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First, we outline the design, modeling, and fabrication of a glass-polymer microdevice

for the spatio-temporal delivery of neutral solutes to coherently grown rat hippocamapal

neurons. In the design and modeling of this device, we incorporate biological constraints

of the neurons and relate them to engineering parameters like solute delivery/clearing

time and the fluid shear incumbent on the neurons. Next, we describe the effects of

porous and charged interfaces on transport in microdevices. Porous and charged inter-

faces exhibit a fixed charge in a region of increased mechanical resistance. I will present

approximate analytical relations to describe forces (gradients of pressure and electrical

potential) and fluxes (mass and current) in a microfluidic device coated with porous and

charged layers. These relations improve upon existing expressions in the literature. We

demonstrate the efficacy of our results by comparison with numerical values. Finally, we

execute streaming potential, conductivity, and other measurements on Nafion polymer

films in a parallel-plate cell. I show that the charging of Nafion is relatively indepen-

dent of pH, but that electrokinetic outputs are strongly dependent on the ionic strength

of solution. These results are interpreted using our approximate analytical expressions

predicting forces and fluxes.
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CHAPTER 1

INTRODUCTION

Microscale fluid mechanics, or microfluidics, is applicable to a wide variety of problems

across many disciplines. A hallmark of microfluidics is the dominance of novel forces

that are absent at larger scales [9]. Linear and nonlinear electrokinetic, van der Waals,

surface tension, and other forces can govern flows and device behavior [10, 11]. Since

these forces come to dominate at small scales, their effects may be studied more clearly

in microdevices without interference from, for example, inertia. Additionally, microflu-

idic devices may be designed to exploit these physics, leading to the creation of new and

novel methods for materials fabrication [12] and cellular analysis [13].

In this thesis, microfluidics and microfluidic phenomena are exploited to study two

distinct problems: (1) delivery of solutes to neural cells in culture, and (2) theory and

experiment for electrokinetic effects in porous and charged layers. While distinct in

scope, these problems are fundamentally about the transport of species, momentum,

and charge.

Microscale devices are similarly sized to the fundamental biological unit: the cell.

This coincidence enables novel manipulation, stimulation, and observation of mam-

malian (and other) cells. In chapter two we present our efforts on the design, fabrication,

and optimization of a microfluidic device for seeding, growth and solute delivery to pri-

mary rat hippocampal neurons. This work is motivated by the hypothesis that defects

in transport of organelles and other components along the cell are mediated by reactive

species like peroxynitrite. In particular, we describe a novel method to direct neural

cell growth without chemical gradients or surface patterns, and identify a geometry to

achieve solute delivery while reducing shear stresses on the cells under study.
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Porous and charged layers are present in a variety of natural [14] and synthetic [15,

16] systems. Engineering of these systems requires a framework to predict fluxes of

momentum and current in response to various forcing conditions. In preparation for

our contributions to the electrokinetics of porous and charged layers, we review the

available literature on the theory and experimental techniques of porous (or soft) and

charged layers in chapter three. This work provides an overview of past research, with

emphasis on techniques that aid in the analysis of observed electrokinetic phenomena in

these systems.

We improve upon the available descriptions of electrokinetics in porous and charged

layers in chapters four and five. By deriving approximate analytical result for all elec-

trokinetic coupling coefficients, our results provide a framework to interpret forces and

fluxes in porous and charged layers. Since exact expressions for forces and fluxes in

porous and charged layers are available only for a limited range of system parameters,

we validate our approximate analytical results against numerical solutions of the exact

equations.

In chapter six we implement the theory developed in chapters four and five to exam-

ine thin (∼ 300 [nm]) Nafion films in a parallel-plate electrokinetic cell with conductvity

and streaming potential measurements. Nafion is a perfluorinated ionomer that forms

a network of channels and nodes lined with negative charges within a semi-crystalline

teflon-like matrix when cast as a membrane or film. We explore the electrokinetic prop-

erties of Nafion in a new experimental configuration and in a novel region of solution

ionic strength.

Finally, we close with conclusions drawn from the results of our study.

2



CHAPTER 2

CULTURE OF PRIMARY RAT HIPPOCAMPAL NEURONS: DESIGN,

ANALYSIS, AND OPTIMIZATION OF A MICROFLUIDIC DEVICE FOR

CELL SEEDING, COHERENT GROWTH, AND SOLUTE DELIVERY

2.1 Abstract

We present the design, analysis, construction, and culture results of a microfluidic device

for the segregation and chemical stimulation of primary rat hippocampal neurons. Our

device is designed to achieve spatio temporal solute delivery to discrete sections of neu-

rons with mitigated mechanical stress. We implement a geometric guidance technique

to direct axonal processes of the neurons into specific areas of the device to achieve so-

lute segregation along routed cells. Using physicochemical modeling, we predict flows,

concentration profiles, and mechanical stresses within pertiment sections of the device.

We demonstrate cell viability and growth within the closed device over a period of 11

days. Additionally, our modeling methodology may be generalized and applied to other

device geometries.

2.2 Introduction

Neurobiological systems are immensely intricate and complex: exhibiting vastness in

extent, variety, and connectivity. Analyses of these systems under well-constrained user-

defined conditions is necessary to extract mechanisms of disease, and to develop and

The content of this chapter was submitted and published as a research article that is reproduced here
with permission from Biomedical Microdevices. This is the pre-peer reviewed version of the following
article: “Culture of Primary Rat Hippocampal Neurons: Design, Analysis, and Optimization of a Mi-
crofluidic Device for Cell Seeding, Coherent Growth, and Solute Delivery”.
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screen targeted therapies for acute and chronic diseases. Interrogation of these systems

performed at the single- and multi-cell level enables relevant extracellular cell-scale

change and control. Micro- and nanofluidic technologies, developed over the past few

decades [9, 11], are uniquely suited to extract information at the cell level [17], as these

technologies provide devices with length scales comparable to the length scales of the

cell(s) under analysis.

Although micro- and nanofluidic systems demonstrate many advantages over tradi-

tional techniques, a variety of challenges remain in the design and fabrication of these

devices before neurobiological questions can be answered. Most importantly, neurons

are extremely sensitive to chemical and mechanical changes in their environment. Me-

chanical and chemical effects can be mitigated or eliminated at the design stage by

considering the bio- and physicochemical implications of the design.

Here, we present, analyze, construct, and qualify a novel microfluidic device to de-

liver soluble factors to specific locations on an array of coherently grown rat hippocam-

pal neurons with temporal control. Our device improves on the current state-of-the-art

by providing for both coherent arrays of neurons in concert with a delivery scheme pro-

viding spatial and temporal control of solutes at specific locations along the axon of the

cell, while leaving the cell soma undisturbed. Furthermore, our device design approach

stresses well-characterized mass and momentum transport to enable neurobiological ex-

periments.

Deficiencies of the intracellular transport mechanism in neurobiological systems are

putative causes of neurobiological damage and disease [18]. The biological transport

mechanism within the neuron may fail at several levels with the same result. Cargo-

carrying molecular motors, energy-producing mitochondria, microtubules (upon which

the molecular motors move), and the mechanism of cargo attachment are all succeptible
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to damage resulting in transport breakdown and cell damage or death [18]. Species

such as sodium azide [19] (NaN3) and peroxynitrite [20](ONOO−) have been shown

to damage cells under culture conditions. In these instances, the supposed mechanism

for cell death is mitochondrial damage imparted by unchecked reactive oxygen species,

such as superoxide [21]. Damage to mitochondria by such species is the suspect of many

human maladies, including aging, neurodegenerative disorders, and diabetes [22].

Many important aspects of neural function are mediated by local signals that impinge

on only one part of the cell. For example, growth cones at the tips of axons are sensi-

tive to directional cues provided by gradients of chemoattractants and chemorepellants,

which guide the axons to their targets [23]. Axons are also susceptible to local dam-

age, a common cause of neurodegeneration. Axons are subject to mechnical damage

following an injury or by local chemical insults, as lesions that occur in neuroinflamma-

tory diseases like multiple sclerosis. These chambers provide a means to mimic local

signaling in vitro.

Several culture systems have been used to tackle seeding-stimulation-response prob-

lems to observe axonal transport deficiencies and highlight the root cause of cell damage

and death. Neurons are typically studied in vitro, as in vivo studies are difficult, involv-

ing access and stimulation of a live animal. In vitro neurobiological studies of multi-cell

systems have historically been implemented on bare or modified culture dishes and cov-

erslips. Although a lab standard, coverslips [24] do not segregate soma and axon and

they cannot clearly delineate axonal ownership or polarity. Culture systems using a

modified petri dish, Campenot chambers [25–27], improve upon coverslips by provid-

ing for multi-chamber (typically three-chamber) segregation of neural cells, which are

grown in collagen grooves. The chamber is formed by a teflon divider and sealed to

the collagen surface with silicone grease. These chambers are prone to leaks, and the
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dimension of the smallest chamber is approximately 1mm, limiting the degree to which

the solute is localized.

Recently, microfabrication techniques have been implemented to segregate or de-

terministically order neural cells in predetermined configurations for analysis. Steric

approaches dominate in their ubiquity and simplicity: cells are ordered by providing

narrow channels though which axons propagate. Generally, channel size and geom-

etry [28, 29] are chosen to permit access and passage to the protruding axon but block

migration of cell soma. Once within these channels, the cells can be directed to a second

compartment and exposed to a solute, subjected to a gradient within the channel, or both.

A popular and influential culture device exploiting this approach is that constructed by

Taylor, et al., [30, 31]. This ladder-type device consists of two chambers separated by

an array of microchannels shaped to permit axons to grow from the seeding (or somal)

chamber to a second (axonal) chamber. By controlling the fluid height between axonal

and somal chambers, a hydrostatic head is generated to drive flow from the somal to ax-

onal chambers, and vice versa. By adding a solute to the axonal reservoir, flow induced

by the hydrostatic head acts counter to diffusion, establishing a stable, distally directed

gradient. The system built by Peyrin, et al. [29] uses similar geometry to generate ori-

ented neural networks for studying neural disease. Kunze, et al. [32] generated opposing

groups of somal cells with mixing neurites from microfluidically shaped hydrogel com-

partments. Both of these approaches also permit fluid segregation similar to the Taylor,

et al. approach. To create more complicated solute gradients, Wang, et al., [33] com-

bined laminar flow patterning and neuron culture. Establishing strong gradients required

high rates of flow, generating large mechanical shear at the cell-fluid boundary. For their

turning assay, Wang, et al. shelter the neurons in grooves to mitigate damage to sensi-

tive cellular components. This gradient generator provides for controlled solute profiles

both spatially and temporally, but, as the authors are interested in the response of the cell
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growth cone to stimuli, arrays of neurons are not generated in which axons are separated

from soma.

Other approaches, such as photolithographic and microcontact printing (µCP) meth-

ods are also used in which a surface is prepared such that cells exhibit a preference

for patterned or unpatterned regions of the culture substrate. The photolithographic ap-

proach [34] (1980s) predates the contemporary microtechniques for cell culture, with the

drawbacks that harsh chemicals are used in the preparation of the pattern (photoresist

and photoresist solvent), photolithographic tools are required to produce each device,

and it is difficult to increase patterns in complexity. In contrast, microcontact print-

ing [12] generates devices from the same microcontact ’stamp’, the ’ink’ is generally

aqueous and non-cytotoxic, and many patterns can be overlayed as the chemistry per-

mits. The primary difficulties in forming µCP patterns stem from chemical and physical

affinities between the material to be attached and the surface (e.g., keeping chemistry

wet [23]), and the alignment of overlayed patterns [35]. µCP patterns effectively guide

axons, but intial placement of soma is generally at random, requiring additional struc-

tures to block or promote adhesion on the pattern as desired.

Many reviews summarize cell culture methods relevant to neurobiological systems.

Banker and Goslin [36] have described a useful collection of traditional culture meth-

ods and procedures, including a discussion of early lithographic patterning approaches

and the Campenot chamber. More recent reviews on general microfluidic cell culture

systems have been conducted by Meyvantsson and Beebe [37], as well as Keenan and

Folch [13] with the latter stressing the role of biomolecular gradients. Both works are

aimed at general problems in cell biology. Addressing the problem of neural culture,

Gross, et al., [38] and Wang, et al., [39] provide reviews on recent work combining

microfluidics and neural culture.
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In general, neural microfluidic culture systems with solute delivery fall within two

broad categories: cells within channels or gels, and cells on a surface. Neurons within

channel- and gel-type systems are subjected to chemicals acting at either the distal or

proximal end, with a gradient in between and fairly low shear stresses. In surface-type

systems, cells are typically probed with a laminar-flow patterning type gradient gener-

ator which produces rather large shear stresses transverse to the neuron. The modeling

of both these systems is generally straightforward, as cells in both systems are exposed

to steady, uniform flows with large Peclet numbers, and diffusion can be ignored. Vari-

ations in geometry introduce modeling difficulties, and can be analyzed with finite ele-

ment techniques [33].

Here, we present the design, development, and culture results of a microfluidic de-

vice to deliver solutes to rat hippocampal neurons with spatial and temporal resolution.

We begin with a discussion of the device design, including its principle of operation,

layout, selection of parameters, and design specifications. The design presentation is

followed by a procedure for device fabrication and demonstrations of stable cell culture

within the constructed device. We close with conclusions drawn from the design, as

well as implications of our design for future neuron studies.

2.3 Device Design

Our design consists of two layers: an upper fluid delivery layer, and a lower culture and

growth layer for the cells, as shown in Figure 2.1. The top, delivery layer consists of

three fluid channels, each connected to a unique inlet reservoir, and a common outlet. A

culture layer for cell attachment and directed cell growth sits below this delivery layer.

This bottom layer holds an array of axonal channels, vertically offset and perpendicular
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to the fluid delivery channels, with mismatched hydraulic resistance to confine the de-

livered solute. Cells are introduced to the culture layer by holes cut through the delivery

layer.

L 

Pecr 

x 

L

x
x*

oc

c(x)
c*

hc 

hf 

wc 

wf 

Figure 2.1: Various schematics of the device showing relevant features to specify mo-
mentum and mass transfer. Top Right: The layout of the device in two tones. The fluid
delivery layer is shown in red (dark), and the culture layer is shown in blue (light). Bot-
tom Right: A demonstration of the operating mechanism. Fluid flows easily through
low-resistance channels and is retarded in high-resistance channels. Arrows denote di-
rections of flow. Left: A dissected view of the device describing variables explained in
the text.

This design has several advantages. The footprint of the device is small (∼15 mm2),

reducing required volumes of reagents and cells, but is still easy to manipulate without

specialized equipment. Because neurons attach to the bottom surface of the device,

growth and transport are easily visualized with an inverted microscope. Actuation by

hydrostatic head obviates syringe pumps and tubing; perfusion and solute delivery is

prompted by pipetting of reagents/media into one of the seven open reservoirs.
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The intersection of the large flud delivery channels in the upper layer and the small

axonal channels in the lower culture layer is important. The axonal channels function

by allowing the axon to enter and preventing the passage of the cell soma. We confine

solutes from the fluid delivery channels to segments of the axonal channels, through a

mismatch of the hydraulic resistances in both the delivery and axonal channels. At the

intersection of a large delivery and small axonal channel, mass and momentum are easily

transferred across the large delivery channel, but the small axonal channel, exhibiting a

much larger hydrualic resistance, retards streamwise convection of fluid from the large

channel. By controlling the direction and magnitude of flow in this fluid network, solutes

can be confined to segments of the axon.

For a steady, laminar flow, the pressure drop and flow along a channel of uniform

geometry are related linearly by a hydraulic resistance:

∆P = RhQ (2.1)

Where ∆P is the pressure drop, Q the flowrate, and Rh the resistance along the channel.

The resistance may be estimated for rectilinear channels [40] by:

Rh = 8η`
(h + w)2

h3w3 (2.2)

Here, η is the viscosity of the fluid, and h, w, and ` represent the height, width and length

of the channel. For nearly square channels, the resistance scales as Rh ∼ 1/h4, giving

Q ∼ h4∆P where the flow is strongly nonlinear in the characteristic size of the channel,

and linear in the pressure difference. The mathematical stiffness of the flow in response

to channel dimension communicates a flow that varies drastically between large and

small channels, and a comparatively weak dependence on the pressure difference rele-

gates pressure to a minor role. Therefore, flows will vary strongly between large and

small channels, so long as the differential in pressure drop between the channels remains

small relative to hlarge.

hsmall
.
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Figure 2.2: Device layout recast as a network of hydraulic resistances (resistors) and
fixed pressure zones (outlined by dashed lines).

We determine pressure in the device by solving a system of equations relating the

pressure drop, flowrate, and hydraulic resistance, as well as continuity of mass at each

fluid node in the device (
∑

nodes Q = 0). A schematic of the hydraulic resistnace model of

the system is given in figure 2.2. In this model, each channel has a hydraulic resistance

given by equation (2.2). For a device with n axonal channels, there are 7n + 3 unknown

flows within the device. To solve this system, we write 3n equations enforcing continuity

of mass at each node, and 4n + 3 pressure drop equations of the form ∆P = RhQ. These

pressure-drop equations represent closed fluid circuits (where ∆P = 0), and open-ended

circuits incorporating the boundary conditions (here, outlet reservoirs) as endpoints.

This system of equations is then solved in MATLAB. The solution yields pressures at

each node and flowrates in each channel. This equivalent hydraulic resistance model

alone does not predict spatial varation of flow within each channel, and flow velocities

are not predicted as a function of position on the channel cross-section; however, the

pressure drops combined with later predictions facilitate the three-dimensional velocity

distribution far from nodes (i.e., ` >> d from node).

Mass transfer within the device is well approximated by the one-dimensional con-

vection diffusion equation. This approximation requires that transport along the channel
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occur at a time scale much greater than similar processes across the channel: τ‖ >> τ⊥.

The ratio of the dominant lengthwise (τ‖) to transverse (τ⊥) transport time scales in the

low axial Pe limit , τ‖
τ⊥
∼

(
`
a

)2
, as well as the high axial Pe limit, τ‖

τ⊥
∼

(
`
a

)2 1
Pe , show that

flow within microchannels of moderate Péclet number satisfy the approximation. Thus,

∂c
∂t

+ ux
∂c
∂x

= D
∂2c
∂x2 (2.3)

Where c(x, t) is the local concentration of solute [a.u.], t is time in [sec], x the distance

along the channel (0 < x < `) in [m], and D the diffusivity of solute in [m2/s].

We solve equation (2.3) in segmented lengths of the axonal channels. We impose

fixed concentration boundary conditions at the intersections between axonal and de-

livery channels, c(0, t) = co, representing the solute imposed on the cell, and a zero-

concentration boundary condition where the axonal channels meet the somal chamber,

c(`, t) = 0. We non-dimensionalize equation (2.2) using scaling defined in Figure 2.1

and a convective temporal scale to non-dimensionalize time t∗ = t
`/u . The velocity scale

in this case is the average across the channel, u =
Q
A , computed from knowledge of the

device geometry (cross-sectional area, A) and the flowrate from (2.1). With this scaling,

and noting that ux = u for unidirectional flows, the equation becomes:

∂c∗

∂t∗
+
∂c∗

∂x∗
=

1
Pe
∂2c∗

∂x∗2
(2.4)

The Péclet number, Pe = u`
D = τDiff

τConv
, relates the timescales of convection and diffuson

along the channel. Often, flows in microdevices have large Péclet numbers, limiting

mixing (e.g., laminar flow patterning). Here, a large streamwise Péclet number will

similarly result in strong solute confinement, whereas a flow with a near-zero streamwise

Péclet number yields a linear concentration profile in the steady-state.

This problem is closed by writing a homogeneous initial condition: c∗(x∗, 0) = 0. We
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perform an eigenfunction expansion to obtain a series solution of this boundary-value

problem applicable for all non-zero values of Pe:

c∗(x∗, t∗) = e
Pe
2 x∗

∞∑
n=1

2nπ
n2π2 + 1/4Pe2 sin(nπx∗)

(
1 − e−

t∗
τ∗n

)
(2.5)

with τ∗n = 1
n2π2

Pe + Pe
4

. For an arbitrary intial solution concentration profile, φ(x), and zero

concentration boundary conditions, the concentration evolves in time and space as:

c∗(x∗, t∗) = e
Pe
2 x∗

∞∑
n=1

C∗n sin(nπx∗)e−
t∗
τ∗n (2.6)

With the intial-condition-dependent constants:

C∗n = 2
∫ 1

0
φ(x∗) sin(nπx∗)e−

Pe
2 x∗ dx∗ (2.7)

The Péclet number governs the shape of the concentration profile, both at steady

and transient states. The nature of the series solution necessarily means that there is

not one single time constant, but a time constant for each mode of the solution. The

time constant controlling the development of a concentration profile corresponds to the

largest time constant, which is the lowest Fourier mode, τ∗1 = 4Pe
4π2+Pe2 or τ1 = 4`2

D(4π2+Pe2) ;

for D = 1e − 9, τ = 2.7 [sec], D = 1e − 11, τ = 275 [sec].

The shear at the interface between the wall and fluid is determined by solving the

steady, 2-D Navier–Stokes equation for uniform flow in an asymmetric duct under the

action of a pressure gradient ∇p =
phigh−plow

0−` :

∇p = η∇2ux =
∂p
∂x

= η

(
∂2ux

∂y2 +
∂2ux

∂z2

)
(2.8)

This is solved in a rectangular domain: −w
2 ≤ z ≤ w

2 , −h
2 ≤ y ≤ h

2 , w > h with uz = 0 on

the boundary. The velocity profile is given by:

u(y, z) =
G

(
h2

4 − y2
)

2µ
−

∑
n

(odd)

4h2G
n3π3µ

sin
(nπ

2

)
cos (λny)

cosh (λnz)

cosh
(
λn

w
2

) (2.9)
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with λn = nπ
h and G = −∇p. The fluid shear is, in general, a tensor quantity, but the

positions of maximal shear reside on the centers of the channel edges. Thus, to identify

an upper limit for shear, we need only compute the shear at two points in the domain:

τ1 = η ∂u
∂z

∣∣∣
z=±w/2,y=0

=
∑

n
(odd)

4h2G
n3π3 λn sin

(
nπ
2

)
tanh

(
λn

w
2

)
(2.10)

τ2 = η ∂u
∂y

∣∣∣∣
z=0,y=±h/2

= −G h
2 +

∑
n

(odd)
4h2G
n3π3

λn

cosh(λn
w
2 ) (2.11)

Of these, τ2 is the dominant stress. High shear is present in regions with high fluid

velocity gradients, and this is the case on the boundaries of the device; the rectilinear

shape of the channel creates points of high shear on the long sides of the channel, as the

maximum velocity in the center of the channel must decay to the no-slip value at the

wall over a shorter length, increasing the spatial gradient of velocity.

In addition to interfacial stresses, the velocity solution is integrated to give a flowrate,

and average velocity:

u =
Q
A

= h2 G
4η

1
3
−

∑
n

(odd)

64
n5π5

h
w

tanh
(nπ

2
w
h

) (2.12)

For w/h > 2, the hyperbolic tangent is approximated as unity for all n, and the remaining

sum,
∑

n (odd)
1
n5 can also be approximated as one. Whence,

u = h2 G
4η

(
1
3
−

64
π5

h
w

)
(2.13)

We perform a similar procedure to convert the shear stress from an exact trancen-

dental to an approximate algebraic function. In this case, the hyperbolic function does

not approach a convenient limit, so we introduce a parameter, ε, that depends on the

ratio of height to width in the device:

τ2 = −G
h
2

1 −∑
n

(odd)

8
n2π2

1

cosh
(

nπ
2

w
h

)
 = −G

h
2

(1 − ε) (2.14)
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Table 2.1: Geometric parameters tabulated for particular channel aspect ratios. The
parameters were computed from ca. 1000 summands, at which point the sum had con-
verged.

h
w ε δ

1/2 .6303 3.232
1/4 .8144 1.320
1/6 .8763 0.828
1/10 .9258 0.475

The above expressions (2.12) and (2.13) can be combined to eliminate explicit depen-

dence on pressure, providing a dependence on average velocity in the channel:

τ2 =
ηu
h

2 1 − ε
1/3 − 64

π5
h
w

 =
ηu
h
δ =

ηPe D
`

h
δ (2.15)

Equation (2.15) is convenient to quickly estimate the shear as a function of key

geometric and fluid parameters. In keeping theme with the mass convection-diffusion

analysis of the system, we find it convenient to recast the shear as a function of Péclet

number rather than velocity. We tolerate this addition of variables by noting that the

diffusivity of species does not change greatly (if interested in only small ions, D ∼ 10−9

[m2/s], or only large macromolecules, D ∼ 10−11 [m2/s]), and that the length of the

device, although it may change, is typically fixed by the demands of the experiment.

From the solutions to mass and momentum transfer relations, we determine the max-

imal shear stresses and concentration profiles (in time and space) using the hydraulic

resistance model of the device from which the pressure drops were obtained. These re-

sults do not require multiphysics modeling of mass and momentum transport, and this

is a direct result of design decisions enabling simplifications in the governing equations

to analytically tractable forms.
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2.4 Design Analysis and Discussion

The critical performance and design parameter in the device is the Péclet number, which

we have identified as the controlling parameter in the distribution of solutes imposed

on the neuron. Below (Figure 2.3), we present six plots detailing the concentration of a

solute, as normalized by its input concentration, at positions along the culture channels.

Solute concentration at six positions (identified by x∗) along the axonal channel are

queried as a function of the Péclet number and time and plotted. By selecting a desired

channel location and a fraction of the input concentration, the plots yield the Péclet

number required for the desired solute profile for transient and steady-state modes of

operation.

These concentration isocontours show that the system equilibrates on the order of ten

seconds. For most profiles shown, a time of two minutes is sufficient to achieve steady-

state operation. These concentration profiles establish more rapidly than standard solute

delivery experiments, which are typically over 15 minutes in duration.

We quantify changes of fluid height analytically with the 1D model presented pre-

viously (equation (2.6)). This result is necessary to determine the time required to clear

an axonal channel at the conclusion of solute injection, for example. To model device

clearing, we introduce a nonzero initial condition for the concentration distribution in

the channel, along with homogenous boundary conditions on the edges of the channel.

By solving a change in device state from an experiment run at Pe = 15 with soluble

chemicals (i.e., the delivery state) to a cleared device, we have found a 5-fold (e.g., 105)

reduction in maximum concentration is achieved 4τ after the system is changed from

the delivery to the clearing state. This is visualized in the following figure, where con-

centration is shown as a function of time and space, decaying from an initial condition.
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Figure 2.3: Concentration isocontours as a function of time and Péclet number for vari-
ous positions along the axonal channel (x*).

Here, the time constant is take as that of the lowest Fourier mode, τ = 4Pe
Pe2+4n2π2 .

Out design specifies the Péclet number required such that diffusion is entirely dom-

inated by convection of the fluid from the somal chamber toward the delivery fluidics.

Solute confinement is produced at the cost of fluid shear stresses that are imposed along

the axon. Fluid shear within the device, as a function of fluid, solute, and geometric

parameters, is presented in equation (2.15), and is plotted in Figure 2.5. We present two

scalings of the shear to highlight important design considerations: (1) allowable channel

dimensions for specific values of τ
Pe under the action of a constant fluid velocity (pres-

sure and resistance changing) and (2) allowable channel dimensions for specific values

of τ
G under the action of a constant pressure difference (flow and resistance changing).Of

course, these figures will collapse to a single curve with appropriate scaling ( τ
Gh ), and

this is shown as an inset in the figure.

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Channel Position x *=x/L[−]

C
on

ce
nt

ra
tio

n 
c

* =c
/c

o
 

 
t = 0
t = 1e−3τ
t = 1e−2τ
t = .1τ
t = 1τ
t = 5τ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−5

10
0

Channel Position x *=x/L[−]

C
on

ce
nt

ra
tio

n 
c

* =c
/c

o

Figure 2.4: Transient response of device from steady-state operation with non-zero
boundary conditions to solute clearing state with zero concentration boundary condi-
tions at both ends of the culture channel.

The left pane in Figure 2.4 shows shear normalized by Péclet number to commu-

nicate dependence on the ratio of the channel sides, as well as the abolute height of

the channel. Normalization by Péclet removes pressure dependence as the geometry is

varied; changes in the shear are due purely to dissipation of energy at the walls vs. diss-

pation in the bulk - as the channel area is reduced and the shape made more oblong, the

surface area becomes exaggerated and energy dissipation at the boundaries is enhanced.

At fixed Péclet number, increasing h/w, the channel dimension ratio, and the ab-

solute channel height, h, reduce shear but these parameters are limited by engineering

constraints. There are fundamental limitations to the selection of both of these design

dimensions, typically imposed by the method of device construction. Dry chemical

etching of glass is impractical for depths greater than 3 µm as impurities deposit in the

channel halting the etch (in these cases, the glass has a frosty appearance). Wet etch-
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Figure 2.5: Maximum shear in the device, normalized by Péclet number (left) and pres-
sure gradient (right), as a function of absolute channel height and channel aspect ratio.
Dimensional quantities are plotted for simplicitiy in device design. The inset (at right)
provides the collapsed curves for shear when appropriately normalized.

ing generates channels of arbitrary depth, but semi-circular channels of poor geometric

definition. Aside from fabrication constraints, channels with large widths invalidate the

arguments used previously to justify a 1-D solute transport model, as enhancement of

the channel cross-section decreases τ⊥ while τ‖ remains constant.

The presence of axons within the channels perturbs channel geometry. Blockage of

the channel by cellular components increases the resistance of the channel, decreasing

the average fluid velocity in the presence of a constant pressure drop. The pressure drop

can be assumed constant as pressure on the somal side is fixed by the culture reservoir

height, and the pressure distal from the soma is fixed by the pressure in the fluidic

channel which, owing to the small resistance of this channel, is essentially that of the

outlet reservoir located at the bottom of the device. We plot shear normalized by the

pressure gradient in the culture channel in the right pane of Figure 2.5. Here, a blockage

is easily seen as a change in both the aspect ratio of the channel as well as the absolute
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height of the channel. For growth along the base of the channel, the aspect ratio will

increase and the channel height will decrease. Both these effects decrease the incumbent

fluid shear on the cells. For growth along the sidewall of the channel, the height remains

constant and the shear increases soley in response to the change in aspect ratio. Since

the plot is nonlinear, stronger changes in fluid shear are felt for channels designed with

smaller aspect ratios.

Both of these presentations of shear in the device discuss the case of maximal shear

occuring a the center of the long wall on the channel cross-section. Locations away from

this point will experience lower shear, with a minimum value of zero at the corners of

the rectangular cross section.

2.5 Device Fabrication

The two-layer device is constructed from PDMS (for the fluid delivery network) and

fused silica (for the culture and growth substrate). PDMS casting masters were fabri-

cated from Silicon wafers (500 [µm] thick) using a Bosch etch process. Prior to etching,

wafers are cleaned in Pirahna, dehydrated via heating in a hexamethydisilazane atmo-

sphere (YES Vapor Prime Oven), and patterned photolithographically with Megaposit

SPR 220-7.0 positive photoresist spun to a thickness of 7 [µm]. The channels with the

smallest aspect ratio (1.3 : 1) in the delivery layer are those residing directly above

the axonal channels, having dimensions 135 [µm] x 100 [µm] (height x width), and the

channels with the largest aspect ratio (8.4 : 1) construct the resistance network, running

from the input reservoir to the large fluid delivery channels. Channels in the reistance

network are [16 µm] in width.

After etching the master, we passivate the surface by exposure to a small liquid vol-
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ume (∼ 80 [µL]) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane (Sigma-Aldrich) under

vacuum for ∼ 2 hours. PDMS (Sylgard 184, Dow Corning), mixed in a ratio of 10 : 1

(base: curing agent), degassed, is combined with the master, and baked at 60 C for 2

hours to form the fluidic layer. After removing the PDMS from the mold, intlet, outlet,

and culture reservoirs are installed using a biopsy punch. We employ the leaching pro-

cedure of Millet, et al. [41] to remove uncrosslinked oligomers from the PDMS matix,

preventing eventual release of these oligomers during cell culture and device operation.

Briefly, a series of solvents swell the PDMS increasing the diffusivity of uncrosslinked

polymer. We soak the devices in solutions of pentane (36 [hr]), pentane (7 [hr]), xylenes

(16 [hr]), xylenes (7 [hr]), 200 proof Ethanol (2 [hr]), 200 proof ethanol (16 [hr]), 200

proof ethanol (7 [hr]), and a final soak in sterile DI water for a minimum of 12 hours.

After the final sterile DI water exposure, we dry the PDMS under vacuum or in a 60 C

oven.

The bottom (culture) layer of the device is fabricated from fused silica. Coverslip-

thin (170 [µm]), 4-inch fused silica wafers were ordered from Mark Optics, Inc. (Santa

Ana, CA). These wafers are washed in concentrated nitric acid, rinsed with DI water and

nitrogen spray-dried prior to patterning. We coat the wafers with 70 [nm] of sputtered

Chrome, followed by Shipley 1818 photoresist spun at 3000 RPM for 30 sec. We then

pattern and develop photoresist to generate a masked array of culture channels, guide

lines, and the culture base. Exposed Chrome is removed with CR-14 etchant (Transene

Company, Inc. Danvers, MA), and the wafer is again rinsed with DI water and dried in

nitrogen.

Using the chrome mask, we perform reactive ion etching to create the culture layer

of the device. The chrome mask is etched in CHF3/Ar plasma (Oxford 100, Oxford

Instruments) to a depth of 3 [µm]. After transferring the pattern from the Cr mask to
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the fused-silica, we remove the remaining photoresist and chrome mask, and clean the

wafer in DI water. The cleaned and patterned wafer is then diced with a wafer saw,

yielding 24 substrates per wafer.

Both device halves are assembled after activation of the bonding surfaces in air

plasma (Harrick Plasma, Ithaca, NY; ∼30 [W], 200 [mTorr], 90 [sec]). By attaching

both layers on an inspection microscope, using a small drop of water between the fused

silica and PDMS, we delay the onset of the bond to increase working time and improve

alignment. Post-alignment, we gently pinch the parts together and wick residual water

from the device edges using a KimWipe. To ensure a strong bond, the assembled device

is cured overnight in a 60 [C] oven.

We then prime the device with sterile DI water by filling inlet and culture reservoirs,

submerging the device in sterile DI water, and exposing the device to slighlty negative

pressure to remove bubbles trapped within the device [42]. After removing all bubbles,

we exchange a solution of 1 [g/L] poly-L-lysine in borate buffer in the device to improve

adhesion between the neurons and the wetted surfaces of the device. Typically, we

perform two exchanges in total with the second 1.5-2 hours following the first. After the

poly-L-lysine deposition, we again flush sterile DI water through the device. Devices

are stored wet until used.

2.6 Demonstration of Cell Culture

We perform culture of primary rat hippocampal neurons in the device. These cells are

used to study the distribution and trafficking of motor proteins, growth factors, and other

biochemical agents. The neurons are sensitive both mechanically and chemically, pro-

viding an excellent test platform for our device.
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Primary hippocampal cultures were prepared from E18 embryonic rats of either sex

as described previously [24, 36, 43]. Cells were plated at 250 cells/mm2 into the poly-

L-lysine-treated somal chamber and maintained in cortical astroglia cells-conditioned

NB/B27 medium at 37 degrees incubator with 5% CO2. Due to evaporation, medium

was replenished every other day. Cells attached to the surface a few hours after seeding

and axons started to grow into the micro-channels 3-5 days after seeding. For visu-

alization of neurite growth, 10uM Calcein AM (Invitrogen), a cell-permeant dye that

is converted to a green-fluorescent calcein after acetoxymethyl ester hydrolysis by in-

tracellular esterases, was added to the somal chamber for 15min incubation at 37 de-

grees followed by gentle rinse with pre-warmed medium. To label mitochondria, 50nM

MitoTracker R© dye (Invitrogen) was added to the somal chamber for 30min incuba-

tion at 37 degree followed by gentle rinse with pre-warmed medium. Cells were main-

tained at 37 degrees for live imaging. Before acquiring movies, nanochamber was semi-

sealed into a heated chamber (Warner instruments, Hamden, CT) containing hibernate

A medium (Brainbits LLC, Springfield, IL) kept at 37 degree. Images were captured

with a spinning disk confocal microscope setup custom built by Solamere Technology

Group (Salt Lake City, Utah). Laser excitation wave length for different fluorophores

was 488nm for GFP and 568nm for Mitotracker Red. Mitochondrial transport was ac-

quired using a 40X 1.3 N.A oil objective. Both objective and the imaging stage are

heated to 37 degrees.

We image cells using phase constrast microscopy to gauge cell viability and directed

growth. Cells are shown at day in vitro (DIV) 1 and DIV 7 in Figure 2.6 below. These

images show the growth of cells from a globular to stellated morphology, concurrent

with the extension of axons into the culture channels. As described in the previous

section, guide lines were fabricated onto the surface of the device where the cells are

seeded. These guide lines are marked in Figure 2.6, leading from the seeding area
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toward the trigonal opening of the culture channels. Neurons were successfully cultured

in the closed device for up to 11 DIV, which is sufficient time for cells to reach fluidic

channels within the device enabling confined solute delivery.

Channel in Fused Silica Fused Silica Substrate 

PDMS boundary 

DIV1 DIV7 

Somal 

Chamber 

Here 

Fused Silica Guide Lines 

Figure 2.6: Phase contrast image of cells within device at DIV 1 (left) and DIV 7 (right).
Cells at DIV 7 display healthy morphology evidenced by the absence of clumping and
the outgrowth and development of both dendrites and axons. Images were captured on
an inverted microscope, enabled by the coverslip-thin device substrate. The scale bar in
both figures is 140 [µm]

We found guide lines into the axonal channel necessary to align the culture channels

with the axon of the seeded cells. This observation is, at first glance, inconsistent with

the work of Taylor, et al. [30, 31], as they do not require special modification of the

entrace region to their channels. There are, however, geometric differences between our

work and Taylor, et al. which explain the differences in cell behavior. The interface

between the small channels and the culture area is formed by the attachment of the top

PDMS cover and the bottom fused-silica base. When attached, the PDMS cover and

base form a seal above the culture channels which is not entirely flush and the region

between the PDMS top and fused silica base presents the cells with a three-dimensional

charged surface (the entire device has been coated with cationic poly-lysine) that is

amenable to cell growth and attachment. Both the fabrication of the PDMS cover and

the alignment of the PDMS/fused-silica assembly contribute to the geometry of this

surface. The edges on the PDMS cover are not perpendicular, but curved owing to the
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etching of the master; off-edge alignment exaggerates the extent of the bounding surface.

(A)            (B) 

Figure 2.7: Frame A: Demonstration of entrained neural axons within culture chan-
nels. Fluoresence micrographs (middle right and bottom), with corresponding device
locations hightlighted at top, show stained (Calcein AM, Invitrogen) cells indicating
the presence of axons within the channels. Growth of axons proceeds from the somal
chamber to the first fluidic channel. Frame B: Micrographs (top) and diagram (bottom)
of axons in a device without guide lines. In the bottom diagram, three zones are speci-
ficed: (I) the somal chaber, (II) partially enclosed culture channels, and (III) completely
enclosed culture channels. Shown above are micrographs of axons failing to enter the
channels in zone (III), having been stalled in zone (II). The micrographs at top were
captured using fluoresence microscopy on cells treated with MitoTracker Green dye,
visualizing the mitochondria within the cells.

2.7 Conclusions

We have presented a design methodology quantifying the effects of device geometry

on mass transport and fluid shear. These results were used to design a microfluidic de-

vice, in which nerve cells were sucessfully cultured. The design methodology presents

a two-step process: (1) a hydraulic resistance model is used to predict fluid flow and

pressure drops in all channels within the device (2) the pressure drops and flow rates

are used to predict fluid shear and solute distribution profiles. This approach obviates

implementation of multiphysics or CFD software, requiring only implementation of a
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matrix solver — mass transport and momentum behavior are straightforwardly commu-

nicated via plots and tables to determine shear as a function of flowrate and geometry,

along with transient and steady state solute distributions given previously-determined

flow behavior. This reduced-order design formulation enables fast and straightforward

design of arrayed microfluidic devices for neural culture.

Culture on the device was demonstrated using primary embryonic rat hippocampal

neurons. We also describe a geometric guidance scheme to direct axonal processes of

the neurons into a linear array of culture channels where the axons may be later ana-

lyzed using the fluidic delivery system. Such a system will be useful in neurobiological

experiments such as drug screening for prevention of, or solube factor delivery for the

encouragement of, transport defects within the axon. Furthermore, the layout of the

device enables somal isolation (and therefore known cell polarity) and the multiplexed

culture channels of known orientation permit addressable data collection with minimal

effort.
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CHAPTER 3

SOFT DIFFUSE INTERFACES IN ELECTROKINETICS - THEORY AND

EXPERIMENT FOR TRANSPORT IN CHARGED DIFFUSE LAYERS

3.1 Abstract

Charged and uncharged soft interfaces are present in a variety of microfluidic and bio-

logical systems. The electrokinetic properties of these fixed-diffuse-charge systems are

dependent on (1) the components of the working fluid, (2) the bounding surface of the

diffuse charge layer, and (3) the chemical and mechanical properties of the film itself.

Here, we describe recent and past literature to provide a framework for the interpretation

of data, utilizing the electrokineic coupling matrix, and a description of the experimental

techniques relevant for microfluidic systems. In this work, we focus on experiments on,

and models for, flat surfaces with constant film mass.

3.2 Introduction

Soft materials occur throughout natural and synthetic systems. In biology, soft materials

are present inside and outside most multicellular organisms, found at the boundaries of

the tissue and vasculature [14]. Less complex organisms, such as bacteria, have diffuse

charge layers on their outer surface that are essential for cell adhesion [44–46] and other

processes [47]. In the lab, both charged and uncharged polymer layers may be grafted to

structures and within capillaries to suppress electroosmosis, [48, 49] or otherwise mod-

ify the surface chemistry and charge [49, 50]. Despite the ubiquity of these interfaces,

The content of this chapter was submitted and published as a research article that is reproduced here
with permission from Soft Matter. This is the peer reviewed version of the following article: “Soft Diffuse
Interfaces in Electrokinetics - Theory and experiment for transport in charged diffuse layers”.
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our ability to describe fixed-diffuse-charge systems is limited by ambiguities in the elec-

trostatic and hydrodynamic governing equations and associated boundary conditions.

Descriptions of electrokinetic (EK) phenomena generally depend upon the ζ-

potential of the material–solution system. The ζ-potential relates to the surface potential,

φo, which is a critical component of DLVO theory used to characterize the interaction

between charged surfaces [10, 51]; ζ is furthermore used to predict electroosmotic fluid

actuation in glass and polymer capillaries [52, 53]. Electrokinetic characterization of

the ζ-potential for a range of solution conditions is relatively straightforward for rigid-

walled systems because the electrostatic and hydrodynamic boundaries coincide; for

soft interfaces this is often not the case. Here and throughout we consider a soft in-

terface to be a system composed of a rigid backing wall upon which a fluid permeable

layer resides. These layers may be charged or uncharged.

A complete description of soft interfaces requires that we consider four key points:

1. Chemical interactions between the diffuse-charge layer and the bulk fluid.

We must know film chemistry to predict film charge as a function of pH and ionic

strength. Oxides can have poorly-defined dissociation chemistries and charging

behavior [52] but polymer and other films can be synthesized or selected to cre-

ate systems with improved chemical definition, using tuned acid/base dissociation

constants. Furthermore, models can be formulated and validated against experi-

ments to extract key chemical parameters (e.g., active site density, pKa of surface

groups). Questions remain, however, with the charge–generating mechanism of

chemically inert polymers and underlying rigid film backing.

2. Mechanical interaction models between the diffuse-fixed-charge layer and

the bulk fluid. Fluid–film interactions govern pressure- and electroosmotically-

driven transport. Models of fluid–solid interaction for films as a function of pH,
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ionic strength, temperature and other local solvent/film properties must be com-

posed to describe the transport of fluid within the film layer. The solution to this

problem will enable descriptions of momentum transfer in films, likely using an

effective viscosity or Brinkman-type correction to the Navier–Stokes equations.

3. Modeling of the surface- and fluid-generated potential field. Closed-form so-

lution for film potentials are known only in specific limits of relative film size (rel-

ative the Debye length) and film potential (relative to the thermal voltage). Films

may be described with variable or uniform charge, and coupled to the governing

Poisson–Boltzmann equation as a forcing term as a function of space. Potential

modeling of the film and fluid are necessary to quantify charge and momentum

transport. As in solid-surface electrokinetics, analyses can be simplified in the

low-potential linear case, or examined numerically in the nonlinear case.

4. Experimental methods to extract film/fluid system parameters. Experiments

are required to validate proposed theories. Relevant experimental measurables for

films on solid substrates in microfluidic systems are electroosmotic velocity in-

duced by an electric field transverse to the film surface normal, conductance of

the film, and measured streaming current and potential. Contemporary advances

in microfabrication techniques, metrology tools such as AFM [54], and the wealth

of physical and chemical information on polymer films encourages parametric in-

vestigations of solid-film-solution systems to test quantitatively proposed models

for these systems.

Here, we address these aspects of the solid-film-fluid interface for applications in

microfluidic systems; specific attention is paid to the coupling of film properties us-

ing the formalism of the electrokinetic coupling matrix. Recently, Pallandre, et al. [55]

reviewed aspects of these systems, with regard to the application of surface treatment
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techniques developed for large surfaces. Zembala reviewed electrokinetics of hetero-

geneous surfaces [56], examining diffuse charge layers on heterogeneous particles and

electrokinetics of particles adsorbed on surfaces. A later review by Adamczyk and co-

workers [57] describes work on heterogeneous surfaces, considering more specifically

the case of particle covered surfaces with well defined ζ-potentials.

In the first half of this paper, we review fundamental electrokinetics of rigid surfaces,

and then incorporate the ideas of diffuse interfaces to compare between the two. In the

second half, we review the literature in two parts: (i) theoretical descriptions of diffuse

interfaces and (ii) experimental work on diffuse interfaces. We conclude with future

directions in diffuse interface research.

3.3 Theoretical Electrokinetics at Hard and Soft Interfaces

3.3.1 Fundamentals of Electrokinetics at Hard and Soft Interfaces

The ζ-potential is of fundamental interest and importance in electrokinetics, represent-

ing the observed electrokinetic potential as the result of an experiment. The ζ-potential

stands in contrast to the surface potential, φo (figure 3.1), which is the electrical po-

tential of the coincident plane at the solid surface. Commonly, as in the case of the

Gouy–Chapman model [1], the two are taken to coincide. In the Gouy–Chapman–Stern

model the two potentials are different; an immobile layer of ions with thickness λs off-

sets the plane of shear and surface potential, as shown in figure 3.1.

The starting point for the analysis of double-layer phenomena is the Poisson–
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Figure 3.1: Diagram of charge-generated potential profiles at an impermeable charged
interface. Bound wall charge (here negative) generates an immobile (Stern) layer of ions
and a diffuse layer. Schematic potential and velocity profiles, as a result of forcing by
pressure and potential fields, illustrate characteristic length scales and behaviors. The
velocity profiles at left are comparable in shape but not magnitude.

Boltzmann equation:

∇ · (−ε∗εo∇φ) = ρe + ρ f = F
n∑

j=1

c j,∞z∗je
−z∗j Fφ

RT + ρ f (3.1)

Here, φ is the electrical potential, εo is the permittivity of free space, ε∗ is the dielectric

constant in the continuum, F is Faraday’s constant, c j,∞ and z∗j are the bulk concentration

and valence for the jth ionic component (from a total of n), R is the molar gas constant, T

the temperature, ρe is the free charge density (expressed via the Boltzmann distribution

in equation (3.1)), and ρ f is the fixed charge density. Unitless variables are embellished

with asterisks; dimensionless functions and non-dimensional parameters (e.g., Du) are,

however, not embellished. The Poisson–Boltzmann equation is nondimensionalized by

the Debye length λd =
√

ε∗εoRT
2F2Ic

, the characteristic electrical decay length in the fluid,

the thermal voltage φT = RT
F ∼ 25[mV] as the characteristic potential, the ionic strength

Ic = 1/2
∑n

j=1 z∗2jc j,∞ as a concentration scale, and an arbitrary parameter, β, as a scale

for the fixed charge. For a z∗ : z∗ electrolyte with uniform permittivity, the 1-D Poisson–

Boltzmann equation becomes:

d2φ∗

dx∗2
= −

1
z∗

sinh(z∗φ∗) − ρ∗f (x)
β

2FIc
(3.2)
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Equation (3.2) above suggests the scale β be taken as 2FIc, which is characteristic of the

charge capacity of the ions in solution. Dukhin, et al. [58] has additionally proposed a

length scale for characteristic electrical decay within the fixed charge layer:

λδ = λd

√
2Fc∞∣∣∣ρ f

∣∣∣ =

√
ε∗εoRT

F
∣∣∣ρ f

∣∣∣ (3.3)

This relation communicates the importance of the fixed charge on the electrical potential

profiles, and is paramount in descriptions of conductivity within the film. In the absence

of a charged layer, ρ f (x) = 0, the boundary condition on the solid wall is described with

either a fixed charge, ε∗εo
dφ
dx

∣∣∣
x=0

, or a fixed potential, φo. The second boundary condition

in bulk solution or the far field is taken to have zero charge or zero field, or, in the case

of symmetrical walls, a second fixed charge or fixed potential.

The ζ-potential is the electrokinetic potential at or near the rigid surface, and it is

obtained from an electrokinetic experiment, e.g., streaming current/potential [52, 59,

60], current monitoring [52, 59, 60], or neutral-dye elution [52, 59, 60]. A variety of

other techniques may be used, including surface conductance or dielectric spectroscopy

measurements [61]. Streaming current/potential and conductance techniques are the

most useful for these studies, as the chemistry of the working fluid remains constant and

the required equipment is readily available.

Streaming current and streaming potential techniques are straightforward to inter-

pret on rigid surfaces in the thin–EDL limit. In a streaming-type experiment, the test

cell is typically a small-bore (diameter typically 25 to 150 µm) capillary [62–65] or par-

allel plate assembly [66–68]. Fluid is actuated by a pressure difference, ∆p, across the

channel of length ` and uniform area A. The pressure difference generates a flow with

velocity field u that acts to transport the free charge density (ρe) as a current:

Istr =

∫
A

uρe · dA (3.4)
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When the hydraulic radius of the channel, rh ∼
2·Area

Perimeter is large relative to the Debye

length, the streaming current integrates to [59, 69]:

Istr =
ζε∗εoA
η

∆p
`

(3.5)

Thus, the channel cross-section and fluid properties are known, and we can measure

the streaming current and pressure drop across the channel to yield an expression for

the ζ-potential. A similar technique, streaming potential, uses the same experimental

setup, but the electrical potential is measured with a high-impedance voltmeter rather

than current with a low-impedance ammeter. In enforcing I = 0, an adverse current of

charged species is conducted through the fluid as caused by an equilibrium E-field.

The mechanism of system conductance is essential to the measured streaming poten-

tial. Absent double layer effects, the system conductance is due only to the presence of

ions in the bulk fluid, although surface conductance effects can be present owing to the

charged surface. The presence of the surface enhances the conductivity of the system.

The total effective conductivity of the channel is a combination of the bulk and surface

conductivities:

σ = σB +
Gs

rh
(3.6)

Where σ is the system conductivity, σB the conductivity of the bulk fluid, and Gs the

surface conductance. By recasting the total conductivity, we extract a nondimensional

parameter that defines the relative importance of the surface conductance:

σ = σB(1 + Du) (3.7)

The Dukhin number is defined as Du = Gs
σBrh

. As the characteristic dimension of the

channel and solution ionic strength increases, surface conductance effects become less

apparent — Davies and Rideal remark [70], that capillary ζ-potentials were initially

thought to depend on the radius of the capillary directly only to be later understood as
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enhanced conductivity as the surface to volume ratio of the capillary increased. Attempts

at analytical descriptions of the surface conductance tend to underestimate the observed

values [71–74].

The surface conductance of a system may be determined in several ways. Common

methods are (a) the four-electrode technique of Schwan [75], which is a direct measure-

ment of the cell conductivity, (b) a limiting extrapolation method in which an electroki-

netic measurement is performed as the characteristic channel dimension is changed, and

(c) sequential streaming current and streaming potential measurements from which the

cell conductivity is derived and corrected by the bulk fluid value.

3.3.2 The Electrokinetic Coupling Matrix

The cognate electrokinetic phenomena are well described with formalism of the elec-

trokinetic coupling matrix [59, 76]. Here, the system is forced by a pressure gradient

∇p ·~n, with ~n directed along the channel axis, and/or an electric field E, and the outputs

are flow and/or current densities. Generally, Q/A

I/A

 =

χ11 χ12

χ21 χ22


 −∇p · ~n

E

 (3.8)

This matrix communicates immediately all essential electrokinetic phenomena: fluid

flow in the absence of electrical forcing depends on χ11 only
(
Q/A = −χ11∇p · ~n

)
,

streaming current depends on χ21 only
(
I/A = −χ21∇p · ~n

)
, conductivity measure-

ments on χ22 only (I/A = χ22E), and streaming potential on a ratio of χ22 and χ21(
I/A = 0⇒ E = χ21/χ22∇p · ~n

)
. Other phenomena such as EK pumping (−∇p · ~n =

χ11/χ12E) and electroviscosity (Q/A = −∇p · ~n(χ11 − χ12χ21/χ22)) are straightforwardly

descried as well. The structure of the electrical double layer (EDL) governs the form of

the χ12, χ21 and terms.
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For a z : z electrolyte in the thin–EDL limit, the four components of the EK coupling

matrix are:

χ11 ≈
r2

h

8η
(3.9)

χ12 = −
ε∗εo

η
φo (3.10)

χ21 = −
ε∗εo

η
φo (3.11)

χ22 = σB +
Gs

rh
(3.12)

The χ11 term is affected only by the channel size and fluid viscosity; the components off

the main diagonal depend on electrical and mechanical properties of the fluid and the

wall potential. The χ22 term is equal to the system conductivity, composed of bulk con-

ductivity, surface conductance, and the hydraulic radius of the channel. There are two

commonly recognized sources of surface conductance: (1) an electrophoretic compo-

nent, similar to the bulk, but increased because of enhanced concentration of ions near

the surface and (2) a convective component provided by electroosmotic flow, which car-

ries the net charge in the EDL. These two effects were quantified by Bikerman [71–73]:

Gs =
√

8ε∗εoc∞RT
(

u+

B∗ − 1
−

u−
B∗ + 1

+
4ε∗εoRT
ηzF

1
B∗2 − 1

)
(3.13)

Here, B∗ = coth
(
−zφo
4φT

)
and u± are the ionic mobilities of the counter- and coions in

solution (cf. Bard and Faulkner [1] p.68).

We introduce integral formulations of the electrokinetic coupling terms, which gen-

eralize the electrokinetic parameters when outside of the thin–EDL limit [76]. Here, the

velocity u is a function of both a pressure gradient and electrical potential. Further, the

phenomena is reduced to two dimensions – with directions parallel (y) and orthogonal
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(x) to the flow: Q/A

I/A

 =


1
−
∂p
∂y

1∫
dx

∫
u|E=0 dx 1

E
1∫
dx

∫
u| ∂p

∂y =0 dx

1
−
∂p
∂y

1∫
dx

∫
u|E=0 ρe dx 1∫

dx

(∫ ∑
j z∗jFu jc j dx + 1

E

∫
u| ∂p

∂y =0 ρe dx
)

 −

∂p
∂y

E


(3.14)

The quantity u j denotes the ionic mobility for the jth ion in the system. Representation of

this matrix equation in higher dimensions is straightforward, although evaluation of the

terms will be complicated by irregularities in geometry. We implement the reduced for

above consistent with past work in this field, as well as experimental systems designed

to accomodate simplified forms.

3.3.3 Electrokinetics and Soft Interfaces

The electrokinetic coupling matrix is a convenient way to codify the response of the

diffuse charge system to external forcing. The integral formulation outlines how such

responses will be determined, provided that expressions for the fluid velocity and con-

centrations are known as a function of applied electric and pressure fields both inside

and outside of the surface layer.

The generalized electrokinetic coupling terms described in equation (3.14) are ap-

plicable to soft interfaces. The key difference between rigid and diffuse interfaces with

respect to these terms is the breakdown of a well-defined and meaningful ζ-potential.

For rigid interfaces, ζ represents the potential at the plane of shear, whereas for soft

materials, ζ is an integral function of the soft layer charge and hydrodynamic properties.
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3.3.4 Theoretical descriptions of Soft Interfaces in Electrokinetics

To analyze and interpret theory and experimental data, we use the system geometry in

figure 3.2. Here, the height of the channel is small relative to the width (d << w) and

thus the channel geometry can be approximated as infinite parallel plates. A fixed charge

layer of thickness δ uniformly covers each surface. Depending upon the phenomena of

interest, pressure or electric fields may actuate the fluid.

Descriptions of electrokinetics at geometrically well-defined soft interfaces have

been proposed and studied by many workers. The genesis for the initial work is a de-

scription of membrane surfaces, as they appear in filtration systems and biological appli-

cations [77]. Although these studies are useful to frame our current discussion on planar

interfaces in electrokinetics, we will not discuss results specific to non-planar geome-

tries. Soft systems have also been analyzed with respect to colloidal mobility [78–80],

sharing many aspects of the theory, but these studies are outside of the current dis-

cussion owing to the inclusion of complicating factors (e.g., geometry, although this

complication vanishes for Debye and diffuse-layer length scales much larger than the

characteristic particle size).

Soft interfaces may be divided into two classes: soft interfaces with charge and soft

interfaces without charge. Early attempts at modeling the soft interface without charge

were provided by Cohen Stuart, et al. [81, 82]. In their approach, the film completely

blocks momentum transfer, yet has electrical properties identical to the bulk fluid. This

shifts the shear plane away from the rigid wall into solution by a thickness δ, and is

distinct from the Stern layer picture of the interface as the drop within the film layer

proceeds exactly as in the bulk, vs. the linear decay demanded by a finite layer of

oppositely charged ions. Specifically, Cohen Stuart, et al. assume a solid wall with
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Figure 3.2: Schematic of electrokinetic cell used in theoretical modeling and experimen-
tal investigations (top). The configuration here is not drawn to scale; typically w >> d to
approximate parallel plates. (Below) A typical velocity profile produced by an applied
pressure difference. The hydrodynamic penetration distance, λo, is also shown.

potential φ∗o =
Fφo
RT and a film with thickness δ to obtain the potential at the film edge:

φδ =
2RT
z∗F

ln

1 + tanh
(
φ∗o
4z

)
e−δ/λd

1 − tanh
(
φ∗o
4z

)
e−δ/λd

 (3.15)

For a z∗ : z∗ electrolyte in the case described above, the four components of the elec-

trokinetic coupling matrix are:

χ11 =
(d/2 − δ)2

8η
(3.16)

χ12 = −
ε∗εoφδ
η

(3.17)

χ21 = −
ε∗εoφδ
η

(3.18)

χ22 = σB + σδ +
Gs

d/2 − δ
(3.19)

Compared to systems absent the film, the χ11 term is affected only by a reduced flow

path, and χ12 and χ21 exhibit reduced electrical potential as the potential drops across the

immobile film to the displaced plane of shear. The conductivity term, χ22, now has three

components: the bulk conductivity of the channel, σB, the conductivity within the stiff

film, σδ, and a conductivity term accounting for excess and depletion of counter- and
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coions near the charged surface and an electroosmotic component of the flow, Gs. Here,

we takeσδ to be zero as the film has infinite resistance to flow. Outside the film, we adopt

the Bikerman formulation of surface conductivity (equation (3.13)). From equations

(3.16)-(3.19) we observe that the EK coupling matrix for a transport-impermeable film

of thickness δ is nearly identical to a system without a transport impermeable film.

The slight differences originate in a decrease in the hydraulic resistance and apparent

ζ-potential for the system with a film.

Although the impact of the momentum-impermeable, electrically-identical film is

straightforward to analyze and interpret, the model can be applied to very few systems:

Generally, an interfacial layer will exhibit none of these outcomes — grafted layers

are seldom impermeable to transport, and films rarely exist completely uncharged. In-

deed, there are many reports of surfaces with no inherent chemical charge generation

method [48, 65, 83, 84] (i.e., no dissociable groups or groups that may be substituted)

that nevertheless generate a local potential and charge attributable to nonspecific adsorp-

tion, or other physical and chemical interactions. Studies of charged interfaces present

greater difficulties in analysis and interpretation.

Modeling of soft interfaces is grounded in the examination of biological materi-

als. Early efforts by Donath and Pastushenko [85, 86] analyzed the electrophoresis of a

cell coated with glycoproteins and glycolipids. The Donath and Pastushenko theory is

developed for the linearized Poisson–Boltzmann equation with a uniform fixed charge

density in the glycoprotein/lipid layer. Whereas, the biological analytes considered by

Donath, et al. [85, 86] are poorly defined geometrically and heterogeneous in extent,

the theory developed assumes planar geometry on the assumption that the characteristic

length scale for changes in the electrokinetic and flow profiles are much smaller than the

characteristic dimension of the cells under study (erythrocytes and bull spermatocytes).
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In the Donath and Pastushenko theory, the inner membrane potential is related to the

fixed charge through the Donnan potential. The concept of the Donnan potential [70,87,

88] is central to nearly all studies of diffuse-charge interfaces. A charged membrane will

uptake ions from solution, generating a difference in concentration. This is coincident

with a difference in potential because the chemical potential of the same species must be

equal in both the fluid and film phases [70]. This same relation between bulk fluid and

inner membrane potential is obtained from equation (3.1) when d2φ

dx2 = 0, as a uniform

equilibrium is enforced between the salt reservoir and the fixed charge sites. For an ion-

permeable membrane with fixed charge density ρ f and a solution of z∗ : z∗ electrolyte

with concentration c∞ at equilibrium, the Donnan potential is:

φD = −
RT
|z∗| F

arcsinh
(

ρ f

2 |z∗| Fc∞

)
(3.20)

When the potential and charge density are made dimensionless by φT and β = 2FIc, the

Donnan potential becomes:

φ∗D = −
1
|z∗|

arcsinh
(
ρ∗f

)
(3.21)

This describes the potential difference between a thick membrane (δ >> λd) and a point

far out in solution; δ >> λD implies that the curvature in potential will vanish, leaving a

balance between the free and fixed charge densities, as above. Ohshima and Ohki [89]

require this condition at the interface between the inner and outer layers of the mem-

brane, and this, in conjunction with zero potential gradient at the membrane midline, re-

quires that the center layer of the film assume a potential equal to the Donnan potential.

This Neumann boundary condition appears in nearly all descriptions of diffuse-charge

interfaces; notable exceptions are those descriptions that select a potential boundary

condition deep within the film of the rigid backing substrate (e.g., a boundary poten-

tial of silica for a hydrogel attached to glass). This boundary condition is indicated

schematically in frame A of figure 3.3.
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Figure 3.3: Diagrams of charge (ρ f ) and potential (φ) profiles for various wall boundary
conditions. (A): Neumann boundary condition with fixed potential slope at wall. (B):
Dirichlet boundary condition with fixed potential at the wall. In both cases, characteris-
tic decay lengths are indicated for the fluid (λd) and diffuse charge layers (λδ), with φδ
is the electrical potential at the film edge.

In the Donath and Pastushenko theory, Donath, et al. [85, 86] formulate a three-

parameter model varying the thickness of the film, film permeability, and the fixed-

charge density of the film. Inherent in their model is the assumption of equal dielectric

constant (ε∗) in both the gel layer and solution—an assumption that they assert is justi-

fied on the high water content of the film.

Ohshima and Ohki [89] consider the electrical potential profile of a partially charged

membrane sandwiched by free solution. In this model, a free membrane in solution

has a dry, uncharged center and hydrated exterior regions which are charged. Their

analysis is similar to the prior efforts by Donath et al. [85, 86], although Ohshima and

Ohki consider the general nonlinear description of the electrokinetics, and benefit from

symmetry conditions at the membrane interior. Considering thin (2δ/λd ∼ 1) and thick

(2δ/λd >> 1) membranes, they derive an expression relating the potential at the outer

plane of the diffuse charge layer with an inner, uncharged, layer that is offset from the

outer plane by some distance δh. Asserting the uncharged inner layer possesses zero

curvature in electrical potential
(

d2φ

dx2 = 0
)
, and defining the center of the membrane as

a plane of symmetry
(

dφ
dx

∣∣∣
midpoint

= 0
)
, they relate the potential at the outer membrane
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boundary to points within the inner layer of the membrane [89, 90]:

φ∗δ = φ∗D − tanh
(
φ∗D
2

)
(3.22)

Here, φ∗δ lies on the edge of the membrane/film and φ∗D lies in the plane dividing the

charged and uncharged membrane sections; φ∗D is also the potential everywhere within

the uncharged membrane; both potentials are made dimensionless by φT.
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Figure 3.4: Schematic of potential and velocity profiles for a negatively charged polymer
film. Various momentum and potential decay scales are displayed, which mitigate both
pressure and electric field actuated transport. In the velocity–position plot at left, the
up and uEO plots are not comparable in magnitude, but do indicate differences in spatial
velocity gradients; pressure–driven flow changes continuously until the channel center,
and local to the film varies linearly when the size of the channel is large as compared
to the film thickness. The E-field generated (electroosmotic) flow establishes on scales
comparable to the Debye length.

3.3.5 Charge Transport: χ12 and χ21

Studies of electrokinetic behavior on diffuse-charge interfaces have been conducted for

planar (or nearly planar) surfaces by Wunderlich [91], Donath and Voigt [92], Ohshima

and Kondo [93], and Starov and Solomentsev [94, 95]. Donath and Voigt [92] compute

the streaming current and streaming potential of diffuse-charge layers on parallel plates.

Their formulation of the system includes fluid mechanical and electrical modeling. They

solve a modified Navier–Stokes equation by including a Brinkman-type [96] resistance
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term:

η
d2u
dx2 − k(x)u =

∂p
∂y

(3.23)

which we nondimensionalize to:

d2u∗

dx∗2
− λ∗2u∗ =

∂p∗

∂y∗
(3.24)

Where u∗ = u
U defines a characteristic velocity scale U, y∗ =

y
`

and x∗ = x
δ

define length

scales based on channel length and film thickness, the pressure is nondimensionalized

as p∗ =
p

η`U/δ2 , and λ∗ =

√
k(x)δ2

η
defines the square of the ratio of a characteristic length

scale for the penetration of fluid into the film, λo =
√

η

k(x) , which nondimensionalizes

the film thickness, δ. The Brinkman (friction) coefficient, k(x), is a function of space

and may generally be taken to vary in direct proportion to the charge density of the film,

as the density of charge groups on the polymer is presumed to scale linearly with the

film volume fraction and hence film resistance. In the Donath and Voigt formulation,

the friction coefficient is non-zero and uniform throughout the film 0 ≤ x ≤ δ, and zero

in the pure fluid phase δ < x ≤ d/2.

The electrical modeling of the planar fixed-charge layer and fluid assumes the form

given by equation (3.1), with a spatially varying fixed-charge density ρ f . Studying the

cases of a z∗ : z∗ electrolyte, the problem is then to solve equation (3.2), with β = 2FIc.

Since the full equation is nonlinear, most closed-form solutions have been found only

for the linearized case. Linearization results in:

d2φ∗

dx∗2
= −φ∗ + ρ∗f (x) (3.25)

This now limits the applicable range of study to cases where φ∗ < 1 or equivalently φ <

25 [mV]. Equation (3.25) may be solved both inside and outside of the film, applying

a matching condition for electrical potential and electrical field at the film edge. The

boundary conditions away from the film are zero potential in the bulk (cell midline) and
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fixed potential slope at the inner surface of the film:

φ∗
(

d
2δ

)
= 0 (3.26)

dφ∗

dx∗

∣∣∣∣∣
x∗=0

= −σ∗ (3.27)

Here, σ∗ = σ
√

2εεoRT Ic
. The first condition enforces electroneutrality of bulk solution,

and the second fixes the charge of the film interior to that of the bulk film, neglecting

any apparent charge at the solid wall that would result from, for example, a charge-

generating dissociation reaction. Both of these boundary conditions are indicated in

figure 3.3.

The distribution of fixed charge within the film strongly affects the film surface po-

tential and surface-sensitive measurements. In figure 3.5 we plot analytical solutions

to equation (3.25) with various charge density profiles, all having the same total charge.

These profiles indicate the dependence of profile shape and boundary value on the charge

distribution. Considering the effect of charge distribution on film measurements, stream-

ing current preferentially probes the surface of the film, and is sensitive to the charge

density at the surface (as determined by the potential). The surface potential varies

strongly in for the three charge distributions considered.

Donath and Voigt [92] examine streaming current as a function of system parameters

in the low potential limit. These results do not address films having high charge or films

bounded by surfaces with electrical boundary conditions that differ from the film bound-

ary conditions. Donath and Voigt [92] also describe a nonlinear treatment of streaming

current, streaming potential, and surface conductivity for a volume with uniform charge

distribution terminated by a surface with fixed surface charge. A numerical approach

was required to produce a solution to the problem of ion transport under the action of

pressure and electrical fields.
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Figure 3.5: Potential profiles for various charge distributions derived from equation
(3.25). The film extends a distance 10λd into the domain from the wall (x∗ = 0). The
inset figures (at right) show the various charge distributions, ρ, considered. In all cases,
the total charge is conserved across the film of thickness δ∗.

The identical problem was considered by Ohshima and Kondo [93, 97], who addi-

tionally show in the limits δ/λd >> 1 and δ/λo >> 1 that Onsager reciprocity is satisfied

in the system (i.e., χ12 = χ21). In this case, the fixed charge density is distributed

uniformly across a distance δ from the wall into the fluid. A closed-form solution is

available for the off-diagonal term of the EK coupling matrix:

χ12

µ
=
χ21

µ
=
λ∗φ∗δ + φ∗Dδ

∗ cosh1/2(∗zφ∗D)

λ∗ + δ∗ cosh1/2(z∗φ∗D)
+ ρ∗f

(
δ∗

λ∗

)2

(3.28)

Here, the potentials φ∗δ, and φ∗D are uniquely determined by the film charge ρ∗f ; φ
∗
D is

given by equation (3.21), and φ∗δ has been derived in equation (3.22).We introduce a

scale for the streaming current term, as suggested by equation (3.10), µ ∼ ε∗εoRT
ηF ; this is

equivalent to the electroosmotic or electrophoretic mobility of a wall or particle having

a surface potential equal to the thermal voltage. The χ12 and χ21 terms are a function of

the charge density in the film, as well as the parameters λ∗ and δ∗.

Extensions and considerations beyond the models of Donath and Voight [92] and

Ohshima and Kondo [88, 93, 97] have been made in recent studies. In a pair of papers,

Starov and Solomentsev describe the effects of diffusion [94] in the film and consider the

interaction between ions in the fluid and the film to develop an apparent electrokinetic
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potential [95].

Theoretical determinations of surface conductivity have also been considered by

Ohshima, et al. [93] and Donath, et al. [92].Ohshima and Kondo [93] describe χ22 in

terms of the bulk conductivity only, whereas Donath and Voigt [92] describe enhance-

ments of conductivity due to the presence of the film layer (concentration enhance-

ment/depletion as well as electroosmotic effects), although their expression requires

knowledge of φ∗δ, which is only known explicitly in specific cases, as discussed by

Ohshima and Kondo [93].

The terminating geometry of the adhered film is an important film characteristic,

determining both the distribution of fixed charge and the local resistance of the polymer

network. Duval [98] and Duval and van Leeuwen [99] pose and examine a distribution

of uniform fixed charge that terminates into solution with a linear decay. Their models

suppose a film friction that varies proportionately with the fixed charge density profile.

Later, a smooth hyperbolic function was used to describe the transition from finite to

zero fixed charge [100].

Duval, et al. [98, 99] solve the piecewise-charged film with both linear [98] and

nonlinear [99] analyses. In both cases, the parameters δ, λo, and the characteristic di-

mension of the film transition α are essential in the EK description of the film–fluid

system. They obtain solutions to the hydrodynamic and electrical profiles in solution,

analyze the streaming current produced by an imposed pressure gradient, as well as cur-

rent produced by a transverse electric field. The piecewise nature of the fixed-charge

profile leads to a complicated expressions for the streaming current within the system,

we omit this expression here.

The linear Duval, et al. model [98] illustrates the interplay between momentum
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and potential profile decay from regions of high charge density and low velocity to

low charge density and high velocity: films with α/λd >> 1 exhibit lower values of

streaming potential because of decreases in fluid velocity where a net charge exists —

at a flat interface, the decay of electrical potential occurs in the free fluid, whereas a film

with a gradual linear decay of charge into solution has simultaneous screening of charge

and momentum. For α/λd << 1, the electrical potential dissipates within the region of

retarded flow, reducing the net charge convected by the fluid. The linear model presented

by Duval and van Leeuwen is restricted to cases where δ∗ >> 1, and φ∗D < 1.

In describing the potential profile and charge transport due to the presence of a soft

layer, we remark that many studies do not account for the charge of the bare solid surface

when formulating expressions for charge transport. It is only correct to neglect the

influence of the solid potential boundary condition when the film is sufficiently thick as

compared both to the hydrodynamic penetration length of the film, 1/λo, and the Debye

length of the fluid. In the case of a δ >> 1/λo and λd for a film probed with pressure

driven flow, charge transport is nearly extinguished near the wall while charge at the

outer surface of the membrane is easily convected. If the film is thin as compared to

1/λo and λd, then the wall potential must be accounted for. Such relations can be derived

in the limit of low electrical potentials (Debye-Huckel limit) and numerical simulation

is generally required for arbitrary potentials.

Duval used a numerical solution to extend their linear analysis of charged films [99]

to the general nonlinear, unrestricted φD, case with the same geometry. The scaling of

the Donnan potential (cf., (3.21)) implies that the nonlinear theory will be applicable at

low solution ion concentration, as large concentrations drive the film–solution equilib-

rium toward low values of interfacial potential difference (∆φ = φD − φ(∞) << 1). The

disparity in streaming potential between the linearized and nonlinear theories is most
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apparent at low solution concentration and low λo/λd (cf. Duval [99] figure 7).

In the Duval, et al. [98,99] and subsequently considered models, film hydrodynamics

are described with a Brinkman-modified Navier–Stokes equation (3.23). This approach

follows Brinkman [96], who proposed a Stokes-like equation to describe the motion of

fluid within a dense collection of particles. Debye and Bueche [101] derived a resistance

expression applicable to polymer films by assuming the polymer may be described as

a string of Stokeslets, with each Stokeslet along the string acting as a resistance center.

The Brinkman approach is implemented for flows in porous-media, and descriptions of

porous media hydrodynamics are available in the monographs by Scheidegger [102] and

Happel and Brenner [103]. As observed by Dukhin, et al., [104] the Brinkman–Debye–

Bueche approach is widely used in the description of soft polymer layers. In many

cases, the mechanical attributes of the diffuse layer are assumed, assigned, or varied to

demonstrate trends in the behavior of the proposed theories [78, 81, 85, 86, 105, 106]. In

others, such as Duval, et al. [98, 99], the Debye and Bueche approach [101] is used to

correlate the local resistance and local charge of the film, because of the assumption that

regions of higher polymer density contain higher charge.

The Debye–Bueche approach leads to a direct expression for the Brinkman friction

term. The dimensional resistance is written as [98]:

λ∗

δ
=

√
k(x)
η

=

R2

18

3 +
4

ϕ∗(x) − 3
(

8
ϕ∗(x) − 3

)1/2



−1/2

(3.29)

With R the characteristic radius of a spherical polymer segment, and ϕ(x) the vol-

ume fraction of polymer in the fluid–film system; for ϕ∗(x) << 1, λ∗/δ ≈ 6/R +

ϕ∗1/2(x)/(3
√

3R) + O(ϕ∗) . . . Experimental investigations on diffuse charge interfaces

(discussion below) typically implement this description for polymer layers with low

volume fraction of solids. Duval, et al. [98] cite a limit of ϕ∗(x) < .6 for the above

expression (and themselves apply it in a dilute limit, ϕ∗(x) < .05), although a Stokesian
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dynamics analysis of the Brinkman equation by Durlofsky and Brady [107] places fur-

ther limits on this technique, determining that the Brinkman formulation of the system

mechanics is applicable only in the limit of dilute solids, ϕ∗(x) < .05.

3.3.6 Film and Fluid Conductivity: χ22

With three of the four electrokinetic coupling matrix components already having been

discussed, we now turn to χ22. The χ11 term describes the impact of the film on the

hydraulic resistance of the flow; for systems with δ << d/2, this effect is minimal.

The χ12 and χ21 terms (closed form in specific limits) describe the response of flow and

current to lengthwise electrical potential and pressure gradients, respectively; here, the

impact of the fixed charge layer depends non-trivially on the charge distribution and

density, ion concentration, film thickness, δ∗, and film hydrodynamics, λ∗. The final

term χ22 relates current to the electric field, E, and is considered presently.

The presence of a surface locally affects the conductivity of a fluid. The standard

Bikerman model [71–74] of surface conductivity accounts for the enhancement and de-

pletion of ions in a field-induced convection of counterions and coions produced by a

surface charge, as well as the electroosmotic transport of ions produced by actuation

of the carrier fluid; both of these phenomena are necessarily actuated by a transverse

field gradient E. These same transport processes occur within the soft diffuse-charge

layer attached to a rigid surface. Given a precise enough model for these processes,

conductance measurements combined with physicochemical measurements of the film

and solution provide sufficient information to characterize the electrokinetic potentials

of the system. Streaming potential measurements also require the system conductiv-

ity, although only the measured value is required to interpret streaming potential data;
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analytical expressions are not needed for measurements.

The total conductivity is separated into contributions from the surface (charged film

and adjacent layer with net charge) and bulk (no net charge). The conductivity is additive

in bulk and surface conductivities:

χ22 = σB + σs (3.30)

It is customary to separate the surface conductivity term into ionic and electroosmotic

conductances, along with a length scale, rh:

σs =
1
rh

(GI + GEO) (3.31)

For the systems we are examining here, we further decompose each component into

parts interior and exterior to the charged layer:

GI = GI,i + GI,o (3.32)

GEO = GEO,i + GEO,o (3.33)

Given a film over 0 ≤ x ≤ δ the ionic component is:

GI = 2F
∑

j

∣∣∣z∗j ∣∣∣ u j

∫ d/2

0

(
c j(x) − c j,∞

)
dx (3.34)

GI,i = 2F
∑

j

∣∣∣z∗j ∣∣∣ u j

∫ δ

0

(
c j(x) − c j,∞

)
dx (3.35)

GI,o = 2F
∑

j

∣∣∣z∗j ∣∣∣ u j

∫ d/2

δ

(
c j(x) − c j,∞

)
dx (3.36)

here the sum, j, is over all ions in the layer, and u j denotes the ionic mobility of the jth

ion. Similarly for the electroosmotic conductance:

GEO =
2
E

∫ d/2

0
u(x)| ∂p

∂y =0 ρe(x) dx (3.37)

GEO,i =
2
E

∫ δ

0
u(x)| ∂p

∂y =0 ρe(x) dx (3.38)

GEO,o =
2
E

∫ d/2

δ

u(x)| ∂p
∂y =0 ρe(x) dx (3.39)
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Analytical expressions for conductivity are generally available only in systems with thin

or thick films with simply specified charge and fluids.

We write a representation for the χ22 term, following the work of Dukhin, et al. Sev-

eral other workers have also presented analytical expressions where available, and have

performed numerical analyses when closed-form expressions are unavailable. Donath

and Voigt [92] consider the case of a uniform charge distribution producing a uniform

potential within the charged layer. Duval, et al. examine surface conductivity in both

the linear case [98] with an analytical theory, and the nonlinear case [99] implement-

ing numerical methods for a film with a linear transition from the charged layer to zero

charge in solution. Dukhin, et al. [58] relate measurements of surface conductivity to

charge and potential characteristics of polyelectrolyte films with a uniform distribution

of pH sensitive charged sites.

We describe here the Dukhin, et al. approach for anionic or cationic films that charge

as a function of the proton concentration (pH). Supposing an anionic polymer film with

a proton dissociation reaction HA 
 H+ + A− and the negative logarithm of the acid

dissociation constant pKa, the following charge–pH relation results:

ρ∗f (x) =
ρ∗max

f

1 + 10pKa−pHe−φ∗(x) (3.40)

Here, ρ∗max
f is the charge density of acidic groups (with concentration A−) and is equiv-

alent to A−/(2Ic) at full dissociation. The fraction of dissociated groups is dependent

upon the local pH surrounding the charged site — a potential biases the concentration

of hydronium ions, modifying the concentration from the bulk value in solution. This

dissociation approach was first discussed by Donath and Voigt [92]. The Donnan po-

tential is calculated as described previously — by combining equation (3.20) with the

curvature–free form of the Poisson–Boltzmann equation. For the case of a 1:1 elec-
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trolyte, equation (3.40) becomes [58, 108]:

sinh(φ∗D) =
−ρ∗max

f

1 + 10pKa−pHe−φ∗D
(3.41)

The Donnan potential must necessarily be determined numerically in this form. When

coions are excluded within the film, Dukhin, et al. [58, 108] have derived an expression

for the Donnan potential:

e−φ
∗
D =

10pH−pKa

2

√1 + 8
∣∣∣∣ρ∗max

f

∣∣∣∣ 10pKa−pH − 1
 (3.42)

Dukhin, et al. further derives a result analogous to the Ohshima and Okhi relation

between the Donnan and surface potentials of a thick film (cf., equation (3.22)):

φ∗D − φ
∗
δ + ln

(
1 + 10pKa−pHe−φ

∗
D

1 + 10pKa−pHe−φ∗δ

)
= tanh

(
φ∗D
2

) (
1 + 10pKa−pHe−φ

∗
D

)
(3.43)

The surface and Donnan potentials are explicitly related when the film charge is

independent of pH, or when the film is fully dissociated. When the film charge is pH

dependent and not fully dissociated, equation (3.43) must be solved in a limit of high or

low dissociation, where an implicit relationship between φ∗D and φ∗δ has been obtained.

For nearly complete dissociation (i.e., high pH):

φ∗δ − φ
∗
D = ln

(
es∗ + s∗ − 1

s∗

)
(3.44)

For small amounts of dissociation (i.e., acidic groups at low pH):

φ∗δ − φ
∗
D = ln(2 + s∗) (3.45)

In both these relationships, s∗−1 = 1 + 10−pH
(
1− pKa

pH

)
e−φ

∗
D , which represents the degree of

dissociation in the film — for equation (3.44), s∗ ∼ 1 and for equation (3.45) s∗ << 1.

The surface conductance is then obtained with the assumption that the Donnan

potential describes the potential everywhere within the film, which is valid when
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λδ/δ << 1. The approach is to use equations (3.35) and (3.36) with ci(x) = ci,∞e−ziφ
∗
D

in the film and ci(x) = ci,∞e−ziφ
∗(x) in the diffuse layer, where φ∗(x) solves the Poisson–

Boltzmann equation outside the film given the boundary condition φ∗δ at the film edge,

and a potential of zero in solution. In both these cases, the solution is known — the

integrals vanish inside the film, and outside the film we use the Bikerman expression for

the diffuse component side [58]:

GI,i = 2F
∑

j

∫ δ

0

∣∣∣z∗j ∣∣∣ u jc j,∞

(
e−z∗jφ

∗
D − 1

)
dx = 2 |z∗| Fδc∞

(
u+

(
e−z∗φ∗D − 1

)
+ u−

(
ez∗φ∗D − 1

))
(3.46)

GI,o = 2F
∑

j

∣∣∣z∗j ∣∣∣ u j

∫ d/2

δ

(
c j(x) − c j,∞

)
dx = 2 |z∗| Fλdc∞

(
u+

(
e−z∗

φ∗
δ
2 − 1

)
+ u−

(
ez∗

φ∗
δ
2 − 1

))
(3.47)

Equations (3.46)-(3.47), are written for a z∗ : z∗ electrolyte. Furthermore, supposing a

film excluding coions, the conductance is further simplified, as the migratory conduc-

tance within the film depends completely on the counterionic species as [58]:

GI,i =
σBδ

2
e−φ

∗
D (3.48)

where σB = 2Fc∞u+ is the bulk conductivity in the same limit of ion exclusion.

Dukhin, et al. [58], following Ohshima [109], examine the relative importance of

electroosmotic and migratory components of the surface conductivity, assuming a model

for electroosmosis within the film where the electrical body force balances fluid and film

induced friction within the diffuse charge layer. Their model is written as:

ρeE − kuEO = 0 (3.49)

where k is, again, the volumetric frictional force constant retarding the convected charge

by the polymer film. This limiting form of transport within the film is obtained by

examination of the Navier–Stokes–Brinkman equation with zero pressure gradient and
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nonzero electric field forcing and charge density, ρeE + η∇2u − ku = 0. Taking the

scales ∇∗2 = δ2∇2, u = u∗ εεoφD
η

E, ρe = ρ∗e2FIc, φD = φ∗D
RT
F , and assuming a fully-

dissociated film with a 1 : 1 electrolyte (φ∗D = −arcsinh(ρ∗e)), the nondimensional form is(
δ
λd

)2 sinh(φ∗D)
φ∗D
−∇∗

2u∗+λ∗2u∗ = 0. For a thick (δ/λd >> 1), highly resistive film (λ∗ >> 1),

the ∇∗2u∗ term is small and the balance is between charge forcing and volumetric film

friction.

The limit of the in-line momentum balance leading to equation (3.49) is not unique,

but is consistent given the limits in which the momentum balance is applied. Two other

velocity scales yield additional balances: U ∼ 2FIcEδ2/η, which is a viscous scaling for

velocity, and U ∼ 2FIcE/k, which is a Brinkman balance. The viscous balance yields

ρ∗e + ∇∗2u∗ − λ∗2u∗ = 0. For λ∗ >> 1 this implies a boundary condition contradictory

velocity that is additionally independent of charge–potential forcing; neither of these

implications is necessarily the case for a resistive film. The Brinkman balance gives

λ∗2ρ∗e +∇∗2u∗−λ∗2u∗ = 0, which limits to equation (3.49), as expected given the assumed

velocity scale. Synthesizing these limits, the Smoluchowski scale is valid for thick films

where δ >> λo ∼ λd., implying that the interface appears as rigid to the bulk flow. The

viscous balance is untenable for descriptions of field-forced flow ions within the film,

and the Brinkman balance satisfies physical intuition for flow behavior in the film.

Enhanced friction within the diffuse charge layer relegates the electroosmotic com-

ponent of the surface conductance to a minor role. Extending the analysis introduced

previously (equation (3.49)), Dukhin, et al. [58] show that the electroosmotic compo-

nent of surface conductivity is minimal both in and outside of the film when δ >> λd,

δ >> λδ, and λ >> 1. In a later work, Dukhin, et al. [110] examine effects of diffuse-

layer conductance in a film with a variable charge density. In this analysis, the central

simplification is a spatially varying interior film potential that matches exactly with the
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local Donnan potential of the film (derived by the local charge density). Dukhin, et

al. [110] require that the characteristic length over which charge density variations oc-

cur in the film, λe, be large as compared to the characteristic electrical decay length in

the charged film:
λe
√

2λd

e−1/2φ∗D ? 3 (3.50)

For slowly varying charge densities with no coions, Dukhin, et al. [110] discuss pro-

cedures to measure the thickness and charge density for fully and partially dissociated

films. These approaches require knowledge of the chemistry of the film combined with

streaming current measurements at varying states of film dissociation (i.e., pH).

3.3.7 Film Property Variation

Although the discussion in the previous section has presumed that solution properties

inside and outside of the fixed-charge layer are identical, we must in general consider

that the properties within the fixed charge layer can differ from those in the bulk solution.

We have tacitly assumed that the conductivity of the electrolyte acts independently of the

volume fraction of the film — that the only effect of the film on the migratory component

of the ions in solution lies in the change in local concentration of the ions introduced by

fixed charges in the film. Any additional resistance from the space-filling nature of the

gel has been neglected in our presentation. Several authors have discussed the effects

of diminished conductivity due to the presence of the polymer network [58, 110–113].

The enhanced conductance is related to diffusion, as the two are linked via the mobility

of the ions through the Nernst–Einstein equation and Kohlrausch’s law [1]. The results

discussed here apply to charge carriers small as compared to the microscopic dimensions

of the film — typically ions such as Cl−, Na+, and the like. Larger molecules, such as

proteins or DNA, also feel diminished diffusion, but such theories are not considered
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here.

Most of the theories, however, exhibit agreement with experiment only at small

polymer volume fraction. Masaro and Zhu [114] review many theories for diffusion

of species, such as proteins or other polymers, in dilute to concentrated polymer solu-

tions. The first-order correction to the bulk conductivity (or mobility) of ionic species

caused by the polymer as presented by Dukhin, et al. [58, 110] is:

σp

σB
= 1 −G∗ϕ∗ (3.51)

Expressions of this form, in the limit of low concentrations, appear in many theoret-

ical formulations of retarded diffusion (D), electrophoretic (E) and sedimentation (S )

measurements. Odijk [115] cites the form of an experimental fitting curve:

E
Eo

=
D
Do

=
S
S o

= F∗ = eKraµ
∗
cν
∗

p (3.52)

Where the subscript naught denotes the transport process (diffusion/electrophoresis/sedimentation)

of an object with characteristic radius a in free solution; quantities above (E,D, S ) rep-

resent the same transport processes in a solution with polymer concentration cp. Here,

the constants Kr, µ∗, and ν∗ are determined experimentally by a fit of experimental data

to the exponential function; several representative values of these parameters are avail-

able in Table 1 of Odijk [115], specifically, for the semi-dilute regime. Typical values

for ν∗ and µ∗ are between 0.5 and 1, with a skew toward unity. The small-argument limit

of the fitting relation becomes F∗ ∼ 1−Kraµ
∗

cν
∗

p ∼ 1−G∗ϕ∗, consistent with the formula

used by Dukhin, et al. [58, 110]; G∗ is a term of lumped model parameters to stress the

scaling of volume fraction.

Several theoretical expressions have the form of equation (3.52), notably a Cukier

model accounting for hydrodynamic corrections to the diffusion of Brownian spheres

within a polymeric solution [114–116]. In the development of a model for Brownian
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spheres, Cukier [116] expounds a theory corresponding to a Debye–Bueche type net-

work of entangled polymer. This model describes a collection of Brownian spheres

interacting with a series of deformable pearl strings:

D
Do

= e−
√

f np
η R
∼ 1 −G∗ϕ∗1/2 (3.53)

Where the additional variables f and np are the monomer friction factor and the number

density of polymer segments. Another scaling for the same regime of polymer concen-

tration suggested by de Gennes [115, 117] assumes the form:

D
Do

= eR/ξ ∼ 1 −G∗ϕ∗3/4 (3.54)

Where ξ ∼ c−3/4
p is the correlation distance of the polymer in solution, which represents

the length over which the polymers begin to strongly interact. The review by Masaro

and Zhu [114] provides a summary of proposed scalings of concentration with the cor-

relation length, and note that despite theoretical and experimental determinations of this

value (between .5 and 1); consensus has yet to be reached.

Inhomogeneity in the dielectric constant between the pure fluid and fluid-film phases

has been discussed briefly by several researchers [88,89,94,95]. The dielectric constant

of water is known to vary in response to strong electric fields [118, 119] ( dφ
dx ? 109

[V/m]), although generation of a field large enough is unlikely, and, for the purposes of

the model, would only occur in thin regions near the boundary of the film. Finer descrip-

tions of the polymer microstructure would be necessary to discern any impact of local

fields on the dielectric constant of water, as is done with polymers for proton exchange

in energy applications [120]. In addition to the field strength, the dielectric constant

of water is affected by the local concentration of ions. This effect is communicated in

the low-concentration limit by the dielectric increment [59, 119] dε
dci

, affecting ε to first

order in concentration: ε∗(c1,...,cn)
εo

= 1 +
∑n

i=1 ci
dε∗
dci

. Here, ci is the local ion concentration.

Investigations of diffuse charge interfaces accounting for the high-field and dielectric
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increment variation on the dielectric constant have not been found in the literature in the

context of electrokinetics.

Changes in bulk mobility (or diffusion) and dielectric constant within the film illus-

trate uncertainties that may arise when attempting to interpret experimental conductivity

data. Other sources of uncertainty within polymer films not captured by the analytical

theory include solid-boundary effects in which the potential at the interface between

the film and the solid wall differs from the Donnan potential of the film (i.e., dφ
dx = 0),

and instead assumes some potential determined by rigid surface and solution chemistry.

Similar analytical approaches as discussed previously may be implemented for small

wall potential (e.g., via linearized Poisson–Boltzmann equation) and films that exhibit

a region of zero curvature, essentially insulating the nonuniform potential regions on

either end of the film; this is similar in some respects to the sandwiched membrane

description of Ohshima and Ohki [89]. Computational approaches are necessary to de-

termine potentials in systems in which the film is thin compared with the Debye length

( δ
λd

> 1), the Donnan potential of the film is large (φ∗D ? 1), or the charge density

within the film is nonuniform. Such an approach was taken by Duval [99] to examine a

non-uniform diffuse charge interface with a large Donnan potential.

3.4 Experiments

Depending on the theory to be tested and the information desired, a variety of techniques

are available to validate soft diffuse-charge interface theory and determine precisely the

surface properties of natural and synthetic systems. Many of these techniques were men-

tioned in the introduction; we focus here on streaming potential and streaming current

techniques, along with conductance measurements for these systems. As was discussed
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in the theory section, an understanding of surface conductance in diffuse charge systems

is necessary to move from measurements of streaming current to streaming potential, or

to gain information on film properties directly from a conductance measurement when

system conductances are unknown. Furthermore, membrane orientation relative to the

direction of flow affects measurement outcomes, and must be considered when inter-

preting experimental data.

We are concerned with surface measurements in which the flow is along the surface

of the diffuse charge interface. When combined with the theory outlined previously,

these measurements provide information on the Donnan (φD) and surface (φδ) potentials

of the film. When supplemented by physical and chemical properties of the film (such

as film thickness or film charge density), the theories can be tested more rigorously to

determine their range of applicability and precision.

Although we have focused in previous sections on film–fluid systems in which the

flow direction is perpendicular to the surface normal of the film, many studies have been

performed with flow parallel to the surface normal. The parallel technique has a histor-

ical pedigree [69], having been used for the determination of electrokinetic potentials

of inorganic materials in plug form. This porous plug technique limits to the stan-

dard electrokinetic behavior on hard surfaces when the interstices among the packed

particles (i.e., the pores of the porous plug) are large relative to λd. For polymeric

materials, the characteristic flow size in the polymer is poorly defined, and is unlikely

to be everywhere large relative to λd. Additionally, through-membrane as opposed to

over-membrane techniques fail to probe the diffuse layer at the film–fluid interface.

Through-membrane techniques do, however, fully probe the inner structure of the mem-

brane (e.g., φD via conductivity measurements), and may supplement over-membrane

measurements if the structure of the membrane is isotropic in both measurement modes.
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Through-membrane analysis is well suited to filtration, ion-exchange, or proton con-

ducting membranes [121–126] because the quantity of interest is often the streaming

potential coefficient ∆V/∆P rather than a parameter such as φD or ζ; this distinction is

important, as the through-membrane experiments usually result in measurements of a

engineering constant only whereas over membrane measurements, when coupled with

the theory, can lead to physical material/solution properties.

Streaming current, streaming potential, and conductance measurements must, in

general, be taken at multiple solution and film states. In a given electrokinetic experi-

ment, the maximum film charge density, degree of dissociation, film chemistry, and film

thickness are generally not known a priori. These quantities are required to predict all

electrokinetic phenomena. The degree of dissociation and film thickness are proper-

ties of solution pH and ionic strength, so electrokinetic determination of film thickness

and charge will, in general, require more than two measurements and will typically be

done over a range of pH and ionic strength. In some cases, auxiliary measurements,

such as film thickness with an ellipsometer, or film charge by potentiometric titration,

are performed to further inform the film state. Conductivity measurements provide in-

formation on the bulk film state (φD), and require film dissociation, thickness, and ion

mobility information corresponding to each measurement. When these parameters are

not measured at each point, a parametric model predicting these values over the experi-

mental range of ionic strength and pH is required.

Several workers have performed conductivity measurements to directly examine

charged films. Yezek [127] performed conductivity measurements on sodium-co-

acrylate gels of varying polymer volume fraction over a range of ionic strength at a

pH of 5.8, corresponding to the natural pH of the polymer–solution mixture. In this

work, both full- and partial-dissociation models are used to examine the charge density
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developed in the gel, with the pKa-dependent dissociation model predicting the observed

ratio between the bulk and total conductivities. Theoretical predictions of surface con-

ductivity match the experimental data in the limit of high ionic strength. At lower ionic

strengths (less than 1mM), the full dissociation model diverges from both the partial dis-

sociation theory and experiment. A similar approach was used in a prior work by Yezek

and van Leeuwen [128] where, in addition to conductivity measurements, streaming po-

tential and potentiometric titration measurements were conducted. There, conductivity

measurements and potentiometric charge measurements yielded agreeable Donnan po-

tential values over the range of ionic strength tested. Streaming potential measurements,

however, failed to predict quantitatively the observed zeta potential. In their streaming

potential model, Yezek and van Leeuwen [128] implemented a modified Smoluchowski

formula accounting for the additional conductance introduced by the film, but did not

account for other transport characteristics in the film. An interesting artifact of both of

these studies [127,128] is the ratio of cell and bulk conductivities at high ionic strength.

This artifact of the experimental limits was examined by Yezek [127] and Dukhin [58];

as the ionic strength increases, φD decreases, φD ∼ q f /Fc∞, relegating electrokinetic

surface conductivity effects to minor roles. The small difference in conductivity is then

ascribed to the blocking effects of the polymeric network. This limit of ionic strength

can inform experimentalists on the behavior of hindered conductance measurements

in polymeric materials. Freudenberg, et al. [129] executed a similar study, perform-

ing streaming current, conductance, and ellipsometry studies on crosslinked and un-

crosslinked cellulose films. Here, thick-film theory was used to determine φD within the

film from the surface conductivity of the film layer, as determined by the ratio of stream-

ing current and streaming potential measurements, knowing precisely the geometry of

the flow cell. The measurements revealed electrokinetic variance in the film between

crosslinked and uncrosslinked states, with strong dependence of film conductance on
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crosslinking state (lower upon crosslinking), and small differences in Donnan potential.

Although the discussed works [127–129] have analyzed the system by assuming a

uniformly distributed charge within the film, and a bounding rigid surface having no

affect on the film charge distribution or potential, the film–fluid system is not expected

to exhibit such uniformity. Duval, et al. [130], for a thermoresponsive thin film, and

Yezek, et al. [100], on a previously studied system [100,128], remove the assumption of

a sharp interface between the charged film and the fluid, instead describing the interface

with a continuous transition from a uniform charged region to the uncharged bulk fluid.

Considering the latter, Yezek, et al. [100] describe a previously studied system [127,

128] with both the Ohshima and Kondo [93] uniform-charge model and a gradual decay

model of the interface. There, measurements of streaming current disagree with the

Ohshima theory in the low ionic strength region. The best theoretical fit to the data is

obtained in regions of high ionic strength — it is in this limit of high ionic strength

where the fluid penetration parameter, λ∗, is determined from a fit. The authors reason

the inability of the model to match the experimental data over the entire range of ionic

strength as an artifact of film rheology; the parameter fit for λ∗ does not vary over the

range of ionic strength, even as δ is dependent upon the ionic strength of solution [100].

Yezek, et al. further analyzes the data using a continuous transition of charge/polymer

volume fraction of the form:

ϕ∗(x)
ϕ∗max =

1
2

(
1 − tanh

( x − δ
α

))
(3.55)

where ϕ∗max is the polymer volume fraction of the bulk gel (also the maximum value)

and α is a length scale used to describe the diffuseness of the interface. For a sharp tran-

sition, α→ 0. The fit of this parameter, α, for the streaming potential data shows a wide

scatter over the range of solution concentrations and film densities tested. The param-

eter does, however, vary inversely with solution salt concentration, suggesting that the

layer expands and contracts with changes in ionic strength. The Yezek, et al. [100, 128]
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studies suggests that α → 0 at high ionic strength. Thus, for variable property films,

the high salt limit provides a subset of experimental space where thickness-independent

parameters such as pH-dependent total film charge may be estimated. A drawback in

their analysis, however, is the decoupled nature of α and λ∗ in the fitted models. In their

approach, Yezek, et al. [100] assume a constant λ∗ over the entire range of pH and ionic

strength, while α is permitted to vary over the same range. Duval, et al. [130] consider

hydrodynamic screening with an uncharged temperature-sensitive hydrogel (poly(N-

isopropylacrylamide)-co-N-(1-phenylethyl) acrylamide) grafted on a Teflon AF surface

within an electrokinetic cell. They apply a theory developed in the same work [130] in

which flow is permitted within the gel layer and fit streaming current data over a range

of pH for films above and below a gel-swelling temperature threshold. Furthermore, the

model permits a fixed potential or charge at the solid surface.

The Duval, et al. [130] theory provides a good match to the observed streaming po-

tential data, fitting only the parameters λo and α (taken→ 0) for the film over the entire

range of pH. As the film is uncharged, there is no need to characterize charge density

or dissociation. The potential of the backing Teflon surface, however, was characterized

separately, and used as a model input. When varying the ionic strength at fixed pH,

Duval, et al. [130] find agreement between the theory and experimental data (except for

15% deviation at low ionic strength), all while using the same value of hydrodynamic

penetration within collapsed and expanded films over all values of ionic strength tested

(from .01 to 10 mM KCl). This material was later studied with streaming current (and

other techniques) by Cordeiro, et al. [131], although the focus there was the polymer

film itself and not electrokinetic behavior.

Zimmermann, et al. [132] executed electrokinetic investigations on poly(styrene)–

poly(acrylic acid) (PS-PAA, charged) and poly(styrene)–poly(ethylene oxide) (PS-PEO,
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uncharged) polymer brushes. Here, the authors measure streaming current, streaming

potential, and conductivity of the films. Using literature values, the authors calculate

the Donnan and surface potentials of the PS-PAA brush at full dissociation and report

values of -186 and -161 [mV] (applying the Ohshima and Kondo theory [93]). The au-

thors further implemented a standard Smoluchowski treatment to their streaming current

data at high (i.e., fully dissociated) pH and find a value of ζ = −60 [mV], highlight-

ing the inability of the standard theory to capture the potential state of the film. Using

the Bikerman surface conductivity formulation, they estimate a 7% contribution of the

diffuse layer conductivity to the surface conductivity as a whole. For the uncharged PS–

PEO diblock polymer brush, they find a negative surface potential, which they attribute

to the polystyrene surface beneath the poly(ethylene oxide) brush layer. In examin-

ing this system, they measured the ζ-potential in the presence and absence of the graft

poly(ethylene oxide) polymer brush and examined the results using the theory of Cohen

Stuart, et al. [81, 82], which assumes a transport-blocking polymer layer.

Understanding the full range of film properties involves deeper analysis than those

presented so far — the state of a charged film depends on the pH and ionic strength of

solution. In the prior analyses, rheological attributes of the film were assumed invariant

upon changes in ionic strength, equivalent to changing the screening of charge within

the film. Furthermore, no transition layer was assumed (i.e., α = 0), although non-zero

values of α are known to play an important role in measurable electrokinetic parameters

[98, 99].

Toward resolving the interfacial structure, Zimmermann, et al. [133] and Duval,

et al. [134, 135] perform EK measurements on polymer films over a range of pH and

ionic strength and relax the constraint of a sharp interface transition. Such an approach

has been used previously to analyze human erythrocytes [136]. Zimmermann, et al.
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[133] examine poly(N-isopropylacrylamid-co-carboxyacrylamid) films with streaming

current/potential, conductivity, and ellipsometry measurements. Ellipsometry data was

used to determine swelling as a function of pH for each value of salt concentration

tested, and an analytical function was fit to these curves to develop an expression for

film thickness. This function assumed the form:

δ(pH )
δo

= 1 +
δm − δo

2δo

(
1 − tanh

(
pHδ

i − pH
∆pHδ

i

))
(3.56)

Here, δm and δo represent film thickness at greatest and smallest extent, pHδ
i is the pH

at the inflection point of the δ–pH curve, and ∆pHδ
i is a characteristic width of the

transition region at the inflection point. They further describe the diffuseness parameter

of the interface (α) with a function having similar form and pH dependence:

α =
αm

2

(
1 − tanh

(
pHα

i − pH
∆pHα

i

))
(3.57)

Thus, the model consists of six fit parameters: one parameter for the film charge density,

one parameter for the hydrodynamic resistance of the film, one parameter for the disso-

ciation constant of the charged groups in the film (pKa), and three parameters to describe

the diffuseness of the interface (αm, pHα
i , ∆pHα

i ). A fitting of (∼ 13) pH points for each

ionic strength is performed for streaming current coefficients (∆I/∆p) and surface con-

ductivity data. The model fits obtained quantitatively match the relaxation behavior and

magnitudes of the data. The authors show sensitivity of their result by displaying the best

fit model along with variations in model parameters, which illustrates the necessity of

the diffuse interface approach (i.e., non-zero α) to describe an interior extremum in the

streaming current. Furthermore, the model recovered very nearly the maximum charge

density with the film over three decades of ionic strength considered (−ρmax
f /F = 270,

240, and 240 [mM] for 0.1, 1 and 10 mM of KCl). The approach does require different

values of model parameters, however, for fits to streaming current and conductivity data.

Values of the acid dissociation constant are higher by nearly one pH unit for conductivity
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versus streaming potential data. Also, the size of the relaxation in pH (∆pHα) varies as

a function of ionic strength of the solution. In comparing model fits and parameter val-

ues between conductivity and streaming current data, Zimmermann, et al. [133] remark

on the measurement differences between the two techniques, specifically, that the pKa

value from streaming current measurements is consistently smaller than the same value

inferred from conductivity measurements. In conductivity measurements, the technique

is integrative across the entire film, whereas the streaming current measurement probes

the film locally and is highly dependent upon the accessible surface layer of the film.

This distance is characterized by the hydrodynamic penetration length of the fluid into

the film. (The predicted penetration length is between about 1/80th and 1/200th of the

measured film thickness.) Hence, the authors argue that the conductivity pKa represents

the bulk value across the entire film, while the streaming current value probes the pKa

of the surface layer. This argument is grounded in the analysis of Dukhin, et al. [58] in

which the electroosmotic component (dependent on film friction) is seen to be a small

component of the conductivity in the film layer. They further claim that embedded acidic

groups exhibit diminished dissociation owing to hydrophobicitiy of the film interior.

Duval, et al. [134] extend the work by Zimmermann, et al. [133] to examine cova-

lently attached anionic poly(acrylic acid) (PAA) and cationic poly(ethylene imine) (PEI)

films with similar techniques as before [133]. The authors successfully analyze the PAA

and PEI films using the formalism developed previously — the PAA film shares many

physical similarities to the previous system. The PEI film, however, possesses many

differences that complicates the analysis. Ellipsometric swelling data is qualitatively

different from the PAA film as a function of pH; the swelling data does not demon-

strate a significant plateau at any extreme of pH. Furthermore, the cationic polymer is

polyprotic, with three pKa values. The complication for the PEI film stems from ambi-

guity in describing the thickness of the diffuse interface and the rheological parameter
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for transport within the film, as the rheological parameter is typically estimated in a

limit where the transition of the diffuse layer is minimal in size (or absent altogether).

Returning to a point mentioned in Zimmermann, et al. [133], Duval, et al. [134] attribute

the difference in the conductance and streaming current fits of pKa values for PEI and

PAA films to changes in the chemical environment of the polymer by the plasma immo-

bilization technique used to attach both polymers. The electrostatic model [133,134] of

the interface uses a zero surface charge boundary condition at the solid surface.

We have discussed several experimental results that implemented (or developed)

electrokinetic theories to extract physicochemical information on the state of the inter-

face. The discussion is by no means exhaustive, serving mainly to illustrate applications

of the theory developed in the previous sections, and regions of the experimental space

where measurables of the theory diverge or are otherwise obscured by unknown system

processes and parameters. The experiments discussed above, and several others which

were not, are summarized in Table 3.1.

3.5 Discussion and Conclusions

We have reviewed theoretical and experimental descriptions of electrokinetics at dif-

fuse charged interfaces. Both theory and experiment reveal the importance of parameter

space extrema in the description of these interfaces. In addition to an overview of the-

oretical and experimental studies, we considered EK coupling matrix formulations of

diffuse fixed charge interfaces in specific limits of film thickness and potential.

Many considered theories and experiments rely upon simplifications in the govern-

ing physics; absent simplifications, full numerical solutions are often required. Simpli-

fications follow when the Donnan potential φ∗D << 1, as the Poisson–Boltzmann equa-
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tion can be linearized. Low Donnan potentials typically occur when the solution ionic

strength is high. Other simplifications occur when the film is thick relative to the char-

acteristic decay length of the electrical potential. Relative film thickness is influential

for conductance calculations in the fixed charge layer, as curvature vanishes and the po-

tential is assumed to be uniform in space. For films with electrical potential greater than

the thermal voltage, or thickness not large relative to the Debye length, computational

approaches must be implemented to analyze the system. Computational approaches

are also necessary for systems with pH-dependent charge densities. These systems do

simplify in limits of high and low dissociation, but the simplified expressions remain

implicit in φ∗D.

Future studies should account, in a more thorough way, for the influence of the

electrokinetic boundary condition present at the plane of film attachment. The elec-

trokinetic boundary value at a rigid surface is likely to be important, but is typically

assumed to satisfy dφ
dx

∣∣∣
wall

= 0 (the exception is examined theoretically by Duval, et

al. [130].) In general, the ζ-potential of rigid materials responds in non-trivial ways to

pH and ionic strength. Thus, the model–fitting method will fail unless the rigid material

is well-characterized prior to experimentation with the soft interface (this amounts to

the introduction of another free parameter for each combination of ionic strength and

pH).

In a majority of the models presented, fluid properties within and outside the film

are presumed identical — this assumption is called into question by the near constant

potential within the thick film (δ∗ >> 1), opportunity for large charge and ion concentra-

tion, and the effects of the polymer network itself. Furthermore, the thickness of the film

suggests that, in contrast to a thin–EDL on a rigid surface, any inhomogeneity between

charged and neutral regions can persist over a great extent (many times λd) magnifying
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the scope of inhomogeneous fluid property effects. Two cited exceptions to this sim-

plification were the hindered mobilities of ionic species, and the dielectric constant of

the working fluid. Inhomogeneity in the dielectric constant has been considered in an

ad hoc manner by some researchers [88, 89, 94, 95], with a range of dielectric constants

selected to illustrate possible changes in system potential. These effects, the origin of

which are discussed earlier, would be well treated by numerical methods owing to the

complexity they introduce into the functional form of the governing equations.

Effects due to physical adsorption of electrolyte or other charge carriers (e.g., hy-

dronium, hydroxide) should also be considered in film layer charge models, especially

for films with low dissociable charge densities. These and other field and concentration

dependent properties introduce complications primarily through the functional form of

the governing equation, and would be likely analyzed numerically. Further, the theories

described often make use of a specific solution limit (high/low salt, high/low pH) to

extract physical film parameters [127, 133, 134]. This approach is sufficient for cases in

which film characteristics reach limiting values at experimental extremum; we commu-

nicated experimental evidence where this was not the case, however, and model values

for the rheological behavior of the film could not be determined precisely [134]. There

is area for improvement, then, in both theory and experiment for physical systems that

do not as clearly exhibit constant or slowly varying properties in areas of high and low

pH.
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CHAPTER 4

FORCE AND FLUX RELATIONS FOR FLOWS OF IONIC SOLUTIONS

BETWEEN PARALLEL PLATES WITH POROUS AND CHARGED LAYERS

4.1 Abstract

We derive coefficients of the electrokinetic coupling matrix (χ11, χ12, and χ21) for the

flow of an ionic solution through a parallel-plate geometry having porous and charged

layers grafted onto a solid surface with a known potential, and demonstrate Onsager

reciprocity for the cross terms (i.e., χ12 = χ21). Our results enable the prediction of sys-

tem outputs in the solid–porous–fluid system from parameters that are either known, or

may be measured and inferred. These electrokinetic coupling coefficients are in terms

of the potential, φ, and fixed charge, ρ f , only, removing dependence on field gradients

and fluid velocity. Additionally, we present simplified expressions of these coupling co-

efficients in limiting regions of the parameter space. Away from these limits, we present

numerical results demonstrating the facility of our functional form for facile numerical

approximation, and report the utility and accuracy of our analytical approximations.

4.2 Introduction

Porous interfaces are ubiquitous in both natural and industrial systems. In nature, vital

and non-vital porous structures exist: organic forms are found within mammalian cells

and tissues [14], as biological membranes [141] and cartilage [142, 143]. Inorganic

A manuscript based on the content of this chapter has been accepted for publication in the journal
Physical Review E. This is the pre-publication version of the following article: “Force and Flux Relations
for Flows of Ionic Solutions between Parallel Plates with Porous and Charged Layers”.
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porous structures are found in natural geophysical systems like packed silicates [144],

and in synthetic components like packed-bed reactors and polymer membranes [145].

A mechanistic understanding of ion transport within membrane and soft-layer sys-

tems is required to engineer and optimize device performance. Describing transport

within the porous membrane layer requires an understanding of the interplay between

chemical and physical attributes of the porous layer. Fuel cells [122], filtration assem-

blies [121], and electrophoretic [49, 146] and chromatography systems with coated sur-

faces [147] use membranes or membrane-like layers to some extent. Contemporary

workers use anionic and cationic exchange membranes in through-flow configuration

for the purification of brackish solutions [16], where transport across exchange mem-

branes is essential to solution treatment [121].

We consider transport along a porous and charged layer bounded by a solid wall

and pure fluid, as shown in figure 4.1. In this figure, the plates are separated by dimen-

sion 2h and the channel cross-section is given by the area A = 2wh, with dimension w

defining the channel width. The porous layer maintains an immobile charge owing to

the presence of active chemical groups through its wetted volume, and Ohmic conduc-

tion results from the electrophoretic motion of cations and anions in the fluid subsumed

in the porous layer. Furthermore, the porous layer exhibits a Brinkman-type hydraulic

resistivity.

Gradients in pressure and electrical potential combined with a distribution of net

free charge give rise to electrokinetic phenomena such as electrophoresis, electroosmo-

sis, streaming potential, streaming current, electrical conductivity, and electroviscosity.

Gravitational effects may be included in the pressure [148], i.e., the so-called modified

pressure [149] but we do not consider gravitational effects here as they are compli-

cated by the porosity of the medium. These phenomena are linear and additive, and are
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Figure 4.1: Diagrammatic representation of the system under consideration. (A): Ge-
ometric definition of the parallel-plate system studied; plates of width w and length L
are separated by a distance 2h. Included are shapes of pressure-driven and electrically
forced flows for (left) a channel with rigid surfaces and (right) a channel with a porous
lining. In (B) and (C), magnified diagrams at the surface detail distributions of velocity
and potential for a bare, rigid surface (B) and a surface with a porous layer of thickness
δ (C).

succinctly communicated by the electrokinetic coupling matrix (EKCM). The EKCM

describes flux densities of volume and charge through a surface of area A and normal ~n

in response to linear gradients in pressure (∇p) and electrical potential (∇φext). Q/A

I/A

 =

 χ11 χ12

χ21 χ22


 −〈∇p〉

−〈∇φext〉

 (4.1)

The brackets surrounding gradients of pressure and electrical potential in equation (4.1)

denote the averaged values of the normal component of vector fluxes taken over the

channel cross section: 〈∇φext〉 = 1
A

∫
S
∇φext · ~n dA and 〈∇p〉 = 1

A

∫
S
∇p · ~n dA. For the re-

maining terms in equation (4.1), χ11 is the hydraulic conductivity term relating the area-

averaged (using the channel cross-section) velocity and the pressure gradient; similarly,

χ12 is the hydraulic conductivity term describing the response to a gradient in electrical

potential. The electrical conductivity (both Ohmic and electroosmotic) is given by χ22,
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and the current produced by a pressure gradient is related through χ21. Exact forms

of these coefficients are determined from the geometry and boundary conditions of the

system under consideration.

For linear and microscopically reversible processes, the electrokinetic coupling ma-

trix is symmetric. This is a statement of Onsager reciprocity [150–153]; holding so long

as, for a near-equilibrium system, the forces and the fluxes relate linearly, and the sys-

tem remains symmetric upon time reversal. These requirements for Onsager reciprocity

generally hold; broken only, for example, when the system considered is placed under

the action of a magnetic field or subject to a Coriolis force. Systems so exposed will not

reverse in time and will not exhibit reciprocity in the coefficients describing forces and

fluxes [153].

Statements of Onsager reciprocity applied to electrokinetic systems are known in

the interface and microfluidic literature. Similar to thermoelectric phenomena, recip-

rocal relationships were known long before the phenomena were codified theoretically.

In 1892 Saxén demonstrated the equivalence between electroosmosis and streaming po-

tential [154], showing χ12 = χ21 experimentally. This work was followed by contribu-

tions [155,156] examining the equivalence between porous diaphragms and networks of

capillaries. More contemporary work by Gross and Osterle [76] discusses coupling re-

lationships in capillary flow, contributing general integral expressions for pressure, elec-

trical, and chemical potential gradients driving fluxes of volume, current, and mass; with

attention to electrodialysis and energy conversion. Extending these ideas to arbitrarily

shaped ducts, Mortensen, et al. [157] develop expressions for the EKCM coefficients

using a Hilbert space, also showing Onsager reciprocity for the cross terms. The early

history of equivalence between electroosmosis and streaming potential is discussed in a

review by Wall [158].
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More recent investigations have moved beyond pure fluids bounded by rigid, non-

reacting surfaces. Brunet and Ajdari [159] have developed a general derivation proving

the symmetry property of a coupling matrix for systems with arbitrary microstructure.

In their formulation, the system need only obey the no-slip boundary condition, exhibit

Newtonian Stokes flow, and obey the Poisson equation for potential in response to a

spatial free charge density. They simplify their general results for a periodic isotropic

medium and show that the Onsager reciprocal relation holds. Brunet and Adjardi do not,

however, present functions for the coupling coefficients. In fact, their proof omits def-

inition of electrical boundary conditions (charge and/or potential) on the system walls.

Berli and Olivares [160] develop expressions for electrokinetic coupling coefficients in

systems where the working fluid is non-Newtonian. They report symmetry in the elec-

trokinetic coupling matrix, although their model prohibits non-linear viscosity in regions

of non-zero electrical potential; the assertion being that the depletion zone of a polymer

additive causing the nonlinear flow effects is thicker than the region of net charge. Also,

their system ceases to be strictly linear for non-Newtonian fluids, as coefficient χ11 will

contain a pressure dependence. van Leeuwen and Duval [161] describe effects of a

conductive substrate, where faradaic reactions are permitted, on the form of Onsager

relations.

Previous works have considered coupling coefficients in channels with charged and

porous layers. Donath and Voigt [92] present a 1D formulation of the system we con-

sider, although their approach assumes a low-potential limit and incorrectly predicts a

divergence in streaming current as the Debye length of the solvent approaches the char-

acteristic penetration length of the free fluid into the porous region (in our notation,

λD → λo). A similar approach was taken by Ohshima and Kondo [93], deriving approx-

imate forms for χ12 and χ21 (confirming Onsager reciprocity) for a channel many times

larger than both the fluid Debye length and the penetration depth of fluid into the porous
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region. Keh and Liu [162] derive exact analytical expressions for coupling coefficients

for the linearized Poisson–Boltzmann equation in a cylindrical geometry. A pair of arti-

cles, by Duval and van Leeuwen [98] and Duval [99], develop electrokinetic theories for

porous regions of nonuniform charge and resistance, relaxing an assumption of previous

workers; results are presented for the small-potential (linearized) regime [98], as well as

the nonlinear regime [99]. In a recent publication, we have reviewed electrokinetics of

soft and charged layers from both theoretical and experimental viewpoints [163].

In this work, we develop general, closed-form integral expressions describing elec-

trokinetic transport over and within porous layers of uniform resistance and arbitrary

fixed charge density; these integral expressions require only physicochemical porous

layer properties such as porous layer resistance, porous layer thickness, the distribution

of the fixed charge, and the electrical potential in the system. Our results do not require

knowledge of the potential gradient or velocity within the channel (other than velocity

boundary conditions). Often, these required quantities may be approximated. Generally,

the values of potential and charge can be reliably computed. In contrast to previously

published results, our expression for the cross-coupling term applies for arbitrary values

of the fixed charge density, and geometric and resistive parameters, without regard to

the magnitude of the electrical potential in the system. This general integral formulation

also facilitates our derivation of simple limiting forms that apply accurately across a

wide range of parameter space.

The manuscript is organized as follows: in section 2, we describe fluid physics

in porous layers. In section 3, we describe generating formulas for all electrokinetic

phenomena, incorporating domain inhomogeneities introduced in the previous section.

Coupling formulas are then applied to systems with a hard surface in section 4. These

results are contrasted with (and used to motivate) the porous layer coupling coefficients
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we derive and present in section 5. In section 6, we derive limiting cases of porous layer

coefficients, and in section 7, we present numerical representations of coefficients for

cases not described by simplifying limits.

4.3 Fluid Physics in Porous Layers

We consider momentum transport at low Reynolds number, governed by the Stokes

equation of motion. Fluid forcing in the Stokes equations is linear and additive: gra-

dients in pressure or external electrical potential actuate the fluid independently, and

solutions for flows driven by gradients of pressure or electric fields may be superim-

posed. In the pure-fluid region:

0 = η∇2u − ∇p − ρe∇φext (4.2)

Here, η is the fluid viscosity, u is the velocity field, and ρe is the free charge density.

Equation 4.2 holds outside of the porous layer. Within the porous layer, we add a term

linear in the velocity which accounts for the added resistance of the porous layer beyond

the unbounded fluid:

0 = η∇2u − ku − ∇p − ρe∇φext (4.3)

The constant, k, describes the resistivity of the porous region. In both equations (4.2)

and (4.3), gradients in pressure and external electrical potential are equivalent in the

porous layer and pure fluid.

Multiple schemes have been proposed to connect porous layer and pure fluid flows;

we use the Brinkman approach because of the ability to obey both boundary conditions

in the porous layer, as well as the ubiquity of the Brinkman approach for the type of

problem that we consider here. The Brinkman approach to the momentum distribution
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is widely used for planar (or nearly planar) porous layers between a solid surface and

pure fluid [92, 94, 95, 98–100, 130, 133, 134, 162], and has been reviewed in this context

by Dukhin, et al. [104]. Although we work with the Brinkman-modified Stokes equation

to connect the porous-layer and pure-fluid flows, coupling between free-fluid and porous

layer flows may also be done using the Beavers-Joseph boundary condition [164]; both

approaches are approximate and exhibit deficiencies in predicting the velocity profile

at the interface between the porous and pure-fluid phases, and have been the subject

of much discussion [148, 165–169]. Although the Beavers-Joseph condition matches

the velocity at the porous layer–fluid interface, it assumes a Darcian flow inside the

porous layer and does not explicitly obey the no-slip condition at the solid wall–porous

medium boundary. Although this may be unimportant for macroscale systems (porous

layer thickness�
√

η

k ) with low porosity, we consider systems with porous layers that

may be thin relative to
√

η

k , requiring that the no-slip condition at the solid boundary be

obeyed.

Equations (4.2) and (4.3) are typically solved in response to a single momentum

source. We indicate forcing with superscripts: u(p) for pressure-driven flow and u(e) for

flows driven by electric fields. Furthermore, we label the velocity in the porous layer

with subscript 1, i.e., u(p)
1 , and in the fluid with subscript 2, as u(p)

2 .

Momentum distributions in the porous layer and in the pure fluid connect via bound-

ary conditions. For the one-dimensional geometry we consider (figure 4.1), a no-slip

condition is applied at the fluid–solid interface, and a symmetry condition is imposed at

the channel centerline.The boundary conditions at the interface between the porous and

pure-fluid regions require continuity of velocity and stress:

u1(0) = 0 u1(δ) = u2(δ)

du1

dy

∣∣∣∣∣
y=δ

=
du2

dy

∣∣∣∣∣
y=δ

du2

dy

∣∣∣∣∣
y=h

= 0 (4.4)
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Here, the Brinkman resistance term −ku is absent, as the boundary conditions are dom-

inated by the tangential stresses; the Brinkman resistance acts on a fluid volume and is

lost in the limiting process.

The free charge distribution is determined from the Poisson equation with a fixed-

charge that is zero in the pure fluid and nonzero in the porous layer. In general:

∇ (−εεo∇φ) = ρe(x) + ρ f (x) (4.5)

Here, the distribution of fixed charge is given by ρ f (x), and may exhibit a dependence

on the potential. The electrical potential distribution is determined by the form of the

free charge density, ρe, the distribution of fixed charge in the domain, ρ f , and boundary

conditions. The dielectric constant of the solvent is given by ε, and εo is the vacuum

permittivity. The pure-fluid phase cannot support a fixed charge distribution, so ρ f = 0

in this region of the domain:

∇ (−εεo∇φ2) = ρe(x) (4.6)

Again, we use the subscript 2 to indicate quantities in the pure-fluid region of the do-

main. The porous layer is the only region with non-zero fixed charge density. Fixed

charges reside throughout the wetted volume of the porous material. In the porous re-

gion:

∇ (−εεo∇φ1) = ρe(x) + ρ f (x) (4.7)

The potential distributions in equations (4.6) and (4.7) also couple through boundary

conditions. We prescribe a fixed potential on the hard boundary at y = 0, and zero

potential slope at the channel centerline. At the interface between the fluid and porous

layer, continuity in potential and electric flux density, for uniform permittivity, implies
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matching potential and potential gradient:

φ1(0) = φo φ1(δ) = φ2(δ)

dφ1

dy

∣∣∣∣∣
y=δ

=
dφ1

dy

∣∣∣∣∣
y=δ

dφ2

dy

∣∣∣∣∣
y=h

= 0 (4.8)

Equality between dielectric constants in the pure-fluid and porous regions is implicitly

assumed in the field gradient relation. This constraint was relaxed by Ohshima and

Ohki [89] in their analysis of potential profiles across charged biological membranes.

The free-charge density depends upon the local concentration of ions. Typically, a

mean-field approximation is used to relate the free-charge density to the potential. By

further considering the free ions as point charges, we arrive at the Boltzmann relation

for the free-charge density [59]:

ρe(x) = F
∑

i

zici,∞e−
ziFφ(x)

RT (4.9)

Here, R is the ideal gas constant, T the absolute temperature, F is Faraday’s constant,

and zi and ci,∞ are the valence and bulk concentration of the ith ionic component.

The potential within a porous layer at a point where free and fixed charges ex-

actly balance is known as the Donnan potential [70], and implies that the potential is

curvature-free. The functional form connecting the Donnan potential to the fixed-charge

distribution depends upon the form of the free- and fixed-charge densities. For a fixed

charge density that is independent of the local potential, and a free charge determined

by (4.9):

0 = F
∑

j

z jc j,∞e−
z jFφD

RT + ρ f (x) (4.10)

For a z : z electrolyte, equation (4.10) has the form φD = RT
zF arcsinh

(
ρ f (x)

2zFc∞

)
, where φD

denotes the Donnan potential in the porous layer.
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4.4 Generating integral formulas for EKCM Coefficients

All electrokinetic coupling coefficients may be expressed in a general integral form.

Typically, the EKCM coefficients are calculated with direct integration in only the sim-

plest systems, but these forms are the starting point for expressions that we derive in

later sections. We write an integral expression for χ11 for a pressure-driven flow that

proceeds through a surface S with unit normal ~n and corresponding flow field u(p)(x):

χ11 =
1∫

S
−∇p · ~n dA

∫
S

u(p)(x) · ~n dA (4.11)

Terms χ12 and χ21 relate the area-averaged volume and current fluxes to the application

of external electrical potential and pressure gradients, respectively. The general forms

of these expressions are given by:

χ12 =
1∫

S
−∇φext · ~n dA

∫
S

u(e)(x) · ~n dA (4.12)

χ21 =
1∫

S
−∇p · ~n dA

∫
S
ρe(x)u(p)(x) · ~n dA (4.13)

The symbols ρe(x), u(e)(x), and −∇φext, denote the free-charge density, electric-field-

driven flow, and the electric field. In the above expressions, gradients in pressure and

electrical potential are assumed uniform across the surface S .

The final term, χ22, relates the area-averaged current to the applied electrical poten-

tial gradient. We refer to this as the conductivity term. In general form, we write this as:

χ22 = σOhmic + σ(ex)
Ohmic + σ(ex)

EO (4.14)

We have separated the conductivity term into three components. The bulk conductiv-

ity, σOhmic, represents the contribution from Ohmic conduction. Contributions to Ohmic

conductivity from boundary effects are included in σ(ex)
Ohmic. We have used the superscript

(ex) to indicate excess or surface contributions to the system conductivity. Finally, the
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electroosmotic contribution, σ(ex)
EO , represents the contribution by electroosmotic trans-

port of current when a field is applied. In integral form:

σOhmic = 1∫
S ∇φext·~n dA

F
∑

i |zi| µi

∫
S

ci,∞∇φext · ~n dA (4.15)

σ(ex)
Ohmic = 1∫

S ∇φext·~n dA
F

∑
i |zi| µi

∫
S

(
ci(x) − ci,∞

)
∇φext · ~n dA (4.16)

σ(ex)
EO = 1

−
∫

S ∇φext·~n dA

∫
S
ρe(x)u(e)(x) · ~n dA (4.17)

The symbol µi represents the mobility of the ith ion. In most microfluidic systems, the

excess conductivities are small when the double layers are thin relative to the system

size.

4.5 Coupling terms for systems with rigid interfaces

We present coupling terms for a parallel-plate system with bare rigid walls as a prelude

to the porous layer geometry. These terms are dependent on the potential distribution

and do not require explicit details of the flow as inputs, beyond boundary conditions

and the forces applied to the fluid (pressure or electrical potential). Furthermore, sim-

plifications and physical insight proceed quickly from the integral forms of the coupling

terms. Here, the flow u proceeds along the x direction and varies across the half do-

main 0 ≤ y ≤ h. At the solid boundary, we fix the potential, φo, and enforce a no-slip

boundary condition. At the channel centerline, both velocity and potential obey a homo-

geneous Neumann condition. Equations (4.2) and (4.6) reduce from partial to ordinary

differential equations:

dp
dx

= η
d2u
dy2 (4.18)

−εεo
d2φ

dy2 = ρe(y) (4.19)
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The hydraulic resistance term, χ11, is determined from equations 4.18 and 4.11 along

with no-slip boundary conditions:

χ(hard)
11 =

h2

3η
(4.20)

The current density in response to a pressure gradient is computed from:

χ(hard)
21 =

1
−〈∇p〉A

∫ 2h

0

∫ w

0
u(p)ρe(y) dzdy (4.21)

Here 0 ≤ z ≤ w is the channel width (into the page, in figure 4.1). We assume that the

velocity, potential, and charge profiles are uniform in this direction. With A = 2hw,

χ(hard)
21 =

1
−h〈∇p〉

∫ h

0
u
(
−εεo

d2φ

dy2

)
dy (4.22)

After integration by parts (twice), enforcing boundary conditions u(0) = 0 (no slip),

φ(0) = φo, du
dy

∣∣∣∣
y=h

=
dφ
dy

∣∣∣∣
y=h

= 0 (symmetry), and finding the velocity gradient at the wall:

χ(hard)
21 = −

εεoφo

η

[
1 −

1
h

∫ h

0

φ(y)
φo

dy
]

(4.23)

To find the flux density of volume in response to an applied electric field, absent

pressure, we compute:

χ(hard)
12 =

2
∫ h

0
u(e) dy

−2wh〈∇φext〉
= −

1
h〈∇φext〉

∫ h

0
u(e) dy (4.24)

The solution is most easily obtained by solving directly for the field u(e) from the Stokes

equations with zero pressure forcing, a no-slip boundary, and symmetrical velocity pro-

files about the centerline:

χ(hard)
12 = −

1
h〈∇φext〉

∫ h

0

εεo

η
〈∇φext〉 (φo − φ(y)) dy (4.25)

Or,

χ(hard)
12 = −

εεo

η
φo

[
1 −

1
h

∫ h

0

φ

φo
dy

]
(4.26)
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The conductivity term is more complicated, owing to the convolution of the charge

density and electroosmotic flow; both terms have a direct connection with the electrical

potential. Using earlier results, we express the conductivity for our 1-D flow as:

χ(hard)
22 = F

∑
i

|zi| µi
1
h

∫ h

0
ci(y) dy −

∫ h

0
ρe(y)u(e)(y) dy

h〈∇φext〉
(4.27)

The excess conductivity (σ(ex)
EO + σ(ex)

Ohmic) has been determined by Bikerman for h �

λD and a symmetric electrolyte [73], which we reproduce here under the additional

assumption of balanced mobilities for the electrolyte pair:

χ(hard)
22 = σOhmic +

λD

h
2F2c∞z2D

RT

(
1 +

3m
z2

) [
cosh

(zFφo

2RT

)
− 1

]
= σOhmic +

2εεoD
h

(
1 +

3m
z2

) [
cosh

(zFφo

2RT

)
− 1

] (4.28)

Of critical significance is the parameter m =
(

RT
F

)2 2εεo
3ηD , which relates the relative con-

tributions of excess Ohmic and electroosmotic conductivities: σ(ex)
Ohmic = 3m

z2 σ
(ex)
EO . Sim-

plified relationships for the conductivity outside of the h � λD limit are not available;

in such cases we represent excess Ohmic and electroosmotic conductivities in integral

form, written here assuming a Boltzmann distribution for the free-charge density:

σ(ex)
Ohmic = F

∑
i

|zi| µici,∞
1
h

∫ h

0

(
e−

ziFφ(y)
RT − 1

)
dy (4.29)

σ(ex)
EO =

(εεo)2

η

1
h

∫ h

0

(
dφ
dy

)2

dy

= 2
εεoRT
ηh

∑
i

ci,∞

∫ h

0

(
e−

ziFφ(y)
RT − e−

ziFφmid
RT

)
dy

(4.30)

Outside the thin electrical double layer limit, the potential at the channel centerline is

non-zero, represented here by φmid. We do not consider the conductivity further in this

work.
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4.5.1 Remarks on Coupling Terms for Rigid Interfaces

The results derived in this section are general: in χ11 we assume only that the fluid

is Newtonian with no-slip boundaries. Examining the cross terms, χ12 and χ21, we

observe a term depending only on the electrical boundary condition, and an integral

term representing the average channel potential; this integral term is proportional to the

ratio 1
h , and, since the potential varies appreciably only over λD, the contribution of this

integral term will be minimal when λD � h. Finally, the χ12 and χ21 relations apply for

all forms of the charge distribution – the relations do not require a point-charge or other

approximation; hard-sphere corrections, for example, may be included. These remarks

indicate that for systems with h � λD, χ12 and χ21 depend chiefly upon the boundary

value, and details of the mobile/free charge distribution may be omitted.

The conductivity term, χ(hard)
22 , is the least general, requiring free-charge and elec-

troosmotic distributions that must be integrated. Because the excess conductivities are

localized to regions near the charged surface, the importance of these excess conductiv-

ities diminish as the size of the system (i.e., h) increases.

4.6 Coupling Terms for Systems with Porous and Charged Inter-

faces

Porous and charged layers affect both electrical potential and momentum distributions.

A system with a porous layer has increased hydraulic resistance in the porous region, as

captured in the Stokes–Brinkman equation by the added term −ku. Porous and charged

layers contribute a fixed charge density term in the Poisson equation, ρ f (x). For the

parallel-plate system considered here, the differential equations for the porous layer
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(0 ≤ y ≤ δ) become:

0 = ηd2u
dy2 − ku − dp

dx −
dφext

dx ρe (4.31)

−εεo
d2φ

dy2 = ρe(y) + ρ f (y) (4.32)

Outside of the porous layer of thickness δ (y ≥ δ), we solve equations (4.18) and (4.19).

These equations are coupled by the boundary conditions presented in (4.4) and (4.8).

4.6.1 χ11 with Porous and Charged Interfaces

A porous layer reduces the hydraulic conductance of the channel. The porous layer

exhibits a resistance beyond the viscous retardation of the fluid alone; this effect is

captured in the −ku term. Below, we solve for the velocity in the channel, and then

describe the hydraulic conductance, χ(soft)
11 . For convenience and clarity, we work in the

dimensionless variable y∗ = y/δ, and define β = h/δ which is the half-height of the

channel normalized by the porous layer thickness. We introduce parameters λo =

√
η

k ,

a measure of the penetration of momentum from the pure fluid into the porous layer,

α = δ
λo

, to characterize the thickness of the porous layer relative to the penetration

distance of momentum from the pure fluid into the porous layer, and G = δ2

η
〈∇p〉, a

modified pressure gradient with units of velocity.

The shape of the velocity profiles are strong functions of α and β. Equations (4.33)

and (4.34) show the nonlinear dependence in the parameter α:

u(p)
1 = G

α2

(
cosh(αy∗) − 1 − sinh(αy∗)

cosh(α)

[
α(β − 1) + sinh(α)

])
(4.33)

u(p)
2 = G

α2

(
1

cosh(α) + α2

2 (y∗ − 1)(1 + y∗ − 2β) − 1 − α (β − 1) tanh(α)
)

(4.34)

These equations are plotted in figure 4.2, showing the velocity profiles across the chan-

nel for small, moderate, and large resistance parameters (α). Perturbations induced by
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the porous layer on the momentum distribution are dependent on β, mostly by constric-

tion effects, as α becomes large. For values of β approaching unity, nearly all non-

vanishing values of α will have some effect on the velocity profiles.
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Figure 4.2: Velocity profiles about the channel centerline for varying layer resistance
parameter α and relative channel height β. At left, β = 2, the velocity profile is strongly
perturbed from parabolicity by large and moderate values of α. At right, β = 10, the
channel is large relative to the porous layer thickness, and retarding effects are mainly
confined to the porous layer and do not interfere strongly with momentum transport in
the pure fluid region.

For the one-dimensional geometry considered, we compute χ(soft)
11 from equation

(4.11). This yields:

χ(soft)
11 =

h2

3η

[
1 −

3α2β2 − 3α2β + α2 − 6β + 3
α2β3 −

6(β − 1)
α2β3 cosh(α)

+ 3
(
(β − 1)2

α
−

1
α3

)
tanh(α)
β3

]
(4.35)

In addition to the non-dimensional parameters α and β, equation (4.35) contains two

dimensional parameters: the domain height, h, and the viscosity, η. The premultiplying

dimensional term is the exact result for the hydraulic conductivity between two parallel

plates; the additional bracketed terms represent corrections due to the thickness and

resistivity of the porous layer.

Similar to the velocity profiles just described, χ(soft)
11 is strongly dependent on α. For
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a porous region that is greatly resistive, α � 1:

χ(soft)
11

h2/3η
= 1 −

3β2 − 3β + 1
β3 +

3(β − 1)2

αβ3 + O
(

1
α2

)
(4.36)

In this limit, transport within the porous layer is diminished, and the porous layer serves

to constrict the channel volume. If the porous layer becomes impenetrable (α→ ∞),

χ(soft)
11

h2/3η
= 1 −

3β2 − 3β + 1
β3 (4.37)

For a porous region that is weakly resistive, α << 1, we describe this layer using a series

expansion in the now-small parameter α:

χ(soft)
11

h2/3η
= 1 −

3 − 5β(3 − 4β)
20β3 α2 + O(α4) (4.38)

A vanishingly small resistance corresponds to a porous layer with no resistance beyond

the viscosity of the working fluid, and is equivalent to the limit α→ 0. In this case:

χ(soft)
11

h2/3η
= 1 (4.39)

Both large- and small-α limits concur with physical intuition. For a very resistive layer,

the channel is throttled by the impermeable porous layer and a reduced channel height.

For a ‘porous’ layer with zero resistance, χ(soft)
11 has no dependence on the layer thick-

ness δ, as the porous layer provides no additional resistance to the channel. Between

these limits, the hydraulic conductivity varies smoothly across a large range of α. This

behavior is shown in figure 4.3.

4.6.2 χ21 with Porous and Charged Interfaces

The current density in response to a pressure gradient is related through the coupling

coefficient χ(soft)
21 , which is a convolution of the pressure-driven velocity field and the total

charge density formed by mobile ions. In the presence of a permeable layer with fixed
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Figure 4.3: Plots of χ(soft)
11 normalized by the α → 0 limit (left) and the α → ∞ limit

(right). In both cases, porous layer effects are small when the channel height is large
relative to the porous layer thickness (β � 1).

charge, the magnitude of convected charge can differ markedly from the rigid interface

previously considered. There are two sources for this change: (1) the distribution of

ions is perturbed by the porous and charged layer and (2) the distribution of momentum

is perturbed by the porous and charged layer.

We derive χ(soft)
21 in a general form accounting for a uniformly resistive porous layer.

Our derivation places no requirements on the distribution of charge, nor do we assume

a distribution (or magnitude) of potential (beyond that which solves a general Poisson

equation). Thus, our formulation assumes only the existence of potential and fixed-

charge distributions.

For the parallel-plate geometry, we derive χ(soft)
21 by substituting in the Poisson equa-

tion and the known velocity solution, and repeatedly integrating by parts. We start with:

χ(soft)
21 =

I/A
−〈∇p〉

= −
1

β〈∇p〉

∫ β

0
u(p)ρe dy∗ (4.40)

Here, and in the following Poisson equation, we again scale the spatial coordinate y by
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the porous layer thickness δ:

−
εεo

δ2

d2φ

dy∗2
= ρe(y∗) + ρ f (y∗) (4.41)

By substituting out the charge density in (4.40) for the potential curvature and fixed

charge density terms, we obtain:

−
1

β〈∇p〉

∫ β

0
u(p)

(
−
εεo

δ2

d2φ

dy∗2
− ρ f (y∗)

)
dy∗ =

1
β〈∇p〉

[
εεo

δ2

∫ β

0
u(p) d2φ

dy2 dy∗ +

∫ 1

0
u(p)ρ f (y∗) dy∗

]
(4.42)

The limits of the last integral range only from 0 ≤ y∗ ≤ 1, because ρ f vanishes outside

the porous layer. After successive integrations by parts, and invoking the boundary

conditions on velocity and potential,

χ(soft)
21 =

εεo

η
φo

 1
βG

du(p)
1

dy∗

∣∣∣∣∣∣∣
y∗=0

+
1
β

∫ β

0

φ

φo
dy∗ +

1
β

∫ 1

0

u(p)
1

α2G

(
φ

φo
+

δ2

α2εεo

ρ f

φo

)
dy∗


(4.43)

The velocity in the porous layer is known and described in the previous section. The

velocity gradient at the boundary between the rigid wall and porous layer is du(p)
1

dy∗

∣∣∣∣∣
y∗=0

=

G
(

1−β
cosh(α) −

tanh(α)
α

)
. Including these terms gives:

χ(soft)
21 = −

εεo

η
φo

[
1 − 1/β
cosh(α)

+
tanh(α)
αβ

−
1
β

∫ β

0

φ

φo
dy∗ − . . .

1
β

∫ 1

0

(
cosh(αy∗) − 1 −

sinh(αy∗)
cosh(α)

(α(β − 1) + sinh(α))
) (
φ

φo
+

δ2

α2εεo

ρ f

φo

)
dy∗

]
(4.44)

Presently, these equations are nondimensionalized in space only. By introducing the

scales φ∗ =
φ

RT/F , ρ∗f =
ρ f λ

2
D

εεo
RT
F

=
ρ f

2FIc
, defining γ = λD

δ
, and noting Ic = 1

2

∑
j c j,∞z2

j is the

ionic strength of solution, the quantity contained within the square brackets is converted

to dimensionless form:

χ(soft)
21 = −

εεo

η
φo

[
1 − 1/β
cosh(α)

+
tanh(α)
αβ

−
1
β

∫ β

0

φ∗

φ∗o
dy∗− . . .

1
β

∫ 1

0

(
cosh(αy∗) − 1 −

sinh(αy∗)
cosh(α)

(α(β − 1) + sinh(α))
) (
φ∗

φ∗o
+

1
α2γ2

ρ∗f

φ∗o

)
dy∗

]
(4.45)
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Lastly, grouping terms in the final integral into the function H(y∗;α, β):

χ(soft)
21 = − εεo

η
φo

[
1−1/β

cosh(α) +
tanh(α)
αβ
− 1

β

∫ β

0
φ∗

φ∗o
dy∗ − 1

β

∫ 1

0
H(y∗;α, β)

(
φ∗

φ∗o
+ 1

α2γ2

ρ∗f
φ∗o

)
dy∗

]
(4.46)

H(y∗;α, β) = cosh(αy∗) − 1 − sinh(αy∗)
cosh(α) (α(β − 1) + sinh(α)) (4.47)

This result succinctly communicates the functional dependence of χ(soft)
21 on the physic-

ochemical parameters α, β, and γ, and the chemical properties φ∗ and ρ∗f .

Four terms contribute to the expression for χ(soft)
21 . The first two bracketed terms,

1−1/β
cosh(α) +

tanh(α)
αβ

, represent the direct contribution from the solid charged boundary. This

quantity is linearly related to the pressure-normalized velocity gradient at the inter-

face, and is only reduced by the presence of the porous layer. The second contribution,

− 1
β

∫ β

0
φ∗

φ∗o
dy∗, is a correction to the previous boundary potential terms resulting from the

integration of the normalized potential across the channel. This integral term is minimal

when (1) the channel is large relative to the porous layer thickness (β � 1), or (2) the

Debye length is small in comparison to all other electrical and boundary length scales in

the system (γ � 1, γ � β). This term plays an identical role to the integrated potential

terms in equations (4.23) and (4.26). The final term − 1
β

∫ 1

0
H(y∗;α, β)

(
φ∗

φ∗o
+

ρ∗f
φ∗o

1
α2γ2

)
dy∗

describes current transport within the porous layer. H(y∗;α, β) is a filter-like function

that describes the relative penetration of momentum into the porous layer as a func-

tion of α and β (or, equivalently, δ, λD, and h). This function H is proportional to the

pressure-driven velocity within the porous layer, H(y∗;α, β) = α2

G u(p)
1 . The second term

in this integral, φ∗

φ∗o
+

ρ∗f
φ∗o

1
α2γ2 , is a modified representation of the free charge density within

a porous layer bearing fixed charge.

The behavior of the filter-like function, shown in figure 4.4, is a strong nonlinear

function of α, and a weak function of β. Here, plots of − 1
β
H(y∗;α, β) over y∗ for varying

α and β illustrate the weighting of φ∗

φ∗o
+

ρ∗f
φ∗o

1
α2γ2 at various points in the porous layer. For

β = 1, the porous layer occupies the entire width of the channel, and transport varies

91



from nearly parabolic flow profile (small α) to a top-hat like shape dominated by the

Brinkman term at large α. For larger values of β and small values of α, transport within

the porous layer layer again mimics the portion of the parabolic profile contained in the

porous layer. As α increases, the dominant contribution is contributed by the porous

layer edge, owing to strongly retarded flow toward the interior of the porous layer.
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Figure 4.4: Behavior of the filter-like function − 1
β
H(y∗;α, β) as function of space over a

range of α (columns) and β (rows). The horizontal axes in all plots range over 0 ≤ y∗ ≤
1.

4.6.3 χ12 with Porous and Charged Interfaces

Although the coupling coefficient χ(soft)
12 is identical to χ(soft)

21 by Onsager reciprocity, the

direct computation of χ(soft)
12 is substantially more difficult than χ(soft)

21 because the expres-

sions for electroosmotic flow are more complicated than the corresponding pressure-

driven flow relations. The generating formula for χ(soft)
12 in our one-dimensional system

is:

χ(soft)
12 = −

1
β〈∇φext〉

∫ β

0
u(e) dy∗ (4.48)
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The field-driven fluid velocities are computed from the set of equations,

0 =
d2u(e)

1
dy∗2 − α

2u(e)
1 + 1

η

dφext
dx

(
εεo

d2φ

dy∗2 + δ2ρ f

)
(4.49)

0 =
d2u(e)

2
dy∗2 + 1

η

dφext
dx εεo

d2φ

dy∗2 (4.50)

along with the flow boundary conditions from equation (4.4). This set has the solution

u(e)
1 = C1eαy∗ + C2e−αy∗ −

∫ y∗

0

〈∇φext〉eαy∗e−αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds + . . .∫ y∗

0

〈∇φext〉e−αy∗eαs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds

(4.51)

u(e)
2 = C3 + y∗C4 −

εεo

η
〈∇φext〉φ(y∗) (4.52)

with constants:

C1 = 1
2 cosh(α)

[∫ 1

0
〈∇φext〉

αη
cosh(α(1 − s))

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds − εεo

αη
〈∇φext〉φ

′
δ

]
(4.53)

C2 = −C1 (4.54)

C3 =
∫ 1

0
sinh(αs)
cosh(α)

〈∇φext〉

αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds − εεo

αη
〈∇φext〉

(
φ′δ tanh(α) − αφδ

)
(4.55)

C4 = 0 (4.56)

The coupling coefficient χ(soft)
12 follows from a direct integration of the velocity ex-

pressions above. The process is tedious, but eventually yields the result χ(soft)
12 = χ(soft)

21 .

See the supplementary information for further details on simplifying χ(soft)
12 .

4.7 Analysis and Limiting forms of χ(soft)
21 and χ(soft)

12

The coupling coefficients χ(soft)
12 and χ(soft)

21 (collectively written χ(soft)
i j ) presented in equa-

tions (4.46) and (4.47) are superior to alternate forms that depend on free charge, electri-

cal potential slope, and electrical potential concavity terms. Our representation of χ(soft)
i j
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depends upon quantities that are known exactly in certain regions of the porous layer and

are typically straightforward to approximate or bound in the remaining regions. These

forms of χ(soft)
i j depend solely on parameters α, β, γ, and spatial distributions of potential

(φ) and fixed-charge density (ρ f ). Specifically, the fixed charge density may be ap-

proximated with information about the chemistry of the charge-generating mechanism.

Typically, such bound charge is controlled by pH-dependent chemistry [58, 92, 170].

Regardless of the charging mechanism, the charge is a nonlinear function of the poten-

tial, and estimations of charge densities require estimations of potential, not potential

curvature or slope. Using either exact, numerical, or approximate expressions for the

potential potential and fixed-charge profiles, these expressions are used as inputs in the

function χ(soft)
i j . Furthermore, using our form of χ(soft)

i j , we obtain physical limits by vary-

ing parameters α, β, and γ, absent specific information on the form of the potential and

charge distributions.

Our analysis of χ(soft)
i j is informed by the interactions between distributions of mo-

mentum, potential, and charge. The Stokes and Poisson equations couple directionally

– distributions of charge and potential are unaffected by the transport of momentum,

whereas the free-charge distribution strongly affects electroosmotic transport. The quan-

tity α contributes only to hydrodynamics, affecting the degree to which flow is retarded

within the porous region. The term γ controls the decay of the potential profile gener-

ated by the fixed charge embedded in the porous region and rigid boundary. Although

this term does not affect the pressure-driven flow, it does have an effect on the electroos-

motic flow. Finally, β contributes to both the momentum and charge distributions by

adjusting the separation between momentum and electrical boundary conditions. Fur-

thermore, regions of net free charge (and non-zero potential) are typically confined to

the charged porous region plus a distance of several γ’s into the pure fluid phase. In

general, the parameters α and γ directly control the transport behavior of the system,
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whereas β indicates the relative magnitude of fluid transport within and outside of the

porous region.

We implement analytical approximations and numerical solution methods to resolve

the behavior of χ(soft)
i j for varied parameters α, β, and γ. In our analyses, we assume

the conventional Boltzmann forcing of the Poisson equation. The Poisson–Boltzmann

equation is strongly nonlinear, and has no general closed-form solution for our geometry

and boundary conditions. Thus, we implement approximate analytical solutions where

the potential, φ∗, can be estimated. Outside of approximate limits, we perform numerical

computations to determine χ(soft)
i j .

The parameter α = δ
λo

determines the penetration of velocity from the pure fluid into

the porous region, strongly affecting the value of χ(soft)
i j . When α → 0, the resistance

of the porous layer is minimal and momentum transfers freely from the fluid into the

porous layer; conversely, α → ∞ implies that the porous layer is highly resistive, and

transport in the porous layer is throttled. For α << 1, we perform a series expansion in

the small parameter α. Then, to zeroth order in α:

χ(soft)
i j

−
εεo
η
φo
≈ 1 −

1
β

∫ β

0

φ∗

φ∗o
dy∗ +

∫ 1

0

(
y∗ −

y∗2

2β

)
ρ∗f

φ∗oγ
2 dy∗ (4.57)

Equation (4.57) shows the limit for χ(soft)
i j in system having a weakly resistive porous

layer is equal to the sum of χi j for a hard surface (the first two terms, which are equiv-

alent to equation (4.23)) and contributions from the fixed-charge-density term (the last

integral). Further reducing this expression in the limit of β � 1 removes the second,

overlap-correction term. In essence, then, the first and third terms are boundary terms,

because they are wholly or partially in the limit where reductions by double layer over-

lap are minimized (β � 1):

χ(soft)
i j

−
εεo
η
φo
≈ 1 +

∫ 1

0

ρ∗f

φ∗o

y∗

γ2 dy∗ (4.58)
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All forms of χ(soft)
i j remain bounded even when γ → 0 or λD → 0 in this limit because

ρ∗f ∼ γ
2 ∼ λ2

D.

The small-α case offers insight into the importance of the solid-wall potential bound-

ary condition versus the fixed-charge distribution in the porous region. For porous re-

gions thick relative to the Debye length, γ2 << 1, we expect that the solid boundary will

contribute minimally because the wall charge is screened by the charge in the porous

layer. For α and γ � 1, χ(soft)
i j is heavily dependent on the porous layer charge, except

when the boundary potential greatly exceeds the Donnan potential, φ∗o >
z sinh(φ∗D)

2zγ2 . Fur-

thermore, thick porous layers exhibit minimal concavity in electrical potential far from

porous layer edges, d2φ

dy2 ≈ 0, implying ρ∗f = 1
z sinh(zφ∗D) for a z : z electrolyte. Recall that

φ∗D is the Donnan potential. For a uniform fixed charge distribution within the porous

layer, and using the Donnan potential relationship between charge and potential in the

small-γ limit, we obtain:

χ(soft)
i j

−
εεo
η
φo
≈ 1 +

sinh(zφ∗D)
zφ∗o

1
2γ2 (4.59)

As expected, the thick-layer limit of χ(soft)
i j is heavily dependent on the porous layer

charge, except when the boundary potential greatly exceeds the Donnan potential, φ∗o >
z sinh(φ∗D)

2zγ2 .

When β→ 1, transport occurs entirely within the porous region, and the only contri-

bution to χ(soft)
i j comes from the porous layer. Applying this condition in equation (4.57)

yields, for uniform charge density:

χ(soft)
i j

−
εεo
η
φo
≈ 1 −

∫ 1

0

φ∗

φ∗o
dy∗ +

1
3

ρ∗f

φ∗oγ
2 (4.60)

The term
∫ 1

0
φ∗

φ∗o
dy∗ can be approximated as φ∗D

φ∗o
when: (1) the wall potential matches

identically with the potential in the porous layer (in which case this approximation is

exact) or (2) γ << 1, relegating any perturbation in electrical potential to a small region
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of thickness ∼ 5γ near the wall. In either case,

χ(soft)
i j

−
εεo
η
φo
≈ 1 −

φ∗D
φ∗o

+
1
3

ρ∗f

φ∗oγ
2 (4.61)

Thus, the dominant contribution for a channel completely filled by a porous layer is the

charge carried by the porous layer. This limiting area of parameter space implies a zero

when ρ∗f = 3γ2
∫ 1

0

(
φ∗ − φ∗o

)
dy, which can occur only when the porous layer and wall

potentials have opposite sign.

Limiting forms of χ(soft)
i j for highly resistive porous layers (α � 1) are more difficult

to obtain than those for weakly resistive porous layers. A uniform limiting expression

for the filter-like function H(y∗;α, β) is not available for the general case of large α. The

difficulty of obtaining approximations of χ(soft)
i j as α � 1 is well-motivated by figures

4.2 and 4.4: as α is increased for all β > 1, flow within the porous layer is zero nearly

everywhere except the porous layer edge; similarly, 1
β
H(y;α, β) tends to zero in all re-

gions but the porous layer edge, where the value of the function increases substantially.

The first boundary term, however, can be approximated: the sustained absence of flow

near the wall removes the contribution from the boundary term. Given restrictions on

interchanging the limit and integration operations for the porous regions integral, we

seek further simplifications to χi j by way of approximation for the quantity φ∗

φ∗o
+

ρ∗f
φ∗o

1
(αγ)2 .

Approximate expressions are delicate at the interface between the porous layer and pure

fluid: the potential and fluid velocity both change appreciably in a thin slice of the do-

main. We begin by considering χ(soft)
i j with α � 1 and a uniform fixed charge density.

Then:

χ(soft)
i j

−
εεo
η
φo
≈ −

1
β

∫ β

0

φ∗

φ∗o
dy∗+

ρ∗f

φ∗o

(
1

α2γ2 +
1/β − 1

α2γ2 cosh(α)
−

tanh(α)
α3γ2β

)
−

1
β

∫ 1

0

φ∗

φ∗o
H(y∗;α, β) dy∗

(4.62)

Here, terms of 1
αn , n ≥ 1, have been omitted; we retain the term O

(
1

α2γ2

)
since αγ may

be of order unity or smaller. In dimensional form, αγ = λD/λo – this combination
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of parameters controls the local convection of charge at the porous layer edge. This

dependence of χ(soft)
i j on (αγ)−2 results from the coincidence of velocity and potential

gradients near the porous layer edge. As λD decreases, the potential profile sharpens

limiting to a function mimicking the fixed-charge distribution. Similarly, the velocity

profile sharpens (
∣∣∣∣du

dy

∣∣∣∣ increasing) with increasing λo at the porous layer edge.

When γ << 1, the potential profile will mimic a step function, and the electrical po-

tential everywhere within the porous layer can be bounded by two limits. Here, we esti-

mate the electrical potential φ∗ in the integral − 1
β

∫ 1

0
φ∗

φ∗o
H(y∗;α, β) dy∗: (1) a lower bound

where the potential everywhere within the porous layer is greater than or equivalent to

the potential at the porous layer edge (φ∗(1) = φ(δ) presented in the supplementary in-

formation), φ∗ ≥ φ∗δ , and (2) an upper bound where the potential everywhere within the

porous layer is less than or equal to the Donnan potential of the porous layer, φ∗ ≤ φ∗D.

Then:

χ(soft)
12

−
εεo
η
φo

∣∣∣∣∣∣∣
min

= −
1
β

φ∗D + f (z, φ∗D)
φ∗o

+

(
ρ∗f

α2γ2φ∗o
+
φ∗D + f (z, φ∗D)

φ∗o

) (
1 +

1/β − 1
cosh(α)

−
tanh(α)
αβ

)

(4.63)

χ(soft)
12

−
εεo
η
φo

∣∣∣∣∣∣∣
max

= −
1
β

φ∗D
φ∗o

+

(
ρ∗f

α2γ2φ∗o
+
φ∗D
φ∗o

) (
1 +

1/β − 1
cosh(α)

−
tanh(α)
αβ

)
(4.64)

These relations are compared and evaluated later in frame (C) of figure 4.6 for α << 1

and figure 4.7 for α >> 1. In particular, we apply relations (4.63) and (4.64) over the

entire range of α in figure 4.8 demonstrating the ability of the expressions to bound

χ(soft)
i j .

98



4.8 Numerical Representation of χ(soft)
i j for Arbitrary Values of α, β,

γ, and Validation of Approximate Analytical Formulas

We implement numerical methods to determine χ(soft)
i j outside of the limits described

in the previous section. Further, we use the numerical description of χ(soft)
i j to validate

our approximate expressions. We numerically determine χ(soft)
i j in the parameter space

spanned by the charge (or potential) in the porous layer, and quantities α, β, and γ. We

assume the Boltzmann relation for the free charge density. The numerical quadrature

of χ(soft)
i j is straightforward if φ∗(y∗) and ρ∗f (y

∗) are known; this is a main feature of our

form for χ(soft)
i j – we do not require computations of field gradients, which are prone to

numerical errors given the spatially stiff nature of the Poisson–Boltzmann equation. All

numerical representations of the potential presume a uniformly charged porous layer, as

well as uniform fluid and electrical properties across the entire domain. The details of

the numerical scheme are summarized the supplementary information.

We have compared numerical potential simulations to analytical expressions for the

potential at the porous layer edge, with favorable results. At the porous layer edge, we

use a Grahame-type formula (see supplementary information) to compare against our

numerical calculations. These results, along with potential profiles across the domain

for varying values of the parameter γ, are shown in figure 4.5, demonstrating quanti-

tative agreement with theoretical predictions and scaling. As expected, and similar to

the semi-infinite rigid interface solution, the length scale controlling the decay of the

potential at the porous layer edge is strongly dependent upon the potential in the porous

layer. This decay is illustrated in frame (A) of figure 4.5, and shown more clearly in

frames (B) and (C). Although (B) and (C) are qualitatively similar, the length scale over

which (B) decays is 1/10th of the scale in (C). This disparity in decay length is a direct
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result of the nonlinearity of the governing physics. In contrast to the linearized limit,

at large potential the characteristic length scale is a strong function of the local poten-

tial. Furthermore, we directly compare numerical and analytical results (cf., equation

(4.96) for the edge potential in the supplementary information) in (D) and (E), showing

excellent agreement. Frames (D) and (E) demonstrate that the porous layer edge po-

tential matches the analytical result, and also that the result is invariant to the value of

γ. This invariance to γ is also demonstrated in panes (A) through (C). These favorable

comparisons establish the validity of our numerical potential simulations to describe the

potential and charge distribution within the porous layer system.
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Figure 4.5: Numerical results for electrical potential distributions, and comparison
against exact results. For all results, β = 10 with a 1 : 1 electrolyte; the uniform
porous layer terminates at y = 1. (A) Potential profiles for various values of potential
and γ (as indicated); the extents of the data are truncated to highlight the porous layer
edge. Panes (B) and (C) highlight the change in potential near the porous layer edge at
y = 1. The legend in (A) also applies to (B) and (C). (D) and (E) display a comparison
between the computed potential at the porous layer edge and the analytical result. The
legend in (E) applies to (D) as well.

Parameters α, β, and γ have distinct effects on the electrokinetic coupling parameters

χ(soft)
i j . We explored the impact of these parameters on χ(soft)

i j previously with our analyti-

cal form (4.46) and here show a more complete picture via numerics. The parameter α
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affects only the fluid mechanics of the system. As α → ∞, momentum transport in the

porous region vanishes, throttling fluid transport. This restriction occurs independently

of the potential profile. The limit of α → 0 represents the opposite extreme, where the

porous layer exhibits no resistance beyond fluid viscous effects. For most systems, α is

the dominating factor governing the magnitude of the coupling coefficients. This dom-

inance is demonstrated in figure 4.6, showing the cross-coefficients (χ12 and χ21) over

seven decades of α, while β and γ are simultaneously varied. The results shown in figure

4.6A communicate the importance of transport within the porous layer. At low values

of α, transport is permitted in the porous region and overall charge transport is enhanced

by the coincidence of fluid motion and fixed charge density, with minimal sensitivity to

the value of β. All results in figure 4.6 are shown for an interior (or Donnan) potential of

φ∗D = 5 i.e., φD = 128 mV. The boundary potential, φo, is assumed equal to the Donnan

potential for these cases.
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Figure 4.6: Behavior of the coupling coefficients χ(soft)
12 and χ(soft)

21 over 7 decades of α
for β = 1 (red lines in (A) and (B)), β = 100 (black lines in (A) and (B)), and various
values of γ, indicated with various line styles. Pane (C) compares numerical values and
analytical approximations of χ(hard) in the α � 1 limit as a function of γ (x-axis) and β
for φD = 5, showing excellent agreement.
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The selections of β = 1 and 100 illustrate χ(soft)
i j for a porous layer completely filling

the channel (β = 1) and a porous layer forming a thin region of fixed charge relative to

the pure fluid phase (β = 100). Furthermore, we consider a range of γ indicating porous

layers that are similar in size to the Debye length of the fluid (solid lines) to layers that

are much larger than the Debye length (dash-dot and dotted lines). The discrepancy

between the large- and small-β limit is attributable to convection of charge in the double

layer beyond the edge of the porous region. This layer is not present in the β = 1 limit

(as the porous region fills entirely the channel), and thus contributes neither fluid nor

current flux. For strongly resistive layers, the data presented in figure 4.6C demonstrates

that χ(soft)
i j exhibit greater sensitivity to the value of β when α becomes large. Here, the

porous layer is strongly resistive and transport occurs mainly in the pure fluid region.

For β = 1, the entire channel is filled with a strongly resistive layer; the flow is throttled,

and the fluxes vanish.

The parameter γ affects the coupling coefficients χ(soft)
12 and χ(soft)

21 at nearly all values

of α. When α � 1, the coupling coefficients reach their limiting maximum form, and

exhibit a scaling of 1/γ2. This behavior is shown most clearly in figure 4.6B, in which

the coupling coefficient is plotted as a function of γ for α � 1, while simultaneously

varying the height of the channel (β). The γ−2 scaling is confirmed by the favorable

comparison between our low-α analytical relation, equation (4.58), and the results of

our numerical representations for the potential and coupling coefficients. These results

display not only correct scaling, but also the accuracy of our analytical approximations

in this region.

The value of γ does not affect the limiting result of the coupling coefficients as

α � 1. Rather, the parameter γ controls the value of α at which this limiting result is

achieved, as illustrated in figure 4.6C. This behavior can be explained by considering the
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potential in regions with fluid transport. For a porous layer with α � 1, transport occurs

near and beyond the porous layer edge, having been diminished within the porous layer.

In the context of pressure-driven flow, for the large-α limit, flow is relegated to a thin

region of thickness order λo near the porous layer edge, or α in dimensionless space.

Similarly, the fixed charges within the porous layer generate a potential whose decay

length is equal to λD, or γ in dimensionless space. As γ decreases, the potential profile

limits to the step function defined by the fixed charge in the porous layer (e.g., figure

4.5). This limiting case exhibits zero potential curvature everywhere in the porous layer

except at the edge, and within the porous layer the free charge is equal and opposite to

the fixed charge. Thus, any transport in this region necessarily depends on both α and

γ — increasing values of α will decrease charge transport by reducing fluid velocities

at the porous region edge, and decreasing values of γ will increase the charge transport

by enhancing the amount of free charge that may be convected near the porous region

edge.

Numerical simulations of χ(soft)
i j show that the upper and lower limits for χ(soft)

i j bound

the cross-coupling coefficient at large α. Agreement is shown in figure 4.7 for α =

100 and φ∗o = 5, over a range of β and γ. Furthermore, these results communicate

that strong changes in the electrical potential profile and transport at the interface are

responsible for variations in χ(soft)
i j . Both of these effects are apparent when comparing

results for β = 1 to all other cases. When β = 1, gradients in fluid velocity occur at

the solid boundary, and there are no gradients in electrical potential or charge; and the

approximation matches the numerical data. For β , 1, there is a decay in potential from

φ∗D in the porous layer toward the bulk (midline) value; the decay length is governed by

the parameter γ. As γ decreases, the dominant flux contribution is from the value of

the fixed charge density. Conversely, when γ becomes large, the potential terms become

dominant: Since the potential is estimated everywhere within the porous layer and at the
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boundary of the porous layer and fluid, the large–γ case yields the largest errors.

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

1/γ = δ/λ
d
 [−]

χ(s
of

t)
12

/−
εε

o
φ o

/η
 [−

]

 

 

Upper analytical, β = 1
Numerical, β = 1
Lower analytical, β = 1

0 20 40 60 80 100
10

−1

10
0

10
1

1/γ = δ/λ
d
 [−]

χ(s
of

t)
12

/−
εε

o
φ o

/η
 [−

]

 

 

Upper analytical, β = 5
Numerical, β = 5
Lower analytical, β = 5

0 20 40 60 80 100
10

−1

10
0

10
1

1/γ = δ/λ
d
 [−]

χ(s
of

t)
12

/−
εε

o
φ o

/η
 [−

]

 

 

Upper analytical, β = 20
Numerical, β = 20
Lower analytical, β = 20

0 20 40 60 80 100
10

−1

10
0

10
1

1/γ = δ/λ
d
 [−]

χ(s
of

t)
12

/−
εε

o
φ o

/η
 [−

]

 

 

Upper analytical, β = 100
Numerical, β = 100
Lower analytical, β = 100

Figure 4.7: Upper and lower limit forms of χ(soft)
12 for α = 100.

Furthermore, the upper and lower bounds derived for χ(soft)
i j at large α (equations

(4.63) and (4.64)) accurately approximate χ(soft)
i j over a large range of α. This matching,

and the associated errors, is shown in figure 4.8. The accuracy of these expressions over

the entire range of α is somewhat surprising, as they were developed only for the large-α

limit. Given our assumptions on the fixed charge distribution within the porous layer,

however, we are able to exactly capture the contribution from each term containing ρ∗f .

Because this fixed charge density term is dominant at low α, the approximation for φ∗

in the system does not contribute at small α, no matter the accuracy of the estimated

value for α. As α is increased, the φ∗ term in the integral contributes a greater amount

as compared to the ρ∗f term, and the estimated value of the potential in the porous layer

does play an important role, as seen in figures 4.7 and 4.8. At large α the exact and

approximated values of χ(soft)
i j diverge, producing errors of about 10%.
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Figure 4.8: Leftmost four plots: Large α limit applied over the entire range of α. Right-
most four plots: Errors (as percent) in χ(soft)

12 applied over the entire range of α. The
non-monotonicity observed in the errors is results from taking the maximum error of
the difference between the numerical value and upper and lower estimations of χ(soft)

i j .

4.9 Conclusion

We have developed simplified analytical expressions for χ(soft)
11 and χ(soft)

i j that are func-

tions of known and/or estimable properties of a system with porous and charged layers.

These expressions are improvements over earlier works on similar systems by removing

the functional dependence on potential curvature and fluid velocity, which are typically

not known. Prior workers have examined limiting regions of the parameter space that

we consider in full.

Our results consider the limits of system parameters α, β, and γ rather than φD or φo,

which extends the generality of our results. We have described the system using physical

and chemical properties that can be measured or inferred: the solid wall potential (φo),

fixed charge in the porous layer (ρ f ), porous layer thickness (δ), porous layer resistance

(k), Debye length (λD), the system height (h), and the fluid viscosity (η). These proper-

ties can be further reduced to a set to dimensionless parameters, chiefly, the quantities

α, β, and γ, which describe distributions of momentum and charge within the system.

With numerical solution of the governing equations, we have validated our approx-
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imate analytical forms of the coupling coefficients, and have shown that two simple

analytical expressions, equations (4.63) and (4.64), faithfully describe the behavior of

the terms χ(soft)
i j to within 10%. Equations (4.63) and (4.64) make no assumptions on

the magnitude of the potential or fixed charge density within the porous layer, but do

assume that the fixed charge is uniformly distributed and the potential deep within the

porous layer is gradient-free. Similarly, we have derived and validated expressions for

χ(soft)
i j when the parameter α is small, and the small-α limit applies more generally to

systems with arbitrary distributions of fixed charge.

The theory, modeling, and analysis herein forms a structure through which systems

with porous layers may be analyzed. If system parameters are known, expressions for

χ(soft)
11 and χ(soft)

i j give predictive capability for several phenomena. Conversely, if the

coupling parameters are known from experimental measurements, system parameters

may be determined.
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4.11 Supplementary Information

4.11.1 Brief Details on the Numerical Scheme

We implement a finite differencing scheme to solve the Poisson–Boltzmann equa-

tion. Specifically, we have used an implicit Crank–Nicholson scheme by introducing

a pseudo-time variable to change the equation from elliptic-like to parabolic-like. Dis-

cretization of the Poisson–Boltzmann equation in space and time leads to an implicit set

of equations that may be recast in matrix form, including a forcing term representing

contributions from the fixed and nonlinear free charge density terms. We solve this ma-

trix equation using a tridiagonal matrix algorithm, iterating and comparing successive

solutions until convergence.

4.11.2 χ(soft)
12 for Porous and Charged Interfaces

Here, we show that the coupling coefficient computed from electroosmosis:

χ(soft)
12 = −

1
β∇φext

∫ β

0
u(e) dy∗ (4.65)

is identical to the coefficient χ(soft)
21 derived previously from streaming current.

The field-driven fluid velocities are computed from the set of equations,

0 =
d2u(e)

1
dy∗2 − α

2u(e)
1 +

∇φext
η

(
εεo

d2φ

dy∗2 + δ2ρ f

)
(4.66)

0 =
d2u(e)

2
dy∗2 +

∇φext
η
εεo

d2φ

dy∗2 (4.67)

along with the flow boundary conditions for the Stokes–Brinkman equation. This set
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has the solution

u(e)
1 = C1eαy∗ + C2e−αy∗ −

∫ y∗

0

∇φexteαy∗e−αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds +∫ y∗

0

∇φexte−αy∗eαs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds

(4.68)

u(e)
2 = C3 + y∗C4 −

εεo

η
∇φextφ(y∗) (4.69)

with constants:

C1 = 1
2 cosh(α)

[∫ 1

0
∇φext
αη

cosh(α(1 − s))
(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds − εεo

αη
∇φextφ

′
δ

]
(4.70)

C2 = −C1 (4.71)

C3 =
∫ 1

0
sinh(αs)
cosh(α)

∇φext
αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds − εεo

αη
∇φext

(
φ′δ tanh(α) − αφδ

)
(4.72)

C4 = 0 (4.73)

Since the final result for χ(soft)
21 is written in terms of potential concavity rather than

potential, we integrate each constant expression by parts to convert from dependence on

the concavity of potential to dependence on the potential. After integrating C1 by parts

twice, the first constant becomes:

C1 =

∫ 1

0

∇φext

2αη
cosh(α(1 − s))

cosh(α)

(
δ2ρ(s) + α2εεoφ(s)

)
ds −

εεo∇φext

2αη
φ′o −

εεo∇φext

2η
φo tanh(α)

(4.74)

We have removed the potential derivative (φ′δ) at the boundary between the porous layer

and the fluid, but gained terms in both the solid wall potential (φo) and potential deriva-

tive (φ′o). We perform a similar procedure with the C3 constant term, which becomes:

C3 =

∫ 1

0

sinh(αs)
cosh(α)

∇φext
1
αη

(
δ2ρ f (s) + α2εεoφ(s)

)
ds + ∇φext

εεo

η

φo

cosh(α)
(4.75)

With these modified constant terms, we compute the contributions to χ(soft)
12 both

inside (I1 = − 1
β∇φext

∫ 1

0
u(e)

1 dy∗) and outside of the porous layer (I2 = − 1
β∇φext

∫ β

1
u(e)

2 dy∗).
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We begin with the outer portion:

I2 = −
1

β∇φext

∫ β

1

(
C3 −

εεo

η
∇φextφ(y∗)

)
dy∗ (4.76)

I2 =
C3

∇φext

(
1
β
− 1

)
+
εεo

η

1
β

∫ β

1
φ(y∗) dy∗ (4.77)

Finally,

I2 =

∫ 1

0

sinh(αs)
cosh(α)

(
1
β
− 1

)
1
αη

(
δ2ρ f (s) + α2εεoφ(s)

)
ds+

εεo

η

φo

(
1
β
− 1

)
cosh(α)

+
εεo

η

1
β

∫ β

1
φ(y∗) dy∗

(4.78)

The first integral, I1, requires significantly more manipulation. Before performing

the integration, we combine the terms in equation (4.68) and the relation between C1

and C2 (equation (4.71)) to give:

u(e)
1 = 2C1 sinh(αy) −

∫ y∗

0

∇φexteαy∗e−αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds + . . .∫ y∗

0

∇φexte−αy∗eαs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds

(4.79)

Then, I1 becomes:

I1 =
2C1

αβ∇φext
(1 − cosh(α)) +

1
β

∫ 1

0

∫ y∗

0

eαy∗e−αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds dy∗ − . . .

1
β

∫ 1

0

∫ y∗

0

e−αy∗eαs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds dy∗

(4.80)

We next place the latter two integral terms in equation (4.80) in the form seen in constant

terms C1, C2, C3, and I2. First, we apply an integration by parts (
∫

u dv = uv| −
∫

v du)

to the integral terms in (4.80) with u = ± 1
β

∫ y∗

0
e∓αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds and dv =

1
β
e±αy∗ dy∗. The sum of these terms become:

1
β

∫ 1

0

cosh(α(1 − s)) − 1
α2η

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds (4.81)
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Following the removal of the double-integral terms, we convert the φ′′ term to a φ term,

again with integration by parts:

1
β

∫ 1

0

cosh(α(1 − s)) − 1
α2η

εεo
d2φ

ds2 ds = −
φ′o
β

εεo

α2η
(cosh(α) − 1) −

φo

β

εεo

αη
sinh(α) + . . .

1
β

∫ 1

0

cosh(α(1 − s)) − 1
η

εεoφ(s) ds +
1
β

∫ 1

0

εεo

η
φ(s) ds

(4.82)

Then I1 becomes:

I1 =
2C1

αβ∇φext
(1 − cosh(α)) −

φ′o
β

εεo

α2η
(cosh(α) − 1) −

φo

β

εεo

αη
sinh(α) +

1
β

∫ 1

0

εεo

η
φ(s) ds + . . .

1
β

∫ 1

0

cosh(α(1 − s)) − 1
η

(
δ2ρ f (s)

α2 + εεoφ(s)
)

ds

(4.83)

Incorporating the form of C1 removes the φ′o terms and becomes:

I1 = −εεo
φo

η

tanh(α)
αβ

+
1
β

∫ 1

0

εεo

η
φ(s) ds+

1
β

∫ 1

0

1
η

(
cosh(α(1 − s))

cosh(α)
− 1

) (
δ2ρ f (s)

α2 + εεoφ(s)
)

ds

(4.84)

Then, we combine I1 and I2:

I1 + I2 = −
εεo

η
φo

(
tanh(α)
αβ

+
1 − 1/β
cosh(α)

)
+
εεo

η
φo

1
β

∫ β

0

φ(s)
φo

ds + . . .

1
β

∫ 1

0

1
η

(
cosh(α(1 − s))

cosh(α)
− 1

) (
δ2ρ f (s)

α2 + εεoφ(s)
)

ds + . . .∫ 1

0

sinh(αs)
cosh(α)

(
1
β
− 1

)
1
αη

(
δ2ρ f (s) + α2εεoφ(s)

)
ds

(4.85)

Which further becomes:

I1 + I2 = −
εεo

η
φo

(
tanh(α)
αβ

+
1 − 1/β
cosh(α)

)
+
εεo

η
φo

1
β

∫ β

0

φ(s)
φo

ds + . . .

1
β

∫ 1

0

εεo

η
φo

(
δ2 ρ f (s)
α2εεoφo

+
φ

φo

) [
cosh(αs) − 1 −

sinh(αs)
cosh(α)

(α(β − 1) + sinh(α))
]

ds

(4.86)
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Finally,

χ(soft)
12

−
εεo
η
φo

=
1 − 1/β
cosh(α)

+
tanh(α)
αβ

−
1
β

∫ β

0

φ(s)
φo

ds − . . .

1
β

∫ 1

0

(
δ2 ρ f (s)
α2εεoφo

+
φ

φo

) [
cosh(αs) − 1 −

sinh(αs)
cosh(α)

(α(β − 1) + sinh(α))
]

ds

(4.87)

4.11.3 The Potential at the Porous Layer Boundary

Ohshima and Ohki [89] have derived a relationship between the potential at the edge of

the porous layer and the Donnan potential deep within the porous layer. This estimation

makes use of a Grahame-like [1] equation for the slope at the porous layer edge. We

consider a uniformly charged porous layer in a system with total height much larger than

the porous layer thickness h >> δ (β >> 1), and in a z : z electrolyte. First, write the

Poisson-Boltzmann equation with fixed charge multiplied by the quantity 1
2

dφ
dy :

−εεo
1
2

dφ
dy

d2φ

dy2 =
1
2

F
∑

j

c j,∞z je−
z jFφ
RT

dφ
dy

+
1
2
ρ f

dφ
dy

(4.88)

This is equivalently,

−εεo
d
dy

(dφ
dy

)2 =
1
2

F
∑

j

c j,∞z je−
z jFφ
RT

dφ
dy

+
1
2
ρ f

dφ
dy

(4.89)

or, after transforming the differential operator ( d
dy =

dφ
dy

d
dφ ):∫ y

yo

d
(dφ

dy

)2 = −

∫ φ

φo

F
2εεo

∑
j

c j,∞z je−
z jFφ
RT dφ −

∫ φ

φo

1
2εεo

ρ f dφ (4.90)

These integrations are straightforward. In all cases, we choose the point yo and φo deep

within the porous layer where the electrical potential is given by the Donnan potential,

φD. We also presume that electrical potential is locally uniform. These assumptions

hold when the porous layer is uniformly charged, and the point in the porous layer is

several Debye lengths away from the porous layer edge. In this way, we ensure that the

perturbation introduced into to the electrical potential at the porous layer edge has no

111



effect. We evaluate the second limit at the porous layer edge, indicated with the subscript

δ. The result is:(
dφ
dy

)2

δ

=
RT

2εεo

∑
j

c j,∞

(
e−

z jFφδ
RT − e−

z jFφD
RT

)
+

ρ f

2εεo
(φD − φδ) (4.91)

After nondimensionalizing this equation (taking the characteristic length scale as λ, and

the Debye length as λd):(
λd

λ

)2 (
dφ∗

dy∗

)2

δ

=
1
4

∑
j

c∗j,∞
(
e−z jφ

∗
δ − e−z jφ

∗
D

)
+
ρ∗f

2
(
φ∗D − φ

∗
δ

)
(4.92)

This equation relates the potential at the porous layer edge to the charge within the layer

(ρ∗f and φD) as well as the gradient in the electrical potential at the porous layer edge. To

determine the potential at the porous layer edge, we simplify the above expression for a

z : z electrolyte:(
λd

λ

)2 (
dφ∗

dy∗

)2

δ

=
1

2z2

(
cosh(zφ∗δ) − cosh(zφ∗D)

)
+
ρ∗f

2
(
φ∗D − φ

∗
δ

)
(4.93)

At the porous layer edge, we can express the gradient in terms of the charge density

on the pure fluid side of the porous layer as:(
λd

λ

)2 (
dφ∗

dy∗

)2

δ

=
1

2z2

(
cosh(zφ∗δ) − 1

)
(4.94)

Whence,

1
2z2

(
cosh(zφ∗δ) − 1

)
=

1
2z2

(
cosh(zφ∗δ) − cosh(zφ∗D)

)
+
ρ∗f

2
(
φ∗D − φ

∗
δ

)
(4.95)

Using the relation ρ∗f = 1/z sinh(zφ∗D):

φ∗δ = φ∗D +
1 − cosh(zφ∗D)

z sinh(zφ∗D)
= φ∗D + f (z, φ∗D) (4.96)

The results presented to this point also include an expression for the slope at the

interface: (
λd

λ

)2 (
dφ∗

dy∗

)2

δ

=
1

2z2

(
cosh(zφ∗δ) − 1

)
(4.97)
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When λ = λd:
dφ∗

dy∗

∣∣∣∣∣
y=δ

=
1
z

√
1
2

(
cosh(zφ∗δ) − 1

)
=

1
z

sinh
(
zφ∗δ
2

)
(4.98)

As the Donnan potential becomes very large (φ∗D ≥ 4), the potential at the porous layer

boundary limits nearly to the Donnan potential. Then:

dφ∗

dy∗

∣∣∣∣∣
y=δ

=
1
z

sinh
( z
2

[φ∗D − 1]
)

(4.99)

4.11.4 Additional Approximations for χ(soft)
i j

Weakly Resisting Porous Layer

In the limit of a weakly resisting porous layer, α � 1, we expand equations (4.46) and

(4.47) in a Taylor series with α as the small parameter:

χ(soft)
i j

−
εεo
η
φo
≈ 1 + α2

(
1

6β
−

1
2

)
+ O(α4) −

1
β

∫ β

0

φ∗

φ∗o
dy∗ + . . .∫ 1

0

[(
y∗ −

y∗2

2β

) (
α2φ

∗

φ∗o
+

ρ∗f

φ∗oγ
2

)
+ α2

ρ∗f

φ∗oγ
2

4y∗3β − y∗4 − 12βy∗ + 4y∗

24β
+ O(α4)

]
dy∗

(4.100)

This equation is later simplified to zeroth order in the main document (equation (4.57)).

Strongly Resisting Porous Layer

In a system with a porous layer that strongly resists flow, α � 1, the boundary terms in

equation (4.46), 1−1/β
cosh(α) +

tanh(α)
αβ

, contribute minimally and may be neglected. This yields:

χ(soft)
i j

−
εεo
η
φo
≈ −

1
β

∫ β

0

φ∗

φ∗o
dy∗ −

1
β

∫ 1

0
H(y∗;α, β)

(
φ∗

φ∗o
+
ρ∗f

φ∗o

1
(αγ)2

)
dy∗ (4.101)
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In the main document, we continue by assuming a uniform free charge density every-

where within the film. This leads to equation (4.62). Continuing from here, we approxi-

mate the final term in expression (4.62). In this approximation, we assume the potential

everywhere in the porous layer to be constant. The integral term is bounded from below

using the edge potential (i.e., (4.96)), φδ, and above by the Donnan potential, φD:

−
1
β

φ∗δ
φ∗o

∫ 1

0
H(y∗;α, β) dy∗ ≤ −

1
β

∫ 1

0

φ∗

φ∗o
H(y∗;α, β) dy∗ ≤ −

1
β

φ∗D
φ∗o

∫ 1

0
H(y∗;α, β) dy∗

(4.102)

Finally, for a strongly resisting porous layer with β = 1 and either γ � 1 or φ∗o = φ∗D,

equations (4.63) and (4.64) become:

χ(soft)
i j

−
εεo
η
φo
≈
α − tanh(α)

α3γ2

ρ∗f

φ∗o
(4.103)

This quantity tends to zero as α→ ∞, consistent with restricted transport everywhere in

a channel under pressure or electric field forcing.
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CHAPTER 5

SURFACE CONDUCTIVITY IN ELECTROKINETIC SYSTEMS WITH

POROUS AND CHARGED INTERFACES: BENCHMARKING ANALYTICAL

APPROXIMATIONS VS. NUMERICAL RESULTS

5.1 Abstract

We derive an approximate analytical representation of the conductivity for a one-

dimensional system with porous and charged layers grafted onto parallel-plates. Our

theory improves on prior work by considering porous and charged layers of moderate

and weak mechanical resistance to flow, and by applying to porous layers with poten-

tials large and small relative to the thermal voltage
(

RT
F

)
. We demonstrate the efficacy

of our approximate expression with comparisons to numerical representations of the ex-

act analytical conductivity. Finally, we utilize this conductivity expression, in concert

with other components of the electrokinetic coupling matrix, to describe the streaming

potential and electroviscous effect in systems with porous and charged layers.

5.2 Introduction

Porous and charged layers are present in a variety of natural [14,171,172] and synthetic

[49,122,173] systems. These porous and charged layers are often utilized in micro- and

nanofluidic systems to modify transport or electrokinetic properties of the coated surface

[48, 50]. Understanding momentum and charge transport gives predictive capability

A manuscript based on the contents of this chapter have been submitted for publication in the journal
Physical Review E. This is the pre-publication version of the following article: “Surface Conductivity in
Electrokinetic Systems with Porous and Charged Interfaces: Benchmarking Analytical Approximations
vs. Numerical Results”.
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required to engineer systems with porous and charged layers.

Electrokinetic techniques are often implemented to characterize these porous and

charged layers [163]. Streaming current [130, 133], streaming potential [100], and con-

ductivity [127, 128] measurements have been performed to extract information on the

state of the interface in these systems. These experimental efforts require an analyt-

ical [58, 93, 98, 108, 110, 162, 170] and/or numerical [92, 99, 134] framework through

which the experimental data is analyzed and interpreted to extract fundamental parame-

ters such as the density and fluid resistance of the porous and charged layer;

Cell conductivities in microfludic and nanofluidic systems are larger than that pre-

dicted by the conductivity of the working fluid alone because of the wetted interface.

Perturbations of charge and electrical potential are introduced by the solid phases onto

the fluid, resulting in two effects on the current flux when a field is applied. First, the

electric field exerts a body force on the net charge , which actuates the fluid (electroos-

motic flow) and generates a net flux of ions. Second, the charged boundary perturbs the

concentration of ions local to the wall, which enhances the ion flux when an external

potential is applied.

Relative to the linear field–flux relations, the electrical conductivity is often the most

difficult to derive – the conductivity includes both Ohmic and electroosmotic conduc-

tion effects and is sensitive to local rather than integrated ion distributions, making most

analytical treatments difficult because of the nonlinear nature of the Poisson–Boltzmann

equation. In prior works (discussed below), analytical descriptions have required ap-

proximations either made from the outset (via a linearized Poisson–Boltzmann equation)

or in later stages of analysis through simplified expressions for the charge, potential,

and/or velocity distributions.
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Previous efforts have created a limited analytical framework for evaluting the con-

ductivity of porous and charged layers. Exact solutions have been obtained only in

the limit of small potentials (e.g., using a linearized Poisson-Boltzmann equation) in

simplifying geometries. Early works by Donath and Voigt [92] and then Ohshima and

Kondo [97] examine streaming current and conductivity for porous and charged lay-

ers in semi-infinite rectangular capillaries. Donath and Voigt consider the low-potenital

(linearized) limit of the Poisson-Boltzmann equation analytically, and develop a nu-

merical representation of streaming current and conductivity in the nonlinear regime.

In their work, Ohshima and Kondo develop approximate analytical descriptions of the

conductivity and streaming current with estimated forms of the potential distribution.

Keh and Liu [162] develop electrokinetic descriptions of a circular capillary coated with

a porous and charged layer in the limit of small potentials, deriving hydraulic, electroos-

motic, and electrical conductivities for the linearized limit (φ � RT
F ). More recently,

Duval and van Leeuwen [98] and Duval [99] have extended the analyses by previous

workers to porous and charged layers with variable densities of hydraulic resistance and

charge, developing analytical linearized [98] and nonlinear [99] theories for charge and

momentum transport. Dukhin and co-authors have developed conductivity expressions

for porous and charged layers under a variety of conditions. Early analyses of these sys-

tems [58,108] consider a porous layer with a uniform density of charged sites exhibiting

a Darcian fluid resistance, but permitting variable site charging by potential-determining

ions (e.g., H+ for Brønsted acids). These results have been extended to consider salt con-

densation [170], and also the distribution of charge [110] (when combined with other

electrokinetic measurements). Analytical simplifications in these theories are made un-

der the assumption that the thickness of the porous layer is larger than the characteristic

length scales over which fluid velocity varies within the porous layer (for both pressure-

and electric field-driven forcing). Furthermore, these analyses are simplified in the limit
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of porous layer charges and potentials that are large in magnitude, as co-ions are as-

sumed to be excluded from the porous and charged layer.

In this work, we develop an approximate analytical description of the conductivity

applicable for porous and charged layers of arbitrary mechanical resistance and arbi-

trary electrical potential. We formulate our approximate analytical expression using a

convenient set of dimensionless parameters to illustrate limiting behaviors of the con-

ductivity. Both Ohmic and electroosmotic contributions to the conductivity are con-

sidered; we demonstrate the superiority and accuracy of our result through comparisons

with numerically computed values of the conductivity. Finally, we combine our conduc-

tivity expression with our prior work [174], describing the hydraulic conductivity and

streaming current coefficients in systems with porous and charged layers, to describe the

streaming potential and electroviscous coefficients in these systems.

This paper is outlined as follows: In section two, we describe electrokinetic and

transport properties of porous and charged layers, and develop a dimensionless integral

relation for the electrical conductivity. In section three, we recount the Dukhin theory

of conductivity in soft and charged layers; We then compare the Dukhin theory against

numerical computations of the conductivity in section four. In section five, we present

an analytical expression for system conductivity with a porous and charged layer, which

demonstrates improved agreement with numerically computed values. In section six, we

use the approximate analytical form of the conductivity to predict streaming potential

and the electroviscous effect in systems with porous and charged layers.
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5.3 Electrokinetic Descriptions of Systems with Porous and

Charged Layers

Flows over and through charged regions give rise to several electrokinetic phenomena.

The various phenomena are succinctly described by the electrokinetic coupling matrix

(EKCM):  Q/A

I/A

 =

χ11 χ12

χ21 χ22


 −〈∇p〉

−〈∇φext〉

 (5.1)

Here, Q/A and I/A are volume and current flux densities, which relate to the pressure

and electric potential gradients −∇p and −∇φext through the various χ constants. These

gradients may act alone or in concert – in which case fluxes result from the superposition

of the applied gradients. The constant χ11 is the hydraulic conductance, communicating

the ability of the system to transport a volume flux under the action of a pressure gra-

dient, χ22 is the electrical conductance, describing the ability of the system to transport

electrical charge under the application of an electrical potential gradient. Terms χ12 and

χ21 are cross-coupling (or conjugate) coefficients that govern electroosmotic flow and

streaming current, respectively. The cross-coupling coefficients are equal, χ12 = χ21,

following Onsager reciprocity. Additionally, we use angle brackets to denote area-

averaged vector fluxes of pressure and electrical potential, i.e., 〈∇p〉 = 1
A

∫
S
∇p · ~n dA

and 〈∇φext〉 = 1
A

∫
S
∇φext · ~n dA, where ~n is the normal to the cross-sectional area A.
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5.3.1 Momentum and Potential Distributions in Sytems with Porous

and Charged Layers

Compared with a simple interface, interfaces with porous and charged layers exhibit

different the distributions of momentum, charge, and potential. The porous layer con-

tributes an additional resistance to the fluid percolating the pores, and the wetted area

of the porous material can exhibit a fixed charge. We model the flow inside the porous

layer with the Brinkman equation [104]. Outside the porous layer, the constant k → 0

and the Stokes equation is recovered. The Brinkman approach is advantageous in that it

permits modeling of the no-slip condition at the solid surface beneath the porous layer,

as well as stress and velocity matching conditions at the boundary between the pure fluid

and porous layer. The Brinkman approach is preferred to the Beavers-Joseph boundary

condition [164], which also provides for a coupling between flow in a porous medium

and flow in a bulk fluid. The Beavers-Joseph condition assumes a Darcian flow within

the porous layer, and does not allow for the no-slip condition at the rigid boundary. Both

the Brinkman equation and Beavers-Joseph condition are approximations of the flow at

the interface between the porous layer and pure fluid; the validity and merit of these

conditions has been widely discussed in the literature [107,148,165,166,168,169,175].

We write the Brinkman equation as:

0 = −∇p − ku + η∇2u − ρe(x)∇φext (5.2)

Here, u, in the pure fluid and porous layer regions; in both parts of the domain, the fluid

has viscosity η, but only the porous region exhibits a volumetric resistance, parameter-

ized by k. This approximation captures both the resistance effects of the porous medium

and the kinematic and stress conditions at the porous layer boundaries. The Brinkman

equation includes forcing from a pressure gradient, ∇p, and localized momentum pro-

duction as the free charge density, ρe(x), responds to variations in an external potential,
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∇φext.

The Poisson equation describes the distribution of potential, φ, in space, and depends

upon the distributions of free, ρe(x), and fixed, ρ f (x), charge:

∇ · (−εεo∇φ) = ρe(x) + ρ f (x) (5.3)

Terms εo and ε denote the vacuum permittivity and dielectric constant of the medium.

When chemical equilibrium applies, the free charge density is written using a Boltzmann

distribution for the ions:

ρe(x) = F
∑

j

c j,∞z je−
z jFφ(x)

RT (5.4)

Where c j,∞ and z j are the bulk concentration and valence of the jth ionic component, R

is the ideal gas constant, T is the absolute temperature, and F is Faraday’s constant.

We introduce scales for many of the quantities in equations (5.2) and (5.3), to render

several terms dimensionless. The system we consider (see figure 5.1) has a porous

(k , 0) and charged (ρ f , 0) layer of thickness δ, and we use δ as a characteristic length

scale in equations (5.2) and (5.3). We nondimensionalize the charge densities by 2FIc,

where Ic = 1/2
∑

i z2
i ci,∞ is the ionic strength of solution. Finally, we nondimensionalize

φ by the thermal voltage to obtain φ∗ =
Fφ
RT . With these modifications, the governing

equations become:

0 = −∇p
δ2

η
−

kδ2

η
u + ∇∗

2u − 2FIcρ
∗
e(x∗)∇φext (5.5)

λ2
D

δ2 ∇
∗ · (−∇∗φ∗) = ρ∗e(x∗) + ρ∗f (x

∗) (5.6)

The fluid velocity, pressure, and external electric field are dimensional in this form. In

equation (5.5), we define a penetration length λo =

√
η

k , representing the depth of mo-

mentum penetration from the pure fluid phase into the porous layer. Further, we define a

dimensionless parameter α = δ
λo

=

√
kδ2

η
to parameterize this behavior. Additionally, we
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recognize a ratio of length scales in equation (5.6), γ = λD
δ

, which relates the thickness

of the electrical decay to the thickness of the porous layer.

Figure 5.1: Schematic of the parallel-plate cell considered in this work. In (A), the
geometric definition of the cell with sample electroosmotic velocity profile uEO result-
ing from an applied potential gradient, −∇φext. The velocity profile is retarded near the
wall by the the porous and charged layer, shown in (B) with associated lengths and the
free charge density resulting from mobile charges in the bulk and porous and charged
regions. In (C) and (D), diagrams of the electroosmotic and Ohmic conduction mecha-
nisms, respectively. Electroosmotic conduction results from the transport of charge by
bulk fluid motion, Ohmic conduction results by electrophoresis of the ions; excess free
(positive) charges in the porous layer are balanced by bound fixed charge to maintain
electroneutrality.

Discontinuous properties at the boundary between pure fluid (k = 0, ρ f = 0) and

porous regions (k , 0, ρ f , 0) of the system require that equations (5.2) and (5.3) be

solved separately in each domain and then connected via boundary conditions: No-slip

at the rigid interface beneath the porous layer, no-slip at the interface between the porous

layer and the pure fluid, stress matching at the interface between the porous layer and

the pure fluid, and zero stress at the channel centerline along the direction of the flow.

For a one-dimensional electrokinetic cell formed by infinite parallel plates of separation

2h, or nondimensional separation 2β = 2h
δ

, and a porous layer of thickness δ∗ = 1, these
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conditions become:

u1(0) = 0 (5.7)

du
dy∗

∣∣∣∣
y∗=β

= 0 (5.8)

u1(1) = u2(1) (5.9)

du1
dy∗

∣∣∣∣
y∗=1

= du2
dy∗

∣∣∣∣
y∗=1

(5.10)

Similar boundary conditions follow when solving equations (5.3) and (5.4):

φ1(0) = φo (5.11)

dφ2
dy∗

∣∣∣∣
y∗=1

= 0 (5.12)

φ1(1) = φ2(1) (5.13)

ε1
dφ1
dy∗

∣∣∣∣
y∗=1

= ε2
dφ2
dy∗

∣∣∣∣
y∗=1

(5.14)

The boundary conditions in (5.7) through (5.10) and (5.11) through (5.14) close equa-

tions (5.5) and (5.6). Finally, the boundary conditions may be combined with assump-

tions about the porous layer to produce specific conditions on the potential within the

system; chiefly, the Donnan and boundary potentials.

φ∗D: The Donnan Potential A special case of (5.3) occurs when the gradient of poten-

tial vanishes within the porous layer. Typically, this will occur when the charged layer is

uniformly charged and thick relative to the characteristic decay length of potential (the

Debye length) in the solution. In this limit, the fixed and free charges balance:

0 = ρ∗e(x∗) + ρ∗f (x
∗) (5.15)

The potential satisfying the condition imposed in (5.15) is the Donnan potential, φ∗D;

for a z : z electrolyte in which the Boltzmann distribution holds, the balance in (5.15)

yields:

φ∗D =
1
z

arcsinh
(
zρ∗f

)
(5.16)
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φ∗δ: The Boundary Potential The boundary potential, φ∗δ, is the potential at the edge

of the porous layer terminating into solution. Under certain conditions, depending upon

the distribution of the fixed charge in the porous layer and the potential deep within the

porous layer and far away from the boundary, this boundary potential can be written

exactly. This was first done by Ohshima and Kondo [93], using a Grahame-equation-

type approach. We repeat their result here, assuming that the charges of a z : z electrolyte

follow the Boltzmann distribution:

φ∗δ = φ∗D +
1
z

1 − cosh
(
zφ∗D

)
sinh

(
zφ∗D

) (5.17)

5.3.2 General Conductivity Expressions

Electroosmotic and electrophoretic transport determine the magnitude of conducted cur-

rent, viz:
I
A

∣∣∣∣∣
∇p=0

= χ22 (−〈∇φext〉) (5.18)

Where the proportionality constant χ22 contains both Ohmic and electroosmotic contri-

butions:

χ22 = σEO + σOhmic (5.19)

The electroosmotic transport contribution is determined by the integrated convolu-

tion of free-charge density and electroosmotic velocity:

σEO =
1

−〈∇φext〉A

∫
S
ρe(x)u(e) · ~n dA (5.20)

The Ohmic component depends upon the concentrations, ci, and mobilities, µi, of all

ions everywhere in the domain:

σOhmic =
1

〈∇φext〉A
F

∑
i

|zi| µi

∫
S

ci∇φext · ~n dA (5.21)
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Here, we have expressed σOhmic to permit a variable electric field, but in all future for-

mulations we will assume ∇φext to be uniform.

For our parallel–plate system, we reduce these 3D equations to 1D, with 0 ≤ y ≤ h

for one half of the channel. Then, for the electroosmotic component:

σEO =
−1

h〈∇φext〉

∫ h

0
ρe(y)u(e)(y) dy (5.22)

We convert to dimensionless variables using û(e) = u(e)
εεo
η φo〈−∇φext〉

. Then,

σEO =

(
4
3

FIc
εεo

η
φo

)
1
β

∫ β

0

3
2
ρ∗eû(e) dy∗ (5.23)

The parenthetical factor in equation (5.23) serves as a scale for the electroosmotic con-

ductivity, as a charge density multiplied by a Smoluchowski-like mobility using the wall

potential. The fraction 4
3 has been factored for convenience. Similarly, with the addition

of a scale for the concentration, c∗i = ci
Ic

, we write the Ohmic conductivity as:

σOhmic =
1
β

FIc

∑
i

|zi| µi

∫ β

0
c∗i dy∗ (5.24)

The Ohmic conductivity in equation (5.24) presents a similar charge scale (FIc), but a

mobility that is based on charge rather than potential [1]:

µi =
|zi|e

6πηri
(5.25)

We can convert this mobility to a potential by considering a bare ion (e.g., Na+) of

valence zi and radius ri suspended in a solvent with dielectric constant ε. The bare

ion generates an electric field E(r) = 1
4πεεo

ze
r2 , and the potential at the isolated ion is

φi = −
∫ ri

∞

1
4πεεo

zie
r2

i
dr. Then,

φi =
1

4πεεo

zie
ri

=
3
2

(
1

6πεεo

zie
ri

)
=

3
2
µi

η

εεo

zi

|zi|
(5.26)

We tabulate this value for several ionic species in table 5.1. Introducing the ionic poten-

tial into equation (5.24) we obtain:

σOhmic =

(
4
3

FIc
εεo

η

)
1
β

∑
i

ziφi

∫ β

0

c∗i
2

dy∗ (5.27)
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Ion µi × 107
[

m2

s-V

]
φion [mV] φ∗ion[-]

H+ 3.625 790.06 30.76
K+ 0.762 166.05 6.46
Na+ 0.519 113.18 4.40
OH− 2.050 -446.79 -17.39
Cl− 0.791 -172.44 -6.75
NO−3 0.740 -161.36 -6.28

Table 5.1: Mobilities [1] and tabulated potentials for ions, at 25 [C]. φ∗ion =
Fφi
RT

In equation (5.27) we again identify a parenthetical factor, absent a potential, which

generally may not be factored out of the sum across the various ionic species. To resolve

this, we introduce an average ionic potential:

φ̂ =
1
n

∑
i

ziφi (5.28)

Then, upon introducing this scale into the sum of equations (5.23) and (5.27) we obtain:

χ∗22 =
χ22

4
3 FIc

εεo
η
φ̂

=
σEO + σOhmic

4
3 FIc

εεo
η
φ̂

=
1
β

φo

φ̂

∫ β

0

3
2
ρ∗eû(e) dy∗ +

1
β

∑
i

φizi

φ̂

∫ β

0

c∗i
2

dy∗ (5.29)

For a z : z electrolyte, with φ+ = −φ− = φ± equation (5.29) reduces to:

χ22
4
3 FIc

εεo
η

zφ±
=
σEO + σOhmic

4
3 FIc

εεo
η

zφ±
=

1
β

φo

zφ±

∫ β

0

3
2
ρ∗eû(e) dy∗ +

1
β

∫ β

0
cosh

(zφF
RT

)
dy∗ (5.30)

In equation (5.30) we have produced an expression for the conductivity of the

solvent–interface system accounting for electroosmotic and Ohmic conduction, in which

the impact of the wall potential and mobility of the ionic components are readily evalu-

ated.
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5.3.3 The Dukhin Model for Conductivity in Systems with Porous

and Charged Layers

Dukhin and co-workers [58,108,110,170] have developed a theory for the conductivity

of quasi-one-dimensional systems with porous and charged layers. Their work com-

bines expressions for the Ohmic and electroosmotic conductivities within the porous

and charged layer with the Bikerman result [73] outside of the porous and charged layer

to describe the conductivity of entire channel. The primary assumptions in the Dukhin

theory are (i) that the porous layer is thick relative to the Debye length, to justify a uni-

form potential within the porous layer, and (ii) the channel is large relative to the Debye

length such that the potential at the channel center vanishes. Dukhin, et al. have also re-

laxed some of these assumptions, examining charge-bearing layers with pH-dependent

charge densities [58, 108].

The conductivity consists of contributions from the surface and bulk:

χ22 = χbulk
22 + χsurf

22 (5.31)

The bulk conductivity is described with the ionic mobility and concentration of ionic

species unperturbed by the system boundaries,

χbulk
22 = F

∑
j

|z j|µici,∞ (5.32)

Surface conductivity effects are denoted with superscipts ‘i’ and ‘o’ referring, respec-

tively, to those occuring inside and outside of the porous and charged layer, and consist

of Ohmic and electroosmotic conduction:

χsurf
22 = χsurf,o

22 + χsurf,i
22 (5.33)

χsurf,o
22 = σsurf,o

EO + σsurf,o
Ohmic (5.34)

χsurf,i
22 = σsurf,i

EO + σsurf,i
Ohmic (5.35)

127



In the Dukhin analysis [170], χsurf,o
22 is given by Bikerman’s result [73] for a z : z

electrolyte bounded by well-spaced walls (λD � h) with potential φδ:

χsurf,o
22 = 2

λD

h
z2Fc∞µ±

(
1 +

3m
z2

) [
cosh

(zFφδ
2RT

)
− 1

]
(5.36)

Here, µ± is the mobility of the cation/anion pair, and c∞ is the bulk concentration for

each component. The parameter m = RT
F

2εεo
3ηµ±

relates the relative contributions of excess

Ohmic and electroosmotic conductivities: σsurf,o
Ohmic = 3m

z2 σ
surf,o
EO .

The inner Ohmic and electroosmotic conduction terms (equation (5.35)) are written

assuming a uniformly charged porous layer. Further, the electroosmotic term assumes a

porous layer flow dominated by the resistance of the porous material, rather than viscous

effects, implying δ �
√

η

k . Then,

σsurf,i
Ohmic = 2

δ

h
µ±zc∞F

[
cosh

(zFφD

RT

)
− 1

]
(5.37)

σsurf,i
EO =

δ

h

ρ2
f

k
(5.38)

Finally, using the scalings developed in the previous section, we can write the dimen-

sionless form of the Dukhin theory for a z : z electrolyte:

χ∗22,D =
1
z2

1 +
γ

β
(z + 3m)

[
cosh

( z
2
φ∗δ

)
− 1

]
+

1
β

[
cosh(zφ∗D) − 1

]
+

1
β

3
2

sinh2(zφ∗D)
α2γ2

1
zφ±


(5.39)

Equations (5.31) through (5.38) form Dukhin’s theory for the conductivity of sys-

tems with porous and charged layers when (i) the porous layer is uniformly charged, (ii)

the potential in the porous layer is uniform, (iii) the porous layer is uniformly resistive,

(iv) transport in the porous layer is dominated by the resistance factor k, and (v) the

characteristic channel dimension, h, is large relative to both the thickness of the charged

layer and the Debye length (h � λD and h � δ).

The charging of a system depends upon the chemical nature of the porous layer.

Many materials undergo pH-dependent association/dissociation of protons to generate
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charge, as with oxides [52, 69], and weak acidic and basic [176] groups attached to

long-chain polymers. Polymers without easily identified reactive groups also exhibit pH

dependence [53], although the charging mechanism for these polymers is not conclu-

sively known [64]. To exhibit pH-independent charge, the charging mechanism of the

porous layer must exhibit a pKa that is several units away from the pH of the working

solution.

The potential is non-uniform for uniformly charged porous layers. If the porous

layer is thin relative to the Debye length (δ < λD), large variations in potential will

exist across the layer. If the rigid wall opposite the fluid exhibits a potential φo different

than φD, there will be a variation in potential of length O(λD) near the wall. Finally,

even for thick and uniformly charged layers in systems with φo = φD, the boundary

potential given in equation (5.17) demonstrates that the value of the potential at the

film edge is less than the potential within the porous layer. This is significant, because

transport within the porous layer is localized to the edge region for porous layers with

large hydrodynamic resistance (i.e.,
√

η

k � δ).

Additionally, it is not the case that every porous layer or film will exhibit transport

dominated by the resistance term −ku. When transport within the porous layer is not

dominated by the term −ku, equation (5.38) fails. Although it is convenient to estimate

the electroosmotic velocity apparent within the porous region, assuming that viscos-

ity has no impact within the porous layer will result in over-estimated electroosmotic

velocities for small values of k, producing excessive electroosmotic ion currents.

The impact of these approximations on the estimated conductivity is illustrated best

by a full analytical representation of the Ohmic and electroosmotic contriutions, which

is not generally available. To resolve this difficulty, we perform numerical simulations

of the potential and velocity fields, and compute the conductivity while varying the pa-
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rameters α, β, γ, as well as the dimensionless charge density and porous layer potential.

This approach is described in the next section.

5.4 Numerical Representation of the Conductivity

We implement a numerical representation of the conductivity by solving for the potential

and velocity fields specified by equations (5.5) through (5.14) and then applying these

fields to equation (5.29) via numerical quadrature. We solve the nonlinear Poisson-

Boltzmann equation is solved using a pseudo-steady Crank-Nicholson finite difference

scheme as described in [174]; the Brinkman equation, which is linear, is approximated

numerically using central differencing and solved using the tridiagonal matrix algorithm.

5.4.1 Conductivity at Low Potential, φ∗D, φ
∗
o � 1

At very low potential everywhere, the porous layer contributes minimally to the overall

conductivity. In the scaled units of equation (5.30), this implies a conductivity of unity

for a 1 : 1 electrolyte. We compute the numerical conductivity in this limit (figure

5.2), and observe close agreement with the predicted theoretical value. Agreement is

best for channels large in comparison to the porous layer thickness (β = 60) where

electroosmotic effects are mitigated further.

In the limit of very low potential everywhere, the Dukhin theory (equation (5.39))

reduces to the bulk conductivity to zeroth order:

χ∗22,D →
1
z2 +

(
1

2β
+

zγ
32β

+
3

2zα2γ2φ∗±
+

3γ
32βφ∗±

)
φ∗D

2
+ O

(
φ∗D

3
)

(5.40)

The porous layer potential has a vanishingly small perturbative effect on the conduc-
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Figure 5.2: Ohmic and electroosmotic conductivies for φ∗o = φ∗D = 1/10 for β = 5 and 60
as a function of α and γ. The computed Ohmic conductivity in all cases is equal to 1,
and is invariant to α, β, and γ. The legend at left applies for both plots.

tivity; Excess effects exist only to second order in φ∗D, and are further reduced under

the stipulation that β � 1. Equation (5.40) does, however, predict a divergence in the

conductivity for α → 0 (k → 0), which is consistent with our earlier observations. In

figure 5.2 we do not observe a divergence in the conductivity for small α.

5.4.2 Conductvity at High Potential, φ∗D, φ
∗
o > 1

The conductivity is increased by excess Ohmic and electroosmotic effects at larger val-

ues of the potential in the porous layer. In figure 5.3 we show the numerically computed

values of χ∗22 for a 1 : 1 electrolyte, while varying the parameters α, β, and γ. In partic-

ular, figure 5.3 demonstrates stark enhancements in the conductivity for small values of

α, γ, and β. Limits of the conductivity as a function of these parameters will be explored

in later sections.

The divergence between the Dukhin and numerical representations of the conduc-
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Figure 5.3: Above: χ∗22 computed numerically and from the Dukhin theory (χ∗22,D, equa-
tion (5.39)) for a 1 : 1 electrolyte with φ∗o = φ∗D = 2 over a range of α and γ. β = 5 for
frame (A), and β = 60 for (B). In (C), a selection of the data in (B) for 100 ≤ α ≤ 102,
with the percent error between the Dukhin and numerically computed conductivities in
(D). Note the logarithmic scale.

tivity for α � 1 is clearly seen in figure 5.3. This divergence between the theories

continues until about α & 5, at which point the porous layer resistance begins to dom-

inate over viscous resistance and the theories exhibit improved agreement. The quality

of the match depends upon other parameters as well; Since the Dukhin theory was de-

veloped for porous layer much smaller than the cell height (β � 1), the Dukhin theory

at β = 60 matches better than the same theory for β = 5. In frame (D) of figure 5.3, we

quantify the error between the numerical and Dukhin representations of the conductivity

for β = 60 and moderate to large values of α. The errors in this region clearly indicate

that the value of α must be large to predict the conductivity with reasonable accuracy.

These comparisons motivate our development of an approximate analytical form for

the conductivity proposed in the next section. Our result provides an improved analytical
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approixmation of the conductivity in all regions of the parameter α. Further, our result

is quantitatively adherent to the conductivity beyond the region of the parameter space

in which the expression was first derived.

5.5 An Improved Conductivity Approximation

In contrast with the approximate form of χ∗22 above, the present work considers both the

Darcian and the viscous term when computing the flow profile within the porous and

charged layer. Full consideration of viscous effects modifies the electroosmotic term

inside of the porous and charged layer; electroosmotic conduction outside of the porous

layer, along with Ohmic conduction inside and outside of the charged layer, are not

modified.

The electroosmotic condction within the porous and charged layer is:(
σsurf,i

EO

)∗
=

1
β

φ∗o

φ̂∗

∫ 1

0

3
2
ρ∗eû(e) dy∗ (5.41)

This equation is a dimensionless version of equation (5.23) with integral bounds over

the porous and charged layer only. The veocity profile is given from the solution to

equations (5.5) through (5.14), since the free charge density must be known to determine

the local velocity. Since the Poisson-Boltzmann equation is not soluble in general, we

solve equation (5.5) for an arbitrary distribution of fixed charge. We present this result

in appendix 5.8.1; a more thorough description of this process is available in [174].

Despite the availability of the function û(e), ρ∗e is unknown and prevents direct inte-

gration of (5.41). We then approximate the free charge density within the porous layer

as uniform, but still pemit the velocity to be non-uniform:(
σsurf,i

EO

)∗
≈

1
β

φ∗o

φ̂∗
3
2
ρ∗e

∫ 1

0
û(e) dy∗ (5.42)
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This integral of velocity is computed in the appendix. Including this result gives:

(
σsurf,i

EO

)∗
≈
φ∗o

φ̂∗±

3
2
ρ∗e

[
−

tanh(α)
αβ

+
1
β

∫ 1

0

φ∗(s)
φ∗o

ds +
1
β

∫ 1

0

(
cosh(α(1 − s))

cosh(α)
− 1

) (
ρ∗f (s)

α2γ2φ∗o
+
φ∗(s)
φ∗o

)
ds

]
(5.43)

We will explore two limiting cases for equation (5.43). In the first approximation, we

will assume that the potential everywhere is equal to the Donnan potential, φ∗D. This

limit corresponds to the maximum possible electroosmotic conductivity, as it assumes

the potential at the porous layer edge (φ∗δ) does not diminish from the potential in the

middle of the porous layer. Further, this approximation neglects any possible potential

concavity in the porous layer, which is consistent with our earlier approximation of

constant ρ∗e, and implies ρ∗f = −ρ∗e. Then,

(
σsurf,i

EO

)∗
max

= −
1
β

3
2
φ∗o

φ̂∗
ρ∗f

[
φ∗D
φ∗o
−

tanh(α)
α

+

(
tanh(α)
α

− 1
) (

ρ∗f

α2γ2φ∗o
+
φ∗D
φ∗o

)]
(5.44)

Finally, we take the boundary potential equal to the Donnan potential, φ∗o = φ∗D,

(
σsurf,i

EO

)∗
max

=
1
β

3
2

(
1 −

tanh(α)
α

)
ρ∗f

2

α2γ2φ̂∗
(5.45)

Similarly, we can write a mimimum bound for the electroosmotic conductivity in the

porous and charged layer by assuming a potential within the porous layer that is every-

where equal to the edge potential, φ∗δ. The minimum bound still assumes a fixed charge

based on the Donnan potential, but the free charge density is then a function of the edge

potential. Thus, ρ∗e
(
φ∗δ

)
, ρ∗f , although ρ∗e and ρ∗f are of opposite sign. The minimum is

then:

(
σsurf,i

EO

)∗
min

=
1
β

3
2

(
tanh(α)
α

− 1
)
ρ∗e

(
φ∗δ

)
ρ∗f

α2γ2φ̂∗
(5.46)

The porous layer contributions to the excess Ohmic conductivity is calculated under

the same assumptions used in the electroosmotic conductivity. Starting from equation
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(5.27) these limits become,

(
σsurf,i

Ohmic

)∗
max

=
1
β

∑
i

φ∗i zi

φ̂∗

∫ 1

0

1
2

c∗i,∞e−ziφ
∗
D dy∗ (5.47)

(
σsurf,i

Ohmic

)∗
min

=
1
β

∑
i

φ∗i zi

φ̂∗

∫ 1

0

1
2

c∗i,∞e−ziφ
∗
δ dy∗ (5.48)

Each pair of equations in the porous and charged layer ((5.45) and (5.47) for the

maximum, and (5.46) and (5.48) for the minimum) can be combined with expressions

for the bulk and Bikerman conductivities to describe the conductivity of a system with

porous and charged interfaces. While similar, the descriptive ability of the maximum

and minium approximations are wildly different. The maximum approximation is quan-

titatively superior to the minimum approximation over a wide range of parameter space.

This behavior is shown in appendix 5.8.2. Here, we discuss only the maximum approx-

imation, which, for a 1 : 1 electrolyte, is given by:

χ∗22,max = 1+
γ

β

(
1 +

1
φ∗±

) [
cosh

(
φ∗δ
2

)
− 1

]
+

1
β

[
cosh

(
φ∗D

)
− 1

]
+

1
β

3
2

(
1 −

tanh(α)
α

) sinh2
(
φ∗D

)
α2γ2φ∗±

(5.49)

The superiority of our result, equation (5.49), is shown in figure 5.4. We achieve

agreement between the numerical and approximate analytical forms of the conductivity

for α � 1, due to the inclusion of viscous effects within the porous layer. Further,

at moderate values of α, the approximate analytical form is also superior to the earlier

theory, by comparing the magnitude of the errors in figures 5.3D and 5.4D.
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Figure 5.4: Comparison of the improved analytical aproximation (equation (5.49)) for
β = 5 ((A) and (B)) and β = 60 ((C) and (D)). The fits in both limits of β show excellent
agreement over the entire range of α and γ. Computed errors between the approximate
and exact numerical results in (C) and (D) are superior to the errors reported in figure
5.3

5.6 Streaming Potential and Electroviscosity in Systems with

Porous and Charged Layers

The results derived in the earlier sections, combined with our prior work on χ11 and χ12

enable quantitative descriptions of all electrokinetic coupling matrix outputs for systems

with porous and charged interfaces. Further, our results provide an excellent framework

for describing and interpreting these outputs, as we have developed a dimensionless

parameter space to describe the EKCM coupling coefficients. The EKCM describes

several electrokinetic phenomena:
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1. Pressure-driven flow: Q
A

∣∣∣
〈∇φext〉=0

= χ11〈−∇p〉 A pressure source generates a flow

across the channel, with reservoirs at electrical isopotential.

2. Electroosmotic flow: Q
A

∣∣∣
〈∇p〉=0

= χ12〈−∇φext〉 An electrical potential difference

between two channels establishes a flow, with the pressure held constant between

the reservoirs (open to atmosphere at both ends).

3. Streaming current: I
A

∣∣∣
〈∇φext〉=0

= χ21〈−∇p〉 A pressure source generates a flow

and convection of ions, in the absence of an electrical potential gradient.

4. Conductivity: I
A

∣∣∣
〈∇p〉=0

= χ22〈−∇φext〉 An electrical potential difference is applied

across the channel generating a current flux in the absence of a pressure gradient.

5. Streaming Potential: 〈∇φext〉

〈∇p〉

∣∣∣∣
I=0

= −
χ21
χ22

Typically, a pressure is applied across a

channel generating an electrical current. Since the ends (reservoirs) of the channel

are isolated, a potential is established and back-conduction of current results via

the conductivity, χ22. The ratio of current generation, χ21, to conduction defines

the streaming potential.

6. Pressure-driven flow retarded by electroosmosis: Q
A

∣∣∣
I=0

= χ11

(
1 − χ2

12
χ11χ22

)
〈−∇p〉

Often referred to as electroviscosity, pressure driven flow produces a net transport

of ions establishing a potential difference opposite the pressure gradient. The po-

tential difference establishes an electroosmotic flow counter to the pressure driven

flow. Often, this backflow is referred to as electroviscosity, since it may be inter-

preted by an enhanced viscosity, although the viscosity of the working fluid does

not change.

7. Conductivity reduced by streaming potential: I
A

∣∣∣
Q=0

= χ22

(
1 − χ2

12
χ11χ22

)
〈−∇φext〉

Analogous to the previous case, conduction with the absence of a mean flow re-

sults in a backflow which manifests as a reduced conductivity.
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Three types of phenomena are enumerated above. The first kind, items 1 through

4, consist of phenomena which depend on individual coupling coefficients, having set

one gradient term to zero. This set of phenomena is full described by our present (χ22)

and prior work [174] (χ11, χ12, and χ21). The second and third set relate forces in fluxes

with multiple coupling coefficients. The second set, consisting of item 5, represents

conditions where a flux is set to zero, leaving a relation between gradient terms. Finally,

the third set, items 6 and 7, permits both gradient terms, but requires either current or

flow to vanish, resulting in inteference by flow onto conduction and vice versa. We will

describe the second and third types of phenomena in systems with porous and charged

layers, using the dimensionless parameters φ∗, ρ∗f , α, β, and γ.

5.6.1 Streaming Potential in Systems with Porous and Charged

Layers

The streaming potential method is important in micro- and nanoscale flows. Streaming

potential measurements are used to characterize the electrokinetic properties of materi-

als and inform device performance; accurate models are required to relate the measured

electrical potential and pressure gradients to system properties such as ρ f and χ12. Con-

sistent with our present and prior [174] work, we apply the scales χ12 = a12χ
∗
12 and

χ22 = a22χ
∗
22 where a12 =

εεoφo
η

and a22 = 4
3 FIc

εεo
η
φ̂. These scalings leave the χ terms

dimensionless, but since the ratio potential to pressure gradients is dimensional, a factor

persists with same units of ∇φext
∇p . Finally, then, we normalize −a21

a22

χ∗21
χ∗22

by the stream-

ing potential of a reference system, choosing a rigid surface at potential φo and infinite

separation, − εεo
η
φo. This yields: (

∇φext

∇p

∣∣∣∣∣
I=0

)∗
=
χ∗21

χ∗22
(5.50)
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We detail the outputs of this analytical expression in figure 5.5 over a range of system

parameters.
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Figure 5.5: The streaming potential ratio, equation (5.50), for φ∗D = 2 (left four plots)
and φ∗D = 5 (right four plots) over a range of parameters α, β, and γ, as indicated.

The streaming potential is a strong function of the fixed- and free-charge densities.

Comparing the leftmost and rightmost four plots in figure 5.5 reveals that increasing the

Donnan potential within the porous layer from φ∗D = 2 to 5 (a factor of 2.5) decreases

the streaming potential by a factor of ∼ 50. This result has strong implications for labo-

ratory measurements – highly charged porous layers will exhibit much smaller voltage

drops when compared to rigid surfaces at the same potential for an identically applied

pressure. This follows directly from the scaling of the streaming current coefficient,

χ∗21, and conductivity with the free charge density: The conductivity term is quadratic in

the charge density, while the streaming potential term is only linear. These results fur-

ther reveal the importance of the parameter α in the behavior of the streaming potential,

which is similar to its role in determining χ∗22 and χ∗21 [174].

5.6.2 Electroviscosity in Systems with Porous and Charged Layers

In the third-class phenomena, the tabulated quantity is not the output produced (fluxes

of volume and current), but the amount to which the outputs are reduced by backflows
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from the surface charge and/or potential. Retarding effects manifest in the multiplicative

factor Γ = 1 − χ2
12

χ11χ22
, which is inherently dimensionless. Applying a similar approach as

was performed above, now with a11 = h2

3η , we arrive at:

Γ = 1 −
χ2

12

χ11χ22
= 1 −

9
2
γ2

β2

φ∗o
2

φ̂∗

χ∗12
2

χ∗11χ
∗
22

(5.51)

The form on the right hand side of equation (5.51), consisting of entirely dimensionless

paramters, is convenient given the framework we have developed to describe the cou-

pling coeffficients. The quantity Γ ranges from zero (fully retarded/frustrated transport)

to unity (no retarding/backflow effects).

We plot the electroviscous coefficient Γ in figures 5.6 and 5.7 for moderate φ∗D = 2

and large φ∗D = 8 Donnan potentials, as compared to the thermal voltage. To explore this

phenomena, we vary the domain extents (β = 1, 2, 10, 60), the momentum penetration

(α) within the layer, along with the characteristic dimension of electrical potential de-

cay relative to the porous layer thickness, γ. The magnitude of electroviscous effects de-

pends on all constants probed; Small channels (β near unity) are most strongly perturbed

by electroviscous effects, as the extents of the charged porous layer equal or exceed the

extents of the pure fluid region. Electroviscous effects are further enhanced when α is

small (as charge trasport is increased in the porous layer) and when 1
γ
� 1 (charging

effects in porous layer persist over a greater distance into the pure fluid). These trends

are consistent with our prior description of electroviscosity - the forced motion of ions

through the channel establishes a potential, driving a backflow that appears to retard the

fluid, or give the appearance of an enhanced fluid viscosity.

The strongest electroviscous effects are realized when α, γ → 0 and β is near one.

Figure 5.6 suggets this limit is a function of β for small values of α and γ. By expanding

Γ with α and γ as small parameters, we can estimate this value:

Γα,γ�1 ∼ 1 −
(3β − 1)2

4β3 + O(α2) + O(γ2) (5.52)
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Figure 5.6: The magnitude of electroviscous effects for φ∗D = 2 plotted over 1
γ

for a range
of α (weakly resisting, moderately resisting, and strongly resisting) and β.

Thus, the lower bound for Γ depends chiefly on β. All other parameter (including porous

layer charge and potential) are second order effects in α and γ. In particular, the fixed and

free charge densities of the porous layer do not contribute. This result follows from the

scaling of the coupling coefficients at small α and γ: χ∗21
2 ∼ ρ∗e

2 and χ∗22 ∼ û(e)
1 ρ

∗
e ∼ ρ

∗
e

2,

so that the ratio of the two terms does not contain a scaling in the charge density. This

behavior is supported by the calculated behavior of the electroviscous coefficient for a

porous and charged layer with φ∗D = 8 shown in figure 5.7, which shows nearly identical

behavior in comparison to the data in figure 5.6.
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Figure 5.7: Magnitude of the electroviscous coefficient for a porous and charged layer
with φ∗D = 8 plotted over the same parameters as in figure 5.6. The limiting behavior of
Γ
(
φ∗D = 8

)
is nearly identical to Γ

(
φ∗D = 2

)
.
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5.7 Conclusion

In this work, we have developed an improved analytical expression for the electroki-

netic conductivity of a system with porous and charged interfaces in the presence of

an ionic solution. Our results improve upon past efforts, by incorporating the viscous

effects within the porous and charged layer. Accounting for these effects enables predic-

tive capability across the entire range of the parameter α, which parameterizes the flow

properties of the porous layer. We validate our theory via comparisons with numerical

results, where we observe excellent agreement over a wide range of parameter space.

Further, the present work, coupled with our earlier work developing coupling coef-

ficients χ11, χ12, and χ21 for the same system, form a coherent framework for evaluating

electrokinetic behaviors contained within the electrokinetic coupling matrix (equation

(5.1)). To demonstrate this, we consider the electroviscosity and streaming potential and

demonstrate the behavior of each using our analytical formulas. The ability to predict

these quantities with analytical tools improves the ability of scientists and engineers to

design and understand physicochemical systems; our analytical results obviate the need

for time consuming numerical modeling.
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5.8 Supplementary Information

5.8.1 Electroosmotic velocity and flow in the porous layer

The electroosmotic fluid velocities are computed from the set of equations,

0 =
d2u(e)

1

dy∗2
− α2u(e)

1 +
∇φext

η

(
εεo

d2φ

dy∗2
+ δ2ρ f

)
(5.53)

0 =
d2u(e)

2

dy∗2
+
∇φext

η
εεo

d2φ

dy∗2
(5.54)

Equations (5.53) and (5.54) each apply in distinct parts of the domain, and are coupled

with the various boundary conditions discussed in the main document. This set has the

solution

u(e)
1 = C1eαy∗ + C2e−αy∗ −

∫ y∗

0

∇φexteαy∗e−αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds +∫ y∗

0

∇φexte−αy∗eαs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds

(5.55)

u(e)
2 = C3 + y∗C4 −

εεo

η
∇φextφ(y∗) (5.56)

with constants:

C1 =

∫ 1

0

∇φext

2αη
cosh(α(1 − s))

cosh(α)

(
δ2ρ(s) + α2εεoφ(s)

)
ds −

εεo∇φext

2αη
φ′o −

εεo∇φext

2η
φo tanh(α)

(5.57)

C2 = −C1 (5.58)

C3 =

∫ 1

0

sinh(αs)
cosh(α)

∇φext
1
αη

(
δ2ρ f (s) + α2εεoφ(s)

)
ds + ∇φext

εεo

η

φo

cosh(α)
(5.59)

C4 = 0 (5.60)

We then compute I1 = − 1
β

∫ 1

0
u(e)

1 dy∗. Using the relationships between the constants,
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(5.55) becomes:

u(e)
1 = 2C1 sinh(αy) −

∫ y∗

0

∇φexteαy∗e−αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds + . . .∫ y∗

0

∇φexte−αy∗eαs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds

(5.61)

I1 is then:

I1 =
2C1

αβ∇φext
(1 − cosh(α)) +

1
β

∫ 1

0

∫ y∗

0
∇φext

eαy∗e−αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds dy∗ − . . .

1
β

∫ 1

0

∫ y∗

0
∇φext

e−αy∗eαs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds dy∗

(5.62)

This form of I1 is not ideal, instead, we will manipulate the double integrals by

repeatedly applying an integration by parts (
∫

u dv = uv| −
∫

v du) . First with u =

± 1
β

∫ y∗

0
∇φext

e∓αs

2αη

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds and dv = 1

β
e±αy∗ dy∗. The sum of which become:

1
β

∫ 1

0
∇φext

cosh(α(1 − s)) − 1
α2η

(
δ2ρ f (s) + εεo

d2φ

ds2

)
ds (5.63)

Integration by parts is then applied to convert the φ′′ term to a φ term:

1
β

∫ 1

0

cosh(α(1 − s)) − 1
α2η

εεo
d2φ

ds2 ds = −
φ′o
β

εεo

α2η
(cosh(α) − 1) −

φo

β

εεo

αη
sinh(α) + . . .

1
β

∫ 1

0

cosh(α(1 − s)) − 1
η

εεoφ(s) ds +
1
β

∫ 1

0

εεo

η
φ(s) ds

(5.64)

Then I1 becomes:

I1 =
2C1

αβ
(1 − cosh(α)) − ∇φext

φ′o
β

εεo

α2η
(cosh(α) − 1) − ∇φext

φo

β

εεo

αη
sinh(α) + . . .

1
β

∫ 1

0
∇φext

εεo

η
φ(s) ds + . . .

1
β

∫ 1

0
∇φext

cosh(α(1 − s)) − 1
η

(
δ2ρ f (s)

α2 + εεoφ(s)
)

ds

Further simplifications follow after substituting for the C1 term, yielding:

I1 = −εεo∇φext
φo

η

tanh(α)
αβ

+
1
β

∫ 1

0
∇φext

εεo

η
φ(s) ds

+
1
β

∫ 1

0
∇φext

1
η

(
cosh(α(1 − s))

cosh(α)
− 1

) (
δ2ρ f (s)

α2 + εεoφ(s)
)

ds
(5.65)
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We make I1 fully dimensionless by diviging through by the scale εεo
η
φo∇φext. Then,

I1
εεo
η
φo∇φext

= −
tanh(α)
αβ

+
1
β

∫ 1

0

φ(s)
φo

ds+
1
β

∫ 1

0

(
cosh(α(1 − s))

cosh(α)
− 1

) (
δ2 ρ f (s)
εεoα2φo

+
φ(s)
φo

)
ds

(5.66)

Introducing scales for the charge density, normalizing the potentials, and recognizing

the formation of the dimensionless group γ finally yields:

I1
εεo
η
φo∇φext

= −
tanh(α)
αβ

+
1
β

∫ 1

0

φ∗(s)
φ∗o

ds+
1
β

∫ 1

0

(
cosh(α(1 − s))

cosh(α)
− 1

) (
ρ∗f (s)

α2γ2φ∗o
+
φ∗(s)
φ∗o

)
ds

(5.67)

5.8.2 Descriptive Ability of the Maximum and Minimum Approxi-

mations for χ∗22

In section 5.5 we describe limiting approximations of the conductivity in porous and

charged layers, and assert the superiority of the maximum expression, equation (5.49)

for a 1 : 1 electrolyte. In figure 5.8, we compare the maximum and minimum limits

demonstrating the efficacy of the maximum limit via direct comparison with numerical

results.
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Figure 5.8: Plots of the maximum and minimum estimates of the conductivity vs. nu-
merically computed values as a function of the parameters α, β, and γ for φ∗D = 2. In
pane (A), χ∗22 for β = 5 with associated errors in (B). In pane (C), χ∗22 for β = 60 with
errors in (D). In both cases, the maximum limit displays suprior perforamance. Note the
logarithmic scale in panes (B) and (D).
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CHAPTER 6

ELECTROKINETIC CHARACTERIZATION OF THIN NAFION FILMS

6.1 Abstract

We perform an electrokinetic characterization of ∼ 300 nanometer Nafion films de-

posited on glass slides over a relatively unexplored region of ionic strength and pH.

Owing to the small pore size of the Nafion, we probe the Nafion–fluid interface with the

streaming potential measurement, and we probe ionic transport through the entire thick-

ness of the Nafion film with the conductivity measurements. By applying a transport

model for each of these measurements, we show that the inferred fixed charge density

and characteristic fluid resistance length is different in each case. Analyzing our results

with data from the literature, we suggest that our result is consistent with a thin Nafion

film that is both nonuniform and weakly hydrated. Our regimen of experimentation and

analysis may be generalized to characterize other porous and charged layers.

6.2 Introduction

Electrokinetic phenomena, typically characterized by the ζ-potential [52, 53, 60], reveal

information on the physicochemical state of an interface in contact with an electrolytic

solution. Electrokinetic parameters, like the ζ-potential , are dependent upon the chem-

istry of the solid–liquid interface; the pKa of acidic and basic groups, ionic nature of the

solution [177], and the presence of surfactants [146], contribute strongly to observed

electrokinetic effects. The morphology of the interface is also important; in contrast to

A manuscript based on the contents of this chapter have been submitted for publication in the journal
Langmuir. This is the pre-publication version of the following article: “Electrokinetic Investigations of
Thin Nafion Films”.
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a system with charged rigid walls, systems with porous and charged layers can exhibit

increased fluxes of mass and current [163].

The electrokinetic response of a material or system is described by the electrokinetic

coupling matrix (EKCM). The EKCM characterizes the response of a system to linear

forcing by pressure (∇p) and electrical potential (∇φext) gradients: Q/A

I/A

 =

χ11 χ12

χ21 χ22


 −〈∇p〉

−〈∇φext〉

 (6.1)

The angled brackets take the area average of the component of the gradient normal

to the channel cross-section, i.e., 〈∇φext〉 = 1
A

∫
A
∇φext · ~n dA. Area-averaged fluxes of

volume, Q
A , and current, I

A , are related to the gradients via coupling coefficients: The

hydraulic capacitance, χ11, relates the ease with which flow is actuated by pressure, the

electrical conductivity, χ22, relates the applied electric field to the driven current, and

the off-diagonal terms χ12 and χ21 communicate the ability of the system to generate

flow from an applied potential gradient and current from an applied pressure; These

off-diagonal terms are equal by Onsager reciprocity.

Electrokinetic techniques are often used to measure physical and chemical properties

of porous and charged layers [163]. Typically, streaming current, streaming potential,

and conductivity measurements are coupled with physical measurements of the porous

layer and a numerical [92,93,99] or approximate analytical [58,92,98,108,162,174,178]

models of the transport in the layer. Zimmermann, et al. [179] performed a combined

analysis to study protein adsorption within a planar electrokinetic cell [67] designed

to extract information from streaming current/potential and conductivity measurements.

Cordeiro, et al. [131] executed a similar set of experiments with the same electrokinetic

cell to measure electrokinetic effects with a thermo-responsive polymer layer. In these

and other studies, transport models are applied to the collected data to determine charge

densities and other physicochemical properties.
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Here, we examine a Nafion polymer film in a pseudo-1D configuration. Nafion

is important in a variety of industrial applications, most notably as a cation exchange

membrane in fuel cells and in electrolytic filtration [121] assemblies. Further, porous

polymers are often used as coatings in capillaries to modify the electrokinetic response

of the base material [48–50], and on electrodes to modify transport properties [180]. In

these and other applications, the response of the porous and charged polymer to applied

fields, imposed flows, and solutions of different compositions is essential to engineer de-

vice performance. In this study, we systematically examine a Nafion thin film deposited

on a rigid substrate over a range of pH and salt concentrations using the electrokinetic

methods of streaming potential and conductivity. Additionally, we execute XPS, ellip-

sometry, and profilometry measurements to further characterize chemical and physical

attributes of the Nafion.

In comparison with most materials used in characterization of porous and charged

polymer layers [127, 131, 179], Nafion is expected to exhibit a larger hydraulic resis-

tance. The generally accepted structure of bulk Nafion consists of a percolation network

of aqueous blobs and channels lined with hydrophilic sulfonate groups (as described

by the Gierke model [15, 181]) interspersed with phases of hydrophobic perfluorinated

polymer. Transport occurs in the hydrophilic phase of the material, with a characteristic

pore dimension of 1-2 [nm].

We perform streaming potential and conductivity measurements to characterize the

electrokinetic behavior of the Nafion–fluid system. Although conductivity measure-

ments are commonly performed on Nafion samples in a variety of electrolytes, these

measurements are normally performed in mixtures of [dM] or [M] ionic strength. Our

work expands available results in concentration space down to 10 [µM] for conductivity

measurements and 100 [µM] for streaming potential measurements.
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Further, when performing streaming potential measurements, our electrokinetic cell

preferentially probes the surface of the Nafion layer. The streaming potential is a result

of ions advected by the flow; For a porous material with large mechanical resistance

to flow, like Nafion, we expect that pressure-driven flow will actuate a thin region of

fluid within Nafion film at the boundary between the porous layer and pure fluid. As

the actuated charge is localized to a thin region of the interface, any properties inferred

from the measurement may be attributed to this same thin region.

The significance of measuring Nafion both at the interface and throughout the bulk

is reinforced by independent interfacial studies of Nafion. Studying the Nafion-air and

Nafion-water interface, Bass, et al. [182] observe a roughening of the Nafion surface

(via AFM) when in contact with water, which they attribute to the re-organization of

hydrophobic and hydrophilic polymer. This study [182] further observed a change from

hydrophobicity to hydrophilicity of the Nafion surface upon hydration, which was also

reported by Goswami, et al. [183]. At the solid–Nafion boundary, Dura, et al. [184]

observe multilamellar structures at the interface between Nafion and SiO2 in hydrated

films; these multilamellar structures increase in number and thickness as the humidity

is increased. Dura, et al. [184] do not observe lamellar structures for similarly prepared

films on metal (Au and Pt) surfaces.

Despite their unique ability to infer a localized charge density ρ f and penetration

length λo of the Nafion, electrokinetic studies in a planar configuration have not been

pursued to date. Instead, researchers have reported the phenomenological zeta poten-

tial or the coupling coefficient χ21 in a configuration where the flow proceeds through

the Nafion polymer [7, 185–187]. Limited results have been obtained in dispersions

of Nafion polymer in a mixture of water and aliphatic alcohols by Zhang, et al. [188];

they measure a value of ζ∗ = −2.807 in a solution at pH = 3. Daiko, et al. [189] per-
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form layer-by-layer assembly of Nafion and poly(allyamine hydrochloride) and claim

a pH-dependent zeta potential (via laser-light scattering of tracer particles) for Nafion,

although direct conclusions about Nafion are obscured by the presence of a second ma-

terial. Abebe, et al. [190] perform layer-by-layer assembly of Nafion with various poly-

mers on .5[µm] particles and claim a pH-dependent charge based upon zeta potential

measurements and a color changes attributed to dye uptake in the Nafion capping layer;

specifically, values of ζ∗ = −2.203 at pH= 11 and a value of ζ∗ = 0 at 1.2 ≤pH≤ 1.3.

The porous nature of the material appears to be neglected in these [188–190] electroki-

netic analyses of Nafion.

Although many studies report on the conductivity through [2, 2, 3, 7, 185, 191] and

along [4,192–195] Nafion membranes, we know of no measurements characterizing the

conductivity of Nafion in parallel with an ion-containing fluid. Conductivity measure-

ments have been made with Nafion membranes immersed in liquid, and in controlled

atmosphere with varying amounts of humidity [191–193]. In nearly all instances, the

role of hydration [192–194, 196] (often cited as water molecules per charge) along with

the diffusivity/mobility [4, 7, 191, 195, 197] of the cations has been identified as a con-

trolling factor in the conductivity. Often, the conductivity is expressed [4, 198] with an

effective mobility of the cationic species, as it may differ from the bulk value. Peckham

and Holdcroft [198] provide a review of the structure/morphology properties of ionic

conductors, and their relation to the overall conductivity of the material.

This paper is organized as follows. We first describe our electrokinetic cell in detail,

and outline the program of measurements, which we perform to characterize the physical

and chemical properties of the thin Nafion films. Then, we present results from our

streaming potential and conductivity measurements that we interpret using a model [174,

178] to predict the charge density and resistive properties of the Nafion film. We then
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compare these results with available data from other electrokinetic studies on Nafion

(performed in different configurations), and propose an explanation for our observed

data.

6.3 Materials and Methods

Sample Preparation Glass microscope slides (75mm x 25mm x 1mm, VWR) were

sonicated for 20 minutes in mixtures of soap and water, then a 1:1 mixture of methanol

and ethanol, rinsed with de-ionized (DI) water, and dried with N2. The slides were

further cleaned in a solution of 3:1 H2SO4:H2O2 at 50 C for 20 minutes, rinsed several

times with DI water, and dried in an N2 stream.

We coated the cleaned slides with a silane layer to promote adhesion with the Nafion

polymer [199]. Following the procedure of Luzinov, et al. [200], slides were immersed

in a solution of 1% v/v 3-Glycidoxypropyltrimethoxysilane in toluene for 22 hours. Care

was taken to minimize exposure of the slides to water vapor by performing the silane

deposition in a closed container over a desiccant with a gentle N2 purge. Following

immersion, slides were soaked in toluene for 20 minutes, rinsed in anhydrous ethanol,

sonicated in anhydrous ethanol for twenty minutes, then dried in a stream of nitrogen

gas. After the silane deposition, slides are stored in a closed container over a desiccant

and used within 48 hours. All solvents used are of ACS Reagent grade.

We implement a solution-casting technique [199,201,202] with spinning to generate

nanometer-thick Nafion polymer layers. A solution of 20% Nafion resin in aliphatic

alcohols and water (Sigma-Aldrich No. 663492) was diluted to 3% in 200-proof ethanol.

This solution was applied to the silane-treated slides at an area density of 1 mL per

75mm x 25mm slide surface, and spun at 1000 RPM for 7 seconds. Following spinning,
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slides were placed beneath large pyrex petri dishes on a level surface and cured in a 150-

C oven (air atmosphere) for 1 hour. This temperature was selected by the observation

that higher curing temperatures lead to more stable films [201, 202] Following the 1-

hour cure, the slides are left covered to cool to room temperature on a lab bench. The

samples appeared slightly yellowed at the slide edges (i.e., on the edge bead).

Following Nafion deposition and oven curing, we wash the samples in (70%) nitric

acid for 1 hour at room temperature, then rinse in DI water and dry in a nitrogen stream.

Acid washing ensures the Nafion is in proton form (e.g., -SO3H vs. -SO3Na); X-ray pho-

toelectron spectra of the Nafion films after the acid wash do not contain a sodium peak

(see supplementary information). Additionally, the slight yellowing observed following

curing is removed by this acid treatment.

Profilometry Measurements Mechanical film thickness measurements were per-

formed in wet and dry states. Measurements were performed with a Dektak 6m pro-

filometer (Veeco) and a stylus with a 12 [µm] diameter tip. The films were mechanically

abraded in three positions along the sample centerline, corresponding to upstream, mid-

dle, and downstream positions. Four measurements were made at each position. This

procedure was performed on a set of three samples at the dry state and each pH and salt

concentration condition tested, to characterize the swelling response that we later apply

to our electrokinetic samples under similar conditions.

Ellipsometry Measurements Ellipsometric film thickness and optical property mea-

surements were made on dry Nafion films using a Woollam Spectroscopic Ellipsometer

(J. A. Woollam Co., Inc.). Measurements were made on a rectangular silicon substrate

with a deposited layer of 1µm thermal oxide. Processing conditions for Nafion on sil-

icon are identical to films deposited on glass slides, with the amount of 3% resin used
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adjusted to keep the surface coverage uniform between the two substrates. The silicon

surface was used to eliminate backside reflection of the glass substrate. Measurements

were taken at incident angles of 65, 70, 75, and 80 degrees, over incident light at wave-

lengths between 300 and 1000 [nm] in 5 [nm] increments (see supplementary informa-

tion for graphical output). Modeling was performed using WVase32 software (J. A.

Woollam Co., Inc.).

XPS Measurements Survey and narrow scans were performed on the Nafion samples

to determine atomic composition and bonding information (Surface Science Instrument,

SSX-100). A flood gun was used to reduce charging effects on the polymer. All XPS

measurements were performed in an evacuated (ultra-high vacuum) chamber.

Electrode Fabrication Silver chloride electrodes were prepared using an electrolytic

method [203]. Silver wire of .5mm diameter and 5mm length were installed in Nanoport

fittings (IDEX Health and Science) with an ethylene tetrafluoroethylene sleeve. Pairs of

silver wire electrodes were anodes in a cell opposite a platinum anode in a solution of .1

[mol/L] HCl, through which a current density of 2 [mA/cm2] is supplied for 30 minutes.

After the deposition, the electrodes are stored with leads shorted in a .1 [mol/L] HCl

solution until used.

Experiment Solutions Sodium chloride solutions (concentrations 1, 5, 10, 50 and 100

[mM]) are prepared at pH 3, 4, and 5 using hydrochloric acid, sodium chloride salt, and

DI water. We measure the pH, temperature, and conductivity of each solution before and

after each set of electrokinetic experiments (Mettler Toledo model SevenMulti). Solu-

tions are not purged with inert gas, and the concentration of bicarbonate and carbonate

ions are small as compared to the added ionic species.
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Figure 6.1: Picture and schematic of the electrokinetic cell with sample data. The as-
sembled cell is shown in (A), with current leads disconnected for clarity, highlighting
the various inputs and outputs of the device. The dimensions of the sample slides and
shim are shown diagrammatically in (B); the plate separation (cell height, 2h) is ap-
proximately 57 [µm]. In (C), we present a component-level diagram of the components
involved in the streaming potential and conductivity experiments, with sample data from
a streaming potential experiment shown in pane (D).

The flat plate cell and electrokinetic measurements Electrokinetic measurements

(streaming potential and conductivity) are performed in a home-built flat plate stream-

ing potential apparatus, similar to designs presented by Van Wagenen, et al. [68] and

Scales, et al. [66]. A schematic of this device is presented in figure 6.1. A pair of

Nafion-coated slides form the channel floor and ceiling separated by a thin (nominally

50 [µm]) Teflon shim having a cut-out region with length 56 [mm] and width 9.5 [mm].

Holes ( 1
8” diameter) drilled in the top slide permit access to the channel formed by the

Teflon shim. We position an instrument pillar above each drilled hole. In addition to es-

tablishing a connection to the sample slides, the upstream pillar contains two electrodes

(one current sourcing, one voltage sensing), a pressure port, and an inlet port which

connects to a syringe pump (KD Scientific). Similarly, the downstream pillar contains

a complimentary pair of electrodes, and connection to an outlet reservoir. Voltage sens-

ing is performed using a Keithley Electrometer (model 6514), current is sourced from
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a Keithley Sourcemeter (model 2400), and pressure is measured using an Omega Engi-

neering 0-5 psi pressure transducer (model PX409). All instruments are connected to a

computer and are controlled (or monitored by) a LabView script.

We implement phase-sensitive streaming potential measurements [65] to determine

the streaming current coupling coefficient (χ21) of the Nafion–fluid system at each salt

concentration and pH. The syringe pump provides a triangular waveform with minimum

and maximum flowrates of .1 and .5 [mL/min] over a peak-to-peak time of 150 seconds.

The generated pressure and voltage waveforms are collected and dominant peaks from

their Fourier transform are used to calculate the streaming potential coupling coefficient:

χ21 = −χ22
F (∇φext)
F (∇p)

(6.2)

Here, χ22 is the cell conductivity (measured in our electrokinetic device), and ∇p and

∇φext are the generated pressure and electrical potential gradients along the direction

of flow. The scripted operator, F , denotes the amplitude of the peak (i.e., driving)

frequency in each Fourier spectrum.

The cell conductivity is measured with a four-electrode technique to prevent po-

larization effects [75]. The sourcemeter provides a sequence of currents (maximum .1

[µA]) for 5 seconds each, and the electrometer measures the potentials required to drive

the currents. Ohm’s law is used to compute the conductance of the cell, which we con-

vert to a conductivity with knowledge of the cell geometry. The width and length of the

cell are measured with a digital caliper, and the cell height is determined from hydraulic

resistance measurements.

Samples are repeatedly measured at each combination of pH and salt concentration.

Prior to the initial measurement, each pair of Nafion coated slides is soaked in a so-

lution of pH 3, 4, or 5 (0 [mM] NaCl) for a minimum of four days with the solution
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exchanged at least once per day. Each pair of slides is examined in a solution con-

taining only HCl followed by analysis in solutions of HCl and 1, 5, 10, 50 and 100

[mM] NaCl. Experiments at a given pH and salt concentration consist of two streaming

potential measurements, four conductance measurements, and one hydraulic resistance

measurement. This set of experiments is repeated a minimum of four times at each com-

bination of pH and salt concentration. The first set of experiments at each pH and salt

concentration is neglected in our presented data, as these experiments contain a mixture

of experiment solutions (i.e., in changing from 1 to 5 [mM] a mixture of the two exists

in the electrokinetic cell). An average of 5 sets of experiments are performed on each

pair of slides at a given pH and salt concentration, and two pairs of slides are used for

each pH. Each pair of slides is tested at one pH only. At the end of each experiment, we

obtain the streaming potential coefficient χ21, the cell conductivity, χ22, the hydraulic

conductivity, χ11, as well as the bulk conductivity and pH of the working fluid measured

on a separate, benchtop, meter.

6.4 Results and Discussion

6.4.1 Streaming Potential

We present streaming potential data over three decades of pH and NaCl concentration in

figure 6.2. The streaming-current-coupling parameter, χ21, and the phenomenological

zeta potential, ζ = −χ21
η

εεo
, are plotted as a function of the ionic strength of solution,

Ic = 1/2
∑

i z2
i ci,∞, where zi and ci,∞ are the valence and bulk concentration of the ith

component. These data reveal a strong inverse dependence on the logarithm of Ic, and

show χ21 and ζ to be insensitive to the pH. The pH insensitivity is expected based upon
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the chemistry of the material — Kreuer [15] estimates a pKa of −6 for the sulfonate

groups in Nafion. The scaling of χ21 and ζ with the ionic strength of solution is ex-

pected based on the Donnan theory of membrane potentials [77]. Inside the membrane,

a local balance exists between the charge of the sulfonate groups and mobile cations

from solution. This balance predicts a potential difference between the film interior and

bulk fluid, which, for a z : z electrolyte is:

φD =
RT
zF

arcsinh
(
ρ f

2FIc

)
(6.3)

Here, φD is the Donnan potential [70] in [V], F is Faraday’s constant, R the ideal gas

constant, T the absolute temperature, and ρ f is the fixed charge density in [coul/L]. This

scaling predicts a decrease in the Donnan potential for constant ρ f and increasing Ic.
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Figure 6.2: Data and model fit (from equation (6.5)) for χ21 and ζ as a function of pH
and ionic strength. The model is a function of ionic strength, charge density, and the
momentum penetration length λo, only.

The phenomenological ζ-potential and Donnan potentials are not equivalent in the

Nafion–solution system. The phenomenological ζ-potential is the surface potential at

the plane of shear [59,60], and relates to χ21 as ζ = −χ21
η

εεo
when h >> λD and the shear

plane and solid boundary coincide. Thus, the phenomenological ζ-potential assumes

158



that the surface of polymer is rigid and impermeable; this is inconsistent with our un-

derstanding of Nafion as a porous material, and violates equation (6.3), which requires

a fixed charge density and cannot exist in a planar surface. In a previous publication, we

derive an approximate form of the coefficient χ21 for a porous and charged layer grafted

on a rigid surface in a parallel-plate configuration [174]. Our result is written in terms

of dimensionless ratios, many of which are known for our thin Nafion films:

ζ∗ =
χ21

−
εεo
η

RT
F

= −
1
β
φ∗D +

(
ρ∗f

α2γ2 + φ∗D

) (
1 +

1/β − 1
cosh(α)

−
tanh(α)
αβ

)
(6.4)

Here, α = δ
λo

parameterizes the hydraulic resistance of Nafion, where δ is the thickness

of the Nafion film and λo is the characteristic penetration distance of momentum from

the bulk fluid into the Nafion film. The parameter β = h
δ

is a dimensionless cell height,

with h representing the half-height of the cell (see figure 6.1), and γ = λD
δ

compares the

thickness of the Debye length, λD =
√

εεoRT
2F2Ic

to the thickness of the Nafion film (ε and εo

are the solvent dielectric constant and vacuum permittivity, respectively). The remaining

terms, φ∗ =
φF
RT and ρ∗f =

ρ f

2F2Ic
, are potentials and charge densities made dimensionless

by the thermal voltage (for φ) and the charge in solution via the ionic strength (for ρ f ).

Very basic information about the Nafion film simplifies (6.4) considerably. Our

measurements of the Nafion film thickness, coupled with hydraulic capacitance mea-

surements to characterize the cell height, and reported literature on the small pore size

(less than ∼ 3 [nm]) of the Nafion polymer [15, 181], indicate that α and β � 1. Pro-

filometric film thickness measurements yield an approximate hydrated thickness of 320

[nm]; with a cell height of 2h = 57[µm] and an a priori estimate of 5 [nm] for λo, α = 64

and β = 89 so we can safely approximate (6.4) as:

ζ∗ =
χ21

−
εεo
η

RT
F

= φ∗D

(
1 −

1
β

)
+

ρ∗f

α2γ2 = arcsinh
(
ρ∗f

) (
1 −

1
β

)
+

ρ∗f

(λD/λo)2 (6.5)

The free parameters are ρ∗f and λo; β is known from independent measurements of the

film thickness and height of the electrokinetic cell. We fit the parameters λo and ρ∗f
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by finding the combination of ρ∗f and λo that minimize the error between the predicted

and experimental values of χ21. During this search process, we restrict ρ∗f and λo to be

identical in each film.

Our model (equation (6.5)) and data (figure 6.2) predicts a charge density of .0582[
mol[−SO−3 ]

L

]
, which is less than the accepted value of 1.6727

[
mol[−SO−3 ]

L

]
for a 1100 EW

Nafion film with a dry density of 1.84 [g/cm3]. The fitted penetration length is λo = 1.57

[nm], suggesting that the Nafion film is weakly permeable to fluid flow. The penetration

depth is on the same order as the Debye length in solution, and both are much smaller

than the thickness of the Nafion film, ∼ 300 [nm]. Thus, the streaming potential mea-

surement constitutes a local probe of the Nafion–fluid interface; free charge a distance

O(λo) into the Nafion is actuated by the flow, with the remaining free charge essentially

motionless and neglected in the magnitude of χ21. This value of the penetration length is

comparable to the reported pore size based upon the Gierke model of Nafion [15, 181].

Based upon literature descriptions of electroosmotic and Ohmic conductivity

through the Nafion polymer, we may anticipate a trend in χ21 as a function of pH for so-

lutions of identical ionic strength. Work by Okada, et al. [195] describes a dependence

of water permeability (average velocity through the membrane per applied pressure)

that varies with the type of cationic species in a Nafion membrane. Their data demon-

strates that water permeability through the Nafion membrane increases as the proportion

of protons in solution. They further show [4, 195] that the transference coefficient for

water varies in inverse proportion with the concentration of protons in the membrane.

The water permeability measure the resistance of flow to pressure, and the transference

coefficient indicates the number of water molecules transported by the application of

an electric field. Thus, both the mechanical resistance and electroosmotic resistance

to flow are expected to change as a function of pH and ionic strength. Based upon
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the permeability and transference observations of Okada, et al. [4, 195], we would ex-

pect a trend where solutions with the same ionic strength and different pH are ordered:

χ
pH=3
21 > χ

pH=4
21 > χ

pH=5
21 . This trend is not observed in our data, suggesting that solution-

dependent permeability and transference are minimally present at the Nafion–solution

interface, or that these effects are small as compared to other sources of variability in our

measurements (e.g., variations from sample to sample). Absence of this trend does not

indicate lessened interaction between the fluid and the Nafion film; XPS results (see sup-

plementary information) suggest cation exchange by the appearance of a sodium peak

in proton-form Nafion films that have been immersed in a solution containing sodium

chloride.

6.4.2 Conductivity

We perform conductivity measurements in concert with the streaming potential mea-

surements. The conductivity is a measure of ionic charge transport everywhere within

the electrokinetic cell. In contrast to the χ21 measurement, in which a pressure-driven

flow penetrates a characteristic distance λo � δ into the porous layer, the field applied

during the conductivity measurements (∇φext) actuates a body force (−ρe∇φext) on the

free charge density (ρe) everywhere in the domain. Thus, the conductivity measurements

represent the ability of the system to transport ions averaged over the entire domain, in

contrast to the local probing of the χ21 measurement.

Our conductivity data are presented in figure 6.3. We show the conductivity as mea-

sured in the electrokinetic cell (the cell conductivity, χ22), and a ratio of cell to bulk

conductivities
(
σcell
σbulk

)
as a function of ionic strength and pH. The cell conductivity is an

intrinsic measure of the ability of the cell (Nafion and ion-carrying bulk fluid) to trans-
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port current; as such, these values are not directly comparable to literature values of

Nafion conductivity (presented later).

The observed cell conductivity varies with the pH and ionic strength of solution.

These variations reflect differences in the mobilities [1] of the ions H+, Na+, and Cl−.

Comparing solutions of the same (or similar) ionic strength but different pH, the solution

with lower pH has a larger concentration of high-mobility protons (µH+ ≈ 7µNa+). At

larger ionic strengths (by the addition of NaCl), this mobility difference is overcome by

increased concentrations of lower-mobility salt ions relative to the protons.
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Figure 6.3: Left: Cell conductivity as a function of solution pH and ionic strength mea-
sured using the four-electrode technique. Right: Cell to bulk conductivity ratio. Bulk
conductivities are obtained using a commercial conductivity meter in a 50 [mL] flask,
absent surface effects.

The ratio of the cell to the bulk conductivity indicates that cell effects, owing to

the Nafion films, diminish as the ionic strength of the working fluid increases. This

trend is expected based upon an equivalent circuit model of the cell conductivity: χ22 =

σbulk

(
1 − 1

β

)
+ 1

β
σNafion where σbulk and σNafion are the conductivities in the bulk fluid and

Nafion, respectively. This relation can be re-arranged to yield the conductivity of the

thin Nafion film:

σNafion = σbulk + β (χ22 − σbulk) (6.6)

The cell conductivity, χ22, includes all conduction mechanisms in the Nafion and fluid

portions of the electrokinetic cell. We plot the Nafion conductivity from equation (6.6)
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in figure 6.4 as a function of ionic strength. These data reveal a relatively uniform

conductivity in the Nafion, although the magnitude of the errors preclude definitive con-

clusions as to the scaling with solution properties. In particular, the 50 and 100 [mM]

data points at pH 5 exhibit a negative conductivity, which is non-physical. These neg-

ative conductivity data points are not considered further in our analysis. Despite this

noise, we are able to extract parameters that inform the state of the Nafion film.
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Figure 6.4: Experimental conductivity data (symbols, as indicated) in the Nafion film
with lines from the model presented in equation (6.10). The error bars represent propa-
gation of standard deviations from the various measurements determining σNafion.

We implement a conductivity model [178] to determine the fixed charge density,

ρ f , and penetration length, λo in the Nafion film. Our model incorporates conduction

from the bulk, as well as excess Ohmic and electroosmotic conduction in the Nafion

layer, χ22 = σbulk + σOhmic + σEO. Like the bulk term, the Ohmic and electroosmotic

(EO) subscripted terms account for conduction effects throughout the domain, not just

in the thin Nafion film. We neglect Ohmic and electroosmotic conduction outside of

the Nafion film, and validate this simplification by application of the Bikerman [58, 73]

conductivity formula with inputs derived from our χ21 analysis. The estimated contri-

bution from Ohmic and electroosmotic conduction in the bulk fluid is several orders

of magnitude lower than the conductivity within the Nafion layer, which validates our

simplification. For efficiency, we work in dimensionless conductivities with the scaling

4
3 FIc

εεo
η
φ̂. The parameter φ̂ in the conductivity scale is a measure of the mobility of the
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current-carrying ions (see the supplementary information for a brief description). We

discuss this parameter at length elsewhere [178].

Our model for the conductivity accounts for conduction in the bulk (driven by the

electrophoretic motion of ions) along with Ohmic and electroosmotic excess conductiv-

ities within the Nafion film:

χ∗22 = σ∗bulk + σ∗Ohmic + σ∗EO (6.7)

σ∗Ohmic =
1
β

∑
i

φ∗i zi

2φ̂∗
c∗i

(
e−ziφD − 1

)
(6.8)

σ∗EO =
1
β

3
2

(
1 −

tanh(α)
α

)
ρ∗f

2

α2γ2φ̂∗
(6.9)

Here, φ∗i is the ionic potential of the ith species, zi is the valence, c∗i = ci
Ic

is the bulk

concentration normalized by the ionic strength, and the remaining symbols have the

same meaning as in equation (6.5). Manipulating equations (6.8) and (6.9) to predict the

Nafion conductivity is straightforward. We combine equations (6.6) and (6.7) through

(6.9) to yield:

σ∗Nafion = σ∗bulk +
3
2

(
1 −

tanh(α)
α

)
ρ∗f

2

α2γ2φ̂∗
+

∑
i

φ∗i zi

2φ̂∗
c∗i

(
e−ziφD − 1

)
(6.10)

This result depends only upon the parameters α, γ, ρ∗f , and the ionic potentials φ∗i which

may be calculated [178] from values in the literature for a variety of electrolytes, includ-

ing ions within Nafion film [195].

We apply equation (6.10) to our conduction data, and perform a regression analysis

to determine the values of λo and ρ f , which are the only free parameters. The domains

of the parameter space are defined by 10−2 ≤
ρ f

ρ(1100EW)
f

≤ 1 and 10−10 ≤ λo ≤ 10−8 [m],

where ρ(1100EW)
f is the charge density of a 1100 EW Nafion membrane. A family of ρ f

and λo pairs yield extrema within the domain that minimize the error between the model

and experimental data; a single point on the boundary of the parameter space gives a
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global minimum. This is in contrast to the regression performed on χ21, which gave a

unique minimum on the interior of the ρ f –λo space. Neither the family of ρ f and λo

pairs, nor the minimum on the domain boundary intersect with the minimum identified

in the χ21 analysis.

Nafion film properties, from the boundary extremum, yield a charge density of

1.6727
[

mol[−SO−3 ]
L

]
and a penetration length λo = 2.58×10−10 [m]. The match between the

data and experiment is shown in figure 6.4. The theory and data agree reasonably well,

when the errors in the measurement are taken into account. In extracting the parame-

ters ρ f and λo from the boundary extremum, we assume that the average charge density

in the Nafion thin film is equivalent to the charge density for commercial Nafion mem-

branes. This assumption is reasonable, provided there is enough water in the Nafion film

for the charged domains to form a well-connected network, which will allow conduc-

tion of cations through the film. Our conductivity measurements are within the range of

values obtained for Nafion immersed in water with multiple cations, although our mea-

surements are made in a range of ionic strength that has not been extensively explored.

We present a comparison between our data and literature values in figure 6.5.

The compilation of data in figure 6.5 illustrates several points about the conductivity

available in the literature and the physicochemical nature of Nafion. There is a large

spread in these data – even at the same ionic strength, variations are observed for iden-

tical or similar materials among researchers. Two reasons are identified in the literature

for this spread. First, the cationic composition in the Nafion and solution govern the

conductivity by affecting the hydration in the Nafion membrane. This is readily seen

in figure 6.5 by comparing the filled markers, where protons are the only cations in

solution, to data represented by open and wired markers where the protons and uni-

valent alkali metal ions are present in the Nafion membrane and solution (all are Na+

165



16

14

12

10

8

6

4

2

σ N
af

io
n

  [
S

/m
]

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Ionic Strength [mol/L]

 This Work
 Verbrugge, et al. (1990) 50.8 [µm] 
 Verbrugge, at al. (1990) 231 [µm] 
 Narebska, et al. (1985)
 Slade, et al. (2002)
 Stenina, et al. (2004)
 Yeo, et al. (1981)

 Okada, et al. (2002)
 Silva, et al. (2004)
 Kolde, et al. (1995)
 Perez, et al. (1991)

Filled markers: H+ only
Open markers: H+/M+

Figure 6.5: A comparison of conductivities measured in Nafion membranes as a function
of ionic strength, with the nature of the electrolyte indicated in the marker type. Shown
are the data of Slade, et al. [2], Verbrugge, et al. [3] (for two thicknesses), Kolde, et
al.(from Slade [2]), Perez, et al.(from Slade [2]), Okada, et al. [4], Yeo, et al. [5], Stenina,
et al. [6], Narebska, et al. [7], and Silva, et al. [8]

except for Yeo, et al. [5] which is K+). Although decreased conductivity for mixed

cation electrolytes is consistent within each dataset presented, there are disagreements

between datasets, as, for example, between the data of Okada, et al. [4, 195] and Ver-

brugge, et al. [3]. Secondly, the data by Slade, et al. [2] and Verbrugge, et al. [3] reveal a

dependence on the thickness of the Nafion layer. This is surprising, because the conduc-

tivity is an intrinsic transport property, and should not be dependent on material extents.

The four conductivity values from the Slade data are proportional to the thickness of

the membrane studied; the highest conductivity (15.8 [S/m]) is observed for a 208 [µm]

membrane, with thinner membranes (161, 111, and 58 [µm]) exhibiting a monotonic de-

crease in the conductivity. The two sets of Verbrugge data show a similar trend, although

the decrease is not as strong as in the Slade data. Not all data sets show size-dependent

conductivity for varying thickness; Okada, et al. [4] studied Nafion membranes of type

115 (125 [µm] dry) and 117 (175 [µm] dry) using an HCl/NaCl electrolyte, and ob-

served no appreciable thickness dependence. In the context of our results, this literature

survey suggests that we should observe a decrease in the conductivity for mixed cation
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electrolytes relative to proton-only electrolytes, as well as a decrease in the conductivity

for thin Nafion films relative to thick Nafion films. Although there is appreciable scatter

in the data found in the literature, these patterns are apparent in figure 6.5.

6.5 Conclusions

In this study, we have combined streaming potential and conductivity measurements to

analyze thin Nafion films in contact with an electrolyte solution. We explored a rela-

tively untested region of ionic strength, taking these measurements over three decades

of pH at six different values of salt concentration. We coupled our measurements with a

theory to extract the fixed charge density, ρ f , and penetration length, λo, as predicted by

both the streaming potential and conductivity techniques.

Our results are consistent with a Nafion film that is dehydrated and nonuniform

along the film thickness δ. The observed χ21 data follow from the advection of mobile

charge; in the Nafion film, a volume of fluid with thickness on the order of λo is actuated

by the flow. Thus, χ21 measurements constitute a localized probing of the Nafion–fluid

interface. In contrast, our conductivity measurements average transport of free charge

over the entire Nafion film. Because of the values derived from these measurements

do not coincide, our results suggest that the Nafion film in our experiments is nonuni-

form. Specifically, our results are consistent with a Nafion film that is poorly hydrated

at the interior. Although we do not explore the source of the hydration in detail, the

temperature at which we bake the Nafion during film preparation has been correlated

with decreased conductivity measurements on non-wetted Nafion films [193].

Even with this nonuniformity, we underpredict the expected Nafion charge with our

streaming potential measurements. The literature [182,183] indicates that the Nafion–air
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interface is less hydrophilic than the bulk, and conductivity measurements are consistent

with a hydrophobic interfacial region for a wetted Nafion film. Following observations

of decreasing Nafion conductivity with Nafion membrane thickness, Verbrugge, et al. [3]

hypothesized that the interfacial regions of the Nafion film are of higher ionic resistance

than the bulk. As increased hydration and increased percolation of aqueous domains in

the Nafion drive conduction [181, 196, 198, 204], higher ionic resistance is consistent

with an interface that is more mechanically resistive and less permeable to flow.

Finally, we have applied two commonly used electrokinetic techniques in an uncom-

mon configuration for a widely studied material. This combination of technique and

geometry has enabled us to probe an interface in an uncommon way – we have taken

direct measures of the Nafion–liquid interface, and our results suggest that this interface

behaves differently than may be assumed if the material were identical to the properties

of a bulk Nafion film. Further studies using our technique on this interface, varying,

for example, the Nafion thickness, type of electrolyte, or environmental variables such

as temperature and pressure, are likely to yield enriching results on the Nafion–fluid

interface. Although we have identified several follow-on studies to the material studied

presently, this approach is not limited to Nafion surfaces, and would be of great util-

ity for any porous material where the surface structure is posited to exhibit a form or

function different from its bulk properties.
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6.7 Supplementary Information

6.8 XPS

Here, we present XPS spectra and atomic percentages of a Nafion film after treatment

with nitric acid (the datum state of the Nafion samples for our measurements) in figure

6.6. Additionally, we show XPS spectra and atomic percentages for a Nafion film after

treatment with a solution of 100 [mM] NaCl (figure 6.7). These results show that the

acid treatment leaves the surface of the film free of metal cations, and that the film does

participate in an exchange of cations when placed in contact with a solution containing

sodium chloride.
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Figure 6.6: XPS spectra of a thin Nafion film following treatment in 70% nitric acid.
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Figure 6.7: XPS spectra of a Nafion film after contact with a 100 [mM] NaCl solution.
The film was initially in proton form.

6.8.1 XPS spectra showing removal of sodium peak with acid treat-

ment

6.9 Ellipsometry

Ellipsometry measurements of the prepared Nafion film and application of an optical

model reveal a dry thickness of 250.594 ± 1.36[nm] and an index of refraction as a

function of wavelength. These data are extracted using a Cauchy dispersion model for

the real index of refraction, and display excellent agreement (see figure 6.8). In our

model, the film thickness and Cauchy parameters (A, B, and C) are free variables:

n (λ) = A +
B
λ2 +

C
λ4 (6.11)

The wavelength, λ, is referenced in microns. Our extracted optical constants are similar

to those reported by Zudans, et al. [205] for Nafion layers on glass, as we show in table
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6.1.

Present Work Zudans, et al. [205]
A 1.3555 ± .00179 1.353
B 2.2408 × 10−3 ± .456 × 10−3 1.8 × 10−3

C −1.0565 × 10−4 ± 4.33 × 10−5 0

Table 6.1: Optical constants extracted from ellipsometry data and model of Nafion film.

Figure 6.8: Psi (amplitude) of measured light as a function of wavelength [nm] for a
nanoscale Nafion polymer film. The data at various incident angles (green lines) shows
an excellent match to the model (red lines).

6.10 Ionic Mobilities Expressed as Potentials

In developing a nondimensional form of the conductivity, we convert ionic mobilities

to potentials. The Ohmic conductivity is dependent upon the mobilities, µi, of the var-

ious ionic components in an electrolyte, while the electroosmotic conductivity is de-

pendent upon the charge density, which dependes on the potential through the Poisson-

Boltzmann equation. In order to relate these two conduction mechanisms coherently, we
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Ion µi × 107
[

m2

s-V

]
φion [mV] φ∗ion[-]

H+ 3.625 790.06 30.76
Na+ 0.519 113.18 4.40
Cl− 0.791 -172.44 -6.75

Table 6.2: Mobilities [1] and tabulated potentials for ions, at 25 [C]. φ∗ion =
Fφi
RT

relate the mobilities of ions to the potential difference that the ions generate in a solvent.

We describe this procedure in detail elsehwere [178], although some values of the ionic

potential are shown in table 6.2. Finally, the quantity φ̂ is defined as:

φ̂ =
1
n

n∑
i=1

ziφi (6.12)

This term represents the average ionic potential of the various components in an elec-

trolyte.
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CHAPTER 7

CONCLUSION

In this work, we have described the application of microfluidics to problems in biology

and interface science. These efforts are connected by their dependence on transport

phenomena, considerations about which permeate both works.

In chapter two we presented a novel microdevice for cell seeding, coherent growth,

and observation of rat hippocampal neurons. Our device design and methodology ex-

ploits biological insecurities of the neurons to direct their growth toward specific regions

of our device. The construction of the device enables the observation of cells at very

high (100x) magnification, which is necessary to observe the transport of intracellular

components in the neurons. Finally, we present an analysis of solute delivery via con-

vection and diffusion, and the concomitant shear stresses, and develop a straightforward

way to account for design tradeoffs imposed by both shear stress and solute delivery

requirements.

The literature survey in chapter three describes state-of-the-art techniques for the

analysis and experimentation of porous and charged layers. Our coherent analysis of

work in this field highlights the advantages and limitations of present theoretical and ex-

perimental approaches. As a result of this survey, we identified areas for improvement

in the understanding of porous and charged layers, which were considered in subsequent

works. In chapters four and five, we proposed an improved framework for the descrip-

tion of forces and fluxes in systems with porous and charged layers. In comparison

with prior approaches, our contributions apply for systems regardless of the magnitude

of the interfacial potential within the porous and charged layer. The approximate ana-

lytical formulas we developed were benchmarked against numerical results of the full

govern equations, demonstrating excellent agreement. Further, we presented our results
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using a set of dimensionless parameters, which is convenient for both system design and

analysis of experimental systems with porous and charged layers.

Finally, in chapter six, we incorporate the studies from chapters three, four, and

five and described our effort toward the electrokinetic characterization of thin Nafion

films. Using a home-built electrokinetic cell, we have described the streaming current

and conductivity of thin Nafion films in a new region of parameter space (defined by the

pH and ionic strength of an aqueous solution). With input from the studies in chapters

four and five, we presented properties of the Nafion film (fixed charge density and fluid

penetration depth) derived from our experiments. Our results are consistent with an

anisotropic Nafion film, possible due to dehydration of the film interior. In addition

to the experimental work and analysis performed, we have suggested several follow-on

studies to further interrogate thin Nafion layers.

174



BIBLIOGRAPHY

[1] Allen J. Bard and Larry R. Faulkner. Electrochemical Methods - Fundamentals
and Applications. Wiley, 2001.

[2] S. Slade, S. A. Campbell, T. R. Ralph, and F. C. Walsh. Ionic conductivity of an
extruded nafion 1100 ew series of membranes. Journal of the Electrochemical
Society, 149:A1556–A1564, 2002.

[3] M. W. Verbrugge and R. F. Hill. Analysis of promising perflurosulfonic acid
membranes for fuel-cell electrolytes. Journal of the Electrochemical Society,
137:3770–3777, 1990.

[4] T. Okada, S. Moller-Holst, O. Gorseth, and S. Kjelstrup. Transport and equilib-
rium properties of nafion membranes with h+ and na+ ions. Journal of Electro-
analytical Chemistry, 442:137–145, 1998.

[5] R. S. Yeo, S. F. Chan, and J. Lee. Swelling behavior of nafion and radiation-
grafted cation exchange membranes. Journal of Membrane Science, 9:273–283,
1981.

[6] I. A. Stenina, P. Sistat, A. I. Rebrov, G. Pourcelly, and A. B. Yaroslavtsev. Ion
mobility in nafion-117 membranes. Desalination, 170:49–57, 2004.

[7] A. Narebska, S. Koter, and W. Kujawski. Ions and water transport across charged
nafion membranes. irreversible thermodynamics approach. Desalination, 51:3–
17, 1984.

[8] R. F. Silva, M. De Francesco, and A. Pozio. Solution-cast nafion ionomer mem-
branes: preparation and characterization. Electrochimica Acta, 49:3211–3219,
2004.

[9] Todd M. Squires and Stephen R. Quake. Microfluidics: Fluid physics at the
nanoliter scale. Rev. Mod. Phys., 77:977–1026, Oct 2005.

[10] Jacob Israelachvili. Intermolecular and Surface Forces. Academic Press, 2nd
edition, 1991.

[11] Reto B. Schoch, Jongyoon Han, and Philippe Renaud. Transport phenomena in
nanofluidics. Rev. Mod. Phys., 80:839–883, Jul 2008.

175



[12] Younan Xia and George M. Whitesides. Soft lithography. Annual Review of
Materials Science, 28(1):153–184, 1998.

[13] Thomas M. Keenan and Albert Folch. Biomolecular gradients in cell culture
systems. Lab Chip, 8:34–57, 2008.

[14] Melody A. Swartz and Mark E. Fleury. Interstitial flow and its effects in soft
tissues. Annual Review of Biomedical Engineering, 9:229–256, 2007.

[15] K. D. Kreuer. On the development of proton conducting polymer membranes
for hydrogen and methanol fuel cells. Journal of Membrane Science, 185:29–39,
2001.

[16] H. Strathmann. Electrodialysis, a mature technology with a multitude of new
applications. Desalination, 264(3):268 – 288, 2010.

[17] Thomas M. Pearce and Justin C. Williams. Microtechnology: Meet neurobiology.
Lab Chip, 7:30–40, 2007.

[18] Kurt J. De Vos, Andrew J. Grierson, Steven Ackerley, and Christopher C.J. Miller.
Role of axonal transport in neurodegenerative diseases. Annual Review of Neuro-
science, 31(1):151–173, 2008.

[19] Rita Selvatici, Maurizio Previati, Silvia Marino, Luca Marani, Sofia Falzarano,
Irene Lanzoni, and Anna Siniscalchi. Sodium azide induced neuronal damage
invitro: Evidence for non-apoptotic cell death. Neurochemical Research, 34:909–
916, 2009. 10.1007/s11064-008-9852-0.

[20] Csaba Szabo, Harry Ischiropoulos, and Rafael Radi. Peroxynitrite: biochem-
istry, pathophysiology and development of therapeutics. Nat Rev Drug Discov,
6(8):662–680, August 2007.

[21] Michael P. Murphy. How mitochondria produce reactive oxygen species. Bio-
chemical Journal, 417:1–13, 2009.

[22] DC Wallace. A mitochondrial paradigm of metabolic and degenerative diseases,
aging, and cancer: A dawn for evolutionary medicine. Annual Review of Genetics,
39:359–407, 2005.

[23] Anthony A. Oliva, Conrad D. James, Caroline E. Kingman, Harold G. Craighead,
and Gary A. Banker. Patterning axonal guidance molecules using a novel strat-

176



egy for microcontact printing. Neurochemical Research, 28:1639–1648, 2003.
10.1023/A:1026052820129.

[24] Stefanie Kaech and Gary Banker. Culturing hippocampal neurons. Nature Pro-
tocols, 1(5):2406–2415, 2006.

[25] R. B. Campenot. Local control of neurite development by nerve growth-factor.
Proceedings of the National Academy of Sciences of the United States of America,
74(10):4516–4519, 1977.

[26] R. B. Campenot. Development of sympathetic neurons in compartmentalized
cultures 1. local-control of neurite growth by nerve growth-factor. Developmental
Biology, 93(1):1–12, 1982.

[27] R. B Campenot. Development of sympathetic neurons in compartmentalized cul-
tures 2. local-control of neurite survival by nerve growth-factor. Developmental
Biology, 93(1):13–21, 1982.

[28] Stephanie P. Lacour, Raghied Atta, James J. FitzGerald, Mark Blamire, Edward
Tarte, and James Fawcett. Polyimide micro-channel arrays for peripheral nerve
regenerative implants. Sensors and Actuators A - Physical, 147(2):456–463, OCT
3 2008.

[29] Jean-Michel Peyrin, Berangere Deleglise, Laure Saias, Maeva Vignes, Paul
Gougis, Sebastien Magnifico, Sandrine Betuing, Mathea Pietri, Jocelyne
Caboche, Peter Vanhoutte, Jean-Louis Viovy, and Bernard Brugg. Axon diodes
for the reconstruction of oriented neuronal networks in microfluidic chambers.
Lab on a Chip, 11(21):3663–3673, 2011.

[30] Anne M. Taylor, Seog Woo Rhee, Christina H. Tu, David H. Cribbs, Carl W. Cot-
man, and Noo Li Jeon. Microfluidic multicompartment device for neuroscience
research. Langmuir, 19(5):1551–1556, 2003.

[31] Anne M Taylor, Mathew Blurton-Jones, Seog Woo Rhee, David H Cribbs, Carl W
Cotman, and Noo Li Jeon. A microfluidic culture platform for cns axonal injury,
regeneration and transport. Nature Methods, 2(8):599–605, August 2005.

[32] Anja Kunze, Robert Meissner, Serena Brando, and Philippe Renaud. Co-
pathological connected primary neurons in a microfluidic device for alzheimer
studies. Biotechnology and Bioengineering, 108(9):2241–2245, 2011.

[33] C. Joanne Wang, Xiong Li, Benjamin Lin, Sangwoo Shim, Guo-li Ming, and

177



Andre Levchenko. A microfluidics-based turning assay reveals complex growth
cone responses to integrated gradients of substrate-bound ecm molecules and dif-
fusible guidance cues. Lab Chip, 8:227–237, 2008.

[34] D Kleinfeld, KH Kahler, and PE Hockberger. Controlled outgrowth of dissociated
neurons on patterned substrates. The Journal of Neuroscience, 8(11):4098–4120,
1988.

[35] C.D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam,
G. Banker, H. Craighead, M. Issacson, J. Turner, and W. Shain. Aligned mi-
crocontact printing of micrometer-scale poly-l-lysine structures for controlled
growth of cultured neurons on planar microelectrode arrays. Biomedical Engi-
neering, IEEE Transactions on, 47(1):17 –21, jan. 2000.

[36] G. Banker and K. Goslin, editors. Culturing Nerve Cells. MIT Press, 1998.

[37] Ivar Meyvantsson and David J. Beebe. Cell culture models in microfluidic sys-
tems. Annual Review of Analytical Chemistry, 1(1):423–449, 2008.

[38] Pamela G. Gross, Emil P. Kartalov, Axel Scherer, and Leslie P. Weiner. Applica-
tions of microfluidics for neuronal studies. Journal of the Neurological Sciences,
252(2):135 – 143, 2007.

[39] Jinyi Wang, Li Ren, Li Li, Wenming Liu, Jing Zhou, Wenhao Yu, Denwen Tong,
and Shulin Chen. Microfluidics: A new cosset for neurobiology. Lab Chip,
9:644–652, 2009.

[40] Brian J. Kirby. Micro- and Nanoscale Fluid Mechanics Transport in Microfluidic
Devices. Cambridge University Press, 2011.

[41] Larry J. Millet, Matthew E. Stewart, Jonathan V. Sweedler, Ralph G. Nuzzo,
and Martha U. Gillette. Microfluidic devices for culturing primary mammalian
neurons at low densities. Lab Chip, 7:987–994, 2007.

[42] Jennifer Monahan, Andrew A. Gewirth, and Ralph G. Nuzzo. A method for
filling complex polymeric microfluidic devices and arrays. Analytical Chemistry,
73(13):3193–3197, 2001.

[43] Stefanie Kaech, Chun-Fang Huang, and Gary Banker. Short-term high-resolution
imaging of developing hippocampal neurons in culture. Cold Spring Harbor
Protocols, 2012(3):pdb.prot068247, 2012.

178



[44] M C van Loosdrecht, J Lyklema, W Norde, G Schraa, and A J Zehnder. Elec-
trophoretic mobility and hydrophobicity as a measured to predict the initial steps
of bacterial adhesion. Applied and Environmental Microbiology, 53(8):1898–
1901, 1987.

[45] Huub H.M. Rijnaarts, Willem Norde, Edward J. Bouwer, Johannes Lyklema, and
Alexander J.B. Zehnder. Reversibility and mechanism of bacterial adhesion. Col-
loids and Surfaces B: Biointerfaces, 4(1):5 – 22, 1995.

[46] Albert T. Poortinga, Rolf Bos, Willem Norde, and Henk J. Busscher. Electric dou-
ble layer interactions in bacterial adhesion to surfaces. Surface Science Reports,
47(1):1 – 32, 2002.

[47] F. Gaboriaud, M. L. Gee, R. Strugnell, and J. F. L. Duval. Coupled electrostatic,
hydrodynamic, and mechanical properties of bacterial interfaces in aqueous me-
dia. Langmuir, 24:10988–10995, 2004.

[48] D. Belder, H. Husmann, and J. Warnke. Directed control of electroosmotic flow
in nonaqueous electrolytes using poly(ethyleneglycol) coated capillaries. Elec-
trophoresis, 22:666–672, 2001.

[49] Detlev Belder and Martin Ludwig. Surface modification in microchip elec-
trophoresis. ELECTROPHORESIS, 24(21):3595–3606, 2003.
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