowledge of the 

network directionality and a “myopic” observation on the traffic conditions on the 

outbound roadways directly ahead.  Such a behavioral assumption implies that drivers 

choose their evacuating routes based on how fast a series of outbound links can get 

them out of the emergency area.  The authors also considered the capacity calculation 

and intersection control issues with some adjustments to reflect the highly congested 

and chaotic evacuation conditions. 

 

IDYNEV (Interactive DYNamic EVacuation) is a multi-module evacuation model 

with the functions of assessing evacuation plans and estimating evacuation travel 

times, as developed by KLD Associates for the Federal Emergency Management 

Agency (FEMA).  It consists of three functional modules: traffic assignment module, 

traffic simulation module and traffic capacity module.  The capacity module serves 

both the assignment and simulation modules with the function of estimating the 

roadway capacities, considering turning movements, geometrics and other factors.  

The assignment module functions in estimating traffic routes in terms of the static 

user-equilibrium principle.  The simulation module is used to mimic the dynamic 

traffic movements based on the assigned routes from the assignment module as well as 

make necessary rerouting if the assigned routes are overly congested.  The basic 

simulation mechanism of this module is actually an adaptation of the TRAFLO† 

simulation model with some extensions in scope to accommodate all types of facilities.  

                                                 
† TRAFLO (later called CORFLO) is a macroscopic traffic simulation package developed by FHWA in 
1970s. 
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An application of IDYNEV for developing evacuation plans for five nuclear power 

stations is described in FEMA (1984). 

 

As a core evacuation modeling module, IDYNEV has also been included in several 

larger evacuation planning and emergency mitigation systems sponsored by FEMA, 

such as EESF (Exercise Evaluation and Simulation Facility) (FEMA, 1984), IEMIS 

(Integrated Emergency Management Information System) (Meitzler et al., 1986; 

Bower et al., 1990), and PCDYNEV (PC-based DYnamic Network EVacuation) 

(Goldblatt and Weinisch, 2005). 

 

Hobeika and his colleagues (Hobeika and Jamei, 1985; Hobeika et al., 1994) devised a 

macroscopic simulation-based evacuation planning model named MASSVAC (MASS 

eVACuation), in which flow status and propagation is described by the analytical 

traffic flow relationships.  This model later became the core module in an evacuation 

planning software package—TEDSS (Transportation Evacuation Decision Support 

System) (Hobeika et al., 1994).  By incorporating previous investigations on people’s 

responses to an emergency warning or evacuation order, MASSVAC suggests a 

logistic S-shape curve to model the cumulative demand loading into an evacuation 

network.  In its latest version, there are two user-specified options for modeling traffic 

assignment: stochastic logit-based flow assignment method and deterministic user-

optimal flow assignment method.  Moreover, to better reflect the evacuees’ routing 

behavior, all paths containing any link leading toward the disaster source are 

eliminated in implementing either of the assignment methods.  Such a mechanism is 

set by a simple “distance” model and “angle” model (see Hobeika and Kim, 1998 for 

details). 
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Stern and Sinuany-Stern (1989) and Sinuany-Stern and Stern (1993) described a 

microscopic simulation model, SNEM (SLAM† Network Evacuation Model), for an 

effort of elaborating evacuating behaviors.  Their concerns on the behavioral aspect 

not only include the evacuees’ routing behaviors, but also their responses to the 

emergency warning and their preparation activities.  There are three main components 

in their simulation model, where the first one is to generate household activities and 

the next two are to simulate traffic flows at roadway sections and intersections 

respectively.  In the household module, they developed a tree diagram to simulate 

residents’ evacuation response and decision behavior so that the diffusion time of 

evacuation instructions and preparation time for evacuation can be estimated from the 

simulation result.  As for route selection, the authors simply assumed that an evacuee 

would choose a shortest path from his location to a closest egress of the disaster area.  

If the evacuee observes at any intersection the next link on his pre-specified shortest 

path is full of vehicular queue, he will choose the next shortest path for the remaining 

trip. 

 

An alternative macroscopic evacuation simulation model similar to NETVAC was 

developed by Han (1990) for accommodating the use of public transportation in 

evacuation.  This simulation model resides in an evacuation decision support system 

called TEVACS (Transportation EVACuation System).  The basic simulation logic 

and mechanism in TEVACS are actually the same as that in NETVAC.  For example, 

both of them use two major logical components, a link process and a node process, to 

model the traffic flow characteristics and evacuees’ travel choices.  However, 

TEVACS has its unique features in simulating public transit and mixed traffic flow, in 

                                                 
† SLAM stands for Simulation Language for Alternative Modeling.  It is a simulation language that 
provides a unified system modeling framework, which allows systems to be simulated from the 
perspective of a process, event, or state variable. 
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which the deployment of public evacuation routes and gathering points can be 

explicitly specified and the use of different transportation modes such as buses, 

automobiles, motorcycles and bicycles can all be considered in an evacuation process. 

 

OREMS (Oak Ridge Evacuation Modeling System) is a simulation-based software 

package that allows for comprehensive evacuation planning studies, such as 

development of traffic management and control strategies, identification of evacuation 

routes, estimation of evacuation times, and others (Rathi and Solanki, 1993).  The core 

component is a macroscopic traffic flow simulation model named ESIM (Evacuation 

SIMulations).  The traffic flow modeling principles implied in ESIM are based on the 

platoon dispersion theory and its implementation was directly adapted from NETFLO 

II†.  ESIM uses a combined destination and route choice procedure for the evacuation 

flow assignment.  The destination choice behavior is modeled in a hybrid form of 

three types: 1) evacuees will follow a given evacuation plan to select a designated 

evacuation exit; 2) evacuees will choose a closest exit in terms of his pre-perceived 

static roadway conditions; and 3) evacuees will choose a closest exit in terms of the 

concurrent dynamic roadway conditions.  The combination of destination and route 

choice is realized by hypothesizing a hypothesized destination and all the exits of the 

disaster area connecting to this destination via dummy links.  The evacuating trip 

distribution and traffic assignment is carried on by the user-equilibrium assignment 

method, destined to the hypothesized destination.  With each of such dummy links, an 

impedance traveling cost is assumed, which is used to adjust the relative attractiveness 

of the evacuation exists in the combined trip distribution and traffic assignment 

process. 

                                                 
† NETFLO II is a macroscopic traffic simulation model included in the TRAFLO package, which was 
developed by FHWA in 1970s. 
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Pidd et al. (1996), Pidd et al. (1997) and de Silva and Eglese (2000) presented a 

prototype of a microscopic simulation model known as CEMPS (Configurable 

Emergency Management and Planning System), which is a spatial decision support 

system built on a geographic information system (GIS) platform.  In this integrated 

decision support system, the simulation model is used to model the evacuation process 

while the GIS platform is used to manage and manipulate the geographical and 

infrastructural data and visualize the simulation results.  As similar to other evacuation 

simulation models, the current version of CEMPS also assumes that route search is a 

myopic process in that drivers would choose their ways to the destinations by taking 

account of immediate congestion conditions ahead. 

 

Several other efforts have applied either one of the evacuation-specific simulators or 

general traffic simulation models to specific evacuation problems.  Some examples are 

(e.g., Radwan et al. (1985)#, Southworth and Chin (1987)*, Cova and Johnson (2002)**, 

Church and Sexton (2002)**, Chen and Zhan (2008)**, Jha et al. (2004)§, Theodoulou 

                                                 
# Radwan et al. (1985) used NETSIM (NETwork SIMulation) to simulate the emergency evacuations in 
a rural network in Blacksberg, Virginia.  NETSIM is a microscopic traffic simulator developed by the 
Federal Highway Administration (FHWA), which was specifically designed for simulating surface 
street networks. 
* Southworth and Chin (1987) applied MASSVAC (MASS eVACuation) to simulate an evacuation case 
caused by flooding as a result of dam failure.  MASSVAC is a macroscopic evacuation simulation 
model developed at the Virginia Polytechnic Institute and State University.  It will be introduced later in 
this text. 
** Cova and Johnson (2002) and Church and Sexton (2002) both simulated a neighborhood-scale 
evacuation using PARAMICS (PARAllel MICroscopic Simulator) in the context of wildfire emergency 
evacuation.  Chen and Zhan (2008) applied PARAMICS to evaluate the effectiveness of staged 
evacuation strategies in a set of hypothesized and realistic traffic networks.  PARAMICS is a 
microscopic traffic simulator developed by Quadstone Ltd., U.K. 
§ Jha et al. (2004) used MITSIM (MIcroscopic Traffic SIMulator), the core simulator in a traffic 
network analysis software suite called MITSIMLab, to simulate an evacuation network located in White 
Rock and Las Alamos, New Mexico.  MITSIMLab is a traffic simulation system developed at 
Massachusetts Institute of Technology, which was designed to evaluate traffic management strategies at 
the operational level.  
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and Wolshon (2004)†, Murray-Tuite and Mahmassani (2004)‡, Kwon and Pitt (2005)‡ 

and Yuan et al. (2006)‡).  These case studies are more focused on the scenario analysis 

rather than the model development, which therefore are of our minor interest and will 

not be discussed here. 

 

It should be realized that the simulation-based evacuation planning models are merely 

suitable for evaluating and assessing, but not for generating evacuation plans directly.  

These plans, however, need to be devised by some other external procedure or 

conceived in terms of the emergency planner’s experience and judgment.  The 

optimization-based evacuation planning models, as described below, provide this 

functionality and capability. 

 

2.1.2  Optimization-based models 

 

Use of traffic simulators to evaluate and select evacuation planning scenarios is 

somehow a trial-and-error approach.  As an alternative paradigm, optimization-based 

evacuation planning models have the capability of identifying optimal scenarios in a 

systematic, self-driven manner.  The optimization-oriented feature leads evacuation 
                                                 
† Theodoulou and Wolshon (2004) took use of CORSIM (CORridor SIMulation) to evaluate and 
compare several alternative contraflow scenarios on Interstate 10 highway at the outskirts of New 
Orleans.  It consists of two main traffic simulation components, NETSIM (for arterial streets) and 
FRESIM (for freeways).  CORSIM is one of the most widely used microscopic traffic simulator, whose 
development and maintenance was sponsored by FHWA since 1970s, and now has been in a 
commercial package called TSIS (Traffic Software Integrated System). 
‡ Murray-Tuite and Mahmassani (2004), Kwon and Pitt (2005) and Yuan et al. (2006) all used 
DYNASMART-P, the planning version of DYNASMART (DYnamic Network Assignment Simulation 
Model for Advanced Road Telematics), as the evacuation evaluation tool in their respective studies.  
Murray-Tuite and Mahamassani modeled and assessed the impact of household-based preparedness trip 
chains on the evacuation efficiency for the south-central portion of Fort Worth, Texas; Kwon and Pitt 
tested alternative contraflow and ramp access strategies for the downtown area of Minneapolis, 
Minnesota; and, Yuan et al. compared a set of scenarios with different route and destination choice 
settings for Knox County, Tennessee.  DYNASMART is a dynamic traffic assignment-simulation 
model developed for transportation planning and operations analysis under the FHWA’s Dynamic 
Traffic Assignment (DTA) research project. 
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planning models of this type to be written in a mathematical programming form, 

whose objective is typically defined as minimization of the total evacuation time, 

minimization of the network clearance time, or maximization of the network traffic 

throughput.  To cope with the optimization program, a set of constraints reflecting the 

inherent supply-demand relationships are used to regulate the system behavior. 

 

In terms of evacuation planning components (i.e., decision variables in an 

optimization-based evacuation planning model), existing optimization-based models 

may be categorized into three types.  The first type of models focuses on the spatial 

planning of evacuation demand, including the destination selection and route 

assignment; the second type is concerned with the temporal planning of evacuation 

demand, such as the demand departure scheduling; the third type is related to the 

network planning, which, in the context of evacuation planning, can be conducted only 

on the short-term, tactic level, such as the contraflow operation and intersection 

control.  While the first two types of models are intended to optimize the spatial and 

temporal distributions of evacuation demand, the third type aims to optimize the 

supply side of an evacuation system, which in general results in the so-called network 

design or network redesign models. 

 

2.1.2.1  Spatial planning 

 

In developing an evacuation decision support system, Tufekci and Kisko (1991) 

proposed a minimax optimization model with the linear structure.  This linear 

programming problem has the flow conservation constraints for each origin-

destination (O-D) pair and the inequality constraints indicating that the travel time of 

each link must be accommodated by the evacuation clearance time.  The objective of 
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this minimax problem is to minimize the network clearance time, which is defined as 

the maximum of all the link clearance times.  The decision variables in the model, path 

flows, are subject to a user-equilibrium traffic assignment on the K-shortest routes for 

each O-D pair.  The authors assumed that in a given evacuation planning zone 

evacuees would choose K-shortest routes at most to escape, where the value of K  is 

estimated by the evacuation planners.  Therefore, a K-shortest path problem needs to 

be solved as a subproblem of the clearance time minimization problem. 

 

The authors further considered a dynamic evacuation flow optimization problem in a 

time-expanded network with a time-accumulative evacuation demand.  To save the 

computational cost in searching for the optimal solution, a heuristic method that is to 

generate the evacuation flow pattern for each O-D pair separately was developed.  In 

their work, however, no explicit model formulation and solution algorithm were 

presented. 

 

Sherali et al. (1991) considered an evacuation planning problem with jointly 

optimizing traffic flow distribution and shelter construction.  The shelter locations 

need to be chosen from a set of given candidate sites.  It has obviously the formulation 

of a typical discrete network location or network design problem.  In their model, a 

central authority is assumed to have the power of controlling the evacuation flow.  

Meanwhile, congestion effect and capacity setting on the link level are incorporated 

into the model formulation.  To solve this nonlinear mixed integer programming 

problem, the authors devised two algorithms, one exact algorithm and one 

approximate algorithm, based on the generalized Benders decomposition technique. 
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Dunn and Newton (1992) suggested an evacuation planning model with a minimum 

cost flow problem formulation, where the “cost” is the total evacuation time.  Given a 

static evacuation network, the purpose of their model is to find the optimal flow 

pattern that minimizes the evacuation time, subject to the pre-specified flow upper 

limit of each link.  They applied the classic out-of-kilter algorithm to solve this 

minimization problem.  For the case of shelters with a capacity, the authors suggested 

to employ a network transformation strategy, as similar to Rathi and Solanki (1993) 

described above: a super dummy node and a dummy link connecting each of the 

capacitated shelters to the super node are hypothesized; the capacities of these dummy 

links are set equal to the capacities of the corresponding emanating shelter nodes. 

 

Yamada (1996) considered an evacuation planning problem for urban pedestrian flow.  

In his study, no congestion effect was assumed with the pedestrian flow and the 

evacuees’ movement speed was estimated as a constant.  Given the incapacitated and 

capacitated types of refuges, he presented two evacuation planning models.  In the 

incapacitated case, the evacuation planning problem collapses to a shortest path 

problem for each residential area to its closest refuge, which was solved by the well-

known Dijkstra’s algorithm; in the capacitated case, the evacuation planning problem 

turns to be a standard minimum cost flow problem, which was solved by the out-of-

kilter algorithm. 

 

A two-level evacuation planning problem was formulated and solved by Liu et al. 

(2006a) for determining the optimal routing and destination scheme in an evacuation 

plan.  In this optimization model, the upper- and lower-level objectives are intended to 

maximize the total traffic throughput during a given evacuation period and to 

minimize the total travel time and waiting time (at origins) if the given duration is 
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sufficient for evacuating all evacuees, respectively.  The underlying traffic flow 

pattern is specified by a dynamic traffic assignment model based on a revised version 

of the cell transmission concept and modeling mechanism (see Ziliaskopoulos, 2000; 

Li et al., 1999). 

 

2.1.2.2  Temporal planning 

 

Spatial planning models are capable of determining the destination and route choices 

of evacuees, while temporal planning models can further optimize the temporal 

distribution of evacuation demand by specifying the departure time choice, which 

result in the so-called staged evacuation planning.  With incorporating the time 

dimension into an evacuation plan, these models are inevitably established on time-

dependent networks. 

 

Sbayti and Mahmassani (2006) proposed an evacuation planning model to search for 

the optimal combination of departure time, route and destination for an evacuation 

network so as to minimize the network clearance time.  They employed a mesoscopic 

traffic simulator, DYNASMART-P, to mimic the underlying traffic assignment and 

determine the network state, and developed an iterative heuristic procedure to 

approximate the optimal temporal distribution of departure times.  The sequential 

staging policy is finally extracted from the continuous departure-time distribution. 

 

In another staged evacuation planning model, Liu et al. (2006b) focused on optimizing 

the starting time of each evacuation demand zone with a given demand generation rate 

and temporal pattern in advance.  The objective of this model is to minimize the sum 

of total urgency-weighted evacuation time and waiting time.  As similar to their 
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previous evacuation planning study (Liu et al., 2006a), a dynamic traffic assignment 

model based on the cell transmission technique was employed to evaluate the system 

state and the objective function. 

 

The decision variables for describing an evacuation scheduling policy could also 

include the number of evacuation stages.  Chien and Korikanthimath (2007) proposed 

an analytical method to model the evacuation staging process and estimate the 

evacuation time and delay for an evacuation corridor with a uniform demand-

generation distribution along the length.  This method was then used to determine the 

optimal number of stages with an equal duration length.  While there is lack of 

solution algorithm that can directly determine the optimal staging solution, their study 

justifies that an improved scheduling interval and zoning range scenario is important 

in reducing the evacuation time. 

 

2.1.2.3  Network planning 

 

In recent years, devising an optimal evacuation plan has been advanced from seeking 

the optimal routing and scheduling scheme in a given network and spreading evacuees 

to follow the corresponding system-optimal evacuation order, to promoting the 

optimal flow pattern by physically manipulating the network configuration.  In these 

network planning models, the decision variables not only reside in demand routing and 

scheduling, but also include network supply properties, such as contraflow 

configuration and intersection control. 

 

Cova and Johnson (2003), by arguing that most traffic delays occur at intersections 

during an evacuation, introduced the lane-based routing strategy in evacuation 
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planning, which is of the purpose of limiting the traffic turning movements at 

intersections.  Given the lane-based routing requirement in their proposed model, a 

feasible evacuation plan must have no crossing conflict between any two directions of 

traffic flow throughout an intersection.  In practice, such intersection control measures 

can be readily implemented with some temporal installations of traffic barriers and 

road signs as well as emergency management personnel at intersections.  The authors 

formulated a linear mixed integer programming model, where the constant travel 

impedance of a link is represented by its distance.  This mixed integer programming 

problem was then solved by a branch-and-bound algorithm.  Since distance cannot 

fully represent the travel time in an evacuation process, the authors also sought and 

evaluated other solutions that possess a trade-off between reducing the evacuating 

distance and decreasing the number of flow merges occurring at intersections. 

 

Hamza-Lup et al. (2004, 2007) proposed an evacuation network and route planning 

model for seeking full contraflow configurations on all eligible links in an evacuation 

network and planning evacuation routes based on the contraflow configuration.  Two 

simple network optimization heuristics were proposed.  The first heuristic determines 

the lane-reversing direction of each link based on the coordinate information of the 

two end intersections of the link, that is, an outbound traffic direction is chosen for 

lane reversal, while the second one determines the lane reversal configuration and 

evacuation routes by searching for shortest paths from the emergency source node to 

all exit nodes.  The signal control and coordination strategy is also incorporated to 

enhance the robustness and efficiency of an evacuation routing plan.  In their 

modeling setting, however, the signal optimization process is performed as a 

subsequent step to the route planning.  A possible incompatible issue between the 

route planning and the signal control may result in the system suboptimality. 
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Another lane-based evacuation network optimization model was recently developed 

by Tuydes and Ziliaskopoulos (2006).  This study exclusively dealt with contraflow as 

the planning component in an evacuation network.  The contraflow optimization 

model has an attractive linear programming (LP) formulation, in that a system-optimal 

objective is assumed with the network evacuating behavior and a dynamic traffic 

assignment model based on the cell transmission concept is used to describe the 

evacuating flow pattern.  The authors noted the importance of intersection control in 

compliance with the contraflow assignment, but did not include it in their model.  This 

LP network optimization model can be solved exactly.  For an evacuation network of 

realistic size, however, the problem is very large and the authors resorted to a tabu-

based heuristic to search for the optimal contraflow configuration and the VISTA 

(Visual Interactive System for Transport Algorithms) simulation package (see 

Ziliaskopoulos and Waller, 2000) was adopted to estimate the system-optimal traffic 

flow pattern. 

 

Meng et al. (2008) followed a similar approach to define and solve a lane-based 

contraflow optimization problem.  The decision variables in their model are the 

number of lanes for each traffic direction of the candidate links.  The traffic simulator 

adopted to serve the lower-level problem is PARAMICS (PARAllel MICroscopic 

Simulator).  A genetic algorithm was developed to search for the optimal contraflow 

solution and the simulator’s application programming interface (API) provides the 

functionality of implementing the contraflow configuration given by the upper-level 

decision and delivering the feedback information from the lower-level simulation 

results. 
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Shekhar and Kim (2006) also considered a contraflow optimization model in the 

context of discrete network design problems, where their specific setting regarding the 

contraflow operation is the full lane reversal only and the objective of their model is to 

minimize the network clearance time.  They modeled a dynamic network evacuation 

process in the framework of capacitated, fixed-cost networks and employed an 

expanded space-time network to accommodate the time-dependent flow propagation.  

Their model is in nature a linear mixed integer programming model.  To maintain a 

good trade-off between the solution optimality and computational efficiency, the 

authors suggested different solution algorithms to address the proposed contraflow 

optimization problem with different demand levels, where the demand level is 

evaluated by a term named overload degree that is defined as the ratio of the number 

of evacuees over the capacity of the network bottleneck.  In their paper, exact integer 

programming algorithms were suggested for solving the network contraflow problem 

with a low overload degree; a simple greedy heuristic of selecting contraflow links 

based on the link congestion level in the original network was developed for the 

problem with an intermediate overload degree; as for the case with an extremely high 

overload degree, it was regarded as a network optimization problem in a single-source, 

single-sink network with infinity demand and a heuristic based on the renowned max-

flow, min-cut theorem was accordingly proposed to identify the network bottleneck 

links and to reverse their coupled links for contraflow. 

 

2.1.3  Concluding remarks 

 

To maintain the solution tractability, these evacuation planning models formulated as 

network flow or network design problems are typically built on the basis of somewhat 

unrealistic behavioral assumptions, which inevitably result in the lose of precision in 
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modeling the behavior details of an evacuation process.  Despite the ease of 

implementation and less computational resource required, the main weaknesses of 

these optimization-based evacuation planning models revealed by this literature 

review are: 1) a central emergency management authority is implicitly assumed to 

regulate the whole evacuation process while the individual behaviors may not be 

appropriately taken into account; and 2) in many cases, a proper interpretation of the 

congestion effect or the relationship between traffic flow and travel time is not 

incorporated into the estimation of the spatial distribution of evacuating flow over the 

network. 

 

It is expected that a joint use of optimization-based and simulation-based models 

could combine the merits of both sides and enhance the quality of devised evacuation 

plans.  This may be achieved in such a way that optimization-based models generate a 

set of candidate evacuation schemes and evacuation simulators are then used to 

conduct a comparative evaluation and make an ultimate recommendation.  Such an 

approach actually has been implied in some of the studies reviewed above, such as 

Tufekci and Kisko (1991), Sherali et al. (1991), Cova and Johnson (2003) and Liu et 

al. (2006a).  Case studies recently conducted by Zou et al. (2005) and Liu et al. (2008) 

explicitly used a network optimization module to generate optimal traffic routing, 

scheduling, lane reversal and signal control strategies and employed the CORSIM and 

VISSIM simulators to evaluate the generated evacuation plans. 

 

In some cases, the necessity of using simulation for the evaluation of an evacuation 

system is not only because simulation is capable of mimicking the evacuation process 

in greater details and accommodating time-varying, stochastic environments, but also 

because it provides a more comprehensive and reliable performance measure for the 
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system evaluation.  Typical performance measures used in an evacuation optimization 

model include, for example, the total evacuation time, the network clearance time, and 

the network traffic throughout.  However, none of these performance measures could 

be a universal criterion in all evacuation planning problems; each of them only focuses 

on and reflects one of the aspects of the evacuation efficiency and is only applicable to 

some specific evacuation situation.  The evacuation performance could be better 

assessed by evaluating the number of evacuess having left the disaster area over time.  

Such an evaluation process requires a simulation model, or in other words, in these 

cases, an integrated optimization-simulation approach is highly desirable. 

 

A tighter integration of optimization-based and simulation-based models could be 

realized by inserting a simulation module into a bi-level optimization framework, in 

which the simulation module constitutes the lower-level problem and is used to 

evaluate the objective function of the upper-level problem.  We have seen such 

examples in Tuydes and Ziliaskopoulos (2006), Sbayti and Mahmassani (2006) and 

Meng et al. (2008).  Though this optimization-based, simulation-embedded method 

combines the advantages of the two modeling paradigms, it typically requires 

extensive computation, especially if the simulation is on the microscopic level. 

 

2.2  Network design models and solution methods 

 

We have defined the optimal evacuation network problem as a lane-based network 

design problem.  The decision variables for the evacuation network configuration 

include the assignment of lanes on each reversible roadway section, which reflects the 

lane reversal setting, and the availability and connectivity of intersection turning 

movements, which indicate the crossing elimination setting.  In our evacuation 
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network optimization model, both of the decision variables are in the discrete form.  

Therefore, a literature review regarding the development of discrete network design 

models and their solution methods is presented below. 

 

2.2.1  Introduction 

 

In the transportation research field, the earliest network design models were created by 

Garrison and Marble (1958) and Quandt (1960).  The network design models in both 

studies were a result of the efforts in extending the standard transportation problem† to 

a linear programming form of transportation network supply problems.  The structure 

of their models can be described as “combining a transportation model with a road 

construction model”.  Quandt (1960) presented several formulations of the network 

design problem from the simple standard transportation model to the transshipment 

model, where the latter became the initial prototype of the present problem 

formulations we widely refer to today. 

 

Network design problems are often called optimal network problems or network 

optimization problems in the literature, as the objective of a generic network design 

problem is to seek an optimal cost-effective network topology and capacity solution 

with taking into account the network infrastructure investment and the resulting 

network operation efficiency. 

 

                                                 
† By the standard transportation problem here, we mean the Hitchcock-Koopmans transportation 
problem, in which an optimal transportation flow pattern needs to be determined with carrying a single 
homogeneous good from a group of origins with the known supply capacities to a group of destinations 
with the known demand amounts. 
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There have been several criteria to classify network design problems.  In terms of the 

nature of their design decision variables, network design problems can be categorized 

into the following two groups: 1) discrete network design problems, which deals with 

adding (and deleting) links to an existing network; 2) continuous network design 

problems, which, typically, seek the optimal capacity expansion or assignment for a 

network.  This natural discrepancy is so distinct that the discrete and continuous 

network design problems have been tackled by completely different solution strategies.  

Of course, mixed network design problems may also be defined, in which both adding 

new links and improving existing links are considered jointly.  The mix of discrete and 

continuous variables does not alter the essential discrete nature of a mixed network 

design problem, however, since the level of the continuous variables can be 

determined in the evaluation of each combination of the discrete variables (Stairs, 

1968). 

 

From the perspective of the transportation planning and engineering, a discrete 

network design model is of more convincible value and better applicability than a 

continuous model (Steenbrink, 1974a, b), since, for some practical reasons, a physical 

transportation network capacity construction or expansion is confined to some discrete 

choices, for example, addition of a new roadway link or deletion of an existing link, 

and expansion or reduction of the capacity of a link by a certain number of lanes.  In 

accordance to these reasons, a network design problem is often formulated as an 

integer or mixed integer programming model (Wong, 1985b). 

 

There have been a few state-of-the-art surveys about the modeling and algorithmic 

development of discrete network design problems.  Magnanti and Wong (1984) 

synthesized many discrete network design models and algorithms as well as their 
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applications and computational experiences.  The majority of the network design 

models reviewed in their work do not consider the congestion effect.  With this 

assumption, a network design model is set so that individual users (i.e., units of flow) 

in the network with fixed arc travel costs would have a consistent minimum-cost 

objective with the system planner or operator.  In other words, the system-optimal 

objective function of such a network design problem implicitly reflects individuals’ 

user-optimal behavior; no extra constraint addressing individual routing behavior 

needs to be specified.  In such a way, these fixed-cost network design problems were 

typically formulated as linear mixed integer programming models, where the integer 

decision variables represent discrete choices of the network design components and 

the continuous variables are network flows. 

 

By incorporating the congestion effect, the model formulation of a network design 

problem would be changed in two terms: first, the network operation cost function is 

nonlinear no matter in what form an arc cost function is; second, given an arbitrary 

network solution, the system-optimal objective is in general not consistent with the 

user-optimal routing behavior.  In a retrospective survey, Minoux (1989) reviewed a 

set of models and solution strategies for discrete network design problems with 

different types of congestion effect that arose from a variety of application contexts.  

His focus was given to variable-cost network design problems, capacitated spanning 

tree problems and concentrated location problems.  The models of using different arc 

cost functions, such as linear cost, concave cost, piecewise cost, and some mixed cost 

functions, were discussed in terms of their formulations, solution methods and 

applications.  Yang and Bell (1998), in another review report, presented a 

comprehensive review on network design models and algorithms with the specific 

variable-cost setting in the transportation context, including both discrete and 
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continuous forms.  These models are typically formulated as bi-level programming 

problems, in which the objective functions of the upper-level and lower-level 

subproblems are respectively to minimize the system cost and to minimize the 

individual travel cost in response to the upper-level design decision. 

 

Such a bi-level network programming problem can be described by a Stackelberg 

game in the context of game theory (see Fisk, 1984), in which the game leader is the 

network planner who takes charge of the network connectivity and capacity 

assignment and the follower is the population of network users who individually 

minimize their own travel costs in response to the leader’s decision and other 

competing users’ actions. 

 

In this review work, our main concern is discrete network design problems.  By 

tracking representative studies, we intend to present an overall picture of the 

development of discrete network design models and solution strategies in a unifying 

framework and explore the possibilities of extending these techniques for current and 

forthcoming discrete network design applications.  To reflect the latest achievement in 

this field, our focus is given to the bi-level network design problems, which, as we 

mentioned, are typically referred to the equilibrium network design problems.  In what 

follows, we first present the fundamental problem formulations synthesized from a 

variety of previous discrete network design studies.  Although these models share 

many common features, they can be distinguished by a number of dimensions, such as 

the type and magnitude of decision variables, treatment of the network construction 

budget, consideration of the congestion effect, assumption about the individual routing 

behavior, and so on. 
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2.2.2  Model formulations and variations 

 

A discrete network design problem was initially proposed to provide a decision-

making tool for the infrastructure investment planning of, typically, production, 

transportation, distribution, and communication networks.  It emerges in nature as a 

multi-objective optimization problem: to minimize the network operation cost and the 

capital investment cost (as well as other fixed or variable cost components) 

simultaneously.  For a transportation network, the capital cost may include not only 

the infrastructure design and construction costs, but also the loss of amenity and 

damage to the environment.  A transportation network design problem may also be 

extended to include other objectives, for example, maximization of the traffic demand 

(MacKinnon and Hodgson, 1970)†, minimization of the total travel distance and 

minimization of the relocation of residence units (see, for example, Friesz et al., 1993; 

Friesz, 1981). 

 

With partial efforts that are aimed to relaxing the multi-objective optimization 

complexity as well as the actual economic pursuit, two typical formulations have been 

often used.  The first formulation assumes an upper bound on the capital cost so that 

the network design problem becomes a single-objective problem with the aim at 

minimizing the network operation cost and with a capital cost constraint.  If the upper 

bound is uncertain, several tentative values might need to be used.  With each tentative 

bound value, a specific optimal operation and capital cost combination solution can be 

derived.  The collection of all these solution combinations is then evaluated for the 

final decision making.  The second formulation resorts, when the operation and capital 

                                                 
† By arguing that one of the fundamental purposes of a transportation system is to facilitate movements, 
MacKinnon and Hodgeson (1970) formulated an integrated network optimization problem that 
combines trip generation, distribution and assignment. 

 37



costs are commensurable, to summing both the operation and capital cost components 

into the objective function via a weighting combination.  The determination of the 

weighting coefficients may be subject to an economist’s judgment. 

 

For the sake of comparison, we repeat the two typical discrete network design problem 

formulations here.  Suppose that we are given a directed network G = (N, A), N  is 

the set of nodes, and A is the set of arcs connecting the nodes in N .  The arc set A 

consists of two exclusive subsets, a subset of fixed arcs AF  and a subset of variable 

arcs AV , where A = AF , AV  and AF + AV = 4.  Thus a possible network solution is 

(N, AC), where arc set AC  that satisfies AF 3 AC 3 A, that is, arc set AC  at least 

includes all the arcs in AF  and at most includes all the arcs in AF  and AV .  The 

objective of a discrete network design problem is to find an optimal arc set AC  that 

achieves a preset investment criterion.  Each element a  in AV  is represented by a 

binary decision variable, za , in the discrete network design problem.  When z , it 

indicates that arc a  is included in subset 

a = 1

AC ; when z , it means that arc a  is 

excluded.  Given these graphical and notational settings, the first model formulation 

can be given as, 

a = 0

 

min  c (x, z) = xa ca(xa)
a ! AC

! (2.1)

s.t.   da za
a ! AV

! G B (2.2)

  z  or 1     6a = 0 a ! AV  (2.3)

       6fk
k
! = brs

rs r, s (2.4)

  x    a = fk d ak
k
!

rs
! rs rs 6a ! AC  (2.5)

  x       6a H 0 a ! AC  (2.6)
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  xa G Ma za      6a ! AC  (2.7)

  x ! F  (2.8)

 

where this model actually present two sets of decision variables, ( , which 

respectively represent the supply and demand performances in the given network 

x, z)

G = (N, A): za  is the 0-1 integer design variable that indicates the choice of a 

candidate link a , a ! AV , and  denotes the resulting flow amount on link a , ax

a ! AC .  The objective function of this model denotes the sum of all the network 

operation costs, where c  is the arc travel cost function of arc a . a($)

 

The most commonly imposed constraints for this optimization model include the 

following.  The design budget constraint (i.e., constraint (2.2)) specifies the upper 

limit of the total investment, B, where d  is the cost for designing and constructing arc 

.  The flow conservation constraints (i.e., constraints (2.4)-(2.5)) reserve the sum of 

path flows, , between each origin-destination (O-D) pair 

a

a

fk
rs r-s, where b  represents 

the total travel demand between O-D pair 

rs

r-  and d  indicates the incidence 

relationship between arc a  and path 

s ak
rs

k .  The capacity constraint (i.e., constraint (2.6)) 

may have different implications for capacitated and incapacitated problems.  When the 

network design problem is incapacitated, this constraint merely indicates the arc 

availability; when the problem is capacitated, in addition to the arc availability, it also 

sets up the upper bound of arc flow, where Ma  denotes the capacity of arc a .  This 

constraint is often called forcing constraint, in that it imposes the relationship between 

design variables and flow variables.  Finally, we express the user routing behavior 

constraint (i.e., constraint (2.8)) in an implicit form since different implications may 

be included by this constraint, where F  represents the feasible space of traffic flow 
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patterns specified by the individual routing behavior, as subject to the network 

topology and capacity.  In most network design models, the user-optimal routing 

behavior is assumed.  However, the interactions between the user routing behavior and 

other problem settings would lead to different traffic assignment principles, which 

may be expressed in explicit or implicit form.  We will observe these differences in 

the different versions of discrete network design problems. 

 

The second discrete network design model considers the capital cost in a different way, 

in which the investment budget constraint is relaxed, and instead, the sum of the 

network operation cost and capital cost is minimized as the objective function.  Its 

formulation is as follows, 

 

min  c (x, z) = xa ca(xa)
a ! AC

! + w da za
a ! AV

! (2.9)

s.t.   or 1     6za = 0 a ! AV  (2.10)

       6fk
k
! = brs

rs r, s (2.11)

     xa = fk d ak
k
!

rs
! rs rs 6a ! AC  (2.12)

  x       6a H 0 a ! AC  (2.13)

  xa G Ma za      6a ! AC  (2.14)

  x ! F  (2.15)

 

It can be seen that this second model formulation has exactly the same set of variables 

and coefficients except that the second model has a coefficient for the capital cost, w, 

which represents the conversion factor between the network operation cost and capital 

cost, while the first model has an upper bound on the capital investment, B.  
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Apparently, the difference between the two model formulations are merely the 

treatment of the capital cost component. 

 

In fact, these two network design problem formulations show the two facets of a single 

problem, which can be converted between each other by duality theory or Lagrangian 

relaxation technique.  This conversion can be readily seen by relaxing the capital cost 

constraint in the second formulation and compensating this relaxation in the objective 

function with a penalty component, w d , where w is the well-known 

dual price or Lagrangian multiplier.  If w is properly set to equal the weighting 

coefficient that converts the capital cost into the operation cost, this relaxed 

Lagrangian program from the second problem formulation is equivalent to the first 

formulation. 

a zaa ! AV
! - B` j

 

The two problem formulations, on the other hand, have their respective economic 

implications in the transportation investment and planning practice.  The first model 

arises when a certain amount of network improvement budget has been approved by 

the legislature and the transportation planning authority wants to achieve the greatest 

travel time saving (i.e., the network operation cost) under this budget constraint.  The 

second model depicts a picture that the capital cost will be ultimately paid by the 

network users through taxes, for which the capital cost in some sense should be part of 

the minimization. 

 

The two models do not exclude each other, however.  In fact, a more general problem 

formulation could be developed to accommodate both the capital cost treatments in a 

single model, such as the one shown in Magnanti and Wong (1984).  The two 

formulations can then be regarded as the special cases of this general model.  When 
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the investment budget bound is relatively low, the budget constraint will be tightened 

at the optimal solution and the operation cost will dominate the objective function.  

Then the general model will collapse to the first problem formulation.  When the 

budget bound is relatively high, the budget constraint, apparently, will actually recess 

in constraining the optimization problem, which results in the second problem 

formulation. 

 

Within either of the model formulations, an optimal solution to the network design 

problem can be regarded as a trade-off between the network capital and operation 

costs.  The degree of this trade-off is dependent on the value of the budget bound (in 

the first formulation) or the conversion factor (in the second formulation).  In many 

situations, thus, a sensitivity analysis that involves multiple settings for the budget 

constraint or the conversion factor may need to be conducted to find a best trade-off 

between the two parts of the system cost.  However, an extreme end of this trade-off is, 

if a network planner is only concerned about the network operation cost given that the 

budget limit is sufficient, the network design problem can be relatively readily solved.  

In its simplest case, which we will discuss later, if we assume that the travel cost on 

each arc is fixed without the congestion consideration, the optimal network solution is 

simply the one with all the candidate links to be built.  On the other hand, another 

extreme situation is, if a network planner wants to minimize the capital cost without 

considering the operation cost, a minimum spanning tree solution should satisfy this 

optimality criterion. 

 

In addition to the two classic network design models presented above, other 

formulations could be devised.  Hershdorfer (1965), for example, discussed the 

possibility of a discrete network design model with the objective of minimizing the 
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capital cost given a minimum travel cost saving requirement; Chan et al. (1989) 

materialized the formulation of such a model with a system-optimal, congestion-

dependent traffic assignment.  Although this alternative model has its different 

economic interpretation, it does not cause any additional theoretical difficulty in the 

problem formulation and solution development (as compared to the first two models), 

and its relationship to the second formulation can be similarly analyzed by using the 

duality property or Lagrangian relaxation. 

 

Moreover, these basic network design models can be further extended to contain some 

topological or geometric restrictions or flexibilities on candidate arcs, the design 

components may not be limited to arcs, and the time dimension could be introduced to 

create a multi-period rather than once-through design problem.  Extra restrictions may 

include, for example, the precedence relationship and the multiple choice relationship 

(see Magnanti and Wong, 1984).  In some urban planning cases, both one-way and 

two-way roadway sections may be permitted in designing a transportation network 

(see, for example, Drezner and Wesolowsky, 1997, 2003; Cantarella et al., 2006).  A 

lane-based network design problem is also introduced, in which the lane-based 

capacity on an eligible roadway section can be distributed between the two traffic 

directions (see, for example, Meng et al. (2008)).  The introduction of the time 

dimension into a multi-period network design problem creates the dynamic network 

design problem, such as the one described by Rothengatter (1979).  If node selection is 

included in a discrete network design problem, it typically results in a joint network 

design and facility location interface, in which facility sites are generally located at 

nodes and the facility locations are related to the node selection. 
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The variants of discrete network design models are not only distinguished by the 

treatment of the network investment budget, but also discerned in terms of other 

modeling assumptions and settings.  Most of the early discrete network design models 

developed in 1960s and 1970s were originally designed to construct an entirely new 

network, while many others later on were aimed to seek an optimal expansion scheme 

to an existing network.  While there exists no intrinsic difference between the full and 

partial network design problems in the methodology regard, a solution procedure for 

the former problem must include a network feasibility or connectivity test.  On the 

other hand, the later problem may be of greater interest for practical applications in 

which transportation planning projects nowadays are often to add or expand roadways 

to an existing network, rather than to construct a new network. 

 

When the capacity is far beyond the expected traffic flow rate in a transportation 

network, ignoring either the arc capacity or the congestion effect is acceptable.  In this 

case, the traffic routing as well as the calculation of the network operation cost is 

based on the fixed arc travel cost.  However, it is more reasonable in most application 

cases to recognize the capacity effect. 

 

Depending on different problem contexts and modeling assumptions, the capacity 

setting could be treated in two ways: capacity-constraint and capacity-restraint.  A 

network design problem of the former type is also called a capacitated problem.  In a 

capacitated network design problem, the capacity of an arc is imposed as an upper 

limit on the traffic flow rate of the arc (see constraints (2.7) and (2.14)).  Many 

communication, logistics and air transportation systems are often modeled as 

capacitated networks.  The problem formulation and solution strategies of capacitated 
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problems have been discussed by, for example, Balakrishnan (1984), Lamar (1990) 

and Gendron et al. (1998). 

 

On the other hand, the capacity-restraint approach sets the capacity in a network 

design problem in an indirect way, which is more common in ground transportation 

networks.  In a capacity-restraint problem, the capacity effect is achieved by 

considering the congestion phenomenon and incorporating the congestion-dependent 

variable travel cost into the network design.  As different from a capacity-constraint 

problem, the arc capacity in a capacity-restraint problem appears as a parameter in its 

travel cost functions, instead of the upper bounds of the capacity constraints.  In 

accordance with the use of variable travel costs, the (deterministic or stochastic) user-

equilibrium routing principle has been often assumed to regulate the traffic flow 

pattern.  Needless to say, the fixed arc cost in either an incapacitated or capacitated 

case implies that the network operation cost is linear to the traffic flow rate, while the 

variable arc cost results in the network operation cost in a nonlinear form.  It is, of 

course, possible to consider both the capacity-constraint and capacity-restraint settings 

in a network design problem with, for example, a user-equilibrium behavior 

assumption, in which the capacity of an arc plays a dual role that specifies the 

skewness of the travel cost curve and sets an upper limit on this curve simultaneously.  

It has been suggested that this setting could better model the arc performance in a 

transportation network.  In the meantime, however, it increases the solution 

complexity greatly, in that the underlying traffic assignment itself (i.e., a capacitated 

user-equilibrium assignment problem) is sufficiently complex to solve. 

 

The evaluation of the objective function involves an estimation of the network flow 

pattern, which is the result of a traffic assignment process.  Depending on the different 
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capacity settings, the traffic assignment routine within a network design problem 

could be an all-or-nothing assignment, multi-commodity assignment†, system-optimal 

assignment, user-equilibrium assignment, and so on.  The underlying traffic 

assignment process is such an important component in a network design model that it 

not only specifies the structural property and complexity of the model, but also 

determines the computational efficiency, since a dominant part of the computational 

cost for a network optimization process is spent in repeatedly evaluating the objective 

function. 

 

As we have seen, the traffic assignment principle underlying a network design 

problem is confined by several factors, such as the arc travel cost function, individual 

routing behavior assumption, and capacity setting.  Apparently, a capacitated network 

involves a higher degree of complexity in the model structure and solution method for 

both the traffic assignment problem and the network design problem.  Here we 

concentrate on discussing several alterations of the problem formulation caused by the 

arc travel cost function and routing behavior assumption. 

 

If the arc travel costs are given as pre-fixed values rather than flow-dependent 

variables, every individual user can choose his route independently without interacting 

with any other users.  Under this assumption, the user-optimal routing behavior results 

in, on the individual level, only the shortest path to be chosen based on the fixed arc 

cost and, on the network level, that the traffic flow pattern can be simply specified by 

the all-or-nothing assignment.  Moreover, the user-optimal routing principle is 

consistent with the system-optimal objective of the network design problem, or in 

                                                 
† By the multi-commodity assignment, we mean the traffic assignment problem in a capacitated, fixed-
cost network.  See Chapter 17 in Ahuja et al. (1993) for a formal treatment on this topic. 
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other words, the system-optimal objective simultaneously takes into account the user-

optimal behavior.  In accordance, there is no need to impose any form of the routing 

behavior constraint in the problem formulation (i.e., constraint (2.8) in the first 

problem formulation or (2.15) in the second formulation can be relaxed).  A number of 

researchers investigated discrete network design problems with this simplest behavior 

assumption, including, but not limited to, Scott (1967, 1969), Stairs (1968), Ridley 

(1968), MacKinnon and Hodgson (1970), Boyce et al. (1973), Hoang (1973), 

Billheimer and Gray (1973), Steenbrink (1974a, b), Pearman (1974), Dionne and 

Florian (1979), Boffey and Hinxman (1979), Los and Lardinois (1982), and Magnanti 

and Wong (1984). 

 

In the transportation planning field, the congestion effect is often measured by a 

capacity-restraint cost function that has a convex functional form (e.g., the widely 

used Bureau of Public Roads function).  By incorporating the congestion effect this 

way, a discrete network design problem can be described by a nonlinear integer 

programming model.  Under this condition, the user-optimal routing behavior is not 

consistent with the system-optimal objective.  In the literature, one approach to deal 

with this contradiction is to ignore the user-optimal routing behavior and instead 

assume all network users to follow a system-optimal routing behavior (e.g., Sherali et 

al. (1991)).  In this case, the problem formulation can still be simplified in that the 

individual routing behavior constraint is relaxed. 

 

Another approach is to respect the user-optimal routing behavior and hence to write it 

into the model in an explicit form.  However, there exists no convenient closed form 

of user-optimal behavior constraints.  One way to express the user-optimal routing 

principle is to append a mathematical program.  Such a modeling setting results in the 
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so-called bi-level optimization problem, in which the upper-level problem has the 

original network design objective and the lower-level problem as a constraint of the 

upper-level problem is used to describe the user-optimal traffic assignment.  LeBlanc 

(1975) and Hoang (1982)† may be the first two who rigorously investigated a discrete 

network design problem with the congestion effect and with an explicit incorporation 

of the user-equilibrium routing constraint.  In their studies, the lower-level problem 

(i.e., the user-equilibrium constraint) is specified by Beckmann’s mathematical 

programming form: 

 

min  ca(~ ) d~
0
#

a
!

xa

                                                

(2.16)

s.t.  constraints (2.3)-(2.7) (or (2.10)-(2.14)) 

 

As we mentioned above, in a given network with the congestion effect, the user-

optimal and system-optimal flow solutions in general will not coincide at the same 

point.  A fundamental difficulty thus arises when solving a network design problem 

with minimizing the system cost while satisfying the user-optimal behavior constraint.  

It comes as what is commonly called Braess’ paradox, which can be described as, for 

example, an arc addition, which decreases the objective function value of the user-

equilibrium problem, may increase the objective function value of the system-optimal 

problem subject to the user-equilibrium constraint. 

 

 
† Ochoa-Rosso (1968) described a discrete network design problem with the congestion effect and the 
user-optimal behavior constraint and suggested a branch-and-bound method to solve this problem.  His 
work, however, is not reviewed here because 1) no explicit user-optimal routing formulation was given 
in his text, 2) the non-convexity property caused by Braess’ paradox identified later was not considered, 
and 3) neither detailed algorithmic procedure nor computation effort was described. 
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Poorzahedy and Turnquist (1982) proposed an approximate model to the discrete 

network design problem with the user-equilibrium constraint, by observing that in the 

case of using a polynomial-type arc cost function, the system-optimal objective 

function is approximately linear to the user-equilibrium objective function.  Their 

approximation suggested using Beckmann’s user-equilibrium objective function (i.e., 

function (2.16)) to replace the system-optimal objective function (i.e., function (2.1) or 

(2.9)), which favorably eliminates the bi-level modeling and solution complexity. 

 

To consider the uncertainty in individuals’ routing behaviors leads to stochastic traffic 

assignment methods.  Chen and Alfa (1991) proposed a discrete network design 

problem with a stochastic user-equilibrium behavior constraint.  In their model, the 

logit-based stochastic user-equilibrium assignment model by Fisk (1980) was chosen 

to specify the lower-level problem: 

 

min 
i
1 fk ln (fk )

k
!

rs
! + ca(~) d~

0
#

a
!rs rs

xa

 (2.17)

s.t.  constraints (2.3)-(2.7) (or (2.10)-(2.14)) 

 

As similar to LeBlanc’s model, the network design problem with a stochastic user-

equilibrium constraint is also susceptible to Braess’ paradox, which results in the non-

convexity of the search space.  The computational complexity as well as the 

algorithmic challenge caused by these alternative modeling settings will be discussed 

in the next section. 

 

Another important modeling dimension related to transportation network design 

problems is to include trip generation and distribution in such a demand-supply 
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interaction fashion.  We have so far only discussed the network design models with a 

fixed O-D demand pattern.  A transportation network change in either topology or 

capacity, which is the result of a network design and planning process, has long-term, 

inevitable impacts on travel demand generations and distributions.  It is, therefore, 

desirable to incorporate both the destination and route choice behaviors in a 

transportation network design problem.  Boyce and Soberanes (1979), Boyce and 

Janson (1980), and Janson and Husaini (1987) discussed a discrete network design 

problem with a combined trip distribution and traffic assignment.  To avoid the 

contradiction between the objectives of the network design problem and the trip 

distribution problem, where the latter is in general posed as an entropy maximization 

problem, they employed a doubly-constrained trip distribution problem formulation 

proposed by Erlander (1977), which aims to minimize the total travel cost subject to 

an entropy constraint.  All these modeling extensions to this network design problem 

with the variable trip distribution setting can be summarized as the following 

constraints appended to the original problem formulation (e.g., problem formulation 1), 

 

      6brs
s
! = Or r  (2.18)

      6    brs
r
! = Ds s (2.19)

  -  where pprs ln (prs)
rs
! H E0 rs = brs brs

rs
!  (2.20)

 

where O  and r Ds  represent the trip production and attraction demands at origin node 

r  and destination node s, respectively, and  is a pre-specified entropy constant.  

Constraints (2.18) and (2.19) specify the demand conservations at origin and 

destination nodes; constraint (2.20) represents the entropy requirement.  It should be 

E0
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noted that in these constraints b  is not a fixed demand number, but a variable 

indicating the trip number between origin node 

rs

r  and destination node . s

 

An integrated demand-supply transportation network design model can also be 

specified by an elastic-demand equilibrium function on its lower level (Yang and Bell, 

1998).  In this problem formulation, trip generation and assignment are both the results 

of a network expansion or modification.  By assuming the demand between an O-D 

pair is continuous and decreasing function of the congestion level between this O-D 

pair, the lower-level problem can be written as (Sheffi, 1985), 

 

min  ca(~) d~
0
#

a
! - q rs (~) d~

0
#

rs
!

xa
- 1

brs

(2.21)

s.t.   brs H 0 (2.22)

  constraints (2.3)-(2.7) (or (2.10)-(2.14)) 

 

where q  is the inverse of the demand function for O-D pair rs
-1($) r- , b  is a non-

negative demand variable rather than a fixed demand rate for O-D pair 

s rs

r-s, and other 

notations are the same as before. 

 

As part of a network optimization case study, MacKinnon and Hodgson (1970) 

presented an alternative transportation network design model that integrates trip 

generation, distribution and assignment.  In their setting, the trip generation, 

distribution and assignment processes are all subject to the network connectivity 

through a gravity model.  Thus, an alternative objective function was developed to 

evaluate the network performance, that is, to maximize the sum of the traffic flow 

rates over the network: 
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max Or Ds crs
rs
!   where c , 6rs = min

k
tad ak

a
! rs r, s (2.23)

s.t.  constraints (2.3)-(2.7) (or (2.10)-(2.14)) 

 

where c  is the travel time of the shortest path between origin rs r  and destination s, and 

 and Or Ds  in this model have a slightly different meaning from the aforementioned 

definition: they are not the trip production and attraction demands, but represent 

synthetic socio-demographic factors that potentially produce and attract travel 

demands, respectively.  The actual travel production and attraction demand rates for 

any O-D pair are functions of a network design solution.  Given the fixed-cost 

assumption, it is known that the traffic flow maximization objective implies that the 

traffic flow for any O-D pair is always assigned on its shortest path. 

 

2.2.3  Solution methods 

 

Despite the various formulations and different degrees of intricacy, these discrete 

network design problems pose the NP-hard computational complexity, even in its 

simplest form.  Johnson et al. (1978) establishes its NP-completeness by showing the 

classic knapsack problem is reducible to the discrete network design problem, where 

the former is a well-known problem with NP-completeness.  In fact, Wong (1980) 

showed that even finding an approximate discrete network solution is an NP-hard 

problem. 

 

There have been a number of solution methods, including exact and approximate 

methods, developed to solve discrete network design problems.  Due to the structural 
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similarity of different versions of discrete network design problems, these methods, 

each of which was developed and applied for solving a particular set of problems, may, 

with some minor modifications, be transferred to other discrete network design 

problems.  Thus, in the following, we do not distinguish these methodologies by their 

specific network design models and applications.  Instead, we would rather present the 

solution algorithms in a synthetic form where their common procedures and features 

are concentrated.  Different algorithmic designs for particular problem cases and 

modeling settings are then supplemented in a comparative manner. 

 

2.2.3.1  Exact methods 

 

Due to the combinatorial complexity, there are only a limited number of algorithmic 

choices in devising a mathematical programming method to solve a discrete network 

design problem optimally and efficiently.  The branch-and-bound and Bender’s 

decomposition strategies may be the most effective optimization-based techniques in 

this field.  Both of the techniques are aimed to reducing the number of combinatorial 

possibilities by setting lower bounds or Benders cuts so that the optimal solution can 

be exhausted by an enumeration search in a reasonable time frame. 

 

2.2.3.1.1  Branch and bound 

 

Branch and bound is a generic algorithmic paradigm to solve discrete and 

combinatorial optimization problems.  In fact, it is an implicit enumeration strategy 

that searches all the discrete feasible regions for the optimal solution except those 

pruned non-optimal parts.  The performance of a branch-and-bound procedure is 

determined by two tools.  The first one is a recursive process of partitioning the whole 
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search space into feasible subspaces by fixing variables to their discrete feasible 

choices.  This whole partitioning process can be naturally represented by a tree 

structure that consists of vertices and branches.  A partitioning step occurs at a vertex†, 

dividing the search space associated with the current vertex into a number of exclusive 

subspaces, each of which corresponds to one discrete value of the selected variable.  

Such a partitioning process at a vertex is called branching.  To accelerate the 

enumeration search, a bounding tool is used to eliminate those branch spaces that 

prove to exclude the optimal solution through comparing the upper and lower bounds 

to the optimal solution.  As we will see below, the branch-and-bound framework 

offers such a universal approach that it can handle both single-level and bi-level 

network design problems and it is so flexible as to accommodate a variety of 

branching and bounding procedures. 

 

One implementation of the branch-and-bound strategy was devised by Boyce et al. 

(1973) for the discrete network design problem with incapacitated arcs and no 

congestion effect, which can be stated as follows.  Given a branch-and-bound search 

tree, any vertex represents a search space spanned by three types of arcs: included arcs, 

excluded arcs, and undetermined arcs, where we use SI , SE  and SU  to represent the set 

of included arcs, set of excluded arcs and set of undetermined arcs, respectively.  Any 

network solution belonging to the search space must include all the links in SI  and not 

include all the links in SE , and may include part of the links in SU .  According to this 

definition, we know that at the root vertex, SI = AF , SE = 4, and SU = AV .  Starting 

from the root vertex, the branching process progressively expands to construct a 

search tree.  At each branching step, we select an undetermined arc a  from SU  and 

                                                 
† The term “vertex” used here is referred to a state point of the branch-and-bound tree structure.  In 
contrast, the term “node” is exclusively used in this text to represent an intersection, interchange or 
terminal of a network. 
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assign a  into SI  and SE , respectively.  This results in two succeeding vertexes, where 

at one vertex, its corresponding included, excluded and undetermined arc sets become: 

 

  S , S , and S , I
1
= SI , {a} E = SE

1 1

2 2 2

U = SU - {a} (2.24)

 

and at another vertex, its corresponding arc sets are: 

 

  , S , and S . S I = SI E = SE , {a} U = SU - {a} (2.25)

 

Prior to branching at each vertex, a bounding examination is carried out by comparing 

the current upper and lower bounds to the optimal solution.  The upper bound is the 

objective function value of the best feasible solution obtained so far, while the lower 

bound provides a possible lowest objective function value to the whole solution set in 

the branch space associated with the current vertex.  If the upper bound is lower than 

or equal to the lower bound, the vertex is regarded as a terminal vertex and the 

succeeding search in the current branch space can be discarded.  In such a way, no 

further branching from this vertex is needed and the enumeration search effort is 

accordingly lessened.  Otherwise, the possibility of a better feasible solution in the 

current search space still exists and this vertex should be branched into two succeeding 

vertices.  Particularly, a vertex with SU = 4 is apparently a terminal vertex since it 

contains only one solution and has no vertex successor.  Reaching every terminal 

vertex in a search tree is equivalent to a full enumeration of the search space.  

Therefore, the performance of a branch-and-bound procedure is dependent on its 

algorithmic efficiency that eliminates non-optimal branch spaces without exhausting 

the contained solutions inside. 
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Given a network with incapacitated arcs and no congestion effect, assigning the traffic 

flow between any pair of nodes to its shortest path minimizes the objective function 

value.  In other words, an all-or-nothing traffic assignment is consistent with the 

system minimization objective.  This simple fact results in the following monotonicity 

property: if network N1 includes all the arcs of network N2 , i.e., A1 4 A2, where A1 is 

the arc set of N1 and A2 is the arc set of N2 , then, 

 

  c , (x1, z1) G c (x2, z2) (2.26)

 

because adding a link to an existing network never lengthens a shortest path between 

any pair of nodes.  By applying this monotonicity property, the lower bound of any 

branch space can be estimated by computing the objective function value of a network 

including all the arcs in its undetermined arc set SU : 

 

  c : S , S , and S . (x L, z L) I = SI , SU
L L L

E = SE U = 4 (2.27)

 

Under the same branching framework, Hoang (1973) and Dionne and Florian (1979) 

suggested an improved lower bound that can greatly accelerate the above branch-and-

bound search.  Hoang (1973) first found that a tighter bound can be derived based on 

the following fact: given A1 4 A2, where A1 and A2 represent the arc sets of two 

networks N1 and N2  respectively, we have 

 

  c , (x1, z1) + xaDca
a ! A1 - A2

! G c (x2, z2) (2.28)
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where D  is the travel cost increment for a unit trip between the two end nodes of arc 

, as caused by deleting arc a  from network 

ca

a A1.  Apparently, the left-hand side of 

inequality (2.28) provides a stronger bound to the right-hand side than that of 

inequality (2.26).  Based on Hoang’s work, Dionne and Florian (1979) further 

improved the algorithm by specifying a better arc selection order that is always choose 

the arc with the highest Dca da  value for branching.  With this improved bounding 

rule, the lower bound for a current branch space is written as, given that the current 

space is spanned by the included arc set SI , excluded arc set SE  and undetermined arc 

set SU , 

 

  c : S , S , and S . (x L, zL) + xaDca
a ! SU

! I = SI , SU
L L L

E = SE U = 4 (2.29)

 

The lowered bound developed by Hoang (1973) and Dionne and Florian (1979) is 

applicable to the network design problem with the operation cost minimization 

objective subject to the capital cost constraint (see (2.1)-(2.8)), which is the co-called 

budget design problem.  Los and Lardinois (1982) extended their idea to the problem 

case of minimizing the sum of the network operation cost and capital cost (see (2.9)-

(2.15)).  Given the following inequality of capital cost between two networks N1 and 

N2  with A1 4 A2, where A1 and A2 are the arc sets of N1 and N2 , respectively, that is, 

 

  d , (z1) H d (z2) + da za
a ! A1 - A2

! (2.30)

 

the lower bound for the mixed-cost objective function of a current network solution 

can be readily obtained by combining inequalities (2.28) and (2.30), such as, 
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  c : S ,  (x L, zL) + d (zK) + (xaDca + da za)
a ! SU

! I = SI , SU
L

L L K K K    S , and S ; S , S , and S . E = SE U = z I = SI E = SE , SU U = 4

(2.31)

 

In addition to the different lower bounds, a number of different branch-and-bound tree 

structures were also proposed for discrete network design problems.  Ridley (1968), 

for example, used an alternative tree structure for the incapacitated, non-congested 

budge design problem.  In his search tree, every vertex represents a particular solution, 

which is simply denoted by two types of arcs, included arcs and excluded arcs.  If we 

still use SI  and SE  to represent the included arc set and excluded arc set respectively, 

the status of the root vertex in this tree structure can be further written as SI = AF , AV  

and SE = 4.  In other words, the network solution at the root vertex is the full network 

that includes all the candidate arcs.  This full network, however, is often an infeasible 

or non-optimal solution since it requires the maximum capital cost.  Starting from the 

root vertex, each branch will be generated by selecting one candidate arc from SI  to 

SE .  Unlike the first tree structure in which each branching process always produces 

two branches that correspond to selecting one arc from SU  to SI  and from SU  to SE  

respectively, this branching scheme produces a different number of branches at a 

different vertex, where the number is dependent on the remaining number of arcs that 

are not yet selected from SI  to SE

1 1

2 2

 as well as the budget constraint.  Suppose that n  

branches are generated by a branching process.  Then the branching operation can be 

written as, 

 

   and S , S I = SI - {a1} E = SE , {a1} (2.32)

   and S , S I = SI - {a2} E = SE , {a2} (2.33)
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  gg 

  S  and S . I = SI - {an}n n
E = SE , {an} (2.34)

 

Although this alternative branching scheme generates a different tree structure, the 

monotonicity property is still applicable to establishing the bounding rule.  It is readily 

known that the objective function value of the solution at any vertex is a lower bound 

to all its successors, since the included arc set of any successor solution is always a 

subset of the included arc set of the solution at the current vertex.  Therefore, the key 

algorithmic operation as the search encounter a vertex is conditional on a decision 

based on the bounding examination result: if the lower bound is lower than or equal to 

the upper bound (i.e., the objective function value of the updated best solution), the 

vertex as well as its successors is eliminated; otherwise, a new branching should be 

promoted from this vertex. 

 

Scott (1969) used the same branching and bounding rules as well as the tree structure 

as above in his network optimization procedure.  However, the search strategies in 

these two studies differ in terms of their defined search orders over the tree search 

space.  Ridley’s search procedure employs a top-down process that the search starting 

from the root vertex scans all the vertices in the first generation, which are formed by 

transferring one arc from SI  to SE , and then scans the next generation, until the last 

generation at the bottom.  In contrast, Scott’s procedure searches and bounds solutions 

according to a path-by-path order, that is, first tracking one complete path from the 

root vertex to a terminal vertex and then the second path until all root-terminal paths 

are scanned.  The featured search step of Scott’s algorithm is to backtrack to its 

predecessor vertex for an alternative path whenever the current vertex is proved as a 
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terminal vertex due to infeasibility or bounding.  Because of this algorithmic feature, 

Scott’s algorithm falls into the backtracking strategy. 

 

An analogous algorithm with the similar backtracking scheme and bounding rule to 

Scott (1969) was used by Poorzahedy and Turnquist (1982) for solving their 

approximate equilibrium network design problem.  This simplified problem 

formulation that is approximate to the LeBlanc’s (1975) model is attractive since it 

relaxes the bi-level complexity.  More importantly, it retains the aforementioned 

monotonicity property for establishing the bounding rule, that is, adding an arc to an 

existing network will always decrease or at least not increase the user-equilibrium 

objective function value. 

 

In Poorzahedy and Turnquist’s search tree, as similar to the tree structure used in 

Ridley (1968) and Scott (1969), every vertex represents a single network solution and 

the backtracking search scheme is used.  However, the different aspect is that their 

branching scheme starts at the root vertex with a minimum network that only contains 

the fixed arcs, i.e., SI = AF  and SE = AV .  A new branch as well as its corresponding 

vertex is produced by selecting a candidate arc from SE  to SI .  By comparing the two 

algorithmic designs, it is clear that their search directions are in reverse: Scott’s 

procedure has a search direction from the maximum network AF , AV  to the minimum 

network AF , while Poorzahedy and Turnquist’s procedure invokes a solution 

evolution from the minimum network AF  to the maximum network AF , AV . 

 

It may be difficult to make a clear judgment on which branching or backtracking 

search scheme is superior to another.  In fact, selecting an appropriate scheme between 

the two in terms of the computational efficiency is highly dependent on the specific 
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structure and features of the target problem.  For example, one of the factors affecting 

this choice is the tightness of the budget constraint.  If the allowable budget level is 

relatively high, the search scheme initialized from the maximum network may be a 

better choice to exhaust the feasible regions; if the budget level is low, then a search 

starting from the minimum network may be preferred.  An extensive experiment by 

Dionne and Florian (1979) showed a mixed result in testing and comparing the 

performance of different bounding and branching choices. 

 

2.2.3.1.2  Benders decomposition 

 

Benders decomposition (Benders, 1962) is an algorithmic approach to solve some 

mathematical programming problems with complicating variables, in which if these 

complicating variables are temporarily fixed, the remaining optimization problem 

becomes considerably more tractable.  This feature exists in many mixed integer 

programming problems, where the integer variables are generally regarded as 

complicating variables.  Thus, it is not surprising that the Benders decomposition 

framework has been applied early to exploit the structure of discrete network design 

problems and construct solution strategies for them.  Magnanti and Wong (1984) and 

Magnanti et al. (1986) summarized and developed a number of Benders 

decomposition applications in solving incapacitated, fixed-cost network design 

problems, in which the underlying traffic assignment problem is an all-or-nothing 

assignment problem.  The basic Benders decomposition approach was generalized by 

Geoffrion (1972) to accommodate the nonlinear mixed integer programming problem, 

so that a large range of flow-dependent variable-cost discrete network design problems 

could be fit into this decomposition framework. 
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The Benders decomposition technique decomposes a discrete network design problem 

into two parts, a discrete part containing the design variables, za , 6a ! AV , and a 

continuous part containing the flow variables, x , 6a a ! AC .  The decomposition can 

be seen from the following rewritten functional formulation to the discrete network 

design problem, if we use, for example, the first problem formulation described early 

in this text, 

 

min  c (z) (2.35)

s.t.  constraints (2.2)-(2.3) 

  where c (z) = min
x

xa ca(xa)
a ! AC

! : constraints (2.4) (2.8)) 3 (2.36)

 

given that for every design solution z , there is at least one feasible flow solution x .  

(If this assumption does not hold, a similar but more generalized functional 

formulation should be resulted (refer to Geoffrion (1972)).  However, this imposed 

assumption does not alter the nature of our discussed problem while it reduces the 

complexity of the formulation.)  This new problem formulation can be regarded as the 

projection of the original problem onto the feasible space of z . 

 

Note that in general the evaluation of the subproblem c  for any specific z , i.e., the 

solution of the traffic assignment problem in (2.36), can be efficiently obtained.  By 

the duality theory or Lagrangian relaxation, the optimal solution of this problem can 

be derived by solving the following equivalent program: 

(z)

 

  c (z) = max
m H 0

min
x

a ! AC a ! AC

constraints (2.4)

xa ca(xa)! - ma(Ma za - xa)! :

(2.6)
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where m  denotes the dual variable or Lagrangian multiplier. a

 

With this duality device, the original problem consequently collapses to the following 

decomposition form: 

 

min  c (z) (2.38)

s.t.  constraints (2.2)-(2.3) 

  c (z) H min
x

xa ca(xa)
a ! AC

! - ma(Ma za - xa)
a ! AC

! : constraints (2.4) (2.6)) 3 (2.39)

 

which we call the master problem.  The natural strategy for solving the master 

problem is relaxation, since it contains a large number of constraints shown in (2.39).  

One generally begins by solving a relaxed version of the master problem by ignoring 

all but a few of these constraints.  Meanwhile, the solution of the subproblem is used 

to check the feasibility of the optimal solution of the relaxed problem to the original 

problem and to provide cutting planes for further reforming or redefining a tighter 

master problem.  By taking advantage of this decomposition scheme, we may solve 

the original discrete network design problem by iteratively solving a series of relaxed 

master problems and subproblems. 

 

One must note that the choice of constraints for relaxation in the subproblem is an 

algorithmic choice, as dependent on the specific structure of the network design 

problem as well as other algorithmic elements.  The above functional formulations 

merely provide a general example for illustrating the methodology.  Implementations 
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of the Benders decomposition framework may vary in terms of the algorithmic design 

and problem structure. 

 

Hoang (1982) first applied the generalized Benders decomposition to solve an 

equilibrium discrete network design problem.  In his setting, the flow conservation 

constraints (i.e., constraints (2.4) and (2.5)) were dualized.  With a set of given values 

of the discrete design variables as an initial solution, an iterative procedure is used to 

solve the dual subproblem and the master problem respectively with exchanging the 

evolving network and flow information between them.  Due to the decomposition, the 

dual subproblem with the fixed values of the design variables and the master problem 

with the fixed values of the flow variables can be relatively readily solved by the 

existing algorithms. 

 

Sherali et al. (1991) proposed and solved a discrete network design problem in an 

integrated evacuation routing and shelter location application.  By assuming that there 

is a central authority managing the evacuation process, they formulated a network 

design model using a system-optimal objective function and a convex flow-dependent 

link cost function (i.e., the BPR function), but without appending a user-optimal 

routing constraint.  The discrete decision variable in their model is the choice of 

shelter locations at the given candidate destination nodes.  This model can be fit into 

the general discrete network design model presented above.  To see the connection, let 

us add a dummy node and a set of dummy candidate links to the existing network, 

where a candidate link connects a candidate destination node where a shelter could be 

built.  If a candidate node is chosen in a feasible solution, it is equivalent to its 

connecting candidate link is chosen.  In such a way, this discrete location choice 

problem is converted to be a discrete link choice problem, in which the set of dummy 
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candidate links becomes the variable link set .  Since each shelter has an 

accommodating capacity, correspondingly, this problem becomes a capacitated 

network design problem. 

VA

 

In their study, a heuristic algorithm and an exact enumeration algorithm based on the 

generalized Benders decomposition were used to solve this capacitated nonlinear 

mixed integer programming problem.  In their network design case, Benders 

decomposition proceeds iteratively by choosing a tentative feasible network, solving 

for the optimal objective function for this tentative network, and then using the 

solution to redefine a new network configuration.  As similar to Hoang (1982), the 

tentative network flow problem is a convex minimum cost network flow problem; the 

authors employed a Lagrangian dual method to solve it.  The dualized constraints, 

however, are the capacity constraints (i.e., constraint (2.7)), as different from Hoang 

(1982).  The optimal solution for a tentative network provides the Benders cuts for the 

network design problem.  In their implementation of Benders decomposition, a 

strongest surrogate constraint (Parker and Rardin, 1988) was developed to evolve the 

optimal solution from a continuous relaxation of the discrete network design problem, 

in which the integer constraint z  or 1 is relaxed to 0a = 0 G za G 1. 

 

The heuristic and exact algorithmic procedures in Sherali et al. (1991) are different by 

their mechanisms of implementing the above conceptual approach.  The heuristic 

procedure proceeds by sequentially solving the continuous relaxation and fixing 

certain discrete choices until all the discrete decision variables are fixed.  The exact 

optimization procedure, like a branch-and-bound algorithm, uses a binary tree 

structure to search for the optimal solution, by iteratively completing and branching a 
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vertex, in which the strongest surrogate constraint and general Benders cuts are 

repeatedly used. 

 

2.2.3.2  Approximate methods 

 

While the exact methods such as the branch and bound and Benders decomposition 

techniques have been successfully applied to solve some discrete network design 

problem examples, the computational obstacle generally precludes them from being 

used in dealing with transportation networks of realistic size.  In some cases, when it is 

difficult to establish effective bounds to eliminate a large number of solution spaces, 

the exact method tends to be an exhaustive enumeration and it loses its practical value 

from the computational perspective.  Therefore, researchers have early paid attention 

to another algorithmic paradigm that includes a variety of heuristic methods.  The 

main motivation for developing heuristics for discrete network design problems is to 

enable those intractable problems to be studied and solved approximately, if not 

optimally (Pearman, 1974).  Computational efficiency and algorithmic tractability are 

the most important practical advantages of heuristic methods.  Heuristics provide a 

very attractive alternative approach in developing solutions for discrete network 

design problems. 

 

Existing heuristics for discrete network design problems were designed on the basis of 

a variety of different mechanisms and assumptions, from an analogous standard 

optimization technique with a tighter, though less restricted bounding process, to a 

problem-specific, empirically customized partition or aggregation strategy, from a 

statistical optimization approach with some assumption about the distribution of (local) 

optimal solutions, to a set of systematic, iterative solution updating procedure 
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specified by a metaheuristic framework.  We limit our attention in this review to only 

those that were of specific applicability to the discrete network design problem type 

we described above, since many heuristics were tailored to exploit the special 

characteristics of this certain problem type and hence their effectiveness and 

performance are heavily problem-dependent. 

 

2.2.3.2.1  Tree search 

 

As we mentioned above, a possible way to develop good heuristics is to adopt the tree 

search structure of the branch-and-bound method with some more powerful but less 

restricted bounds so as to eliminate a larger number of solution spaces and accelerate 

the search process.  Dionne and Florian (1979) first discovered the possibility of using 

the global travel cost change to take place of the local travel cost change in the 

bounding inequality, where the latter was originally defined by Hoang (1973).  Their 

new bounding notion can be written as, given A1 4 A2, 

 

  c , (x1, z1) + Dc (x A1 + a, z A1 + a)
a ! A1 - A2

! G c (x 2, z2) (2.40)

 

where D  denotes the total travel cost decrease in the objective function 

when link a  is added into network 

c (x A1 + a, z A1 + a)

A1.  This inequality is conceptually tighter than the 

one given by Hoang (see (2.29)), which provides a stronger bound for the elimination 

of non-optimal solution spaces.  However, its correctness cannot be guaranteed in 

general, in that there exists a risk that the optimal solution in a given network design 

problem be eliminated by the bounding process.  Thus, a branch-and-bound procedure 

based on this bounding principle can only be considered as an approximate method.  

Nevertheless, the computing experience reported in Dionne and Florian (1979) of 
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implementing this heuristic seems very encouraging that the overall probability of 

overlooking optimal solutions was almost ignorable so that the optimal solutions were 

obtained in most of the problem cases and all the problem solutions were within 

0.03% of optimality. 

 

2.2.3.2.2  Linear programming relaxation 

 

As we have seen, the incapacitated, fixed-cost version of discrete network design 

problems is formulated as a linear mixed integer program.  Relaxation of the integer 

constraints on the design elements results in a linear programming problem, whose 

optimal solution provides a lower bound to the original network design problem.  

Balakrishnan et al. (1989) first derived a linear programming relaxation problem from 

the network design formulation with disaggregate forcing constraints, since this 

relaxation version in general provides tighter bounds than that from the aggregate 

forcing constraints and then developed a dual-based technique for the solution of this 

linear programming relaxation problem.  This relaxation strategy provides a few 

attractive features that can accelerate the solution of the original problem: first, the 

dual-ascent technique can generate a relatively tight lower bound; second, the dual-

ascent technique can be used to identify a feasible network solution used as an initial 

point for other heuristics; third, it can be used to eliminate those design variables that 

will be excluded in the optimal solution so as to reduce the solution spaces.  The 

effectiveness of this method was demonstrated by an implementation of the 

combination of the dual-ascent procedure and a drop-and-add heuristic. 

 

A different linear programming relaxation method for the same problem was proposed 

and implemented by Lamar et al. (1990).  While their strategy is still to seek a lower 
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bound for the optimal solution through a dual-ascent method, the linear programming 

relaxation program is resulted from the original problem with aggregate forcing 

constraints.  The power of this bounding rule is enhanced by adjusting the capacity 

parameter, Ma , so as to produce a lower bound as tight as the one given by the 

relaxation program from the problem formulation with disaggregate forcing 

constraints.  Its advantage, however, lies in that the resulting relaxed linear program is 

equivalent to a shortest path problem, which can be easily solved. 

 

2.2.3.2.3  Approximate dynamic programming 

 

A set of recursive heuristic procedures have emerged in the literature for solving 

discrete network design problems, which imitates the algorithmic structure of the 

dynamic programming method used to solve some classical combinatorial problem, 

such as the knapsack problem.  While a dynamic programming procedure could be 

included in a broad range of branch-and-bound processes, it has its own distinct 

algorithmic characteristics and scope of applicability. 

 

Along with an application of the branch-and-bound method, Scott (1969) proposed 

two approximate rank-and-select procedures for solving the discrete network design 

problem with a constrained budget.  The first approximate procedure gets started with 

a minimum spanning tree solution and then proceeds forward by adding links toward 

to a feasible solution with as many as links included, while another procedure, named 

the backward procedure, initiates from a fully connected network solution and moves 

backward by deleting links.  The shared part of the two procedures is a subroutine 

used for comparing all the solutions generated by adding (or deleting) a candidate link 

into (or from) the network during the forward (or backward) process.  In Scott’s 
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design, the forward procedure stops when no more link can be added into the network 

without violating the budget constraint, while the backward procedure, when it is 

implemented, must work with the forward procedure together, in that the backward 

procedure stops deleting any link once the budget constraint is satisfied and the 

forward procedure continues the following search until no more link can be added.  

While these procedures have a similar recursive process to dynamic programming 

algorithms, the arbitrary rule of selecting a link to add (or delete) with maximizing the 

decrease (or minimizing the increase) of the objective function value ignores the 

combinatorial nature of the problem and makes them merely approximate algorithms.  

Dionne and Florian (1979) modified Scott’s backward algorithm by considering both 

the travel cost and capital cost changes caused by deleting a link instead of the travel 

cost only.  Numerical results showed that this modification made a considerable 

improvement on the problem optimality while the computational efficiencies of the 

two versions of the backward heuristics are comparable. 

 

Another heuristic with the rank-and-select operation was devised by Boffey and 

Hinxman (1979).  Their procedure calls a start from an empty network and continues 

adding new links into the network according to an ordered link list determined by the 

information about the changes of local travel cost and capital cost caused by adding 

each single feasible link.  This process stops once the allowed largest number of links 

in the network by the budget constraint is reached.  Now an earliest network solution 

on the list is backtracked that has not been used as a starting point of any adding 

process, and then a new ordered link list is generated from this starting point and a 

new link-adding process is resumed.  Such an adding-and-backtracking procedure is 

repeated until no feasible solution in the current list is available or a pre-specific 

number of iterations are exhausted. 
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Janson and Husaini (1987) applied a very similar heuristic method to Boffey and 

Hinxman’s to solve a fixed-cost network design problem and the same problem plus 

the combined trip distribution and traffic assignment (refer to (2.18)-(2.20)).  In both 

of these procedures, the “benefit-over-cost” ratios were used as the criterion to 

determine the order of selecting links.  However, there are two major discrepancies in 

Janson and Husaini’s algorithmic design: first, their procedure works in a backward 

fashion, starting from an entire connected network solution, i.e., the solution including 

all the candidate links, and gradually deleting non-preferred links; second, the 

calculation of the “benefit-over-cost” ratio, or more precisely speaking, the travel cost 

change due to deleting (or adding) a link, is based on a global impact rather than a 

local impact.  By considering the global optimality, of course, we would seemingly 

more confident on this global, network-wide travel cost evaluation in the ranking 

operation; however, in the meantime, additional computational cost needs to be paid 

for a larger number of objective function evaluations. 

 

From the perspective of algorithm design, in which the solution quality and 

computational efficiency are both the critical evaluation factors, there is no rigorous 

evidence showing which one is preferable to the other between these two methods.  In 

a following study, Janson et al. (1991) extended this approach with incorporating 

several extra algorithmic elements and adapted it to accommodate a multi-period 

transportation network design problem.  These added operations include, for each 

iterative operation, allowing multiple top candidate links rather than the only best one 

to be deleted from or added into the current solution, and allowing a swap between a 

link in the current solution and a link deleted previously. 
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2.2.3.2.4  Geometric analysis 

 

Geometric analysis can be often used to provide spatial insights on the problem 

structure and result in good approximate solutions in many combinatorial problems 

with Euclidean features.  A geometry-based heuristic method was proposed by Wong 

(1985) for a special Euclidean version of the basic fixed-cost, budget-constrained 

network design problem.  The special settings include that all the nodes are located in 

a unit circle, the travel cost and capital cost with any link are the Euclidean distance of 

this link, and the demand rate between any O-D pair is the unit rate.  The main 

operation of this heuristic is to apply a pre-specified capital cost threshold to filter 

candidate links to be added into the network.  The filtering process is repeated with the 

continuously decreasing threshold value until the network solution generated at the 

end of a filtering process is feasible.  A network built by connecting the closest node 

to the circle center with each of other nodes is used as the initial network solution.  

Though the above procedure was originally designed for the network design problem 

with the geometric characteristics described above, it may not be difficult to extend it, 

with some scaling modifications, to be applied to a general budget-constraint network 

design problem.  

 

2.2.3.2.5  Greedy search 

 

We may have noted that the main algorithmic designs in the heuristics listed above are 

quite problem-specific.  In the combinatorial optimization field, many difficult 

problems could also be satisfactorily solved under some general-purpose heuristic 

frameworks—metaheuristics—such as, for example, greedy search, genetic algorithm, 

scatter search, simulated annealing, tabu search, and nested partition, to name a few.  

 72



As we identified in our survey, the value of metaheuristics for solving discrete 

network design problems has been justified in a number of recent case studies.  

Greedy search is an optimization technique that belongs to the family of local search.  

A typical greedy search procedure starts from an initial solution and applies a 

systematic rule to search for and move to the best solution in the neighborhood until 

no improvement can be made by the rule.  It is often described as a “hill-climbing” 

strategy, in that the process of moving step by step along a trajectory to a local 

optimum mimics the path to a hill top.  The advantage of this technique applied to a 

discrete network design problem is that the highly complex functions and constraints 

can be relatively readily handled as a drop-and-add process at each algorithmic move. 

 

Billheimer and Gary (1973) devised a greedy search method for the incapacitated, 

non-congested network design problem, whose main algorithmic steps include the 

repeated use of a link elimination routine and an insertion routine.  Along these link 

operation routines, a bounding process is also established to reduce the number of 

solutions to be evaluated in the neighborhood.  Los and Lardinois (1982) applied a 

similar local search strategy with some improved algorithmic elements to solve the 

same network design problem.  To enhance the global optimality or, in other words, to 

increase the probability of local optima being the global optimal solution, their local 

search procedure was repeated by introducing multiple randomly generated initial 

solutions through a statistical optimization method. 

 

2.2.3.2.6  Genetic algorithm 

 

Genetic algorithms are one of stochastic global optimization techniques.  The basic 

idea of genetic algorithms was inspired by Darwin’s theory of evolution.  Its 
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algorithmic procedure imitates the natural selection and survival of the fittest in the 

evolution of species.  In the literature, there have been a few discrete network design 

studies carried out with the use of a genetic algorithm, including Xiong and Schneider 

(1992, 1995), Jeon et al. (2006) and Meng et al. (2008).  The target problem in all 

these studies is of the bi-level network design form.  A genetic algorithm can be 

described as a generation-to-generation evolution process, in which any generation is 

formed by a set of chromosomes (solutions).  Following a population of randomly 

generated initial individuals, each offspring in the new generation is produced by some 

basic operations such as crossover (i.e., recombination of two or more solutions), 

mutation (i.e., random variation of a solution), and reproduction (i.e., born a new child 

solution with some appropriate stochastic rules), in terms of the knowledge from its 

ancestors, which, of course, are typically the most useful knowledge.  These basic 

operations are often tailored to incorporate some problem-specific attributes or 

properties so that a better understanding about the problem structure could be 

absorbed in the generational process.  A typical genetic algorithm requires two things 

to be defined: a genetic representation of the solution domain and a fitness function to 

evaluate the solution domain.  A termination condition is typically used to determine 

when the generational process should stop. 

 

2.2.3.2.7  Simulated annealing 

 

Another metaheuristic that of the stochastic global optimization features is simulated 

annealing, the name and principle of which are inspired by annealing in metallurgy, a 

statistical mechanics technique involving heating and controlled cooling of a material 

to increase the size of its crystals and reduce their defects.  For a typical simulated 

annealing procedure, there are three control parameters: the starting temperature, the 
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number of iterations, and the factor by which the temperature is reduced at each 

iteration.  At each step of a simulated annealing process, the current solution is 

replaced by a random neighboring solution, chosen with a probability that depends on 

the difference between the corresponding function values and on the global 

temperature, which is gradually decreased during the process.  The dependency is such 

that the current solution changes almost randomly when the temperature is high, but 

increasingly “downhill” as the temperature goes to the zero level. The allowance for 

“uphill” moves prevents the method from being stuck at local minima.  Simulated 

annealing has been applied to solve both discrete and continuous network design 

problems.  In discrete problem cases, for example, Drezner and Wesolowsky (1997, 

2003) and Cantarella et al. (2006) respectively applied a simulated annealing 

procedure to tackle a special discrete network design problem, in which the increasing 

problem complexity arises from the lane-based capacity allocation that each link to be 

designed includes the following allowable decisions: no-built scheme, two-way 

scheme, and two one-way schemes. 

 

2.2.3.2.8  Tabu search 

 

Tabu search, belonging to the class of local search techniques, is another metaheurisic 

strategy that has been employed to solve discrete network design problems.  As 

similar to other local search methods, a tabu search process searches the neighborhood 

of the current solution and moves to the best solution in the neighborhood.  Such a 

search process iteratively continues until some stopping criterion is satisfied.  Tabu 

search enhances the performance of a local search method by using memory structures, 

in which the oscillatory phenomenon of repeatedly visiting previous solutions on the 

search itinerary can be avoided by marking a recently visited solution as a tabu and 
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excluding it from the allowable solution set.  To mitigate the excessive problem in 

assigning tabus, an aspiration criterion is in general suggested so as to override the 

otherwise excluded solutions.  Intensification and diversification rules are also often 

used, in order to tailor the search direction and distribute computational efforts in 

different search regions.  Mouskos (1991) first investigated the effectiveness and 

efficiency of a tabu search method in finding optimal network designs for a set of 

user-equilibrium network design problems.  His computational results showed that 

tabu search is an efficient method in finding high-quality solutions. 

 

It has been realized that a capacitated network design problem is considerably more 

difficult to solve than an incapacitated one.  Crainic et al. (2000) successfully devised 

a simplex-based tabu search procedure for lessening the algorithmic challenges arising 

from the capacitated problem.  The unique feature of their procedure is that an 

integrated rather than separated functional form is employed of discrete decision 

variables and continuous flow variables in the algorithmic design.   On the basis of a 

path-based formulation of the capacitated network design problem, the procedure 

combines simplex-based pivot moves with column generation to yield a search that 

explores the space of the continuous path flow variables, while evaluating the actual 

mixed integer objective of the original problem.  An important contribution from this 

study is that it demonstrates an effective method of combining the search power of a 

metaheuristic with the structural analysis capability from linear programming. 

 

2.2.3.2.9  Partition, aggregation and reduction 

 

Researchers also sought ways to approximate the discrete network design problems 

themselves instead of the solutions, so as to reduce the computational complexity to 
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the level that can be accommodated by the standard exact algorithms.  Burstall (1966) 

employed a network partition strategy to decompose an electricity power supply 

network design problem into a series of local subproblems that were assumed as 

approximately spatially independent and then solve these local optimization problems 

separately.  An approximate optimal solution is then obtained by combining the 

solutions of all the subproblems. 

 

Chan (1976) and Chan et al. (1989) developed a three-stage process to solve large 

transportation network design problems, in which a heuristic procedure first transfers 

the original problem to be an abstract problem with controllable size by categorizing 

and aggregating network nodes and links, then a branch-and-backtrack algorithm is 

employed to solve the abstract problem, and finally the abstract optimal solution is 

translated back to the original disaggregate network.  An alternative aggregation 

strategy through extraction is proposed by Haghani and Daskin (1984, 1986), in which 

minor links and nodes are deleted from the original network and travel demand rates 

in the reduced network are adjusted accordingly. 

 

The introduction of the user-equilibrium constraint into a transportation network 

design problem is behaviorally desirable but adds extra modeling complexity and 

computational burden.  Though the standard branch-and-bound algorithm was 

successfully tailored for the optimal solution of this particular network design case 

(see LeBlanc, 1975), the lower bound formed by the use of the system-optimal traffic 

assignment in general is rather loose, which means that a relatively long enumeration 

process should be expected.  A formulation-approximation approach suggested by 

Poorzahedy and Turnquist (1982), as we introduced above, relaxed the required 

computational cost to a large extent.  The replace of a user-equilibrium objective 
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function to the original system-optimal function reduces the bi-level discrete network 

design problem to a single level. 

 

In addition to these problem-approximation techniques, continuous network design 

problems with capacity expansion (or reduction) are often regarded as approximate 

versions of the corresponding discrete problems.  Although, of course, there are many 

network control and management problems (e.g., traffic signal control and ramp meter 

operation) to which the continuous network design models are particularly applicable, 

relaxing a discrete network design problem to its corresponding continuous version 

can greatly reduce the computational complexity.  An example of this type of 

relaxation can be seen in Steenbrink (1974b).  However, the applicability and extent of 

using such a relaxation in solving a realistic network design problem may be still 

questionable. 

 

2.2.3.2.10  Other heuristic procedures 

 

Expert systems and artificial intelligence techniques have also been introduced into 

solving discrete network design problems as alternative heuristic approaches.  For 

instance, Tung and Scheider (1987) developed a knowledge-based expert system to 

handle a large-scale, multi-objective discrete network design problem, in which a 

knowledge base, which contains the specific heuristic rules for solving the target 

problem, was developed by a human-machine interaction method.  Xiong and 

Schneider (1992) and Wei and Schonfeld (1993), with realizing the computational 

bottleneck to most of discrete network design algorithms is the evaluation of the 

objective function, especially to those congestion-dependent networks, suggested 
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using neural networks to approximate objective function values during the search 

process so that a large part of computing cost could be saved. 

 

2.2.4  Summary 

 

The synthesis of discrete network design models and solution methods presented 

above provides us with many useful modeling insights and algorithmic ingredients in 

the model formulation and solution development.  Two of them are summarized below. 

 

On the modeling side, we want to emphasize the importance of the model formulation 

and selection in modeling a discrete network design problem.  Formulating a proper 

optimization model, to some extent, is also an optimization process subject to multiple 

factors and requirements, such as the purpose and scale of the target problem, model 

applicability and dimensionality, modeling rationale and precision, individual 

behavior assumption, as well as the available computing resources.  On the one hand, 

we need to make the model reflect the basic structural relationship among all the 

modeling components and capture the synthetic behavior of the system; on the other 

hand, we must manage to represent the model in a tractable mathematical form and 

control the problem-solving cost in an acceptable range.  In many cases, the model 

formulation and solution development should be considered simultaneously.  In other 

words, we need to maintain a trade-off between the model complexity and tractability 

at the model formulation stage. 

 

On the solution side, we want to clarify that the algorithms and heuristics presented 

above are not distinctly different methods from each other; instead, many of these 

solution methods share similar algorithmic principles and components.  In fact, some 
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methods could be jointly used to produce a more efficient and effective method.  For 

example, to give a few, an approximate solution obtained by a heuristic can be often 

used as a good initial solution for a standard optimization-based method; a dual-ascent 

method may be used to accelerate the elimination of non-dominant solution spaces in 

the application of another optimization-based technique; many local drop-and-add 

algorithmic rules are often incorporated into a metaheuristic procedure.  Multiple 

metaheuristic methods could also be used jointly in a so-called hybrid metaheuristic 

framework.  An instance of hybrid metaheuristics is to combine simulated annealing 

and tabu search, in which simulated annealing provides a stochastic search framework 

while tabu search is used to avoid the cycling risk and escape local optima. 

 

Discrete network design problems have been extended to include multiple design 

dimensions and various design components.  With these extensions, the problem 

complexity and the number of decision variables and solution spaces are increased to 

an unprecedented level and accordingly pose a new challenge in the solution 

development.  The following chapters discuss the formulation, solution and 

application of such a complex network design problem encountered in evacuation 

planning. 
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CHAPTER 3 
 

MODEL FORMULATIONS 
 
 
 

All models are wrong, but some are useful. 
—George Box 

 
 

This chapter describes an optimal evacuation network model and an integrated 

evacuation network optimization and emergency vehicle assignment model that can be 

used for evacuation planning in urban traffic networks.  The two models are actually 

related to each other, where the integrated model can be obtained by combining the 

optimal evacuation network model and an emergency vehicle routing model.  

Therefore, many fundamental assumptions and settings in our modeling framework 

are shared by the two models.  In the following, we first present these common parts 

of the two models, including the network representation and notations, travel behavior 

characteristics and system objective settings, and then describe the modeling rationale 

and functional forms of the models in detail. 

 

3.1  Network representation and notation 

 

An evacuation network can be denoted by a directed graph, G= (N, A), where N  and 

A are the sets of nodes and links in the graph, respectively.  To model the lane-based 

network details, each intersection and roadway section in the network are represented 

by an intersection subnetwork and a roadway-section subnetwork, respectively.  We 

call such a graph an expanded network that consists of intersection subnetworks and 

roadway subnetworks.  Accordingly, the link set A in an expanded network consists of 

two exclusive parts: intersection link set AI  and roadway-section link set AR , i.e., 
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A = AI , AR and 4 = AI + AR.  As we will specify in details later, links in a roadway 

subnetwork have different properties from those in an intersection subnetwork under 

our network settings: a roadway link is treated as an ordinary graphical link, 

associated with capacity, cost, and other travel supply-demand attributes, while an 

intersection link is an impedance-free link and only functions with providing the 

network connectivity. 
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Figure 3.1  Intersection subnetwork and roadway-section subnetwork 

 

An intersection subnetwork and a roadway section subnetwork are illustrated in Figure 

3.1.  The intersection subnetwork consists of 8 nodes and 12 links (if all the legs of the 

intersection are two-way roadways and all of the through and turning movements are 

allowable).  The roadway section subnetwork between the two intersections includes 6 

nodes and 4 links, where each of the lane directions is represented by a pair of 

consecutive directional links and for each traffic direction there are one upstream node, 

downstream node and intermediate node.  The upstream and downstream nodes, e.g., 

nodes k , l , j  and t, provides connections between the roadway section and its 

adjacent intersections.  The intermediate nodes are assigned as traffic source nodes, 

e.g., nodes w and x .  For the modeling convenience, it is arbitrarily assumed that all 
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the traffic collected by a roadway section from the proximal street block originates 

from its intermediate node. 

 

The notations used in the models are listed below.  Note that both link-based and path-

based flow variables are used.  From Figure 3.1, we know that there are two types of 

links in this network representation: roadway-section links and intersection links.  As 

we will see below, the two sets of links in an evacuation network share some 

fundamental graphical characteristics but have different capacity and connectivity 

properties.  In the following notations, unless otherwise specified, link h→k  can be 

referred to as either a roadway section link or an intersection link. 

 

Parameters and sets: 

 

ckw   single lane capacity of link k→w, where k→w is a roadway section link 

uhk   capacity of link h→k , where h→k  is an intersection link 

dhk   length of link h→k , where h→k  may be a roadway section link or an  

intersection link 

thk0   free-flow travel time on link h→k , where h→k  is a roadway section link or an  

intersection link 

bo   net flow rate at node o 

nkl,jt  total number of lanes of two adjacent link pairs k→w→l  and j→x→t in a  

  roadway section between two intersections 

Sk   set of the starting nodes of links pointing to node k  

Rt   set of the ending nodes of links emanating from node t 
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Variables: 

 

nhk   n mber of lanes on link h→k , where h→k  is an intersection link or a road

  secti

u way  

on link 

ved lanes for emergency vehicle use on link →

m n →  (

ln hk  number of reser h k  

xhk   evacuation flow rate on link h→k  

lx h h k lx hk = 0k  e ergency vehicular flow rate o  link  or 1) 

  f n of

an e ion link 

thk  travel time on link h→k , where thk  is a unctio  and n xhk hk  

y
hk

  connectivity indicator of link h→ , where h→k  is  inters ctk ( y
hk = 0 

or 1) 

zkl   connectivity indicator of link pair → → , where → →  is a pair of 

  ation (O-D) pair 

k w l k w l

consecutive roadway links (zkl = 0 or ) 

evacuation flow rate between origin-destin

1

r–s qrs

 evacuation flow rate on path k  between O-D node pair r–s f rs
k

 true travel time on path k  between O-D pair r–s tk
rs 

rs  perceived traffic time on path  k  between O-D p i  r–s Tk a r

  travel time perception error on path k  between O-D pair r–s pk
rs

dhk, k path-link incidence indicator denoting the relationship between lirs   nk →  and  h k

path k  (dhk, k
rs

= 0 or 1) 

 

he two connectivity indicators,  and T y
hk

zkl , are 0-1 dummy variables.  When 

 in ti , it 

.  Whe

th are all 

y
hk = 1, 

it indicates that a positive flow on tersec on link h→k  is allowed; when y
hk =

indicates that link h→k  is blocked and accordingly no flow is on link h→k n 

zkl = 1 (or nkl H 1  it indicates that at least one lane along a pair of consecutive 

w→l , is used; when zkl = 0 (or nkl = 0), it indicates that 

k→w→l  vanishes (i.e., the lanes origina igned is traffic direction 

0

),

roadway links, k→

lly des  for 
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r r  feve sed or the contraflow direction).  The path-link incidence indicator dhk, k
rs  

determines the relationship between link h→k  and path k  between O-D pair r–s.  If 

dhk, k
rs

= 1, it means that link h→k  is on path k ; if dhk, k
rs

= , otherwise.  The network 

nkl  and 

0

configuration decision variables, zkl , nd y
hk

, specify the schemes of 

lane reversal and crossing elimination, respectivel

 

 a nhk  and 

y. 

3.2  Travel behavior 

 is critical for an evacua odel to properly specify individuals’ travel 

ere are 

as 

 Even 

going 

stead of trying to assume

own 

 

It tion planning m

choice behaviors under emergency conditions.  An emergency occurrence is such a 

unique, one-time event that evacuees have much more uncertainty in choosing 

destinations and routes than in their daily commuting travels.  In some cases, th

a set of prepared public refuges by the emergency management authority, while in 

many other cases, evacuees are only prompted to leave the emergency area as soon 

possible.  Many evacuees may not choose a specific refuge or place outside the 

evacuation network as their destination before setting out their evacuating trips. 

if some evacuees have or are given a destination, they may not be able to choose the 

fastest routes, to get to the destination, because of the lack of day-to-day driving 

experiences within the evacuation traffic under emergency situations.  Numerous 

experiences showed that evacuees tend to select their evacuating routes and 

destinations based on their own perceptions of danger and observations of on

traffic conditions (Golding and Kasperson, 1988). 

 

In  that evacuating behaviors could be “fit” into rational, 

engineered notions, an evacuation plan should be built bottom-up from what is kn

about actual behavior.  We realize that many evacuees in an emergency area would 
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make their travel choices with some basic knowledge of network connectivity, limite

information from an evacuation order announced by the authority, and their own 

perceptions of the emergency situations.  Any rational evacuees would aim to leav

the hazardous area as soon as possible.  A behavior implication consistent with this 

fact is that an evacuee often chooses a perceived fastest route to leave the hazardous

area first without considering a specific evacuation destination.  Accordingly, an 

evacuation egress would not be selected or perceived by an evacuee prior to his ro

choice.  A more reasonable conjecture about the evacuating population’s travel choice

behavior is that they determine destination and route choices simultaneously. 

 

d 

e 

 

ute 

 

ithout resorting to complex modeling mechanisms, an integrated destination and 

n 

ng route 

he integrated route and destination choice of an evacuee should be made in terms of 

ot 

W

route choice concept can be readily modeled by adding a super dummy destination 

node to the original evacuation network and connect each exit node to this super 

destination by a dummy link with zero travel impedance.  With this one-destinatio

network representation, we do not need to explicitly consider the destination choice 

modeling in an evacuation network optimization model; instead, an exit node would 

be determined as a virtual destination, when one chooses a route to the super 

destination.  In other words, a destination choice is implied in the correspondi

choice under this one-destination network setting. 

 

T

the prevailing traffic conditions over the evacuation network.  Without precisely 

knowing about the traffic information over the network, however, he or she may n

properly choose a route and destination to minimize his or her own evacuation time.  

A more reasonable routing behavior is that given a transportation network with or 

without a publicly announced evacuation plan, any evacuee would choose an 
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evacuating route based on his own travel time perception.  Individual perceive

travel times in general are with some perception errors and are defined as random 

variables over the evacuating population.  Therefore, a stochastic user-optimal flow

assignment may be the best in describing an evacuation process with individual 

perception errors. 

 

d route 

 

 the case of an integrated evacuation network optimization and emergency vehicle 

f 

se 

ince the emergency vehicles are generally dispatched from one or more emergency 

e 

 in 

nd 

g a 

vehicle assignment. 

In

assignment, the emergency vehicle fleet typically consists of only a limited number o

vehicles (compared to the number of vehicles in the evacuation population) and is 

assigned with one or a few reserved routes.  As a result, the routing behavior for the

emergency vehicles is tightly limited (to the reserved route) and no serious congestion 

effect along this route needs to be considered.  The route selection for the emergency 

vehicle assignment can be simply based on free-flow travel times. 

 

S

centers outside the disaster area, there is an origin choice issue associated with its 

route choice.  That is, in an evacuation network, which node on the boundary of th

network should be chosen as the entry point for an individual emergency vehicle?  

This entry point is defined as the origin node for the emergency vehicle assignment

the evacuation network.  Similar to the integrated destination and route choice 

modeling mechanism with the evacuation flow modeling, an integrated origin a

route choice setting can be applied to the emergency vehicle assignment.  By addin

super dummy origin node to the evacuation network and connecting each candidate 

entry point to this super origin node by a zero-travel-cost dummy link, the origin 

choice can be completed simultaneously with the route choice for the emergency 
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3.3  System objectives 

 is one of the most important efficiency indicators that are used 

 evaluate the performance of an emergency evacuation plan.  The objective of an 

n as 

e  and  are indexes of the end nodes of link → , and  and are t

affic flow rate, travel time, and number of lanes of link → , and 

(3.2)

e

 

Network clearance time

to

evacuation planning model may be set as to minimize the total travel times of all 

evacuees or to minimize the maximum of individual evacuation times.  The latter is 

positively related to the network clearance time.  The two objectives can be writte

 

min xhk $ thk(xhk, nhk)! , (3.1)
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wher  r  and  are the indexes of an origin and exit node, respectively,  is the in

f a path between O-D node pair

s k dex 

o  r–s, and  is the travel time of path  between rs
kc k

nodes r  and s , which is the function of the traffic flow and number of lanes of all the 

links on path k , i.e., rs
kx  and rs

kn . 

 

The objective electio or an acus n f ev ation network optimization model depends on the 

uration from the time of disseminating an evacuation order to the expected 

the 

d

occurrence time of the hazardous event.  The allowable time for a safe evacuation 

varies in terms of the nature and intensity of the hazardous event.  To clarify 
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evacuation outcomes from different objective functions, a simple example consistin

of two evacuation planning scenarios is illustrated in Figure 3.2.  The evacuation 

performance of each scenario is represented by a cumulative evacuation curve, which 

depicts the relationship between the cumulative number of evacuated people and t

time

g 

he 

ig

inimizing the maximum of individual evacuation times 

                                                

†.  It is readily observed that the area between the vertical axis and a cumulative 

evacuation curve denotes the total evacuation time, while the time moment of the 

upper end of a curve indicates the maximum of individual evacuation times. 
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F ure 3.2  A performance comparison of minimizing total evacuation time and 

m

 

 
† In general, such an evacuation-versus-time curve reflects the real evacuation performance only in a 
dynamic evacuation process.  We use it here merely as an illustration for the purpose of evaluating 
planning scenarios. 
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In this illustration, it is assumed that the two cumulative evacuation curves are the 

2).  

have 

 

 is 

revious evacuation studies showed that the demand departure rates of many 

is 

d 

 

, 

 

kee 

 

results respectively of using the objectives of minimizing the total evacuation time 

(scenario 1) and minimizing the maximum of individual evacuation times (scenario 

The two curves must have (at least) a crossing point.  The time moment of this 

crossing point is critical, indicating that by this time the two planning scenarios 

evacuated the same number of people from the hazardous area.  Let us then compare 

the evacuation efficiency of the two scenarios given the expected time of a hazardous 

occurrence.  If the hazardous event is expected to occur before the critical time, e.g., at

time point 1, we may believe that scenario 1 is better since it has evacuated more 

people than scenario 2 before the hazardous event; if the expected occurrence time

at time point 2, the same reason can be applied to conclude that scenario 2 is a better 

evacuation plan. 

 

P

evacuation cases have such a temporal pattern that, after the evacuation order 

broadcasted, the initial departure rate is relatively low in a short preparation perio

(say, 30-60 minutes), and then the departure rate significantly increases and quickly

reaches its surge level as well as this surge departure rate lasts for a rather long period

until the most of the evacuees (say, 90 percent) leave the emergency area.  As an 

illustration, example cumulative demand generation curves retrieved from several

nuclear power station evacuations in the northeastern U.S. (including Vermont Yan

in Vermont, Pilgrim in Massachusetts, and Nine Mile Point and Indian Point in New 

York) are presented in Figure 3.3.  All these cases clearly show a similar temporal 

demand generation pattern, in which the peak departure rate dominates the whole 

evacuation period, typically spanning from 40-60 minutes to 2-3 hours.  In fact, the

major part of the evacuating demand is generated at this peak departure rate, say 
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around 80 to 90 percent.  The most important feature is that the departure rate is 

relatively stable during the peak period. 
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Figure 3.

herefore, it is reasonable to focus on the evacuation network optimization for the 

rk 

ation 

                                                

3  Temporal evacuation generation distributions†

 

T

surge level of the evacuation demand rate, as an approximation to the optimal netwo

solution applicable for the whole evacuation process.  Given the stable travel demand 

pattern during the surge period, a static network optimization model can satisfy the 

requirements of modeling rationale and precision.  Without considering the time-

dependent demand variation explicitly, the objective of minimizing the total 

evacuation time is preferred to minimizing the maximum of individual evacu

times for an evacuation planning problem, which is a more appropriate and direct 

surrogate of the network evacuation performance measure. 

 

 
† Source: Goldblatt and Weinisch (2005). 
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Compared to the objective of the evacuation network optimization problem, the logic 

 

 

ng on 

, 

he prior treatment of emergency vehicle routing inevitably imposes extra restrictions 

or 

ffic are 

tal 

                                                

of the emergency vehicle routing is relatively simple, in that its typical task is to find a

fastest route from the outside emergency area to a designated inside site (or an area) 

and reserve a certain number of lanes along this route for its exclusive use, where the

number of lanes depends on how many emergency vehicles are dispatched.  The 

number of emergency vehicles may range from several tens to hundreds, dependi

the emergency nature and scale.  This number, however, is small compared to the 

whole evacuation demand.  Given both the evacuation network optimization and 

emergency vehicle assignment objectives, the latter often receives the top priority

since, as we described previously, those emergency management officials and 

technical experts may have the most urgent tasks during an emergency period. 

 

T

on the network capacity and connectivity and hence affects the evacuation network 

performance.  Along the reserved emergency vehicle route, the remaining capacity f

evacuating traffic is reduced accordingly.  At the intersections passed by an 

emergency vehicle route, allowable turning movements for the evacuating tra

more limited, where the full crossing elimination requirement needs to be maintained 

subject to additional emergency vehicle turning movements†.  In view of these 

interactions between the different objectives, the objective of minimizing the to

evacuation time should be pursued subject to the prior emergency vehicle routing 

requirement. 

 

 
† In the case that the size of emergency vehicle fleet is relatively small, we may not need to strictly 
maintain a crossing-conflict prevention constraint between the evacuating traffic and the emergency 
vehicles.  With the assistance of traffic management personnel at an intersection, the evacuating traffic 
can be temporarily stopped so as to allow the emergency vehicles to pass, which should not introduce 
considerable traffic delays to the evacuating traffic if the number of stopping times is minimal. 
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3.4  An evacuation network optimization model 

e propose a bi-level network design model for the evacuation network optimization 

jective of 

in  (3.2)

here the travel time of link → , is a function of the link flow, , and the 

k n e id

, 

 0 xhk

 

W

problem, since the stochastic traffic flow pattern needs to be specified by an 

equivalent mathematical program (Sheffi, 1985) in the lower level and the ob

this program is different from the system performance measure given by the upper 

level.  The upper-level objective function is, 

 

m z (x, n) = xhk $ thk(xhk, nhk)
hk

!

 

w h k , thk($) xhk

number of available lanes, nh   For a vacuation traffic network, the w ely used 

Bureau of Public Roads (BPR) function is suggested to calculate the link travel time

 

.

 thk(xhk, nhk) = thk $ 1 + a chk $ nhk
d n> H

b

, (3.3)

here  and  are both link-specific parameters.  As we specified previously, the link 

a

here are capacity constraints for roadway links, which confines the total capacity of a 

subnetwork in Figure 3.1, the capacity constraints are written as, 

 

w  a b

perform nce function is only applied to the links in roadway-section subnetworks.  

The travel time with an intersection link is assumed to be zero. 

 

T

roadway section to be shared by its two reverse traffic directions.  Given the fixed lane 

capacity, the capacity exchange between the two directions of the roadway section can 

be represented by the numbers of their lanes.  Refer to the example roadway 
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  nkl + njt = nkl,jt, (3.4)

  and integral, (3.5)

 

 is the f lanes of the two directions (i.e., → →  and 

→ → ) of the roadway section.  In the case of a roadway section partially 

anes 

 This 

set of constraints regul es th

ks in the intersection 

bnetwork.  By referring to Figure 3.1, these constraints have two forms, namely, 

(3.6)

 , and (3.7)

   or , (3.8)

 

th irs w onstrai s w that a potential crossing conflict between link

→  and →  and between any two of links → →  and → , respectively, 

constraints, it me r  s e c d other 

 nkl , njt H 0

where total number onkl,jt k w l

j x t

occupied by the emergency vehicle route, constraint (3.4) should be written as 

+ jt = nkl,jt - ln kl  - ln jt , where ln kl  (or ln jt ) indicates the number of the l

reserved for the emergency vehicle use on link k→w→l  (or link j→x→t). 

at e lane reversal configuration. 

 

We also have a set of crossing-elimnation constraints for lin

nkl n

su

two-link constraints and three-link constraints, as follows, 

 

  y
{k + y

nc
G 1, 

 y
hk + y

tv + y
nc

G 1

y
{k

, y
nc

, y
hk

, y
tv = 0 1

where e f t t o c nts ho s 

{ k n c h k , t v n c

is not allowed in our evacuation plan.   In other words, by either of the above 

ans that at most one link can car y a po itiv  traffi flow an

links crossing this one must be disallowed.  At a four-leg intersection, there exist 16 
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potential crossing-conflict points, which leads to 4 two-link constraints and 4 three-

link constraints.  In the case that the assigned emergency vehicle route goes through 

this intersection, for example, the emergency vehicle route along the direction n→c , 

y
nc = 1 must be incorporated into constraints (3.6) and (3.7) as an input element. 

 

eantime, an inherent relationship between a roadway link connectivity In the m

indicator and its corresponding number of lanes needs to be maintained: for example, 

given zkl  and nkl  in Figure 3.1, if zkl = 1, then nkl H 1, and vice versa; if zkl =

nkl = 0, and vice versa.  Thus, the following set of inequalities is used to describe this 

relationship: 

  

0, then 

 

zkl G nkl , and (3.9)

  zkl M H nkl , (3.10)

 

where zkl  is a 0-1 binary integer,  is a non-negative integer, and nkl M  is an arbit

fficiently large constant.  Actually, 

rary, 

su M  is not necessarily a very large number, as 

long as M H max
kl,jt

(nkl,jt). 

 

As we m  aentioned earlier, n evacuation network is assumed to be a stochastic user-

quilibrium network, which is specified by the lower-level subproblem.  An equivalent 

xhk rs rs  (3.11)

e

program to the stochastic user-equilibrium assignment was suggested by Sheffi and 

Powell (1982).  The objective function of the program has the following functional 

form: 

 

min xhk thk(xhk, nhk) - thk(~) d~
0
#

hk

! - qrs E min
k

(Tk ) | t (x)9 C

rs
!

hk

!

 95



 

The f  (irst term of the above objective function is the total travel time i.e., the fun

 be minimized in a system-optimal traffic assignment).  The second term is the 

 

ction 

to

function to be minimized in a deterministic user-equilibrium traffic assignment.  In the

third term, qrs  represents the traffic flow rate between O-D pair r–s; the compone

E min
k

(Tk ) | trs(x)9 C, k !

nt 
rs Krs , where Krs  is the set of routes between pair r–s, is the 

expected pe eived minimum travel time over all the routes between pair rc r–s.  The 

k , inclu s two parts, the actual travel time, t , and th

individual perception error, pk
rs , i.e., Tk = tk

rs + pk
rs. 

 

In the lower-level subproblem  a set o

perceived route travel tim e 

, f capacity constraints are obviously required.  

or consecutive link pair, → → , in the roadway subnetwork in Figure 3.1, the 

d (3.12)

 , (3.13)

r l → tion subnetwork, the capacity constraints are, 

e, T rs de rs
k

rs

F k w l

capacity constraints are, 

 

  xkw , xwl G ckl nkl , an

 xkw , xwl H 0

 

and fo ink  in the intersec h k

 

  xhk G uhk yhk
, and (3.14)

 . (3.15)

ver, a s  of flow conservation constraints also need to be satisfied.  Consi

e source nodes (i.e., nodes  and ) in the roadway subnetwork in Figure 3.1.  

There are two flow conservation conditions associated with the lane reversal 

 xhk H 0

 

Moreo et der 

th  w x
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configuration.  When the roadway allows bi-directional traffic (even if one direction 

with a reduced number of lanes for the contraflow of its reverse direction), the traf

generated from the origin node on any direction is accommodated by its corre

traffic lane(s).  The flow conservation constraints for origin nodes w and x  for the 

two-way traffic operation are respectively, 

 

  

is 

fic 

sponding 

xwl - xkw = bw, and (3.1

  

6a)

xxt - xjx = bx. (3.16b)

On the other hand, when one traffic direction (e.g., → →

ximum contraflow capacity on the other direction (i.e., → , the tr

riginating from the origin node (i.e., node ) on this direction will be carried by its 

 

) is fully prohibited for  j x t

the ma  k w→l) affic 

o s

reverse direction.  It is equivalent to setting the net traffic flow from node x  to be 0 

and accordingly increasing the net flow from node w to bw + bx.  For this one-way 

traffic operation, the flow conservation constraints for origin nodes w and x  are: 

 

  xwl - xkw = bw + bx, and (3.1

  

7a)

xxt - xjx = 0. (3.17b)

The above two lane operations can be integrated into the following set of flow 

vation constr nts, with introducing the 0-1 dummy variables 

 

conser ai zkl  and zjt , which 

are the connectivity indicators of link pairs → →  and → →  respectively, k w l j x t

 

  xwl - xkw = bw zkl + bx (1 - zjt), and (3.18a)
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  xxt - xjx = bx zjt + bw (1 - zkl). (3.18b)

t of node flow conservation co traints also specifies the O-D demand ra

here source flows  and  may be transferred between source nodes  and 

 

This se ns tes, 

w  bw bx w x , 

which is dependent on the values of zkl  and zjt . 

 

The flow conservation constraint for other no s de (except for the destination node(s)) 

as a standard form with the net incoming or outgoing flow equal to 0.  For example, 

(3.19a)

 . (3.19b)

 modeling and solution convenience, the flow conservation constraints (

) and (3.19)) need to be converted to the O-D flow conservations and are 

c 

rs , (3.20)

 rs rs , and (3.21)

rs rs  

these constraints are in a consistent representation form with the objective

nction of the lower-level subproblem (i.e., (3.11)).  In the above constraints, O-D 

h

for node k  and t in Figure 3.1, we have 

 

  xkw - k

h ! Sk

! = 0, and xh

 xxt - xtv

v ! Rt

! = 0

 

For the i.e., 

(3.18

represented by the following constraints denoted by link-based and path-based traffi

flow variables, 

  

  qrs = fk
k
!

 xhk = fk dhk, k
k
!

rs
!

  tk = thk(xhk, nhk)dhk, k
hk

! , (3.22)

 

where  

fu
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demand qrs  is a function of the node net flows (i.e., bw  and bx ) and link connectivi

indicators (i.e., 

ty 

zkl  and zjt ), and path-link incidence indicator dhk, k
rs  is determined by 

the link connectivity indicators. 

 

For the discussion convenience, we refer to the evacuation network optimization 

odel described above the basic model. 

timization and emergency vehicle 

ssignment model  

he basic evacuation network optimization model, we also 

onsidered the following bi-objective evacuation planning problem: minimization of 

me. 

stead of a single optimal solution (or a set of equivalent optimal solutions).  A set of 

re commensurate 

in quantities, a weighting coefficient can be specified for each individual 

                                                

m

 

3.5  An integrated evacuation network op

a

 

As an extension of t

c

the total evacuation time and minimization of the emergency vehicle routing ti

 

In general, optimization of a multi-objective system results in a Pareto-optimal set 

in

solutions are said to be Pareto-optimal if none of these solutions can dominate any 

other solutions in the set on all the objective measures.  In the general multi-objective 

system paradigm, there have been a number of modeling mechanisms used to simplify 

the analysis and evaluation of multi-objective systems‡.  Among them, some widely 

used multi-objective problem formulation approaches may include: 

 

• Weighted combination.  When different objective measures a

 
‡ An early summary and annotation of multi-objective transportation systems optimization studies can 
be found in Current and Min (1986). 
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objective function and a new objective function results, which is a combination

of the products of all objective functions and their respective weighting 

coefficients.  For example, to evaluate the network performance of an urban 

traffic network, a generalized cost of the traffic system is often defined a

weighted sum of total travel time and monetary cost, where the “value of time” 

is the weighting coefficient to convert travel time into monetary cost. 

Constraint surrogate.  The constraint surrogate strategy allows us to tu

 

s a 

 

• rn a 

multi-objective system into a set of single-objective systems in an alternative 

 

r 

 

• roach is a 

special case of the more general hierarchical optimization.  If the objectives of 

ed 

re 

way.  A single objective is selected as the system objective while other 

objective functions are surrogated by corresponding constraints given that an 

acceptable set of values of these objective functions can be specified in 

advance.  An overall evaluation of the multi-objective system will be based on

the optimization results of the whole set of single-objective systems.  Fo

example, in a multi-objective network design problem, the objective of 

minimizing design (or construction) costs may be written as an inequality 

constraint with an upper bound of design budget, while the objective of 

minimizing user transport costs is kept as the system objective. 

Lexicographic optimization.  The lexicographic optimization app

a system can be clearly ranked in a descending order of importance, the top 

(most important) objective is first optimized with the relaxation of all other 

objectives, and then in turn the next objective is optimized subject to an 

additional constraint that limits feasible solutions to not exceed a pre-specifi

fraction of the last optimal objective value and so on until all objectives a
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exhausted.  When the fraction is zero, it reduces to the lexicographic 

optimization.  In a multi-modal transportation system analysis, we may apply

the lexicographic optimization method to optimize each modal system

of a predetermined priority hierarchy. 

s no universal guideline for the selectio

 

 in terms 

 

There i n of multi-objective problem 

rmulation techniques, though in some cases one technique is apparently preferred to 

on the 

cy 

ion 

ation problem is written in a vector 

ptimization form as follows. 

(3.23)

where  and  denote the emergency vehicular flow and the evacuation traffic flow, 

spectively, and  represents the set of numbers of lanes on all the roadway sections. 

ssignment simply results in a one-origin, one-destination shortest-path problem with 

a capacity constraint: 

fo

others.  For a specific problem, selection of a technique is highly dependent 

problem nature and modeling approach as well as the solution method to be used.  

Given the modeling rationale and requirements for our bi-objective problem, we 

suggest a lexicographic optimization problem: the objective of minimizing emergen

vehicle routing time is of the more importance while minimizing the total evacuat

time is given as the second objective. 

 

The bi-objective lexicographic optimiz

o

 

min z1 ( lx )
= G z2 (x , n)

 

lx x

re n

 

The first objective of minimizing the transportation time of the emergency vehicle 

a
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min z1 ( lx ) = lx hk thk0!  (3.24)

s.t.  lx! - lx!

hk

hk

k

kh

k

= 1    (3.25)

   (3.26)

 (3.27)

h= e

  lx hk

k

! - lx kh

k

! =- 1 h = d

     lx hk

k

! - lx kh

k

! = 0 h ! N - d, e" ,

  ( ln hk - nr) lx hk H 0 (3.28)

 (3.29)

where  and  are the node indexes of the destination to which the emergency 

s are dispa hed and the assumed super origin, respectively,  is the free

avel time of link →  is the total number of lanes of the two traffic directions 

e route 

 

n

  ln kw G nkl,jt

 

d e

thk0vehicle tc -flow 

tr h k , nkl,jt

(i.e., k→w→l  and j→x→t) of a roadway section that the emergency vehicl

uses, and nr  is the predetermined minimum number of lanes for the emergency vehicle

route.  Constraint (3.28) c  interpreted as: if ln hk H nr , la  be x hk = 0 or 1; ln hk < nr , 

lx hk = 0.  In this shortest-path problem formulation, the emergency vehicular flow is 

simply reduced to the unit of flow since all emergency vehicles are assigned to a 

single route and no congestion effect is assumed. 

As for the second problem of minimizing the total evacuation time, it has the sam

formulation as the evacuation network optimizatio

 

e 

n model in Section 3.4: 

.2)

 

 

min z2(x, n) = xhk thk(xhk, nhk)!  (3

s.t.  constraints (3.3)-(3.22) 

hk
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This hlexicographic model with t e objectives of evacuation network optimization 

rg t is referred to the extended model hereafter. 

and 

eme ency vehicle assignmen
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CHAPTER 4 
 

INTEGRATED LAGRANGIAN RELAXATION AND TABU SEARCH 
 
 
 

I came, I saw, I conquered. 
—Julius Caesar 

 
 

The optimal network models presented in the last chapter pose some complex 

combinatorial difficulties.  The greatest challenge lies in solving the evacuation 

network optimization problem with the lane-reversal and crossing-elimination controls.  

In this chapter, we propose an integrated heuristic solution method to address this 

network optimization problem. 

 

4.1  Problem complexity 

 

A general algorithmic procedure to tackle combinatorial optimization problems is to 

start from a feasible solution as an initial point and iteratively update the current 

solution by a neighborhood search until some pre-specified stopping criterion is met.  

While it is simple and straightforward to obtain an initial feasible solution in many 

cases, it may not be an easy task in some others.  For our evacuation network 

optimization problem, some difficulties emerge with implementing such an iterative 

search method.  According to our definition, the original network configuration in a 

real urban network case, as used for daily commuting traffic, is obviously not a 

feasible evacuation network solution, because the traffic turning movements at an 

intersection controlled by traffic signals or stop signs allow many crossing points.  An 

external procedure, if possible, needs to be developed to obtain an initial feasible 

solution.  This adds some extra modeling effort. 
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Another challenge in applying an iterative search procedure for the network 

optimization problem is the complexity of defining the neighborhood structure for a 

local search.  An intuitive definition for a candidate move in a neighborhood region 

may be an arc addition, reduction, or swap (for intersection arcs) and a lane exchange 

between a couple of arc pairs (for roadway section arcs).  It is not hard to speculate 

that, to satisfy the network connectivity constraints, implementation of a candidate 

move often requires a set of complex network manipulations.  Some complex cases 

include that, for example, a move gets involved with an intersection arc change, and a 

move causes a full capacity switch between the two traffic directions of a roadway 

section, which leads to a complete reversal of one of the directions.  Under such 

situations, extracting an exhaustive candidate list from the neighborhood of a feasible 

solution becomes a very difficult task. 

 

To overcome the difficulties described above, we propose an integrated Lagrangian 

relaxation and tabu search (LR-TS) method, which takes advantage of Lagrangian 

relaxation for problem decomposition and complexity reduction and whose 

algorithmic design is based on the principles of the tabu search metaheuristic.  In the 

Lagrangian relaxation framework, the set of crossing-elimination constraints (i.e., 

(3.6)-(3.8)) are relaxed and compensated by a penalty term in the objective function.  

The relaxed Lagrangian problem is inherently a lane-reversal optimization subproblem 

plus a penalty term.  The evaluation of the penalty term becomes a set of local 

crossing-elimination optimization subproblems, where each intersection of interest 

poses one crossing-elimination subproblem. 
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The rationale behind the application of Lagrangian relaxation comes from the 

following modeling assumptions.  First, note that a general modeling setting used in 

the proposed network optimization model is that travel costs are all associated with the 

arcs in roadway subnetworks while intersection subnetworks are merely used for 

maintaining the network connectivity.  In accordance, the intersection crossing-

elimination constraints can be regarded as side constraints and the objective function 

value of the lane-reversal optimization subproblem is actually the system cost with the 

ignorance of these side constraints.  Second, it is expected that the lane-reversal 

subproblem results in an optimal solution with full lane reversals on a large number of 

roadway arcs.  If this outcome is true, the resulting flow pattern (to the lane-reversal 

subproblem) may be accommodated locally at many intersection subnetworks without 

causing any crossing point.  Ultimately, as long as we find an optimal solution to the 

Lagrangian problem with the penalty term value equal to zero, this optimal solution is 

also optimal to the original network optimization problem.  In such a way, the 

Lagrangian relaxation strategy offers a convenient approach to decompose the 

problem and hence reduce its structural complexity in that we are able to deal with the 

lane-reversal subproblem and the crossing-elimination subproblem separately. 

 

The algorithmic search procedure to implement the solution strategy proposed above 

is elaborated in the following sections.  The Lagrangian relaxation framework is first 

presented where the focus is given to the problem decomposition formulation and the 

Lagrangian multiplier adjustment mechanism.  We then give a detailed description 

about the algorithmic design of the proposed tabu search procedure, in which the 

neighborhood structure and local search are defined for a lane-reversal optimization 

subproblem based on a reduced network.  Due to the discrete nature, this search 

procedure requires an evaluation of the objective function whenever a candidate 
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feasible solution to the Lagrangian problem needs to be examined.  The objective 

function evaluation can be done by estimating a stochastic traffic flow pattern in the 

reduced network of the given lane-reversal configuration and to examining the 

feasibility of the associated crossing-elimination configuration in each intersection 

subnetwork.  Since such an evaluation needs to be conducted frequently, it dominates 

the computational cost of the whole algorithmic procedure.  The major part of the 

objective function evaluation is a stochastic traffic assignment process.  For the 

efficiency purpose, we employ an analytical algorithm whose efficiency is 

significantly enhanced by the Clark’s approximation method.  Meanwhile, we defined 

the crossing-elimination examination subproblem as another discrete optimization 

problem, which, as we will see later, is an integer programming problem of relatively 

small size.  The crossing-elimination subproblem can be solved by the classical 

branch-and-bound algorithm or a simplex-based iterative procedure due to its special 

structural property. 

 

4.2  Lagrangian relaxation framework 

 

Lagrangian relaxation is a general solution strategy for solving mathematical programs, 

which permits us to decompose problems to exploit their special structures.  It has 

long been used for discovering theoretical insights and developing solution algorithms 

for various difficult mathematical programming problems.  For many discrete and 

combinatorial optimization problems, Lagrangian relaxation can be used to relax a set 

of complicating side constraints to be a penalty term in the objective function (see 

Geoffrion, 1974, for example).  By adjusting the values of Lagrangian multipliers with 

the penalty term to an appropriate level, we may find the optimal solution by solving 
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the simplified Lagrangian problem that can often take advantage of various previously 

developed algorithms. 

 

In our application, by relaxing the crossing-elimination constraints (i.e., Constraints 

(3.6)-(3.8)) and compensating this relaxation by a penalty term in the objective 

function, the Lagrangian problem can be written as, 

 

min  xhk thk(xhk, nhk)
hk

! + Phk,tv (y
hk + y

tv - 1)
hk,tv
! +

+

(4.1)

s.t.  constraints (3.4)-(3.5) and (3.9)-(3.22), 

 

where (  represents the maximum function of 0 and , i.e., y
hk + y

tv - 1)+ y
hk + y

tv - 1

 

  ( . y
hk + y

tv - 1) = max(0, y
hk + y

tv - 1) (4.2)

 

The objective function of this Lagrangian problem consists of two parts, where the 

first part is the objective function of the original problem, i.e., the total evacuation 

time, while the second one is the penalty term caused by the Lagrangian relaxation, 

referring to the sum of all the penalty costs in an evacuation network.  In the penalty 

term, P  is a Lagrangian multiplier ( ), which, in our case, is also called 

unit penalty cost.  This unit penalty cost is used to compensate the violation of a single 

crossing-elimination constraint , where  and  are a pair of 

intersection arcs that have a potential crossing point (refer to Figure 3.1). 

hk, tv Phk,tv H 0

y
hk + y

tv
G 1 y

hk
y
tv

 

Note that in the penalty term the use of the maximum form (  instead of 

a general constraint relaxation form  as the relaxation surrogate does not 

y
hk + y

tv - 1)+

y
hk + y

tv - 1
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change the bounding principle of the Lagrangian relaxation.  As we showed below, it 

is clear that the Lagrangian problem we constructed above is still the lower bound of 

the original network optimization problem.  The reason we employed this maximum 

function is, as we will discuss later on, to use it to conveniently count the number of 

violated crossing-elimination constraints.  The bounding principle for this particular 

Lagrangian relaxation is, 

 

  

min xhk thk(xhk, nhk)
hk

! : constaints (3.3) (3.22)) 3

= min xhk thk(xhk, nhk)! + Phk, tv (yhk + y
tv - 1)+! : constaints (3.4)

hk hk,tv
(3.22)) 3

H min
xhk thk(xhk, nhk)

hk

! + Phk, tv (yhk + y
tv - 1)+

hk, tv
! :

constaints (3.4) (3.5), (3.9) (3.22)

Z

[

\

]]

]]

_

`

a

bb

bb

(4.3)

 

An important issue related to the effectiveness of this Lagrangian relaxation method is 

how to determine the values of those unit penalty costs.  Too high penalty costs may 

result in the tabu search process deviating from the track of minimizing the true 

objective (i.e., total evacuation time) and possibly block the search process to enter 

some promising feasible region, while too low penalty costs may entrap the search 

process into an unfeasible region (to the original problem). 

 

The conventional way to tackle this issue is to employ the subgradient method, which 

is to adjust the unit penalty costs based on the results of repeatedly solving Lagrangian 

problems until the unit penalty cost values converge to a satisfied level.  The 

subgradient updating procedure, however, implies running the whole tabu search 

procedure iteratively and may not be a cost-effective approach in our case. 
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Another feasible approach of circumventing this task is to integrate a unit penalty cost 

updating mechanism within the tabu search procedure (Gendreau, 2002).  Different 

from the penalty cost updating mechanism based on optimal Lagrangian problem 

solutions as in the subgradient method, the use of iteration-based self-adjusting 

penalty costs is much more efficient and flexible.  At any iteration point in a tabu 

search process, the evacuation network solution is examined for the existence of any 

crossing-elimination violation and the relevant result is recorded into a frequency-

based memory, which will then be used to make adjustments to the current unit 

penalty cost values (i.e., the coefficient values of the penalty term or the Lagrangian 

multipliers).  As we will show later, this examination is equivalent to checking 

whether the value of each penalty cost component is zero.  If a crossing-elimination 

constraint is frequently violated (i.e., ), its corresponding unit penalty 

cost should be increased; otherwise (i.e., ), its unit penalty cost 

should be decreased.  Some heuristic rules need to be developed for this penalty cost 

adjustment manipulation in terms of the constraint violation frequency.  With the 

continuously updated unit penalty costs, it is expected to find an optimal (or near 

optimal) solution to the original network optimization problem by solving the 

Lagrangian problem.  Such a penalty self-adjusting mechanism embedded in a tabu 

search procedure was successfully implemented in Gendreau et al. (1994). 

y
hk + y

tv - 1 > 0

y
hk + y

tv - 1 G 0

 

In the Lagrangian relaxation framework, the problem constraints reduce to the set of 

constraints (3.4)-(3.5) and (3.9)-(3.22), which confine the lane-reversal configuration.  

In accordance with this relaxation, an intersection subnetwork in its expanded 

topology is reduced to a node, since the sole lane-reversal manipulation does not take 

into account the crossing-elimination configurations at intersections.  We call the 
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graphical topology with this reduction of intersection subnetworks a reduced network.  

As an illustration, the resulting reduced version from the original network in Figure 

3.1 is shown in Figure 4.1, where the intersection subnetwork with 8 nodes and 12 

arcs is replaced by a single node.  It is obvious that the network reduction greatly 

reduces the complexity of the network topology. 
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Figure 4.1  Intersection subnetwork reduction 

 

As we alluded to earlier, an existing network solution without any lane-reversal and 

crossing-elimination configuration (e.g., the existing traffic network configuration in 

the real world for the daily commuting traffic) can be used as an initial solution for the 

Lagrangian problem.  At the initial phase of the integrated search procedure, due to the 

lack of information about the iterative intersection crossing-elimination violation 

behaviors, we may conveniently set all unit penalty costs equal to zero, which means 

that the search procedure actually starts with a pure lane-reversal network optimization 

problem without considering the penalty or delay caused by traffic crossing at 

intersections. 
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4.3   Tabu search metaheuristic 

 

The relaxed Lagrangian problem is still a complex combinatorial optimization 

problem with bi-level structure.  To tackle its combinatorial complexity, we propose 

below a tabu search procedure to search for the optimal solution to the Lagrangian 

problem and update the Lagrangian multipliers. 

 

Tabu search is one of the metaheuristic optimization techniques that are usually used 

to guide and orient the search of other (local) search procedures.  The foundation of 

tabu search is generally attributed to Glover (1986), in which he described the present 

form of this technique we use today.  Though it belongs to the class of local search 

techniques, tabu search enhances the performance of a local search method by using 

memory structures.  Tabu search uses a neighborhood search procedure to iteratively 

move from a solution to another neighboring solution, until some stopping criterion is 

satisfied.  To explore regions of the search space that would be left unexplored by the 

local search procedure and escape local optimality, tabu search modifies the 

neighborhood structure of each solution as the search progresses.  The solutions 

admitted to the new neighborhood are determined through the use of special memory 

structures. 

 

As a metaheuristic optimization technique, tabu search is more of a general problem-

solving strategy and optimization framework than any single solution method.  There 

is no universal algorithmic procedure of tabu search that works for all types of 

combinatorial optimization problems.  The general paradigm of tabu search needs to 

be implemented separately for each application, with the search space, neighborhood 

structure and other subordinate heuristic components that are specially designed for 
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the target problem.  In the following, we present the algorithmic choices and detail the 

procedure steps used to address our evacuation network optimization problem with the 

lane-reversal and crossing-elimination configurations. 

 

Our tabu search method follows a rather straightforward manner: starting with a 

feasible lane-reversal network solution, the search proceeds with a sequence of local 

searches and diversification phases until a predetermined stopping criterion is met.  

Each local search scans all candidate lane-reversal network solutions in the 

neighborhood with evaluating the objective function of the Lagrangian problem for 

each solution.  In addition to a network flow estimation process, the objective function 

evaluation also includes a set of intersection crossing-elimination feasibility 

examinations.  An iteration is finished by accepting the best network solution in the 

neighborhood as the new current solution.  Such a scanning and selection process 

finally stops with the best feasible solution (to the original network optimization 

problem) encountered during the search once a predefined number of diversification 

phases has been performed.  The whole search procedure can be schematically written 

as: 

 

Step 0.  Choose an initial solution s in the search space S .  Set s , i  and . ) = s =0 j = 0

Step 1.  Set i  and conduct a diversification move. = i +1

Step 2.  Set  and generate a subset S  of candidate solutions in the 

neighborhood 

j = j + 1 )

N (s) of s in terms of the recency-based memory and aspiration criterion. 

Step 3.  Choose an elite subset  in S , and conduct local moves belonging to S  as 

well as update the recency-based and frequency-based memories, aspiration criterion, 

current solution s and best solution s . 

S ) ) ) ) )

)
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Step 4.  If a stopping criterion for the local search is met, go to the next step; otherwise, 

go to step 3. 

Step 5.  If a stopping criterion for the diversification search is met, stop; otherwise, go 

to step 1. 

 

4.3.1  Search neighborhoods and moves 

 

There are two types of neighborhoods in the proposed tabu search procedure: an 

adjacent neighborhood for the local search phase, and a distant neighborhood for the 

diversification search.  This section focuses on adjacent neighborhoods and local 

moves.  A distant neighborhood is used to guide the diversification search to enter an 

unvisited feasible region and its neighborhood structure and moving mechanism is 

distinct from an adjacent neighborhood, which will be discussed in a later section 

concerning longer-term memories. 

 

The adjacent neighborhood for a current lane-based network solution is made up of all 

the lane-based network configurations that can be reached by a single lane-reversal 

transformation from the current solution.  The capacity exchange with such a lane-

reversal operation only occurs between the two reverse traffic directions of a roadway 

section.   In other words, a move is defined as a lane exchange between the two arc 

directions in a roadway section subnetwork.  A single lane reversal may change the 

capacity of the relevant arcs only or change both the capacity and connectivity of the 

network, depending on the number of lanes to be reversed and the number of lanes on 

these two reverse directions before and after the lane reversal.  Due to the discrete 

nature of the lane-reversal configuration, we may define three types of moves to reach 

a candidate solution in the neighborhood. 
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For a potential move only involving the capacity exchange but not modifying the 

network connectivity, its lane-reversal direction may be ideally determined by 

comparing the marginal costs to the whole network generated by the two potential 

directions with regard to reversing a unit capacity.  The lane-reversal direction with 

the negative marginal cost should be accordingly selected.  However, given the 

discrete requirement, the capacity-reversing amount is quantified by the number of 

lanes, which in general does not necessarily match the appropriate amount demanded 

by the desired lane-reversal direction.  On the other hand, an accurate estimation of the 

marginal cost to the whole network with regard to a capacity exchange must be 

evaluated in terms of some sensitivity analysis technique.  Given the stochastic user-

equilibrium traffic flow pattern in the evacuation network, the sensitivity analysis is 

complicated.  Because of these reasons, we resort to an approximation method to 

determine the lane-reversal direction that is to compare the marginal costs with the 

two potential lane-reversal directions to the local roadway subnetwork. 

 

Let us refer to Figure 3.1, where it is assumed that in the roadway subnetwork all the 

roadway arcs, including arcs k→w, w→l , j→x  and x→t, have the same free-f

travel times and lane capacities, as notated by thk,jt0  a chk,jt , and the BPR function is 

used to describe the volume-delay relationship of these arcs with the same arc-specific

parameters, a and b (see (3.3)).  By assuming that a unit capacity exchange bet

the two traffic directions in this local roadway subnetwork does not considerably 

change the traffic flow pattern in the whole network, the local marginal cost with 

regard to transferring a unit capacity to arc pair k→w→l  from its counter arc pair is,

given the capacity reservation constraint nkl + njt =

low 

n

 

ween 

  

d 

nkl,jt, 

 

 115



  2
2nkl

Tkl,jt
= 2nhk

2 xkw tkw(xkw, nkl) + xwl twl(xwl, nkl) + xjx tjx(xjx, njt) + xxt txt(xxt, njt)7 A  

      = t
ckl,jt

b

kl,jt
0 a

2nkl

2 xkw
b + 1 nkl

b + xwl
b + 1 nkl

b
_ i

+ 2njt

2 xjx
b + 1 njt

b + xxt
b + 1 njt

b
_ i

2nkl

2njt
> H

0 b xkw

(4.4)

      = tkl,jtckl,jt ab - ckl
c m - ckl

b + 1 xwl
c m + cjt

b + 1
xjx

c m + cjt

b + 1 xxt
d n> H

b + 1

espectively, 

. 

2Tkl,jt

,  

 

where c  and c  are the capacities of arc pairs k→w→l  and j→x→t, r

and ckl = ckl,jt nkl  and ,jtnjt

kl jt

cjt = ckl

 

The marginal cost to the local roadway network with regard to increasing a unit 

capacity to arc pair j→x→t is known as equivalent to the local marginal cost with 

regard to decreasing a unit capacity from arc pair k→w→l , that is, 

 

  
2njt

= tkl,jtckl,jt ab ckl

0 b xkw
c m + ckl

b + 1 xwl
c m - cjt

b + 1
xjx

c m - cjt

b + 1 xxt
d n

b + 1

> H. (4.5)

 

Note that xkw ckl , for example, is the volume-over-capacity (V/C) ratio of arc k→w, 

which indicates the congestion level of this arc.  In view of a pair of arcs on each 

traffic direction, we further define a congestion measure for these arc pairs.  Here, for 

two arc pairs k→w→l  and j→x→t, g
kl = (xkw ckl)b + 1

+ (xwl ckl)b + 1 and 

g
jt = (xjx cjt)b

+ xt
+ 1 (x cjt)b

kl jt

+ 1 are their congestion measures, respectively.  The 

determination of the lane-reversal direction can then be reduced to a comparison of the 

congestion conditions of the two traffic directions.  That is, when arc pair k→w→l  is 

more congested than arc pair j→x→t in terms of their congestion measure values, 

i.e., , a candidate move should be chosen with reversing a lane from arc pair g > g
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j→x→t to arc pair k→w→l ; when g , a candidate move should be chosen 

by the reverse direction; when g , no lane reversal is required. 

kl
< g

jt

kl= g
jt

 

After determining the lane-reversal direction by comparing the congestion measures in 

a roadway subnetwork, we need to further choose the capacity-reversing amount for 

the move.  Here we employ a simple lane-reversal operation: reverse one lane from the 

relatively uncongested traffic direction to its counter direction.  This arbitrary reverse-

one-lane-at-a-time policy seems conservative, but it may be the safest choice in view 

of two reasons.  First, given the combinatorial nature of the problem we have no way 

to know the appropriate capacity amount or the appropriate number of lanes for 

exchange between a couple of reverse traffic directions.  Second, the lane-reversal 

direction with a move is determined in terms of the local marginal cost calculation, 

behind which the presumable rationale is that the network flow pattern does not 

change considerably with a move.  A too drastic move may cause a significant change 

of the network flow pattern and hence violate the assumption on which the selection of 

lane-reversal direction is based. 

 

Given the lane-reversal direction and amount specified by the above analysis, the first 

type of moves is defined as follows: to transfer one lane from the relatively 

uncongested traffic direction to the congested direction if there are one or more lanes 

along both of the traffic directions in a given roadway subnetwork.  It is applicable to 

the case in which both of the traffic directions in a roadway section convey a 

significant amount of traffic flow. 

 

The second type of move is more drastic in changing the lane-reversal network 

configuration in that these moves get involved in a network topology modification.  
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More specifically, it reduces the number of arcs in the network by reversing all the 

lanes along a traffic direction in an eligible roadway subnetwork.  Let us suppose the 

following network configuration and traffic conditions in the roadway subnetwork 

shown in Figure 3.1: there is one or more lanes on both of the traffic directions, i.e., 

, n , but the traffic flow on arc pair k→w→l  is equal or close to zero (which 

also implies that the traffic demand from the source node w, b , is equal to or close to 

zero).  A straightforward response to this situation is that the capacity of arc pair 

→w→l  is fully or extremely underutilized and hence all of its lanes should be fully 

reversed to serve the traffic flow on the reverse arc pair j→x→t.  This observation 

defines the second type of moves: a full reversal of lanes along a traffic direction 

should be given when there is no (or nearly zero) traffic along this direction. 

nkl jt H 1

w

k

 

One should note that, with the arc reduction caused by a move of the second type, it is 

possible, although the possibility is very low in a real traffic network, to form a 

network with some source nodes unserviceable.  Therefore, following the 

identification of a move of the second type, it is necessary to conduct a feasibility test 

on the network connectivity.  A move that yields an infeasible network configuration 

should not be considered as a candidate solution.  Please also note that for a move of 

the first type, if the uncongested traffic direction has only one lane, it actually 

collapses to a move of the second type, in that such a move not only exchanges the 

capacity between the two traffic directions but also reduces the number of valid arcs in 

the network. 

 

The third type of move is a rather simple case, which may arise following an iteration 

that implemented a move of the second type.  In a given network configuration, in 

case that all of the lanes in a roadway section are used to serve only one traffic 
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direction (e.g., n  and n  in Figure 3.1), no matter how congested these 

arcs are with the current traffic direction, a candidate move is suggested that a lane 

should be deducted from its current direction for contraflow.  Here, for simplicity, the 

reverse-one-lane-at-a-time policy is used once again. 

kl = 0 jt = nkl,jt

 

In many urban traffic networks, in fact, such one-direction roadway sections exist in 

downtown areas, for some traffic control and safety reasons.  The main purpose of 

designing one-way streets is to decrease the number of the potential traffic crossing 

points at their connecting intersections and hence reduce the control delays and create 

a safer driving environment.  In the application of our heuristic procedure for an 

evacuation network optimization problem, if many one-way streets exist in the initial 

network configuration and/or a large number of full lane reversals emerge in the 

search itinerary, this type of moves would be frequently encountered.  In contrast to 

the second type, a move of the third type adds an arc pair into the network. 

 

The conditions and manipulations of all the three types of adjacent neighborhood 

moves can be summarized as follows.  Given a roadway section subnetwork as the one 

in Figure 3.1, we can determine the lane-reversal direction as well as the number of 

reversed lanes in terms of the if-then rules given below (see Figure 4.2).  Here let us 

suppose that we are concerned about arc pair k→w→l , as an example, where  and 

 are the congestion measures for arc pairs k→w→l  and j→x→t, as defined 

previously, and n  is the total number of lanes in this roadway section. 

g
kl

g
jt

kl jt,

 

As for the distant neighborhood, it is used to guide the diversification search to enter 

an unexplored feasible region and accordingly modify the network configuration in a 

drastic manner.  Since the neighborhood structure and moving mechanism of the 
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distant neighborhood is distinct from the adjacent neighborhood, its implementation 

will be discussed in another section concerning longer-term memories. 

 

 If n  then kl

kl jt kl jt

= 0 kl

kl jt = nkl,jt

jt

kl = nkl + 1 jt jt

= 0

  n  and n ;        // 3rd type of move = 1 = n , - 1

  elseif n  and  (or g ) then kl> 0 g . 0kl

   n  and n ;        // 2nd type of move = 0

   elseif g  then > gkl

    n  and n ;    // 1st type of move = n - 1

   end; 

  end; 

 end; 

 

Figure 4.2  A local move candidate selection procedure 

 

4.3.2  Elite candidate list 

 

In a local neighborhood search, a scan will exhaust all the eligible roadway 

subnetworks with the current network solution and choose a candidate move from 

each roadway subnetwork into a candidate list.  In classic tabu search applications, a 

single best move will be selected from this candidate list, in terms of the objective 

function evaluation results as well as subject to the current tabu list and aspiration 

criterion.  This move is then implemented to generate an updated network solution.  It 

is doubtless that this best-candidate-only policy provides a precise ordering of most 

descent moves, but it may not sufficiently exploit the value of the candidate list, which 

is determined each time by an exhaustive evaluation of all the eligible lane-reversal 
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operations in the whole network and whose identification process is the most time-

consuming computational part of the whole search process in our case. 

 

A more efficient method is to select and implement a set of moves in a batch after a 

candidate list is determined.  In our case, a promising move set may be the one 

corresponding to a series of similar or compatible lane-reversal operations along a 

major roadway route (e.g., a freeway or arterial corridor) or a set of moves that can 

always reduce the objective function value significantly in a broad range of network 

connectivity and capacity states close to the current one.  This technique is motivated 

by the assumption that a critically good move, if not performed at the present iteration, 

will still be a good move for a number of following iterations. 

 

It may be difficult to identify a best set of moves from a given candidate list in a 

straightforward manner, which, obviously, poses another combinatorial optimization 

problem.  We suggest a simple heuristic rule here to select a set of moves that may 

better take advantage of the information contained by a candidate list and accelerate 

search iterations.  An elite candidate list is elected from the candidate list, which 

consists of a given number of best candidate moves based on the sorting result of their 

resulting objective function values.  The size of this elite candidate list, where we 

name it elite capacity, is an algorithmic parameter, which indicates how far at most a 

search can move or how many moves at most a search can convey each time after a 

move candidate list is presented.  If we set the elite capacity equal to 1, it reduces to 

the classic best-candidate-only policy.  An appropriate elite capacity value should be 

given so as to choose those apparently promising moves in a move candidate list and 

maintain a good trade-off between the solution quality and search efficiency.  If the 

elite capacity is too large, the fidelity of choosing those moves located in the rear part 
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of the elite list may not be guaranteed; if the elite capacity is too small, it may not 

adequately take advantage of the results from sorting the candidate moves and hence 

the search procedure still frequently demands the highly intensive computation task 

that is to select and evaluate moves in the candidate list exhaustively. 

 

One must note that with this elite candidate list strategy, even if a precise ordering of 

implementing the best move at each iteration may not be maintained, it does not 

necessarily mean that the search quality will be sacrificed.  On the one hand, in many 

cases, the final effect of implementing a set of moves simultaneously would be the 

same as that of implementing these moves sequentially, though the orderings of the 

moves in these two different implementations may be different.  On the other hand, an 

accelerated search driven by this more drastic move mechanism may let us conduct 

more iterations and explore more feasible regions in a given amount of time.  The 

overall performance of a tabu search algorithm should be based on the quality of its 

best solution and the time spent in finding this solution. 

 

In our case, the moves in an elite candidate list will be evaluated and executed 

individually, in a consecutive manner, instead of an aggregate form.  That is to say, 

after an elite list is identified, a repeated evaluation of the objective function is 

conducted each time a move from the elite list is implemented.  The implementation of 

a move is actually determined by this repeated evaluation.  Such a sequential move 

evaluation and implementation mechanism depicts the complete search itinerary.  The 

information recording search iterations provides a direct aspiration criterion and is 

stored in longer-term memories for the subsequent use of the intensification and 

diversification strategies.  More importantly, this complementary objective function 

evaluation at each iteration can identify the true contribution of a move to the 
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objective function value and hence be used to determine its final qualification for 

implementation.  If the performance of a move shown in the candidate list is not 

consistent with its actual performance in the search itinerary (e.g., a move decreases 

the objective function value in the preliminary evaluation process for the elite move 

selection but increases the objective function value in the complementary evaluation), 

the implementation of this move should be disallowed. 

 

4.3.3  Tabu list and aspiration criterion 

 

The tabu list and aspiration criterion may be the two most important and essential 

components in a tabu search heuristic.  These two memory-based elements are used to 

record various information (e.g., solution values and attributes) of the solutions 

encountered in a search history.  The recorded pieces of information are favor of 

exploring the solution space and guiding the search direction. 

 

The purpose of using a tabu list is to avoid cycling traps and hence escape local 

optima in a tabu search process.  A tabu list typically contains a set of most recent 

moves, which is constructed based on the concept of recency-based memory.  

Whenever a candidate move is identified during the search process, it is compared to 

the recorded members in the tabu list.  If the comparison tells that a member in the 

tabu list is exactly the counter operation of the candidate move, this candidate move is 

labeled as a tabu and its candidacy will be canceled unless it satisfies the aspiration 

criterion.  Since it is based on a recency-based memory, a new member is included and 

the oldest member is discarded each time a move is implemented to the current 

solution.  The general updating mechanism for a tabu list is to put the latest 

implemented move into the tabu list in place of the oldest member. 
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In our lane-reversal optimization subproblem, since any lane exchange caused by a 

move occurs merely between the two directions of a roadway section, we do not need 

to record both the participating arcs where one obtains capacity while the other loses.  

Instead, a more effective tabu-recording rule is to add the arc that obtains capacity at 

the current iteration into the tabu list.  At each iteration, a tabu examination invokes a 

comparison between the arc that potentially obtains capacity through a candidate move 

and all the members in the tabu list.  If the comparison indicates that this arc is 

equivalent to a member in the current tabu list (i.e., it has the same arc index and the 

same number of lanes as a tabu member), this candidate move under consideration is 

regarded as a tabu move and should be accordingly prohibited in the immediate 

iteration. 

 

A critical parameter associated with a tabu list is the size of the list, which in general 

is termed as tabu tenure.  We need to finely tune this parameter with the purpose of 

preventing local cycling occurrences while not blocking potential promising moves 

during a search process.  A general good range of tabu tenures is about 5-12 (Glover, 

1990).  However, effective tabu tenures are heavily related to the specific type of 

target problem instances and have been empirically shown to depend on the size of 

problems (Glover and Laguna, 1997).  Moreover, tabu tenure may be a static value or 

a randomly or systematically dynamic variable confined by a range.  For a particular 

class of applications, its value or its value-varying mechanism should be calibrated by 

some empirical calibration process. 

 

One should note that the tabu recording mechanism described above is a simplified 

version of recording a set of complete solutions visited at the last iterations.  While it 
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occupies less memory, the use of moves (instead of solutions) in the tabu list might 

lead us to improperly impose the tabu status to solutions that have not been actually 

visited before.  To remedy this information loss and relax the resulting redundant tabu 

restriction, an aspiration criterion is often used so as to avoid overriding the tabu status 

to recently conducted moves.  While a number of different forms of aspiration criteria 

have been designed to enable a tabu search heuristic to achieve its high performance 

level, we employ its most primitive form—the objective function value—to potentially 

remove a tabu status otherwise applied to a move, because of its wide acceptance with 

the good performance and its ease of use in a variety of applications.  In our 

implementation, if a move results in a solution whose objective function value is 

improved compared to the best solution known in the current search history, this move 

should be permitted even if it has been identified as a tabu move. 

 

Since we take the objective function evaluation as the aspiration criterion, computing 

the objective function value is inevitable for evaluating any candidate move, no matter 

if it belongs to a tabu or not.  Also, because of this reason, the sequence of the tabu 

test and aspiration test can be actually reversed in a tabu search procedure. 

 

4.3.4  Intensification and diversification 

 

Both the intensification and diversification strategies in a tabu search procedure 

typically resort to the use of longer-term memories.  For these longer-term strategies, 

the modified or enhanced neighborhoods often contain solutions that are identified as 

elements of a regional cluster in intensification phases and as elements of different 

clusters in diversification phases.  Though the use of longer-term memories is optional, 

a tabu search procedure enhanced by longer-term strategies can often find very high-
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quality solutions within a more economical time span than that only using short-term 

memories. 

 

Longer-term memories are frequency based.  We use a frequency measure termed 

residence frequency to evaluate the need for intensification and diversification, which 

is defined as the ratio of the number of iterations where an attribute or element belongs 

to solutions in a search itinerary (or a section of this itinerary) over the total number of 

iterations in this itinerary (or the corresponding section).  The purpose of using 

residence frequency is to keep track of how often attributes or elements are members 

of the historical solutions or how frequently in the search history they satisfy some 

specific status. 

 

In our lane-reversal optimization subproblem, intensification is useful when a roadway 

subnetwork is set for a specific lane reversal on a very frequent level, which indicates 

that a move representing an alternative lane configuration of this subnetwork is 

seldom selected into the elite candidate list.  Such an event occurs, for example, when 

one traffic direction on a roadway section is barely used in a variety of solutions and 

adding a lane to this direction would cause a large increase to the total travel time in 

the network.  We set a frequency threshold to determine the qualification of a lane 

reversal for intensification—if the residence frequency of a full lane reversal has been 

greater than the predefined threshold since the first time it appears in the search 

trajectory, its existence should be fixed in the subsequent solutions until a 

diversification move is conducted.  In other words, we do not need to consider a 

possible change of this “locked” roadway subnetwork any longer in the succeeding 

neighborhood searches.  This specific intensification instance belongs to the 

intensification by decomposition strategy, named by Glover and Laguna (1997). 
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Of course, the residence frequency is not meaningful, if the denominator, that is, the 

total number of iterations used to calculate the residence frequency, is too small.  A 

minimum denominator value needs to be set a priori for evaluating the validity of a 

residence frequency value.  That is, the residence frequency of a solution element (i.e., 

a lane reversal configuration of some roadway subnetwork) begins to be counted only 

after the number of iterations exceeds a minimum number. 

 

The advantage of applying such a simple intensification measure is to reduce the size 

of a neighborhood region and let the subsequent search concentrate on the remaining 

search space more thoroughly.  In our experiments, it is found that many links close to 

network egress nodes or on some primary evacuation routes quickly obtain the 

intensification qualification for the full lane-reversal assignments with their outbound 

directions.  As for partial lane reversals, however, there is no such a reliable 

intensification measure identified in our study. 

 

A high residence frequency with a specific lane reversal in some roadway subnetwork 

may indicate that this lane-reversal configuration is highly attractive, or may indicate 

the opposite result, if its associated iterations correspond to low-quality solutions.  On 

the other hand, a high residence frequency that is high when there are both high- and 

low-quality solutions may point to an entrenched attribute that causes the search space 

to be restricted, and that needs to be jettisoned to allow increased diversity (Glover 

and Laguna, 1997).  To judge the necessity of diversifications, we need to jointly 

investigate both the residence frequency and the solution quality associated with those 

lane reversals implemented along the search itinerary.  The motivation for applying 

diversification for our lane-reversal optimization subproblem is, when a large number 
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of iterations have been conducted without any improvement to the objective function 

value, it may be more attractive to transfer our search into a distant unexplored region 

than to continue the current local search. 

 

To encourage diversification, we implement the following diversification means in our 

search procedure: once the number of iterations that do not improve the objective 

function value exceeds a pre-specified value, we turn to examine all the full lane 

reversals that have been confirmed by the previous intensification operations with 

their intensification history and associated solution qualities; the set of full lane 

reversals that produce a large number of relatively low-quality solutions are reversed 

fully as a diversification move.  On some degree, this diversification change may be 

regarded as a reverse manipulation to the intensification operation.  We set the 

intensification to always yield the diversification, that is, when a diversification move 

arises, the intensification status of all intensified elements (i.e., those “locked” 

roadway subnetworks) are released.  Under this setting, intensification is used for local 

neighborhood searches while diversification for starting a new search in an unexplored 

region. 

 

4.3.5  Lagrangian multiplier updating 

 

The Lagrangian multiplier updating mechanism is critical to the feasibility and 

optimality of the solutions derived by the LR-TS heuristic procedure.  A too low value 

of a Lagrangian multiplier in the penalty term may result in a final infeasible solution; 

a too high value may lead to the search process to deviate away from the optimal 

solution (in spite of other suboptimal conditions caused by the heuristic procedure).  A 

simple but effective iteration-based self-adjusting method for the multiplier updating 
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is set based on the use of another residence frequency that records the number of each 

intersection crossing point existing in solutions during the search process.  If a 

crossing point consecutively exists in the solution itinerary (e.g., 5 times), its 

corresponding unit penalty cost (i.e., its Lagrangian multiplier) is increased; otherwise, 

the penalty cost is decreased.  A unit updating cost is accordingly set up to specify the 

increment/decrement amount each time, whose value is dependent on the particular 

target problem. 

 

4.3.6  Stopping rule 

 

Tabu search is by nature an open-ended search strategy without a convergence or 

optimality criterion.  Theoretically, a tabu search procedure could go on forever unless 

the optimal solution of the target problem is known in advance.  Thus, some 

exogenous stopping criteria are needed to terminate a tabu search process, such as a 

pre-specified number of iterations, a pre-specified number of iterations without an 

improvement in the objective function value, or a pre-specified objective threshold 

value is reached.  In our case, we set the search termination criterion by using a pre-

specified number of diversification phases and in each diversification phase using a 

pre-specified number of non-improving iterations to stop a current local search and 

start a distant diversification search. 

 

4.4  Estimation of the network flow pattern 

 

As we pointed out in the beginning of this chapter, an evaluation of the objective 

function of the Lagrangian problem in the tabu search process turns to two subsequent 

computational procedures: 1) first, a stochastic traffic assignment in the given reduced 
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evacuation network, which has been defined as the lower-level problem in the 

proposed bi-level network optimization model (see (3.11)-(3.22)); 2) second, an 

independent traffic crossing-elimination examination for each intersection of interest, 

given the network flow pattern derived from the preceding traffic assignment process. 

 

This section discusses the issues of solving the traffic assignment subproblem.  In the 

literature, the stochastic user-equilibrium traffic assignment has been carried out by 

two types of network loading methods: logit-based and probit-based methods.  The 

difference between the two methods is due to the statistical assumption of the random 

travel cost component: a logit model is based on the Gumbel distribution and a probit 

model uses the normal distribution.  The probit-based loading method is preferable to 

the logit-based because it can properly take into account the overlapping or correlated 

network proportions when estimating the route cost distributions and route choice 

probabilities.  However, there exists no closed form of exact methods for computing 

the route choice probability in a probit-based network loading.  Previous research 

suggested two strategies of implementing the probit-based network loading: Monte 

Carlo simulation (Sheffi and Powell, 1982; Sheffi, 1985) and Clark’s approximation 

(Maher, 1992; Maher and Hughes, 1997). 

 

In view of the given behavioral implication and computational cost, we suggest using 

the analytical probit-based traffic assignment algorithm introduced by Maher and 

Hughes (1997) for the stochastic traffic flow pattern estimation, in which the network 

loading procedure is powered by Clark’s approximation.  This method has an 

analogous algorithmic procedure to the convex combinations method that was applied 

to solve the deterministic user-equilibrium traffic assignment problem in 1970s (refer 

to LeBlanc et al., 1975). 

 130



 

The algorithmic procedure of this analytical traffic assignment method can be briefly 

depicted as follows: 

 

Step 0.  Choose a set of initial arc travel times t , usually free-flow travel times.  Find 

an initial traffic flow pattern x , by performing a stochastic network loading based on 

the initial arc travel times t .  Set 

(0)

(1)

(0) k = 1. 

Step 1.  Calculate the updated arc travel times t  with the given traffic flow pattern 

 using the arc performance function, i.e., t . 

(k)

x(k) (k) = t (x(k))

Step 2.  Find the auxiliary traffic flow pattern , by performing a stochastic network 

loading based on the current arc travel times . 

lx (k)

t(k)

Step 3.  Make a line search to find the optimal value of step length m  so as to 

minimize w  along the search direction , where w  is the objective 

function of the equivalent program to the stochastic user-equilibrium assignment, 

k

(x) lx (k)
- x(k) (x)

 

  w . (x) = xhk thk(xhk, nhk) - thk(~) d~
0
#

hk

! - qrs E min
k

(Tk ) | t (x)9 C

rs
!

hk

!
xhk rs rs

k

(4.6)

 

Step 4.  Calculate the updated traffic flow pattern: x . (k + 1)
= x (k)

+ m ( lx (k)
- x (k))

Step 5.  If a convergence criterion is met, stop the iteration and conclude that the 

current traffic flow pattern x  is the set of stochastic user-equilibrium flows; 

otherwise, set 

(k + 1)

k = k + 1 and go to step 1. 

 

The stochastic magnitude of individuals’ travel time perceptions is specified by a 

travel time variability parameter (i.e., the ratio of the standard deviation to the mean of 

the travel time), which can be interpreted as a proportionality indicator of the travel 

time variance to the mean.  Many previous travel time studies showed that this travel 
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time variability parameter is a variable related to the traffic congestion conditions, 

where its value is relatively lower when traffic is very heavy or light than moderate.  

In an evacuation network, it is expected that the traffic is quite congested.  For the 

sake of simplicity, we arbitrarily set the value of this travel time variability parameter 

equal to a modest value, 0.5.  Moreover, this constant variability parameter is also 

universally applied to all the networks used in this study. 

 

The primary computational component in the above procedure is the traffic network 

loading, which needs to be performed at each iteration.  Some implementation issues 

of this computational component are discussed in Appendix A. 

 

4.5  Examination of the intersection crossing elimination 

 

The traffic flow pattern resulting from the above traffic assignment process in a 

reduced network does not give all the required information about the turning 

movements at intersections.  In fact, the representation of an intersection as a node 

ignores the crossing-elimination configuration subproblem and regards the intersection 

as a “black box”.  To completely evaluate the objective function of the Lagrangian 

problem, we also need to compute the value of the penalty term, which is equal to 

checking the crossing-elimination violation conditions at all the intersections of 

interest subject to a given traffic flow pattern in the reduced network.  For this purpose, 

we formulated a linear mixed integer programming model for the crossing-elimination 

configuration problem.  The objective of this program is to minimize the number of 

crossing points between turning movements with positive flow rates at the intersection; 

the constraints include the integral constraints, capacity constraints, and flow 

reservation constraints that are transplanted from the original problem.  For a typical 
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four-leg intersection such as the one shown in Figure 3.1, the functional form of this 

integer optimization problem is, 

 

min  z (y) = (y
hk + y

tv - 1)
hk,tv
! + (4.7)

s.t.   or 1,        6 →k  y
hk = 0 h (4.8)

  xhk G uhk yhk
 ,        6 →k  h (4.9)

  x ,          6 →k  hk H 0 h (4.10)

  , and     6 →w xkw - xhk

h ! Sk

! = 0 k (4.11a)

  x ,      6 →t xt - xtv

v ! Rt

! = 0 x (4.11b)

 

where Sk  and  represent the set containing the starting nodes of all the arcs pointing 

to node k  and the set containing the ending nodes of all the arcs emanating from node 

, respectively, i.e., S  and R , and the flow rates  and 

 are the input of this program, which are given by the current lane-reversal solution. 

Rt

t k = h, {, n# - m = v, o, c# -

xt

xkw

x

 

The objective function of this local optimization program serves as a surrogate of the 

crossing-elimination constraints and counts the number of crossing points if any of the 

constraints is violated.  This conversion can be seen as, for example,  is 

relaxed and (  is inserted into the objective function; or  

 is relaxed and instead, ( , (  and (  are 

added.  The optimal objective function value of this program indicates the feasibility 

of a resulting intersection flow pattern: if the value is zero, the optimized intersection 

flow pattern subject to the current lane-reversal solution is a feasible solution; 

y
{k + y

nc
G 1

y
{k + y

nc - 1)+ y
hk + y

tv + y
nc

G 1 y
hk + y

tv - 1)+ y
tv + y

nc - 1)+ y
nc + y

hk - 1)+
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otherwise, there is one or more crossing points at this intersection and a penalty value 

should be imposed to the objective function of the Lagrangian problem. 

 

The crossing-elimination subproblem can be efficiently solved using the branch-and-

bound method due to its relatively small search space.  In the case of a typical four-leg 

intersection, it has only 8 binary integer variables and 8 real variables with 8 capacity 

constraints and 8 flow conservation constraints.  This method follows a vertex-and-

branch tree structure, where the linear relaxation subproblem at each vertex is used to 

establish the lower bound for the feasible region corresponding to the vertex.  Two 

simple algorithmic choices can be applied to accelerate the branch-and-bound search 

for this linear mixed integer program.  To see these, once again, let us refer to Figure 

3.1.  We can observe that, for example, first, if xkl = 0, we immediately have xhk = 0 

and , y
hk = 0 6h ! Ak; second, if , assign as much flow to  as possible, 

ere xnk  denotes the flow amount on the right-turn arc n→k  arriving at node k , 

since a right turn would not cause any crossing conflict.  Application of these rules

the beginning of a branch-and-bound search can effectively reduce the remaining 

search s

xkl > 0 xnk

wh

 at 

pace. 

 

We also developed a more efficient simplex-based iterative solution method to solve 

this crossing-elimination subproblem. The rationale and proof of this method are 

elaborated in Appendix B.  Its algorithmic procedure is sketched as follows: 

 

Step 1.  Obtain a starting basic feasible solution as the current solution and compute its 

objective function value z* .  In view of the problem structure similar to that of the 

classic transportation problem, this can be conveniently accomplished by applying the 

northwest corner rule in the tableau (see Bazaraa et al., 1990). 
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Step 2.  Conduct all the candidate pivot moves by entering each nonbasic variable into 

the basis and compute the updated objective function value with each candidate move.  

Choose the best move with the lowest objective function value lz . 

Step 3.  Compare the objective function value with the best move, lz , and the current 

objective function value, z* .  If lz H z*, stop the iteration and we have the optimal 

solution z*  at hand; if lz < z*, implement the best move to obtain the updated basic 

feasible solution and assign z , and then go to step 2. * = lz

 

Solving the crossing-elimination optimization subproblem is indeed a local network 

design problem and a traffic re-assignment process for the intersection subnetwork.  

Such a subnetwork change is certainly a change to the expanded network.  This 

change, however, will not cause a change of the traffic flow pattern obtained from the 

link-based stochastic traffic assignment in the reduced network.  In other words, the 

traffic flow pattern obtained from the reduced network can still be maintained in the 

expanded network with the intersection crossing reduction/optimization.  This 

conclusion holds subject to a homogeneous flow requirement that is supported by two 

specific modeling settings in our problem.  This requirement is a sufficient (but 

perhaps not necessary) condition to the conclusion. 

 

The first setting is that the underlying stochastic traffic assignment algorithm used for 

generating the traffic flow pattern implies the Markovian routing behavior that any 

individual would choose his remaining route to the destination without considering the 

route he has experienced between the origin and his current location.  The resulting 

traffic flow pattern possesses the property that the traffic flow arriving at any 

intermediate node in a network is assigned as if this node is a destination.  As we 

described previously, an analytical network loading algorithm based on Clark’s 
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approximation (Maher, 1992; Maher and Hughes, 1997) is employed to approximate 

the probit-based stochastic user-equilibrium traffic flow pattern†.  The underlying 

individual route choice behavior within this approximation procedure does possess the 

Markovian property, which virtually assures the traffic flow merging at any 

intermediate node is homogeneous by origin. 

 

The second setting is the one-destination network representation.  An immediate result 

from this setting is that all individuals departing from or arriving at any single source 

or intermediate node in the network go to the same destination.  From a modeling 

perspective, this result guarantees that all individuals going through a node are in a 

homogeneous population with a single route choice function (that implies an identical 

route choice probability distribution with each individual).  Note that in a general 

multi-commodity network (i.e., a network with multiple origins and destinations), the 

crossing-elimination optimization process for an intersection may change the paths of 

traffic flows going through the intersection, and so the destinations of these path flows.  

The occurrence of a destination change would possibly result in an infeasible traffic 

flow pattern‡.  However, this phenomenon will not occur in a network with the one-

destination setting, or, in other words, the traffic flow diverging at any intermediate 

node is homogeneous by destination. 

 

As a result, from the two settings, we can conclude that the traffic flow between any 

intermediate node and the destination mode (in the reduced network) can be regarded 

as a homogeneous flow pattern as if it is assigned between these two nodes.  As long 

                                                 
† In contrast, a traffic assignment implying the whole-path routing behavior, for example, the stochastic 
user-equilibrium assignment using path enumeration, does not hold this conclusion. 
‡ By infeasible, we mean that the resulting traffic flow pattern caused by the crossing-elimination 
optimization process may not satisfy the flow conservation constraints of the original problem. 
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as the (arc-based) traffic flow pattern holds, any individual’s Markovian route choice 

behavior would not be changed. 

 

We highlight the above conclusion in the following.  Given the implied Markovian 

routing behavior assumption and single-destination network setting, the connectivity 

change in an intersection subnetwork subject to the constraints (4.8)-(4.11) does not 

change a traffic flow pattern assigned in the reduced network.  This is the underlying 

reason that we are able to optimize the network design at each individual intersection 

alone.  Given this conclusion, the stochastic traffic assignment process for evaluating 

the objective function can be always conducted based on the reduced network. 

 

With synthesizing the pieces of knowledge obtained above, we know that for each 

evaluation of the objective function, computing the two terms of the objective function, 

which is equivalent to two separate optimization subproblems, can be conducted in a 

sequential manner, in which the crossing-elimination subproblem is subject to the 

result of the corresponding lane-reversal subproblem. 

 

4.6  The algorithmic procedure 

 

As an overview of the integrated Lagrangian relaxation and tabu search procedure, we 

compile all the algorithmic elements into the following pseudo-code form.  For the 

sake of concision, only major algorithmic steps are presented.  Details of many 

subroutines are simply condensed as single clauses and can be referred to in the above 

text. 

 

 

 137



 algorithm LR-TS heuristic; 

 begin 

  define elite , , fr , m ,  _size tabu_tenure eq_threshold ax_iteration_number

    max ; _diversification_number

define roadway subnetwork set R , intersection subnetwork set ,  = {r} T= {t}

crossing-elimination constraint C  for each t ; (t) = {c} ! T

  initialize i , best , uni  for each c , t ; : = 0 _solution t_penalty (c): = 0 ! C (t) ! T

  while i  do < max_diversification_number

  begin 

   create tabu , r ; _list esidence_freq

   ; j: = 0

   while  do j < max_iteration_number

   begin 

    create elit ; e_list

    for each r  do ! R

    begin 

     if r  esidence_freq (r) < freq_threshold

begin 

identify a candidate move, mo ; ve(r)

      evaluate the objective function of mo , obj ; ve(r) (move (r))

      if mo  belongs to tabu  then ve(r) _list

      begin 

       cancel the candidacy of mo ; ve(r)

       if obj  then (move (r)) < obj (move (best_solution))

 

Figure 4.3  The algorithmic procedure of the LR-TS heuristic 
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Figure 4.3 (Continued) 

 

       begin 

        retrieve the candidacy of mo ; ve(r)

       end; 

      end; 

      update elit ; e_list

     end; 

    end; 

    for each mov  do e (e) ! elite_list

    begin 

     conduct a local move, mo , and evaluate ob ; ve (e) j (move (e))

     update un  for each , t ; it_penalty (c) c ! C (t) ! T

     update tabu ; _list

     update r ; esidence_freq

     update best ; _solution

     k ; : = k + 1

     if obj  then  else ; (move (e)) H obj (best_solution) j: = j + 1 j: = 0

    end; 

   end; 

   conduct a diversification move; 

   i ; : = i + 1

  end; 

 end; 
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4.7  A numerical example 

 

A simple numerical example represented by its reduced network topology is presented 

in Figure 4.4.  We use this example to demonstrate the effectiveness of the proposed 

solution strategy, in which Lagrangian relaxation provides the decomposition 

mechanism to separate the lane-reversal and crossing-elimination subproblems and 

tabu search serves as the algorithmic search engine.  This example network shows a 

-shape topology, where the original configuration of this network has two-way 

connections on all this roadway sections.  All the source nodes, i.e., nodes 5-14, are 

located intermediately on roadways arcs, while there is a single destination node, i.e., 

node 4, representing the location of a network exit or a shelter.  For the sake of 

simplicity, it is assumed that all the directed arcs have only one single lane.  Therefore, 

any lane-reversal operation in this network will result in both network capacity and 

connectivity changes.  Specifically, node 2 represents a typical four-leg intersection 

with “U”-turn prohibited.  The intersection subnetwork at node 2 has the same 

network structure as the one we showed early in Figure 3.1.  As we will see below, 

traffic crossing conflicts may occur at this intersection for some solutions on the 

search itinerary.  The network information is given in Figure 4.4(a) and the demand 

data are labeled beside their respective origin nodes in Figure 4.4(b). 

3

 

In applying our heuristic search procedure, we arbitrarily set all the unit penalty costs 

(or Lagrangian multipliers) equal to 2  time units.  In accordance with the 

previous discussion, the probit-based stochastic routing behavior is assumed to 

underlie any evacuation flow pattern in this network, where the stochastic magnitude 

of an evacuee’s travel time perception is denoted by a proportional constant that is 

defined as the standard-deviation-over-mean ratio.  This proportional constant is set as 

# 104
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0.5.  Other algorithmic parameters used in this heuristic procedure include tabu tenure 

= 4 and the allowed number of non-improving iterations = 20.  No intensification and 

diversification strategies are used in view of the overly simple structure and relatively 

small size of the problem.  Also, the BPR function is used to calculate link travel times. 

 

A number of first iterations generated by the integrated search procedure starting from 

the original network configuration are illustrated in Figure 4.4.  These evacuation 

network solutions to the Lagrangian problem are represented in the reduced networks 

that only show the lane-reversal configurations.  The crossing-conflict violation 

condition with each network solution can be easily assessed by using the minimum 

number of crossing-conflicts as well as the traffic flow rates with these crossing traffic 

movements.  In Figure 4.5, we show the optimal traffic movement configuration in the 

only intersection subnetwork (i.e., node 2 in the reduced network), as subject to the 

corresponding lane-reversal configuration as well as the traffic flow pattern at each 

iteration.  The network performance of each solution is indicated by the objective 

function value of the Lagrangian problem, which is equal to total travel time + total 

penalty cost. 

 
Link pair Free-flow travel time Capacity Number of lanes

1-6-2 5 100 1
2-5-1 5 100 1
1-8-2 5 100 1
2-7-1 5 100 1

2-10-3 5 200 1
3-9-2 5 200 1

3-12-4 5 150 1
4-11-3 5 150 1
2-14-4 10 200 1
4-13-2 10 200 1  

(a) Network information of the illustrative numerical example 
 

Figure 4.4  Network information and iterative solutions of the numerical example 
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Figure 4.4 (Continued) 
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Figure 4.4 (Continued) 
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(a) Iteration 0 (1 crossing point) (b) Iteration 1 (2 crossing points) 
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(c) Iteration 2 (1 crossing point) (d) Iteration 3 (1 crossing point) 
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(e) Iteration 4 (1 crossing point) (f) Iteration 5 (no crossing point) 

 

Figure 4.5  Iterations of the optimal traffic movement configuration in the example 

intersection subnetwork 

 

For the purpose of illustration, we only presented here a sequence of first solutions 

with descending objective function values, including the initial network configuration 
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and its subsequent five iterations.  It can be observed that the search procedure in turn 

reverses arc pairs 4→13→2, 4→11→3, 2→5→1, 2→7→1 and 3→9→2, and 

identifies at iteration 5 the best solution to the Lagrangian problem with the predefined 

unit penalty cost.  In fact, for this simple problem, we can identify by enumeration 

without an intensive computational effort that this solution is the optimal solution to 

the Lagrangian problem and also the optimal solution to the original network 

optimization problem.  The total travel time corresponding to this solution is 

 time units and all the crossing-elimination constraints are satisfied under 

this network configuration (refer to Figure 4.5(f)). 

5.12 # 104

 

The success of the integrated heuristic search method is greatly related to the choice of 

the unit penalty cost value, P.  In our case, an arbitrary choice of setting P equal to 

 time units results in that the first local optimum encountered in the search 

itinerary is actually the global optimal solution.  Taking a closer look at the iterations 

will reveal the following phenomenon: if we preset P , the optimal 

solution we find for the Lagrangian problem is the one obtained at iteration 4, which is 

actually an infeasible solution to the original problem; if we preset P 5, we 

would not choose the solution shown at iteration 2 as the next best solution after 

iteration 1 and accordingly go on with the search along a different, possibly less 

efficient path and it might prevent us from visiting the true optimal solution at all.  

Clearly, an appropriate range for a fixed unit penalty cost value to achieve the 

desirable search itinerary in this example is 0. . 

2 # 104

< 0.88 # 104

> 2.81 # 10

88 # 10 4 G P G 2.81 # 10 5

 

By examining the search iterations of the illustrative problem, it is clear that the 

proposed search strategy can effectively reduce the combinatorial complexity imposed 

by the integration of the lane-reversal and crossing-elimination constraints while 
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successfully avoid the possible infeasibility trap introduced by the relaxation through 

setting an appropriate penalty cost value.  Although the example problem is 

successfully and readily tackled by the heuristic method, many features and 

advantages of our algorithmic design, however, may not be embodied by the solution 

search process applied to this overly simple example.  In fact, a simple greedy descent 

heuristic without resorting to sophisticated algorithmic designs can also be used to 

solve this example problem optimally.  To gain a comprehensive evaluation on the 

efficiency and effectiveness of the proposed Lagrangian-based, tabu-powered heuristic 

method, we need to carry out experiments in large networks with realistic topology.  

In the next chapter, we present some preliminary computational results from 

implementing our heuristic algorithm in a number of such larger networks. 
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CHAPTER 5 
 

ALGORITHM CALIBRATION AND EVALUATION 
 
 
 

A witty statesman said, you might prove anything by figures. 
—Thomas Carlyle 

 
 

The performance of any metaheuristic is highly dependent on the proper calibration of 

its algorithmic parameters.  Our search heuristic is not an exceptional case.  A 

calibration phase is required prior to the implementation of the developed algorithmic 

procedure in large-scale problems and thus it becomes an integral part of the 

development of the solution procedure. 

 

As we described in the previous chapter, the solution procedure is an integrated 

process of solving the relaxed Lagrangian problem and updating the Lagrangian 

multipliers.  Although the Lagrangian multiplier updating mechanism requires a 

specification of the increment/decrement value for the unit penalty cost, this value is a 

problem-specific parameter and is relatively less sensitive to the algorithm 

performance†.  A proper initial unit penalty cost and an increment/decrement cost 

value for a given problem instance can be readily obtained by trying a limited number 

of preset candidate values. 

 

In this chapter, therefore, our focus is to evaluate and calibrate a set of parameters 

used to tailor the tabu search procedure for the Lagrangian relaxation problem.  In 

terms of the applicable levels of these parameters, this set includes two parts: 1) local 

search parameters; 2) diversification search parameters.  We expected to determine a 

                                                 
† In many cases, a fixed unit penalty cost, or in other words, an increasing/decreasing cost value equal 
to 0, works perfectly for the problem solutions. 
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common set of parameter values that can lead to the optimal or near-optimal solutions 

for the type of network optimization problems of interest here. 

 

The purposes of this chapter are threefold: 1) to calibrate the algorithmic parameters 

and characterize the search behavior of the heuristic procedure; 2) to gain insights 

about the efficiency and effectiveness of the heuristic algorithm for a set of problem 

instances with a variety of demand and supply settings; and 3) to establish the fidelity 

of the heuristic algorithm in solving the problem type of interest here. 

 

5.1  Experimental problem instances 

 

The parameter calibration is essentially a multi-objective, multi-dimensional 

optimization process, in which we expect to identify a proper set of algorithmic 

parameter values so as to minimize the gap between the optimal solution and the best 

solution achieved by the heuristic procedure.  Because of the combinatorial effect in 

choosing among the discrete values of the parameters, this process requires a relatively 

large number of repeated performance evaluations, where each evaluation resorts to an 

application of the whole LR-TS search process for the problem instance with a set of 

pre-specified candidate parameter values and it often involves some empirical 

judgment on the parameter value comparison and selection.  Given the limited 

computational resources, it is not possible to include a large number of problem 

instances for the calibration.  Instead, it is desirable to limit the number and size of 

problem instances used for the calibration but manage them to cover the diverse 

problem settings we expect to encounter in realistic evacuation networks. 
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A set of problem instances of relatively small size but with different supply and 

demand characteristics (see Figure 5.1) are selected for the parameter calibration.  The 

travel demand amount and distribution information of these networks is also included. 

 

The first three networks are synthetic evacuation networks.  We arbitrarily set all the 

links in these networks with two lanes and each lane with the capacity of 200 vehicles 

per time unit.  The size of these synthetic examples ranges from 40 nodes and 60 links 

to 85 nodes and 128 links (in their reduced versions).  The number of egress nodes in 

these networks range from 3 to 12, representing different egress capacities. 

 

The fourth network is a surface traffic network located in Sioux Falls, South Dakota, 

which in the literature has been used in a number of network design studies (for 

example, see LeBlanc (1975)).  This network comprises the major arterial roadways of 

Sioux Falls, which shows a typical grid structure of urban networks.  In its original 

version, the network consists of 24 nodes and 76 links.  Due to the setting of the 

intersection crossing-elimination control, travel demands need to be reassigned from 

the intersection nodes to the intermediate nodes along links.  As part of our modeling 

work in formulating a lane-based network optimization problem, such a network 

supply and demand modification is made that a source node is added to each eligible 

link and traffic demand is accordingly redistributed to these newly added source nodes 

from the original source nodes that actually represent intersections or interchanges.  

The modified topology of the Sioux Falls network, as shown in Figure 5.1(d), is of 

100 nodes and 152 links. 
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Node Demand Node Demand Node Demand
11 266 21 467.2 31 439.8
12 406.5 22 506.1 32 353.8
13 514.1 23 374.8 33 377.4
14 318.5 24 462.2 34 321.8
15 291.6 25 536.8 35 429.9
16 386.6 26 299.1 36 280
17 485 27 250.7 37 480.6
18 330.8 28 441.6 38 307
19 284 29 284.7 39 541.7
20 367.2 30 429.4 40 377.5  

 

(a) Problem instance 1: A synthetic small network (40 nodes and 60 links) 

 

Figure 5.1  The problem instances used for the algorithmic parameter calibration 
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Figure 5.1 (Continued) 
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Node Demand Node Demand Node Demand
17 314.6 23 446.9 29 392.1
24 279.9 30 309.6 36 331.8
42 388 50 403.6 58 297.5
43 393.5 51 337.2 59 276.6
19 448.5 25 453.5 31 428.9
26 340.5 32 455.3 38 357.1
44 385 52 379.6 60 405.6
45 356.5 53 194.6 61 363.2
21 392.1 27 413.3 33 353.5
28 553.5 34 559.3 40 437.1
46 339.4 54 501.8 62 472.8
47 265.3 55 242 63 611.2  

 

(b) Problem instance 2: A synthetic grid network (64 nodes and 96 links) 
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Figure 5.1 (Continued) 
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(c) Problem instance 3: A synthetic urban network (85 nodes and 128 links) 
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Figure 5.1 (Continued) 

 
Node Demand Node Demand Node Demand

22 184.2 63 285.3 74 293.9
53 218.8 64 261.6 36 149.1
54 236.6 59 156.9 38 273.8
24 242.9 35 193 40 251.1
29 281.2 65 241 43 230.7
55 207.1 66 231.1 45 160.3
56 258.6 30 105.1 77 118.5
26 191 37 283.2 78 269.4
57 147.7 69 281.2 42 134.4
58 276.9 70 153.1 47 102.8
51 143.4 32 188.2 81 252.7
52 249 39 180.5 82 130.1
61 258.7 71 265.5 44 179.6
62 240.4 72 164.7 49 234.9
28 235.9 34 258.4 83 213.9
31 280.8 41 245.7 84 148.9
33 216 73 228.1  

 

(c) Problem instance 3: A synthetic urban network (85 nodes and 128 links) 
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Figure 5.1 (Continued) 
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(d) Problem instance 4: The Sioux Falls network (100 nodes and 152 links) 
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Figure 5.1 (Continued) 
 

Node Demand Node Demand Node Demand
25 66.7 71 222.9 93 184.4
28 135.4 35 150 81 239.6
30 184.4 44 385.9 48 178.1
32 103.1 72 222.9 80 229.2
58 60.4 73 313 85 188.5
59 60.4 37 188.6 41 253.7
27 75 52 116.1 82 239.6
38 188.6 76 148.4 83 257.8
62 87 77 263 47 178.1
63 176.6 87 297.9 96 175.3
29 92.2 91 191.2 90 238.6
40 351.6 39 351.6 97 163
64 176.6 46 184.9 95 175.3
65 200.5 78 189.6 56 105.5
69 404.2 79 346.9 94 184.4
31 71.4 45 184.9 43 385.9
34 171.4 50 202.6 84 379.7
66 116.2 88 149 86 377.1
67 126.6 89 238.6 98 229.7
33 171.4 49 202.6 99 298.2
42 371.4 54 97.4
70 319.8 92 115.6  

 

(d) Problem instance 4: The Sioux Falls network (100 nodes and 152 links) 

 

We also supposed in this network such an evacuation event that, for example, a 

harmful chemical or radioactive source is found at a central place of the city.  An 

emergency evacuation plan needs to be devised and implemented so as to evacuate all 

the residents from the emergency area.  No shelter or refuge for accommodating 

evacuees is designated in advance.  The emergency management agency would order 

everyone to leave the network through three major exits connecting the highways to 

the north of the network.  As consistent with this evacuation order, the integrated 

destination and route choice concept is accordingly assumed in this case, by which a 
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super dummy destination node is added to the network and all the three egress nodes 

are virtually connected to this dummy node. 

 

It is our expectation that the whole set of example networks can, to some extent, 

imitate a number of different urban traffic network types.  These network settings 

include network topologies, roadway capacities, demand levels, and egress capacities 

and distributions, while avoiding an excessive calibration effort.  The selection of 

these networks of relatively small size can make us readily track the search behavior 

of the algorithmic procedure and analyze the sensitivity of the calibrated parameters to 

the search performance. 

 

5.2  Local search calibration 

 

In our tabu search method, the key algorithmic parameters to be calibrated for local 

searches include elite capacity (elite_capacity), tabu tenure (tabu_tenure) and 

residence frequency threshold ( freq_threshold ).  These parameters are important to 

the performance of our heuristic search procedure, on either the solution quality or the 

search efficiency, or both of them.  A conservatively small elite capacity may generate 

a sequence of iterations that implement the best move each time in terms of the results 

of an exhaustive network scan process.  However, such a setting may not be able to 

sufficiently exploit the information implied by the network scanning results obtained 

each time and to efficiently conduct moves in the following step.  An overly large elite 

capacity, on the other hand, often provides biased information in choosing eligible 

roadway links for subsequent lane reversal operations.  Tabu tenure, indicating the 

size of a tabu list, is another key parameter that greatly influences the performance of 

the tabu search procedure.  An excessively small tenure value may not be able to 
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effectively prevent local cycling occurrences, while a too large tenure value may 

prevent the search from entering some potential promising regions.  As for residence 

frequency threshold, it signifies the intensification sensitivity.  A too low frequency 

threshold would limit the search in an overly small region and hence lead it to be 

trapped at some local optimal point.  A too high frequency threshold might be useless 

in performing the intensification function and achieving the benefit of accelerating the 

search. 

 

We expect to determine a robust set of values or value ranges for these parameters so 

that the calibrated heuristic procedure can perform well over a broad range of 

evacuation network optimization problems of the type defined in this research.  The 

aim is to develop a widely accepted parameter criterion set that maintains a good 

counterbalance between the solution quality and search efficiency and provides a 

consistent performance level over the problems tested here. 

 

The solution quality is directly evaluated with the objective function value of a 

solution.  While the search efficiency can be generally surrogated by the computing 

time, this efficiency performance measure, however, is highly dependent on the 

performance of the used computing facility and coding platform.  A more universal 

way to evaluate the computational effort in many combinatorial optimization problems 

is to count the number of times of evaluating the objective function during the search 

itinerary if the evaluation itself dominates the computational cost during the whole 

search process. This criterion is applicable to our case.  In fact, in our network 

optimization problem, the objective function evaluation that is essentially a 

computational process for solving a network-wide traffic assignment problem and a 

set of intersection-wide traffic movement optimization problem is the computational 
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bottleneck in the search procedure.  In contrast, other algorithmic operations on the 

local search level, such as lane exchange, demand exchange, elite list and tabu list 

updating, and so on, or on the diversification search level, such as diversification 

move, only requires a trivial computational cost. 

 

Thus, we decided to use the objective function value of the best solution obtained 

during a search process as the quality measure and the total number of times of 

evaluating the objective function spent in finding this best solution as the efficiency 

measure.  Given such an evaluation gauge, it is manifest that the number of times of 

evaluating the objective function is dependent on the number of search iterations and 

the value of the elite capacity.  If, for example, the number of iterations is n , the elite 

capacity is e, and the number of eligible roadway subnetworks is r, the number of 

times of evaluating the objective function is of the order of O (nr e) during a search 

process. 

 

We applied the algorithmic procedure for all the example networks with the following 

combinations of values of the search parameters: 1) elite_capacity: 1, 3, 5, 7, 9 and 11; 

2) tabu_tenure: [3, 7], [8, 12] and [13, 17]; 3) freq_threshold : 0.80, 0.85, 0.90 and 

0.95.  Tabu tenure is a parameter that often shows a comparable performance among a 

number of its values in a given short range, so we confine the calibration for tabu 

tenure to a range rather than a precisely tuned single value.  Many previous 

applications showed that it is not necessary and possible to find a specific tabu tenure 

value that works best for all instances of a problem class; instead, we expect that a 

randomly chosen number from a small range of tabu tenure, e.g., [8, 12] , would offers 

a comparable search performance to other numbers in the same range. 
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The functionality of the residence frequency threshold is to adjust the magnitude and 

frequency of intensification during a tabu search process.  Our experiments showed 

that a relatively low value of residence frequency threshold often results in local 

optimum traps, which indicates an overuse of intensification; while, in contrast, a very 

high frequency threshold is seldom satisfied with most lane-reversal elements, which 

results in an underutilization of intensification.  In fact, by checking the results of a 

considerable set of experiments with each preset frequency threshold value and 

randomly selected tabu tenure and elite capacity values, we found that the resident 

frequency threshold is quite sensitive to the algorithm performance and a high 

threshold value is generally needed.  Therefore, we quickly filtered out other 

frequency threshold values in the candidate set than freq_threshold  = 0.90, where 

this latter value is used for the further calibration and implementation. 

 

Given this specific freq_threshold  value, we applied the developed algorithmic 

procedure with each combination of a single elite_capacity and a single tabu_tenure 

value to all the given example networks repeatedly, which results in 35 experiments 

for each network.  The calibration results for each set of calibration parameter values 

are presented in Table 5.1, which are gauged by both the solution quality and search 

efficiency. 

 

In these tables, the solution quality is simply denoted by the objective function value 

of the best solution (at the numerator position of each element) and search efficiency 

is gauged by the number of objective evaluations spent on finding the best solution (at 

the denominator position of each element) as well as the number of corresponding 

search iterations (in the parentheses at the denominator position of each element). 
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Table 5.1  The calibration results with regard to the elite capacity and tabu tenure 

 
  Tabu tenure  

  [3, 7]  [8, 12]  [13, 17]  

 325,700  325,700  325,700  325,700  325,700  330,400   
1 

 355 (22)  398 (23)  396 (35)  374 (37)  461 (44)  250 (22)  

 331,600  325,700  327,600  325,700  326,500  327,100  
5 

 482 (40)  496 (52)  578 (53)  548 (48)  811 (91)  711 (69)  

 327,700  327,700  325,700  327,800  327,800  329,000  
9 

 194 (25)  282 (48)  391 (41)  333 (34)  369 (34)  332 (50)  

 331,600  331,600  329,000  329,000  330,400  329,000  
13 

 287 (35)  318 (45)  358 (49)  290 (39)  305 (41)  351 (49)  

 327,700  327,700  329,000  331,600  331,600  330,400  

E
lit

e 
ca

pa
ci

ty
 

17 
  

257 (31)  235 (42)  294 (35)  210 (37)  240 (43)  269 (45) 
 

(a) The calibration results of elite_capacity and tabu_tenure for example network 1 

 
  Tabu tenure  

  [3, 7]  [8, 12]  [13, 17]  

 137,480  136,630  136,630  136,630  136,630  136,630   
1 

 664 (28)  954 (49)  776 (36)  776 (36)  772 (36)  775 (36)  

 137,350  136,630  137,480  136,630  136,630  138,000  
5 

 231 (30)  450 (56)  390 (51)  401 (49)  416 (54)  235 (21)  

 137,350  137,350  136,630  137,750  138,000  137,480  
9 

 159 (29)  347 (59)  316 (55)  331 (56)  106 (21)  224 (24)  

 137,480  138,000  136,630  137,480  138,000  138,000  
11 

 138 (29)  86 (21)  283 (39)  248 (55)  352 (43)  86 (21)  

 137,350  137,480  137,480  137,750  138,000  137,750  

E
lit

e 
ca

pa
ci

ty
 

17 
  

152 (29)  134 (35)  223 (38)  189 (42)  178 (37)  116 (25) 
 

(b) The calibration results of elite_capacity and tabu_tenure for example network 2 
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Table 5.1 (Continued) 

 
  Tabu tenure  

  [3, 7]  [8, 12]  [13, 17]  

 275,630  269,700  269,700  268,470  274,010  274,010   
1 

 1,087 (35)  1,235 (48)  1,207 (48)  1,538 (58)  1,415 (53)  1,521 (59)  

 276,540  276,540  268,470  268,470  279,100  279,680  
5 

 856 (62)  873 (70)  795 (65)  831 (68)  907 (70)  823 (53)  

 274,010  276,540  270,490  269,700  274,010  279,100  
9 

 753 (58)  793 (65)  921 (78)  795 (69)  923 (72)  956 (65)  

 279,680  269,700  278,700  278,700  282,430  278,700  
11 

 722 (42)  697 (61)  748 (53)  778 (62)  795 (65)  738 (58)  

 279,680  282,430  279,680  278,700  275,630  282,430  

E
lit

e 
ca

pa
ci

ty
 

17 
  

687 (45)  681 (55)  612 (45)  557 (48)  612 (58)  658 (58) 
 

(c) The calibration results of elite_capacity and tabu_tenure for example network 3 

 
  Tabu tenure  

  [3, 7]  [8, 12]  [13, 17]  

 5,573  5,472  5,472  5,472  5,577  5,573   
1 

 1,953 (50)  2,799 (74)  2,982 (80)  3,052 (82)  3,058 (82)  3,429 (93)  

 5,573  5,541  5,573  5,472  5,604  5,654  
5 

 1,835 (94)  1,716 (91)  1,361 (70)  1,372 (75)  1,365 (72)  1,941 (99)  

 5,514  5,472  5,541  5,481  5,514  5,541  
9 

 1,556 (95)  1,102 (62)  1,695 (98)  1,689 (92)  1,496 (84)  1,448 (85)  

 5,472  5,614  5,527  5,564  5,614  5,553  
13 

 1,320 (77)  1,575 (84)  1,220 (64)  1,568 (83)  1,550 (80)  1,512 (87)  

 5,573  5,541  5,472  5,564  5,472  5,553  

E
lit

e 
ca

pa
ci

ty
 

17 
  

1,382 (88)  1,153 (73)  1,102 (62)  1,225 (56)  1,436 (99)  1,509 (87)
 

(d) The calibration results of elite_capacity and tabu_tenure for the Sioux Falls network 
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An overall interpretation and recommendation for the parameter settings can now be 

made in terms of the evaluation results of these example network problems under a 

variety of candidate parameter values (see Table 5.1).  Tabu tenure may be the most 

concerned among all the parameters.  The computational results showed that when 

tabu_tenure ! [3, 7], a search is frequently trapped into a cycling state and cannot 

explore other promising feasible regions.  Such a phenomenon reveals that this range 

of tabu tenure values may be too low to take advantage of the most important 

algorithmic feature of the tabu search technique, that is, to avoid local optima.  On the 

other hand, when tabu_tenure ! [13,17], while the search heuristic performs quite 

well with good solutions, it often misses evidently better solutions that are close to its 

search itineraries, which may be caused by its overly strong tabu settings—some 

moves that can reach very good solutions are erroneously regarded as tabus during the 

search.  It is found that for the given example problems the searches with 

tabu_tenure ! [8,12] typically find their best solutions by the most number of times 

and no single case of these searches encountered the cycling problem.  Therefore, it is 

concluded that this tabu tenure range is an evidently better choice compared to other 

two candidate ranges, in which, particularly, tabu_tenure = 12 is the most attractive 

value. 

 

However, the solution quality with regard to the elite capacity may not support a clear 

answer in interpreting its overall performance across the given example problem set.  

While no single elite capacity value shows a dominant preference among all the 

candidates, it is, as expected, that a smaller elite capacity tends to make the algorithm 

find the best solutions more frequently.  It is not surprising that the conventional best-

candidate-only rule, which is equivalent to elite_capacity = 1, conveys the best 

solutions most frequently among all the elite capacity numbers. 
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To maintain a consistent evaluation for the influences from the parameters on the 

solution quality, we standardized and synthesized the solution quality information 

from all the calibration experiments shown in Figure 5.3, which, as we hope, can 

better visualize the quantitative correlation between the solution quality and the two 

important algorithmic parameters in a uniform and interactive manner.  In this figure, 

each single objective value is calculated by applying the following standardization 

formula: 

 

standardized objective function value

= worst objective function value - best objective function value
optimized objective function value - best objective function value  (5.1) 

 

where the best and worst objective function values are lowest and highest ones from 

the set of the optimized objective function values under all the combinations of 

different algorithmic parameter values, i.e., 

 

 best objective function value= min
tt, ec, ft

{optimized objective function values}, (5.2)

 worst objective function value= max
tt, ec, ft

{optimized objective function values}. (5.3)

 

The overall relationship between the solution quality and the tabu tenure and elite 

capacity is depicted in Figure 5.2(a) for each problem case.  Some of the information 

regarding the solution quality can be referred to in the preceding text.  We also 

synthesized the information of the influences of the tabu tenure and elite capacity on 

the solution performance, respectively, in Figure 5.2(b) and Figure 5.2(c), which are 
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actually the projections of the 3-dimensonal plot in Figure 5.2(a) to the planes of the 

tabu tenure and elite capacity. 
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(a) Relationship between the solution quality and the tabu tenure and elite capacity 

 

Figure 5.2  The solution quality and the tabu tenure and elite capacity 
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Figure 5.2 (Continued) 
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(b) Relationship between the solution quality and tabu tenure 
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(c) Relationship between the solution quality and elite capacity 
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Figure 5.3  The computation efficiency and the elite capacity 

 

Some combinatorial impacts of the two algorithmic parameters on the solution quality 

can be extracted from the figures.  These impacts can be more precisely described as 

follows.  First, it is found that if the elite capacity is relatively small, such as, 1, 5 and 

9, the search procedure finds the best solution or near-best solution when the tabu 

tenure is set as 8, 10 or 12, where the tabu tenure of 12 consistently delivers the best 

solution in all the cases.  However, if the elite capacity is valued at a large number, 

such as, 13 and 17, the solution quality tends to be comparable among all the preset 

tabu tenure values.  Second, a tabu tenure value in the intermediate range typically 

provides a lower objective function value, while the solution performance significantly 

worsens if the tabu tenure is too small (e.g., 4) or too large (e.g., 16). 
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On the other hand, the elite capacity imposes a considerable influence on the 

algorithm efficiency, which shows, in most of the situations, the computational cost 

required for attaining the best solution decreases, if an increasing elite capacity cost 

setting is given.  One of the reasons is that the algorithm equipped with a larger elite 

capacity proceeds with iterations faster and hence is of greater potential in finding the 

best solutions early.  We depicted the relationship between the computational cost and 

the elite capacity for all the example networks (see Figure 5.3), where the 

computational cost is counted by the number of evaluations spent on finding the 

lowest objective function value.  These relationship curves clearly show that while an 

overall (approximately) decreasing relationship is observed over the whole range of 

the elite capacity values set in the experiments, the decreasing rate is much higher 

when elite capacity value is relatively small, say, elite_capacity < 5 + 6.  Moreover, 

such a phenomenon is more apparent for example problems with larger size.  The 

computational cost saving with a larger elite capacity value tends to be marginal when 

elite_capacity H 7.  Considering the increasing risk in lowering the solution quality by 

a large elite capacity value, a choice of elite_capacity = 7 may provide the best 

compromise between the solution quality and computational efficiency. 

 

In terms of the above quantitative evaluation and analysis, we suggested the set of 

tabu_tenure = 12, elite_capacity = 7 and freq_threshold = 0.90 as the best choice of 

these parameter values for local searches.  This chosen set of parameter values will be 

carried on when the algorithmic procedure is used to solve a larger evacuation network 

optimization problem. 

 

The influence imposed by the algorithmic parameters on the searching behavior during 

a local search can be observed by tracking the search itinerary that is represented by a 
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plot of the solution quality over the search iterations.  As an illustration, we plotted 

such search itineraries of solving the Sioux Falls evacuation problem with different 

tabu tenure and elite capacity settings, where the frequency threshold for 

intensification, as suggested earlier, is set as 0.90 (see Figure 5.4).  A glance on the 

solution itineraries for the Sioux Falls network shows us the search behavior along the 

iterations and the algorithmic capability of escaping local optima.  A common feature 

within these itineraries is that the search process rapidly reaches at its first several 

local optima a solution close to the final optimized solution.  In fact, we have observed 

the similar phenomena in other example networks.  This result may be due to the 

relatively simple structure and small size of these networks.  In an evacuation network, 

the closer a link is to an egress node, the quicker the lane assignment on this link can 

be determined during the search process.  Specifically, for example, it can be quickly 

found by the search procedure that a link connecting to an egress node should be 

assigned with all its lanes towards to the egress node.  Thus, in a network of relatively 

small size, the lane reversal directions of a large number of links that are close to the 

egress nodes may be determined at the initial stage of the search process, which 

constitute the most part of the final optimized solution.  With the increasing size of a 

network and the decreasing number of egress nodes, we should expect that the search 

procedure overcome more local optima until reaching the optimized solution. 
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5.3  Diversification search calibration 

 

For the diversification search, two more parameters need to be considered, which 

control a search process on a higher level, including the maximum number of non-

improving iterations in a local search prior to starting a diversification, 

max_iteration_num, and the maximum number of diversification moves in a search, 

max_diversification_num.  We examined the results from a large number of tests in 

the given four example networks with the preset range of local search parameters.  It 

has been observed that a setting of max_iteration_num = 50 can satisfy the need for 

most of the evacuation network cases of the problem type defined here. 

 

In many cases, diversification is an optional algorithmic element in a tabu search 

procedure.  It does not necessarily improve the optimality condition of the final 

solution obtained after one or diversification transfers are conducted.  Our computing 

experience suggested that while diversification may or may not improve the best 

network solution, max_diversification_num = 3 may be an appropriate number to 

invoke diversification. 

 

5.4  Performance evaluation 

 

Given all the computational results, this section is intended to provide a summary of 

the computational performance of the solution procedure and characterize the 

optimized network solutions of the set of example problems.  It is our hope that the 

latter task could provide us with some general empirical insights for devising more 

efficient heuristic rules if part of the optimal solution pattern could be reasonably 

predicted. 
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A deficiency with the solution evaluation in this research is that there is so far no exact 

solution method available to solve the defined network optimization problem and to 

further provide an optimality criterion for the approximate solutions.  This deficiency 

is not only due to the computational obstacle but also the methodological lack.  For the 

first two small examples, however, it can be confirmed by using the simple though 

tedious exhaustive method that their best solutions attained by the proposed heuristic 

method are the truly optimal solutions.  As another attempt of comparing the solution 

quality, we examined in all the examples the gaps between the best and worst 

solutions resulted from the whole population of calibration parameter values.  It has 

been found that the average gap is around 1.1 percent and the largest gap is 4.2 percent.  

This result is rather promising, since even if a non-optimal parameter setting is chosen, 

one could still expect to obtain a high-quality solution from using this heuristic 

procedure.  From the computational perspective, this finding is important and 

meaningful, because, due to the computing resource and time limits, it is not possible 

to conduct a large number of experiments with a broad range of problem types, sizes 

and parameter settings.  In this regard, we can conclude in an empirical manner that 

the developed algorithmic procedure is a rather robust optimization heuristic. 

 

Although there is some uncertainty within the optimality conditions provided by the 

heuristic solutions, it would be interesting to estimate the network efficiency benefits 

gained from implementing an optimized network solution compared to the original 

network configuration, which provides an alternative perspective for evaluating the 

goodness of a heuristic solution.  In Figure 5.5, the best and average objective function 

values of the optimized solutions obtained by the solution procedure are compared to 

the ones associated with the original network configurations. 
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Figure 5.5  Comparison of the objective function values of the optimized solutions and 

the original configurations 

 

The magnitude of the network efficiency improvement by the optimization process 

can be measured by comparing the objective function values affiliated with the 

optimized solutions and the original network configurations.  It can be seen from 

Figure 5.5 that a significant reduction from the objective function values of the 

original configurations is made by the optimized solutions procedure, where the 

reduction ranges approximately from 75 to 90 percent in these example problems.  

Furthermore, for any problem case, the average objective function value of all the 

heuristic solutions seems very close to the best solution in terms of the numerical scale 

given in the figure, which, once again, enhances our confidence on the optimality (or 
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near-optimality) robustness of the developed metaheuristic procedure, in that its 

solution performance is relatively insensitive to the parameter settings. 

 

The original configurations of these example networks have been all set to mimic the 

most common two-way street settings in typical urban traffic area, for which it is 

presumed that such a traffic network is designed to provide the capacity and 

connectivity for the daily commuting traffic.  The optimized network solutions should, 

as expected, have a considerably different topological structure from their original 

network configurations, due to the evacuation demand pattern that is drastically 

different from the commuting demand pattern.  To evaluate the resulting topological 

difference, we depict in the following figure (Figure 5.6) the network configuration of 

the best solution of each example problem in its reduced form.  It is well known that at 

any intersection a crossing-free traffic movement configuration can be always 

guaranteed if all the approaching links to this intersection are one-way links.  However, 

if this is not the case, the existence of crossing points would be not only dependent on 

the adjacent lane reversal configuration but also the traffic flow pattern.  To present 

the complete solutions, along each optimized network, we also magnified the traffic 

flow movements at each intersection subnetwork connecting with at least one two-way 

link. 

 

While capacity and connectivity variations are shown within the optimized network 

solutions of these example problems, some common topological features of the 

roadway section and intersection configurations can be summarized as follows. 

 

 

 

 177



 

 

 

 
21 12 313

24

16 17

26 28

22

10

37

4

29

7

5

32

8

6

33

9

35 39

20

19

 

 

29

20

19

35

406.1

0

71
4.

1
11

20
.2

 

32

20

19

22

37

63
.9

11
54

.5

38.9 973.3

284.0

 
Node 7 intersection subnetwork Node 8 intersection subnetwork 

(a) The optimized solution of example network 1 (26 nodes, 32 links) 

 

Figure 5.6  The optimized solutions of the example networks 
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Figure 5.6 (Continued) 
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(b) The optimized solution of example network 2 (40 nodes, 48 links) 
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Figure 5.6 (Continued) 
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(c) The optimized solution of example network 3 (55 nodes, 68 links) 
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Figure 5.6 (Continued) 

 

1 25 2

58

28 30 31

60

33

1112 38 161040 41

70 72

3

62

4

64

5

66

9

6

67

8

76

82

78 80

84

45 47

23 2249

95

87 89

97

14 15

17

86

19

2413 52 202154 55

91 93

35

1843

74

7

00

 

(d) The optimized solution of the Sioux Falls network (62 nodes, 76 links) 
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Among all the network solutions, there are few two-way links, especially in the second 

synthetic network and the Sioux Falls network, in which all links are fully reversed.  

This reflects the need of reversing as many lanes as possible for the outbound traffic 

and also contributes to the requirement of crossing elimination.  An intersection with 

all one-way approaching links must be a crossing-elimination intersection subnetwork.  

This phenomenon suggests that a problem with the full lane reversal settings may be a 

good approximate to the integrated evacuation planning problem defined in this study.  

Such an alternative model with full lane reversals is attractive in that it has fewer 

discrete decision variables and can be solved more efficiently. 

 

It is found that along with the change from two-way networks (i.e., the original 

configurations) to one-way networks (i.e., the optimized solutions), the numbers of 

nodes and links are significantly reduced.  If a two-way roadway section is converted 

to a one-way section, the numbers of nodes and links are reduced by 1 and 2, 

respectively, and the number of intersection links adjacent to this roadway section 

could be reduced by up to 6.  As an example, in the reduced form of the Sioux Falls 

network, the numbers of nodes and links in its original configuration are 100 and 152, 

respectively; the numbers are decreased to 62 and 76 in its optimized solution.  This 

problem size reduction greatly favors the estimation of the network flow pattern 

during the optimization process.  In fact, it has been observed that the search speed 

accelerates significantly after a certain number of iterations from the initial solution. 

 

Depending on the network topology and destination distribution, the lane reversal 

configurations in these optimized network solutions are of different spatial patterns.  

However, all these configurations appear with an approximate destination-oriented 

feature.  Most of the reversed links are assigned with a traffic direction pointing to a 
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closest exit node, especially those links in the vicinity of an exit node.  This feature is 

consistent with our previous engineering judgments in devising contraflow plans. 

 

Concurrently, it should be noted that there are also a number of other roadway sections 

with the optimized contraflow directions that may not accord with our intuition or give 

an intuitive answer.  Most of such sections are located at the places where there are 

multiple competing exit nodes or the links to be reversed are relatively far from any 

exit node.  To illustrate a few examples, see in the Sioux Falls network the links 

between nodes 4 and 5, between nodes 5 and 9, and between 14 and 15.  Without a 

systematic optimization method like the solution procedure presented here, it may be 

difficult to identify the optimal lane reversal configurations for these roadway sections, 

especially for those networks with large size. 

 

Given the above computation results, it is also necessary to briefly comment on the 

performance of the developed LR-TS algorithmic procedure.  Due to the heuristic 

nature, the search behavior and efficiency of the procedure may not be accurately 

predicted.  In our experience with the limited number of experiments, it has been 

found that the required computational cost (i.e., the number of objective function 

evaluations) increases roughly at a polynomial rate with the problem size (i.e., the 

numbers of nodes and links).  In this regard, the number of candidate lane-reversal 

roadway sections and crossing-elimination intersections are the primary factors.  The 

former determines how many evaluations are needed at each iteration and how many 

iterations are expected during the whole search process.  The latter determines the 

times of solving the intersection traffic movement optimization subproblem at each 

evaluation. 
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It has been realized that there is no feasible way so far to precisely assess the solution 

quality of the evacuation network optimization problem of the type defined here, 

except those simplest cases that could be solved by the exhaustive enumeration.  

However, the experiments of the example problems under a variety of demand and 

supply settings as well as a broad range of parameter settings showed that the solution 

procedure is a rather robust optimization method that can at least find near-optimal 

solutions. 

 

Although a set of heuristic rules embedded in the solution procedure are intentionally 

designed to accelerate the search course, it is still a computationally intensive process, 

even for medium-size problems.  Two algorithmic components of the procedure may 

let us take advantage of parallel computing as a very attractive computing mechanism 

in implementing the algorithm.  The two components that could be implemented in a 

parallel computing form are respectively the evaluations of candidate network 

solutions during an iteration and the examinations of traffic movement configurations 

at eligible intersections, where in each of the components there are a large number of 

separate and parallel optimization problems.  As we discussed before, these 

optimization problems actually constitute the bottleneck of the heuristic search process.  

In this regard, parallel computing provides a natural way to reduce the computing time 

and the implementation could be realized in quite easily. 
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CHAPTER 6 
 

EVACUATION PLANNING FOR A NUCLEAR POWER PLANT 
 
 
 

What is rational is actual and what is actual is rational. 
—G.W.F. Hegel 

 
 

An evacuation planning case study is introduced in the following to demonstrate the 

capability and effectiveness of the models and solution procedures developed in this 

study.  The assumed evacuation situation in this example comes from a nuclear power 

plant located in Monticello, Minnesota.  Though, as we will see, some specific 

problem characteristics and model elements are set for particular needs arising from 

this target problem, our methodology, with some minor modification or adaptation if 

needed, can be applied to model and optimize evacuation networks under a variety of 

other emergency situations. 

 

The objectives and settings of this Monticello case study enable us to investigate many 

modeling assumptions and insights and to assess the applicability and performance of 

our methodology.  Two problem instances are formed and their corresponding 

solutions are accordingly developed and discussed.  The first instance is an application 

of the basic model for searching for the optimal lane-reversal and crossing-elimination 

configurations in the Monticello evacuation network given different network supply 

settings; the second one is an application of the extended model that simultaneously 

optimizes the joint evacuation network optimization and emergency vehicle 

assignment scenario. 
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6.1  The evacuation network setting 

 

Monticello, Minnesota, is a community of about 11,000 people located at the northern 

edge of Wright County, along the Mississippi River about 30 miles northwest of 

Minneapolis.  The Monticello nuclear plant is owned by Northern States Power, a 

subsidiary of Xcel Energy, and is operated by Nuclear Management Company.  The 

plant began operation in 1971, and is currently licensed until 2030.  As enacted by the 

NRC and FEMA, an emergency planning zone (EPZ) with a 10-mile radius must be 

delimited centered at the site of any nuclear power plant in the U.S.  Because the 

Monticello plant is along a river that forms a boundary between counties, the EPZ in 

this case covers areas in both Wright County and Sherburne County.  Figure 6.1 shows 

the general location of the plant and the 10-mile radius EPZ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  The emergency planning zone for the Monticello nuclear power plant 
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If a nuclear accident alarm is triggered, all inhabitants in the EPZ are required to leave 

the area so as to avoid potential expose to a released radioactive plume.  For 

evacuation planning purpose, an evacuation network is extracted from the regional 

surface street and highway network.  The resulting evacuation network is shown in 

Figure 6.2. 

 

7 11

47

23

12

18
24

8

10

5

13 19

25

1

3

14

9

6

20 26

2716

17 22

28

31

30

45

32

38

39

34 41

42

4035

37
44

2

4

21

46

29

33

36 43

52
53

9998

79

57

58

59
51

55 54

50

56

4849

60
61

63
62

65
64

67
66

75

74
87 86

88
89

83

82

77 76

78

95

94

9190

93

92

73 72

68 69

71
70

96 97

Nuclear power plant

99 Origin node

84

8515

81 80

Emergency planning zone

I-94

US-10

US-169

MN-95

MN-25

MN-55

MN-24

MN-25

US-10

US-169

I-94

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  The Monticello evacuation network 
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There are 14 cities or towns in the network surrounding the nuclear power plant.  The 

evacuation demand generation is estimated based on the demographic data of the 

region from the U.S. Census 2000 survey.  The total number of evacuees from the 

network is about 42,000.  The surge demand rates are approximated by using the 

historical diurnal curves of evacuation demand generation such as the ones shown in 

Figure 3.3. 

 

The Monticello evacuation region covers both urban and rural areas and the roadway 

system consists of both freeway and arterial segments.  An interstate highway, I-94, 

spans the network (as denoted by a node chain, 2↔4↔15↔21↔46↔29↔ 

33↔36↔37↔44, in Figure 6.2), while most of the remaining roadway segments are 

U.S. and state highways and regional arterials.  These major arterials are also expected 

to serve as important arteries the evacuating traffic flow.  These major arterial routes 

are highlighted in Figure 6.2, including U.S. routes, US-10 and US-169, and state 

routes, MN-95, MN-25, MN-55 and MN-24.  The nuclear power plant is located in the 

middle the EPZ, which is adjacent to node 15.  Note that the interstate highway I-94 is 

the only uninterrupted traffic facility in the network and its capacity is significantly 

larger than other arterial roadways, so it is anticipated that this traffic corridor would 

be the most important evacuation pipeline and convey a large amount of traffic during 

the evacuation period. 

  

The size of this network (i.e., 99 nodes and 200 links) may be relatively small 

compared to a regional or statewide evacuation network under some other emergency 

situations.  However, given the fact that all the roadway segments of the network are 
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included as eligible contraflow segments, this network optimization problem still 

poses a very challenging computational task. 

 

There have been a number of potential destination nodes identified for the Monticello 

evacuation network, including nodes 40, 28, 23 and 2 (refer to Figure 6.2).  The first 

three destinations are all designated emergency reception centers located at local high 

schools: Osseo Junior High School (at node 40), Rogers High School (at node 28), and 

Princeton High School (at node 23).  These reception centers can provide evacuees 

with basic accommodation facilities and medical services.  The last destination node is 

supplemented as an additional egress, given that all the above reception centers are 

located in the east part of the area and may not attract those inhabitants residing in the 

west part.  If residents in the west are guided or forced to evacuate toward any of the 

three reception centers, they may have to travel through some roadway segments in 

the proximity of the nuclear power plant.  An evacuation plan with such a destination 

setting may result in some safety concern and psychological fear within the evacuating 

population.  From a practical point of view, the I-94 westbound naturally provides a 

more convenient and accessible exit for those residents under a nuclear emergency 

situation.  This leads us to suggest employing node 2 as an egress for the Monticello 

evacuation network if needed. 

 

Among these potential evacuation destinations, the Osseo reception center has long 

been designated by the Sherburne County Sheriff’s Department†; the addition of the 

Rogers and Princeton reception centers has been recently suggested by Nuclear 

                                                 
† Source: Monticello Nuclear Power Plant Emergency Planning Guide, accessible at http://www.co. 
sherburne.mn.us/sheriff/services/mnp_evacuation.htm. 
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Management Company (NMC)‡, the plant operator.  As for the I-94 west egress, its 

incorporation is the result of our preliminary spatial network analysis.  No 

accommodation capacity requirement at reception centers has been estimated in the 

previous evacuation plans.  In view of these varying egress availabilities, three 

destination settings, i.e., destination node 40 only, destination nodes 40, 28 and 23, 

and destinations 40, 28, 23 and 2, are suggested and investigated in this study.  This 

resulted in three different network scenarios: the first scenario has only one egress (i.e., 

node 40) in the east part of the network; the second scenario has three egresses (i.e., 

nodes 40, 28 and 23) in the east and northeast; the third scenario includes all the 

egresses (i.e., nodes 40, 28, 23 and 2). 

 

The traffic crossing pattern described in Chapter 3 (see Figure 3.1) arises only from a 

standard four-leg intersection.  Other traffic-crossing geometric settings, for example, 

a three-leg intersection or an at-grade interchange, have different crossing 

configurations and optimality conditions on traffic turning movements.  However, 

both of these alternative traffic crossing roadway components appear in the Monticello 

network.  Although these alternative geometric designs pose different traffic crossing 

situations, the lane-based network modeling principle described earlier can still be 

applied here to define their corresponding crossing-elimination constraints.  In fact, 

the set of crossing-elimination constraints for these alternative traffic crossing cases 

can be readily specified, according to a set of similar rules to those applied to a four-

leg intersection.  As an example, we illustrated in Figure 6.3 the traffic crossing 

patterns at a three-leg intersection and a diamond interchange. 

 

                                                 
‡ Source: Monticello Nuclear Generating Plant Emergency Planning Guide and Calendar, accessible at 
http://www.nmcco.com/about_us/emergency/monticello/monti_home.htm. 
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Figure 6.3  Traffic crossing points of alternative intersection/interchange designs 

 

6.2  Evacuation network solution development and result analysis 

 

The LR-TS solution procedure with the calibrated parameter set is then used to search 

the optimal evacuation plans for the three defined evacuation scenarios from the 

Monticello network.  We implemented the algorithm in MATLAB 7.1 (R14) and 
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conducted all the experiments on a Windows-based PC with an Intel Pentium Dual-

Core 1.80GHz CPU and 1MB memory.  The resulting search itineraries and network 

solutions are presented in Figure 6.4 and Figure 6.5, respectively.  The computational 

complexity with this set of evacuation network optimization problems can be seen 

from the search itineraries, in that a larger number of local optima are encountered 

during the search process than that of those small-size example networks used in the 

calibration.  The search process requires more iterations to reach the optimal (or near-

optimal) solutions, the solution procedure resorts to a larger number of objective 

function evaluations for each iteration, and each evaluation costs a longer computing 

time.  Specifically, the optimized solutions of the three network scenarios with one, 

three and four egresses are identified at iteration 413, 479 and 334, and the computing 

times for finding these optimized solutions are 3.023 , 3.  and 

 sec, respectively.  The four-egress network scenario is least congested 

among the three due to its largest number of egresses and accordingly its reaches the 

optimized solution relatively faster. 

# 10 4 484 # 10 4

2.298 # 10 4

 

The lane-reversal directions in each of the network solutions constitute a destination-

oriented pattern.  This spatial characteristic can be described as follows, that is, 

emanating from the heart area of the network (which is far from any egress node), 

most roadway segments are reversed in such a way that the traffic is distributed over 

the network, moving outbound and merging at the egress nodes.  Because of this, two-

way roadway segments only exist near the center of the optimized evacuation network, 

where links are far away from any egress node and there may be no single contraflow 

direction for those links that can make the traffic distributed over the network more 

efficiently than the two-way traffic alignment.  In other words, the traffic in the central 

area may be attracted by multiple destinations. 
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(a) Search itinerary for the Monticello network with one egress 

 

Figure 6.4  Search itineraries for the Monticello evacuation network optimization 
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Figure 6.4 (Continued) 
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(b) Search itinerary for the Monticello network with three egresses 
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Figure 6.4 (Continued) 
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(c) Search itinerary for the Monticello network with four egresses 
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(a) The optimized solution of the Monticello network with one egress 

Figure 6.5  Optimized solutions of the Monticello evacuation network 
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Figure 6.5 (Continued) 
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(b) The optimized solution of the Monticello network with three egresses 
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Figure 6.5 (Continued) 
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(c) The optimized solution of the Monticello network with four egresses 

 

The traffic movements at an intersection do not cause any crossing point if all the 

intersection approaches are one-way roadway segments.  However, if there are two-

way approaching segments, the traffic crossing pattern at the intersection turns 

relatively complicated.  The intersection crossing-elimination requirement has been 

our concern in validating any optimized solution since this feasibility requirement is 

only satisfied by the search process in a heuristic manner.  In the optimized solutions 
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of each of the first two network scenarios (with one and three egresses), there exists 

one two-way roadway segment.  If we zoom in to the adjacent intersection 

subnetworks of these segments, it is clear that no crossing point has been generated by 

any of the relevant traffic movements at the associated intersections (see Figure 6.5).  

Therefore, we can conclude that these heuristically optimized network solutions 

satisfy all the feasibility requirements. 

 

It has been assumed that individual evacuees make their route and destination choices 

in a stochastic user-optimal manner.  Under our modeling settings, the optimal 

solution is the network configuration that can accommodate the stochastic user-

optimal traffic flow pattern at the minimum congestion level.  Therefore, the optimal 

network topology can be used to describe the evacuation route and destination choices, 

at least approximately.  The combination of lane-reversal and crossing-elimination 

configurations as well as the associated traffic flow rates along major highways and 

arterials in the optimized network depicts the spatial movements of evacuating traffic 

and can be used to help evacuation planners in detailing an evacuation plan. 

 

The destination-oriented solution topology is a result of the interactions between the 

network capacity supply and evacuation flow demand.  The egress availability is one 

of the most important factors affecting the traffic distribution and assignment.  We 

have observed the difference of lane-reversal directions of many links among the three 

optimized network solutions, which heavily depends on the relative attractiveness of 

available egresses.  For example, many links in the vicinity of node 40 are assigned 

with the same directions over the three network scenarios, since the reception center at 

node 40 is attractive to the traffic nearby in all the cases; however, a number of links 

adjacent to node 2, such as 2↔4↔15 and 2↔5↔8↔10, have different directions in 
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the optimized solution of the first network scenario (with one egress) from the second 

and third network scenarios (with three and four egresses), because in the former 

scenario node 2 is a comparatively more attractive egress to the traffic generated 

surrounding these links than other egresses while in the latter this egress is not 

available. 

 

Although most links in these optimized network solutions are assigned with a full 

lane-reversal direction, the understanding and interpretation of the lane-reversal 

directions may not be straightforward.  It can be observed that in each of the network 

solutions a number of links may have been assigned with a counterintuitive lane-

reversal direction, or some links whose lane-reversal directions may not be necessarily 

consistent with our intuition.  To give a few examples, see links 14→15 and 16→15 in 

the solution of the first scenario and link 3→1 in the solutions of the first and second 

scenarios.  It should be realized that such a solution complexity is a result of many 

combinatorial supply and demand factors, which may not be readily accessible 

through a simple, intuitive approach.  The optimization results from these network 

scenarios show the combinatorial complexity of the network optimization problems 

and justify the necessity of developing a sophisticated optimization procedure such as 

the LR-TS method used here. 

 

Some other insights about the model development and solution characteristics may be 

derived from the above result analysis.  First, it is suggested that an evacuation 

network optimization model with the full lane-reversal requirement might be a good 

approximate to solve the evacuation network optimization problem.  If such an 

approximation is acceptable, it brings two modeling and computing advantages: 1) the 

number of decision variables and the number of solution spaces can be significantly 
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reduced; 2) the intersection crossing-elimination constraint can be automatically 

satisfied, which further simplifies the model structure and solution procedure.  Second, 

the topological pattern of the resulting solutions implies in some sense the underlying 

spatial characteristic of a desirable evacuation network, which should be the one that 

can sufficiently utilize the network capacity and disperse the traffic over the whole 

network in a distributed manner. 

 

6.3  Comparative evaluations 

 

To further quantify the solution method’s behavior and performance, we measured and 

compared below the impact of a variety of evacuation situations on the solution 

quality and efficiency.  These different example evacuation schemes have been set on 

both the supply side and the demand side, such as the availability of egresses and the 

level of demands.  In addition, we compare the solution quality of our LR-TS 

metaheuristic with other applicable algorithmic procedures in the literature. 

 

6.3.1  Egress availability 

 

The multiple network scenarios with the varying number and distribution of reception 

centers and network exits provide us with an opportunity in measuring the influence of 

the accessibility of evacuation egresses on the network performance.  The three 

scenarios with different egress settings as well as their network solutions have been 

described above.  We attempt to provide a more detailed scenario analysis below. 

 

The optimized network topologies in Figure 6.5 clearly show the difference of the 

reversed lane directions and the resulting evacuation routes in the three scenarios.  In 
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all the optimized solutions, the Interstate highway I-94 is fully reversed to provide 

maximum evacuation capacity; however, due to the availability of the egress at node 2, 

the solution of the third scenario assigns the I-94 segment between nodes 2 and 15 

with a westbound direction, which is different from the plans generated from the first 

and second scenarios.  The lane-reversal planning part for this I-94 segment not only 

reduces the evacuation time by taking advantage of the egress at node 2, but also 

provides a routing direction for traffic traversing the I-94 segment.  This result is also 

consistent with people’s common safety-seeking sense and perception.  In this case, 

due to a focused concern and high sensitivity to the accident, most of evacuees tend to 

choose an evacuation route escaping away from the accident site rather than getting 

close to it.  At this point, the solution derived from the third scenario is the most 

desirable among the three. 

 

In comparing the first and second scenarios, it can be seen that the two optimized 

solution topologies are quite similar.  However, an arterial segment between nodes 23 

and 25, i.e., 23↔24↔25, is assigned with different lane-reversal directions between 

the two solutions.  The major reason is that the egress at node 23 is available in the 

second scenario and it may attract a large amount of traffic from the network.  

Similarly, the directions of link 31↔45 in the two solutions are also fully reverse to 

each other due to the availability of the egress at node 28 in the second scenario. 

 

More importantly, the addition of egresses not only changes the optimal solution 

topology, but also greatly reduces the congestion level and the evacuation time by 

dispersing the evacuation flow to different destinations.  To quantify the benefits from 

adding egresses, a comparative study is conducted in terms of the network flow 
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attributes such as, the volume-over-capacity (V/C) distribution, the total evacuation 

time, and the arrival flow split over the destinations. 

 

The network congestion level may be assessed by the network V/C distribution and 

the total evacuation time.  First, it is shown in Figure 6.6(a) that all the network 

scenarios encounter a congested traffic condition, in that on a large number of links is 

the traffic demand rate several times higher than the capacity.  Not surprisingly, the 

optimized solution of the first scenario contains a significantly larger number of 

extremely congested links than the other two due to its less egress availability.  While 

the third network scenario has only one more egress than the second scenario, it still 

gains a significant reduction of the network congestion.  Specifically, in the third 

scenario, the addition of the egress at node 2 may attract many evacuees from the west 

part of the network rather than assign them to travel through the central and east parts 

of the network that has been suffered from the serious traffic congestion. 

 

The arrival flow split over the destinations is a result of the integrated traffic 

distribution and assignment principle and reflects the relative attractiveness of the 

destinations to the evacuating population.  As shown in Figure 6.6(c), the two 

scenarios with multiple reception centers (i.e., the second and third scenarios) 

distribute the evacuation demand in a disperse manner rather than the excessive use of 

a single reception center in the first scenario.  Furthermore, with the addition of node 2 

as an egress, the third scenario can lower and level the arrival flow rates at the other 

three reception centers, as compared to the second scenario.  In both the cases, the 

reception center at node 28 attracts the most evacuating demand, due to its convenient 

geographic location close to the demand generation area in the network. 
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(b) The total evacuation times 

Figure 6.6  The network performance variation with the egress availability 
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Figure 6.6 (Continued) 
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(c) The arrival flow splits over destinations 

 

The competitiveness of these egresses in the second and third scenarios may be further 

analyzed by a network partition analysis, by which we can identify the part of the 

network from which the evacuation demand is attracted by each egress.  This network 

partition information is very useful in prescribing the evacuation plan with the lane-

reversal and crossing-elimination settings.  However, such a partition analysis may not 

be applied to describe the relative attractiveness between nodes 28 and 40, because 

these two nodes are both located in the southeast corner of the network.  Of the two 

egress nodes, node 28 is much closer to the demand generation area, so an intuitive 

perception results in a conjecture that the importance of the reception center at node 

40 would be significantly lowered if the center at node 28 is introduced into the 
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network because the latter center provides a nearest accommodation site to many 

evacuees escaping toward the east.  With checking the arrival flow split, we found that 

in both the second and third scenarios, the reception center at node 40 still attracts a 

large amount of evacuating demand even if node 28 seems much more attractive in 

terms of the network topology.  Nevertheless, the arrival flow split patterns in these 

multi-egress evacuation scenarios justify that the location and utilization of these 

reception centers in an evacuation plan provided a reasonable evacuation solution.  

The expected number of evacuation arrivals at each reception center can be further 

estimated with the arrival flow split information and thus the sufficiency of the facility 

capacity and relief supply at each reception center can be accordingly assessed. 

 

From the above comparative analysis, we have seen that the third scenario with the 

most number of egresses is the most attractive solution among the three because it 

provides a most efficient evacuation network and the individual routing behavior can 

be best accommodated.  We also want to emphasize the exceeding importance of the 

egress availability in evacuation planning, in that it affects the evacuation efficiency at 

the level of up to an order of magnitude, especially when the number of egresses is 

relatively limited. 

 

6.3.2  Demand level 

 

Evacuation demand variations also affect the optimal network solution and evacuation 

efficiency.  In many evacuation cases, it may be quite difficult to predict the demand 

generation pattern and amount during the evacuation period. Thus, it is important to 

test the solutions under a range of possible demand levels. 
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A more congested network typically has slower traffic assignment convergence.  In 

our case, due to the requirement of repeatedly evaluating the objective function, the 

optimization process will be significantly lengthened if a higher level of evacuation 

demand is loaded.  Despite this computational issue, there are two important reasons 

to investigate the influence of the demand variations on evacuation network solutions.  

First, the static nature of the model obligates us to focus on optimizing an evacuation 

network for its surge demand rate.  The robustness of an optimized network solution 

for a range of possible demand variations needs to be estimated to some extent.  

Second, given an uncertain demand generation environment, our confidence and 

dependency on an optimized evacuation plan could be better assessed and enhanced, if 

we know, at least approximately, the network performance variations due to 

alternative demand levels. 

 

For each of the three evacuation scenarios, we re-optimized its lane-reversal and 

crossing-elimination configurations under the ±50 percent demand levels, which we 

refer to as the two alternative demand levels in our experiments.  A comparative 

evaluation with using the total evacuation time as the network performance indicator 

is illustrated in Figure 6.7. 

 

It is clearly shown in this figure that for all the network scenarios, a higher demand 

level results in a more congested network and the network congestion deteriorates at 

an accelerating rate with the increasing demand rate.  The shape of these demand-

related network performance curves may be accounted for by multiple modeling 

factors, of which the two most important reasons are: 1) the polynomial form of the 

link performance function; 2) the assumption of the simultaneous evacuation demand 

generation.  In the former setting, the degree of the polynomial determines the 
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congestion-increasing magnitude in the network; the latter assumption yields a higher 

congestion level on links that are closer to the egresses.  On the other hand, it is also 

observed that the congestion-increasing rate could be significantly reduced with the 

addition of egresses.  For example, if the demand level is increased from 0.5 to 1.0, the 

total evacuation time of the first network scenario (with one egress) is increased by up 

to 31 times; in contrast, with the same demand-increasing rate, the total evacuation 

time of the third network scenario (with four egresses) is increased by only 9 times. 
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Figure 6.7  Variation of the total evacuation time over different demand levels 

 

The network solution variation under different evacuation demand levels is another 

important concern in evaluating the reliability of an optimized network solution.  If the 

network solution obtained at a slightly different demand level is significantly different 

from the one obtained at the expected demand level, the applicability of the model 

would be discounted in practice.  In this case, multiple demand scenarios may need to 

 208



be developed, or a stochastic optimization approach needs to be pursued if a 

distribution of evacuation demand rates could be estimated.  These extra efforts add 

the modeling complexity. 

 

With this intention, we focus on investigating the network performance variation of 

the solution optimized at the expected demand level for a range of demand rates.  By 

making use of the experiments conducted above, we applied the network solution 

obtained with the 1.0 demand level to the evacuation cases of the 0.5 and 1.5 demand 

levels and compared the resulting “sub-optimized” performance values to those of the 

network solutions optimized at these alternative demand levels.  The discrepancy of 

the total evacuation time between these optimized and sub-optimized network 

solutions is depicted in Figure 6.8. 
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Figure 6.8  A network performance comparison between the optimized and sub-

optimized network solutions at alternative demand levels 
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For all the three network scenarios, the comparison result shows that the network 

solutions optimized at the 1.0 demand level are only marginally different from the 

corresponding optimized solutions for the 0.5 and 1.5 demand levels in terms of the 

total evacuation time.  The difference of the total evacuation time between the 

optimized and sub-optimized solutions ranges from 0.3 percent to 7.2 percent in all the 

cases.  The average difference of the total evacuation time is merely 2.3 percent.  The 

largest difference occurs in the case of applying the optimized solution of the first 

scenario to the 1.5 demand level, which is the most congested network among all the 

scenarios. 

 

The comparative study described above can only be regarded as an example in its 

simplest case, in which the alternative demand levels are obtained by linearly 

increasing and decreasing the demand rates over the whole network.  The demand 

distribution pattern, however, is not changed.  A more comprehensive study should be 

to extend a similar comparison for optimized network solutions under a variety of 

possible evacuation demand patterns and levels.  Nevertheless, the preliminary result 

obtained from this limited number of experiments justifies that an optimal evacuation 

network solution is capable of maintaining their near-optimal performance for a 

moderate range of linear-varying demand levels, at least for the Monticello evacuation 

network. 

 

6.3.3  Alternative solution methods 

 

The third comparison is focused on the aspect of solution strategies.  For this purpose, 

two alternative algorithmic procedures are selected from the literature and applied to 

solve the Monticello evacuation planning problem.  The first algorithm is based on a 
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shortest-path tree (SPT) construction procedure, as proposed by Hamza-Lup et al. 

(2004, 2007); the second one is a so-called flip-high-flow-edge (FHFE) method 

developed by Kim and Shekhar (2005, 2006), in which the lane-reversal direction on 

any roadway section is dependent on the congestion conditions of its two traffic 

directions.  Although these two algorithms do not explicitly incorporate the 

intersection crossing-elimination requirement, the full lane-reversal assumption 

guarantees an automatic satisfaction of the crossing-elimination constraints. 

 

 algorithm SPT heuristic; 

 begin 

  define reduced network ( , super dummy node u ; N,E)

  delete all intermediate source nodes, N ; - = N - {s}

initialize d  for each node , ; (j): =3 j ! N- d (u): = 0

  apply Dijkstra’s algorithm and label each ; j ! N-

  for each couple of links →k  and k→ j  do j

  begin 

   if d  then (j) > d (k)

    reverse all the lanes along direction k→  to direction →k ; j j

   else 

    reverse all the lanes along direction →k  to direction → j ; j k

   end; 

  end; 

 end; 

(a) The shortest-path tree (SPT) algorithm 

 

Figure 6.9  The algorithmic procedures of the SPT and FHFE methods 
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Figure 6.9 (Continued) 

 

 algorithm FHFE heuristic; 

 begin 

define reduced network ( , traffic flow rate x , x , capacity c  where →s→k  is  N,E) js sk jk j

a link pair; 

  conduct a stochastic traffic assignment to estimate x  and x ; js sk

  for each couple of link pairs →s→  and k→t→ j  do j k

  begin 

   if (x js c jk) b + 1
+ (xsk c jk) b + 1 > (xkt ckj) b + 1

+ (xtj ckj) b + 1 then 

    reverse all the lanes along direction k→  to direction →k ; j j

   else 

    reverse all the lanes along direction →k  to direction → j ; j k

   end; 

  end; 

 end; 

(b) The flip-high-flow-edge (FHFE) algorithm 

 

The modified versions of the two algorithmic procedures for our specific evacuation 

network settings can be described as follows.  In the SPT method, a shortest-path tree 

is first developed in terms of the static travel impedance (e.g., the free-flow travel 

time), starting from the super dummy destination node to all other nodes in the 

network, and the distance along the shortest path between any node and the destination 

node is labeled; the lane reversal direction of each link is then determined in terms of 

the distance labels of the two end nodes, that is, the direction is set from the end node 

with the larger distance value to the other end node with the lower value. 
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The FHFE method also has a two-stage process.  In the first stage, a traffic assignment 

is carried out in the original network and the traffic flow rate on each link is recorded; 

the second stage resorts to a comparison of the congestion level (e.g., V/C ratio) of the 

two traffic directions of each roadway segment, by which the capacity of the traffic 

direction with the lower V/C value is fully reassigned to supplement its counter traffic 

direction.  The pseudo-code steps of these two methods can be referred to in Figure 

6.9. 

 

The prominent merit of these selected algorithmic procedures is their simple 

algorithmic logic and low computation cost, in which none or only one time of the 

objective function evaluation needs to be invoked for determining the final solution 

and no intersection subnetwork manipulation or optimization needs to be actually 

conducted.  However, the optimality condition of these solutions may be subject to the 

following deficiencies.  First, both of the methods do not explicitly consider the 

network optimization objective such as minimization of the total evacuation time.  

Second, both of the methods are not of an iterative process to monitor the traffic flow 

variation due to the network topology and connectivity change, in that the SPT method 

ignores the network congestion effect at all and the FHFE method only makes use of 

the congestion information at the local level and in the minimum form.  Given these 

reasons, the two algorithmic procedures can only be regarded as heuristics for the 

evacuation network optimization problem defined here.  Despite these algorithmic 

deficiencies, from a practical point of view, the simple logic and intuitive solution-

deriving principle make these methods to be very attractive candidates and their 

solutions may be on some degree regarded as a surrogate of evacuation plans that are 

derived from engineering judgments. 

 213



 

In contrast, we resorted to a relatively sophisticated solution procedure for solving the 

evacuation network optimization problem.  A natural question may arise when we 

consider the relative performance between the different types of solution methods: Is a 

sophisticated, time-consuming metaheuristic worthwhile, compared to those simple, 

intuitive heuristics for the network optimization problem defined here? 
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(a) The network solution derived by the SPT algorithm 

Figure 6.10  The Monticello network solutions from the SPT and FHFE methods 
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Figure 6.10 (Continued) 
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(b) The network solution derived by the FHFE algorithm 

 

The solutions obtained from implementing the SPT and FHFE methods for the first 

scenario (with the single egress point) of the Monticello evacuation network 

optimization problem are presented here as an example (see Figure 6.10).  It can be 

seen that the network-wide lane-reversal configurations in these two heuristic 

solutions are quite similar to the solution from the LR-TS method.  The SPT and 

FHFE solutions contain 12 and 5 roadway sections with a different lane reversal 
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direction from the LR-TS solution, corresponding to 16 and 7 percent of the total 

number of reversible roadway sections in the network, respectively.  Those different 

lane reversal configurations are highlighted in Figure 6.10.  The total evacuation time 

of the SPT solution is 2.  vehicle-hours and the FHFE solution gives a total 

evacuation time of 2.  vehicle-hours.  Compared to the optimized LR-TS 

solution, these two figures are 40.6 percent and 8.7 percent higher, respectively (refer 

to Figure 6.10). 

92 # 10 7

25 # 10 7

 

Two comments need to be appended here with regard to this comparison between the 

LR-TS metaheuristic and the two simple heuristics.  First, the LR-TS method 

apparently outperforms the two tested simple heuristics in terms of the solution quality, 

at least in this Monticello network example.  The FHFE method could be regarded as 

an attractive alternative method for the evacuation planning problem, considering its 

high computational efficiency in practice.  However, it is expected that such a solution 

quality gap would be increased with the increasing the network complexity.  Second, 

due to the structural similarity of these solutions, the solutions derived from the simple 

heuristics could be used as a good initial solution of our complex LR-TS method.  

With checking the search itinerary of the LR-TS method for the problem scenario (see 

Figure 6.4(a)), it is found that the objective function values of the SPT and FHFE 

solutions are comparable to that of the LR-TS solutions encountered approximately at 

iteration 30 and 150, respectively.  If we use, for example, the FHFE solution as the 

starting point of our LR-TS procedure, a large number of iterations could be saved 

during the search process and the search procedure can focus on more important 

solution regions more quickly. 
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Figure 6.11  A solution quality comparison of three solution methods 

 

6.4  Integrated evacuation network optimization and emergency vehicle assignment 

 

Another important emergency mitigation planning component is emergency vehicle 

routing, allowing emergency personnel and equipment to be transported into the 

disaster area.  This section discusses an application of the extended model for dealing 

with an integrated evacuation network optimization and emergency vehicle routing 

problem for the Monticello network.  In this particular case, the primary concern of 

using emergency vehicle routes is to rescue casualties in case a nuclear power plant 

accident occurs.  In accordance with this requirement, we must reserve one or more 

inbound routes in the evacuation network to ensure an unblocked, efficient ground 

transportation pipeline between the disaster area and the accessible hospitals or 

medical centers.  Following a two-stage process based on the lexicographic 

optimization principle, we first analyze and tackle the emergency vehicle routing 
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problem and accordingly solve an evacuation network optimization problem following 

each emergency vehicle routing scenario; then a bi-objective scenario analysis is 

applied to search for the best scenario integrating evacuation network optimization and 

emergency vehicle routing. 

 

6.4.1  Emergency vehicle routing 

 

Given the locations of a medical facility and the emergency site, a single emergency 

vehicle route can be readily determined by the classic label-setting shortest path 

algorithm (e.g., Dijkstra’s algorithm).  Since there are a number of hospitals available 

for the emergency service and we must consider the influence of emergency vehicle 

route reservation on the evacuation network performance, the selection of emergency 

vehicle routes involves a two-stage procedure.  The following text describes the first 

stage—how we developed all the candidate emergency vehicle routing schemes for the 

Monticello network. 

 

A list of hospitals located in the surrounding area (including Stearns, Sherburne, 

Benton Morrison, Wright, Anoka and Hennepin Counties), which can provide 

ambulance services and treat casualties, has been identified by the Sherburne County 

Sheriff’s Department (see Table 6.1).  A regional map labeling the locations of these 

hospitals is shown in Figure 6.12.  According to the distribution of these hospital 

locations as well as the other emergency management requirements, three candidate 

routes are identified by the shortest path algorithm for the emergency vehicle use.  

Each of the routes serves as a transportation artery from one or more hospitals to the 

accident site.  The selection of emergency vehicle routes depends on how many and 

which hospitals are needed, which is in turn related to two medical and transportation 
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facility attributes: the hospital capacity for the casualty treatment and the emergency 

route travel time between a hospital and the accident site.  We are expected to provide 

sufficient hospital capacity to accommodate all the casualties, while to minimize the 

average travel time of ambulances commuting between the accident site and their 

affiliated hospitals.  A preliminary routing analysis suggests that each of six 

emergency vehicle routing schemes may be used in an evacuation plan for the 

Monticello network: 

 

• Route 1; 

• Route 2; 

• Routes 1 and 2; 

• Routes 1 and 3; 

• Routes 2 and 3; and 

• Routes 1, 2 and 3. 

 

All the candidate emergency vehicle routes listed in these schemes are sketched over 

the Monticello network in Figure 6.13.  Routes 1 and 2 are established on I-94, serving 

three hospitals in the east and seven hospitals in the west that are relatively far from 

the network, respectively; route 3 is on US Route 169, connecting only one hospital in 

the northeast corner of the network.  The selection of emergency vehicle routes will be 

a decision-making problem subject to the emergency situation and the network traffic 

conditions. 
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Figure 6.13  Candidate emergency vehicle routes 

 

The introduction of emergency vehicle route planning causes a decision-making 

conflict with the objective of evacuation network optimization, in that the emergency 

vehicle routing requires reserving a certain amount of roadway capacity from the 

evacuation network that has been already congested, and potentially creates more 

traffic crossing points with the evacuating traffic at the intersections along the 

assigned emergency vehicle route.  A simultaneous consideration of evacuation 

network optimization and emergency vehicle routing creates a bi-objective 
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optimization problem.  Given the actual or estimated number and severity of disaster 

casualties, it is expected that a Pareto-optimal set with regard to the two objectives 

need to be developed so that the decision maker can determine an integrated 

evacuation and emergency vehicle routing plan. 

 

Table 6.1  List of hospitals inside or around the emergency planning zone 

 

ID Name Address Accessibility Route Travel time 

1 
 

Saint Cloud Hospital 
 

1406 6th Ave N 
Saint Cloud, MN 56303 

Yes 
 

2 
 

35 min 
 

2 
 

Albany Area Hospital 
and Medical Center 

300 3rd Ave 
Albany, MN 56307 

Yes 
 

2 
 

49 min 
 

3 
 St. Michael's Hospital 425 Elm St N 

Sauk Centre, MN 56378 
Yes 
 

2 
 

68 min 
 

4 
 

Paynesville Area 
Hospital 

200 W 1st St 
Paynesville, MN 56362 

Yes 
 

2 
 

63 min 
 

5 
 

Melrose Hospital 
 

11 N 5th Ave W 
Melrose, MN 56352 

Yes 
 

2 
 

59 min 
 

6 
 

Fairview Northland 
Regional Hospital 

911 Northland Dr 
Princeton, MN 55371 

Yes 
 

3 
 

39 min 
 

7 
 

Monticello-Big Lake 
Hospital 

1013 Hart Blvd 
Monticello, MN 55362 

No 
 

N/A 
 

N/A 
 

8 
 

Mercy Hospital 
 

4050 Coon Rapids Blvd 
NW 
Coon Rapids, MN 55433 

Yes 
 

1 
 

38 min 
 

9 
 

Unity Hospital 
 

550 Osborne Rd NE 
Fridley, MN 55432 

Yes 
 

1 
 

38 min 
 

10 
 

North Memorial 
Health Care 

3300 Oakdale Ave N 
Robbinsdale, MN 55422 

Yes 
 

1 
 

39 min 
 

11 
 

St. Gabriel's Hospital 
 

815 2nd St SE 
Little Falls, MN 56345 

Yes 
 

2 
 

62 min 
 

12 
 

Buffalo Hospital 
 

303 Catlin St 
Buffalo, MN 55313 

No 
 

N/A 
 

N/A 
 

13 
 

Glacial Ridge 
Hospital 

10 4th Ave SE 
Glenwood, MN 56334 

Yes 
 

2 
 

100 min 
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Figure 6.14  The hospital capacity and the emergency route travel time 

 

A hospital’s capacity to accommodate casualties is primarily determined by the 

number of its emergency rooms as well as the number of the available beds.  For 

simplicity, we roughly believe that all hospitals on the list have a comparable number 

of emergency rooms and other medical facilities.  Accordingly, we do not use the 

number of emergency rooms at each hospital to represent its capacity, but simply 

regard each hospital as one medical capacity unit.  We calculated and depicted the 

shortest travel times under all the possible hospital capacity cases associated with each 

emergency routing scheme (see Figure 6.14). 

 

In Figure 6.14, all the possible hospital capacity cases that are served by the same 

routing scheme are grouped together by straight lines so as to better visualize the 

relationship between the hospital capacity and the average route travel time under each 

emergency vehicle routing scheme.  Please note that in this figure the average route 
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travel time for any hospital capacity n  is the average of the route travel times from the 

accident site to the n  closest hospitals.  For example, if one hospital associated with 

route 1 is needed, hospital 8 or 9 (i.e., Mercy Hospital or Unity Hospital) should be 

used (because they are the closest hospitals) and the average route travel time is 38 

min; if two hospitals associated with route 1 are required, hospitals 8 and 9 should be 

used together and the average travel time is still 38 min (i.e., (38 + 38) 2 = 38 min); 

if three hospitals associated route 1 are required, hospitals 8, 9 and 10 need to be used 

and the average route time becomes 38.3 min (i.e., (38 + 38 + 39) 3 = 38.3 min).  

Route 1 cannot provide four or more hospitals in this case.  If four hospitals are 

required, one of the following emergency routing schemes can be used: route 2, routes 

1 and 2, routes 1 and 3, routes 2 and 3, and routes 1, 2 and 3. 

 

6.4.2  Scenario analysis of evacuation network optimization and emergency vehicle 

routing  

 

At the second stage, the optimized evacuation network solutions corresponding to the 

six different emergency vehicle routing schemes are generated by the LR-TS search 

procedure, which are presented below in Figure 6.15.  A synthesis of the optimization 

results of integrating the evacuation network configuration and emergency vehicle 

routing are presented in Figure 6.16.  In this figure, we depicted a Pareto-optimal set 

of the bi-objective optimization problem for each hospital capacity value (i.e., from 1 

hospital to 11 hospitals).  We know that different routing schemes provide different 

numbers of available hospitals.  If route 1 is used, for example, at most three hospitals 

can be used for the emergency rescuing service; if routes 1 and 2 are both used, we 

can provide 2 to 10 hospitals.  It can be seen that in all the cases, the routing scheme of 

using routes 2 and 3 simultaneously may not be a good option, since we can always 
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find a better routing alternative that produces both the lower network evacuation time 

and shorter emergency route travel time.  Because of this reason, the routing scheme 

of routes 2 and 3 does not appear on any Pareto-optimal set in all the cases. 
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(a) The optimized evacuation network with emergency vehicle route 1 

Figure 6.15  Optimized evacuation networks and emergency vehicle routes 
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Figure 6.15 (Continued) 
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(b) The optimized evacuation network with emergency vehicle route 2 
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Figure 6.15 (Continued) 
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(c) The optimized evacuation network with emergency vehicle routes 1 and 2 
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Figure 6.15 (Continued) 
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(d) The optimized evacuation network with emergency vehicle routes 1 and 3 
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Figure 6.15 (Continued) 
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(e) The optimized evacuation network with emergency vehicle routes 2 and 3 
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Figure 6.15 (Continued) 
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(f) The optimized evacuation network with emergency vehicle routes 1, 2 and 3 

 

On the other hand, the Pareto-optimal sets indicate different scenario preferences 

under different hospital capacity requirements.  If only one hospital is required, the 

network scenario with route 2 as the only emergency vehicle route is obviously the 
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optimal choice for both the evacuation network optimization and emergency vehicle 

routing.  Moreover, it is readily known that the target hospital is hospital 1 (i.e., Saint 

Cloud Hospital).  If two hospitals are required, there is no obvious optimal solution 

since the corresponding Pareto-optimal set includes three non-dominated scenarios, 

i.e., the first scenario uses route 1 with total evacuation time of 8.68  vehicle-

hours and the average emergency vehicle travel time of 38 min, the second scenario 

uses route 2 with total evacuation time of 8.25  vehicle-hours and the average 

emergency vehicle travel time of 42 min, and the third scenario uses both routes 1 and 

2 with total evacuation time of 1.  vehicle-hours and the average emergency 

vehicle travel time of 36.5 min. 
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Figure 6.16  The Pareto-optimal sets of evacuation network optimization and 

emergency vehicle routing solutions 
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By considering a good trade-off between the two objectives, we might believe that the 

first scenario, that is, the network scenario with route 1 selected as the emergency 

vehicle route, is the approximately best solution, since its total evacuation time is 

merely slightly greater than that of the second scenario and its emergency vehicle 

travel time is slightly greater than that of the third scenario.  When four hospitals are 

needed in an evacuation case, it may be difficult to determine the best network 

scenario since no solution can outperform others in the optimal set, even 

approximately.  It may need to consider other factors to make a final decision in this 

case.  As for other hospital capacity requirements, a trade-off between the different 

system objectives as well as the incorporation of other emergency management factors 

may need to be made in helping determine the optimal network solution. 
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CHAPTER 7 
 

CONCLUSIONS AND FURTHER RESEARCH 
 
 
 

Now this is not the end. 
It is not even the beginning of the end. 

But it is, perhaps, the end of the beginning. 
—Winston Churchill 

 
 

Evacuation planning is complex because there are many stakeholders with different 

perspectives, there are multiple requirements, and evacuations are nearly always 

surrounded by uncertainty and confusion.  Past evacuation experiences have had 

mixed success, and there is significant need for better analytic tools to create effective 

evacuation plans.  The focus of this dissertation is on finding the most effective ways 

to use existing road capacity under evacuation conditions, to minimize the total travel 

time of all evacuees. 

 

To make optimal use of an existing network, we concentrate on two basic strategies― 

lane reversal and crossing elimination.  These strategies complement one another by 

increasing capacity in specific directions through the network.  We pose and formulate 

an optimization problem that seeks the set of specific link lane reversals and turn 

prohibitions at intersections to eliminate crossing traffic patterns, so as to minimize 

total travel time for evacuees. 

 

This optimization problem is quite complex.  We develop an integrated Lagrangian 

relaxation-tabu search (LR-TS) method to address this problem.  The Lagrangian 

relaxation helps to decompose the problem into simpler pieces, and the tabu search 

heuristic is used to solve the most complex of these pieces.  The computationally 
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intense part of the process is evaluating the objective function of the relaxed problem 

because that requires traffic assignment to estimate total travel time in the network and 

checking for traffic crossing patterns at individual intersections. 

 

An extended model is also developed to deal with evacuation network reconfiguration 

when specific routes have to be reserved for emergency vehicles to access the area 

being evacuated (usually running counterflow to the evacuation).  This problem is 

addressed by first identifying the candidate emergency vehicle routes and then 

constraining the re-configuration of the network for evacuees.  There is a natural 

conflict between providing more direct access for emergency vehicles and providing 

maximum capacity for evacuees, so a series of solutions can be created as the basis for 

decision makers to evaluate this tradeoff. 

 

The LR-TS metaheuristic has been tested and calibrated using a series of small test 

networks.  These tests allowed determination of appropriate settings of parameters that 

control the tabu search process, in particular.  Although no single set of parameter 

settings is likely to work best in all conditions, a likely set of values has been 

determined.  The tests also confirm that the LR-TS method is capable of producing 

good solutions to the test problems with a variety of parameter values. 

 

The calibrated algorithm has then been tested using a case study in Monticello, 

Minnesota.  The evacuation area in that case is a prescribed 10-mile radius area around 

a commercial nuclear power plant.  The case study confirms that the LR-TS method 

produces a better solution (i.e., lower total travel time) than previously available 

methods, but with substantially more computation.  Sensitivity testing of the LR-TS 

solutions under varying assumptions of demand level and number of likely egress 
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points indicates that the solutions are quite robust, especially under demand 

uncertainty.  This is a very important finding because estimation of the actual demand 

to be faced in a specific evacuation scenario is quite difficult. 

 

The solutions in the case study illustrate some important basic properties.  First, the 

overall performance of a solution is quite sensitive to the assumed number of egress 

points from the network.  In many evacuation plans, there is an underlying assumption 

that all evacuees will go to specific designated shelter locations, but this may ignore 

some obvious points of egress from the network.  If other egress points are recognized, 

the pattern of lane reversals implemented may be quite different. 

 

Second, the solutions generally show that most links are fully reversed―that is, the 

link becomes one-way, rather than having only partial reversal of some lanes.  The 

ability of the algorithm to consider partial reversals is one of the elements that 

contribute to its computational complexity, and there may be a useful simplification to 

limit the search to only full reversals.  This could be implemented in a combined way 

also.  An initial solution allowing only full reversals could be generated first, at 

significantly lower computational cost.  This can then be used as the starting point for 

the existing LR-TS algorithm, to possibly refine that solution if desired. 

 

As a third observation on the solutions, the orientation of links that are close to the 

egress locations is generally obvious, but we currently do not take advantage of that in 

the initialization of the algorithm.  Thus, part of the computational effort is expended 

evaluating those links, when we can easily guess parts of the final solution to create a 

more effective starting point. 
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The strength of the LR-TS algorithm is in avoiding becoming stuck in local optima. 

However, computation is extended in moving from a “do-nothing” initial solution to 

reasonably good alternatives.  By using some specific simple rules to create a better 

initial solution, we can use the LR-TS method to do more of what it is good at, and 

less of what we could determine in another more efficient way.  The possible 

combination of the FHFE algorithm of Kim and Shekhar (2005, 2006) (as introduced 

and tested in Chapter 6) to create an initial solution, together with the LR-TS 

algorithm to refine that solution, may offer significant potential advantages, and is an 

area for further examination. 

 

The implementation of the LR-TS search procedure could also be accelerated by using 

parallel computing techniques.  The evaluation of candidate network solutions during 

an iteration and the checking of intersections for crossing violations could both benefit 

from parallel computing.  This would be likely to speed up the entire solution process 

substantially. 

 

Several other directions for further research suggest themselves.  It is assumed 

throughout this study that the lane-reversal and crossing-elimination configurations 

could be implemented anywhere without regard to resource constraints.  However, in 

practice, the implementation of these decisions requires people and equipment.  People 

may be the most limiting resource, and may limit the number of intersections at which 

changes can be made and maintained throughout an evacuation.  A resource-

constrained version of the problem studied in this thesis is likely to be of significant 

interest. 
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The formulation studied here is static, in the sense that a constant table of originating 

trip rates is given, representing the demand for evacuation.  The assignment of those 

trips to the network uses a static representation of the network condition, seeking a 

flow pattern that approximates stochastic user equilibrium.  The introduction of the 

stochastic element into the flow pattern helps to diffuse traffic patterns across space, 

but does not directly reflect the dynamic changes that are also an intrinsic part of an 

evacuation event.  Extending this analysis to an explicitly dynamic formulation, with 

queuing on network links and trip origination rates that vary over time, is another very 

worthwhile direction for further work.  From a computational standpoint, this further 

complicates an already complex problem, but the dynamic changes during an 

evacuation are so obvious that they beg to be included.  Supporting such a dynamic 

model with accurate dynamic data is quite another problem, however. 

 

In general, demand estimation for evacuation planning is a problematic undertaking. 

The sort of sensitivity analysis conducted in the case study in Chapter 6, i.e., testing 

the solution under demand changes of ±50 percent, is one useful step, but a more 

sophisticated way of including large uncertainty about how many people and vehicles 

are likely to try to evacuate, over what period of time, is a very important future 

augmentation. 

 

Explicit incorporation of the use of buses (either transit buses or school buses) as part 

of the evacuation effort is another direction of useful enhancement.  If it is expected 

that these vehicles will make multiple trips from designated boarding areas to shelters, 

they must be able to move relatively quickly in both directions.  This may be a severe 

problem during the crunch of private vehicles trying to evacuate.  Explicit 

consideration of buses in the overall solution is likely to be useful. 
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The type of analysis included here―reconfiguring parts of the road network to aid 

motorist evacuation―is only one part of a much larger effort in planning for 

emergency preparedness and management.  A network reconfiguration plan needs to 

be integrated with other elements of the emergency response plan, and responsibilities 

for implementing the various parts of the overall plan need to be clear.  The 

integration of the needs for emergency vehicle movement within the evacuation plan 

that is included in this thesis is one piece of this larger issue, but many other pieces 

also need to be addressed.  The work here contributes to the creation of effective 

evacuation plans, but many other elements are also necessary for effective 

implementation. 
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APPENDIX A 
 

STOCHASTIC NETWORK LOADING 
 
 
 

As far as the laws of mathematics refer to reality, they are not certain; 
and as far as they are certain, they do not refer to reality. 

—Albert Einstein 
 
 

A.1  The stochastic network loading procedure 

 

The stochastic network loading procedure includes a forward pass from an origin node 

to all destination nodes and a backward pass from each destination node to the origin 

node.  The forward pass starts from the origin to gradually examine all the other nodes 

in the network through a merging process and a scanning process.  The merging 

process for a node is used to determine the travel time between the origin and this 

node (i.e., the arrival time at this node) and the probability that traffic arriving at this 

node uses a merging link.  The key mechanism in this procedure is to use the Clark’s 

approximation technique to approximate the merging process.  The theoretical 

rationale and algorithmic steps of the Clark’s approximation method can be seen in 

Maher (1992) and Maher and Hughes (1997). 

 

For simplicity, we present only the essential procedure of the analytical network 

loading method below.  The details of implementing Clark’s approximation for the 

network loading can be found in Maher (1992). 

 

Given a node, k , and the set of its arriving links, B , the travel time from the origin to 

node 

k

k  by definition is, 
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  C , k = min
a ! Ak

(Ck)a (A.1)

 

where C  is the arrival time of traffic that reaches node k
a k  via arc a .  The probability 

that traffic from the origin reaches node k  via link a  is defined as, 

 

   .    a  Pa = Pr(Ck = Ck)a ! Bk (A.2)

 

After the merging process of node k  is completed, the scanning process scans its 

leaving links and calculates the arrival time at the downstream nodes of node k  

through these leaving links.  Given a link, b , emanating from node k  to another node, 

l , the arrival time at node l  via link b  is: 

 

  C ,      b  l = Ck + Tb
b ! Bl (A.3)

 

where Tb  is the travel time of link b  and  is the set of arriving links of node Bl l .  The 

merging process expands from the origin to other nodes in the network via the 

network connectivity until all the destinations are completed.  Then, a backward pass 

starts from a destination to assign the traffic demand between this destination and the 

origin through the network, in terms of the merging probability P  of link a .  Such a 

backward pass needs to be conducted for each origin-destination (O-D) pair. 

a

 

As we stated, the Clark’s approximation method is used to approximate the arrival 

time of a node in the merging process and calculate the merging probability associated 

with this mode.  In a general network setting, however, two operational problems may 

arise, which yield some theoretical difficulties in implementing Clark’s approximation 
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in stochastic network loading.  The first problem is the so-called deadlock problem, 

emerging where there exists loops in the network.  Without an external remedy 

method, a loop may result in that the forward process for a node on a loop cannot be 

completed and hence prevents the proceeding of the network loading process.  The 

second problem is how to compute the covariance between the arrival times of a node 

via its arriving arcs.  We discuss the approaches to solving these operational problems 

in the following. 

 

A.2  Loop deadlock 

 

Maher and Hughes (1997) suggested three approaches to tackle the deadlock problem.  

The first loop-breaking approach is to eliminate a loop by deleting one or more loop 

links with little possibility of use.  The second approach is an approximate method, 

which is to estimate the arrival time at a loop node through a loop link by other 

techniques (than Clark’s approximation).  The third approach is to add an extra 

convergence check to the second approach.  The convergence check at its first time is 

to compare the arrival time of a loop node estimated initially by another technique (for 

example, as used in the second approach) to its value re-estimated by Clark’s 

approximation after a forward process for the whole loop is completed.  If the two 

values are not consistent, an iterative process of applying Clark’s approximation 

around the loop needs to be conducted as well as the above comparison until the 

convergence is realized.  A detailed description to the three approaches is provided in 

Maher and Hughes (1997). 
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The first approach to eliminate loops within the implementation of Clark’s 

approximation is easiest to use among the three.  However, Maher and Hughes (1997) 

did not suggest how to determine which link(s) on a loop may be deleted. 

 

In the following, we introduce a simple method of searching least possible loop links.  

This method was originally suggested by Dial (1971) and then modified by Sheffi 

(1985) for a logit-based network loading scheme. 

 

This method starts with a shortest path search from a given origin to all other nodes in 

the network.  The shortest path search procedure gives a label to each node i , r (i), 

which denotes the minimum travel time from the origin to node i .  Any link i→  

with 

j

r (i) > r (j) will be regarded as an unreasonable link and be deleted prior to the 

implementation of Clark’s approximation. 

 

With the above criterion, we can always find at least one link on a loop satisfying 

r (i) > r (j).  Thus, at least one link along a loop is deleted and the loop is broken. 

 

The rationale behind the link-deletion method is to relax full-loop flow by altering the 

network topology.  No rational individual in a network would choose a path 

containing a loop.  However, it may not always appropriate to delete a link i→  that 

satisfies the criterion 

j

r (i) > r (j).  In fact, we merely want to prevent full-loop flow, 

but do not intend to affect partial-loop flow, i.e., traffic flow that uses part of the loop.  

If, for example, on each individual link of a loop (but not the whole loop) there is 

significant flow traversing, none of the loop links could be deleted reasonably; 

otherwise, the resulting traffic flow pattern from the link deletion would be different 

significantly from the original case with the loop. 
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Figure A.1  An illustrative example of the loop deadlock problem 

 

An illustrative example network for this phenomenon is given in Figure 1, the 

topology of which was used by previous researchers, including Bell (1995), Akamatsu 

(1996), and Maher and Hughes (1997).  In this simple network, with the given mean 

cost, it is readily known that link 3→2 has the property of r (3) > r (2) and should be 

deleted according to the link-deletion criterion.  The unreasonableness of deleting link 

→2 can be explained by enumerating and comparing all the feasible paths.  Prior to 

the link deletion, we know that there may be 4 feasible paths for the stochastic 

network loading from origin 1 to destination 4: 

3

 

Path 1: 1→2→ ; travel cost: 6 4

Path 2: 1→2→3→4; travel cost: 9 

Path 3: 1→3→2→4; travel cost: 8 

Path 4: 1→3→4; travel cost: 8 

 

With the deletion of link 3→2, path → → →  is deleted accordingly.  We may 

immediately find that such an outcome is intuitively inappropriate, since other two 

paths, 1→2→3→  and → → , with greater or equal travel cost, are still kept as 

1 3 2 4

4 1 3 4
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reasonable paths in the network.  As a consequence, if link 3→2 on the loop is deleted, 

the resulting traffic flow pattern in the network would be different considerably from 

the expected. 

 

Nonetheless, the problem arising in the above example merely demonstrates an 

extreme case, which seldom emerges in real transportation networks.  This seemingly 

theoretical difficulty within Dial’s link-eliminating method should not become an 

overriding issue in dealing with the deadlock problem.  After all, the application of 

Clark’s approximation for probit-based network loading is inherently an 

approximation process. 

 

A.3  Covariance of arrival times 

 

In the forward process, Clark’s approximation is used to estimate the overall arrival 

time at a node from the arrival time through each of its arriving links at this node.  In 

this iterative approximation procedure, the covariance of the travel times through two 

different arriving links or through a set of arriving links and another arriving link 

needs to be calculated (see (4) and (9)).  This in turn requires the covariance of every 

two arriving links of this node to be calculated.  In a general network case, however, 

this covariance computation is not a straightforward task.  The complexity is 

demonstrated by the following analysis. 

 

Let us consider the covariance of the arrival times at node k  via two arbitrary links, 

→i k  and →j k , i.e., , where i  and  are the upstream nodes of these 

two links.  First, we know C  and C  as well as C

cov (C k
ik, C k

jk) j

k
ik
= Ci + Tik k

jk
= Cj + Tjk i = Tjk , 

Cj = Tik  and Tik = Tjk , so the above covariance can be reduced to 
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  cov  (Ck , Ck ) = cov(Ci, Cj)ik jk

cov (Ci, C j) = cov (min (f, C i
li,f), C j)

(A.4)

 

which is the covariance of the arrival times at nodes i  and .  The value of this new 

covariance depends on the network overlap proportion between all the feasible paths 

from the origin to nodes i  and those to node .  To identify the overlap proportion, a 

straightforward way is to enumerate all the feasible paths between the origin and node 

 (and ) and then make a search for the overlap proportion, which, however, is often  

a computationally intractable task for a network of realistic size. 

j

j

i j

 

With the use of Clark’s approximation, a simple procedure can be used to calculate 

.  Given that the forward process at node  is completed earlier than node 

, cov  can be calculated immediately after the forward process at node  is 

completed.  It is given as, 

cov (Ci, C j) j

i (Ci, C j) i

 

   
= pli cov (Cl, C j)

l
! (A.5)

 

where co , v (Cl, C j) 6l : l→i , is calculated earlier by the same method.  Please 

note that in the above recursions, cov

! Bi

(Ci, Cr) = 0, where r  denotes the origin node 

and i  is any node in the network, i.e., 6i ! N .  With such a recursive procedure, once 

the forward process of a node is finished, the covariance between this node and any 

other node whose merging process has been completed need to be calculated for 

further recursion. 
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We suggested this covariance computation method as an alternative to the original 

method suggested by Guo et al. (2001).  The different point between our alternative 

method and the original one is that in the original method, the covariance between the 

arrival times of any two links are calculated and stored during the forward process, 

while our method instead suggests to use the covariance between the arrival times with 

the upstream nodes of any two links pointing to a node.  Such a setting lets us merely 

store a covariance matrix with its size equal to the number of nodes in the network. 

 

Apparently, the implementation of our alternative method requires less computer 

memory than the original method that needs to maintain a covariance matrix with the 

size equal to the number of links.  In general, we know that the number of nodes is 

considerably smaller than the number of links in roadway networks.  Van Vliet (1978), 

for example, observed that in a variety of roadway networks the ratio of links to nodes 

is around 3. 
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APPENDIX B 
 

MINIMIZING THE NUMBER OF INTERSECTION CROSSING POINTS 
 
 
 

The purpose of mathematical programming is insight, not numbers. 
—A.M. Geoffrion 

 
 

B.1  Problem statement 

 

An intersection traffic crossing optimization problem is briefly defined as follows: 

given the inbound and outbound traffic flow rates of a four-leg intersection, the 

objective is to minimize the number of traffic crossing points between the traffic 

movements in the intersection. 
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Figure B.1  The node-arc network representation of a four-leg intersection 

 

Let us use the following example to illustrate the problem configuration.  As shown in 

Figure B.1, a typical four-leg intersection is represented by a small network with 8 

nodes and 12 arcs.  Each node represents either a traffic supply point or a traffic 

demand point.  In Figure B.1, nodes 1, 3, 5 and 7 are supply nodes and nodes 2, 4, 6 
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and 8 are demand nodes.  Each arc connecting a supply node and a demand node 

represents a feasible traffic movement.  For example, in Figure B.1, arc 1→2 emanates 

from node 1 (supply node) to node 2 (demand node), which means a certain amount of 

traffic flow can be conveyed from node 1 to node 2.  It is readily seen that for each 

supply node there are three outgoing arcs while for each demand node there are three 

incoming arcs. 

 

The traffic movement tracks cross each other in the intersection.  Arc 1→2, for 

example, which is a left-turn movement, potentially crosses arcs 3→6, 7→8, 3→4, 

and 5→8, if all these traffic movements are allowed.  It should be noted that a right-

turn movement does not cause any crossing point, e.g., arc 1→6.  The objective of this 

intersection traffic-movement optimization problem is to find a best traffic movement 

configuration that minimizes the number of crossing points, subject to the traffic 

supply and demand requirements.  With using the notation shown in Figure B.1, the 

problem formulation can be written as: 

 

min  z (y) = (yij + ymn - 1)
ij, mn
! +

+

(B.1)

  where ( , yij + ymn - 1) = max(0, yij + ymn - 1)  

s.t.  yij , ,      6 → , m→n  ymn ! 0, 1" , i j (B.2)

  xij G uij yij , xmn G umn ymn,   → , m→n  6i j (B.3)

  , x ,       6 → , m→n  xij mn H 0 i j (B.4)

  , and     6  xij
i ! S j

! - b j = 0 j (B.5)

  .      6  xmn
n ! Rm

! - bm = 0 m (B.6)
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In this small linear integer programming model, there are two sets of decision 

variables, the arc variables, yij , indicating the connectivity between a supply node i  

and a demand node  in the intersection network, and the flow variables, , 

represents the traffic flow rate on arc i→ .  In the capacity constraint (i.e, constraint 

(B.3)), the “capacity” u  does not impose an upper bound on x  indeed, but appears 

merely as a sufficiently large number so as to represent the following arc-flow 

relationship: if 

j xij

j

ij ij

yij = 1, ; if xij H 0 yij = 0, xij = 0.  In the flow conservation constraints 

(i.e., constraints (B.5) and (B.6)), b  and b  are the input of the model, and j m S j  and Tm 

respectively represent the set containing the starting nodes of all the intersection arcs 

pointing to node  and the set containing the ending nodes of all the arcs emanating 

from node m , e.g., in Figure B.1, S   and T . 

j

2 = 1, 7, 5" , 3 = 4, 6, 8" ,

 

B.2  Solution algorithm 

 

This intersection optimization problem may be solved by using the traditional branch-

and-bound method due to its relative small number of search spaces.  However, we 

consider an alternative algorithm below. 

 

Note that the flow conservation constraints of this problem has a special structure 

analogous to the classic transportation problem (see Bazaraa, Jarvis and Sherali, 1990), 

that is, given a set of supply nodes and demand nodes, a feasible transportation flow 

pattern needs to be sketched between the supply and demand nodes, satisfying all the 

supply and demand requirements.  This connection can be seen by setting nodes 1, 3, 5 

and 7 as the supply nodes and nodes 2, 4, 6 and 8 as the demand nodes as well as 

constraint (B.5) as a demand constraint and constraint (B.6) as a supply constraint.  

Also, we can conveniently represent the supply and demand constraints into the so-
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called transportation tableau, as shown in Figure B.2, in which rows represent the 

supply nodes 1, 3, 5 and 7, columns represent the demand nodes 2, 4, 6 and 8, and the 

cell in row 1 and column 2, for example, represents flow variable .  If no flow is 

allowed between a supply node and a demand node, the cell in the corresponding row 

and column is illustrated as a shaded block.  Moreover, for each supply node, the 

supply flow rate is indicated on the right of the corresponding row; for each demand 

node, the demand flow rate is indicated on the bottom of the corresponding column.  

The difference from the intersection optimization problem to the transportation 

problem is also obvious: the intersection optimization model has its extra integer 

requirement and its objective function is nonlinear and integer. 

x12
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Figure B.2  The transportation tableau representation of the intersection optimization 

problem 

 

It is well known that the transportation problem can be efficiently solved by the 

simplex method, which starts from a basic feasible solution and iteratively improve its 

objective function value by updating the solution from one basic feasible point to 

another until the optimal solution is found.  A basic feasible solution of the 

transportation problem can be conveniently represented by a rooted spanning tree in 
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its transportation tableau (see Figure B.3), which contains exactly m  basic 

variables, where m  and n  are respectively the numbers of supply and demand nodes. 

+ n - 1

 

Despite the added complexity with our defined intersection optimization problem, its 

structural similarity to the transportation problem inspired us to devise an efficient 

simplex-based iterative solution procedure, which can guarantee the optimality for the 

intersection optimization problem after a limited number of steps.  The rational behind 

this simplex-based algorithm emerges from the facts listed below. 
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(a) The network representation of a basic feasible solution 
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(b) The tableau representation of a basic feasible solution 

 

Figure B.3  Representation of a basic feasible solution in the network and the tableau 
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For the discussion convenience, we define the following terms in describing the 

intersection optimization problem.  Given x = (. . . , xij, . . .) and y = (. . . , yij, . . .) , 

we call a solution  a basic feasible solution to the defined problem if x  is a basic 

feasible solution in the feasible region for the arc flows (i.e., constraints (B.4)-(B.6)) 

and 

(x, y)

y  is feasible.  The set of all basic variables in a basic feasible solution is called the 

basis. Given a basic feasible solution, another basic feasible solution is called its 

neighbor if it can be reached by exchanging a pair of basic variables between the two 

solutions.  All such neighboring solutions to this solution constitute its neighborhood.  

We also define N (x) as the number of nonzero flow variables in solution .  It is 

obvious that 

(x, y)

N(x) G m + n - 1 if (  is a basic feasible solution of the defined 

problem, where m  and n . 

x, y)

= 4 = 4

 

Lemma 1.  If a solution (  to the defined intersection optimization problem is 

optimal, it is a basic feasible solution; or, an alternative basic feasible optimal solution 

exists. 

x *, y *)

 

Proof.  Let us assume that (  is not a basic feasible solution. By definition, this 

means either 

x *, y *)

y * is not feasible, x * is not feasible, or x  is not basic.  It is manifest that 

either the condition that x  or 

*

* y * is not feasible contradicts the assumption given by 

the lemma, therefore, x * and y * must be feasible. 

 

If x  is not basic while x * and * y * are both feasible, it implies that N(x) > m + n - 1.  

It reflects in the tableau that there is at least one cycle on which all the corner cells are 

with positive flow variables.  We may adjust the flow values in these corner cells 

while maintaining the flow reservation feasibility until one (or more) variable, say , xij
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reaches its lower bound (i.e., xij = 0).  The flow values in other cells of the tableau are 

not changed.  Apparently, this procedure breaks a cycle in the tableau and produces an 

updated solution ( lx , y *) with fewer positive flow variables, i.e., N (x) < N (x *).  

Following this flow adjustment x → we can make an adjustment * lx y *→ ly  so as to 

obtain a new feasible solution ( lx , ly ) without violating the problem feasibility by 

setting yij  from 1 to 0 since xij = 0. 

 

We can do all such adjustments until N(x) G m + n - 1 and z ( ly ) becomes a basic 

feasible solution.  The immediate result from this adjustment is an improvement of the 

objective function value, i.e., z (y *)→ z ( ly ), where z ( ly ) G z (y *).  If z ( ly ) < z (y *), 

it contradicts the assumption in the lemma that (  is an optimal solution; if 

, then we have (

x *, y *)

z ( ly ) = z (y *) lx , ly ) is also optimal.  Therfore, we can conclude that 

either (  is a basic feasible solution or (x *, y *) lx , ly ) that is basic feasible is an 

alternative optimal solution. ■ 

 

This conclusion provides us with a theoretical foundation to devise a method that 

searches for the optimal solution of the intersection optimization problem along an 

itinerary consisting of only its basic feasible points.  The iteration between two 

consecutive basic feasible solutions can be realized by a pivot-move neighborhood 

search.  To guarantee that the optimality of a basic feasible solution obtained by pivot 

moves, we need to investigate whether a local optimal solution to its neighborhood is 

globally optimal.  A common way to carry out this investigation is convex analysis. 

 

We rewrite the defined linear integer programming problem into an alternative 

formulation as follows: 
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min z (x) = (yij + ymn - 1) : yij, ymn ! 0, 1" ,, xij G uij yij, xmn G umn ymn, 6ij, mn
ij, mn
!) 3

+  

 (B.7)

s.t.  , x ,       6 → , m→n  xij mn H 0 i j (B.4)

  , and     6  xij
i ! S j

! - b j = 0 j (B.5)

  .      6  xmn
n ! Rm

! - bm = 0 m (B.6)

 

This new problem formulation has the same structure as the transportation problem 

except for the objective function.  It is readily known that the feasible region of this 

problem is a bounded polyhedral set.  The remaining problem is the convexity 

property of the objective function z (x).  Let us consider f (m) = z (mx1 + (1 - m) x2) 

and g (m) = mz (x1) + (1 - m) z (x2), given that x  and x  are any two feasible 

solutions and 0 < .  It is not difficult to know that both 

1 2

m < 1 f (m) and g (m) can be 

expressed as the sum of the following terms, respectively: 

 
f (m) = z (mx1 + (1 - m) x2)

ly

  
= ( ly ij + ly mn - 1) +

ij, mn
!

 

where 

  , , mly ij mn ! 0, 1" , x ij + (1 - m)1 x ij G uij ly ij
2 , mx mn + (1 - m)1 x mn G umn ly mn

2 , 

 

and 

 

g (m) = mz (x1) + (1 - m) z (x2)
  

= m (y ij
1 + y mn

1 - 1)+
+ (1 - m) (y ij

2 + y mn
2 - 1)+

8 B

ij, mn
!

 

where 
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  y ij
1 1, y , mn ! 0, 1" , x ij G uij

1 y ij
1 , x mn G umn

1 y mn
1 , 6 → , m→n , and i j

  y ij
2 2, y , mn ! 0, 1" , x ij G uij

2 y ij
2 , x mn G umn

2 y mn
2 , 6 → , m→n . i j

 

To compare the values of f (m) and g (m), consider the following three conditions: if 

given  (i.e., either  or ) and , (  

and m ; if 

xij
1 xmn

1 = 0 xij
1 = 0 xmn

1 = 0 xij
2 xmn

2 = 0 ly ij + ly mn - 1)+
= 0

(yij
1 + y mn

1 - 1)+
+ (1 - m) (yij

2 + y mn
2 - 1)+

= 0 xij
1 x mn

1 > 0 and x , we 

obtain (  and m ; if 

 and 

ij
2 xmn

2 = 0

ly ij + ly mn - 1)+
= 1 (yij

1 + y mn
1 - 1)+

+ (1 - m) (yij
2 + y mn

2 - 1)+
= m

xij
1 xmn

1 = 0 xij
2 x mn

2 > 0, we obtain (  and m  

; if 

ly ij + ly mn - 1)+
= 1 (yij

1 + y mn
1 - 1)+

+

(1 - m) (yij
2 + y mn

2 - 1)+
= 1 - m xij

1 x mn
1 > 0 and xij

2 x mn
2 > 0, (  and 

.  Combining all these 

conditions, we know that 

ly ij + ly mn - 1)+
= 1

m (yij
1 + y mn

1 - 1)+
+ (1 - m) (yij

2 + y mn
2 - 1)+

= m + (1 - m) = 1

f (m) H g (m) holds for any .  Therefore, 0 < m < 1 z (x) is a 

concave function†. 

 

Given that the feasible region is a convex set but the objective function is a concave 

function, we cannot in general guarantee the global optimality of a local optimum.  

However, for the defined intersection optimization problem with its special structure, 

we can show that no local optimum can be actually held. 

 

Lemma 2.  If a basic feasible solution to the defined intersection optimization problem 

is a local optimal solution to its neighborhood, it is also a global optimal solution. 

 

Proof.  We can distinguish flow variables in two types: 1) “right-turn” flow variables, 

which do not impose any traffic crossing points; and 2) “left-turn” and “through” flow 

variables, which would potentially cause crossing points.  The value of the objective 

                                                 
† Given the integer characteristic, we know that  is a stepwise concave function. z (x)
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function is determined by the values of the “left-turn” and “through” flow variables.  

Suppose that  and x  are two variables of the second type and their corresponding 

arcs may have a potential crossing point.  The distribution of values of (  

is shown in Figure B.4, in which the feasible region for  and  are the projection 

of the whole feasible region of x  on the plane of  and x .  Needless to say, 

 has two values: when either 

xij mn

xij + xmn - 1)+

xij xmn

xij mn

(xij + xmn - 1)+ xij = 0 or xmn = 0, ( , 

and when both  and x , ( . 

xij + xmn - 1)+
= 0

xij > 0 mn > 0 xij + xmn - 1)+
= 1

 
 

(xij + xmn - 1)+
xmn

xij

0

1

(xij + xmn - 1)+ = 1

 
(a) x  and x  ij > 0 mn > 0

 

(xij + xmn - 1)+
xmn

xij

0

1

(xij + xmn - 1)+ = 1

(xij + xmn - 1)+ = 0

 
(b) x  and x  ij > 0 mn H 0

 

Figure B.4  Feasible region of a pair of flow variables  and  with a potential 

crossing point and the corresponding (  value 

xij xmn

xij + xmn - 1)+
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Figure B.4 (Continued) 

 
 

(xij + xmn - 1)+
xmn

xij

0

1

(xij + xmn - 1)+ = 1

(xij + xmn - 1)+ = 0

 
(c) x  and x  ij H 0 mn H 0

 

Note that for any pair of  and  with a potential crossing point between their arcs, 

its feasible region subject to constraints (B.4)-(B.6) and the corresponding value 

distribution of (  can be represented by one of the conditions in Figure 

B.4.  If a local optimal solution that is not globally optimal exists, there is at least one 

pair of  and x  that there are two separate subregions both with (  

in its feasible region.  However, none of the feasible regions includes such a case.  

Therefore, a local optimal solution will not be blocked from other optimal solutions 

and it is actually a global optimal solution. ■ 

xij xmn

xij + xmn - 1)+

xij mn xij + xmn - 1)+
= 0

 

The conclusions given above, however, do not guarantee the optimality uniqueness. 

Actually, it is possible to have multiple optimal solutions to an intersection optimality 

problem of the defined type, in which some solutions are basic feasible solutions and 

others are not. But we know that at least one of the optimal solutions is a basic feasible 

solution. 
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Now we have all the required theoretical elements to guarantee the correctness of the 

proposed algorithm. The algorithmic procedure of the resulting simplex-based pivot-

move algorithm can be sketched as follows: 

 

Step 1.  Obtain a starting basic feasible solution as the current solution and compute its 

objective function value z *.  This can be accompolished by applying the northwest 

corner rule in the tableau (see Bazaraa et al., 1990); 

 

Step 2.  Conduct all the candidate pivot moves by entering each nonbasic variable into 

the basis and compute the updated objective function value with each candidate move. 

Choose the best move with the lowest objective function value z ; l

 

Step 3.  Compare the objective function value with the best move, , and the current 

objective function value, 

lz

z *. If , stop the iteration and we have the optimal 

solution 

lz H z *

z * at hand; if , implement the best move to obtain the updated basic 

feasible solution and assign z , and then go to step 2. 

lz < z *

* = lz

 

B.3  Numerical examples 

 

To demonstrate the validity and efficiency of the proposed simplex-based algorithm, 

we present a couple of numerical examples in the following. 

 

The first example problem with its network and tableau representations is given in 

Figure B.5(a).  The initial basic feasible solution derived by the northwest corner rule 

is shown in Figure B.5(b), in which the basis consists of variables x x  x  x  x  

, and x , and the objective function value with this solution is 5.  Starting from this 

12 , 14 , 16 , 34 , 56 ,

x58 74
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initial solution, it is found that by examining all the nonbasic variables that a pivot 

move that the nonbasic variable  enters the basis and the basic variable x  leaves 

the basis yields a best move (i.e., the lowest objective function value).  By 

implementing this move, we get an updated basic feasible solution, the basis of which 

includes variables , x , x , x , x x , and x , and the objective function value 

of which is 3.  This updated solution is illustrated in Figure B.5(c).  The same 

examination and pivot procedure is then applied to proceed with the search for 

improved solutions.  Next, we obtain the basic feasible solution at iteration 2 by 

entering  into the basis and getting rid of x  from the basis, as shown in Figure 

B.5(d), whose objective function value is 1.  Since this solution cannot be improved by 

a single pivot move, we can conclude that it is the optimal solution to the problem. 

x52 56

x12 14 16 34 52 , 58 74

x38 12
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(a) The network and tableau representations of the problem 

 

Figure B.5  The first numerical example and its solutions by the simplex-based 

algorithm 
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Figure B.5 (Continued) 
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(b) Iteration 0 (Objective function value: 5) 
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(c) Iteration 1 (Objective function value: 3) 
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(d) Iteration 2 (Objective function value: 1) 
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The second example is a copy of the first one except that the values of b  and b  are 

swapped.  The initial solution obtained by applying the northwest corner rule is shown 

in Figure B.6(a), in which the basis consists of , , x , x , x x  and x and t

objective function value with this solution is 7.  At the first iteration, it is found that 

two pivot moves yields the same best objective function value (i.e., the value is 3).  

These two moves are respectively that  enters the basis and  leaves the basis, and 

 enters the basis and x  leaves.  Since the two pivot moves improves the objective 

function value by the same quantity, we can implement either of them to obtain the 

next basic feasible solution.  For completeness, we present the basic feasible solutions 

resulted from both the moves respectively in Figure B.6(b) and Figure B.6(c).  Further 

examinations on these two solutions conclude that both of the solutions are optimal to 

the problem since no pivot move that improves the objective function value can be 

found.  This example demonstrates a case that more than one optimal solutions exist at 

the same time. 

2 4
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(a) The network and tableau representations of the problem 

 

Figure B.6  The second numerical example and its solutions by the simplex-based 

algorithm 
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Figure B.6 (Continued) 
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(b) Iteration 0 (Objective function value: 7) 
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(c) Iteration 1 (Objective function value: 3) 
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(d) Iteration 1 (Objective function value: 3) 
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