A NOTE ON TAPE BOUNDS FOR
SLA LANGUAGE PROCESSING*

J. Hartmanis and L. Berman

TR 75-242

May 1975

Department of Computer Science
Cornell University
Ithaca, New York 14853

* This research as been supported in part by National Science
Foundation Grants GJ-33171X and DCR75-09433.

e A bt e e B A U U SN UE SO PR S

A NOTE ON TAPE BOUNDS FOR
SLA LANGUAGE PROCESSING*

J. Hartmanis and L. Berman
Department of Computer Science
Cornell University, Ithaca, NY 14850

Abstract

In this note we show that the tape bounded complexity classes of
languages over single letter alphabets are closed under complementation.
‘We then use this result to show that there exists an infinite hierarchy
of tape bounded complexity classes of sla languages between log n and
log log n tape bounds. We also show that every infinite sla language
-recog_nizable on less than log n tape has infinitely many different
regular sﬁbsets, and, therefore, the set of primes in unary notation,P,
requires exactly log n tape for its recognition and every infinite

subset of P requires at least log n tape.

* This research has been supported in part by National Science

Foundation Grants GJ-33171X and DCR75-09433.

. —— — o1 . 4718 TN

Introduction

In this paper we investigate the properties of languages over
a single letter alphabet (sla) which can be recognized with small
amounts of memory. In particular, we are concerned with sla lan;uages
recognizable on L(n) tape for L(n) < log n. Clearly, for tape bounds
L(n) properly below log n, the recognition device does not have enough
memory to count up to the length of the }nput. Nevertheless, the main
result of this note shows that we can still diagonalize over tape
bounds in this range and get sla languages with very exact tape require-
ments for their recognition, thus, extending diagonalization methods to
a range where up until now only ad hoc crossing sequence arguments had
been used. On the other hand, we also show that diagonalization method:
have very severe limitations in this low complexity range. For
example, we cannot diagonalize over the regular sets with small amounts
of memory and therefore, every sla language recognizabl; with. small
amounts of memory must contain infinitely many different infinite
regular sets. This observation is then applied to get more results abot
the memory requirements for the recognition of primes in unary notation.

The recognition device used in this study is -a two tape Turing
machine, T™m, with a two-way, read-only input tape and a two-way,
read-write work tape [4,6]. The input is placed between special end
markers on the input tape and the read head cannot go past the end
markers, nor can it change the input. The number of tape squares used
on the work tape is our measure of computational complexity. We say thi

a language A, A < I*, is accepted on L(n) tape iff there exists a T™m Mi

which accepts A and never visits more than
on its work tape for an input of length n.

by a Tm Mi is denoted by T(Mi)} the family

L(n) different tape squares
The set of tapes accepted

of languages accepted on

L(n) tape is denoted by TAPE[L(n)], and the family of single letter

alphabet languages accepted on L(n) tape is designated by SLATAPE[L(n)].

For a given Tm Mi let Li(n) denote the maximum number of tape squares

visited on its work tape for all inputs of

L(n) is tape constructable iff L(n) = Li(n) for some Tm Mi.

length n. We say that

Since in

this note we deal primarily with sla languages, Li(n) will denote the

amount of tape used for the input of length n and L(n) is tape

constructable if it is tape constructable for sla inputs.

It is known that there exist non-regular languages which can be

recognized on

L(n) = log log n

tape and, furthermore, that this is the least amount of tape used for

recognition of'non-regular sets, since
lim Ln) _
log log n

n->o

implies that TAPE[L(n)] is the family of regular sets [6].

of fact, there does not exist an unbounded
v such that
lim L(n)
log log n

n-c

As a matter

tape constructable L (n)

It is simply impossible for a Tm to lay off small amounts of tape;
either it lays off only an amount bounded by a constant or the amount
laid off must reach C loglogn infinitely often, for a fixed C > 0.

Furthermore, it is known that if L(n) is an unbounded, tape

constructable function and

lim &

n-+o L(n)

then there exists a language acceptable on L(n) tape but not on Ll(n)
tape. This result is obtained by diagonalization for i(n) >logn
and by a crossing sequence argument for L(n) below log n [3,6].
Furthermore, in the range below log n'tbe proof required that the
languages are over alphabet I with |Z| > 1 [3].

Recently a proof was published showing that there exist non-regular
sla languages which can be accepted on log log n tape,;ahd.it was

pointed out that it is not yet known whether there exists a hierarchy

of sla languages between log log n and log n [1].

In this paper we solve this problem by showing that there is
indeed a rich hierarchy of complexity classes of sla languages in the
range between log log n and log n.

To prove the existence of different complexity classes of sla
languages below the log n tape bound, we need several results which

permit us to carry out a diagonalization argument. We do this by first

showing that if an sla language A, A ffa*, is in TAPE[L(n)] then so is
its complement, A = a* - A. From the proof of this result it follows
that there is a recursive mappihg o such that for all i, Mc(i) is
equivalent to Mi' uses no more tape than Mi' and halts for all inputs
for which Mi uses a finite amount of tape. After proving a further
technical result about tape constructable languages for sla inputs, we
prove that if L(n) is tape constructable and for some infinite

recursively enumerable set of integers {nl, n2,...}

1im Ll(nk)

ko L(nk)

then there exists A, A < a*, in TAPE[L(n)] but not in TAPE[Ll(n)].
From this result, using the fact that there exist non-regular sla
languages acceptable on log log n tape, it follows that for any tape

constructable F(n) >n,

lim Ly (n)

n+» F[log log n]

implies that

SLATAPE[Ll(n)] §:SLATAPE[F(log log n)].

We observe that it still is not known whether for
alphabets I, |I]| > 1, the family of languages TAPE[L(n)] is closed
under complementation for all L(n). This is the case for
L(n) > log n, but the standard proof breaks down for L(n) < log n.
As we show in this paper, the restriction to sla languages permits

us to prove this result for all L(n) for SLATAPE[L(n)].

We also note that if an infinite set A, A C a*, is recognized
on L(n) tape with

lim L(n)
n+» log n

=0,

then A must contain infinitely many infinite regular subsets. Thus,
we see that for the sla languages requiring less than log n tape we
cannot diagonalize over the infinite regular sets (this can be done for
L(n) > log n). It is also interesting to observe that there exists an
infinite language B, B < {0,1,2}*, recognizable on log log n tape
which contains no infinite regular subsets f1,3,6]1. Oh the other hand,
if .
lim L(n) _
n+» log n

then any language C, C € L*%, recognized on L(n) tape is such that
either C or L* - C contains infinite regular subsets.

Finally, we observe that the set of primes in_pnary notation, P,

requires exactly log n tape for its recognition and that no infinite
subset of P can be recognized on less than log n tape. The corresponding
question for the recognition of primes in binary notation, PB' has not
yet been solved completely. So far we only know thaé the recognitioﬂ

of P_ requires at least log n tape [2]. If P could be recognized on

B B
log n tape then we would have a deterministic polynomial time algorithm

for testing whether a number is or is not a prime. A recent result
shows that if the Generalized Riemann Hypotheses holds that then PB can
be recognized in deterministic polynomial time [5]. We conjecture that

PB cannot be recognized on log tape.

Tape Bounds for SIA Language Recognition

In this section we show that there is an infinite set of
essentially different tape consﬁructable functions in the log log n to
log n range and that for each constructable tape bound L(n) there exists
an sla language whose recognition in essence requires L(n) tape.

For the sake of completeness we first show that there exists a
non-regular sla language recognizable on log log n tape [l]. This will
guarantee the existence of many other sla tape constructable functions
below log n. In the following proof, we make use of several well-
known results from number theory, which are summarized below.

Let Pys Pyr ov- denote the prime numbers in increasing order.

Then it is easily seen that the set of primes in binary notation represents
a set which éan be recognized on linear tape (it is a deterministic

csl) [2]). Furthermore, for k > 1, there exists a prime p such that

k < p < 2k. Thus, if we have P; written on tape in binary notation,

we need at most one more tape square to write down PiL1e Also, every
arithmetic progression a + bk, k =1, 2,..., contains infinitely many

primes if (a,b) = 1. Finally, if

0(x) = £ 1np,
i
Py <x
then
lim O(x) _ 1,
X+o X

and therefore, for every € > o and sufficiently large x

. - .
7
(1 -e)x (1'+ e)x
e < Ip; Ze
p; 2 x

Consider now the sla language

_ (2N cos 2 2 2
A = {a” | Pysr Pyreees Py divide n but Pys Pyreees Py and Pr41 do not

divide n}.

Theorem 1: A is a non-regular language reéoqnizable on L(n) = log log n

tape. Furthermore, Ao is not recognizable on Ll(n) tape if

lim ™
n+» log log n
Proof: To see that AO is non-regular, assume that Ao is recognized by a
finite automaton with ko states. Then for a” € A with n > ko' we see
" that for all q > 0 (by the pumping lemma)

!
n+ko.q

a e AOI

and therefore

n{l+k !q]

a e AO.

Since 1 + kolq forms an arithmetic progression for q =1, 2,...,

we know that for some Py and 950 1+ ko!qo = Py But then by choosing

n = Hpj , we have a e Ao and an[l+k°!q°] e Ao’ and also that
Py < 2p;
. ce s 2 .
n[1+k°!q°] is divisible by Pyr Poreees Py_yr Pir Pyyyreccs Pes which

) . .
implies that an[1+k°.qo] is not in Ao. Thus, we conclude that AO

cannot be accepted by a finite automaton.

To see that Ao can be accepted on log log n tape, consider the

following recognizer M*. Fog input an, M* checks whether n is divisible
by Py and not pi, P, and not pg,..., until a Piy1 is found which does
not divide n. To check for the input a” whether n is divisible by Py
we need only log P, tape, and to check that n is not divisible by pi,

we need only 2 log P, tape (or a richer tape alphabet and log Py tape).
Finally, to check whether n is not divisible by P ,yr e need only

one additional tape square because between k and 2k lies a new prime.

Thus, the divisibility can be checked on log Py tape and since
n i pll pzl-ool Pt:

we get, by our previously mentioned result, that
log log n > log pt

for sufficiently large n. Thus, we see that Ao is recognizable on loé
loé n éape.

The last statement of the theorem follows from the qeneraltresult
[6}1, mentioned.in the Introduction, that recognition of non-regular
sets requires that there exists a C, C > 0, such that for infinitely

many n
L(n) > C log log n.
This completes the proof.

Noée that in the recognition process of Ao’ the recognizer M*
lays off the same amount of tape for infinitely many inputs. Since
if a" is accepted and P.,q was the largest prime used in this
computation, then an'ps, P > Piyps is also accepted and the same

amount of tape is laid off by M*. As shown in [l1], this is a property

of all sla language recognizers: if Tm Mi uses Li(n) tape on sla

inputs and

. L. (n)
lim 7i =0
n+» log n -
then for some m, all Li(n) > my will be achieved infinitely often.
Next we show that all tape bounded complexity classes of sla
languages are closed under complement and then use this result to

show that there exists a hierarchy of sla language tape bounded

complexity classes below log n.
Theorem 2: If A € a* and A € TAPE[L(n)] then X = a* - A € TAPE[L(n)].

Proof: Consider a Tm M which has g states, a work tape alphabet of k
symbols and which runs on L(n) tape. Then for an input of length n,

this Tm can not enter more than

s(n) = q - L(n) + x®

different configurations while scanning a square of the input tape.
The factor q represents the number of possible states of'M, L(n) the
possible head positions on the work tape and kL(n) the possible patterns
which can be written on the work tape. For a suitable r, depending on

q and k only,

LM L(n)'

>2 g+ Lin) + k

from which it will follow that on L(n) tape another Tm can count high
enough to detect cycling of M.

To do this construct Tm M' as follows: M' has a five-track working
tape such that on each track on t tape squares it can count higher than

rt. On track 1, M' simulates M and if M ever halts, M' rejects the

10

input if M accepts and vice versa.

On track 2 and track 3, M' counts the number of times the input
head of M hits the left and right end marker, respectively. If either
of these counﬁs grow so large that they try to use more tape than so
far used by M, M' rejects the input since M is cycling.

Oon track 4, M' counts the number of moves M has performed since its
input head last encountered an end marker. If this count tries to use
more tape than M has used so far (i.e. the count is at least twice the
number of configurations M can enter), then M has entered a configuration
twice since encountering an end marker and M either is heading for
an end marker or cycling near one end of the input. M' now records the
configuration that M is in on track 5 and counts on track 4 the displace-
ment of the -input head of M from its present position until the
reqorded configuration of M is repeated (which we know must happen in
less stéps than we can count on the available tape). If the displace-
ment is zero, then M is cycling and M' accepts the input; if the
displacement is not zero, then the input head of M will eventually hit
an end marker, up the end marker count, and the process starts all over.
Since M uses L(n) tape, M' will eventually halt, accept a iff M does
not, and use no more tape than M. Thus, T(M) = a* - A € TAPE[L(n)],

as was to be shown.

An inspection of the proof of Theorem 2 shows that for every Tm
we can effectively construct an equivalent Tm which uses no more tape

and never cycles on a finite amount of tape.

Corollary 3: There exists a recursive function o, such that for all

Tm's Mi with sla inputs:

11

1. T(Mi) = T(Mo(i))'
2. Li(n) = Ly, (n),

. n
3. if Li(n) < «, then Mc(i) halts on input a .

Proof: By a slight modification of the proof of Theorem 2. It is also

interesting to note, 0 can be so chosen, that there exists a constant
C > 0, such that C -lMi| > IMc(i)l' where IMiI denotes the length of

the description of M, and such that the set {M } is a deterministic

o(i)

csl.

Next we establish the existence of infinitely many different tape

bourided complexity classes of sla languages below the log n tape bound.

Theorem 4: Let L(n) be tape constructable and let D = {nl, nz,...)
be an infinite recursively enumerable set of integers such that Ll(nk) 2

and
1im L1 (my)

k+ L(n

= 0.
X!

Then there exists an sla language A in TAPE[L(n)], but not in TAPE[Ii(n)]

Proof: We first clarify the use of the set {nl, nz,...} in our

theorem. Since for tape constructable L(n) such that

lim L(n) -

n» log n

all (sufficiently large) values L(n) are reached for infinitely many

different inputs, we see that the condition

lim Epfm)

n+o L(n)

12

implies that Ll(n) = 0 infinitely often. Thus, the use of this
condition in the Theorem wouid lead to a weak result. As we wi;l show,
in this proof , it suffices that L(n) outgrows Li(n) infinitely often to
guarantee that we can construct an A computable on L(n) tape but not

on Ll(n) tape.

To construct A we will diagonalize over all Tm's which can be
simulated on L(n) tape. To do this we will use the fact that we can
detect when a Tm cycles, without using more tape, and we need a method
to insure that we simulate every Tm on infinitely many inputs to make
sure that A cannot be computed on Ll(n) tape from some point on. We
now give details of this construction.

Let Mo(l)’ Mc(Z)""' be the list of Tm's guaranteed by Corollary 3,
which never cycle using a finite amount of tape. Thus, if Mi runs on
Li(n) tape then Mc(i) halts for all inputs, and also runs on Li(n) tape.

Furthermore, {M } is a deterministic csl. Let L(n) be an unbounded

o (i)
tape constructable function and let

C=1{m [(Jnk € D) [L(nk) =m]}.

The set C is clearly recursively enumerable, as D is; say C = T(Mc).
Let p be a recursive function, p: N -+ N, such that for every i there
exists infinitely many j for which p(j) = i, and such that p(j) can be
computed on j tape squares. Then there exists a recursive function t

such that

a) (Vj)[t(j) € C]
b) if T(j) is the amount of tape used to compute t(j),

then T(j) > |M and

o0 (i) |
wi>1 (Imec) [£(3) >m> t(3-1) + T(i-1)].

13

We now exhibit a Tm, Mt, which computes a function t. satisfying
the above conditions:
Mt has t(l) stored in its finite control and it uses tape

T(1) > |M)| before producing t(l). To compute t(j), M, computes

gop (1l
t(j-1), counts T(j-1) and stores t(j-1) + T(j-1), and calls Mc to
enumerate C until an element, m, is found such that m > t(3-1) + T(3-1).
This element is stored and more of C is enumerated until an element m'

of C is found such that m' > |M)| and m' > m. This element is t(j).

gep (j
To construct the desired set A in SLATAPE[L(n)] and not in
SLATAPE(L, (n)], we consider Tm M,: for input a", L(n) tape is laid off

and the largest j is determined such that

L(n) > t(j) + T(3),

call this map of L(n) -+ j V; if no j can be found the input is

rejected. Otherwise, MA finds M0°p(j)

on input a”. If the simulation tries to

, which can be dome on L¢n)

tape, and simulates Mcop(j)

use more than L(n) tape, then a® is accepted. Otherwise, by the

construction of Mcop(j)’ we know know that Mcop(j)

rejects and vice versa. Clearly T(MA) is L(n) tape

will halt and MA

if M .
accepts i 500 (3)

acceptable, since MA operates in L(n) tape. Furthermore, if Mc(i) runs
in Ll(n) > 1 tape and

1im L1 ()
k> L(nk)

=0,

then MA can simulate Mo(i) on tape cLl(nk), for some ¢ > 0, and for

14

sufficiently large n the limit condition implies that

k!
;Ll(nk) < L(nk).

Since p maps infinitely many j onto i, we conclude that for some
sufficiently large n, we have Y(@(n)) =3, p(jJ) = 1 and therefore

and MA has enough tape to find out what M does

Moo (3) = Moty (1)
and do the opposite. Thus, T(MA) # T(Mc(i))' Therefore, we conclude
that A is in SLATAPE[L(n)] and not in SLATAPE[Ll(n)], as was to be

shown.

The next result shows how we can easily get infinitely many

different tape bounded classes of sal language in the range below log n.

Corollary 5: Let F(n), n < F < 2n, be a tape constructable function.
Then

1im Ll(n)

1]
o

n+» F[log log n]
inplies that
SLATAPE(L, (n)] 7 SLATAPE[F(log log n)].

Proof: Clearly, the containment follows from the limit condition. To
show that the containment is proper, we proceed as follows. Using the
construction in Theorem 1, lay-off L(n) tape which reaches log log n
infiniteiy often. Now compute F of this amount of tape and diagonalize
as in the proof of Theorem 4. This shows that there exists an A in

SLATAPE([F(log log n)] and not in SLATAPE[Ll(n)].

15

Next we show that the sla languages requiring small amounts of

tape for their recognition must contain infinite regular subsets.
Lemma 6: Let A be an infinite sla language in TAPE[L(n)] with

lim _L(n) _ 0

n+» log n
Then A contains infinite regular subsets.

Proof: Let Mi accept A on L(n) tape. Then Mi can enter no more than

q * L(n) - KL (m)

configurations and, because of the limit condition, for large n

q * L(n) - kL(n) < n.

Thus, in traversing the input an, for large n, Mi must repeate its
configuration and therefore, if a is accepted, so is

+ten!
a™t im0, 1, 2,... .

(For details of this analysis see [1] or [6]). But then we know that
the regular set
(an|n =n + ten!, t=0, 1, 2... }

is a subset of A. Thus, A contains infinitely many different , infinite

regular sets, as was to be shown

It is interesting to note that Lemma 6 does not hold for tape

alphabets with more than one letter. There exists infinite log log n

16

recognizable languages which contain no infinite regular subsets; one

such language is [6]:
{#b, #b, #b; #...#by #Ibi is binary representation of i}.

On the other hand, we can prove that if A is in TAPE[L(n)]

lim L(n)
n+> log n

=0

then either A or I* - A contains an infinite regular subset. To see
this, note that either A or I* - A must contain an infinite set over a
single letter alphabet. Therefore, either A or I* - A contains an
infinite regular subset of this infinite sla subset (by the same proof
as used for Lemma 6).

In conclusion, we apply this result to the recognition of prime

numbers. Let
P = {a"|n is a prime number}.

Theorem 7: The set P of prime numbers in unary notation is in TAPE[log n]
and every infinite subset of P requires at least log n tape of its

recognition.

Proof: The set P can be recognized on log n tape by a Tm which first
counts up to n and records n on the tape in binary notation. After that,
on the available work tape, it checks if n is or is not a prime.
Conversely, it is easily shown that every infinite subset of P requires

at least log n tape for its recognition.

17

To see this let S € P be an infinite subset of P and assume that S is

in TAPE[L(n)] with

lim L)

n+~ log n
Then S contains an infinite regular subset by Lemma 6, say T; T< S,
Since T can be recognized by a finite automaton, there exists-a k

+ ek 1 o Such
: . P °
that aP @ T ana p > ko implies that a © eTfort=0,1, 2,...

Clearly, p + t'ko! cannot be a prime for all t since there exists
arbitrarily large gaps between consecutive prime numbers. Thus, we see

that no infinite subset of P can be recognized on less than log n tape;

as was to be shown.

We recall that the corresponding problem for the recognition of
the set of primes in binary notation, PB’ is not yet completely solved.
The best result to date shows that at least log n tape is required,
but it is not known whether this is sufficient for the recognition of

Py [2].

Acknowledgement

The authors wish to thank A.R. Freedman and R.E. Ladner for

reawakening their interest in low complexity sla languages.

18

References

1. A.R. Freedman and R.E. Ladner, "Space Bounds for Proceséing
Contentless Inputs", to appear in JCSS.

2. J. Hartmanis and H. Shank, "Two Memory Bounds for the
Recognition of Primes by Automata", M.S.T., Vol. 3. (1969),
125-129.

3. J.E. Hopcroft and J.D. Ullman, "Some Results on Tape-Bounded
Turing Machines", JACM, 16(1967), 168-177.

4. J.E. Hopcroft and J.D. Ullman, Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading Mass., 1969.

5. G.L. Miller, "Riemann's Hypotheses and Tests for Primality",
Proceedings of the 7th Annual ACM Symposium on Theory of
Computing (1975), 234-239.

6. R.E. Stearns, J. Hartmanis, and P.M. Lewis, II, "Hierarchies

of Memory Limited Computations", IEEE Conference Record on
Switching Circuit Theory and Logical Design (1965), 191-202.

.

.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif

