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SUMMARY
The concept of N-ary balanced incomplete block design where the incidence

matrix n takes the N-values, 0,1,2,---,N-1) is extended to general N-ary balanced

block designs, where the incidence matrix n* takes on the N values m,o:oas= 0,L,2, -

- = - - < i = -
N-1 and m aml (a.l)m and 0 S m_ < m - For ternary designs m,, 2m mo
<
and thus O . my <m <m, .

The parameters and necessary conditions for g* are evaluated. Given a fixed
number of units N* (say) and fixed number of treatments v (say), more than one
general N-ary balanced block design for different values of m,:as= 0,1, ,N-1,

is possible A criterion for selecting an optimal design from its class is derived.

1. INTRODUCTION

N-ary balanced incomplete block designs were introduced by Tocher [19352].
The number of occurances of treatments in block were 0,1,+--,N-1 with all occurrences
being represented. Statistical literature on these designs since their introduc-
tion has béén confined to designs with these occurrences. We shall generalize
these N-ary designs such that the occurrences of a treatmgnt in the block is some
non-negative integer MMyt sy g The generalizations represent a sequel to
those given by Shefiq and Federer [1977] for generalized binary balanced block

design (GBBBD) and they provide a generalization for the present experimental
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design theory such that the experimenter isﬁﬁrovided with many new N-ary balanced
block designs. This allows flexibility in fﬁé statistical designs, and in the
use of all homogeneous material for given block sizes. We shall confine our

Ry
attention to block designs which are equireplicated and equal sized blocks.

In the next section a presentation of pg}ameters for basic ternary balanced
incomplete block design (BTBIBD) and general ternary balanced block design (GTIBBD)
is made, and some definitions are presented{.'Somé results on the existence of
GTBBD and on their optimality are presented in section three. An example,
illustrating the results, is presented in the fourth section. 1In the fifth
section, all the previous results are extended to general N-ary balanced block

design (GNBBD).

2. PARAMETERS OF BTBIBD AND GTBBD AND SOME DEFINITIONS

Let (v,b,r,k,\;0,1,2) be the parameters of a basic ternary balanced incom-
plete block design, (BTBIBD), where 2 <k and where the incidence matrix n = (nij>
contains only three values for nij’ i.e., 0, 1, and 2. nij denotes the frequency
of the i'" treatment in the j** block, j=1,2,-::,b. Further, let ros a=0,1,2,

denote the number of times an element a appears in the i*® row of n; the occur-

rences are assumed independent of i. Then the following reiations hold:

b=r,+r +r, (2.1)
N r=r, + 2r2 (2.2)
b .
Znijn&j =r) + hrg if £=1 (2.3)
J=1
= )\ 1If L #14 _ , (2.4)
vr = bk (2.5)
AMv-1l) = r(k-1) - 2r, = r(k-2) + r (2.6)

2 1°




To obtain (2.4) note that

ij7¢5

¢=1 j=1 J=1 =1

and that
v b b v .
D (Lngas)e D(otye T mpgg)
L B35 /7 @ NPig T & Pigfes /o
=1 j=1 : j=1 if4=1 : '

=r, + hre + (v-1)A
hence

b
: _ - 2 _ _ _ - 1Y L - 5
AMv-1) = rk Zni. = rk r, hra r(k-1) 2r, r(k-2) + r .
=1

In order to fix A uniquely, note that r{k-1) - 2r2 rust be a positive multiple
of v-1. For example, if v=5, b=15, k=k, r=12, consider value: of ry = 1,2,3,k,

or 5. If r, = 1,3 or 5, A is not an integer. If r2=2, \=8 and if reih;'h=7.

Given that n is the incidence matrix of BTBIBD with parameters (v,b,r,k,);

0,1,2), the incidence matrix of a GTBBD is defined to be:

* = -
n r_x(ml

my + Jmg B (2.7)

where J is a v X b matrix whose elements are all ones and where O Sm_ < ml .

0
The parameters of the GTBBD are (v,b,r*,k*,h*;mo,ml,m2=2ml-mo) where

r#* = rm, + (b-r)m0 | | (2.8)

K* = km, + (V—k)mé (2.9)
(v=1)A¥* = r*(k*-ml-mo) + bmm, - 2r2(ml-mo 2 (2.10)

vr¥# = bk# (2.11)

v<sb (2.12)
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Definition 2.1. A GTBBD is said to be incomplete if my = 0; otherwise,

it is said to be complete.

To illustrate this definition consider the following two designs:

Design 2.1 " Design 2.2
m0=0, ml=2, m2=)+ m0=]_’ ml=2, m2=3
v=Dbg=3; k* = r¥* =6 v=>b=3; k*=r*=6

blocks ’ ’ blocks -
1 2 3 1 2 3
A B C A A
A B C B B B
A B C C C C
A B c A B c
B C A A B C
B C A B C A

Design 2.1 is incomplete, whereas design 2.2 is complete.

Definition.2.2. A complete GTBBD is said to be orthogonal if nij = r?k?/N“,
where N* is the total number of observations, ri is the number of replications
of the i'" treatment, k§ is the number of entries in the j'® block, and n?j is

the i3*" element of n*.

Design 2.1 above is incomplete and nonorthogonal, and design 2.2 is complete

and nonorthogonal. The following design is both complete and- orthogonal.

Design 2.3. v =3 = b,‘f* = 12, rg =6 =%, N* =24

1 3’
Blocks
1 AAAABBCC 8 = k¥ b o2 67
2 AABC . b= kg n*= | 2 1 3
3 AAAAAABBBCCC | 12 = k3 ‘ 2 1 3_

n¥, = 8(12)/2k = L n¥, = Lh(12)/2k = 2, etec.
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Definition 2.3. A GTBBD is variance balanced if the coeffigient matri;

C¥* = c# + c¥J . where c* is the non-zero eigen value of C%, c¥ = c#/v
SVXV ’l;va.. c2"—Tva er 1 is th >18 ¢ 2 l/v !

. . . . . . ! Y s 1 1
I is the .identity matrix, and c* = dlag(rf,---,ri) - n¥ d1ag< T RE ) nt' .

In design 2.1, C* = 4I - 4LJ/3, and in design 2.2, C* = (331 - 11J)/6. Thus,

both are'vériance balanced. Howeﬁer, in design 2.3

2 0 07 Ty o2 6T % “y 2 27
c*=| o 6 of|-|z2 1 3 : 2 1 1
o o 6 2 1 3 f% 6 3 3
T 4 2 2]

-2 3 -l | F cPT+cly

i
niw

-2 -1 3

The design 2.3 is not variance balanced, but it is orthogonal.

3. EXISTENCE AND VARIANCE OPTIMALITY OF GTBBD

Theorem 3.1. The existence of a balanced ternary incomplete block design

with parameters (v,b,r,k,}\; nij=0,l,2) implies the existence of a GIBBD with

parameters (v,b,r* k¥, \¥, n?j = mo,ml,mg) .

Proof: From the definition of a GTBBD, note that g* = g(ml-mo) + gm

o -
The ij*® entry of n* is n*ij = nij(mi'mo) o The,
niy = m if ng =0
= my if Dy = 1
=m, = 2ml --mo if nij =2



-6 -

Starting with a BTBIBD with incidence matrix n, é'aTBBD may be easily

constructed by replacing all zeros in the BTBIBD with By all the ones with .
m,), and all the twos with m,. The resulting GTBBD has parameters (v,b,r¥ k*, £,

mo,ml,mg) where r*, k*, \* satisfy equations (2.8) to (2.11). We shall now

derive equations (2.8) to (2.11) formally. Let éb and év denote column vectors

whose elements are all ones and whose orders are b and v respectively; now,

"

n*d,

(n(m -m;} + Jm ]L

[r(ml-mo) + bmo]}v

[rml + (b-r)moiév = f*}v

and
de t = ' - \ 1
2 Ev [9 (ml o) * ghmo]}v
= [k(ml—mo) + vmo)fb
= [km, + (v-K)m 11, = k¥1
Also,
et - [ L
n¥n® = (o(m,-my) + dm }n'm -n,) + &'m )

' 2 2
nn (ml—mo) + [2r(ml-mo)mO + me]g

The (i4)'" entry of n*n*' for £ # i, is denoted by M and is written as

¥ = )\(ml-mo)2 + 2r(ml-—mo)mO + bmg, where A = [r(k-1) - 2r2]/(v—l). Then,

[0}

- AR —_—re - 2 _ - 2
(v-1)X (rk~-r 2r2)(m m + (v l)(2r2(ml mo)mO + bmo)

170

(r”-bmo)(k*-vmo) - (r*—bmo)(ml—mo) - 2r2(ml-mo)2
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+

A - 2
Z(Y:%)(r bmo)mO + (v l)brgO

)

* (e - _ 2
r¥(k#* m, mo) + bm,m, 2r2(ml mo)

When md = 0 and Al = 1, equation (2.12) is known as Fisher's inequality. We

generalize his inequality here. To prove (2.12) for Q = m04< my <m, = 2ml - Dy
v b ‘

+ * ST = s = - ® s Sth qs
note that xii + (v-1)\ r¥k Z£=l Zj=l n ijn 10 vhere xii is the i'® diagonal

entry'of g“@“' and is the same for all i. Thus,‘g“g*' = (r“k*-k“v); + AJ . The

v—-l( 2(v-l),

[}

m

determinant of n*n*' is ]g“g”'l = r*k*(r”k*a-h*v)v'lf r¥#c¥#(r-A+2r

2) 17%)
since (r¥k#*-A%v) = (rk-lv)(ml-mo)2 and since rk - Av = r - A + 2r, = Aii - N
where A,. = ﬁ? n2, = r. + br_from (2.3) we know that r - A + 2r. > 0. This
ii J=1 "iJ 1 2 2
is because \,. must be greater than or equal to 2?_ n,.n,,, % # i, because the
ii J=1 i3 4]

numbers Tos T and r, of zeros, ones and twos, respectively, are independent of

1
the i*® treatment, and correlation can only be one if the symbols in rows i and

£ are identical. But, this would mean that rank of n*n*' is less than v, since
two rows would be identical. This is impossible, since the BTBIBD we started with
was connected and had nbvfﬁo rb%é df n identical. Tﬁﬁé, the rank of g”g*' is v.
Now, n* is v X b and has fank less'than or_gquéi to the minimum of v and b. Also,
the rank of a product of twoim;£;icesAis.ieéé than or equal to the minimum of the

rank of the two matrices. Hence, since the rank of g*g“' is v, the v £ b and the

Fisher's inequality is proved for GTBBD.

Under the assumptions of homoscedasticity and usual linear model theory, the

coefficient maﬁrix for obtainiﬁg solution for the treatment effect of a GTBBD is
C* = r*I - n¥n®'/k* = r¥] - (r¥%¥*-Mv)I/ke - MJ/k* = AW (vI-J)/k* . (3.1)

This form is identical to the coefficient matrix g of the BTBIBD when *® is

dropped. The rank of C* is (v-1) and the covariance matrix (intrablock) of
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treatment effects is oak*z/l*v, when the restraint’ that the sum of the treat-

ment effects equal zero is utilized.

In the class of all equireplicaﬁed and equi-sized block GTBBD the question
arises as to which one(s) of these balanced designs has(have) the smallest
variance. This problem is not enéountered:iﬁ’the case of the BTBIBD, since there
is only one variancé: The same situation arises for the binary designs discussed
by Shafiq and Federérh[l977]. Now, as may be noted from the definition of the
GTBBD, there are many possible values for mo énd ml.l In the search of an optimal
design in the class, note that maximizing the quantity A*v/k* will minimize the
variance of estimable treatment effects. Since v is constant in the class, we
need only confine our attention to A¥/k¥, Of course, the comparison is made

among designs having fixed N* or r* as r*v = N*. The following theorem is in

this spirit.

Theorem 3.2. Im the class of all equireplicated and equi-sized blocks

: # *. : :
GTBBD with parameters (v,bd,r k¥ ‘mOd’mld’m2d)’ the design(s) having the

3
4q’ 4’
1 (m

o - - 2 . . .
minimal value gg.[rd(bd rd) + 2bdr2d 14 mOd)‘ is(are) optimal in the sense of

A-, D-, and E-optimality. -

Proof: The three criteria of variance oﬁtimality Known as A-optimality,
D-optimality, and E-optimality involve functions of the non-zero eigen values
of the coefficient matrix C* for treatment effects. Let Né, g=1,2,+++,v-1, be
the set of non-zero eigen values of C¥. Then, the various optimalities in terms

of are:
Yg

v-1l
i) A-optimality: fA(g*) = ZY;
_ o




‘ ) v-1l
ii) b-optimaiity:"fb(g*j = TT\;l
. . T 1
< as . . ‘ . -1
iii) E-optimality: fﬁ(g*) = ~max Y

1sg=sv-1

Kiefer [1958, 1959] and others have presented discussions on these and other

various optimality criteria.

In the case of GTBBD the v-1 non-zero eigen values of gg,are all equal to
vkg/kg =‘{dfbr each g. Therefore, by minimizing Kg/kg all the three criteria

will be achieved. Thus

ort(motm ) - bom.m .+ 2r, (m, .-m_ )%
mex (M/K%) = pax| oo o —dd 04’ " Pa™atoa T TFoq Taafoa’
d L k% -l
d
= _ - 2
= m;“ Lr¥0g (m) gmoq) - Dgmygmyg + 2047y (my 4-mpy )]
= mi w2 %_ .. - 2
m;n [r (r m 4 d)(r mOdbd) + 2b,r,(m) mOd)
= ms w2 2 - 2
mgn (r#= + rd(b )(mld Od) + 2b (mld mOd) ]
i 3#*_ = -In = - \ -
since (r mOdbd) rd(mld mOd) and (mld QT r¥) (bd Ty (mld mOd)' Therefore,

mgx (hg/kg) = min (r (bd rd) + Ebdrd)(m )2 .

4 14-"0d

The following two corollaries follow directly from theorem 3.2.
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Corollary 3.1. In a subclass of GIBBD with parameters (v,b r¥ kd’hd’

. v .
mOd’mld’m2d) and derived from BTBIBDs with parameters (v,bd,rd,kd,kd,o,l,Q)

for the d'" design, in which the difference (m ) is a constant, the one(s)

1a""0d

is(are) optimal.

having a minimal value of r

d(b rd) + derzd

Corollary 3.2. In a subclass of GTBBD with parameters (v,b r¥ kd’xd’

mOd’mld'mad) and derived from BTBIBDS with parameters (v,ba,rd,kd,Kd;O;l,2),

is constant, the design(s) having

in which the guantity r, (v —rd) + 2b,ryy is

) is(are) optimal.

minimal value of (mld—mod A2 -
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TABLE L4.1: GTBBD for v = 4 and r* = 45,

Parameters of BTBIBD | Parameters of GTBBD Optimality Measures
) * 3% 3%
BIBIBD | by Tq kg Ay Toq |Kg Mg Mg Mg Moy (Mg Moy I3 g
1 10 5 2 1 1 18 201 4 5 6 1 45
1 0 5 2 1 1---418 189 3 6 9 3 L5 9
1 10 5 2 1 1 18 165 2 7 12 5 45 25
1 10 5 2 1 1 [18 129 1 8 15 T L5 L9
1 10 5 2 1 1 18 81 o0 9 18 9 L5 81
2 l2 9 3 L 3 J15 166 3 4 5 1 99 2.2
2 12 9 3 4 3 15 100 O 5 10 5 9 55
3 9 9 L4 7 3 20 223 L 5 1 54 1.8
3 9 9 & 7 3 ]2 211 3 5 2 sh 4.8
3 9 9 4 7 3 20 207 2 5 8 3 54 10.8
3 9 9 4 7 3 20 193 1 5 9 b 54 19.2
3 9 9 4L 7 3 20 175 O 5 10 5 54 30.0
Iq = ra{bgrg) + Zogrpg

3 i \ 2 Ne
Iy = <rd(bd'rd) * BTy mygmog )/ T
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. 2. PARAMETERS OF BASIC N-ARY AND GENERAL N-ARY DESIGN

Let (v,b,r,k,x;nij=0,l,2,°'-,N-l) be the parameters of BNBIBD, where N-1 < k
and whose incidence matrix n takes only N values namely, 0,1,2,:-¢,N-1. Let nij
denote the frequency of the jth treéfment in the j*® block. Let rai denote the

frequency of an element a in the it} row of n. Similarly, let kaj denote the

frequency of element a in the j*" column of n. We assume that Ty T Ta for all i.

Thus,
N-1
b = Z% (5.1)
a=0
N-1
= Yﬁk (5.2)
V= L KB o
a=0
N-1
r = Zara (5.3)
" a=0
N-1
k = Z&N (5.4)
=0
b N-1
z ngnps = Zazra if g=1 (5.5)
j:l =0
=\ irf /&/4 i (5;6)
Necessary conditions: vr = bk (5.7)
N-1 N-1
(v-1\ = x(-1) - ) a(a-l)r, = ) alk-a)r, . (5.8)
a=0 a=0
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Equations (5.1) to (5.7) are obvious and (5.8) is derived as follows:

N-1 -l
Av-1) = rk E.nij rk - E-é r,
J=1 a=0
N-1
= r(k-1) - ) a(a-1)r
a=0
or we can express it as
N-1 N-1 N-1
1Y = N o2, N \ .2
Mv-1) = rk - ) &%, zJarak - ) 8,
a=0 a=0 a=0
N-1
= Za(k-a)ra .
a=0

Some restrictions on ra could easily be imposed. For example,

N-a-1
r < [r - Z (a+i)ra+i]/a for a=2,+++,N-1, (5.9)

a
i=1

and only those values of ra for which A is integer are algebraically possible.

Given n, we define the incidence matrix of GNBBD to be

¥ = n(ml-mo) + Jumg (5.10)

- -

where Dy and m, are non-negative integers such that 0 = mO < my and J is 2 v X Db
matrix whose elements are all ones. The parameters of GNBBD are (v,b,r™,k",\";

m :a= 0,1,***,N-1) where m, = am - (a-—l)mO and
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r’ o= rm, + (b--r)m.O (5.11)

x* = km + (v-k)m, (5.12)
. N-1

(v-1)\* = r*(k*-ml-mo) + boymy - Za(a—l)ra(ml-m.o)2 (5.13)
a=0

where

vr = bk* = N¥ (5.14)
v<5b. (5.15)

The definitions 2.1, 2.2, and 2.3 also hold true for GNBBD.

6. EXISTENCE AND VARIANCE OPTIMALITY OF GNEBD

Theorem 6.1. The existence of a balanced N-ary incomplgzg block design with

parameters (v,b,r,k,\;0,1,«++,N-1) implies. the existence of a GNBBD with parameters

(v,b,r*,k*,k*;n§j=mo,m ,"°,mN_l).

Proof: From the definition of a GNBBD, note that n™ = g(ml-mo) + Jm,, the

1j*® entry of n¥ denoted by nij is

ny; = ng5(m-mg) + my

= a(ml-mo) +m, if n,. = a and

0 ij

a

]

0,1,2,+,N-1.

Let us define m = am - (a-l)mo. Starting with a BNBIBD with incidence matrix n,
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i

a GNBIBD may be easily constructed by replacing all a's by m 's. The resulting

GNBBD has parameters (v,b,r*,k*,x*,ma: a=0,1,+++,N-1). r". k¥, and A\ satisfy
equations (5.11) to (5.13). We shall now derive equations (5.11) to (5.13)

formally.

Let éb and }v denote the column vectors whose elements are all ones and whose

orders are b and v, respectively. Now

l 5".

i = - 4
L = [olmpmg) + Imglt,

[r(ml—mo) + bmolgv

[rm1 + (b-r)mO]}v = r*} s

v
and
L R ! _ 1
LA (n (ml mo) +J mojgv
= - 74
[k(ml mo) + va]:b
= [km1 + (v—k)mo]j s
also
T _ _ 1
! = (nlmy-mg) + guoJn(my-ng) + gmy]

]

gg'(ml-mo)g + [Er(ml-mo)mo +.bmg]{

where J is a v X v matrix of ones. Thus the (i4)*® entry of n*n"' for 4 # 1,

% g ; % e )2 _ 2
denoted by \¥, is written as \ k(ml mo) + 2r(ml m.o)mO + g, where

N-1

x=b&4)-2a@4ﬁJme.
a=0

Thus,
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«(rk-r - Zﬂa(a-l)ra>(m1-mo)2 + 2(V;l)r

a=0

A (v-1)

. (ml-m.o)x;;O + b(v-l)mg

(r’x'-bmo)(k*-vmo) - (r”:'-bmo)(ml-mo)

N-1 .
- ( Za(a-l)ra)(ml-m@)2 + 2(v-1)(r’*‘-‘b_mo)m0
a=0
+ b(v-l)mg
N-1
= r*(k*-ml-mo) + bmymy - Zﬂa(a-l)ra(ml-mo)z .
» a=0

< . cee < i s
To prove (5.15) for O my < my < My 1 im1t§t§ the steps used to prove
is replaced by r-\ + % a(a-1l)r_.
a=0 - a

this under GTBBD except r-A + 2r2

The coefficient matrix C* assumes the same relation as in (3.1).

Theorem 6.2. In the class of all equireplicated and equisized blocks GNBBD

with parameters (v,bd,r%,kg,xg;mOd,mld,'--,mN_ld), the design(s) having the minimal

value of

N-1

[rd(bd-rd) * Za(a'l)rad](mld'%d)z
a=2

is(are) optimal in the sense of A- D- E-optimality.

The proof is a straightforward extension of Theorem 3.2. Corollaries 3.1 and

3.2 are similarly extended and are restated as:
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Corollary 6.lf In a subclass of GNBBD with parameters (v, b,,r kd’kd’
Mgt @ 0,1,+++,l~1) and cerlved from BNBIBD"W;th parameters (v,bd,rd,kd,kd;

a:a=0,1,°-+,N-1) for the d'* design, in which the difference (mld- Od) is

constant, the one(s) having the minimal value of rd(bd—rd) + a(a-l)rad is(are)
a=0
optimal.
Corollary 6.2. In a subclass of GNBBD with parameters J,bd,r kd’xd’
mates O,l,-oF,N—l) and derived from BNBIBD with ﬁarameters (v, bd,rd,kd,kd;
N-1
a:a=0,1,-+,N-1) in which the quantity rd(b ) + £ a(a- l)r is constant,
a=0
the design(s) having the minimal value of (mld Od) is(are) optimal.
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