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Abstract

We study the complexity of local minimization in the black-box
model, that is, the model in which the objective function and possibly
its gradient are available as external subroutines. This is the model
used, for example, in all the optimization algorithms in the 1983 book
by Dennis and Schnabel. Our first main result is that the complexity
grows polynomially with the number of variables n, in contrast to
other related black-box problems (global minimization, Brouwer fixed
points) for which the worst case complexity is exponential in n.

Our second contribution is the construction of a family of func-
tions that are bad cases for all possible black-box local optimization
algorithms.

1 Black box model

Numerical optimization refers to the problem of minimizing a continuous
function f : D — R where D is a subset of R". Except for convex problems,
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most optimization algorithms will not return global minima; instead, they
will return (at best) local minima.

It is therefore natural to inquire about the complexity of local minimiza-
tion for general nonconvex objective functions. In order to make general
statements about local optimization, it is necessary to have definitions of
valid objective functions and of “approximate” local minima. These def-
initions will be the subject of most of the rest of this introduction. To
our knowledge, this paper is the first attempt to define approximate local
minimization.

The remainder of the paper is organized as follows. In Section 2 we
present the first main result of this paper, that is, a simple algorithm to
find an approximate local minimum. Its running time is polynomial in
n (the number of variables) and M/e (see below for an explanation). In
Section 3 we present the second main result, a family of functions that
constitute a bad case for minimization algorithms. These functions lead to
a lower bound that is polynomial in M/e. In Section 4 we give an algorithm
with a better bound for some values of the parameters. In Section 5 we
compare our bounds to the bounds known for global minimization and
Brouwer fixed points (a closely related problem).

The model of computation will be a real-number model. We assume
that the algorithm can store and compute exact real numbers. We assume
that the objective function f is provided by the user via a subroutine.
This subroutine takes as input a vector x € R" and returns a real number
f(x). We assume for this work that f is continuously differentiable. We
assume that the gradient Vf is also available as a subroutine (although
see further remarks on this in Section 2). Some of the algorithms that fall
into this category are the steepest descent method, the Powell-symmetric-
Broyden method, the Broyden-Fletcher-Goldfarb-Shanno method, and the
line-search and trust-region modifications of these algorithms. See Dennis
and Schnabel [1983] for more information.

This model of computation is known as a “black-box” model, a “function-
evaluation” model, or an “oracle” model. The key limiting feature is that
global information about f is not available to the minimization algorithm
(unlike, for instance, the special case of quadratic programming).

Because our focus is on the objective function rather than the con-
straints of the problem, we will assume the simple case that the domain
of f is the n-dimensional unit cube denoted by I" (the n-fold Cartesian
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product of the interval I = [0,1]). It would be perhaps easier to assume
simply that f is unconstrained (i.e., the domain is R™), but this leads to
difficulties of scale as well as the problem that local minima might not exist.
Since I™ is compact, there is always a global (and hence a local) minimum.

An algorithm to find a local minimum takes as input a function f and
its gradient Vf as black-box subroutines. It must repeatedly evaluate f
and V f at points in I™ until it has found a local minimum. It is easy to see
that in the real number function-evaluation model, there will always some
uncertainty about the exact position of the local minimum. Accordingly it
is useful to define approximate local minima.

Recall that x* € I" is said to be a global minimum of f if f(x*) < f(x)
for all x € I™. The point x* is said to be a local minimum of f if there exists
an open set N containing x* such that f(x*) < f(x) for all x € N N I".

Definition. A point x* € I" is said to be an e-approximate local min-
imum of a continuous function f : I® — R. if there exists an open set N
containing X* such that

F(x") < f(x) + ellx —x7|
forallxe Nn I

Below we give an alternate characterization of this definition. First,
we explain this definition and also pointing out its shortcomings. The
motivation of this definition is that while x* may not have the smallest
function value in the neighborhood N, the value of f decreases slowly (at
a rate no faster than €) as one moves away from x*.

The most obvious shortcoming of this definition is that an interior local
maximum or interior saddle point would also qualify as an e-approximate
local minimum under this definition. We do not feel that this property is
a severe flaw in the definition, however. For example, examining the local
minimization algorithms of Dennis and Schnabel, one sees that it is possible
for these algorithms in some cases to converge to local maxima. Indeed, dis-
tinguishing local minima from local maxima in general is a computationally
difficult problem; see, for example, Murty and Kabadi [1987]. *

We observe that it is required to select a norm in the above definition.
For this paper we will assume that the 1-norm is used in that definition.
The norms in this paper have been selected to make the analysis simple.
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We now give an alternative characterization of an approximate local
minima. We will say that x* = (z},...,}) is an e-KKT pointof f : I" —» R
if

1. For all i such that 27 > 0, 3f/9zi(x*) < e.

2. For all 7 such that =¥ < 1, 9f/9zi(x*) > —e.

(Note that if € = 0 these conditions are the KKT (Karush-Kuhn-Tucker)
necessary conditions for local optimality). If x* is interior, these conditions
are equivalent to the requirement that |V f(x*)||. < €.

Assuming f is differentiable, we claim that if x* is an e-approximate
local minimum, then it is an e-KKT point. We verify statement 1 above for
a particular index : (statement 2 is similar). Assuming z} > 0, the point
x* — te; is feasible for small enough ¢t > 0, where e; is the ith column of the
identity matrix. For small enough ¢, this point is contained in N N I, hence
f(x*) — f(x* —te;) < te by definition of approximate local minimum. Since
this holds for all ¢ small enough, by definition of the partial derivative this
implies 8f/0z;(x*) < e.

Conversely, suppose x* is an e-KKT point. Then we claim it is an €'-
approximate local minimum for any ¢ > €. To see this, recall that the
definition of a derivative is that for all d,

fx* +d) = f(x*) + Vf(x*)Td + o(||d])-

Suppose that z7 > 0 for some ; then we know

"~ te) = J(x7) = 52 () + of?)

20)
Fx" — tes) > F(x7) — te+ oft)
SO
f(x" —tei) > f(x7) — t€
for all ¢ small enough. This inequality holds not only for x* but for every
x in a neighborhood of x* since we are assuming that f is continuously
differentiable. Then we see that we can get a lower bound on f(x* +d) for

an arbitrary d that is small enough by expressing d as a sum of small steps
of the form t;e;.



We next ask the question: given a continuously differentiable function
f :I" = R and given a number ¢ > 0, what is the complexity of finding
an e-approximate local minimum? It turns out that the number of steps
required is infinite. In particular, for any finite sequence of test points
Z1,..., Tk, there exists a continuously differentiable function f:[0,1] — R
such that f(z;) =0 and f'(z;) =1 at all testpoints (except if z; = 0 then
f'(0) = —1). Moreover, f'(z) € [-1,1] for all z € [0,1]. Figure 1 illustrates
an example of a sequence of test points and the bad-case function for these
points. To construct this function, put the z;’s into increasing order, and
then let f be the correct piecewise cubic function on each interval.

An algorithm trying to find approximate local minima for this family
of functions will always completely fail (i.e., it will discover that f(z) =0
and f'(z) =1 at all of its test points) for at least one function in the family
after any finite number of steps.

The problem with this family of functions is that the first derivatives
can vary too much over short intervals, so that no algorithm can get a
handle on the first derivative of the function.

Accordingly, we place additional restrictions on the function. In partic-
ular, we require that the first derivative satisfy a Lipschitz condition, that
is, there exists a constant M such that

Vi) = V(¥)llo < M|x - ylloo

for all x,y € I".

We now ask the question, what is the complexity of finding an e-
approximate local minimum for a function in this class? Clearly the answer
depends on €, M, and n. In the next section, we give an algorithm for this
problem, which yields an upper bound on the complexity.

We remark that none of our complexity bounds depend on M or €
individually; instead, they all depend on the ratio M/e. This is expected
because the problem of finding an e-approximate local minimum for f is
the same problem as finding a ce-approximate local minimum for ¢f (where
¢ > 0). Therefore, we would expect the complexity to be unchanged if M
and e are scaled by the same amount. .
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Figure 1: An impossible case for local minimization.



2 An algorithm for local minimization

In this section we propose an algorithm for approximate local minimization,
along with a complexity analysis. We assume that ¢, M and n are given.
We call this algorithm LOCAL1. We assume also that M/e is an integer.
We are given a starting point x(® € I", which is assumed to have each
coordinate equal to an integer multiple of ¢/M. If no starting point is
given, the origin can be used.

Given a function f(x), we define vector-valued function g(x) as follows.
The ith entry of g(x) is defined by

min (0, -g;:]:(x)) if z; =0,

]

1 =y = 1 1 )
gi(x) 8:v(x) if0<z;<1,o0r

e (0.2 0) it

Notice that if x is interior to I", then g(x) = V f(x). This function g(x)
could be called the “projected gradlent ” although this terminology is not
standard.

Algorithm LOCALL begins by testing whether ||g(x(®)||, > M. If this
inequality holds, then for some ; we know |9f/0z;(x(¥)| > M. Take the
case that 8f/9z;(x(®)) > M (the negative case is similar). We claim that
df/0zi(x) > 0 for all x € I". This follows from the Lipschitz bound on
Vf.

This means in particular that any local minimum of f must occur on
the face T = {x € I" : z; = 1} of I". Moreover, if f; : T — R denotes
the restriction of f to T, then it suffices to find an e-approximate local
minimum of f;. Therefore, we can project x(°) onto T" and work on the
restricted problem. The restriction operation has the effect of deleting the
ith entry from the vector g(x). =

Accordingly, we can continue to reduce the dimensionality of the prob-
lem coordinate by coordinate. Therefore, without loss of genera.h.ty,' we can
assume our starting point satisfies ||g(x(?)]| < M.

Let x* be a global minimum of f. We can use the upper bound on
g to derive an upper bound on the difference f(x(®) — f(x*). Let s =



||x* —x(9||;. Then we can construct a path of made up of segments parallel
to the coordinate axes from x(%) to x*; the length of this path will be exactly
3. Assume the path is made up of n segments Pi,..., P, such that P; is
parallel to e;.

Then we know that

o) = fx = 3 f 5L )

We now derive an upper bound on each integral in (1). There are two
cases. In the first case, g;(x(?)) = 9f/dz;,(x(®)). In this case, we can apply
the Lipschitz bound directly. We know that |g;(x(?)| = |8 f/3z:(x(?)| < M.
Since the distance from x(®) to any point of P; is at most 1 in the co-norm,
we know that the magnitude of 9f/9z; along P; is at most 2M. Therefore,
the above integral has magnitude at most 2M.

In the second case, ¢;(x(¥) # 9f/9z;(x(®). Examining the defini-
tion of g, we see that there are two possible subcases: either z{*) = 0
and 9f/0z;(x®) > 0, or z{” = 1 and 8f/dz,(x®) < 0. We treat the
first subcase since the second subcase is analogous. Since :c,(-o) = 0 and
df/9z;(x®) > 0, we know that 0f/dz; cannot drop below —M at any
point on P;. Moreover, we know that P, is oriented in the positive direction
with respect to e;, because x,(o) = 0. Therefore, the ith integral in the above
summation at least —M (this argument does not give an upper bound, but
only a lower bound is needed).

We conclude that all the integrals in (1) are at least —2M, and hence

f(x*) = f(x©) > —2Mn,

ie.,

F(xO) - f(x*) < 2Mn.

This gives an upper bound on how much the objective function can decrease.

We now return to the main part of LOCAL1, under the assumption that
lg(x)||c <. M. The algorithm operates on an imaginary grid of nodes
spaced ¢/M apart in each dimension of I" and aligned with the doordinate
axes. By our assumptions made earlier, there are an integer number of
mesh cells in every dimension, and the initial point x(% is one of the mesh
points.



We now use the following iteration. Assume the current iterate is x(*),
We compute g(x®). If ||g(x®)|l < €, then we halt. The justification
for halting is as follows. If ||g(x(®)||, = € and € < ¢, then it is easy to
verify by definition of g that x(¥) is an ¢-KKT point, and is therefore an
e-approximate local minimum.

Otherwise, suppose ||g(x¥))||.c > €. Then we identify a component,
say g;(x*)), whose absolute value is at least e. Say, for example, that
gi(x®)) > € (the negative case is similar). This means by definition that
9f/0zi(x®) > € and that ¥ > 0. Then we set x*k+1) = x®) — (¢/M)e;.
If g;(x*)) had been negative then we would have instead added (e/M)e;.
Notice that, under this definition, x(*+1) will be a mesh point lying in I".

With this formula for x(*+1), we claim that f(x*+1) < f(x(*))—0.5¢2/M.
To see this, observe that in the case that 9f/dz;(x*)) is positive,

f(x®) — f(x*+)) = /° gx(k)+te,-)dt

/M B:v,

v

/ (e + Mt) dt
> 0.562/M

To derive the second line we used the fact that f/9z;(x(*¥)) > € as well as
the Lipschitz bound on 9f/dz;.

We conclude that the objective function decreases by at least 0.5¢2/M
per iteration. As noted earlier, the most that the objective function can de-
crease is 2Mn. Therefore, the maximum number of iterations is 4n(M/¢)?.
Let us state this as a theorem.

Theorem 1. Let f : I® — R be a C! function whose gradient satisfies a
Lipschitz condition with bound M. Then an e-approzimate local minimum
can be found with at most 4n(M/€)? function and gradient evaluations.

We remark that if gradient values are not available, the first part of the
algorithm (the restrictions to subproblems) can be carried out by estimating
the gradient via finite differences. A bound can be derived on the accuracy
of finite difference approximations to the gradient using the hypofhe&sm that
the gradient is Lipschitz-bounded. :

If gradient values are not available, then the main local-search step of
the algorithm can be replaced with a comparison of the objective value at
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x(*) to the objective values at the neighboring grid points. This requires
2n function evaluations per local search step.

3 A lower bound for local minimization

In the last section we saw polynomial dependence on both n and M/e. The
polynomial dependence on n is to be expected in general (since f depends
on n variables, it presumably takes at least n operations merely to evaluate
f). The polynomial dependence on M/e is clearly unavoidable with that
algorithm since the step size is ¢/M.

It is natural to inquire whether the polynomial dependence on M/e is
actually necessary for all algorithms. Could an algorithm with large steps
(say, steepest descent combined with line-search) be more effective?

The purpose of this section is to give a lower bound showing that poly-
nomial dependence on M/e is inherent in the problem of black-box local
minimization. The lower bound applies to all algorithms based on the func-
tion evaluation model (not merely to the algorithm of the last section). The
lower bound is based on a family of functions that could fool any algorithm
until it has made at least Q (\/M /€) function and gradient evaluations.

The construction of this family has two parts: an algebraic/geometric part
and a combinatorial part. Notice that because we are trying to provide a
“bad case” (lower bound) for all possible information-based algorithms, we
need a whole family of bad-case functions rather than a single function.

These functions are bad cases in the sense that an algorithm for local
minimization will require many steps. There are other senses in which
a local optimization example could be bad (for instance, it may be that
local minima are easily found but have large objective function values with
respect to the global minimum).

We focus on the n = 2 case since the interest here is the dependence on
M/e. This lower bound is very reminiscent of a lower bound for Brouwer
fixed points in two dimensions due to Hirsch, Papadimitriou and Vavasis
[1989]. We assume that M and € are given. In this section we work with
|| - ||2 norms because there are two rotated coordinate systems (othef norms
could lead to confusion). L

The lower bound is based on how much information any algorithm could
get about f. We argue in this section informally about what the algo-
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rithm “knows” from its function evaluations, but the information model
can be cast into formal terms. See, for example, Traub, Wasilkowski and
Wozniakowski [1982].

We divide the unit square I? into K x K subsquares, where K is an
integer on the order of {/M/e (the exact value will be selected below).
Besides K, we also have the parameters § and é’, which are both on the
order of € (the exact formulas are below). Number the subsquares with
ordered pairs (u,v), u,v = 0,...,K — 1. Two subsquares are said to be
adjacent if they have a common edge.

We will embed I? in the plane diagonally, i.e., with vertices at (0,0),
(v/2/2,++/2/2) and (1/2,0). The relationship between the subsquare num-
bering and coordinate system is as follows. The vertex of subsquare (u,v)
with minimum z coordinate is at

%(u—}-v,v—u)

where J = K+/2. The embedding along with some numbered subsquares is
indicated in Figure 2.

A southeast track is a sequence of adjacent subsquares with increasing
first coordinates, and a northeast track is a sequence of adjacent subsquares
with increasing second coordinates.

The west subsquare is subsquare (0,0). Define a riverbed to be a se-
quence of adjacent subsquares starting at the west subsquare, proceeding
along a northeast track, and then following a sequence of alternating south-
east and northeast tracks, and ending somewhere inside the square. This
terminology is used because the mesh plot of function f based on this con-
struction resembles the top view of a riverbed on a hillside. An example
of a riverbed is indicated in Figure 3. Note that the riverbed will have at
most 2K — 1 subsquares. The last (closest to the east) subsquare of the
riverbed is called the sink. The subsquares of I? not in the riverbed are
called hillside subsquares. ‘ o

Our functions will be defined based on K, é and ¢’ (i.e., based on M and
€) and on a particular choice of riverbed. The function f will be constructed
below so that all e-approximate local minimum lie in the sink subsquare.

Notice that there is a large but finite set of possible riverbeds for each
particular value of K. The functions on I? in our family will be in cor-
respondence with choices of riverbeds. The particular riverbed to choose
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Figure 2: Embedding I? in the plane with subsquares indicated.
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Figure 3: An example of a riverbed for K = 4.
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will depend on the algorithm at hand—this is the combinatorial part of the
construction described below.

For now, we assume that a particular riverbed is selected, and we pro-
ceed with the construction of f. All the properties that f should have
are stated in the lemmas below. The reader uninterested in the geometric
details can skip ahead to Figure 7 and read the lemmas.

The first part of the construction is the function s(z) that traces the
shape of the riverbed. The path defined by (z, s(z)) as z varies from 0 to z.
passes through all the subsquares of the riverbed (z. is defined below). It
enters and leaves each subsquare through the midpoint of the edge between
adjacent subsquares of the riverbed.

In particular, s(z) is defined piecewise on intervals of the form [(z +
0.5)/J,(i+1.5)/J] where ¢ is an integer. If z is the endpoint of one of these
intervals, s’(z) = £1. The pieces are matched so that s(z) is continuously
differentiable. The formulas for s(z) are as follows. In the west subsquare,
for z between 0 and 1.5/J, we define

4 3
s(z) = m(] z)°.
We notice that this function leaves the west square through the point
(3/(2J),1/(2J)), i.e., the midpoint of the edge between subsquare (0,0)
and (0,1). This means that the subsquare after (0,0) in the riverbed will
always be (0,1) (as mentioned above, a riverbed is defined to start with a
northeast track). Also, we can check that s'(3/(2J)) = 1.

In a subsquare (u, v) that is interior to a northeast track, s(z) is a linear

function with slope 1. Specifically, (z, s(z)) linearly joins the point

1
7(u+v+0.5,v—u—0.5)

to the point
1
7(u +v+1.5v—u+0.5).

Similarly, in a subsquare interior to a southeast track, s(z) is linear with
slope —1. , '

In a subsquare (u,v) in which the riverbed makes a turn, ‘say, from
northeast to southeast, the formula is '

s(x):—1j(J:1:—u—v-—O.5)(u+v+1.5—Jx)+v—u—0.5

14



This function starts at
1
—j(u +v+0.5,v — u— 0.5),

ends at )
7(u +v+1.5,v — u—0.5).

Function s(z) has slope +1 at the first point and —1 at the second. A turn
from southeast to northeast is analogous.

In the sink subsquare, s(z) is defined by the linear function of slope 1 if
the sink subsquare is the terminal of a northeast track, else s(z) is a linear
function of slope —1.

The end z. of the domain of definition of s(z) is the z-coordinate of
the midpoint of edge of the sink square where the riverbed terminates. If
(e, ve) is the sink subsquare, this coordinate is

Te = %(ue + ve + 1.5).

An example of this construction with K = 4 is plotted in Figure 4.
Here, the riverbed is given by (0,0), (0,1), (0,2), (1,2), (1, 3).

We observe that s(z) has the following properties. It is C! and piecewise
C?. The maximum value of |s'(z)| is 1, and the maximum value of |s"(z)|
(where defined) is 2J.

We have now defined a function to specify the shape of the riverbed.
The next step is to define the two functions controlling the value of function
f on the riverbed portion of I2. The first function indicates how f varies
in the direction across the riverbed, and the second indicates how f varies
parallel to the riverbed. The first function is defined by

0 for w < -1,
o(w) =4 —w'+2w? -1 forwe[-1,1],
0 for w > 1.

which is plotted in Figure 5. 4

It is easil}; checked that this function has the following propérties: c is
Cl, ¢(-1) = ¢(1) = 0, ¢(0) = —1, and ¢(-1) = J(0) = (1) = 0. .Also,
the maximum value of |c(w)| is 1, of |¢(w)] is 4, and of |¢"(w)| (which is
undefined at +1) is 8.

15
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Next we define the function p(z), which determines the how f varies
as the riverbed is followed. The value of p(z) depends on the position of
the sink. Specifically, suppose (ue,ve) is the sink subsquare. Then the
formulas for p(z) are as follows. Let z, = (u. + ve + 0.5)/J, that is, the
z-coordinate of the point where path (z, s(z)) enters the sink square. Let
Te = (Ue +ve +0.75)/J, and z4 = (ue + ve +1.0)/J. Let by = § + éz3. Then

[ §+ 6z for z € [0, z3)],
—26J(z — xp)? + 6(z — xp) + bo for = € [z, ),
pe) =1 (bo+6/(87)) [2(47(z ~ 2))’
~3(4J(z —z.))’ +1] for z € [z.,z4), and
0 for z > z,.

\

It can be checked that p(z) is C!'. In particular, p(zp) = bo, p(z.) =
bo + 6/(8J), and p(zq) = 0. Also, p'(zs) = 6 and p'(z.) = p'(z4) = 0. The
maximum value of |p(z)| is bo+ 6/(8J), which is at most 3§. Also, it can be
checked that |p/(z)| is at most 188J, and |p”(z)| (where defined) is at most
2886J2%. An example of p(z) is plotted in Figure 6.

From c¢(w), p(z) and s(z) we now assemble the function f(z,y), which
is defined as follows:

f(z,y) = p(z) - (2K (y — s(2))) + §'z.

A MATLAB mesh plot of f(z,y) is illustrated in Figure 7
We now establish some properties of this function.

Lemma 1. If (z,y) lies in the hillside, then f(z,y) = §'z.

Proof. We must show that the first term vanishes outside the riverbed. If
(z,y) is not in the riverbed, either ¢ > z4 or |y — s(z)| > 3/(4J). This
latter inequality arises from the fact that the distance from (z, s(z)) in the
y-direction to the boundary of the riverbed is always at least 3/(4J) by
definition of s(z). If z > z4 then p(z) = 0 so the claim is true. Similarly,
if |y — s(z)| > 3/(4J) then 2K |y — s(z)| > (3K)/(2J) > 1, hence c(ZK(y -
s(z))) =0. B .

At this point, we choose an € to be slightly larger than ¢, and we let’

§ = 32v/2¢
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and

§ = 19v/2¢.

These choices are made so that we can prove the following lemma.

Lemma 2. Let (z,y) be a point not in a sink square. Then |V f(z,y)|2 >

V2€.
Proof. Let w denote 2K (y — s(z)). We compute

Vi(z,y) = (p'(z)c(w) — 2Kp(z)c'(w)s'(z) + 6, 2Kp(z)c'(w)).

We now take cases to prove a lower bound on the size of V f(z,y). The first
case is that we are not in the riverbed, which was handled by the previous
lemma and the fact that §’ > \/2¢’. This is the case that |w| > 1 or z > 4.
For the other cases we assume |w| < 1 and z < 2. (We can assume z < zy
since (z,y) is not in the sink.) We now take subcases. The first subcase
is that |w| € [1 — 1/(64K),1]. In this case, |¢(w)| and |¢(w)| are at most
1/(8K). Then, we observe that for z not in the sink, |p(z)| < 26, |p/(z)| < §
and |s’(z)| < 1. Thus, the term |p'(z)c(w)| above is at most §/16, and the
term |2Kp(z)c'(w)s'(z)| is at most §/2. The third term of the first entry of
Vf is exactly &', therefore the first entry of the derivative has magnitude
at least ' — (9/16)é. Using the above formulas for §, §’, this is a magnitude
of at least v/2¢.

In the second subcase, |w| € [1/(64K),1 — (1/64K)]. In this case,
we observe that |c(w)| > 1/(10K). This means that the second entry
|2K p(z)c'(w)| of V f(z,y) is at least |p(x)/5], i.e., at least §/5. This quantity
is greater than /2¢.

In the third subcase, |w| € [0,1/(64K)]. In this case, |c(w)| > 7/8,
whereas |c'(w)| < 1/(16K). Therefore, the first term |p'(z)c(w)| is at least
(7/8)6 The second term |2Kp(z)c/(w)s'(z)| is at most (1/4)6. The last
term is exactly ¢’. Thus, the first entry has magnitude at least (7/8)6 —
(1/4)6 — &', which is \/_e ‘

Lemma 3. Let (z,y) be a point not in a sink square. Then (z, y) zs not an
e-approzimate local minimum of f.

Proof. This follows from the previous lemma, with special attention paid
to the boundaries. Region I? has four boundaries and four corners. We
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have to check that if (z,y) is on a boundary then the projection of V f(z, y)
onto the boundary is at least €. This is easy to see, as follows. Along a
boundary we know that Vf(z,y) = (§,0) from the construction, except
in the west subsquare. The gradient (§’,0) has magnitude at least ¢ when
projected on every boundary except the point (0,0). This takes care of the
whole boundary outside the west square.

Therefore, we only have to examine the exterior boundary of the west
subsquare. A calculation shows that every point has a projected gradient
of size at least /. H

Note that we have not established the existence of an e-approximate
local minimum in the sink square. We know by compactness, however, that
such a point exists, and the previous lemma forbids its existence anywhere
else.

It is now time to select the value of K, which will be

1 |M

The reason for this value of K is to establish the following lemma.

Lemma 4. The gradient V f(z,y) for f defined above is continuous and has
Lipschitz constant at most M.

Proof. The gradient exists everywhere and is continuous because f is as-
sembled from C! functions of one variable. Because f is continuously dif-
ferentiable and piecewise C?, then the following inequality holds:

IV f(z1,91) = VF(z2,92)|]2 < /P I D?f(z,y)llz - (22, y2) — (z1,91)||2 dP

where P is a straight-line path from (z;,y:1) to (z2,y2), and D? denotes
the second derivative. This inequality holds for almost all pairs of points
(the only exception being the case when P intersects a continutim of points
where f” fails to exist). Thus, to get a Lipschitz bound on V f(z,y) it
suffices to establish an upper bound on the 2-norm of the second etivative
wherever it is defined. Since the 2-norm of a matrix is hard to work. with,
we instead put an upper bound on the infinity norm, and then multiply it

by V2.
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We compute the second derivative, entry by entry:

@Y pe)etw) - 4K (@) (w)s'a)
+4K?p(z)c"(w)s'(z)? — 2K p(z)c'(w)s"(z),

azf(.’t, y) 2 /"

o = AEp()(w).

We can go through each term and use the crude estimates made earlier
to get an upper bounds of 1116 K26 on 92 f /9z?%, 312K %6 on 0? f/9zdy, and
96K2%6 on 0?f/dy?. Estimating § < 45.3¢/ gives an upper bound of about
6.5 - 10° K2%€ for the oo-norm of the second derivative, which translates to
an upper bound of about 9.2 - 10*K?¢ for the 2-norm. Therefore, with
the above choice of K we are guaranteed to have a Lipschitz bound of at
most M. Note that the true Lipschitz bound for our construction grows
proportionally to K2e but with a much smaller constant. il

Lemma 5. Suppose (z,y) lies in subsquare (u,v). From f(z,y) and V f(z,y)
it 18 not possible to determine any information about the riverbed ezxcept pos-
sibly: whether or not (u,v) lies in the riverbed, and if so, what the positions
of the two neighboring riverbed squares are.

Proof. This follows from the definition of f(z,y). If > z4 or |y — s(z)| >
1/2K then we cannot determine anything about the riverbed except that
(u,v) is not in the riverbed. If |y — s(z)| < 1/2K and z < z4 then we might
be able to determine the values of s(z), s'(z), and p(z) from f(z,y) and
Vf(z,y). This means we can determine that the particular square is in
the riverbed, and we can determine what kind of turn the riverbed makes.
Nothing else can be determined. i

We now prove a general lower bound for finding approximate local
minima for this family of functions. We imagine an algorithm A that
makes function and gradient evaluations. We want to find a pair of func-
tions f(z,y), f'(z,y) in our family with disjoint sets of approximate local
minimum such that algorithm A cannot distinguish them until K func-

tion/gradient evaluations (i.e., (\/M /€)) have been made. Notice that
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the only approximate local minima for functions in our family occur in the
sink square, and therefore f and f’ will have different sinks. We start by
assuming that the algorithm knows M and e (and therefore, K).

The combinatorial argument that constitutes the remainder of this sec-
tion is identical to the argument of Hirsch, Papadimitriou, and Vavasis, but
we present it again here for the sake of completeness.

To construct f and f’ we need to specify riverbeds R, R'. The riverbeds
for these two functions will be almost identical. The riverbeds are con-
structed “adaptively.” In particular, we fix more and more of R, R’ as we
observe the testpoints made by A. The idea is the f and f’ will agree at
all test points, so R and R’ will agree almost until the end.

We assume that A makes a deterministic sequence of testpoints, and
that at each testpoint it evaluates f and Vf. The sequence of testpoints
is denoted (z;,y;). Each one may depend on previous testpoints in any
way possible. Thus, A has unlimited computational power. Note that
there is no advantage for A to make a testpoint exactly on a boundary of
a subsquare for our family (i.e., no more information about the riverbed
can be gleaned from a boundary than from a nearby interior point), so we
assume that all testpoints lie in a unique subsquare. Once a testpoint has
been made in a subsquare, we assume that A has complete information
about the subsquare (i.e., all the values of f(z,y) are known to A for (z,y)
lying in the subsquare).

The riverbeds R, R’ are constructed as a sequence of tracks alternating
northeast and southeast. They are built up as the limit of the sequence
Ro, Ry, R, ..., where each R; C R;;1, and R; denotes the partial riverbed
that is determined after ¢ testpoints from A (note that Ry, = {(0,0)} since
this subsquare is in every riverbed).

We know that R; starts from (0, 0); denote its last square as (u;,v;). In
our construction R and R’ will agree with R; all the way up to subsquare
(ui,v;), and moreover, that R, R" will make a bend in subsquare (u;,v;).
We let T; denote the track starting from (u;,v;) following the direction of
the bend and proceeding to the border of I?. The invariant’ ‘property of
the upcoming construction is that no testpoints have been made in T; on
iterations 1 up to ¢. Note that Tp is the northeast track of subsqtiates with
first coordinates equal to 0.

We now give the rules for extending R;_; to R;. There are three cases
for testpoint i. In the first case, (z;,y;) lies in the part of I? that is al-
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ready determined. To be specific, suppose, for example, that R;_; ends at
subsquare (u;_1,v;—1) and that T;_; is a northeast track emerging from this
subsquare. Suppose that (z;,y;) lies in subsquare (uv’,v’). If ' < u;_; or
v’ < v;_; then the behavior of R is entirely known in (u’,v’), and hence
f, f' are determined already. In this case, we set R; = R;_;, T; = T;_;, and
(uiyvi) = (Uiz1,Viz1)-

The second case is that (z;,y;) lies in a subsquare of I? not in T;_,
but through which R or R’ might eventually pass. This is the case that
u' > u;—1; and v’ > v;_;. In this case, we mark all subsquares with first
coordinate equal to u’ as “forbidden” and the same with subsquares with
second coordinate equal to v’. In this case again weset R; = R;_;, T; = T;_
and (u;,v;) = (ui—1,vi1). We also set f(z,y) = &'z in this subsquare
(i.e., we “tell” the algorithm that the riverbed does not pass through this
subsquare).

In the third case, (z;, y;) lies in T;_;. In this case (assuming as above that
T;_, is a northeast track), we let v; be the smallest integer coordinate greater
than v;_; that has not yet been forbidden in the construction procedure
described above. Then we let R; be the union of R;_; and the portion of
T;_, connecting (u;—1,v;—1) to (u;—1,v;). We let u; = u;_,, and T; be the
southeast track starting at (u;,v;) and including subsquares with increasing
first coordinates. Finally, we assign values to f(z,y) based on R; in the
subsquare that contained the testpoint. If T;_; had been a southeast track,
then T; would have been a northeast track.

Figure 8 shows the three possible locations for a testpoint. Notice the
rule for forbidding northeast and southeast tracks keeps the whole proce-
dure consistent, i.e., each R; is a valid riverbed that is consistent with all
the testpoints up to (z;,yi).

How long can this construction proceed? We notice that if R; terminates
at subsquare (u;, v;), then u; < 7 and v; < because we never pass to a higher
value of u unless all lower integer values of u had testpoints associated with
them. The same holds for the second coordinate. ‘

Therefore, we can continue extending R; until K testpoints have been
made. Until the K — 1st testpoint, there are at least two subsquares in
T;:, and therefore, there are at least two subsquares in which the riverbed
could end. Therefore, we let R be R _; terminated with one of these sinks,
and R’ be Rk_; terminated with the other. Then the algorithm cannot
distinguish f from f’ until K — 1 testpoints have been made.
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Figure 8: The three cases for testpoints.
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We state this as a theorem:

Theorem 2. Let A be any deterministic algorithm to find e-approzimate
local minima of functions f : I? — R whose gradients satisfy Lipschitz con-
ditions with constant M. Assume the algorithm is limited to using func-
tion and gradient evaluations. Then, in the worst case, algorithm A requires

Q (\/M /€) function and gradient evaluations.

4 An improved algorithm when n is large

We notice that the upper bound on Algorithm LOCAL1L Section 2 grows
like (M/€)?, whereas the lower bound grows only like {/M/e. Is it possible
to bring these bounds in closer agreement? In this section we propose an
improvement on the algorithm of Section 2 in the case that n is very small
with respect to M/e. The new algorithm will be called LOCAL2.

The main point of LOCALZ is to pick the initial point x(®) for LOCAL1
in an intelligent manner. We make a mesh with points spaced 1/k in every
dimension (the “coarse” grid), where k is an integer determined below.
Then we evaluate f at every one of these (k 4 1)" mesh points. We let x(©)
be the coarse grid point with the minimum value of f. We begin the local
improvement algorithm (on the “fine mesh,” that is, the mesh with spacing
¢/ M) from this x(©). Assume that k is an integer divisor of M/e, so that all
the coarse grid points are also fine grid points.

Now we reanalyze the number of steps to find a local minimum. Let
x(®) be as in the previous paragraph. Let x* be a global minimum of f. In
Section 2 we established an upper bound on f(x(®) — f(x*) without any
special knowledge about x(°). In this section we want a better bound on
this difference.

To establish this bound, let x’ be the coarse grid point closest to x*.
First, we establish the claim that ||g(x’)||c < M/(2k).. Suppose not; sup-
pose, e.g., that g;(x’) > M/(2k). This means 9f/dz;(x’) > M/(2k) and
z! > 0. Since X' is the closest coarse grid point to x*, the difference be-
tween z! andiz} is at most 1/(2k). In particular, z7 > 0 since z};> 1/k.
We have the bound ||x’ —x*|| < 1/(2k), so the Lipschitz bound implies that
df/dzi(x*) > 0. This, combined with the fact that z7 > 0, contradicts the
minimality of x*.
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Thus, ||g(x’)|lcc £ M/(2k). Now we put an upper bound on the differ-
ence f(x') — f(x*). We use the same reasoning as in Section 2, namely
we form a path with n segments between the two points and express
f(x*) — f(x') as the integral of partial derivatives along the path. Each
path segment has length at most 1/(2k), and each integrand is bounded
below by —2M/(2k). Therefore, the total difference is at least —nM/(2k?).
This gives an upper bound on f(x') — f(x*). Since f(x(®) < f(x') (be-
cause x(9 is the coarse grid point with the smallest value of the objective
function), we conclude that

Oy _ f(x*) < "M
FxO) - f(x) < B
Starting from x(?), we apply the same local search algorithm LOCAL1
as used in the Section 2. We now get a new bound on the number of steps.
Since each step decreases the objective function by at least 0.5¢2/M, and the
maximum possible decrease is given above, we get a bound of nM?/(e2k?)
on the number of search iterations.
Thus, the algorithm requires a total of

nM?

€2k?

function and gradient evaluations. We want to choose k to be an integer
that minimizes this total. A good choice is to pick k between

1 1
2\ n+2 2\ n+z

(E+1)" +

€2 €

With these choices, we can estimate

n nM?\ 72
(k+1) g( = ) .

To analyze the other term, we assume that M?2/e? > 4"+% /n (trecall that the

method of this section is meant to be applied when n is small with respect
to M/e). If this holds, then (nM?/e?)!/("+2) > 4. Thus, .

1 -2
2 2 2\ =7
nM < nM [(nM) + _2]
e2k2 — e €2
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-2
nM? |1 [(nM? w7
€? 2 €?

2\ =¥z
< 4("M) "
< 2

Thus, we see that the total time for LOCAL2 is at most

o ( (an) T) |
€2
In the special case of n = 2 (the case covered in the previous section), this
gives a bound of O(M/e), which is closer but still not equal to the lower
bound.

The above choice of k will in general not be an integer divisor of M/e.
This can be addressed with further analysis, which we omit.

5 Local minima compared to global minima
and fixed points

In Section 2 we came up with a bound like O(nM?/e?) for finding e-
approximate local minima. The purpose of this section is to compare this
result to information bounds for global minima and Brouwer fixed points.
As we will see, these two other problems both depend on n exponentially.

Define an e-approzimate global minimum of a function f : I" — R to
be a point x such that if x* is a global minimum, then f(x) — f(x*) < e.
It turns out the reasonable assumption to make for this problem is that f
has Lipschitz bound L (rather than assuming a Lipschitz bound on V f). It
is fairly straightforward to prove upper and lower bounds on this problem
of the form (cL/e)", where c is a constant. This result is implicit in work
by Sikorski [1984]. Thus, we see an exponential instead of polynomial
dependence on n. ,

Local minima are more closely connected to Brouwer fixed points than
to global minima. In fact, as we will show, local minima may be regarded
as a special case of Brouwer fixed points. Let u : I — I™ be a continuous
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function. Then Brouwer’s fixed point theorem states that there exists an
x € I" such that u(x) = x. Such an x is called a fized point.

Define an e-approzimate fized point to be a vector x € I™ such that
lu(x) — X||c < €. It turns out that the reasonable assumption to make
is that function u(x) — x has Lipschitz bound K. In this case, Hirsch,
Papadimitriou, and Vavasis showed that the worst-case for Brouwer fixed
points in the information model behaves roughly like (cK/¢)", again, expo-
nential in n.

We claim that local minima can in fact be couched as Brouwer fixed
point problems. In particular, given a continuously differentiable function
f : I - R with a Lipschitz bound of M on the gradient, we define a
vector-valued function u(x) as follows. For the purpose of this discussion,
it is convenient to assume that I" = [-1/2,1/2]" so that the origin is the
center of the domain. For ¢ > 0 let p.(z) be the function that projects
onto the interval [—c, ] (i.e., p.(z) = median{—c, z,c}), and let p. be the
coordinatewise projection onto [—c,c]?, i.e., pe(x) = (pe(z1), . .-, Pe(T0)).

Let ¢ be slightly larger than e. We define a new domain U to be [-1/2—
€,1/2 + €]". Notice that p;/, maps U to I". Then we define u(x) on U as
follows.

u(x) = p1/2(x) — Pe(V f(p1/2(x))-
The image of u lies in U (because the first term has co-norm at most 1/2,
and the second term at most €¢'), hence u(x) satisfies the conditions of
Brouwer’s theorem.

The first claim is that u(x) — x has Lipschitz constant equal to M. If
x € I™ then u(x) = x — p(V f(x)), hence u(x) — x = —p(V f(x)). This
right-hand side has Lipschitz constant of M. The other case is is handled
in a similar manner.

Now, suppose x € U is an e-approximate fixed point of u. Let y =
p1/2(x); we claim y is an €’-approximate local minimumof f. Let d = y —x.
For each ¢, if d; > 0 then y; = —1/2, and if d; < 0 then y; = 1/2. With this
notation, L
u(x) —x =d - pa(V£(y)) (2)
The left-hand side of (2) is assumed to have co-norm at most es Consider
an index ¢ such that y; > —1/2. In this case, d; < 0, so (2) implies
that sth entry of p«(Vf(y)) is at most e. This means that 9f/0zi(y) <
e. Analogous reasoning applies to the case that y; < 1/2. This shows
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that y satisfies the conditions for being an e-KKT point, and hence an
¢’-approximate local minimum.

Conversely, suppose y is an e-approximate local minimum of f. For each
i such that y; = 1/2, define d; = min(0, p+(0f/0zi(y))). For each i such
that y; = —1/2, define d; = max(0, p+(9f/dzi(y))). For other i, let d; = 0.
Then it can be checked that the point y —d will be an e-approximate fixed
point of u.

Notice that the size of U is slightly larger than the size of I". The size
of U can be brought to 1 in every dimension by scaling. This would have
an effect on the value of M.

Thus, we see that approximate local minimization can be expressed as a
special case of Brouwer fixed points. Finally, we remark that approximate
local minimization is related to complexity classes PLS and PDLF designed
for combinatorial problems, the first having to do with local minima and
the second with Brouwer fixed points. See Papadimitriou [1990] for more
information.

6 Conclusions

We have presented a simple local search algorithm whose running time
is polynomial in the dimension of the problem. We have also presented
a family of problems for which finding a local minimum would be time-
consuming for any information-based algorithm.

There are many questions left unanswered by this work. What happens
when more complicated domains than I™ are used? How can the gap be-
tween the lower bound of Section 3 and the upper bound of Section 4 be
closed?

We have assumed that the functions under consideration are C'. What
if we assumed that they are C? with a Lipschitz bound on the second
derivative? This would open up the possibility of using Newton-type meth-
ods. Would these Newton-type methods be provably more efficient than
gradient-based methods?

Our algorithms LOCAL1 and LOCAL2 were designed mainly, with ease
of analysis in mind. Can a more practical algorithms (say, an algorithm
with long steps and a line search) be put into the context of this paper and
analyzed?
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Finally, is there a good explanation for the fact that approximate local
minima can be found in time polynomial in n but not Brouwer fixed points?
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