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The current slowdown in CMOS technology scaling presents opportunities for

architectural innovation, in particular augmentation of general purpose processors

with specialized units. Self-timed field-programmable gate arrays (FPGAs) are

attractive in this space because of their high throughput, robustness, and modu-

larity.

In my thesis, I present an architecture for a dynamically reconfigurable asyn-

chronous field-programmable gate array, describe efforts to limit the overheads

of asynchronous communication in the context of 3D integration, and develop an

asynchronous-aware toolflow for mapping designs to the FPGA.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The history of computer architecture is marked by the pursuit of ever greater

performance through the marriage of design innovations and steady increases in

manufacturing technology. Over fifty years of this virtuous cycle have brought

exponential gains in performance, integration density, and cost reduction, and

completely reshaped the landscape of our modern world.

Unfortunately, manufacturing gains today are becoming increasingly hard-won.

CMOS fabrication technology has historically benefited from Moore’s law scaling,

the empirical observation that the number of transistors that can economically

integrated on a die grows exponentially over time. This trend continues today

(albeit at a reduced pace), but crucially without the associated Dennard scaling

that allowed that bounty of transistors to be used with approximately constant

power requirements. This has caused some to (hyperbolically) predict a “coming

dark silicon apocalypse” [137], in which increasing device counts with a constrained

power budget force large swaths of future chips to remain unused.

A standard answer to the performance/energy wall (“dark silicon”) is special-

ization [147]. Many researchers have taken up this challenge, and designs spe-

cialized to a given task have been shown to exhibit 10-100x performance gains

compared to general purpose processors [38]. But specialization limits flexibility,

and it is infeasible to design a specialized chip for every possible application.

Reconfigurable computing systems combine the easy flexibility of general pur-
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pose processing with the efficiency of specialized and reconfigurable accelerators.

Often the accelerator in reconfigurable computing designs is implemented as a

field-programmable gate array (FPGA), described further in Section 1.3. Many

such systems have been proposed in the past [31, 36, 37, 58, 61, 123, 144, 147, 148].

Today, commercial reconfigurable computing systems including FPGAs and gen-

eral purpose processors (such as Xilinx’s Zynq [156]) have become more widely

available.

So what is the ideal platform for reconfigurable computing? Standard architec-

ture evaluation metrics apply: the system should have high performance and low

energy. Previous work has shown that self-timed (Section 1.2) FPGAs can achieve

high throughput compared to their synchronous counterparts [43].

Reconfigurable computing systems should also be capable of adapting on de-

mand to changing workload requirements, without interrupting other ongoing op-

erations. As systems grow to contain ever-larger amounts of varied accelerator

resources, shutting down the entire ensemble to implement a new task becomes an

unreasonable cost to bear. This suggests that the ability to dynamically recon-

figure accelerator platforms will be important to future reconfigurable computing

architectures.

The long-range aspiration that guides my work in this thesis is a reconfigurable

computing architecture that includes a virtual hardware substrate for mapping ac-

celerators on-demand. A major inspiration is the SCORE [21] computation model,

which uses stream computation to implement applications on variable sized hard-

ware platforms. Virtual memory systems provide the illusion of boundless memory

space to an application while leaving the management of the physical details to

the operating system. Virtual hardware would operate in a similar fashion by con-

2



(a) Synchronous logic (b) Asynchronous processes

Figure 1.1: Comparison of synchronous vs asynchronous circuit organization

trolling time-shared usage of a general purpose reconfigurable substrate, and could

enable on-line synthesis of application-specific accelerators. In the short term, I

seek to design a high-performance reconfigurable hardware substrate that could

enable these applications, along with flexible software that allows experimentation

on reconfigurable asynchronous platforms.

1.2 Asynchronous Logic

Asynchronous circuits are so-named based upon what they lack: a global clock

signal that synchronizes actions and data transmission throughout the system. In-

stead, asynchronous systems are composed of a collection of self-timed processes

that operate at their own maximum local rate and exchange data with other pro-

cesses via communication channels.

Figure 1.1a shows a prototypical synchronous system. A ‘cloud’ of combina-

tional logic computes a value (at X) which is stored in the state-holding flip-flop

and propagated to Y when commanded by the clock signal. The clock period must

be long enough to allow sufficient time for the combinational logic computation

between the state-holding elements to complete. This is true for every path be-

tween state-holding elements, so the clock sets the timing globally for the entire

3
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data 0
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Figure 1.2: Asynchronous handshaking channel connecting two processes

system (or clock domain region if there are multiple clocks in the system).

By contrast, in Figure 1.1b the processes independently perform computations

without making assumptions about the delays of wires and gates. When process

1 sends data to process 2, it places a data ‘token’ on port X of the communica-

tion channel between them. Process 2 can then receive that token on port Y of

the same channel. These communication channels are generally point-to-point in

an asynchronous system. The synchronization required to send a token across a

channel is sequenced via a delay-insensitive local ‘handshake’ rather than a timed

global or regional clock signal.

Figure 1.2 shows one specific implementation of a single-bit channel handshake.

I discuss several other signaling protocols in Chapter 4. This simple example cap-

tures many of the features, strengths, and weaknesses of asynchronous communi-

cation in general. It shows a ‘four-phase’ handshake, with the following sequence

of operations:

1. The sending process asserts one of two wires to encode the transmitted data

in a delay-insensitive manner. This is known as a 1-of-2 encoding, and can

be generalized to other delay insensitive encodings for larger numbers of bits

(e.g. 1-of-4 for two bits, m-of-n more generally).

4



2. The receiving process confirms receipt of the data by raising an acknowledge

wire traveling in the opposite direction as the data. At this point, the data

has been transmitted and the processes are synchronized.

3. After seeing the acknowledge, the sending process resets its data values to

their neutral state (indicating no data present).

4. Finally, after the data wires are neutral the receiver deasserts the acknowl-

edge wire and the channel is reset to its initial state.

The final two steps are known as the ‘reset phase’ of the handshake. They

exist to simplify the circuits required to implement the handshake, and may

be omitted (resulting in a ‘two-phase’ handshake).

In practice, synchronous vs asynchronous design style is not a binary choice,

but rather two ends of a spectrum. For example, self-timed bundled data systems

incorporate timing assumptions to remove the area overhead associated with delay-

insensitive data encoding, and latch-based synchronous design can allow some tim-

ing flexibility throughout the system via clock borrowing.

There are a large variety of asynchronous design styles [10, 59, 112]. Unless

otherwise noted, when I refer to asynchronous or self-timed systems in this thesis,

I mean quasi delay-insensitive (QDI) circuits [105]. This class of circuits makes

no assumptions about the delays on wires or gates, except that certain wire forks

must be isochronic (have equal delay on both branches) [11]. Since fully delay-

insensitive (DI) have been shown to be limited in what they can implement [102],

QDI is considered to have the fewest possible timing assumptions among ‘useful’

design styles. Additionally I will consider only slack elastic systems [98].

Figure 1.3 shows the timing behavior of the same pipelined computation in

5



Figure 1.3: Timing behavior of synchronous and asynchronous systems

both synchronous and asynchronous systems. Each individual stage of the asyn-

chronous computation may take longer, due to the overhead introduced by the

round-trip local handshake (Figure 1.2) between each process. On the other hand,

the synchronous implementation is constrained by the fact that the the global clock

must accommodate the operation with the longest delay, while in the self-timed

system each operation proceeds at its maximum local rate. The ability to exploit

this average-case vs. worst-case algorithmic performance gap is a key benefit of

asynchronous systems, and it allows for simple ‘make the common case fast’ local

optimizations to have a global impact.

Other key asynchronous benefits stem from the fact that circuits operate cor-

rectly regardless of delay. This makes them tolerant of variations in manufacturing
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process, voltage, and temperature. Furthermore, performance can be decoupled

from correctness in self-timed systems. In slack elastic systems like those I will con-

sider in the following chapters, physical pipelining is distinct from logical pipelin-

ing, which allows us to remap designs without retiming. Finally, the channel-based

communication protocol allows simple composition of modules and interfacing with

other independently designed systems, as is the case in a System on Chip (SoC)

assembled from multiple reusable intellectual property blocks. It is also possible

to achieve some of these benefits in synchronous systems by using well-defined

protocols, such as in a globally asynchronous locally synchronous architecture.

There are however important drawbacks to asynchronous design. One major

cost of delay-insensitive communication is that all transitions must be acknowl-

edged as shown in Figure 1.2. Put simply, if we do not assume bounds on wire

delay (other than that the delay is finite), we cannot know if a signal has been

received unless the receiver replies. As a result, all delay-insensitive communica-

tions must be round trip. This adds both delay and additional wiring compared to

schemes with timing assumptions. Additionally, both delay-insensitive encoding

of values and additional acknowledge signals contribute to increased wire counts in

asynchronous systems. I describe my efforts to reduce this disparity in Chapter 4.

1.3 FPGA Basics

Field-programmable gate arrays (FPGAs) are logic devices whose function may be

changed after fabrication (field-programmable). Unlike other computing architec-

tures they are traditionally organized to be flexible at an extremely fine granularity

(in a gate array), allowing manipulation down to the level of single-bit computa-
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Figure 1.4: Island-style FPGA architecture

tions. Large collections of single bit computations can then be composed to build

any larger digital system. FPGAs are a key enabling technology for specialization

in reconfigurable computing systems.

Figure 1.4 shows the internals of an FPGA at the architectural level. FPGAs

organized in this manner are called “island-style”, because they have “islands” of

logic surrounded by a “sea” of programmable interconnect. Other organizations

of logic and routing are also possible, such as row-based and hierarchical [53].
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The tile is the basic organizational unit of an island-style FPGA. Tiles are

arranged in a two-dimensional grid, connected to their neighbor tiles in all compass

directions by mesh routing channels. A routing channel is composed of multiple

routing tracks, each of which carries a single logical signal. Connections between

routing track segments are made at programmable switch points, and all the

switch points within a tile are grouped into a switch box. Collectively the switch

box and routing channels are known as routing fabric or global interconnect. In

addition to making connections between tiles, the routing fabric also connects to

the logic block. This computational core of the tile is made up of one or more

programmable lookup tables or LUTs. Not shown but distributed throughput

the FPGA is the configuration memory or programming bits that allow the

functionality of the device to be changed.

Chapter 2 describes FPGA architecture in more detail, in the context of the

design of an asynchronous FPGA platform.

The flexibility offered by FPGAs also means that they are necessarily less

efficient than a custom implementation. To understand why this must be true, first

map any design to an FPGA, then remove all unused logic blocks, reconfigurable

interconnect, and programming bits to decrease circuit area, energy, and critical

path. Application-specific integrated circuits (ASICs) have been shown to have a

3–4x improvement in critical path and a 40x reduction in area over FPGAs [87].

Custom designed chips can have a further 3-8x performance improvement over

ASICs implemented in the same fabrication technology [28, 29]. On the other

hand, implementing custom chips for specialized circuits comes with significant

non-recurring engineering and fabrication costs. The generality of FPGAs shares

these costs by allowing one chip to be manufactured and used for many different

9



purposes, especially for rapid prototyping and low-volume manufacturing.

A major reason aside from economic necessity to continue to use FPGAs despite

their inefficiency is their inherent reconfigurability. Reconfigurable hardware can

do things that fixed-function specialized accelerators cannot, such as adapting to

changing data or system needs. In Chapter 3, I introduce my implementation of

dynamically reconfigurable FPGAs to support this use case.

1.4 Organization of Thesis and Major Contributions

The remainder of this thesis describes my efforts working toward the vision of

on-demand accelerators in reconfigurable computing systems.

Chapter 2 presents the basic architecture of my asynchronous FPGA. It builds

upon previous work [139] and extends it with circuit enhancements and clustered

logic blocks that increase performance, save area, and improve interconnect effi-

ciency for dataflow designs. I fabricated multiple versions of this AFPGA, and

demonstrated that it achieves higher peak performance than synchronous FPGAs

in the same process technology.

In Chapter 3, I present a new implementation of dynamic partial reconfigura-

tion for asynchronous architectures. This design is flexible enough enables a variety

of system designs enabling on-the-fly replacement of accelerators, and requires very

low hardware overhead.

One compelling approach for adding specialization hardware is to leverage

recently-maturing 3D integration technology [8, 17] to physically stack accelera-

tors on top of a computing system. In Chapter 4, I describe my 3D AFPGA
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architecture that could enable such systems, discuss the major cost sources in 3D

communication, and present a new signaling protocol that increases both energy

and area efficiency.

Finally, in Chapter 5 I present my full electronic design automation toolflow for

mapping high-level designs to an asynchronous FPGA platform, which includes a

new asynchronous-aware approach to clustering and placing logic within the FPGA

array.

1.5 Collaboration, Previous Publications, and Funding

The work described in this thesis could not have been completed without the

advice, assistance, and support of a great many collaborators.

The AFPGA architecture described in Chapter 2 was first fabricated in col-

laboration with the Air Force Research Laboratories in Rome, NY. John Rooks,

Tom Renz, Rich Linderman, and Qing Wu at AFRL, as well as James Stine at

Oklahoma State University were instrumental in bringing the work to life in silicon.

Rob Karmazin assisted with the chip design, particularly the configuration

memory interface. Filipp Akopyan designed the interface to synchronous system

components outside the FPGA. Rob, along with Carlos Tadeo Ortega Otero and

Jon Tse contributed mightily to the custom mask design for the physical layout

implementation.

We also fabricated an obfuscated version of the AFPGA architecture using a

split-foundry manufacturing method intended to foil IP theft and malicious inser-

tion of hardware trojans [63]. The FPGA design adds an extra layer of security,
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as its functionality is not set until it is loaded with the configuration bitstream.

Carlos, Jon, and Rob developed an automated tool, split-cellTK [115], that made

the design of that chip possible without extremely time consuming manual layout.

This work was supported by IARPA award N66001-12-C-2009.

The 3D AFPGA described in Chapter 4 was fabricated in collaboration with

Robert Geer and Harika Manem, researchers at the Colleges of Nanoscale Science

and Engineering (CNSE) at SUNY Albany. They developed the TSV process that

enables my die-stacked architecture.

Christopher LaFrieda invented the RQDI signaling protocol described in Chap-

ter 4. In [88], we investigated the energy savings possible by using a voltage-scaled

version of that design to replace the interconnect within my AFPGA architecture.

That research was supported in part by the AFRL under contract FA8750-07-2-

0191, and in part by the FCRP/DARPA Center on Circuits and Systems Solutions

(C2S2).

I partnered with Jon Tse to conduct the single-bit signaling analysis described

in Chapter 4 and in [145]. Jon had the inspiration for the heuristic optimization

framework and the novel STATS signaling protocol, both of which we developed

together. That work was supported in part by AFRL award FA8750-12-2-0035,

and NSF awards CCF-1065307 and the TRUST STC center CCF-0424422.

Undergraduate researchers made helpful contributions to the software toolflow

described in Chapter 5. Eashwar Rangarajan developed an early version of the syn-

thesis step, which translated from Verilog to BLIF using Synopsys Design Compiler

and custom software. Anay Joshi and Advait Muktibodh, visiting students from

IIT Bombay, developed a prototype compiler for mapping designs from C to my
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AFPGA architecture. Discussions with them were helpful in envisioning the pos-

sible applications of the architecture as an on-demand reconfigurable accelerator

platform.
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CHAPTER 2

ASYNCHRONOUS FPGA ARCHITECTURE

2.1 Introduction

In Section 1.1, I described several desirable characteristics for a high performance

accelerator substrate. Asynchronous FPGA (AFPGA) architectures feature sev-

eral key differences from their synchronous counterparts that make them an at-

tractive choice for reconfigurable computing systems.

An accelerator that can keep pace with an associated general purpose processor

is more useful than one that cannot, so high performance is a priority. AFPGAs

are capable of sustaining high throughput thanks to their pipelined interconnect,

described in Section 2.3.3. This fine-grained pipelining is more difficult to accom-

plish in synchronous FPGAs, and Section 2.5 shows that the fabricated devices

offer higher peak throughput than commercial synchronous FPGAs in the same

manufacturing technology. Delay-insensitive communication allows the constraints

on mapping designs to an FPGA platform to be greatly simplified by breaking

global timing dependencies.

Despite these advantages, asynchronous communication comes at a cost. In-

terconnect makes up a dominant fraction of FPGA area, and delay-insensitive

interconnect is more expensive than synchronous in terms of area and wire count.

I tackle this disparity directly in Chapter 4 by designing a new signaling protocol

in which each wire is used more efficiently. I also help mitigate the area penalty in

the architecture design by grouping related logic into local clusters, as described in

Section 2.4. This saves area by reducing the communication burden on the global
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routing fabric. Clustering also helps achieve high throughput in mapped designs

by alignment with the optimization requirements of asynchronous systems, which

differ from those of synchronous circuits as described in Section 5.3.

If we turn to accelerators for salvation from ‘dark silicon’, they must have

low static power consumption. My AFPGA architecture is dataflow-driven (Sec-

tion 2.2), which means that it is only active when computing new results. This is

the equivalent of perfect clock gating in a synchronous system. In the current fab-

rication technology regime where leakage power has become significant, I further

enhance the AFPGA architecture by adding low-cost, fine-grained power gating to

help control leakage current in inactive regions (Section 3.3).

Finally, accelerators should have a clean modular design that allows us to

easily compose and reuse them in reconfigurable computing systems. Thanks to

their well-defined communication protocols and the robustness offered by delay-

insensitivity, asynchronous circuits excel in this capacity. Asynchronous systems

exhibit average rather than worst-case performance: slow modules only impact

timing when they are actually used. One does not need to consider the global

system (e.g. retiming) when designing modules. This unique ability to focus on

“make the common case fast” enables an interesting potential use model in which

accelerators are dynamically compiled on demand, and can be later refined and

replaced if they are used more frequently.

The next subsection relates the evolution of asynchronous FPGA design that

led to these desirable features. The remainder of the chapter describes how I

improve the state of art for an AFPGA geared toward use as a high-performance

reconfigurable accelerator.
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2.1.1 Related Work

The design of the earliest asynchronous FPGAs was inspired by their synchronous

counterparts. They consist of programmable gates and interconnect, but with

modifications to account for the ways in which asynchronous circuits differ from

synchronous. Without a global clock for synchronization, asynchronous circuits

must usually be hazard-free. Tightly controlled delays are critical for some imple-

mentation styles. Asynchronous gates often have combinational loops or alternate

state holding structures. Communication between modules occurs via channels,

rather than the bare wires in a synchronous FPGA. Payne [117] presents an excel-

lent (pre-)history of AFPGA architectures.

Montage [60] is generally recognized as first asynchronous FPGA. It was based

on the earlier Triptych [18] FPGA design. Triptych featured a “sea-of-gates” orga-

nization, with logic gates connected directly to neighbors. Routing in this type of

FPGA is implemented using logic gates rather than a separate interconnect [41].

Triptych’s function block circuit design was already hazard-free, but Montage in-

cluded additional accommodations for mapping asynchronous designs. Charge

sharing and the timing of isochronic forks were addressed via careful layout. Mon-

tage also featured fast feedback paths for asynchronous state-holding circuits, as

well as arbitration hardware.

Several other projects also took up the task of designing an FPGA specialized

for implementing asynchronous logic of various styles. STACC [118] used four-

phase bundled data signaling, which allows circuits to be very similar to their

synchronous equivalents with some handshaking added. PGA-STC [96] used a

two-phase bundled data protocol modeled after micropipelines [135]. Both of these

architectures included reconfigurable delay lines to support the required bundled
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data timing. PCA-1, the ‘Plastic Cell Architecture’ [86], was decomposed into two

separate planes. The ‘Plastic Part’ implemented logic functions, while the ‘Built-

in Part’ formed a communication network. Notably, PCA-1 supported dynamic

reconfiguration.

Despite the mismatch in circuit requirements, there have been efforts to im-

plement asynchronous logic using clocked FPGAs. The major advantage of this

approach is that commercial synchronous FPGAs are widely available. Keller [77]

was able to implement QDI circuits in the Null Convention Logic style on a Xilinx

FPGA using the JBits tool. Ho and colleagues at TIMA [64] developed a design

methodology for implementing hazard-free gates such as C-elements on commercial

FPGAs.

Globally asynchronous, locally synchronous (GALS) FPGAs represent a “com-

promise” design point. Designs such as the one proposed by Royal and Che-

ung [122] subdivide the FPGA into synchronous island regions, which communi-

cate using an asynchronous global interconnect. Such a system can be implemented

atop a commercial synchronous FPGA, or as custom hardware. Another GALS

FPGA design, GAPLA [70, 71], uses a hierarchical routing design with bundled

data channels. GAPLA is implemented using separate timing and logic layers,

and supports dynamic reconfiguration. The benefit of GALS design is that stan-

dard synchronous logic designs and mapping tools can be used for the local regions,

while still retaining some of the benefits of asynchronous communications in long

routes between regions. On the other hand, there are no self-timed benefits within

regions. The selection of region size is also often fixed, and it is important to choose

wisely to gain the asynchronous benefits without an excessive conversion penalty.

For example, the FPGA presented in [94, 127] wraps asynchronous handshaking
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circuitry including programmable delay lines around every LUT/BLE, leading to

potentially excessive area cost.

Other FPGA designs explicitly offer support for multiple design styles (as did

Montage). Huot et al. describe an FPGA that can support both QDI and mi-

cropipeline circuits [68]. Most recently, Manoranjan and Stevens [99] designed an

FPGA based upon the Xilinx 7 series that can implement both synchronous and

bundled data designs.

Another approach to implementing asynchronous circuits on a reconfigurable

platform is to raise the level of abstraction. Rather than porting the primitive

elements of existing FPGA designs to the asynchronous context, such a system uses

dataflow building blocks based on based on high performance asynchronous circuit

templates. This idea was first introduced with the Programmable Asynchronous

Pipeline Array (PAPA) [140], which was intended to allow prototyping of high

performance asynchronous circuits without requiring labor intensive custom layout.

The concept was later developed into a complete asynchronous FPGA architecture

[97,141,142].

Contemporaneously, Wong et al. proposed a similar process-level QDI FPGA

implementation [154]. Each cell in their AFPGA can perform computation with

configurable communication patterns, similar to a fusion of the computation and

conditional units (Section 2.3). These cells are more flexible than the dataflow

units proposed by Teifel, but also larger in area. They also propose clustering

multiple cells together with local interconnect, unpipelined copying, and selectable

slack buffering [155].

Komatsu et al. [84,85] also use four-phase, dual rail processes as the core com-
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putation elements in their AFPGA design, but they convert to a two-phase protocol

for the interconnect to reduce switching. A similar hybrid signaling architecture

was proposed in [88].

2.1.2 Contributions

My core architecture is based on the work of Teifel [139], which proposed an

AFPGA design approach in which the primitive elements were dataflow building

blocks. My work uses this idea, and extends it with the following enhancements:

• Improved circuit implementations (Section 2.3)

• Clustered logic blocks with fast local routing within a cluster (Section 2.4)

• Support for partial reconfiguration (Chapter 3)

• Fabricated AFPGA in multiple technologies and measured key architecture

properties to validate architectural simulation tools (Section 2.5)

2.2 Asynchronous Dataflow FPGAs

At the most basic level, synchronous circuits are comprised of a collection of com-

binational logic interspersed with state-holding elements. Synchronous designs

are mapped to an FPGA by implementing the combinational logic functions as a

lookup table (LUT), with flip-flops serving to hold state and sequence operations.

The grouping shown in Figure 2.1b is sometimes known as a basic logic element

(BLE) [15]. In an FPGA, these logic elements are connected by reconfigurable
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(a) Synchronous logic (b) Logic mapped to FPGA BLE

Figure 2.1: Synchronous logic implemented on an FPGA

interconnect elements, such as pass transistors and multiplexers, to implement the

original design.

By contrast, we often think of an asynchronous circuit as a collection of concur-

rent processes executing in parallel and interacting with each other via channels

as described in Section 1.2. This network of processes can be represented as a

dataflow graph, showing the interconnections and interactions between processes.

Tokens flowing through this graph indicate the movement of data in the system.

In an asynchronous FPGA, the components of a typical FPGA are replaced

with their dataflow equivalents [141]. This allows us to implement asynchronous

designs on the AFPGA by mapping their dataflow graph onto the AFPGA fabric.

Just as a synchronous FPGA architecture uses generic lookup tables rather than

implementing all forms of combinational logic, so too the asynchronous FPGA

implements a basic set of dataflow operators as seen in Figure 2.2. More complex

operations can be constructed from this basic set, as seen in Figure 2.3.

In a synchronous FPGA, the logic operators are connected with programmable

interconnect. I take a largely similar approach in the asynchronous context, but

with one key enhancement: the interconnect in an AFPGA can be pipelined at

a fine granularity, allowing the system to support high throughput even in the
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Figure 2.2: Basic dataflow operators as implemented in the FPGA

presence of long routes. This is discussed further in Section 2.3.3.

2.3 Asynchronous FPGA Circuits

My AFPGA is composed of three classes of circuits: computation modules, con-

ditional dataflow modules, and configurable routing to tie the two former classes

together. In this section, I describe the implementation of each class of circuits,

focusing specifically on improvements made to the state of the art AFPGA design

presented by Teifel in [139].
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Figure 2.3: 4-way merge built from basic dataflow operators.

2.3.1 Computation

Lookup Table

The basic computational unit in the AFPGA is the dataflow function or LUT.

We describe asynchronous circuits using the communicating hardware processes

(CHP) language, which is explained further in Appendix A. A four-input LUT is

represented by the following CHP:

LUT 4 ≡ *[A?a,B?b,C ?c,D?d ; R!func(a, b, c, d)]

where A,B,C,D and R are one-bit channels, and func is the function pro-

grammed into the lookup table configuration memory. To implement any possible

function of four inputs, 24 = 16 programming bits p are required.

If we were to consider the production rules needed to directly implement func,

22



_Av _Bv

_pc

A.d

B.d

_pc

Pull-down

C _Av
_BvC

C

A.e
B.e

Lv

Rv

_pc

computation
Rv

R.d

R.e
Handshaking

Figure 2.4: LUT process showing PCEVHB reshuffling

they would look something like:

(a.f ∧ b.f ∧ c.f ∧ d .f ∧ p[0]) ∨ ... ∨ (a.t ∧ b.t ∧ c.t ∧ d .t ∧ p[15])→ r .t↑

This implies the the use of five transistors in series, not including additional

transistors that would be required for handshaking. As a rule of thumb, for high

performance designs in modern CMOS technologies we limit transistor stacks to

no more than 4 NMOS or 3 PMOS in series (hopefully fewer).

To implement the LUT process, I chose a precharged reshuffling, due to the

complexity of the computation stack. If for example it was implemented as in the

WCHB style, complementary logic would be required in the pullup stack, which

would be far to expensive [92]. As an additional optimization, the LUT process

is implemented using a PCEVHB reshuffling [44]. This design style, shown in

Figure 2.4, allows us to use just one transistor instead of two in the pull down

stack, and only one in the pullup, by placing R.e and L.e into a separate precharge

computation.
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Note: Figure 2.4 shows two inverters on the left acknowledges, since we never

drive external channel signals using a dynamic staticized node like the output of

a non-inverting C-element.

The second reduction in computation stack depth comes from converting the

four 1of2 input channels into two 1of4 channels. A channel with 1of4 encoding uses

the same number of wires to encode the data as two 1of2 channels (fewer if you

consider the acknowledge signal), but only one of its wires switches per transition,

saving energy. Despite this advantage, I use 1of4 data encoding only within the

logic block, so that we can still support single-bit granularity in the FPGA routing.

Rather than inserting a process to perform the translation, I simply modify the

data on the wires and pass through the acknowledge signal using the circuit shown

in Figure 2.5.

These two enhancements combine to give us manageable sized transistor stacks,

with the final implementation shown in Figure 2.6. Note that the internal nodes

in the pulldown tree (drain of the B transistors) are internally precharged high to

avoid charge sharing issues (precharge transistors not shown).

The grey squares attached to the gates of transistors in the pulldown stack

represent configuration memory, which can be set to zero or one to control the

functionality of the LUT. Its implementation is discussed further in Section 2.3.3.

Hardware Arithmetic

LUTs can be used to implement any function, but this flexibility comes at a large

cost in area and configuration memory (2I bits are required for an I-input LUT).

Frequently, there are operations performed so often that it makes sense to in-
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Figure 2.5: 2x 1of2 to 1of4 converter
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clude dedicated hardware to compute them. A classic example is addition/subtraction

as seen in Figure 2.7 and Figure 2.8.

By implementing a hardware two-bit adder process instead of using two LUTs

in series (plus dedicated carry logic), we use less area and perform the addition

with lower latency than the LUT equivalent. We can also further optimize by

adding quick direct routing paths for the carry chain, since this is the critical path

for arithmetic operations.

While it also possible to implement larger arithmetic functions (e.g. multipliers,

DSP blocks), these typically do not fit into the tile context, and so should be

considered separate hard macros. Due to the inherent modularity of asynchronous

systems, it is easier to interface with other hardware in different regions such as

these hard macros.
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2.3.2 Conditional Dataflow

The computation modules described in the previous section almost always have

the same handshake behavior1. A function module waits until all of its inputs

arrive, and then computes its outputs.

By contrast, there are two basic conditional dataflow operators that can change

token flow based upon a control input. A dataflow SPLIT sends an input token

to one of two outputs, based on a control input. A dataflow MERGE chooses one

of two input tokens to pass to its output, based on a control input.

SPLIT ≡ *[C ?c; A?x ; [¬c → Y !x[]c → Z !x]]

MERGE ≡ *[C ?c; [¬c → A?x[]c → B?x]; Y !x]

Teifel [142] introduced the idea of the conditional unit — a single process

that can act as either a dataflow split or dataflow merge depending on a set of

configuration bits. This sharing saves area by amortizing the complex circuitry

required to implement the conditional handshakes.

I enhance this process by adding a third mode of operation, which I call MUX

by analogy to a synchronous multiplexer. The MUX consumes both input tokens,

then passes one to the output and discards the other based on control input value.

MUX ≡ *[C ?c; [¬c → A?x ,B?bucket[]c → A?bucket ,B?x]; Y !x]

One can select between the three possible behaviors using three configuration

memory bits: S for SPLIT , Mg for MERGE , and Mx for MUX .

1It is possible to create e.g. an adder with early sum generation, that does not wait for the
carry-in signal.
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Figure 2.9: SPLIT, MERGE, and combined conditional unit
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Figure 2.10: Conditional unit pulldown computation stacks

Unlike the SPLIT and MERGE , the MUX does not have conditional hand-

shaking and its behavior could be implemented by a LUT. The conditional unit

serves essentially the same role as the multiplexer within a Xilinx ‘slice’. By using

two LUTs whose outputs feed into a conditional unit configured as a MUX, one

can effectively create a 5-input LUT as seen in Figure 2.12. This functionality

is particularly attractive in the context of clustered logic blocks, as described in

Section 2.4.
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Figure 2.12: 5-input LUT created from 2 LUTs and a MUX.

2.3.3 Programmable Routing

The basic computation and conditional elements described above represent all the

building blocks needed to implement any dataflow computation. All that remains

is to connect their channels together to match the connectivity of the dataflow

graph for the design. These connections are made within the routing fabric, a

multitude of configurable switches organized to form a programmable interconnect.

Unlike the conditional routing elements described below, the dataflow through

these interconnect switches is usually statically set at configuration time and does

not change while the FPGA is in use. The following subsections describe the most

important pieces of the programmable interconnect, as well as how they differ from

their synchronous counterparts.
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Figure 2.13: Disjoint switchbox with four switchpoints

Switch Box

Connections between mesh routing channels are made within the switch box. The

example connection pattern shown in Figure 2.13 is known as a disjoint switch

box, in which connections are always made between channels with the same track

number. Each circle in the switch box is a switchpoint, which statically makes or

breaks connections between routing channels based on how it is programmed.

Synchronous FPGAs often use another routing structure known as a connec-

tion box that taps routing channels midway to bring signals into and out of the

logic block. This is possible because copying signals in synchronous logic can be

implemented by simply fanning out the signal to multiple locations. By contrast,

asynchronous channels are generally point-to-point links, and copying must be im-

plemented using explicit token copy modules. As a result, my AFPGA architecture

uses a unified switch box design that combines the functionality of the switch box

and connection box in a synchronous FPGA, as shown in the next subsection.

For the same reason, longer routing tracks such as quads, hexes, and glob-

als that are often used in synchronous FPGAs to widely distribute signals with
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Figure 2.14: Switchpoint implementation

multiple fanouts are less useful in an AFPGA, since channels cannot be tapped

midway without inserting an explicit copy. Longer routing hops may still be useful

to limit the number of pipelined buffers on a long route, as further explored in

Section 5.3.1.

Switchpoint Buffer

An example switchpoint is shown in Figure 2.14. In the abstract (shown at left),

it makes connections between the routing channels in all four compass directions,

as well as into and out of the logic cluster in the case of my unified switch box. In

Section 4.2 I describe how to extend the routing fabric to three dimensions in an

AFPGA system with die stacking.
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Connections between the routing channels are made via statically configured

passgate MUXes, as shown in the right half of Figure 2.14. A single route through

the switchpoint consumes one of the MUX-buffer-MUX structures, so we need three

to simultaneously implement all possible routes through a degree 6 switchpoint

like the one shown. In the physical implementation, I remove one of the three

buffers, sacrificing some routing flexibility to save 1
3

of the area. Programmable

interconnect is the dominant fraction of AFPGA area, as shown in Section 2.5. This

is true in general for FPGAs, but especially critical for those with asynchronous

communications because each single bit routing channel is composed of three wires

rather than one. I present my efforts to reduce this overhead in Chapter 4.

Because the AFPGA is fabricated in a standard CMOS process without ac-

cess to special ultra-low threshold voltage transistors or a separate gate-boosting

voltage, I use fully-complementary passgates in my static routing. This prevents

the leakage current that would otherwise result due to the threshold voltage drop

through an NMOS-only passgate [27].

The major difference between asynchronous and synchronous FPGAs is that

the AFPGA routing fabric can include pipelined buffer processes. In a synchronous

FPGA the critical path is set by the longest route (which may make several hops

through the unpipelined interconnect), but for the AFPGA each route segment

constitutes a local handshake cycle. This fine-grained pipelining allows us to main-

tain high system throughput after designs are mapped to the AFPGA fabric, only

limited by algorithmic dependencies as described in Section 5.3.1.

This optimization is possible because in slack elastic asynchronous systems,

physical and logical pipelining are distinct. Adding or removing buffer stages

may affect the performance of an asynchronous dataflow graph, but the number
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of tokens in the graph does not change, so it will not change the correctness of

the operation. By contrast, adding flip-flops on a route in a synchronous system

implicitly adds data tokens, which results in signals arriving at their destinations

misaligned in time, changing the meaning of the computation. It is possible to

pipeline the interconnect in a synchronous FPGA, but this requires expensive

banks of retiming registers and significantly complicates the mapping software

[128,129].

In the AFPGA switchpoint buffers, I use a simple WCHB process. This offers

not only high speed, but also low area, which is important given the large fraction

of FPGA die area already dedicated to programmable routing. My WCHB design

uses a van Berkel-style C-element modified with a reset cutoff in the H-bridge.

This allows us to keep only two transistors in the computation stacks (for high

performance [42]), while also offering a neutral channel protocol at reset (which

simplifies partial reconfiguration, described in Chapter 3).

Copying

As described above, fanout is not free in asynchronous dataflow graphs and must

be implemented by explicit dataflow copy modules. I mitigate the impact of rout-

ing multiple copies of the same logical signal through the interconnect by using

clustering, described in Section 2.4. Each clustered logic block has input copies

that allow them to share logical inputs, as well as output copies, which allow them

to route their outputs to multiple destinations. It is also possible to include copy-

ing elsewhere in the routing fabric (such as within a switchpoint buffer), at the

cost of extra area and handshake cycle time.
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Initial tokens

There must be at least one token in every loop in the dataflow graph. This is

implemented in my AFPGA using an initial token buffer (show in Figure 2.2). This

process starts execution holding a single token with programmable value, then acts

as a simple buffer for the rest of the execution. Since each programmable initial

token buffer can start with zero or one initial tokens, we can alter the number of

tokens in a dataflow loop to match the algorithmic requirements. Section 5.3.1

has more details about choosing optimal token occupancy for performance within

dataflow loops.

Configuration Memory

The configuration memory for my FPGA is implemented with static random access

memory (SRAM). SRAM is also used for many synchronous FPGAs, and the

selection criteria are exactly the same as for the AFPGA case. The key benefits of

an SRAM configuration memory include the ability to reprogram at will, and ease

of implementation in standard process technology. This quick reprogrammability

is also crucial for partial reconfiguration, as described in Chapter 3. A drawback

for SRAM memory is its volatility. Designs must be reloaded into configuration

memory every time the device is powered down. Alternative memory structures

that do not have this limitation, such as flash and antifuse, are also supported by

my architecture.

Configuration memory is logically arranged in the same fashion as any normal

memory array, with a collection of words accessed by intersecting wordlines and

bitlines. This allows for random access reads and writes at the word level to the
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configuration memory by providing an address and data. For bulk configuration

of the FPGA in practice, one would likely wrap this base array with address

generation logic to allow for DMA-style streaming configuration writes at some

granularity, so that it is not necessary to provide an address for each word.

I implement full-swing bitline reads, rather than using sense amplifiers, since

configuration reads are not the common case2. Once the array gets too big to

effectively read/write, that region should be wrapped in a layer of hierarchy.

In its physical implementation, configuration memory cannot be arrayed as

densely as it would be in e.g. cache memory. The simple reason for this is that

every bit cell of the array must have an output that connects to some FPGA circuit,

so none can be completely surrounded by other bit cells. I trade off density for

routability in the physical implementation of the FPGA by interspersing a word

(or two back to back) of SRAM with the FPGA logic they control.

Another consequence of having the configuration bits in close proximity to ac-

tive circuits is that you must protect the internal state from being affected by

capacitive coupling from fast switching wires nearby. I ensure this protection by

1) using an output inverter to protect the state node from coupling into the (poten-

tially long) wire connecting the configuration bit to the FPGA logic it controls, and

2) disallowing routing channels that may be active from passing over the SRAM

cells on low-level metal (below M4).

2FPGA configuration memory is perhaps the one context where a write-only memory is not
an April Fools joke [130]
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Figure 2.15: Clustered logic block with multiple LUTs

2.4 Clustered Logic Blocks

Clustering is a strategy for grouping related logic functions together in order to

save resources or improve performance. Figure 2.15 shows an example cluster of

LUTs. The cluster has some number of inputs, which are connected through local

interconnect to the set of LUTs. LUT outputs become cluster outputs, and they

are also fed back through the local interconnect to be optionally used as LUT

inputs. Clusters may also contain more than just LUTs.

Most modern synchronous FPGAs use some form of clustering. Altera Stratix

IV FPGAs group two LUTs together in an adaptive logic module (ALM), then

cluster eight ALMs in a logic array block. Xilinx Virtex 5 FPGAs group four

LUTs together in a slice, then cluster two slices in a configurable logic block [5].
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2.4.1 Clustering for Area

A majority of FPGA area is interconnect, and clustering allows us to conserve

global interconnect resources by grouping related logic. This is the equally valid

for both synchronous and asynchronous FPGAs.

There are two main opportunities for clustering related logic. First, LUTs may

share inputs. This allows the input to be routed from its source to the cluster

and then distributed locally, instead of routing to two separate tile destinations.

Second, the output of a LUT is generally connected to one or more LUTs. If we

pack these destination LUTs together in a cluster with the source, the output net

can become local feedback, which need not leave the cluster. Both of these use

cases are demonstrated in Figure 2.16.

Clustering related logic can reduce routing pressure on the global intercon-

nect. The challenge is finding a balance between the amount of local interconnect

connectivity needed to implement sharing and the resulting global interconnect

savings. There have been numerous studies into the optimal amount of clustering

and input sharing for area efficiency [12,13]. In general, both LUT size (number of

inputs) and cluster size (number of LUTs) have increased over time as shrinking

technology nodes permit more logic to be efficiently packed together.
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Figure 2.16: Examples of clustering to share inputs and clustering to share outputs.

2.4.2 Clustering for Performance

Synchronous

As described in Section 1.2, operating frequency in a synchronous FPGA is set by

the worst case delay of the critical path: the longest path that exists between any

two flip-flops in the circuit.

Because the interconnect is unpipelined, longer paths through global intercon-

nect increase this delay. Synchronous FPGAs attempt to optimize critical path

delay by providing routing resources of various lengths (e.g. singles, doubles, hexes)

so that destination of nets various distances away can be reached efficiently.
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In order to reduce the critical path delay, it helps to pack related logic into a

single cluster. This way, the flop-flop path can be shorter, since it does not need

to leave the cluster.

Asynchronous

By contrast, in my asynchronous FPGA, the interconnect is pipelined and elastic.

As a result, the maximum throughput is not constrained by a critical path between

logic blocks, and even long routes through the global interconnect can operate at

maximum throughput.

Instead, benchmark performance for designs mapped to an asynchronous FPGA

is driven by data dependencies in the dataflow graph. Specifically, these manifest

in the AFPGA as token loops and reconvergent split-join paths. We can affect

the performance of the design by altering the amount of slack, or buffer stages, on

these paths within the dataflow graph. A major benefit of clustering in the AFPGA

is that it allows there to be lower slack on dataflow token loops. Asynchronous

performance modeling and strategies for clustering are discussed more fully in

Chapter 5.

2.5 Measured Results

I have fabricated the AFPGA architecture described above in several technology

nodes. Figure 2.17 shows the layout for two versions of a single AFPGA tile.

Figure 2.17a is a full custom implementation in 65 nm technology. The struc-

ture of the tile is clearly visible even at this scale, with the repetitive switch box
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(a) Full custom, 125x160 µm2 in 65nm (b) Obfuscated, 485x485 µm2 in 130nm

Figure 2.17: Chip layout for a single FPGA tile

on the right side and the less dense logic core on the right.

Figure 2.17b is a test of an automated obfuscated layout system [63], imple-

mented in 130nm technology.

2.5.1 Throughput

The 130nm FPGA operates at a peak throughput of 340 MHz. The 65nm full

custom FPGA operates at approximately 800 MHz peak.

For context, the commercial Virtex 5 FPGA boasts a maximum operating fre-

quency of 550 MHz in an FPGA-optimized 65nm technology, while the competitor

Altera Stratix III claims a peak of 530 MHz.

The throughput of the asynchronous FPGA is largely limited by the capaci-

tance of the programmable interconnect. For instance, in the 65nm FPGA the
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Logical unit Area (µm2) Fraction of total area
Switchbox 5,544 28%
Logic core 4,815 24%

Config memory 4,391 22%
Crossbar 2,165 11%

Other buffers 1,070 5%
Output copy 846 4%
Power gating 751 4%

Partial reconfiguration 370 2%

Table 2.1: Area breakdown for a single FPGA tile

LUT can actually perform at over 1.3 GHz, and a bare switchpoint buffer has a

peak throughput above 2.7 GHz. The diminished results echo the sentiment in

Section 1.3 about the performance differences between FPGA, ASIC, and custom

implentations.

2.5.2 Area

The area of each part of the tile is broken out in Table 2.1 and summarized in

Figure 2.18. As is typical for FPGAs, interconnect dominates the total area.

The actual logic cluster accounts for about a quarter of the tile area, and the

configuration memory is approximately another quarter. Implementing support

for partial reconfiguration (described in Chapter 3) consumes less than 2% of the

total tile area.
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Figure 2.18: FPGA area by category
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CHAPTER 3

DYNAMIC PARTIAL RECONFIGURATION

3.1 Introduction

Our long-range aspiration informing this work is a model of virtual infinite hard-

ware for on-demand accelerators. An important piece of this goal is developing a

high-performance accelerator substrate that can be reconfigured on the fly to serve

a new purpose.

Reconfiguration simply means that an FPGA’s programming can be changed

more than once. This is a property of all FPGAs with reprogrammable configura-

tion memory (i.e. SRAM, flash). It is possible for an FPGA to be programmable

but not reconfigurable (e.g. anti-fuse).

Partial reconfiguration is the ability to change the functionality of one por-

tion of the FPGA without reprogramming the entire device. The system may be

halted to do so, but the salient feature is only the regions of the FPGA being

replaced are modified.

Dynamic partial reconfiguration (DPR) adds the ability to perform this

reprogramming while other parts of the device remain active. Note that when we

use the term dynamic reconfiguration, partial reconfiguration is also implied. If

the entire FPGA is being reprogrammed, there are no other parts to remain active.

Dynamic reconfiguration is also sometimes known as run-time reconfiguration.

The benefit of partial reconfiguration is its ability to let you “virtualize” hard-

ware by reusing it in time, which allows for more functionality in a fixed size FPGA.
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A"

B" C"

(a) FPGA configuration with three distinct modules in operation

A"

B"

(b) Module C completes its operation and is no longer needed

A"

B"
D"

(c) Module D replaces module C. If we only reconfigure the resources needed by D, it is
partial reconfiguration. If A and B continue to operate during the reprogramming, it is
dynamic reconfiguration.

Figure 3.1: Partial reconfiguration operations

It also allows for shorter configuration times and smaller configuration bitstreams.

Partial reconfiguration has been implemented before in synchronous FPGAs,

and is supported in some modern FPGAs [82]. In the next subsection, we will

discuss some past efforts in this area. Despite the existence of some hardware

support however, partial reconfiguration remains far from common.

Why isn’t partial reconfiguration more common? Part of the answer is that de-
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signing modular interoperable synchronous systems is difficult. Adding or changing

modules requires either retiming (local changes can have global impacts), start-

ing with worst-case performance assumptions, or inserting clock domain crossings.

There is also the issue of software support. The system needs to compute and

store the set of all partial configurations, which may be tied to a particular physi-

cal location in the FPGA.

Our asynchronous FPGA may offer a way forward for partially reconfigurable

systems. Self-timed designs feature inherent modularity and resilience due to their

of lack of timing assumptions, which allows us to make local changes without

affecting the correctness of global operations.

In this chapter, we discuss the challenges associated with adding support for

dynamic partial reconfiguration to an asynchronous FPGA. We present a low cost

hardware implementation, atop which multiple reconfiguration schemes (as well as

other desirable architectural features) can be built.

3.1.1 Related Work

Research in this area has largely focused on implementing partial reconfiguration

on top of commercial FPGAs. Koch [82] published an excellent survey of the

history and state of the art of FPGA partial reconfiguration. Xilinx, Altera, Lat-

tice, and Atmel have all commercial released products supporting some degree of

dynamic partial reconfiguration [40].

As an example, support for dynamic reconfiguration on Xilinx FPGAs histori-

cally went through at least four phases [6]:
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1. Early devices such as the XC6200 added the hardware capability for par-

tial reconfiguration, but lack of tool support and a less-compelling FPGA

architecture limited adoption

2. Researchers made efforts to implement partial reconfiguration on more “main-

stream” architectures, resulting in tools such as JBits

3. FPGA vendors begin to add support for partial reconfiguration within their

existing software design flow, but with large designer effort to insert con-

straints such as bus macros

4. Partial reconfiguration begins to be more seamlessly integrated into the de-

sign flow. Commercial products are released integrating microprocessors on

die with FPGAs, resulting in lower barriers for implementing reconfigurable

computing systems.

Researchers were able to use these platforms to implement a wide variety of

applications using partial reconfiguration, including Software Defined Radio [107],

reprogrammable automotive cabin functions [9], computer vision systems [16], en-

cryption systems, network switches and packet processors [156].

At each stage of technology maturation, researchers attempting to implement

DPR pushed the boundaries to beyond what was supposed to be possible. For

example, [62,125] implemented 2D modular partial reconfiguration on earlier Xilinx

Virtex-II FPGAs that did not support it by using a read-modify-writeback strategy.

Systems such as Wires on Demand [6] and ReCoBus [83] implement reconfigurable

modules on top of commercial FPGAs by using structured communication channels

with plug-in sockets for logic. These systems raise the level of FPGA abstraction to

free designers from manually dealing with issues of floorplanning and bus macros,

at the cost of some flexibility. Our architecture provides a clean foundation that
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makes it easy to support multiple types of DPR systems, without jumping through

these types of implementation hoops.

A closely related work is APL, a dynamically reconfigurable asynchronous

FPGA designed by Jia et al. [70]. This system uses globally asynchronous, lo-

cally synchronous architecture, with multiple traditional synchronous logic regions

communicating via four-phase handshakes. APL is able to disable the timing cells

that control communications for a reconfigurable region during programming us-

ing an array addressing scheme, so that a timing region undergoing reconfiguration

cannot affect other regions. APL is an interesting design point due to the potential

for using existing synchronous FPGA mapping tools to program the regions. Our

architecture uses asynchronous logic throughout, and does not require predefined

fixed sized regions.

3.1.2 Contributions

In this chapter, we:

• Explain the requirements for implementing dynamic partial reconfiguration

(Section 3.2)

• Design and fabricate mechanisms supporting flexible, fine-grained DPR in

AFPGAs, with low area cost and no performance degradation (Section 3.2)

• Build additional FPGA architectural enhancements such as power gating

(Section 3.3) using the same framework
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3.2 Requirements for Dynamic Partial Reconfiguration

There are four main questions one must answer when considering the dynamic and

partial reconfiguration process:

• When is it safe to reconfigure?

• How do we maintain the state of a computation when we do?

• How do we protect other regions when a section is replaced?

• On what granularity is it possible to reconfigure the FPGA, and how can we

manage the process?

We will discuss each of these points in order below, with special attention paid to

origins of the underlying issue, the solution we have deployed as related to other

possible approaches, and the equivalent concepts in the synchronous domain.

3.2.1 Empty Pipeline Detection

In traditional reconfigurable hardware, we accept that all data currently residing

on the FPGA will be lost during reconfiguration. Since the entirety of the device

is reconfigured simultaneously, this assumption presents no real problem. In the

case of dynamic and partial reconfiguration, however, we need to take more care

to assure that a module is not reconfigured while still in use.

When is it safe to reconfigure? When performing partial reconfiguration of a

system, we need to ensure that we do not remove a section of the system that is

still in use. “Partial” is the problem here — not “dynamic.”
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It’s important to note that this problem also exists even in regular FPGA

systems. In general, we rarely consider whether a particular portion of the FPGA

fabric is still in use, because the FPGA computation is typically intentionally

infinite and/or has predictable latency. The additional complications here center

on the fact that we would like to perform reconfiguration with finer granularity

both in space (multiple active regions) and in time (swapped in and out frequently).

The reconfiguration process is an ‘out of band’ operation (i.e., it uses chan-

nels and mechanisms entirely separate from and overlaid on top of the normal

FPGA data communication channels) that alters the structure of the computation

without any regard for the internal state. If we want to use it safely, we must

externally guarantee that it is safe to reconfigure the system. By ‘safe,’ we mean

that the computation is complete (data is no longer in flight), and all results of

the computation have propagated somewhere outside of the region that will be

replaced.

To do this, we need to know when a computation is complete. In the general

case, this question is impossible to answer (halting problem). Fortunately, in most

reasonable systems, we can assume and leverage some regularity in the computation

– bounded latency and/or a known relationship between number of inputs and

outputs.

If we assume a simple model of the asynchronous FPGA computation where in-

puts are processed and generate outputs, then the problem of determining whether

a computation is complete reduces to empty pipeline detection. There are several

possible mechanisms for ensuring that the region to be reconfigured is empty.
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Timing

The first and simplest involves a timing assumption: we assume that there exists

predictable and bounded latency for each operation taking place in the reconfigured

region. In this way, any computation takes a known amount of time to complete,

and so one need only wait for some set period of time after introducing the last

set of inputs before initiating reconfiguration. In theory, this assumption is a poor

one due to the halting problem. In practice, we can leverage the (presumably)

known function of the reconfigured block to make reasonable estimates about its

execution time.

This is likely the mechanism of choice for synchronous systems: if a given

operation takes ten clock cycles to complete, it is safe to reconfigure after that

much time has elapsed since the last set of inputs were introduced. Note that

a timing-based approach is a valid option even for asynchronous circuits. The

latency of an operation in an asynchronous system may be data-dependent, or it

may change based on process, voltage, and temperature variation, but it is seldom

random or unpredictable. This assurance is the basis for an entire class of self-

timed circuit design (bundled data).

Environment tracks dependencies

If we are unwilling or unable to use timing information to determine when a recon-

figurable module is quiescent, the next simplest approach is for the environment

(i.e. the other parts of the system connected to and communicating with the

reconfigurable module) to detect when the module is inactive. There is often de-

pendency tracking elsewhere in the system, and this can be leveraged to monitor

52



the reconfigurable module.

In order for the environment to be able to make this determination, there must

be some predictable communication pattern. For example, an encryption block

has a simple deterministic relationship between input and outputs: one message in

yields exactly one encrypted message out. The deterministic dataflow architecture

of our asynchronous FPGA is ideally suited to this sort of token counting approach.

Not every module will have a convenient external heartbeat that can be derived

simply from its communication patterns. In these cases, it is often possible to

augment the module design to generate a DONE signal specifically for use in the

context of a dynamically reconfigured system.

Hardware dependency tracking

It is also possible to add dedicated hardware to perform empty pipeline detection.

By instrumenting channels entering and exiting the reconfigurable region, we can

implement a credit-based token counting scheme to track when a module is in

use [45,114].

This solution in essence performs the same task as the environment-based track-

ing above, but less flexibly, since one must choose where the tracking hardware is

placed. In the FPGA context, this extra hardware might be added on-demand in

the fabric.
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Hardware probe

In an even more hardware-intensive solution to empty pipeline detection, one could

simply inspect the internal state of the region about to undergo reconfiguration.

Whereas in the counter-based approach we need only inspect a limited number

of locations (e.g., input/output channels), here inspection takes on a much more

global flavor. Several equally invasive methods are well suited to this approach,

including direct probes of the region and current detection.

We can tell when a given process is active by inspecting the state of its com-

munication channels. We could insert a small amount of logic to watch the process

and output a signal when it quiescent. This is analogous to a hardware version

of the probe operator [104] — including the fact that as a negated probe it is

unstable. If we have a method of detecting when a single process is not in use, we

could detect that our computation is complete using the brute force approach of

inspecting every process.

Obviously the hardware overhead of such an approach makes it completely in-

feasible for as system with a huge number of fine-grained processes like the AFPGA.

Similar in spirit, however, is the idea of current-sensing completion detection [55].

This scheme measures the current consumed as a process communicates, and when

it drops below a certain threshold the process can be assumed to be idle.

Preferred solution

We can perform all these forms of dependency tracking in the environment in an

FPGA context except for the hardware instrumentation. Extra hardware is only

needed and useful when computations take an unpredictable amount of time and
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do not reliably produce a result (i.e., there is an unpredictable relationship be-

tween inputs and outputs). This is certainly possible (e.g. deep packet inspection

where packets may be dropped based on a complex ruleset), but not the com-

mon case. Further, in these systems one can generally add a heartbeat to the

design as described above. So, our preferred implementation is to omit hardware

instrumentation and leave dependency tracking to the environment.

3.2.2 Preserving Internal State

How do we preserve internal state after reconfiguring? In asynchronous systems

state is everywhere. It exists in the tokens within the dataflow graph, which in

general are not guaranteed to be at any given place at a set time.

By contrast, in a synchronous system all state information is guaranteed to

always be in registers at the end of a clock cycle. In this way, the synchronous case

represents a more limited set of resources one needs to preserve when reconfiguring.

We have the ability in our architecture to replace internal state using initial

token buffers (ITBs). This process is even inexpensive — you can modify an

existing configuration to change its initial state by simply flipping a small number

of bits that control the ITB state. The difficult part is actually measuring what

the state is at any given point so that it can be restored.

If you want to preserve state while replacing a piece of the system, you can

choose not to replace the piece that contains the tokens representing the state.

The problem only arises when you want to remove and replace an entire system,

then put it back later with the same internal state.
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If the internal state replacement problem cannot be avoided in system design,

previous work in asynchronous testability offers a solution. The design objective

here is nearly the same — adding the ability to inspect the internal state of a

dataflow graph at a given point in time. This can be accomplished by inserting

multiplexers [138], a partial scan chain [78], or by adding a synchronous scannable

mode to the circuits [146]. All of these solutions come at the cost of additional

hardware, so it makes sense to deploy them sparingly, but they do include the

additional benefits of increasing testability.

3.2.3 I/O Boundary Protection

In a system with dynamic partial reconfiguration, the region being replaced com-

municates with the other fixed active regions before and/or after the reconfigura-

tion process. If the boundaries of the fixed region are not protected, errors may be

introduced during the reconfiguration process. For instance, data out of the fixed

region may be lost through a ”dangling” channel or spurious data may enter the

fixed region through a floating input channel. We must ensure that the region be-

ing replaced does not impact the regions that are not (this is specifically a problem

for ’dynamic’).

Early versions of the Xilinx synthesis flow used manually-placed ‘Bus Macros’

which enforced the separation between static and reconfigurable regions. The latest

versions automate this process by placing 1-LUTs as proxy logic, but the user must

still place enabled registers on partition pins between reconfiguration boundaries,

to prevent corruption of adjacent regions during reconfiguration [156].

In systems with delay-insensitive communication channels, there is a specific
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handshake protocol that must be followed (Section 1.2). If there are glitches or

unintended transitions on any of the channel wires, tokens may be inadvertently

created or destroyed.

Asynchronous handshakes do provide a particular advantage for boundary pro-

tection, in that they can simply rely on the delay insensitivity of the channels. It

is possible to “pause” a handshake on a channel entering the reconfigurable region

by not simply not acknowledging its communication, and you can take as long as

you need in this state to reconfigure the region.

We take advantage of this feature of asynchronous channels to implement a

low-cost boundary protection system for partial reconfiguration. Once the region

to be replaced is empty (Section 3.2.1), it is held in reset. At this point, it is

safe to remove and replace the reconfigurable region. While they remain in reset,

all channels entering and exiting the reconfigured region are held in their neutral

state. Outgoing channels will not inject data into the static region, and incoming

channels will not acknowledge any data they may receive, pausing all incoming

data tokens at the border of the reconfigurable region. Once the reconfigurable

region has been reprogrammed, it is released from reset and communications with

the static region pick up where they left off.

This system allows for reconfigurable boundaries to be placed anywhere, with-

out requiring any special interface circuitry. All that is needed is the ability to

hold the reconfigurable region in reset independent of the static region, a topic

we discuss in the next subsection. Note that if there are channels that pass be-

tween regions both before and after reconfiguration, it is still necessary for those

channels to be aligned physically. The advantage is that these ports can be placed

anywhere at configuration time, rather than in a discrete set of locations. Further,

57



if the ports of two modules do not align (e.g. they are pre-compiled IP blocks),

it is easy to insert a simple shim route due to the delay insensitive nature of the

asynchronous interconnect.

3.2.4 Region Control

On what granularity is it possible to reconfigure regions?

On one extreme, the granularity is the entire FPGA. This is the normal case,

with no partial reconfiguration.

On the opposite extreme, it is possible to modify even a single bit of the con-

figuration memory. One bit is probably not that useful (except possibly in a LUT

function), since you usually want to modify a related cluster based on functionality.

The first limiting factor is the granularity with which you can modify the

configuration memory. Our configuration memory architecture permits random

access writes at a word level. Furthermore, the SRAM memory in our design

features non-destructive write operation: if a bit is overwritten with the same value

it currently holds, there will not be a glitch on its output. This allows for sub-word

configuration memory writes, making it possible to modify the configuration even

a single bit at a time.

In our AFPGA design, we can change the configuration of any region subset.

The limiting factor is that as described in the precious subsection, we need to hold

the replaced region (and only that region) in reset when we do.

Since state is everywhere, asynchronous circuits require a reset signal when

they begin operation to put them in a known state. The same issue exists in
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Region control bits

Global reset
Local reset

to reconfigurable
region circuits

Figure 3.2: Reset behavior for reconfigurable regions is controlled using configura-
tion memory

synchronous circuits, but again the state is limited in where it can appear, so

resetting e.g. all the flip flops is sufficient. Aside: through reset discipline you can

avoid putting reset to every process, but you need it at least in some places (and

definitely at borders of reconfigurable regions as discussed in the previous section).

Partial reconfiguration regions in our design are managed using additional con-

figuration memory bits — one per region. These extra bits are used to control

reset behavior in their region, as shown in Figure 3.2. This system lets us flexibly

implement any granularity we desire, by simply spending more memory bits to

achieve a higher granularity.

For example, the architecture presented in the previous chapter uses extremely

fine-grained reconfiguration regions. The logic cluster (and associated local inter-

connect) form one region, while routes in the switchbox are in independent regions.

This sub-tile granularity allows for routes through a single switchbox to belong to

separate reconfigurable regions, offering maximum flexibility when placing and
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routing these regions. By contrast, the smallest possible possible reconfigurable

region in a Xilinx Virtex 7 FPGA is the configuration frame, which captures an

entire clock region and contains 50 CLBs [156]. Despite the fine granularity, the

hardware cost of implementing reconfiguration regions was less than 2% of the

total tile area.

There are other possible implementations of asynchronous reconfigurable re-

gions. For example, we could predefine reconfiguration regions as in commercial

FPGAs and use a separate global reset signal for each. Unfortunately, such a sys-

tem unnecessarily constrains the boundaries of each region, while increasing wire

density, pin count, and top-level control complexity. The advantage of our imple-

mentation is that it reuses the existing configuration memory mechanism to allow

regions of nearly any description to be constructed with minimal hardware cost.

Its only drawback versus a static region system is that it requires an extra con-

figuration memory write to the region control bits before a partial reconfiguration

event.

3.3 Power Gating

Asynchronous circuits are data-driven by construction: they are quiescent when-

ever they are not processing tokens. Because there is no switching activity - the

equivalent of perfect clock gating in the synchronous world - their dynamic power

is zero.

Unfortunately, in modern technologies leakage power has become a growing

concern. We can reduce leakage power by power gating inactive circuits. Our

AFPGA architecture has selectable power gating regions, so that each tile can be
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in one of three states:

• Fully active - logic in tile in use

• Passthrough - logic disabled, but routes pass through the global interconnect

within tile

• Shutdown - everything including configuration memory gated

The same hardware mechanism (extra configuration bits) that controls recon-

figuration regions can also be used to control power gating. This consumes a very

small amount of area, as shown in Section 2.5. In fact in our custom layout imple-

mentation, these structures fit into existing white space in the tile (though their

area was still counted in the reported totals).

An additional benefit of power gating in FPGAs is preventing contention from

illegal configurations before the device is completely programmed. This contention

is caused by multiple drivers attempting to drive a net to different voltages, which

leads to short circuits and possibly even device damage. Our FPGA architecture

with power gating solves the driver contention issue by placing all circuits in a

gated state at power up or device reset.

Even the configuration memory can be powered down in our architecture. This

is accomplished by designating one ‘privileged’ word (the same as was used for

partial reconfiguration region control). This privileged word contains bits that

control power gating to the different regions of the tile. The privilege word is

always powered, and resets to a known state.
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CHAPTER 4

3D FPGA ARCHITECTURE

4.1 Introduction

Integrated circuit manufacturing has recently expanded into the third dimension.

It is now possible to stack multiple CMOS die atop one another, using Through

Silicon Vias (TSVs) to connections between the die layers [8, 17].

Three dimensional integration offers several attractive benefits to an FPGA

architecture. The extra dimension reduces the effective diameter of the inter-

connection network, providing a shorter average distance and lower propagation

delay between circuit regions. Additionally, the fact that logic has more immedi-

ate neighbors (up and down, in addition to the usual planar compass directions)

increases the routing flexibility possible [4]. Finally, 3D stacking allows for the

same amount of logic to be fabricated using multiple die, each of which are smaller

in area. This helps to increase manufacturing yield, which is especially important

given that FPGAs are some of the largest chips currently produced today.

Vertical stacking is not an unqualified success, however. Current TSVs are a

scarce resource compared to normal vias due to their much larger size, so we must

use the 3D interconnect wisely. Stacking multiple die fabricated separately can

introduce additional variability due to process, voltage, and temperature, which

complicates timing closure in synchronous systems [3]. Adding more layers of

active logic within a fixed package can also lead to heat dissipation issues [52].

Asynchronous systems are excellent candidates for 3D integration, because

they do not need to synchronize clock domains across multiple die tiers. Delay-
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insensitivity allows them to gracefully tolerate the different electrical environment

between planar and TSV routes.

As we saw in Chapter 2, a significant fraction of FPGA area is devoted to inter-

connect. In asynchronous FPGAs the problem is multiplied due to the increased

wiring needed to implement handshaking channels (Section 1.2). Ideally we would

find a way to reduce this interconnect penalty, which is especially critical for 3D

communication.

This chapter describes how our asynchronous FPGA (AFPGA) architecture can

be extended to 3D (Section 4.2), explains the need for efficient signaling protocols

(Section 4.3), describe available single-bit signaling protocols including our own

novel design (Section 4.4), and evaluate their suitability in both 3D and planar

contexts.

4.1.1 Related Work

The benefits of 3D integration to FPGAs were first articulated in the mid-1990s.

Depreitere et al. [39] designed an “optoelectronic” 3D system. It was built from a

collection of 2D FPGAs (each similar in design to Triptych), connected in 3D at a

printed circuit board level using free-space optical links. Another early 3D FPGA

proposal used multiple 2D FPGA tiers as multi-chip modules, directly connected

with solder bumps [4]. These stacking technologies allow for only coarse integration

with limited connectivity between tiers, with a wire pitch of 200 µm or greater.

The achievable bandwidth between 3D tiers was greatly increased after the

development of Through Silicon Via fabrication technology. Rothko [111] is the

first 3D FPGA architecture to use TSVs. Its architecture was also based on the
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Triptych sea-of-gates architecture, extended with vertical connections in each cell.

A later version of this design was extended to support dynamic partial reconfig-

uration, saving state between configuration events in special registers [30] similar

to the SCORE architecture concept.

Cevrero et al. [22] designed another interesting FPGA architecture using TSVs,

creating a multicontext system by stacking DRAM on top of a planar FPGA.

Multicontext FPGAs have multiple parallel sets of configuration memory, and are

able to switch between these “personalities” rapidly to permit time sharing of the

FPGA fabric. In general stacking configuration memory on a separate 3D tier

makes little sense, since current TSVs are as large or larger than an individual

SRAM cell, but the multicontext application takes good advantage of the greater

density of DRAM vs SRAM to effectively multiplex the TSVs in time.

Although smaller than solder bumps and other packaging technologies, TSVs

are still much larger than normal interconnect vias. Monolithically stacked FPGA

architectures [91] avoid the TSV penalty altogether by assuming new active devices

can be fabricated vertically interspersed with interconnect metal layers. Devices

fabricated within these interconnect layers may be degraded (e.g. N-type transis-

tors only), but it is possible to work around these limitations by keeping active

logic on the bottom (normal CMOS) tier and only placing programmable routing

and memory on upper tiers. Such an architecture is likely limited to only one

logic tier, and so is perhaps more properly considered a more efficient form of 2D

FPGA.

As part of their latest high-end series, Xilinx currently offers “3D FPGAs”.

These are implemented as separate die stacked on a silicon interposer, and are

more accurately termed 2.5D. They share the benefits of smaller die size and thus
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better yield, but not the shorter average interconnect diameter that comes with a

true 3D FPGA.

The closest related work to the architecture described below is the three-tier

asynchronous FPGA created by Fang et al. [46]. It is constructed from dataflow

elements like the 2D AFPGA in [141], but expands the switchpoint to include links

up and down to neighboring tiers. This 3D AFPGA was fabricated in MIT Lincoln

Labs experimental 3D SOI technology.

There has also been work in extending FPGA mapping toolflows (Chapter 5)

to three dimensions. Ababei et al. published TPR, a three dimensional extension

of the VPR package [1,2]. Their technique is to first partition the design to assign

logic to tiers, and then perform constrained placement and routing for each tier

serially. A similar approach could also be used with our 3D AFPGA architecture.

Related to our interconnect study, a wide variety of different asynchronous

signaling protocols have been previously proposed. Each of these are discussed in

detail below in Section 4.4. In general, these works make a one-to-one comparison

to an existing system perceived to be their closest rival. Our comparison study

is the first I know of to quantitatively evaluate all of the principal asynchronous

single-bit signaling options within the same framework.

4.1.2 Contributions

In this chapter, we:

• Propose and fabricate a 3D AFPGA architecture that flexibly extends the

2D implementation (Section 4.2)
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• Invent a new asynchronous signaling protocol and buffer design suitable for

3D communication using only a single wire (Section 4.4.5)

• Construct a heuristic optimization framework for evaluating circuit designs

on relevant performance metrics (Section 4.5)

• Use the framework to compare all major families of single-bit asynchronous

signaling, in both planar and 3D applications (Section 4.6)

4.2 Extending to 3D

One possible FPGA architectural innovation suggested by 3D stacking would be

to house configuration memory elements on one level and relegate logic to another.

In this way, memory elements could be packed in a tight array, and would be safe

from inadvertent bit flips due to the fast switching of logic units.

Unfortunately, in modern technologies TSVs are substantially larger than pla-

nar vias (by a factor of 10-100 or more). In fact, each TSV is actually larger

than a configuration memory cell, completely negating any possible area savings.

Hopefully TSV size and spacing will continue to shrink as manufacturing tech-

nology improves, but for now we must find ways to use this scarce resource more

efficiently.

A more viable architecture houses one or more layers of FPGA fabric on top

of more traditional processing units. In this way, the FPGA can be used as an

on-demand accelerator. When paired with the dynamical partial reconfiguration

techniques discussed in Chapter 3, this approach presents a compelling step to-

wards more generic hardware primitives — the same die can be used in a very wide

array of ways atop different controllers.
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Figure 4.1: 3D extension of 2D AFPGA design

We can extend our existing 2D AFPGA architecture with a few simple modi-

fications to the routing fabric. We could expand every switchpoint (Figure 2.14)

in the switchbox to include extra connections up and down to adjacent die tiers.

Unfortunately, the brute force approach of increasing the switchpoint degree in-

creases the multiplexer size and adds capacitance, energy, and delay to all routes,

regardless of whether 3D connectivity is used or not.

Instead, we choose to augment the 2D routing fabric by inserting ‘3D buffers’ on

the existing mesh channels connecting 2D FPGA tile as seen in Figure 4.1. These

buffers can be configured to simply pass through a 2D route, so that existing 2D

designs can be reused (down to the same bitstream). Their additional feature is

allowing a route to connect up or down to a TSV channel, which connects to the

adjacent die tiers.

The 3D buffer design shown in Figure 4.2 is very similar to the 2D switchpoint,

67



3LSHOLQHG�
EXIIHU

(
:

(
:

769�
XS

769�
GRZQ

769�
XS

769�
GRZQ

Figure 4.2: 3D switchpoint buffer connected to existing 2D mesh interconnect

and has similarly small multiplexer sizes. One potential enhancement to the design

shown is to connect multiple 2D routing channels to a single TSV channel through

their multiplexers. This ‘party line’ configuration allows several 2D channels to

share a single (large and scarce) TSV channel statically. It even lets the TSVs serve

as a 2D ‘dogleg’ — if a given TSV channel is not being used for 3D communication,

it can instead be used to swap between multiple 2D tracks in the same tier. This

adds additional routing diversity, which may makes it easier to map designs to the

FPGA.

Figure 4.3 shows an approximate floorplan of the 3D-capable tile. TSVs are

indicated as yellow circles, and are grouped with their associated 3D buffers in

channels using three TSVs per channel (for true, false, and acknowledge signals).

Particularly of note is the scale of the TSVs compared to the entire 2D tile. A

mere three 3D TSV channels are able to fit in the same linear space as a tile, which

encompasses more than 32 planar channels and their associated switchbox.

The large disparity between planar and 3D TSV communication raises a clear

opportunity: is it possible to reduce the cost of 3D signaling? Ideally, we would

like a solution that can match the synchronous equivalent: a single wire, plus
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Figure 4.3: 3D tile floorplan showing relative TSV sizes

shared/amortized clock. The following sections describe our work toward that

goal, both in the 3D domain and for asynchronous signaling in general.

4.3 Need for Efficient Signaling

Increasing system complexity has begun to put serious pressure on planar wiring re-

sources [65]. At first glance, new process nodes and better back-end-of-line (BEOL)

manufacturing have kept the problem mostly at bay. Unfortunately, while design-

ers might have enough wires to meet connectivity requirements in all but the most

wire-starved designs, the RC characteristics of the wires have not scaled with tran-

sistors. In order to keep shrinking BEOL features without dramatically increasing

wire resistance, chip foundries have increased the cross-sectional height of wires.

The resistance of long wires can no longer be ignored—the lumped capacitor model
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is no longer valid in deep-submicron technologies [54]. Furthermore, taller, more

closely spaced wires have resulted in large coupling capacitance values, increased

crosstalk, and decreased performance. Some designers of high-frequency systems

have resorted to increasing planar wire spacing to decrease wiring capacitance and

crosstalk, thereby preserving performance. Over-reliance on this technique can

artificially increase pressure on wiring resources, especially for wide buses.

Regardless of bus width, wire spacing, or signaling protocol, the energy of

intra-chip communication represents a non-trivial portion of total chip energy con-

sumption [93]. Some projections show wide, cross-chip links consuming a hundred-

fold more energy in wire transitions alone than in computation [76]. One way to

alleviate this problem is to move to 3D integration, for both energy [17] and per-

formance [8], as transmitting data inter-die through a through-silicon-via (TSV)

is lower in energy and delay than transmitting data through planar wires across

a die. 3D integration has its own problems, such as variability [3] and thermal

management [56]. However, for the purposes of this study we focus on the fact

that TSV resources are quite limited in comparison with planar wire resources.

Achievable TSV pitch ranges from several micron [20] to more than 25 µm [149],

well over tenfold the pitch of modern planar wiring.

Self-timed single-bit links like those used throughout our AFPGA architecture

are uniquely situated in this complex design space. While they are robust to de-

lay variations, the encodings used incur additional overheads in transition counts

and wiring resources—especially important in the TSV case. In comparison, syn-

chronous links make efficient use of wiring resources but suffer from clock distri-

bution and recovery problems. As such, the benefits they provide in comparison

with self-timed links are largely dependent on usage case [132].
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In light of the pressures on planar and TSV wiring resources by today’s asyn-

chronous designers, we present an analysis of self-timed single-bit links. We eval-

uate representatives from the various classes of self-timed links on the metrics of

throughput, energy per bit (token) transmitted, and circuit area. We also present

our Single-Track Asynchronous Ternary Signaling (STATS) single-bit link design,

which is a single-wire link intended for use in wire/TSV limited environments.

However, evaluating each link type at a single point in the throughput/energy/area

space is unfair, as factors such as transistor sizing, VDD, and circuit topology can

easily change that point. As part of this work we developed an optimization frame-

work to obtain throughput/energy/area Pareto efficiency fronts.

4.4 Single-Bit Signaling Protocols

Table 4.1 shows the self-timed single-bit signaling protocols we chose to study,

representative of the various classes of competing schemes. Figure 4.4 shows the

wire transitions required for each to send the same token pattern. We provide a

brief description of each protocol and justification for our choices below.

Other self-timed techniques, such as bundled data [133] and GaSP [134], lever-

age traditional clock-based datapath elements like flip-flops and latches for pipelin-

ing. They generate “clock signals” for each pipeline stage locally, and amortize the

cost of this control circuitry over the many bits of a wide datapath. These are more

appropriate for multi-bit communication channels, so they are not considered here.

We also omit link protocols which do not include any handshaking flow control,

such as [136].

1For brevity, we use the same initialism to refer to both the signaling protocol and the buffer
that implements it.
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Table 4.1: Self-Timed Single-Bit Signaling Protocols

Name1 Handshake Timing Voltage Wires
ATLS 4-Phase QDI Ternary 2
RQDI 2-Phase NRTN RQDI Full-Swing 3
STATS 2-Phase RTN Single-Track Ternary 1
STFB 2-Phase RTN Single-Track Full-Swing 2
WCHB 4-Phase QDI Full-Swing 3

Figure 4.4: Signaling Protocols. Transitions are aligned in time for readability; in
general the different buffer types will not have the same latencies.
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4.4.1 WCHB

The Weak-Conditioned Half Buffer (WCHB) [92] is a handshake reshuffling of

the 4-phase dual-rail Quasi Delay-Insensitive [102] protocol, which we refer to as

e1of2 (e for “enable”, an inverted-sense acknowledge signal). While there are

other possible reshufflings such as the PCHB and PCFB [92] used for logic, we

chose the WCHB variant because the buffer implementation is small, simple, and

fast. WCHB buffers are used throughout the interconnect in the baseline AFPGA

architecture described in Chapter 2. Of all the schemes we study in this paper,

the e1of2 protocol is the most conservative. The other link types relax timing

assumptions or use more aggressive signaling techniques (e.g. low swing, single

track). Evaluating the WCHB allows us to compare the effects of those decisions

on throughput, energy, or area.

L.t

L.e

L.f

R.t

R.e

R.f

Figure 4.5: WCHB Buffer
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4.4.2 RQDI

The Relaxed Quasi Delay-Insensitive (RQDI) buffer design [89] implements a 2-

phase, non-return-to-null (NRTN) protocol. It leverages a timing assumption al-

ready present in QDI circuits to reduce circuit complexity. We have implemented

the LEDR [34] 2-phase encoding, although RQDI supports other 2-phase encod-

ings. We use RQDI to represent the state of the art in 2-phase, single-bit QDI

links.

L.d

L.e

L.p

R.d

R.e

R.p

Figure 4.6: RQDI Buffer

4.4.3 ATLS

Asynchronous Ternary Logic Signaling (ATLS) [47,120] is a 4-phase, QDI signaling

protocol with a ternary delay-insensitive data encoding. This encoding compacts

the dual-rail data wires into a single wire. VDD encodes a true token, GND a

false token, and 1
2
VDD represents the null state of the dual-rail encoding. The half-

swing encoding reduces the energy cost of data rail transitions, which is attractive

as a power saving measure but lowers static noise margins. The enable rail is still
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full-swing. ATLS simultaneously attacks the problem of limited wiring resources

and power consumption, hence its inclusion in our study.

Our implementation of ATLS differs from the proposed circuits in [47] and [120]

as the proposed ternary decoding structures have not scaled well into deep submi-

cron technologies. As in the original proposed circuits, we assume a 1
2
VDD power

supply is available and account for it in our power measurements. We use the

circuits described in Section 4.4.5 to encode/decode the ternary data rail. Since

ATLS as proposed does not include any pipelining, we use an additional WCHB

buffer when necessary as a pipelining element.

4.4.4 STFB

The Single-Track Full Buffer (STFB) [48] is designed for throughput. It uses a

2-phase, return-to-null (RTN) protocol with no control wires. It is, however, dual-

rail, using a total of two wires to transmit a single bit. An upgoing transition

on the true (false) rail encodes a true (false) token, and a downgoing transition

on the rail signals an RTN. The sending process is responsible for raising a rail

and the receiving process is responsible for lowering it. The single-track timing

assumption requires that the sender and receiver are not simultaneously driving

the rail, to avoid shorting the chip power supplies across a link.

4.4.5 STATS

Single-Track Asynchronous Ternary Signaling (STATS) is a single-track buffer tem-

plate of our own design. The design goal was to reduce the total wiring resource
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Figure 4.7: STFB Buffer

requirements to a single wire. It combines the ternary encoding of ATLS with the

2-phase RTN, single-track handshake of STFB. To send a true (false) token, the

sending process sets the wire to VDD (GND). The receiving process returns the

state to null by driving the wire to 1
2
VDD. As with STFB, the single-track timing

assumption requires that the sending and receiving process do not simultaneously

drive the link.

To decode the ternary link, we use the pair of level shifter structures shown

in Figure 4.8. The cross-coupling ensures full rail-to-rail swing, minimizing static

power dissipation. While the level shifters are fragile to pathological imbalances

in pullup/pulldown network sizings, weakening the pullup/pulldown cross-coupled

stacks with respect to their pulldown/pullup counterparts to a ratio of 1:2 is suffi-

cient. Further increasing the drive strength disparity by changing transistor thresh-

olds is recommended. The inverters and NAND gate should be sized to equalize
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Figure 4.8: Ternary Voltage Decoder

load capacitances on nodes A, B, C, and D.

The link is driven to VDD or GND by a single appropriately-sized PMOS or

NMOS transistor, respectively, as shown in Figure 4.9. A parallel combination

of one or more of the circuits in Figure 4.10 returns the link to the null state at

1
2
VDD. We allow our analysis framework, described in Section 4.5.2, to permute

the combination and sizing of the RTN circuits to fully explore the tradeoff space.

• Passgate (Figure 4.10a): This circuit drives the link to 1
2
VDD using the least

energy, by connecting to the 1
2
VDD supply. It is the most conservative of the

three, but also the slowest.

• Self-Invalidating Driver (Figure 4.10b): The self-invalidating driver is
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Figure 4.9: STATS Transmit Stage: The null calculation for the Wire and L
are obtained from the NAND from Figure 4.8 and the traditional NOR dualrail
calculation (not pictured), respectively.

the most aggressive of the three designs, as it is essentially a full rail-to-rail

transition interrupted halfway. While it offers the best slew-rate (a single

RC time constant is more than a 1
2
VDD swing), it relies on the level-shifter

structures in Figure 4.8 to resolve the state of the wire quickly and switch

the True/False signals depicted in Figure 4.8 and Figure 4.10b. A slow

transition on either of those two signals will result in an overshoot of 1
2
VDD

and potentially a spurious token on the link.

• Shorted Inverter (Figure 4.10c): The shorted inverter makes use of the

CMOS inverter voltage transfer curve behavior to drive the wire very quickly

to 1
2
VDD. It is faster than the Passgate technique, but very energy inefficient

as it essentially shorts VDD to GND while enabled.
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Figure 4.10: Ternary Return to Null Schemes. en high starts the RTN process,
and True and False are signals from the decoder shown in Figure 4.8.

4.5 Methodology

We constructed a framework to evaluate the various link types described in Sec-

tion 4.4 across a wide range of operating points. Links were studied in two contexts:

on-chip planar communication, and 3D signaling through TSVs.

4.5.1 Link Simulation

We used SPICE simulation to determine the throughput and energy for each link

type. Figure 4.11 shows the basic Device Under Test (DUT) for these simulations.
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The link DUT is a FIFO pipeline, implemented at the transistor level. It is driven

by an environment that generates pseudorandom tokens as fast as the link can

accept them.

Link

TX

Link

RX

TSV

RC

Model

Link

TX

Link

RX

Planar

RC

Model

Link

Buffer

Planar

RC

Model

Env

Env Env

Env

Repeatable

TSV DUT

Planar DUT

Token Flow

Figure 4.11: Link DUT, for both planar and TSV contexts. Double-headed arrows
represent link channels (e.g. STFB); 3-wire channels from the environment are
e1of2. “Link TX” and “Link RX” convert to and from the link protocol, respec-
tively, while “Link Buffer” is a native buffer for the protocol.

The link DUT also includes a distributed RC interconnect model (planar wire

or TSV). Planar wires of a given length may be broken up into several shorter wires

by adding extra buffers as pictured. TSV links cannot be so divided, as there is

no way to insert a buffer in the middle of a TSV. We discuss interconnect models

in more detail in Section 4.6.

In our simulations, the environment communicates using e1of2, and the cost

of conversion to the protocol used by the DUT is included as part of the energy

and area costs of the link. This simulates a fully-asynchronous system where

computation is done with islands of 4-phase QDI logic and the links are used to

shuttle data across planar links or TSVs [103]. This assumption penalizes 2-phase

protocols, but it is generally accepted that 2-phase computation is unwieldy in
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comparison to 4-phase [108] (with the possible exception of STFB [48]).

Figure 4.12 shows the complete simulation harness. Since the environment

source and sink are implemented in Verilog, we use two WCHBs to decouple the

DUT from any digital boundary effects. The harness is designed to operate faster

than the DUT, so that link throughput is governed primarily by the DUT itself

and the RC characteristics of the interconnect.

WCHB
Token

Source

Token 

Sink
WCHBDUT

Measure

Frequency

V
DD

Measure

Power

L.t

L.f

L.e

R.t

R.f

R.e

Figure 4.12: SPICE simulation harness for the DUT. Average frequency is mea-
sured using the right-side enable signal, and power dissipation is measured for the
DUT alone using a dedicated power supply.

ATLS and STATS buffers require an additional 1
2
VDD supply. In order to be

fair, we allow RQDI, STFB, and WCHB links to run at a voltage lower than the

harness VDD. To support this, we implemented pipelined level shifters based on

the WCHB template, shown in Figure 4.13. These are considered part of the

environment, so they are not counted against the link energy and area. The usual

protocol converters are still required in addition to these level shifters for non-e1of2

links.

4.5.2 Optimization Framework

The goals for our links are to maximize throughput, minimize energy dissipation,

and minimize buffer silicon area. Because these measures are not independent,
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Figure 4.13: WCHB Level Shifters. The C-elements have one low-swing input and
one full-swing input. In the C-elements, the NMOS transistors connected to the
low-swing input are LVT and sized double-width, and the PMOS transistors are
HVT. All other transistors are standard VT.

the solution to this multi-objective problem is a Pareto front of different buffer

configurations situated in a three-dimensional tradeoff space between throughput,

energy, and area.

To explore this space, we can apply multi-objective heuristic optimization al-

gorithms. While heuristic optimization algorithms are not guaranteed to find the

true Pareto front of a given space, i.e. the globally optimal front, in practice a

reasonable approximation can be obtained.

We chose the DEAP [50] toolkit and its implementations of the (µ + λ) ge-

netic algorithm2 (GA) [7] and the widely-used NSGA-II [35] population selec-

tion algorithm. NSGA-II-based genetic algorithms are designed to provide a well-

distributed family of points along a Pareto front, allowing us to capture the en-

gineering tradeoffs in the design space. Some commercial tools [25] converge to

a near-globally-optimal Pareto front faster than NSGA-II-based algorithms, but

2Two-Point Crossover (cp = 0.7), Gaussian Mutation (mp = 0.2), µ = 20, λ = 60, ngen = 60
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the same result can be obtained by NSGA-II given enough design space samples—

typically, a few thousand is sufficient, and we sample at least 2850 points in the

space for each link.

DEAP SPICE
Area 

Estimation

Evaluation
Selection

Throughput

Energy

Area

Link Configurations

Correctness

Figure 4.14: Heuristic optimization framework for evaluating link circuit designs

To find the Pareto front for each link design, we built the optimization tool

shown in Figure 4.14. Candidate link configurations are selected by DEAP, sim-

ulated, and evaluated based on relevant fitness criteria. Throughput and energy

are measured using the SPICE harness described in Section 4.5.1. Area is esti-

mated as the total transistor area, i.e. the sum of W × L for all MOSFETs in

the DUT. While this does not account for routing, etc., it provides a lower bound

to make reasonable direct comparisons. Some link configurations may deadlock,

send spurious tokens, violate dual-rail encodings, or present other failure modes.

The environment checks for this and removes any failing configurations. All these

evaluation results are fed back to DEAP and used to direct the selection of further

candidate configurations.

It is worth noting that this optimization approach is not limited to on-chip links.

The same general framework can be applied to any system with a parameterized
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configuration (genome) and a set of performance metrics (fitness).

Table 4.2: Link Configurations Explored By Framework

Link Type Transistor Sizing Circuit Topology Link Voltage
ATLS X X
RQDI X X
STATS X X
STFB X X
WCHB X X

The specific configuration parameters selected by our tool depend on the link

type being optimized, and are summarized in Table 4.2. For all link types, the

framework selects transistor sizes for the circuits. Transistor sizing is usually han-

dled by convex optimization algorithms, but since we want to explore the multi-

objective space we allow DEAP to choose sizing, from minimum transistor width

up to 100 times minimum.

For the ternary link types (ATLS, STATS), the framework can alter the circuit

topology by choosing which combination of RTN schemes to use (Figure 4.10).

For the other types, it can voltage-scale the link as described in Section 4.5.1.

Finally, in the planar context our tool can vary the number of buffer stages used

(Figure 4.11). We account for the area and energy consumed by multiple planar

buffers, but not the additional pipeline slack they provide (which may or may not

be desirable depending on the specific system).

4.6 Evaluation and Discussion

We evaluate each link on the metrics of throughput, energy per token, and planar

buffer area. In order to definitively conclude that one link protocol is “better”

than another on these metrics, the Pareto front of the better link must completely
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dominate the other front—the three dimensional surfaces of the fronts must not in-

tersect. Intersecting surfaces imply that the links being compared are situationally

better than one another.

The rest of this section is devoted to examining the throughput/energy/area

tradeoff space. To present the data in the most readable format, we have chosen

to show two-dimensional projections of the three-dimensional Pareto front, omit-

ting the dominated points on each plot. The bottom right quadrant of each plot

represents the most attractive link configurations, as we are trying to maximize

throughput and minimize energy/area.

In this study we look at three different technology nodes: a low-power 90 nm

bulk process, a low-power 65 nm bulk process, and a high-performance 45 nm

Silicon-on-Insulator (SOI) process. While we did not fabricate test structures in

all three technologies, we were able to build WCHB and STATS planar links in our

90 nm process. We did not obtain isolated power measurements, but the SPICE-

predicted frequency numbers for our test structures were within 7% of the actual

silicon measurements. Since we have performed the same technology characteri-

zation steps for all three technologies when building our SPICE environments, we

are reasonably confident in the simulation results presented in this section.

Our methodology does not directly account for robustness to noise or process,

voltage, and temperature (PVT) variation. We provide a qualitative analysis of

these factors here, but a complete characterization is pending in our future work.
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4.6.1 Planar Links

In our planar link simulations, we model wires using a 100-segment π-model with

RC parameters obtained from extracted layout. It is vital to use distributed wire

models when studying long links, in order to avoid unrealistically optimistic re-

sults [54]. As a concrete example: STATS transceivers sense the state of the wire

locally to determine when to stop driving. A lumped wire model would yield

misleading results, since sender and receiver observe the same voltage. In reality,

charge relaxation across the wire means that the voltages may differ and the sender

may stop driving too soon—this places a restriction on the maximum slew rate

possible for a given wire length.

Figure 4.15 shows the energy/throughput Pareto front for each buffer type in a

90 nm process. Each point in the front represents a different buffer configuration

(transistor sizing, VDD, number of buffer stages, etc.). The relative merit of each

link type is similar across process technology generations, so we omit the 65 nm

and 45 nm plots for brevity. Our evaluation framework allows us to examine the

configuration of each individual point on a Pareto front and uncover Pareto-front-

wide trends.

From Figure 4.15, we can see that RQDI and STFB are more energy efficient

than WCHB with only a few exceptions. This is unsurprising, as 2-phase protocols

like RQDI and STFB expend less energy by halving the number of transitions on

the RC link. STFB goes one step further by removing the acknowledge wire and

the associated drive circuitry, offering additional energy savings. STATS and ATLS

are almost completely dominated by the full-swing protocols (RQDI, STFB, and

WCHB). The obvious conclusion for the designer is that ternary signaling is a poor

choice for planar wiring, which essentially behaves like an RC lowpass network and
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Figure 4.15: Energy vs Throughput in 90 nm for a 1000 µm planar link

limits the throughput of low-swing signals. This is borne out by the fact that the

high-throughput Pareto-optimal points for RQDI, STFB, and WCHB all run at

full VDD for all technologies, in spite of the capability to aggressively reduce VDD.

An added downside to ternary signaling is that the energy cost of voltage level

conversion in ATLS and STATS is quite high, especially when replicated many

times in a multi-hop link. The sharp increases in energy per token in Figure 4.15

represent the addition of more buffers on a planar link. Examining the trends

across links, STFB and WCHB gradually increase the number of buffers on the

link as throughput increases—more buffers driving shorter links allows for higher

frequencies. Conversely, STATS and ATLS increase the number of buffers only if
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aggressive transistor sizing is unable to achieve additional throughput. Figure 4.15

demonstrates the much greater energy cost of adding buffers to a STATS or ATLS

link compared to a similar addition for STFB or WCHB. RQDI also mainly uses

transistor sizing to achieve higher throughput. The vertical jump in energy and

area at the very highest throughputs represents the addition of more buffers when

aggressive sizing is not enough.

�

��

���

���

���

���

� ��� ���� ���� ����

�
�
��
�	


�
	�

�


�

�
�
�

��	�������

����

�����	
�	��
��
��	�������

����
��� 

�����
��!�

"#��

Figure 4.16: Area vs Throughput in 90 nm for a 1000 µm planar link

Figure 4.16 shows the area/throughput Pareto front for each buffer type in

our 90 nm process. The aggressive sizing of STATS and ATLS buffers can be

seen here—the almost 100 µm2 increase in area around 400 MHz and 550 MHz

represents the addition of a single ATLS or STATS buffer stage, respectively. STFB

is best in area, as it has the lowest transistor count per buffer of any link.
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As discussed in Section 4.4.5, the Passgate RTN scheme is used for low-throughput,

energy-efficient STATS and ATLS configurations, while the faster, more aggressive

Self-Invalidating Driver is used in high-throughput links. For average throughput,

a mix of these two schemes is used. The Shorted Inverter RTN scheme is only used

for the highest throughput link configurations, where energy costs are already high.

As a general observation (that also holds for TSV links as seen in Section 4.6.2),

ATLS is never optimal and almost always dominated by every other buffer. The

link, as proposed by [47], is more of a data encoding than an actual link design.

While we improve some of the circuit designs as described in Section 4.4.3, we

still use WCHBs as a pipelining element. Including WCHBs in series adds extra

transitions/cycle and power, adversely affecting throughput and energy. In an

attempt to maximize the frequency, DEAP selected large transistor sizes, which

makes ATLS look unattractive in area as well. A redesign of ATLS that combines

the pipelining element with the encode/decode structures could improve its Pareto

efficiency performance.

Figure 4.17 and Figure 4.18 show composite Pareto fronts across all technology

nodes, for energy/throughput and area/throughput respectively. In other words,

the curves on these plots represent the best buffers in that technology at each given

operating point. In order to compare results across technology nodes, we scale link

length by the technology feature size. Results presented below are for a link length

of 20,000λ, equivalent to 1000 µm in a 90 nm technology.

The results are consistent across technologies: STFB buffers are the most

energy- and area-efficient for planar signaling across most of the range. At the

very highest throughputs WCHB (and 45 nm RQDI) buffers continue to operate

after STFB fails, but at a greatly increased cost in energy per token. This high
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Figure 4.17: Energy-throughput Pareto-dominant points across planar technologies

energy is due to aggressive transistor sizings, reflected in extravagant area usage

as shown in Figure 4.18. From these results alone, STFB is the clear winner in

the planar context for all but the most aggressive throughput targets. However,

the single-track timing assumption makes STFB less robust than QDI buffers, as

we discuss in Section 4.6.3. This presents a tradeoff to the designer between en-

ergy/area usage and ease of design. The additional cost of “robustness” is not

prohibitive, as can be seen by comparing STFB against the QDI buffers (WCHB

for high throughput, RQDI for lower) in Figure 4.15 and Figure 4.16.

In the planar context, designers also have control over interconnect wire spac-

ing, which has a direct effect on coupling capacitance. We found that a change
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Figure 4.18: Area-throughput Pareto-dominant points across planar technologies

from minimum to sparse spacing (twice minimum) chiefly impacted energy per to-

ken. For brevity, we report the average energy improvements at a given frequency

for each link in Table 4.3, as opposed to including additional Pareto fronts. Note

that this table does not capture the additional benefits of reduced crosstalk due

to the increased spacing.

Table 4.3: Percentage Improvement in Sparse Wiring Energy

Link 90 nm 65 nm 45 nm
ATLS 47.36 16.93 -24.67
RQDI 33.71 7.22 13.98
STATS 27.42 -92.28 -112.87
STFB 39.04 18.11 12.26
WCHB 49.66 28.43 20.99

For most link/technology parings, the results shown in Table 4.3 are as ex-
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pected. To first order, wire resistance remains constant with increased wire spacing

while coupling capacitance decreases. This decrease in capacitance leads to lower

1
2
CV 2 energy dissipation.

Strangely, the sparse wiring energy increases for STATS and ATLS. The root

cause of this energy increase is that for high-throughput link configurations, DEAP

selects more highly pipelined links. As an example, in 45 nm, the fastest running

ATLS and STATS configurations divided the planar wiring into 10 sections for the

sparse wire spacing case, and only 5-6 for the minimum spacing case.

In order to implement single-track timing (sender and receiver must not drive

a wire simultaneously), STATS inspects the local voltage to determine when to

cut off the driving transistors. If the interconnect resistance is high relative to its

capacitance (as in sparse wiring), the buffer may see the local voltage change and

turn off before moving enough charge to resolve the state transition at the remote

end of the wire. This tends to favor shorter wires with more buffers, leading to

greater energy consumption. High-throughput ATLS configurations use the fast

Self-Invalidating Driver, which has the same property.

4.6.2 TSV Links

To simulate 3D links between stacked dies, we use the TSV model from [149],

modified to have distributed rather than lumped RLC components. It represents a

20 µm diameter copper TSV with 25 µm pitch in a digital process. We also model

coupling capacitance to Manhattan neighbor TSVs. TSV fabrication is usually a

separate step from the rest of the CMOS process and scales at a different rate, so

we use the same TSV model for all process technologies in this study.
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Because TSV pitch is much larger than the standard via pitch, we assume that

TSVs are a scarce resource. As a result, we report throughput per-TSV below (by

scaling using wire counts from Table 4.1). This penalizes buffers that require more

wires to send a single bit of data.

Figure 4.19 and Figure 4.20 show the energy/throughput and area/throughput

Pareto fronts in a 90 nm process for each buffer type communicating vertically

through a TSV link. Since buffers in each technology must drive the same TSV

structure, reported buffer area is not scaled as it was for the planar results.
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Figure 4.19: Energy vs Throughput in 90 nm for a 25 µm pitch TSV model

In the TSV context, STATS is a strong contender due to its efficient use of TSV

resources. Furthermore, TSVs have high capacitance but low resistance compared
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Figure 4.20: Area vs Throughput in 90 nm for a 25 µm pitch TSV model

to planar wires, due to the sheer amount of conductive material. This environ-

ment approaches the ideal lumped capacitance case where a low-swing link such as

STATS excels—theoretically, a half-swing protocol would expect to see 4x savings

in 1
2
CV 2 switching energy. In practice, the ternary conversion energy cost cuts into

this savings, but STATS is more attractive in energy/throughput-per-TSV than

all other links save STFB.

An interesting phenomenon is the sharp energy increase for WCHB buffers in

Figure 4.19 around 400 MHz. Examining the link configurations that straddle

this increase revealed essentially identical configurations save for one gate: the

inverter driving the returning L.e acknowledge signal (shown in Figure 4.5) for the

Link RX unit (shown in the TSV DUT section of Figure 4.11). The higher-energy
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configuration was a maximal sizing of this inverter, whereas the lower-energy point

was a minimal sizing of the same inverter. This phenomenon is present in all three

technologies. It occurs in the planar case as well: the slight discontinuity in WCHB

energy per token seen in Figure 4.15 around 800 MHz displays the same jump in

driver sizing. There are other effects at work in the planar case (e.g. number of

planar buffers), but the trend is still noticeable.

While further investigation is warranted, this suggests two Pareto efficient op-

erating regimes for the WCHB link. In the first mode, throughput is unaffected

by a slow transition on the enable signal—the link is not token-hole-limited. At

some throughput threshold, however, the system becomes token-hole-limited and a

fast acknowledge transition (with associated energy cost) is required to see further

improvement. Examination of the dominated points in the DEAP runset revealed

that DEAP had tried many similar configurations, more or less holding all other

parameters constant and varying the sizing of the L.e inverter across the range

of allowable sizings—in other words, this phenomenon is quite unlikely to be an

artifact of the heuristic optimization algorithm. Intuitively, a small increase in

the inverter sizing would offer negligible throughput gains with an energy penalty.

Conversely, a downsizing of a maximal inverter would penalize throughput with-

out much benefit to energy. Furthermore, it is likely that an algorithm that sizes

transistors based on their electrical environment alone would not have discovered

these two operating regimes. Such an algorithm would have sized the L.e inverter

to drive the large TSV capacitance and missed out on the low-energy WCHB

configurations.

A cross-technology examination of TSV links, plotted in Figure 4.21 and Fig-

ure 4.22, is slightly more complicated than the planar scenario. We use the same
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TSV structure across all technologies, so the electrical characteristics of the phys-

ical link remain constant while the transistors shrink. This leads to STFB failure

(described in Section 4.6.3) and its disappearance from the Pareto front after 90

nm.

Measured on a throughput/TSV basis, STATS (which uses only one TSV) dom-

inates. The QDI buffers (RQDI, WCHB) are penalized due their 3-wire interface,

but also appear on the Pareto fronts at low throughput/TSV.
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Figure 4.21: Energy-throughput Pareto-dominant points for 25 µm pitch TSV

Examining silicon area (Figure 4.22) instead of energy per token, WCHB (not

RQDI) is the smallest for low per-TSV throughput, for similar reasons to the planar

case. The other rankings are the same as for energy.
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Figure 4.22: Area-throughput Pareto-dominant points for 25 µm pitch TSV

4.6.3 Link Failures and Reliability

In addition to throughput, energy, and area, we record the failure rate of individual

configurations selected by DEAP. These statistics are reported in Table 4.4 for

planar and TSV links across our three process technology nodes. As discussed in

Section 4.5, we verify that links send tokens correctly and do not deadlock. Failures

are typically due to poorly-sized transistors driving large RC loads, since DEAP can

choose sizes at random. Roughly speaking, these failure rates provide information

about how easy a link is to design and how robust it is to sizing variation. While

a significant amount of additional work is required to quantify link robustness, we

believe the failure rate is of use in building an intuitive understanding of a link’s
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timing assumptions and relative design difficulty.

Table 4.4: Link Failure Rates

Link
% Planar Failure % TSV Failure

90 nm 65 nm 45 nm 90 nm 65 nm 45 nm
ATLS 23.94 16.34 19.23 17.72 20.83 15.54
RQDI 25.60 23.93 17.80 19.72 21.52 24.68
STATS 42.40 36.26 45.45 33.26 33.96 33.31
STFB 28.18 21.99 33.63 29.19 99.33 100.00
WCHB 10.67 8.49 12.43 12.79 12.80 25.32

Note: 2856 ≤ n ≤ 11158

STATS has the highest failure rates of all buffer types in planar and the second

highest in the TSV context. This is not surprising, as STATS combines both

ternary encoding and the single-track timing assumption to achieve its single-wire

goal, and each of these techniques reduce reliability compared to a delay-insensitive

link.

Ternary decoders (Figure 4.8) are particularly sensitive to sizing variations,

and their failure prevents the buffer from sensing the link state correctly. Even

an accurate but slow decoder may cause link failure, for example by causing a

Self-Invalidating RTN Driver (Figure 4.10b) to overshoot 1
2
VDD. This impacts the

failure rates of both STATS and ATLS.

As discussed in Section 4.6.1, single-track timing can cause STATS to fail if

the interconnect resistance is too high (planar wiring). This is less of an issue

in the high-capacitance, low-resistance TSV context, so we see correspondingly

lower failure rates in Table 4.4. ATLS, RQDI, and WCHB do not suffer from this

problem, due to the QDI timing of their handshake. Reasonably slow transitions

are acceptable, as they will be not be acknowledged until the receiving end can

resolve the wire state.
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STFB uses an even more aggressive single-track timing assumption. The STATS

level shifter structures offer a better inspection of the wire state due to hystere-

sis, whereas the link wire directly drives the STFB handshaking logic as seen in

Figure 4.7. As a result, STFB has simpler circuits and better throughput, but at

the expense of robustness. The traces shown in Figure 4.23 were selected from

the fastest five STFB and STATS TSV link configurations in 90 nm. The STFB

true and false rails do not complete full-swing transitions. Examining the figure,

it takes at least two tokens traversing a link (and driving the link pulldown net-

work) to return the wire state to GND. In contrast, STATS transitions cleanly

between VDD, 1
2
VDD, and GND because it inspects the voltage before cutting off

the transistors driving the wire.
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Figure 4.23: Trace of STFB and STATS TSV links in 90 nm. VDD is 1.2 V. Times
shown are matched by sent tokens.
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In short, STFB is releasing the pull-up network and pull-down networks too

early. Large capacitances exacerbate this problem. Because the TSV RC charac-

teristics in our model do not scale with technology—we assume they are separately

fabricated—but transistor switching speed does, the timing margins become pro-

gressively worse for STFB with each smaller technology. This is reflected in the

increased number of failing configurations, shown in Table 4.4, and the complete

failure of STFB to drive the TSV link in 45 nm.

One side effect of this timing failure is that STFB becomes a de facto low-swing

signaling protocol, which artificially improves its energy efficiency. While this is

certainly not without merit, it comes at the cost of noise margins and robustness.

While we do not model noise sources, the STFB traces shown in Figure 4.23 are

more susceptible to noise than a full-swing signal would be. Note that ternary

encodings (ATLS, STATS) also have reduced noise margins compared to a full-

swing signal.

4.7 Conclusions

We studied five self-timed single-bit signaling protocols with widely varied proper-

ties (timing assumption, wire count, voltage swing), including our proposed STATS

single-wire link design. We developed a multi-objective optimization tool to eval-

uate the performance (throughput, area, and energy per bit) of these protocols for

both traditional planar wiring and 3D inter-die communication using TSVs.

Pareto front analysis is a powerful framework for evaluating competing objec-

tives. From this study, we draw several conclusions useful for circuit designers.

For planar links, STFB offers the best performance across the range of process
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technologies studied, though its tight timing requirements do not cope well with

non-ideal wires. WCHB also performs well, trading some energy and area for

increased robustness, and remains our buffer of choice in 2D AFPGA designs.

When extending the AFPGA in 3D, however, the results change. STATS

buffers perform poorly with planar wiring but are a good match for TSV elec-

trical characteristics. Their efficient use of scarce TSV resources makes the extra

expense worth contemplating for 3D signaling, bringing our wire efficiency up to

the same level as synchronous designs.
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CHAPTER 5

SOFTWARE TOOLFLOW

5.1 Introduction

FPGA mapping is the process by which a design expressed in a hardware descrip-

tion language (HDL) is converted into an FPGA configuration bitstream. Mapping

software tools span this gulf between very high and very low level descriptions via

a sequence of smaller steps: synthesis, technology mapping, clustering, placement,

routing, and finally bitstream generation.

Many commercial FPGA mapping toolflows in effect combine all of these oper-

ations into a single black box. Device manufacturers like Altera and Xilinx provide

software that exclusively supports the chips that they sell. They have no commer-

cial incentive to expose the steps of the mapping toolflow in an open or reusable

way, since this work would also benefit sales of their competitors’ hardware. This

approach also has some technical benefits, in that it allows manufacturers to deeply

optimize for their specific hardware. On the other hand, opaque solutions such as

this prevent efficient and expedient exploration in educational and research envi-

ronments.

Fortunately, open source academic tool flows like VPR [14] have opened the

door to a wealth of experimentation. We hope to extend this universe to include

self-timed FPGAs, while taking into account their unique challenges and opportu-

nities.

In this chapter, we discuss the stages of the traditional FPGA mapping toolflow

(Section 5.2), analyze the different optimization criteria posed by asynchronous
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Figure 5.1: Intermediate stages of a design being FPGA mapped

logic (Section 5.3), and describe modifications we made to the mapping toolflow to

allow it to target asynchronous logic (Section 5.4), including a new partition-based

clustering and placement strategy (Section 5.5).

5.1.1 Related Work

As discussed above, the majority of commercial FPGA mapping toolflows are

closed source, and by design only target a given company’s series of devices. While

this makes sense commercially, it limits the possibilities for research in this area.

The main open source FPGA tool flow project is called Versatile-Place-and-

Route (VPR) [14], published by the University of Toronto. This collection of tools
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maps designs to an abstract FPGA architecture, rather than a particular com-

mercial FPGA. The parameters of this architecture may be varied by researchers

to explore the system impacts of different FPGA implementation choices. With

VPR5 [95], the tool was expanded to support heterogeneous FPGA fabrics, as well

as single-driver routing within the interconnect. VPR5 also improves electrical

modeling, allowing for more accurate (synchronous) timing simulations of mapped

designs. The latest embodiment of this project is Verilog-to-Routing (VTR) [121].

The starting point for the VPR flow previously was a structural netlist, but VTR

adds Verilog elaboration using Odin II [69] so that it can accept HDL input like

commercial toolflows.

VPR/VTR targets architectural research, so it stops short of generating pro-

gramming bitstreams for actual hardware. Other researchers have separately added

this functionality, extending VPR to map to Xilinx Virtex 6 devices [67]. This ex-

tension uses RapidSmith [90], an API to the Xilinx Design Language, to create

bitstreams and program commercial FPGAs.

Other groups have also developed similar efforts. Zhou et al. created VDK

[158], a full toolflow designed to support formal verification throughout. VDK

uses Icarus for Verilog parsing, Synplify for clustering, simulated annealing for

placement, and a Pathfinder-based router. The TORC project [131] laid out a

roadmap for a toolflow similar to VPR that supports reconfigurable computing

applications. Most recently, Project IceStorm [152] developed a complete working

open source flow targeting Lattice FPGAs. It uses Yosys [151] along with ABC [19]

for design elaboration and synthesis, arachne-pnr [126] for placement and routing,

and generates bitstreams for the Lattice iCE40 series based on reverse engineering

the (relatively simple) architecture for that FPGA.
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In addition to the full toolflows above, there are also a wealth of independent

tools that comprise the various steps of the flow. Many of these can be reused or

adapted to target asynchronous FPGA architectures. These are tools are discussed

in the relevant subsections of Section 5.2.

Our goal is to build a complete toolflow targeting asynchronous FPGAs like the

one designed in Chapter 2, from HDL through to a mapped design. Like VPR, this

flow should have sufficient flexibility to allow it to be used for future architectural

research. In the remainder of the chapter, we describe how we constructed just

such a toolflow.

5.1.2 Contributions

In this chapter, we:

• Create a complete, flexible and extensible asynchronous FPGA mapping

toolflow (Section 5.4)

• Reframe asynchronous performance analysis to be more directly useful for

designers of AFPGA architectures and mapping tools (Section 5.3)

• Design and implement an async-aware placement and clustering tool, based

on dataflow graph partitioning (Section 5.5)

5.2 Phases of Synchronous Toolflow

In this section, we outline the sequence of steps used by mapping toolflows to

perform the series of design transformations shown in Figure 5.1. Chen et al. [26]
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published an excellent survey of the complete FPGA mapping process. The se-

quence of operations given mainly follows those performed by VPR. Depending on

the specific toolflow implementation, some of these logical stages may be combined,

or fractured into sub-steps.

The FPGA mapping process is largely similar to an ASIC circuit design flow,

but with more constraints due to the fixed/discrete nature of the FPGA platform.

It is worth noting that for each of these stages, finding an optimal solution is

generally computationally intractable. As a result, each relies on heuristic algo-

rithms to find a reasonable balance between mapping speed and mapped design

performance.

5.2.1 Synthesis

Synthesis is the process of converting a design expressed behaviorally in a high-

level design language (e.g. Verilog, VHDL, or more recently C) to a structural

netlist. This netlist is built from a discrete set of (possibly abstract) gates, and

it includes all connectivity information between those gates. The output of the

synthesis stage does not target any particular FPGA architecture.

The synthesis process is not unique to the FPGA context; it is the first step in

many digital design flows. As a result, there are a range of commercial and research

tools that can be used, in conjunction with or independently from a commercial

FPGA mapping toolflow.

Open source tools that can perform synthesis and netlist elaboration include

Yosys [151] and ODIN II [69].
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Figure 5.2: Implementing abstract 5-input LUT using two 4-LUTs and MUX.

5.2.2 Technology Mapping

FPGAs consist of a fixed set of hardware, as described in Section 1.3. In the tech-

nology mapping phase, the structural netlist produced by synthesis is transformed

to use only gates or hardware units that exist in the particular FPGA targeted by

the technology mapping tool.

For instance, if a given FPGA architecture only include four-input LUTs, larger

LUTs can be implemented by technology mapping as shown in Figure 5.2.

The logic manipulation tool ABC [19] is the most popular open source tool

for technology mapping. ABC evolved from the earlier SIS, and manipulates the

netlist as a large AND-Inverter graph (AIG), with the ability to optimize for logic

depth, gate size, and other criteria.
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5.2.3 Clustering

For FPGAs that include Clustered Logic Blocks (CLBs), the technology mapped

netlist must next be clustered to match. The optimization goals for the clustering

step the same as those described in Section 2.4.

One clustering tool, RASP [32], begins by assigning a weight to every pair of

logic elements. A higher weight indicates that it is more desirable to place the

two logic blocks near one another. A pair of nodes that cannot be placed in the

same cluster (i.e., could not be part of a legal placement as discussed below) are

given weight zero. The algorithm then finds a collection of pairs such that (i) total

weight is maximal; (ii) each logic element appears in at most one pair. This process

can be iterated to construct clusters that have 2k logic elements for any positive

integer k simply by using clusters of size 2k−1 in the pair-forming procedure.

While RASP builds all clusters simultaneously, other tools tools builds clusters

sequentially, typically through the greedy application of a simple attraction rule.

This is the approach taken by VPack [12] — at each iteration of the algorithm,

a logic element that has not yet been clustered is selected, and additional logic

elements are selected greedily to fill the cluster according to a desirability metric.

The well known variant T-VPack [100] improves this desirability metric by more

faithfully capturing timing information. It improves critical path delay by prefer-

entially grouping LUTs along the critical path into clusters, to take advantage of

the faster intracluster connections compared to global routing [5].
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5.2.4 Placement

After a design is technology mapped and clustered, we can assign a physical loca-

tion within the FPGA fabric to each unit or cluster of units. This step is known as

placement, and there are several different methods commonly used. A placement

is considered ‘legal’ once every unit has been assigned to a valid position within

the FPGA, respecting the capacity of each tile.

Tools like VPR [12] and TimberWolf [124] use simulated annealing [81] to

produce high quality legal placements. An initial (poor quality) placement is pro-

duced. At each step of the algorithm, a random perturbations is introduced, and

some measurement of cost is computed via a fixed cost function. If overall cost de-

creases, the perturbation is automatically accepted. If overall cost increases, then

the perturbation is accepted with probability e−∆/T , where ∆ is the change in

cost induced by the perturbation, and T is the current “temperature” of the algo-

rithm. Temperature starts high and is gradually decreased according to a so-called

cooling schedule. In effect, this means that poor perturbations are more likely to

be accepted earlier in the simulated annealing process, and become exponentially

less likely to be accepted as the cooling schedule progresses. Not surprisingly, this

cooling schedule plays an integral role in shaping the overall nature and quality of

simulated annealing results, and VPR’s success in large part can be attributed to

the flexibility with which it sets this schedule [61].

Simulated annealing becomes quite expensive when considering very large ar-

rays, a growing concern since FPGA size doubles every two to three year [61]. In

order to have some confidence that the algorithm will produce quality results, the

total number of perturbations executed over the course of the cooling schedule

must scale with the total number of possible configurations of the system. The
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number of placements of N logic elements is approximately N !, and so this ap-

proach becomes untenable as N grows large. In these cases, we might prefer a

more structured approach.

Partition-based placement attempts to assign clusters to physical regions of

the FPGA fabric such that connections between regions are minimized. A typ-

ical approach is bipartitioning, in which regions are recursively divided in two,

with the clusters in the parent region being assigned to one of the child regions.

By iteratively taking into account local connectivity information, partition-based

routing can reduce total wire length [61]. This approach has been successful in

ASIC design for minimizing wire length in cell placement. Note that this strategy

can be applied to both hierarchical and island-style FPGAs. We will discuss our

contributions to recursive bipartitioning in more detail below.

5.2.5 Routing

With all the logic placed in a physical location within the FPGA, the remaining

step to complete the design mapping is to connect the net terminals in the netlist.

Routing is often split into two phases. The first is a global routing phase, in

which nets are assigned to routing channels within the global interconnect. Here,

congestion can be negotiated and routing resources assigned in a way that allows

everything to fit. Global routing is generally performed using a more abstract

representation of the interconnect, omitting accurate detail in favor of quicker

solutions. This is followed by a second detail routing phase, in which the final con-

nections are made from the global routing channels, through the local interconnect,

and to the terminals of the logic.
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Routing in the FPGA context is inherently difficult, as it is prohibitively expen-

sive to fully connect components of the FPGA fabric (as discussed in Section 2.3.3.

To address this issue, some tools iterate between placement and routing phases in

order to perform joint optimization. Improvement to global metrics like average

wire length comes at the cost of algorithmic complexity and run time.

The PathFinder routing algorithm [109] operates on a high-level description

of FPGA connectivity. This approach is highly advantageous, as it is inherently

architecture-agnostic, allowing for rapid and low cost exploration of new architec-

tures [61]. At this level of description, one can leverage well known shortest-path

algorithms (e.g. Djikstra) or heuristics (e.g. A* [57]) in order to reduce total

routing cost. In all approaches, connections between FPGA elements are assigned

a weight based on the routing resources necessary to implement the channel, and

a solution representing minimal total routing cost in terms of these weights is

sought. Obviously, the choice of weights is critical the final quality of a routing

solution, and much work has gone into finding weighting functions that faithfully

represent network properties like congestion [113], fanout [14], and heterogeneous

path lengths [51].

At the end of the routing step, the design has been fully mapped to the FPGA

— every unit and net has an assigned position and dedicated resources within

the FPGA. Research-oriented toolflows such as VPR can stop at this level of

description; all information needed for detailed simulation is in hand. In order

to write this specification onto a physical FPGA, we need one additional step:

bitstream generation.
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5.2.6 Bitstream Generation

Bitstream generation is the process of creating the configuration memory image

for a mapped FPGA design. It is by its nature the most device-specific step in the

toolflow, and it requires knowledge of what function each bit of the configuration

memory controls. This process is comprehensive, in that it includes the function

programmed into every LUT, the position of each MUX, passgate, etc. After

bitstream generation, the design is finally ready to be implemented on the physical

FPGA by loading or burning the bitstream image into the configuration memory.

In commercial FPGAs, the details of the bitstream are generally somewhat

secret, since detailed knowledge of the FPGA architecture that they represent could

allow for reverse engineering of the hardware. No major FPGA manufacturer has

publicly disclosed the bitstream format for their devices since the Xilinx XC6200

series in 1998 [110]. As a result bitstream generation has in general been closed

source, but there do exist a few open source options for limited families of hardware

that have allowed for research exploration. JBits [116] manipulated configuration

bitstreams for the Xilinx XC4000 and Virtex device families, abits [110] targeted

the Atmel FPLSIC series, and the more recent IceStorm [152] supports Lattice

iCE40 FPGAs.

5.3 Asynchronous Performance

In this section we describe the foundations of asynchronous performance modeling,

indicate how asynchronous optimization criteria differ from synchronous, and pro-

vide guidelines useful for designing both AFPGA architectures and the associated
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mapping tools.

Our goal is maximize system throughput, defined as the number of operations

per unit time. Throughput has units of Hertz, and is directly analogous to syn-

chronous frequency.

By definition, all operations in a synchronous system are paced by a global

clock. The period of this clock is set by the longest path between two stateholding

elements (flip-flops) for all such paths in the system (see figure in Section 1.2).

Synchronous FPGA mapping tools attempt to reduce this critical path to increase

maximum system throughput.

By contrast, our AFPGA architecture is physically pipelined throughout at a

very fine granularity. The “longest path between two stateholding elements” is

represented by a single handshaking channel, and its timing is relatively uniform

throughout the AFPGA.

The limits to performance in an asynchronous system are the true data de-

pendencies in the dataflow graph. These algorithmic data dependencies also limit

synchronous throughput, whether or not they are the determining factor in setting

the clock period for a given implementation. Data dependencies are manifested

within an asynchronous dataflow graph as token loops and reconvergent paths.

We don’t just want to compute pipeline performance, we want to optimize it as

part of our mapping process. Our main tool in this effort is the ability to vary the

number of buffer stages on a given path within the dataflow graph by altering the

mapping. Assuming the system is slack elastic [98] like our AFPGA architecture,

altering the path slack can change the performance without impacting correctness.

Logically this makes sense: since the channel communications are delay-insensitive,
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downstream processes cannot detect that extra slack has been added.

Unfortunately, Kim [79,80] demonstrated that slack optimization is NP-complete

(by reduction to 3SAT). Regardless, we can use pipeline performance to guide our

async-aware mapping heuristics.

5.3.1 Modeling Pipeline Performance

The classic formulation [92, 150] for modeling asynchronous pipeline performance

is to consider a linear pipeline of buffer stages. Each buffer stage is characterized

by its forward latency, reverse latency, and maximum stage throughput T , which

is limited by its local cycle time.

A pipeline has static slack s (related to the number of buffer stages), which

indicates the maximum number of tokens that can occupy the pipeline without

stalling.

It also has a dynamic slack d, which is the number of tokens (< s) for which

pipeline’s throughput peaks. If throughput is limited by internal cycle time, this

is a range dmin to dmax.

Given these pipeline and buffer characteristics, we can derive an expression

for the throughput γ of the pipeline as a function of the number of tokens x it

contains:
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γ(x) =



T x
dmin

if x < dmin

T if dmin ≤ x < dmax

T s−x
s−dmin

if dmin ≤ x < dmax

(5.1)

Figure 5.4 shows the classic ‘umbrella’ plot that results, representing how the

throughput of a pipeline changes with the number of tokens resident. There are

three main phases of this plot. The first (left-most) phase is token-limited —

tokens can race through the pipeline without interference, so adding more increases

throughput (positive slope). The final (right-most) phase is known as bubble-

limited or hole-limited — tokens in the pipeline begin to collide and their transit

of the pipeline is limited by the free space ahead of them, so adding more decreases

throughput (negative slope). The point where these two slopes intersect is the

maximum throughput d. If the throughput is limited by each buffer’s internal cycle

time, there is an additional central control-limited phase, and the performance

triangle is truncated into a trapezoid.

5.3.2 Loops

An example dataflow loop structure is shown in Figure 5.3. Here, an output

of a copy node eventually feeds back to its input. The source and sink in the

example attempt to send/consume tokens at the highest possible throughput, so

the performance of the structure is limited only by the loop. Note that every loop

must have at least one token (otherwise nothing can ever happen), and the number

of tokens in a loop is assumed to be constant.

Buffer loops are the first and easiest place to operationalize the performance
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Figure 5.3: Dataflow loop

model discussed above. A loop is simply a linear pipeline with the output connected

to the input, so the model directly applies and we can see the classic trapezoid in

Figure 5.4 as the number of tokens is varied within a loop with fixed static slack.

This performance data can help us optimize both the AFPGA architecture and

the mapping flow to achieve maximum throughput. Unfortunately, it is not in the

most useful form. In general, the number of tokens in a dataflow graph loop is

determined by the algorithm it implements. On the other hand, thanks to slack

elasticity we have the ability to adjust the static slack of the loop by adding or

removing buffer stages.

Figure 5.5 shows the throughput achieved for various amounts of static slack,

given a fixed number of tokens within the loop. We can use this information as a

lookup table to determine the throughput for any given scenario.

Figure 5.6 shows the final and most useful form of the same simulation data.

It shows how the loop throughput varies as a function of the static slack per token
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Figure 5.4: Throughput in a loop with static slack s = 25 as the number of tokens
x is varied

Figure 5.5: Loop throughput versus static slack for loops with varying numbers of
tokens
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Figure 5.6: Loop throughput versus static loop slack per token

in the loop. Tokens traveling in a pipeline spread out across multiple stages, and

at optimal throughput the slack surrounding each token is known as its dynamic

wavelength [150] (= 1
d
). This makes logical sense, as e.g. a loop with one token

and s = 5 will have the same throughput as a loop with two tokens and s = 10.

From Figure 5.6, we can directly determine how many slack buffers should be

included in any loop in the dataflow graph, as well as the negative performance

implications if the actual slack differs from the ideal. Given the particular buffer

characteristics simulated here, we can see that as long the loop has slack per token

between 1.5 and 4, it can reach peak throughput.

When mapping dataflow graphs to the AFPGA, it is extremely unlikely that

loops will be token-limited due to the extra routing buffers in the AFPGA inter-

connect. As a result, our main optimization task is to keep all loops short enough

to achieve high throughput.
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Figure 5.7: Reconvergent path

5.3.3 Reconvergent Paths

The other structure in a dataflow graph that can limit throughput is the recon-

vergent path, shown in Figure 5.7. In this scenario, two linear pipelines (with

potentially different static slack) are fed by the same source and terminate at the

same sink. As a result, the number of tokens in each branch of the path must

be identical, which can force one of the branches into the token- or hole-limited

regime if the paths are not balanced.

Just as we did for the loops we can distill the performance impact of reconver-

gent paths into Figure 5.8, which lets us tabulate throughput for any reconvergent

path with path slacks (A,B).

If we try to create a unified metric similar to static loop slack per token, the

story is not as quite as clean in the case of reconvergent paths. Figure 5.9 shows the

throughput of reconvergent paths based upon the ratio of their path slacks A
B

, where

ratio of 1 indicates that the paths are completely slack matched. Unfortunately,

sets of reconvergent paths with the same ratio can have differing thoughputs: path
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Figure 5.8: Reconvergent path throughput for varying combinations of path slack

(5, 1) can operate at full throughput while (50, 10) has throughput cut nearly in

half, even though both have a ratio of 0.2.

Fortunately, we can still derive useful design guidelines from the path ratio data

in Figure 5.9. For instance, given the particular buffer characteristics simulated

here and regardless of absolute slack, one path can more than twice as long as

the other before we start to see any throughput degradation. Additionally, if the

path slacks diverge beyond that, we can see a clear lower bound for the resulting

throughput.

The main designer intuition available here is that there is a lot more leeway

available in rebalancing reconvergent paths than there is in setting loop slack.

Thus, our first priority in mapping for asynchronous performance is to optimally

map short loops, after which we can rebalance reconvergent paths if necessary by

adding slack to the shorter path.
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Figure 5.9: Reconvergent path throughput for varying path slack ratios

5.4 Asynchronous FPGA Mapping Toolflow

We have constructed a mapping toolflow for asynchronous FPGAs, which is able

to take a high-level design through to placement and routing, while also emitting

intermediate information to help with architectural exploration. We adopt many of

the approaches outlined in the synchronous toolflow description above with several

important changes which we will outline below. The largest change is an async-

aware partition-based clustering and placement step, which is discussed separately

in Section 5.5.

121



5.4.1 Synthesis

The output of the synchronous synthesis step is a structural netlist, but the true

starting point of the AFPGA mapping flow is a dataflow graph.

Peng et al. developed a synthesis procedure for generating such a graph [119,

143]. This process starts with CHP, which is then converted to Static Token form

(a variant of Static Single Assignment), and finally decomposed via projection into

the dataflow blocks used in our AFPGA architecture (Section 2.2).

Wong et al. also created a similar synthesis tool using data-driven decom-

position [153]. It begins with sequential CHP, converts this to Dynamic Single

Assignment form, and projects the into concurrent PCHB processes. These pro-

cesses are more general than our dataflow primitives, but each may be mapped to

a collection of simpler dataflow blocks.

Dataflow graphs for the AFPGA could also be generated via synchronous to

asynchronous translation, described in the next section.

5.4.2 Synchronous to Asynchronous Translation

If we want the highest possible performance from an AFPGA, we should begin with

an asynchronous dataflow graph optimized for its architecture. Despite this, it is

sometimes useful to have access to the broader world of synchronous benchmark

designs. Our AFPGA can also run synchronous designs, after they have been

mapped to a dataflow graph.

In order to map a synchronous design to a dataflow graph, two main steps are
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required:

• All fanout within the synchronous netlist must be replaced with explicit copy

processes

• All flip-flops in the synchronous netlist must be replaced with initial token

buffers, with the same value token as the flip-flop held at reset

Our toolflow includes a tool to perform this translation. The synchronous de-

sign must only have a single clock domain. The results will be cycle accurate/token

accurate, but beyond that timing information will not necessarily be preserved.

5.4.3 Bitstream

Our bitstream generator uses an abstract representation of the AFPGA, which has

several useful properties.

First, since the bitstream is always generated from the abstract representation,

it can never have illegal configurations such as shorts between drivers that could

damage the physical FPGA.

It is also fully relocatable, which means that a design can be trivially remapped

to anywhere within the AFPGA array. This allows us to pre-compile a design for

use in a partial reconfiguration flow, and only insert the physical location at the

last minute through a process similar to binary linking in the software context.

The bitstream format supports word-level configuration modifications if nec-

essary, which enables difference-based partial reconfiguration. This granularity
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requires you to specify an address for each write which is inefficient when pro-

gramming large regions of the AFPGA, so it also supports a compressed run-length

encoded format. This permits DMA-style block writes with auto-incrementing ad-

dress generation, similar to the Xilinx configuration frame model.

5.4.4 Routing

In general, the Pathfinder router algorithm is still good for our problem specifica-

tion. The final detail routing stage is simpler for AFPGAs, because they do not

have multi-terminal nets.

We can also do a post-hoc slack matching optimization pass by opportunisti-

cally lengthening the shorter legs of unbalanced reconvergent paths, as described

in Section 5.3.3. A reasonably simple architectural enhancement that would help

with this step would be to use un-pipelineable buffers in the routing fabric. These

buffers could be configured to have slack 0 and act solely as electrical drivers on

the channel, permitting us to reduce slack if needed during the routing stage.

This is similar to the concept of retiming registers in synchonous FPGAs [129],

but (i) much simpler and cheaper to implement, and (ii) completely optional for

correctness.

5.5 Partition-Based Clustering and Placement

In this section, we explain the graph theoretical background underpinning partition-

based mapping, describe our implementation of the algorithm, and share results

compared to other mapping strategies.
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5.5.1 Graph Theory Background

A directed graph G = (V,E) is composed of a collection of vertices V and a collec-

tion of edges E ⊆ V × V . This abstraction is extremely general, with applications

from modeling modular dependencies to capturing the flow of blood microvascu-

lature. In our context, nodes can be thought of as dataflow elements, and edges

as the channels that convey information between these elements. We say that two

vertices u and v are adjacent if there is an edge connecting u and v, that is, if

(u, v) is in E.

A classic problem in graph theory and theoretical computer science is to find

the “minimum cut” of a directed graph, that is, the minimum number of edges

that must be severed in order to reduce the graph to two disconnected components.

This idea has an immediate extension in which a function w : E → R assigns a

weight to each edge, and the objective is to produce a cut with minimal total

weight. Exact solutions to this problem have been obtainable for a half century,

e.g., via Ford-Fulkerson.

Traditional min-cut algorithms make no guarantees as to the size of the dis-

connected components of the cut graph; it can be the case that one component

has many more nodes than the other. Not surprisingly, partitioning becomes more

difficult when one attempts to minimize this disparity. The situation is further

complicated if we allow nodes to have weights (as we did with edges) and search

for a cut that equitably distributes node weight, not just node count, across parti-

tions. One common use case of this approach is the allotment of jobs (nodes) with

certain dependencies (edges) and expected run times (weights) across a pool of pro-

cessors (partitions). Minimizing the cut reduces the volume of between-processor

communication, and attempting to allot equal weight to each processor evenly dis-
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tributes total load. We will use the same mathematical approach to assign each

dataflow element a physical location on the FPGA fabric.

Modern partitioning algorithms take a heuristic approach to deal with the

large graphs commonly encountered in practice. The key problem here is that

partitioning complexity generally scales with graph size, and so directly partition-

ing large graphs is not feasible. The METIS suite [73–75] that we will employ

in our work here takes a coarsening-partitioning-refining approach to circumvent

this issue. The original graph G0 = (V0, E0) is first put through several rounds of

coarsening to produce a sequence G1 = (V1, E1), G2 = (V2, E2), . . . , Gk = (Vk, Ek)

of progressively smaller but more highly connected graphs. In step i, a maximal

collection of adjacent vertices is found in Vi−1, and the vertices in each pair are

merged, producing a new node set Vi. This induces a corresponding change in the

connectivity information of the graph, resulting in a new set of edges Ei. Notice

while the total number of nodes decreases by up to a factor of 2 in each iteration,

the overall connectivity of the graph increases, because (intuitively) nodes become

closer as a result of the merging procedure.

Once the number of nodes in Gk for some k passes below a predetermined

threshold, the coarsening procedure is halted; the graph is now small enough to be

quickly partitioned by simple methods. But the partitioning produced here is of

the coarsened graph, which may or may not be a quality partitioning of the original

graph G0. METIS takes a refinement approach to deal with this issue. First, the

algorithm begins to undo the coarsening procedure by reproducing the sequence

of graphs Gk, Gk−1, G2, G1, G0 via expansion of vertex pairs that were previously

merged. At each step, the partitioning applied to Gi is first naively applied to

Gi−1 (i.e., if node v was in partition j in Gi, then the associated unmerged nodes
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u′, v′ are initially placed in partition j in Gi−1) and then heuristically improved

by trading vertices in Gi−1 between partitions such that overall partition quality

increases. At the end of the refining procedure, we have a quality partition of the

original graph G0 that has been obtained with far less computational effort than

would have been necessary to partition G0 directly.

Note that this method is quite flexible, in the sense that we can tune both edge

weights and node weights to capture the various implementation constraints in the

system.

5.5.2 Recursive Bipartitioning

We use the graph-based techniques described above to partition a dataflow graph

into smaller pieces. The same mechanism is flexible enough to be used for both

clustering and placement, depending on input and stop conditions.

The partitioning algorithm begins with a directed graph representation of the

dataflow graph for a design. The general procedure is as follows:

1. Partition the input graph into two subgraphs, respecting provided constraints

2. If the new partitions meet the stop condition, return the generated set of

partitioned subgraphs.

Otherwise, start at step 1 with each new subgraph as an input

In order to use this strategy for clustering, begin with the dataflow graph

containing all nodes, and stop when the partitions contain the correct number of

nodes to form a legal cluster.
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To use the algorithm for placement, begin with an already clustered dataflow

graph. Stop when each partition contains the correct number of clusters to form

a legal FPGA tile.

You can also perform unified clustering and placement, as shown in Figure 5.10.

We begin with the complete dataflow graph, unclustered and unplaced. First, we

partition the graph into two subgraphs (Figure 5.10a), physically assigning each

half to a fraction of the FPGA fabric (Figure 5.10b). Since each partition is

still larger than what can be placed into an FPGA tile, the process continues by

partitioning each subgraph (Figure 5.10c). At this point in our example we assume

that each of these new subgraphs is small enough to form a cluster, each cluster

is assigned to an FPGA tile location (Figure 5.10d), and the combined clustering

and placement is complete.

This recursive bipartitioning procedure leads to a physical position within the

FPGA grid following the assignment rules shown in Figure 5.11. The numbered

arrows show the cut order, and each partition is assigned a grid position from

the history of cuts that generated it (using power-of-two indices starting from the

center of the grid).

The main mechanism we have to influence the partitioning process are the

weights assigned to nodes and edges of the graph during partitioning.

Node weights ensure that the correct units are placed in each partition. Usu-

ally we want an equal number of nodes on each side of a bipartition, but this can

also be used as an unequal constraint. For instance, we can bias the partitioning by

setting an extra “I/O weight” that will serve to force primary inputs and outputs

of the dataflow graph toward partitions that will end up on the outside of the grid,
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(a) Dataflow graph after step 1 (b) FPGA fabric after step 1

(c) Dataflow graph after step 2 (d) FPGA fabric after step 2

Figure 5.10: Two steps of a recursive bipartitioning procedure applied to a simple
dataflow. Note that in some steps, dataflow elements that are not connected in
the dataflow (e.g., nodes 7 and 11) may be placed in the the same region of the
FPGA fabric (gray region).

while still respecting the total node weight for each partition.

Edge weights by default ensure that connected components of the dataflow

graph are placed together. This is generally what we want in a quality placement,

since it keeps communication local and decreases use of global routing resources.

In Section 5.3, we showed that the most critical consideration for optimizing

performance of asynchronous circuits is to keep token loops short. We capture

this condition by searching the graph for loops, and adding extra weight to each
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Figure 5.11: Sequence of bipartitioning operations assigns grid position

edge that is part of a loop. Since finding all circuits in a large directed graph is

an expensive proposition [72, 106], we make this process tractable by limiting the

depth of the search. Intuitively, all the loops found and weighted by this process

are the ones we’ll be able to improve, by placing them into clusters and/or adjacent

tiles.

In the next section, we compare the performance of this recursive partition-

based placement strategy (both with and without loop edge weighting) to a tradi-

tional simulated annealing placement.
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5.5.3 Results

For “async-friendly” dataflow graphs (i.e. those without long loops or unbalanced

reconvergent paths), our toolflow finds an optimal full-throughput mapping with

ease. This is largely a function of the AFPGA architecture itself, with its fine-

grained pipelined interconnect.

To analyse the toolflow further, we turn to less ‘friendly’ designs. The bench-

marks used in the following results are the twenty largest designs in the MCNC

benchmark suite, which are commonly used for benchmarking FPGA mapping

toolflows [12,53]. A full description of the benchmarks can be found at [157].

Each benchmark started as a synchronous structural netlist and was run through

our asynchronous mapping toolflow. For the results presented, we used ABC for

technology mapping and our own tool for synchronous-to-asynchronous transla-

tion. The resulting dataflow graphs were then run through three different mapping

flows:

1. Partition-based placement

2. Partition-based placement with loop weighting

3. VPR placement using simulated annealing

Since each of these placement alternatives is stochastic, each data point is the

best result from five trials with different random seeds. Averages across bench-

marks are computed using the geometric mean [49].

Figure 5.12 shows the results of experiments (1) and (2), and highlights the

benefit of adding edge weights to loops. Results are shown only for sequential
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Figure 5.12: Throughput for partition-based placement, with and without loop
weighting.
Geometric mean across all benchmarks is 43.11 and 48.49 for unweighted and
weighted, respectively.

benchmarks; combinational designs have no loops and thus have identical results.

Designs placed with extra loop weight were superior in every case, and showed an

average 12.5% throughput improvement over the default equally-weighted graph

partitioning.

Figure 5.13 compares the results of experiments (2) and (3), pitting the partition-

based placement strategy against VPR’s simulated annealing placer. Results here

are mixed (partition-based placer yields higher throughput in four of the combina-

tional benchmarks) but ultimately decisive in favor of simulated annealing, which

showed an average 52.5% throughput improvement.
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Figure 5.13: Throughput for simulated annealing versus partition-based placement.

5.5.4 Discussion

Partition-based placement is quick and flexible. We can use the same mechanism to

perform clustering, placement, and partitioning simultaneously (e.g. ensuring that

a fraction of a design that will be dynamically reconfigured is grouped together).

Unfortunately, when operating on ‘async-unfriendly’ benchmarks, the quality of

the resulting mappings was in most cases inferior to that generated by simulated

annealing. The partition-based algorithm was able to detect and improve some

performance limiting structures in the dataflow graph, but not all of them. The

ones that remained limited total achievable throughput, and were actually better

suited to the global wirelength minimizing cost function of the simulated annealing

placer.
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A leading critique of partition-based placement is that the thread of the desired

global optimizations, e.g., of total wire length, is lost as the algorithm makes a

sequence of cuts based solely on local connectivity information [33]. A natural

solution to this problem is to look at the connectivity information at a coarser

level – instead of considering how each individual logic element is connected to

other logic elements, we consider how entire regions of the dataflow are connected

to other regions. When viewing the dataflow from this level, we have a much

more global picture of overall connectivity (which has come at the price of fine-

grain resolution of the dataflow’s constituent parts). One additional advantage of

coarsening procedures is that placement procedures that were intractable for the

large collection of logic elements (e.g., simulated annealing) can easily be applied to

this much reduced collection of regions [24]. The key issue here is that an optimal

placement of the coarsened depiction of the dataflow may no longer be optimal (or

even very good) when directly applied to the full resolved dataflow – a multilevel

approach is needed [23]. Ultimately, the best solution may be a hybrid approach,

leveraging the scalability and configurability of the graph-based approach with the

global perspective of simulated annealing in multiple phases.
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APPENDIX A

SUMMARY OF CHP LANGUAGE

The CHP notation we use is based on Hoare’s CSP [66]. A full description of

CHP and its semantics can be found in [101]. What follows is a short and informal

description.

• Assignment: a := b. This statement means “assign the value of b to a.” We

also write a↑ for a := true, and a↓ for a := false.

• Selection: [G1→ S1 [] ... [] Gn → Sn], where Gi’s are boolean expressions

(guards) and Si’s are program parts. The execution of this command cor-

responds to waiting until one of the guards is true, and then executing one

of the statements with a true guard. The notation [G] is short-hand for

[G → skip], and denotes waiting for the predicate G to become true. If the

guards are not mutually exclusive, we use the vertical bar “|” instead of “[].”

• Repetition: *[G1→ S1 [] ... [] Gn → Sn]. The execution of this command

corresponds to choosing one of the true guards and executing the correspond-

ing statement, repeating this until all guards evaluate to false. The notation

*[S] is short-hand for *[true → S].

• Send: X !e means send the value of e over channel X .

• Receive: Y ?v means receive a value over channel Y and store it in variable

v .

• Probe: The boolean expression X is true iff a communication over channel

X can complete without suspending.

• Sequential Composition: S ; T

• Parallel Composition: S ‖ T or S ,T .
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• Simultaneous Composition: S •T both S and T are communication actions

and they complete simultaneously.
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