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SUMMARY 

April 1977 

The concept of N~ary balanced iqcomplete block design where the incidence 

matrix n takes theN-values, 0,1,2,··· ,N-1) is extended to general N-ary balanced 

block designs, where the incidence matrix n* takes on theN values m · a= 0 l 2 ·· · a . ' ' ' 

N-l and rna = am1 - (a~l)m0 and 0 ~ m0 < m1 . For ternary designs m2 = 2m1 - m0 

and thus 0 .~ m0 < m1 < m2 . 

The parameters and necessary conditions for n* are evaluated. Given a fixed 

number of units N~ (say) and fixed number of treatments v (say), more than one 

general N-ary balanced block design for different values of rna a= O,l,· ·· ,N-1, 

is possible A criterion for selecting an optimal design from its class is derived. 

L INTRODUCTION 

N-ary balanced incomplete block designs were introduced by rocher [1952]. 

The number of occurances of treatments in block were O,l,···,N-1 with all occurrences 

being represented. Statistical literature on these designs since their introduc

tion has b~'Em confined to designs with these occurrences. We shall generalize 

these N-ary designs such that the occurrences of a treatment in the block is some 

non-negative integer m0,m1,··· '~-l. The generalizations represent a sequel to 

those given by Shefiq and Federer [1977] for generalized binary balanced block 

design (GBBBD) and they provide a generalization for the present experimental 
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design theory such that the experimenter is -,~rovided with many new N-ary balanced 

block designs. 1bis allows flexibility in the statistical designs, and in the 

use of all homogeneous material for given block sizes. VJe shall confine our 
{7' 

attention to block designs which are equireplicated and equal sized blocks. 

In the next section a presentation of pa~ameters for basic ternary balanced 

incomplete block design (BTBIBD) and general ternary balanced block design (GTBBD) 

is made, and some definitions are presented. Some results on the existence of 

GTBBD and on their optimality are presented in section three. An example, 

illustrating the results, is presented in the fourth section. In the fifth 

section, all the previous results are extended to general N-ary balanced block 

design (GNBBD). 

2. PARAMETERS OF BTBIBD AND GTBBD AND SOME DEFINITIONS 

Let (v,b,r,k,A;O,l,2) be the parameters of a basic ternary balanced incom-

plete block design, (BTBIBD), where 2 ~ k and where the incidence matrix n = (n .. ) 
- lJ 

contains on_ly three values for nij' i.e., 0, 1, and 2. n·ij denotes the frequency 

of the ith treatment in the jth block, j=l,2,··· ,b. Further, 1~t r, a=O,l,2, 
a 

denote the_number of times an element a appears in the ith row of~; the occur-

rences are assumed indep~ndent.of i. Then the following rei.ntions hold: 

b = ro + rl + r2 (2.1) 

r = r + 1 
2r2 (2. 2) 

b 

L nijn.ej = rl + 4r2 if J, = i (2. 3) 

j=l 

= 4 if £ I= i (2. ~) 

vr = bk (2. 5) 

A(v-1) = r(k-1) - 2r2 = r(k-2) + rl . (2. 6) 



To obtain (2.4) 

and that 

hence 
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note that 

v b b v 

I( \ 
) = 

\ \ rk '- nijnej '- nij '- n tj = 

.e=l j=l j=l .e=l 

v b b v 
\ ( L nil.tj ) = \ ( 2 \ ) i.. '- nij + '- nijn.tj 

,t=.l j=i . j=l i~.t=l 

b 

A(v-1) = rk - L n~j = rk - r 1 - 4r2 = r.(k-1) - 2r2 = r(k-2) + r 1 . 

j=l 

In order to fix A uniquely, note that r(k-1) - 2r2 must be a positive multiple 

of v-l. For example, if v=5, b=l5, k=4, r=l2, consider value.; of r 2 = 1,2,3,4, 

or 5. If r 2 = 1,3 or 5, A is not an integer. If r 2=2, A.=8 and if r 2=4; A.::.7. 

Given that n is the incidence m~trix of BTBIBD with parameters (v,b,r,k, :\; 

0,1,2', the incidence matrix of a GTBBD is defined to be· 

n'* = n (m -m \ + Jm 
- - l 0 - 0 

(2.7) 

where J is a v i< b matrix whose elements are all ones and where 0 s: m0 < m1 

The parameters of the GTBBD are (v,b,r"~~,k*,A*;m0,m1 ,m2=2m1-m0 ) where 

r* = rm1 + (b-r)m0 (2. 8) 

k~~· = km1 + (v-k)m~ (2. 9) 

(2.10) 

(2.11) 

v s: b (2 .12) 
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Definition 2.1. A GTBBD is said to be incomplete if m0 = 0; otherwise, 

it is said to be complete. 

To illustrate this definition consider the following two designs: 

Design 2.1 Design 2.2 

mo = o, ml = 2, m2 = 4 roo = l, ml = 2, m2 = 3 

v = b = 3; k* = r'* = 6 v = b = 3; k~t = r"" = 6 

blocks blocks 

l 2 3 l 2 3 

A B c A A A 

A B c B B B 

A B c c c c -
~ B c A B c 
B c A A B c 
B c A B c A 

Design 2. l is incomplete, w-h~t-:eas design 2. 2 is complete·. 

Definition 2.2. A complete GTBBD is said to be orthogonal if n'¥". = r"l!k<!!/N~~, 
-- ··~ ' ~J ~ J 

where N* is the total number of observations, r~~ is the number of replications 
. ~ 

of the it h treatment, k~ is the number of entries in the jtll block, and n~· is 
J ij 

J: : 
the ijth element of n*. 

Design 2.1 above is incomplete and nonorthogonal, and design 2.2 is complete 

and nonorthogonal. The following design is both complete and, orthogonal. 

Design 2. 3. v = 3 = b ·r* = 
' l 

12, r"" = 2 6 = r*, 
3 

N'"" = 24 

Blocks 

l AAAABBCC 8 = k~! 
l 4 2 6 

2 AABC 4 = k* 2 
n~~ = 2 l 3 

3 AAAAAABBBCCC 12 = k~· 2 l 3 3 

n* = 8 (12 )/24 = 4 n~~ = 4(12)/24 = 2, etc. ll 12 
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Definition 2,- 3·. A GTBB[l is vari[:!nce [>alanced if the coefficient matrix 

~v*xv = c*1.I . + c2*J . where c1"'- is the non-zero ~igen value of g··~, c•2* = c*1/v, -vxv.. -vxv 

I is the .identity matrix, and col!-= diag(r* · · • r>ll) - n~!· diag( .l · · · .l ) n*' 1' J v - k:[' J kf -

In design 2.1, c~ = 4r 4~/3, and in design 2.2, C4' = (33! - 11~)/6. Thus, 
~ -

both are variance balanced. However, in design 2.3 

12 0 0 - 4 2 6- - l -4 2 2 8 
c~· = 0 6 0 2 1 3 

1 2 l l 4 

0 0 6 2 1 3 
1 6 3 3 12 

4 -2 

-2 l 3 -2 3 -1 f c<i!-I + c"}J = 2 1- 2-

-2 -1 3 

The design 2. 3 is not variance balanced, but it is orthogonal. 

3. EXISTENCE AND VARIANCE OPTIMALITY OF GTBBD 

Theorem ~· The existence of ~ balanced ternary incomplete block design 

1vith parameters (v,b,r,k,A.; n .. =0,1,2) implies the existence of a GTBBD with 
-- - l.J - - - - --

parameters (v,b,r~~,k*,A.~; nrj = m0,m1 ,m2 ) · 

Proof: F::com the definition of a GTBBD; note that n4~ = n(m_-m0 ) + Jm0 . 
- l -

n~. "" mo if n. = 0 
l.J J.j 

= ml if n .. = 1 
l.J 

= m2 = 2m1 - m if n. = 2 
0 J.j 
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~-, -~- , 

Starting with a BTBIBD with incidence matrix ~' a G~BD may be easily 

constructed by replacing all zeros in the BT.BIBD with m0, all the ones with 

m1, and all the twos with m2 . The re·sulti·ng GTBBD has parameters (v,b,r•:-,k"jf,A.~}; 

m0,m1,m2 ) where r~<, k~, A.~~ satisfy equations (2.8) to (2.11). vle shall nm'l 

derive equations (2.8) to (2.11) formally. Let~ and ~v denote column vectors 

whose elements are all ones and whose orders are b and v respectively; now, 

and 

Also, 

= [r(m1-m0 ) + bm ]1 o -v 

= [rm + (b-r)m ]1 = r*1 
1 o -v -v 

n~'l = [n'(m1-m0 i + J'm ]1 
-v - - o -v 

The (i~ )tb entry of ~~1~1:' for ~ f i, is denoted by A.* and is written as 

A.#= A.(m1-m0 )2 + 2r(m1-m0 )m0 + bm~, where A= [r(k-1) - 2r2]/ (v-1). 'l'hen, 
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+ 2(v-l)(r~'--bm )m + (v-l)bm2 
: c;_,4:i, 0 0 0 

= r*(ktt-m1-m0 ) + bm1m0 - _2r2 (m1-m0 )2 

When m0 = o· and m1 = 1, equation (2.12) fs known as Fisher's inequality. We 

generalize his inequality here. To prove (2.12) for~~ m0 .< m1 < m2 = 2m1 - m0, 

note that t.ti + (v-l)t.* = r~* = z~1 E~=l n*ijn*it' where t.li is the itb diagonal 

entry of~-.~~~~' and is the same for all i. Thus,·~"'"~*' = (r.J~k*-t."'v)! + t.•~~ . The 

f I v-l· ( )v-1( )2(v-l) determinant of n~n~' is n~¥>' = r~*(r"!k*·- i\*v) .= r~•~ r-A+2r2 m -m , 
- - - - 1 0 

since - f.; 

where r 1 + 4r2 ·from (2.3) we know that r- A+ 2r2 > 0. This 

b is because A .. must be greater than or equal to E. 1 n .. n~ ., .e ~ i, because the 
~~ J= ~J hJ 

numbers r 0, r 1 and r 2 of zeros, ones and twos', respectively, are independent of 

the ith treatment, and correlation can only be one if the symbols in rows i and 

.e are identical. But, this would mean that rank of n~n*~' is less than v, since 

two rows would be identical. This is impossible, since the BTBIBD we started with 

was connected and had no two rows of n identical. Thus, the rank of n~•1 ' is v. 

Now, ~"'" is v X b and has rank les_s than or equal to the minimum of v and b. Also, 

the rank of a product of two matrices is less than or equal to the minimum of the 

rank of the two matrices. Hence, since the rank of n*n•P is v, the v ~ b and the 

Fisher's inequality is proved for· GTBBD. · 

Under the assumptions of homoscedasticity and usual linear model theory, the 

coefficient matrix for obtaining solution for the treatment effect of a GTBBD is 

This form is identical to the coeffici~nt matrix C of the BTBIBD when * is 

dropped. The rank of C* is (v-1) and the covariance matrix (intrablock) of 
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treatment effects is a2k*!/~*v, when the restraint· that the sum of the treat-

ment effects equal zero is utilized. 

In the class of all equireplicated and equi-sized block GTBBD the question 

arises as to which one(s) of these balanced designs has(have) the smallest 

variance. This problem is not encounteredin the case of the BTBIBD, since there 

is only one variance. The same situation arises for the bin&ry designs discussed 

by Shafiq and Federer [1977]. Now, as may be noted from the definition of the 

GTBBD, there are many possible values for m0 and m1. In the search of an optimal 

design in the class, note that maximizing the quantity ~~/k·l~ will minimize the 

variance of estimable treatment effects. Since v is constant in the class, we 

need only confine our attention to ~*/k~!·, Of course, the comparison is made 

among designs having fixed N* or r~~ as ro!tv = N*. The following theorem is in 

this spirit. 

Theorem 3. 2. Iln the class of all equireplicated and equi-sized blocks 

GTBBD with ;parameters (v,bd,r"~,lcd,~~; m0d,mld'~d), the design(s) having the 

minimal value of [rd(bd-rd) + 2bdr2d](m1d-mOd)2 is(are2 optimal in the~ of 

A-, 12-, and E-optimali ty. '· 

·' 
Proof: The three criteria of variance optimality known as A-optimality, 

D-optimality, arid E-optimality involve functions of the non-zero eigen values 

of the coefficient matrix C* for treatment effects. Let ·y g=l 2 ··· v-l be 
g' ' ' ' ' 

the set of non-zero eigen values of C*. Then, the various optimalities in terms 

of y are: 
g 

i) A-o.ptimality: 

v-1 

fA(~*) = I y~l 
g:::l 



ii) D-optimali ty: · ·rD (~*) 

iii) E-optimality: 
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V•l 

= 11 '\J-1 
' •g • I 

•·.g=l 

Kiefer .[ 1958, 1959] and others have presented discussions on ~qes_e and other 

various optimality criteria. 

In the case of GTBBD the v-1 non-zero eigen values of ~d,a:te all equal to 

v"-;i/kd = Yd for each g. 

will be achieved. Thus 

max 
d 

(A*/k*) 
d d 

Therefore, by minimizing "-*/k~' all the three criteria 
d d 

'l'he follov1ing two corollaries follow directly from theo:rem 3. 2. 
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Corollary~· In~ subclass of GTBBD with parameters (v,bd,r*,kd,~d; 

m0d,mld'm2d) ~ derived from BTBIBDs with parameters (v, bd,rd,kd' ~d; o, 1,2) 

for the dth design, in which the difference (m1d-mOd) is! constant, the one(s) 
.... . 

having~ minimal value of rd(bd-rd) + 2bdX.2d is(are) o-ptimal. 

Corollary ll· In_!! subclass .£f GTBBD ~parameters (v,bd,r~,kd'~~; 

m0d,mld'm2d) and derived~ BT.BIBDs with parameters (v,bd,rd,kd,Ad;O~l,2), 

in which the quantity rd(bd-rd).+ 2b.a.r2d ~ const!lnt, ~ design(s) having 

minim!ll value qf (m1d-mOd) is(are) optimal. 
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4. EXAMPLE 

The following BTBIBD' s are used to construct GTBBD 1 s "'i th v = 4 and r·:~ == 45 . 

.. 

BTBIBD-1 Treat-
Blocks 

merit "2" 3 4 
.. 
6 1 5 ., 

A 2 0 0 0 1 1 1 

B 0 2 0 0 1 0 0 

c 0 0 2 0 0 1 0 

D 6 0 0 2 0 0 1 

BTBIBD-2 Treat-
Blocks 

ment 1 2 3 4 5 6 7 
A 2 2 2 1 1 1 0 

B 1 0 0 2 0 0 2 

c 0 1 0 0 2 0 1 

D 0 0 1 0 0 2 0 

BTBIBD-3 
Treat-

Blocks 

ment 1 2 3 L~ 5 6 '7 
A 2 2 2 1 1 1 0 

B 2 0 0 1 1 1 2 

c 0 2 0 1 1 1 2 

D 0 0 2 1 1 1 0 

8 9 10 

0 0 0 

1 1 0 

1 0 1 

0 1 1 

8 9 10 11 

0 ·o 0 0 

2 1 1 0 

0 2 0 2 

1 0 2 1 

8 9 
0 0 

2 0 

0 2 

2 21 

12 

0 

0 

1 

2 

v = 4 b ; 10 

r =5 k = 2 

v = 4 b = 12 

r = 9 k = 3 

~ = 4 r 2 3 

v = 4 b 9 

r = 9 k ; 4 

A. = ~r r2 ; 3 
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TABLE 4 .1: GTBBD for v = 4 and r-::- = 4 5. 

Parameters of BTBIBD Parameters of GTBBD Optimality Measures 

BTBIBD bd rd kd ;.d r2d 
k:: 

d 
}* 'd mOd ~d m2d ~d-mOd 

I~:-
d 

II~: 
d 

l 10 5 2 l l 18 201 4 5 6 l 45 l 

l 10 5 2 l 1·-- -18 189 3 6 9 3 45 9 
l 10 5 2 l l 18 165 2 7 12 5 45 25 
l 10 5 2 l l 18 129 l 8 15 7 45 49 
l 10 5 2 l l 18 81 0 9 18 9 45 81 

2 12 9 3 4 3 15 166 3 4 5 1- 99 2.2 

2 12 9 3 4 3 15 100 0 5 10 5 99 55 

3 9 9 4 7 3 20 223 4 5 6 l 54 1.8 

3 9 9 4 7 3 20 217 3 5 7 2 54 4.8 

3 9 9 4 '{ 3 20 207 2 5 8 3 54 10.8 

3 9 9 4 7 3 20 193 l 5 9 4 54 19.2 

3 9 9 4 7 3 20 175 0 5 10 5 54 30.0 

~ = rd(bd-rd) + 2bdr2d 

Ir~ = (rd(bd-rd) + 2bd;2d)<~d-m0d)2/r''. 
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5. P.ARAM:m'ERS OF BASIC N-ARY AND GENERAL N-ARY DESIGN 

Let (v,b,r,k,A;n .. =O,l,2,···,N-l) be the parameters of BNBIBD, where N-1 ~ k 
~J ·-

and whose incidence matrix~ takes o~ly N values namely, O,l,2,···,N-l. Let nij 

denote the frequency of the ith treatment in the jth block. Let r . denote the 
a~ 

frequency of an element a in the ith rm~ of n. 

frequency of element a in the jth column of' n. 

Thus, 

Necessary conditions: 

(v-l)A 

b 

Ln .. n _t· . ~J J 
j=l 

N-1 

b = L ra 
a=O 

N-1 
\ 

v = L kaj 
a=O 

N-1 

r = I ara 
-·--a=O 

N-1 

k = l akaj 

a=O 

N-1 

= L a2ra 

a=O 

= A 

vr = bk 

N-1 

if' 

'-f' ~ ... 

= r(k-1) - I a(a-l)ra 

a=O 

Similarly, let k . denote the 
aJ 

vle assume that r . = r f'or all i. 

£, = i 

£, f i 

N-1 

= L a(k-a)ra 

a=O 

a~ a 

(5.1) 

(5.2) 

(5-3) 

( 5· 4) 

(5.5) 

(5.6) 

(5. 7) 

(5. 8) 
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Equations (5,.1) to (5.~r) are obvious and (~.8) is derived as follows: 

N-1 

A.(v-1) = rk L nfj = rk -
j=l 

or we can express it as 

Mv-1) = 

L. 

N-1 

= r(k-1) - L a(a-l)r a 
a=O 

N-1 N-1 

rk - J a2 r = I a.rak '-' a 
a=o a=O 

N-1 

= L a(k-a)ra 

a=O 

Some restrictions on r could easi1y be imposed. For example, 
a 

N-a-1 

ra < [r- ~ (a+i)ra+i]/a for a=2,···,N-l, 
i=1 

(5.9) 

and only those values of r for which A is integer are algebraically possible. a 

Given ~' we define the incidence matrix of GNBBD to be 

ni~ = n(m..-m ) + Jm 
- - i 0 - 0 (5.10) 

where m0 and m1 are non-negative integers such that 0 -::; Inc < m1 and ~ is a v x b 

matrix whose elements are all ones. The parameters of GNBBD are (v,b,r*,k·:~ ,"'A''·~ 

ma: a= O,l,···,N-1) where ma = ~- (a-l)m0 and 
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k·~· = k~ ·+ (v-k)~ 

N-1 

(v-1)>..·::- = r*(k*-m1-m0 ) + b~m0 - L a(a-l)ra (~ -m0 )2 

a=O 

b 

\ no!:· no!:· 
L ij -.e.i for all ~ /= i 

j=l 

.•!. J' ""'?"!(. vr·· = bk·~ = J.~" 

v :;:; b • 

The definitions 2.1, 2.2, and 2.3 also hold true for GNBBD. 

6. EXISTENCE AND VARIANCE OPTIMALITY OF GNBBD 

(5.ll) 

(5.12) 

(5.13) 

(5 .14) 

(5.15) 

Theorem 6.1. ~ existence of ~ balanced N-ary incomplete block design with 

parameters (v,b,r,k,>..;O,l, • • • ,N-1) implies.~ existence of~ GNBBD with parameters 

( v, b, r* ,k~', >...;;.; n~j=m0,~, • • • 'IIN-l). 

Proof: From the definition of a GNBBD, note that~~} = ~(~-m0 ) + ~m0 , the 

ij t h entry of n·Y.· denoted by n·i::- . is 
. . J 

n1j = nij(ml-mO) + mo 

= a(m1-m0 ) + m0 if nij = a and 

a = O,l,2,···,N-l. 

Let us define ma = a~ - (a-1)~. Starting 1-1ith a BNBIBD with incidence matrix ~' 
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a GNBIBD may be easily constructed by replacing all a's by ma's. The resulting 

GNBBD has parameters (v,b,r·::·,k·::-,A.\m : a = 0,1, · • • ,N-1). r·. k"-, and t..·:<- satisfy 
.. a 

equations (5.11) to (5.13). We sha:ll noVT derive equations (5.11) to (5.13) 

formally. 

Let 1 and 1 denote the column vectors v1hose elements are all ones and whose 
=b -v 

orders are b and v, respectively. Now 

and 

also 

= [~(ml-mO) ~ ~mo]!t 

= [r(m1-m0 ) + bm0J~v 

= [rm1 + (b-r )m0 ]!v = r-;:-!v' 

n'~ '4 -- ::v -

= [k(~l-~0) + vmo]~ 

= [k~ + (v-k)m0]!t, 

n':-n-::-' = [~(ml-mO) + ~mo][~(~-mo) + ~mo]' 

= ~'(~-m0 )2 + [2r(m1-m0 )m0 +_9m~J~ 

where J is a v X v matrix of ones. Thus the (i£,)th entry of ~-x-~-:~ 1 for £,I= i, 

denoted by A.*, is written as ~~.-:~ = ),(m1-m0 )2 + 2r(m1-m0 )m0 + bm~, where 

N-1 

A. = [r(k-1) 2._ a(a.-l):t a]/( v-1). 
a=O 

Tnus, 
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N-i 
x.-:~(v-1) =·(rk-r - L a(a-l)ra)C~-m0 )2 + 2(v-l)r 

a=O 

N-1 

-( I a(a-l)r a)(~ -m0) 2 + 2( v-1) (r*-~~0 )m0 
a=O 

+ b ( v-l)m6 

N-1 

= r*(k*-m1-m0 ) + b~m0 L a(a-l)ra(m1-m0 )2 

a=O 

To prove (5.15) for 0 ~ m0 < ~ < ··· < ~-l' imitate the steps used to prove 
N-1 

this under GTBBD except r-A. + 2r2 is replaced by r-f, + L. a(a-l)r • 
a=O . a 

The coefficient matrix g* assumes the same relation as in (3.1). 

Theorem 6.2. In the class of all equireplicated and equisized blocks GNBBD 

with parameters (v,bd,r*,k~,f,~;m0d,mld'···,~-ld), the design(s) haying the minimal 

value of 

N-1 

[rd(bd-rd) + I a(a-l)radJ(mld-mOd)2 
a=2 

is(are) optimal in the ~ of ~- E- E-optimality. 

The proof is a straightfonmrd extension of Theorem 3. 2. Corollaries 3.1 and 

3.2 are similarly extended and are restated as: 
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Corollary 6.1. In~ subclass of GNBB~ with para.~eters (v,bd,r~:-,k~,A.~; 

mad: a = 0,1, • • • ,n-1) and deri;ed from BNBrBD-~··pa~ameters (v,bd,rd,kd,A.d; 

a: a= O,l,•••,N-1) for~ dth design, in~ the difference (~d-mOd) is 
- . ~1 

constant, the one(s) having the minimal value of rd(bd-rd) + a~0a(a-l)rad is(are) 

optimal. 

Corollary 6.2. In~ subclass of GNBBD witn parai:neters (v,bd,r'~,k~,A.~; 

mad: a"" 0,1, • • • ,N-1) and derived from B1lBIBD ~parameters (v,bd,rd,kd,A.d; 
N-1 

a: a= O,l,···,N-1) in which the quantity rd(bd-rd) + Z a(a-l)r d ~s constant, 
- - a=O a -

the design(s) having the mini~l value 9,! (~d-mOd) is (are) optimal. 
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