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This dissertation focuses on the multi-armed bandit problem (MAB) where the

objective is a sequential arm selection policy that maximizes the total reward

over time. In canonical formulations of MAB, the following assumptions are

adopted: the size of the action space is much smaller than the length of the time

horizon, computation resources such as memory are unlimited in the learning

process, and the generative models of arm rewards are time-invariant. This

dissertation aims to relax these assumptions, which are unrealistic in emerging

applications involving large-scale complex systems, and develop corresponding

techniques to address the resulting new issues.

The first part of the dissertation aims to address the issue of a massive num-

ber of actions. A stochastic bandit problem with side information on arm simi-

larity and dissimilarity is studied. The main results include a unit interval graph

(UIG) representation of the action space that succinctly models the side informa-

tion and a two-step learning structure that fully exploits the topological struc-

ture of the UIG to achieve an optimal scaling of the learning cost with the size

of the action space. Specifically, in the UIG representation, each node represents

an arm and the presence (absence) of an edge between two nodes indicates sim-

ilarity (dissimilarity) between their mean rewards. Based on whether the UIG

is fully revealed by the side information, two settings with complete and partial

side information are considered. For each setting, a two-step learning policy

consisting of an offline reduction of the action space and online aggregation



of reward observations from similar arms is developed. The computation effi-

ciency and the order optimality of the proposed strategies in terms of the size of

the action space and the time length are established. Numerical experiments on

both synthetic and real-world datasets are conducted to verify the performance

of the proposed policies in practice.

In the second part of the dissertation, the issue of limited memory during

the learning process is studied in the adversarial bandit setting. Specifically,

a learning policy can only store the statistics of a subset of arms summarizing

their reward history. A general hierarchical learning structure that trades off

the regret order with memory complexity is developed based on multi-level

partitions of the arm set into groups and the time horizon into epochs. The

proposed learning policy requires only a sublinear order of memory space in

terms of the number of arms. Its sublinear regret orders with respect to the time

horizon are established for both weak regret and shifting regret in expectation

and/or with high probability, when appropriate learning strategies are adopted

as subroutines at all levels. By properly choosing the number of levels in the

adopted hierarchy, the policy adapts to different sizes of the available memory

space. A memory-dependent regret bound is established to characterize the

tradeoff between memory complexity and the regret performance of the policy.

Numerical examples are provided to verify the performance of the policy.

The third part of the dissertation focuses on the issue of time-varying re-

wards within the contextual bandit framework, which finds applications in

various online recommendation systems. The main results include two re-

ward models characterizing the fact that the preferences of users toward dif-

ferent items change asynchronously and distinctly, and a learning algorithm

that adapts to the dynamic environment. In particular, the two models assume



disjoint and hybrid rewards. In the disjoint setting, the mean reward of playing

an arm is determined by an arm-specific preference vector, which is piecewise-

stationary with asynchronous change times across arms. In the hybrid setting,

the mean reward of an arm also depends on a joint coefficient vector shared

by all arms representing the time-invariant component of user interests, in ad-

dition to the arm-specific one that is time-varying. Two algorithms based on

change detection and restarts are developed in the two settings respectively, of

which the performance is verified through simulations on both synthetic and

real-world data. Theoretical regret analysis of the algorithm with certain modi-

fications is provided under the disjoint reward model, which shows that a near-

optimal regret order in the time length is achieved.
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CHAPTER 1

INTRODUCTION

This dissertation focuses on the problem of online learning and sequential

decision-making under unknown models. The objective in this class of prob-

lems is to learn, in real time, the most rewarding actions among a number of op-

tions. Example applications include various socio-economic applications (e.g.,

ad display in search engines, product/news recommendation systems, targeted

marketing, political campaigns, and drug therapy in clinic trials), and network-

ing issues in communication systems (e.g., dynamic channel access) and urban

transportation (e.g., route selection).

The problem is formulated and studied under the classic framework of multi-

armed bandits (MAB) in this dissertation. We point out several emerging issues

and new challenges in applications with large-scale complex systems that call

for new models and new learning strategies, and develop corresponding solu-

tions with performance guarantees in both theory and practice.

1.1 Multi-Armed Bandits

The MAB problem was first posed in [60] for the application of clinical trials.

In a bandit model, potential actions with unknown rewards are abstracted as

arms of a slot machine. At every time in a horizon of length T , a player selects

one arm to play and receives a reward generated from an unknown reward

model. The objective of the player is to choose sequentially which arm to play

based on past reward observations, with the hope of improved performance

over time. The essence of the problem is in the tradeoff between exploration—

1



to gather information from less explored arms—and exploitation—to maximize

the instantaneous reward by favoring arms with better reward history.

A commonly adopted performance measure of an arm selection policy is re-

gret, defined as the (expected) cumulative reward loss over the entire time hori-

zon against a properly defined benchmark policy with hindsight vision and/or

certain clairvoyant knowledge about the problem. A policy is said to achieve

no-regret learning if the induced regret has a sublinear growth rate in T . In

other words, the policy offers, asymptotically as T → ∞, the same average re-

ward as the specific benchmark adopted in the corresponding regret measure.

1.1.1 Reward Models and Regret Measures

Depending on the generative model of arm rewards, bandit problems can be

categorized into the stochastic and the adversarial settings. In the former, re-

wards from successive plays of an arm obey a given, albeit unknown, stochastic

model. In the latter, rewards are assigned by an adversary.

Earlier studies on MAB focused on the stochastic setting. The canonical

model assumes that rewards from each arm are drawn i.i.d. from a fixed dis-

tribution. In this case, the benchmark policy in the regret definition is to play

the arm with the greatest mean reward throughout the time horizon, and the

regret is measured in expectation taken over the randomness of both reward

realizations and the arm selection policy. There exist two settings in evaluat-

ing the regret performance of a learning policy: problem-specific and problem-

independent. In the former, the regret is specific to the set of reward distri-

butions associated with the given problem instance. In the latter, the regret is

2



measured against the worst-case assignment of reward distributions.

In the problem-specific setting, the seminal work by Lai and Robins in 1985

showed that the minimum regret growth rate is Ω(log T ) [46]. A number of

learning policies have since been developed that offer the optimal regret order

in T (see [9, 34, 61] and references therein). In the problem-independent setting,

an Ω(
√

T ) lower bound on regret was shown in [10] and an optimal learning

policy was later proposed in [7].

A number of variations of stochastic bandits have been studied in recent

years for diverse application domains. One notable example in the application

of personalized recommendation is the contextual bandit formulation where the

reward distributions are affected by certain context information revealed at each

time. The context information can be feature vectors associated with either the

current user or the available items to be recommended.

Under the commonly adopted assumption of linear rewards, the mean re-

ward of playing an arm at each time step is assumed to be the inner product

of the currently revealed context vector and an unknown coefficient vector rep-

resenting the preference of users towards items. In this model, the benchmark

policy in the regret definition is to play the best arm specific to the current con-

text information at every time step. The regret performance is usually evaluated

under the problem-independent setting where the lower bound was shown to

be Ω(
√

T ) [24]. A number of near-optimal policies that achieve a regret order

of O(
√

Tpolylog(T )) have been developed (see [24, 1] and references therein).

The adversarial bandit problem, first studied in [10], was motivated by the

problem of learning in repeated unknown games. In the game setting, a player’s

3



reward of playing an action (arm) is jointly determined by the payoff function of

the game and the actions taken by all opponents, which can be aggregated as an

adversary from the view of the player [20]. Connections between the regret per-

formance of every player and certain system-level objectives (e.g., convergence

to equilibria of the game) have been revealed [68, 54, 31]. A comprehensive sur-

vey on distributed no-regret learning in multi-agent systems can be found in

our tutorial paper [67].

Various benchmark policies have been considered, leading to different regret

notions. Corresponding to the external regret in the game setting, weak regret

was proposed in [11], which is defined against the best fixed arm with the great-

est cumulative reward in hindsight. The weak regret is evaluated against the

worst-case assignment of the reward sequence by the adversary (not necessar-

ily follows a stochastic model). It was proven in [11] that the lower bound on

weak regret is in the order of Ω(
√

T ), which was shown to be achieved by a class

of randomized policies proposed in [7]. It should be noted that randomization

is necessary to achieve no-regret learning against an adversary: it was shown

in [13] that for every deterministic policy, there always exists a reward sequence

that inflicts a linear regret order in T .

A stronger regret notion is the shifting regret, which is defined against a se-

quence of actions with a hardness constraint on the number of action changes.

Achieving no-regret learning under this stronger regret notion and its variations

plays a key role in achieving certain optimality in terms of the system-level per-

formance in games with dynamically changing compositions [54, 31].

4



1.1.2 Emerging Issues and Challenges

In the past few decades, the MAB problem with various reward models has

been extensively studied in their canonical forms. However, existing results

are usually established upon idealistic assumptions in terms of the small size

of the action space compared with the time length, the availability of unlim-

ited resources such as memory during the learning process, and the stationarity

of the underlying reward models. Many emerging complex systems, however,

involve a massive number of actions with a limited memory space, and are in-

herently dynamic in the reward models.

In addressing the aforementioned issues, the results of this dissertation are

partitioned into three parts. In the first part, we focus on the issue of a massive

number of actions in the stochastic bandit setting. We develop optimal learn-

ing strategies that scale well with the large action space. In the second part,

we study the problem of learning with memory constraints in the adversar-

ial bandit setting. We develop memory-efficient learning strategies that trades

off the regret order with the memory complexity. In the third part, we con-

sider time-varying reward models in the contextual bandit setting. We develop

near-optimal learning strategies that adapts to the changing environment. We

summarize the main results of the three parts in the following section.
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1.2 Main Results

1.2.1 Bandits with Many Arms

The first part of this dissertation focuses on the stochastic bandit problem with

a large action space. Classical solutions to stochastic bandits were developed

under the assumption of independent arms, i.e., there is no structure in the set

of reward distributions. As a result, a linear scaling of regret with the size of

the action space is unavoidable due to exploring every arm sufficiently often

to identify the optimal. For applications involving a massive number of arms,

those solutions are no longer suitable.

The key to achieving a sublinear scaling with the number of arms is to exploit

the inherent structures of the action space, i.e., various relations among the vast

number of actions. In this part, we consider the statistical similarity and dissimi-

larity relations across arms, which is formulated through the difference between

the expected rewards of arms. We first show that the similarity-dissimilarity

structure of the action space can be represented by a unit interval graph (UIG)

where the presence (absence) of an edge between two arms indicates that the

difference of their mean rewards is within (beyond) a given threshold. Based

on whether the UIG is fully revealed to the player, we consider two cases of

complete and partial side information.

For both cases, we propose a general two-step learning structure—LSDT

(Learning from Similarity-Dissimilarity Topology)—to achieve a full exploitation

of the topological structure of the side information. The first step is an offline

reduction of the action space to a candidate set, which consists of arms that
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can assume the largest mean rewards under certain assignments of reward dis-

tributions without violating the side information. Arms outside the candidate

set are sub-optimal and hence eliminated from online exploration. The second

step carries out an online learning algorithm that further exploits the similarity

structure through collective exploration using aggregated reward observations

from similar arms.

The order optimality of the proposed learning strategies in terms of both

the size of the action space and the time length was established in both cases

with complete and partial side information. Specifically, we provide theoretical

regret analysis of the learning strategies in the problem-specific setting along

with matching lower bounds. Extensive numerical experiments on both syn-

thesized and real-world datasets are conducted to verify the performance of the

learning strategies in practice.

1.2.2 Bandits with Limited Memory

In the second part of this dissertation, we study the memory-constrained MAB

problem under the adversarial setting. Existing policies for canonical adver-

sarial bandits require a memory space linear in the number K of arm to store

certain statistics of every arm, which is infeasible in applications involving a

large action space but limited memory.

In the problem of memory-constrained adversarial bandits, a policy is only

allowed M words of memory space (which has a sublinear growth rate with K)

for storing input values and necessary variables. Therefore, a policy with mem-

ory size M can only store the statistics of at most M arms at any given time. As
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a result, two new problems arise in addition to arm selection: one on deciding

the statistics of which arms to store in the memory at every time step, the other

on how to memorize the reward history of arms whose statistics are not stored.

To address the new issues induced by the memory constraint and trade off

between memory complexity and regret performance, we propose a general

hierarchical learning structure—HLMC (Hierarchical Learning with Memory Con-

straints)—based on multi-level partitions of the arm set into groups and the time

horizon into epochs through a properly designed hierarchy. At every level of the

hierarchy, every arm group (time epoch) is further partitioned into several next-

level groups (epochs). The policy recursively zooms into an arm group selected

for every epoch at the same level, and carries out a next-level selection strategy

until the end of the epoch. At the last level, a group of arms are targeted and

their arm statistics are stored in the memory for arm selection within the corre-

sponding epoch. The reward information of the other arms outside the targeted

group are jointly memorized in certain aggregated group statistics that are used

for group selection at higher levels.

We show that HLMC requires a memory space with size sublinear in K in a

representative case with a two-level hierarchy. By adopting appropriate selec-

tion strategies as subroutines at all levels, the HLMC policy achieves sublinear

regret orders in T under notions of both weak regret and shifting regret. We

further establish a memory-dependent regret bound for the general case with a

D-level hierarchy to characterize the tradeoff between the memory complexity

and the regret order of HLMC. By properly selecting the depth D of the adopted

hierarchy, the HLMC policy adapts to different sizes of the available memory

space and achieves no-regret learning.
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1.2.3 Bandits in Dynamic Environments

The third part of this dissertation focuses on the contextual bandit problem with

dynamic reward models. In applications such as online recommendation, user

interests are dynamically changing and the preference changes toward different

items may be asynchronous and distinct. To characterize such phenomena, we

study two reward models: the disjoint and the hybrid reward models.

In the disjoint reward model, the expected reward of playing an arm is

the inner product of the given context vector and an arm-specific unknown

coefficient vector, which represents the preference of the user towards the

arm. The preference vector is assumed to be piecewise-stationary and the

change points are different across arms. We propose an upper confidence

bound (UCB) based algorithm—PSLinUCB (Piecewise-Stationary Linear UCB)—

that selects arms based on estimates of the unknown preference vectors from

past observations. To address the challenge of time-varying interests, the algo-

rithm adopts a change-detection procedure to identify potential changes on the

preference vectors, and an efficient restart procedure after detected changes to

re-estimate the preference vectors using up-to-date observations.

We further extend the algorithm to the general hybrid reward model. In

addition to the arm-specific preference vector, the expected reward in the hy-

brid model also depends on a joint coefficient vector shared by all arms, which

corresponds to the time-invariant component of user interests. We conduct ex-

periments on both synthesized data and real-world datasets to evaluate the per-

formance of the proposed algorithms in both models.

We also provide theoretical guarantee on the regret performance of the pro-
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posed algorithm. To avoid certain technical difficulties in analysis, we introduce

a modified PSLinUCB algorithm and analyze its regret performance in the dis-

joint reward model. We show that a near-optimal regret order in T is achieved

in the problem-independent setting.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we discuss

bandits with many arms in the stochastic setting. We introduce the LSDT learn-

ing structure that fully exploits the topological structure of the side information.

In Chapter 3, we consider bandits with memory constraints in the adversarial

setting. We present the HLMC learning structure that trades off the regret per-

formance with memory complexity. In Chapter 4, we study bandits in dynamic

environments under the contextual bandit framework. We propose the PSLin-

UCB algorithm that adapts to the time-varying environment in both disjoint and

hybrid reward models. Chapter 5 concludes the dissertation. Additional results

and all proofs are included in the Appendices.
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CHAPTER 2

BANDITS WITH MANY ARMS

In addressing the issue of a massive number of arms, there has been a growing

body of studies aiming at exploiting certain side information on the relations

among the large number of arms. Among various formulations of the side in-

formation (see a more detailed discussion in Sec. 2.1), one notable example is

the statistical similarity and dissimilarity among arms. For instance, in recom-

mendation systems and information retrieval, products, ads, and documents in

the same category (more generally, close in some feature space) have similar ex-

pected rewards. At the same time, it may also be known a priori that some arms

have considerably different mean rewards, e.g., news with drastically different

opinions, products with opposite usage, documents associated with key words

belonging to distant categories in the taxonomy.

The side information on arm similarity and dissimilarity opens the possi-

bility of efficient solutions that scale well with the large action space. In this

chapter, we introduce a mathematical formulation of such arm relations in the

stochastic bandit setting, and provide a UIG representation of the action space.

The central question we seek to answer in this chapter is: how to fully exploit

the topological structure of the action space with side information to achieve an optimal

regret order in terms of both the size of the action space and the time length?
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2.1 Literature Review of MAB with Structured Action Space

Existing studies on MAB with structured action space and reward models can

be categorized based on the types of arm relations adopted in the MAB mod-

els. The first type is realization-based relation that assumes a certain known

probabilistic dependency across arms. Examples include combinatorial bandits

[52, 33, 23, 45], linearly parameterized bandits [30, 57, 1], and spectral bandits

for smooth graph functions [64, 39]. The second type of arm relation can be

termed as observation-based relation [18, 15, 6]. Specifically, playing an arm

provides additional side observations about its neighboring arms. See [63] for a

survey on various bandit models with structured action spaces.

The problem studied in this chapter considers another type of relation

among arms: ensemble-based relation that aims to capture the relations on

ensemble behaviors (i.e., mean rewards) across arms, rather than probabilis-

tic dependencies in their realizations. Related work includes Lipschitz bandits

[2, 44, 55], taxonomy bandits [59] and unimodal bandits [26]. Specifically, in

Lipschitz bandits, the mean reward is assumed to be a Lipschitz function of the

arm parameter. Taxonomy bandits have a tree-structured action space where

arms in the same subtree are close in their mean rewards. In unimodal bandits,

the action space is represented by a graph where from every sub-optimal arm,

there exists a path to the optimal arm along which the mean reward increases.

Different from these existing studies, the bandit model studied in this chap-

ter considers an action space represented by a UIG indicating not only similarity

but also dissimilarity relations across actions. Besides, the structure of the pro-

posed learning policy consists of a two-level exploitation of the UIG structure,

12



which is fundamentally different from the existing ones. Recently, a general for-

mulation of structured bandits was proposed in [25], which includes a variety of

known bandit models (e.g., Lipschitz bandits, unimodal bandits, linear bandits,

etc.) as well as the bandit model studied in this work as special cases. The learn-

ing policy developed in [25], however, was given only implicitly in the form of a

linear program (LP) that needs to be solved at every time step. For the problem

studied in this chapter, the LP does not admit polynomial-time solutions (unless

P=NP).

2.2 Problem Formulation

Consider a stochastic K-armed bandit problem. At each time t, a player chooses

one arm to play. Playing an arm i yields a reward Xi(t) drawn i.i.d. from an

unknown distribution fi with mean µi. We assume that fi belongs to the family

of sub-Gaussian distributions1 for all i. Extensions to other distribution types

will be discussed later in Sec. 2.6.

Across K arms, the similarity and dissimilarity relations are defined through

a parameter ε > 0: two arms are similar (dissimilar) if the difference between

their mean rewards is below (above) ε. The similarity-dissimilarity structure of

the action space can be represented by an undirected graph G∗ε = (V,E∗ε). In the

graph representation, every node i ∈ V represents an arm with reward distri-

bution fi and the presence (absence) of an edge (i, j) corresponds to a similar

(dissimilar) arm pair. Throughout this chapter, 1 ≤ i ≤ K is used to refer to an

arm or a node, exchangeably. We first show that G∗ε is a UIG.

1A random variable Y with mean µ is sub-Gaussian with parameter σ (or σ sub-Gaussian) if
E[eλ(Y−µ)] ≤ eσ

2λ2/2, for all λ ∈ R [16].
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Definition 1 (Unit interval graph and unit interval model) A graph G = (V,E)

is a unit interval graph if there exists a set of unit length intervals {Ii}i∈V on the real line

such that each interval Ii corresponds to a node i ∈ V and there exists an edge (i, j) ∈ E

if and only if Ii ∩ I j , ∅. The set of intervals {Ii}i∈V is a unit interval model (UIM) for

the UIG.

It should be noted that if a UIG is finite (with a finite number of nodes), there

is no difference between taking open intervals or closed intervals to represent

nodes [32]. Without loss of generality, we assume that Ii = (li, ri) where li, ri are

the left and right coordinates of interval Ii.

Through a mapping from every node i ∈ V to an ε-length interval Ii = (µi, µi+

ε), it is not difficult to see that

|µi − µ j| < ε ⇔ Ii ∩ I j , ∅, (2.1)

which indicates that G∗ε is a UIG (see an example in Fig. 2.1). Without loss of

generality, we assume that G∗ε is connected. Extensions to the disconnected case

will be discussed in Sec. 2.6.

We define ES
ε , ED

ε as the side information on arm similarity and dissimilarity.

Based on whether ES
ε ,E

D
ε fully reveal the UIG G∗ε , we consider the following two

cases separately. In the case of complete side information, ES
ε ,E

D
ε are identical to

the edge set and the complement edge set of G∗ε , i.e., ES
ε = E∗ε ,E

D
ε = E∗ε . In the case

of partial side information, they are subsets of the latter, i.e., ES
ε ⊆ E

∗
ε , ED

ε ⊆ E
∗
ε .

The objective is an online learning policy π that specifies a sequential arm

selection rule at each time t based on both past observations of selected arms

and the side information ES
ε ,E

D
ε . The performance of policy π is measured by

regret Rπ(T ;ES
ε ,E

D
ε ) defined as the expected reward loss against a player who
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Figure 2.1: Action space as a UIG.

knows the reward model and always plays the best arm imax (chosen arbitrarily

in the case of multiple optimal arms), i.e.,

Rπ(T ;ES
ε ,E

D
ε ) = Eπ

 T∑
t=1

µimax(t) −
T∑

t=1

Xπt(t)

 , (2.2)

where µimax is the largest mean reward and πt is the arm selected by policy π at

time t. In this chapter, we consider the problem-specific regret measure, i.e., the

regret is a function of the unknown reward distributions f = ( f1, ..., fK). When

there is no ambiguity, the dependency of regret on f is omitted and the notation

is simplified to R(T ).

Let τi(T ) denote the number of times that arm i has been selected up to time

T . We rewrite the regret as:

R(T ) = µimaxT −
K∑

i=1

µiE[τi(T )] =

K∑
i=1

∆iE[τi(T )], (2.3)

where ∆i = µimax − µi. The objective of maximizing the expected cumulative

reward is equivalent to minimizing the regret over a time horizon of length

T . In order to minimize regret, it can be inferred from (2.3) that every sub-

15



optimal arm (∆i > 0) should be distinguished from the optimal one with the

least number of plays.

2.3 Two-Step Learning Structure

While classic stochastic bandit algorithms have to try out every arm sufficiently

often to distinguish the sub-optimal arms from the optimal one, which induces

a linear scaling of regret in the number of arms, the side information on arm

similarity and dissimilarity allows the possibility of identifying a set of sub-

optimal arms without even playing them. To be specific, we define a candidate

set B determined by the side information ES
ε ,E

D
ε as follows.

Definition 2 (Candidate Arm and Candidate Set) Given the side information

ES
ε ,E

D
ε , an arm i is a candidate arm if there exists an assignment of reward distribu-

tions with means µ = (µ1, ..., µK) conforming to ES
ε ,E

D
ε and µi = max1≤ j≤K µ j. The

candidate set B is the set consisting of all candidate arms.

Note that the optimal arm imax under the ground truth assignment of reward

distributions in the bandit problem always belongs to the candidate set B. It is

clear that if we can find the candidate set B from the side information efficiently,

the action space can be reduced to B. Only arms in B need to be explored.

Furthermore, certain topological structures of the revealed UIG on the reduced

action space can be further exploited to accelerate learning. In estimating the

mean reward of every arm in the candidate set, observations from similar arms

can also be leveraged as approximations, which reduces the number of plays

required to distinguish sub-optimal arms from the optimal one.
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The aforementioned facts motivate a general two-step learning structure:

Learning from Similarity-Dissimilarity Topology (LSDT) for both cases of complete

and partial side information. Specifically, LSDT consists of (1) an offline elim-

ination step that reduces the action space to the candidate set and (2) online

learning of the optimal arm by aggregating observations from similar ones. We

specify each step for the cases of complete and partial side information sepa-

rately in Sec. 2.4 and Sec. 2.5.

2.4 Complete Side Information

We first consider the case of complete side information that fully reveals the UIG

G∗ε . We follow the two-step learning structure proposed in Sec. 2.3 and develop

a learning policy: LSDT-CSI (Learning from Similarity-Dissimilarity Topology with

Complete Side Information) along with theoretical analysis on its regret perfor-

mance. While restrictive in applications, this case provides useful insights for

tackling the general case of partial side information addressed in Sec. 2.5.

2.4.1 Offline Elimination

The first step of LSDT-CSI is an offline preprocessing that aims at identifying

the candidate set from the complete side information. Since the UIG G∗ε is fully

revealed, we denote the candidate set in this case as B∗ to distinguish from the

case of partial side information. We show that B∗ is identical to the set of left

anchors of the UIG G∗ε .
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Definition 3 (Left Anchor) Given a UIG G = (V,E), a node i ∈ V is a left anchor if

there exists a UIM for G where i corresponds to the leftmost interval along the real line.

Since the mirror image of an UIM with respect to the origin is also an UIM

for the same UIG, the node corresponding to the rightmost interval in a UIM

is also a left anchor. Based on the definition of the UIG G∗ε that represents the

similarity-dissimilarity structure of the arm set in Sec. 2.2, it is not difficult to

see that the candidate setB∗ is identical to the set of left anchors ofG∗ε , which can

be identified through a BFS-based algorithm proposed in [27]. The BFS-based

algorithm starts from an arbitrary node in a UIG and returns a set of left anchors.

We apply the algorithm two times: in the first time, we start from an arbitrary

node in G∗ε and obtain a set of left anchors. In the second time, we re-apply

the algorithm starting from one of the returned node in the last time. One can

directly infer from Proposition 2.1 and Theorem 2.3 in [27] that the obtained set

is the candidate set B∗. The detailed algorithm is summarized in Algorithm 1.

Algorithm 1: Offline Elimination of LSDT-CSI

Input: Fully revealed UIG G∗ε .

Output: Candidate set B∗.

Initialization: B∗ = ∅.

Start from an arbitrary node i and perform a BFS on G∗ε .

Let L be the set of nodes in the last level of the BFS.

for each j ∈ L do

if deg( j) = mink∈L deg(k) then

B∗ ← B∗ ∪ { j}.

Start from a node j ∈ B∗ and repeat the previous steps.
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Note that the computation complexity of the offline elimination step is O(|E∗ε |),

which is polynomial in the problem size.

2.4.2 Online Aggregation

We now present the second step of online learning that further exploits topolog-

ical structures of the candidate set B∗. We first introduce an equivalence relation

between nodes in the UIG G∗ε .

Definition 4 (Neighborhood Equivalence) Two nodes i, j inG∗ε are (neighborhood)

equivalent if N[i] = N[ j], where N[i] is the set of neighbors of i in G∗ε , including

i. Moreover, let {B∗i } denote the partition of the arm set V in G∗ε with respect to the

neighborhood equivalence relation.

Note that arms within the same equivalence class have the same set of neigh-

bors and thus, they are topologically indistinguishable in the UIG. Based on the

equivalence class partition, we obtain a closed-form expression for B∗.

Theorem 1 When the side information fully reveals the UIG G∗ε (assumed to be con-

nected), the candidate set B∗ is the union of two equivalence classes containing the

optimal arm imax and the worst arm imin (with minimum mean reward). Note that the

two equivalence classes containing the optimal and the worst arm are identical in the

special case where G∗ is fully connected. The proposed algorithm and analysis still apply

in this case. Without loss of generality, we assume that G∗ε is not fully connected., i.e.,

B∗ = B∗imax
∪ B∗imin

, (2.4)
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Figure 2.2: Left anchors and the candidate set

where

B∗imax
= { j : N[ j] = N[imax]}, (2.5)

B∗imin
= { j : N[ j] = N[imin]}. (2.6)

Proof 1 See Appendix A.1.

The result is also illustrated in Fig. 2.2 : the node corresponding to I1 (or I11)

is the left anchor under the current UIM (or its mirroring). Switching I1, I2, I3 (or

I10, I11) does not change the graph connectivity, i.e., each node in B∗imin
= {1, 2, 3}

(orB∗imax
= {10, 11}) is a left anchor. Hence the candidate setB = {1, 2, 3}∪{10, 11} is

the union of the two equivalence classes, which can be directly obtained through

the offline elimination step.

Based on the topological structure of the candidate set, we develop a hier-

archical online learning policy that aggregates observations from arms within

the same equivalence class. By considering each class as a super node (arm), we

reduce the problem to a simple two-armed bandit problem.

20



Specifically, the second step of LSDT-CSI carries out a hierarchical UCB-

based online learning on the candidate set B∗ by maintaining a class index Hi(t)

for each equivalence class B∗i and an arm index L j(t) for each individual arm j

in B∗. The arm index is defined as:

L j(t) = x̄ j(t) +

√
8 log t
τ j(t)

, (2.7)

where x̄ j(t), τ j(t) are the empirical average of observations from arm j and the

number of times that arm j has been played up to time t. The class index Hi(t)

aggregates the same statistics across arms in the class:

Hi(t) =

∑
j∈B∗i

x̄ j(t)τ j(t)∑
j∈B∗i

τ j(t)
+

√
8 log t∑
j∈B∗i

τ j(t)
. (2.8)

At each time, the online learning procedure selects the equivalence class with

the largest class index and plays the arm with the largest arm index within the

selected class. Once the reward has been observed, both class indices and arm

indices are updated.

Algorithm 2: Online Aggregation of LSDT-CSI

Input: Candidate set B∗ = B∗1 ∪ B
∗
2 where B∗1,B

∗
2 are two disjoint equivalence

classes.

Initialization: Play each arm in B∗ once, update all the arm indices {L j(t)} j∈B∗

and class indices H1(t),H2(t) defined in (2.7) and (2.8).

for t = |B∗| + 1, |B∗| + 2, ... do

Let i∗t = argmaxi∈{1,2} Hi(t − 1).

Play arm j∗t = argmax j∈B∗
i∗t

L j(t − 1).

It should be noted that the two-step learning structure LSDT is indepen-

dent of the specific arm selection rule adopted at the online learning step. In
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particular, different arm selection techniques developed for the original bandit

problems may be incorporated into the second step of LSDT, except based on

aggregated observations. In Sec. 2.6.3, we discuss the use of Thompson Sam-

pling (TS), another representative strategy in stochastic bandits (see [60, 21, 3, 4]

and references therein), with LSDT to fully exploit the side information.

2.4.3 Order Optimality

We first present the regret analysis of LSDT-CSI, which focuses on upper bound-

ing the expected number of times that each suboptimal arm has been played

up to time T . We show that when the total number of times that arms in B∗imin

have been played is greater than Ω(log T ), the class index Himin(t) will not be cho-

sen with high probability. Besides, if each suboptimal arm j ∈ B∗imax
has been

played more than Ω(log T ) times, the arm index L j(t) will not be chosen with

high probability. The following theorem provides the performance guarantee

for LSDT-CSI.

Theorem 2 Suppose that G∗ε is connected. Assume that the reward distribution for

each arm is sub-Gaussian with parameter σ = 1 2. Then the regret of LSDT-CSI up to

time T is upper bounded as follows:

R(T ) ≤
( 32 maxi∈Bimin

∆i

(min j∈B∗imin
∆ j −maxk∈B∗imax

∆k)2 +
∑

i∈B∗imax
\A

32
∆i

)
log T + O(|B∗|), (2.9)

whereA is the set of arms with largest mean rewards (imax ∈ A).

Proof 2 See Appendix A.2.

2See Sec. 2.6 for extensions to general σ.
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Remark 1 For fixed ∆i, the regret of LSDT-CSI is of order

O
(
(1 + |B∗imax

\ A|) log T
)
, (2.10)

as T → ∞. In certain scenarios (e.g., G∗ε is a line graph), |B∗imax
| � K, which indicates a

sublinear scaling of regret in terms of the number of arms given such side information.

Remark 2 If G∗ε is fully connected (e.g., ε is large), then B∗imax
= B∗imin

= V. In this case,

LSDT-CSI degenerates to the classic UCB policy and R(T ) ∼ O(K log T ).

We discuss in Sec. 2.7 that if the mean reward of each arm is independently and

uniformly chosen from [0, 1] and ε is bounded away from 0 and 1, the expected

value of |B∗| is smaller than O(K1/2 log K), which indicates a sublinear scaling of

regret in terms of the size of the action space. We also use a numerical example

to verify the result in Sec. 2.7.

To establish the order optimality of LSDT-CSI, we further derive a match-

ing lower bound on regret. We focus here on the case that the unknown mean

reward of each arm is unbounded (i.e., can be any value on the real line). We

adopt the same parametric setting as in [46] on classic MAB where the rewards

are drawn from a specific parametric family of distributions with known distri-

bution type. It should be clarified that although the upper bound on regret of

LSDT-CSI is derived under the non-parametric setting (the distribution type is

unknown), the non-parametric lower bound suffices to show the order optimal-

ity of LSDT-CSI since it is no smaller than that in the parametric one.

Specifically, we assume that the reward distribution of arm i has a univariate

density function f (·; θi) with an unknown parameter θi from a set of parameters

Θ. Let I(θ||λ) be the Kullback-Leibler (KL) distance between two distributions
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with density functions f (·; θ) and f (·; λ) and with means µ(θ) and µ(λ) respec-

tively. We assume the same regularity assumptions on the finiteness of the KL

divergence and its continuity with respect to the mean values as in [46].

Assumption 1 For every f (·; θ), f (·; λ) such that µ(λ) > µ(θ), we have 0 < I(θ||λ) < ∞.

Assumption 2 For every ε > 0 and θ, λ ∈ Θ with µ(λ) > µ(θ), there exists η > 0 for

which |I(θ||λ) − I(θ||ρ)| < ε whenever µ(λ) < µ(ρ) < µ(λ) + η, ρ ∈ Θ.

Note that the regret measure studied in this chapter is problem-specific.

There exist an issue of trivial lower bounds on regret caused by policies that

heavily bias toward specific arms. For example, a policy that always plays arm

1 incurs 0 regret if arm 1 is indeed optimal in certain given problem instances.

To avoid such trivial lower bounds, we focus on the set of uniformly good poli-

cies as did in [46]. A policy π is called uniformly good if for every f , the regret

of π satisfies R(T ) = o(Tα),∀α > 0, as T → ∞. We then establish the lower bound

on regret in the following theorem.

Theorem 3 Suppose G∗ε is connected. Assume that Assumptions 1, 2 hold and the

mean reward of each arm can be any value in R. For any uniformly good policy, the

regret up to time T is lower bounded as follows:

lim
T→∞

R(T )
log T

≥ C1, (2.11)

where C1 is the optimal value of an LP that only depends on f1, ..., fK and ε (see (A.32)

in Appendix A.3 for details). It can be shown that for fixed ∆i, I(θi||θ
′
i ) and I(θi||θimax),

the regret for any uniformly good policy is of order

Ω
(
(1 + |B∗imax

\ A|) log T
)
,

as T → ∞.
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Proof 3 See Appendix A.3.

Remark 3 LSDT-CSI is order optimal since its upper bound on regret matches the

lower bound shown in Theorem 3.

Remark 4 If there is a unique optimal arm, i.e., |A| = 1, R(T ) ∼ Θ
(
|B∗imax

| log T
)
, as

T → ∞.

2.5 Partial Side Information

In this section, we consider the general case of partial side information where

the UIG G∗ε is partially revealed. We develop a learning policy: LSDT-PSI (Learn-

ing from Similarity-Dissimilarity Topology with Partial Side Information) following

the two-step structure proposed in Sec. 2.3 and provide theoretical analysis on

the regret performance.

2.5.1 Offline Elimination

A partially revealed UIG can be represented by an undirected edge-labeled

multigraph Gε = (V,ES
ε ,E

D
ε ) (see Fig. 2.3). Specifically, Gε consists of two types

of edges: type-S edges (ES
ε ) and type-D edges (ED

ε ) indicating the presence and

the absence of the corresponding UIG edges. The absence of an edge between

two nodes indicates an unknown relation between the two arms.

We first show that finding the candidate set under partial side informa-

tion ES
ε ,E

D
ε is NP-complete. We notice that finding the candidate set is equiv-

alent to considering every node i individually and deciding if i can be a left
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Figure 2.3: Partially revealed UIG as an undirected edge-labeled multi-
graph: black solid lines represent type-S edges and red dash
lines represent type-D edges.

anchor of a UIG G′ε = (V,EP
ε ) consisting of the same set of nodes with Gε and the

potential edge set EP
ε satisfying

ES
ε ⊆ E

P
ε , (2.12)

EP
ε ∩ E

D
ε = ∅. (2.13)

For example in Fig. 2.3, if we take ε = 0.15, there exists a graph conforming as-

signment of mean rewards µ = (0.8, 0.8, 0.8, 0.9, 1, 1, 0.9, 0.9, 0.8, 0.7, 0.6) of which

the resulting UIG satisfies (2.12) and (2.13). In this assignment, node 5 and 6 are

left anchors and thus belong to the candidate set. However, finding the candi-

date set is difficult in general. Specifically, we show the NP-completeness of the

following decision problem.

LEFTANCHOR

[INPUT]: A multigraph G = (V,E1,E2) knowing that there exists a UIG G′ =

(V,E3) where E1 ⊆ E3 and E3 ∩ E2 = ∅, and a specific node i.

[QUESTION]: Does there exist a UIGG′′ = (V,E4) where E1 ⊆ E4 and E4∩E2 =

∅ such that node i is a left anchor of G′′?
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Theorem 4 LEFTANCHOR is NP-complete.

Proof 4 To show the NP-completeness of LEFTANCHOR, we give a reduction from a

variant of the 3-SAT problem: CONSISTENT-NAE-3SAT.

CONSISTENT-NAE-3SAT

[INPUT]: A not-all-equal satisfiable 3-SAT instance: there exists a truth assign-

ment such that every clause contains one or two true literals .

[QUESTION]: Does there exist a consistent truth assignment, i.e., every clause

contains only one true literal OR every clause contains only two true literals?

The NP-completeness of CONSISTENT-NAE-3SAT is proved in Appendix A.4. The

reduction to LEFTANCHOR and the remaining proof are presented in Appendix A.5.

It should be noted that LEFTANCHOR is similar to the so-called UIG Sand-

wich Problem [37] where two graphs G1 = (V,E1) and G2 = (V,E2) are given

satisfying E1 ⊆ E2. The question is whether a UIG G3 = (V,E3) exists satisfying

E1 ⊆ E3 ⊆ E2. It is not difficult to see that the type-S edge set ES
ε corresponds

to E1 in the sandwich problem and the complement of ED
ε corresponds to E2.

However, LEFTANCHOR is different from the sandwich problem as we know

that the sandwich problem is satisfied by the ground truth UIG G∗ε , and what

we are interested in is whether a specific node i can be a left anchor.

To address the challenge of finding the candidate set in polynomial time,

we exploit the following topological property of Gε to obtain an approximation

solution.
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Proposition 1 Given Gε , an arm i is sub-optimal if it is similar to two dissimilar arms,

i.e., if there exist j, k, such that (i, j), (i, k) ∈ ES
ε but ( j, k) ∈ ED

ε , then i < B.

Based on this property, we develop the offline elimination step of LSDT-PSI

with O(K|ED
ε |) complexity in Algorithm 3.

Algorithm 3: Offline Elimination of LSDT-PSI

Input: Gε = (V,ES
ε ,E

D
ε ).

Output: B0.

Initialization: B0 = V.

for i = 1, 2, ...,K do

B0 ← B0 \ {i} if there exist j, k ∈ V such that

(i, j), (i, k) ∈ ES
ε , ( j, k) ∈ ED

ε .

It is clear that in general, B∗ ⊆ B ⊆ B0. However, in certain scenarios, the

partially revealed UIG provides sufficient topological information to identify

the ground truth candidate set B∗ obtained from the fully revealed UIG. We

show that such information is fully exploited by the offline elimination step of

LSDT-PSI to achieve the same performance as that of LSDT-CSI for the case of

complete side information.

Specifically, we make the following assumptions on G∗ε and its equivalence

classes {B∗i }
m
i=1 assuming that the neighbor set of every arm i < B∗ is diverse

enough. Without loss of generality, we assume an increasing order of the equiv-

alence classes along the real line, i.e., ∀1 ≤ i < j ≤ m and ∀ki ∈ B
∗
i , k j ∈ B

∗
j, we

have µki < µk j . Note that B∗ = B∗1 ∪ B
∗
m.
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Assumption 3 For every 1 < i < m, assume that there exist j, k such that j < i < k

and B∗j,B
∗
k are connected to B∗i but mutually disconnected in G∗ε .3

Assumption 4 Assume that there exists a constant κ > 0 and for every i, |B∗i | ≥

κ log K.

We further make a probabilistic assumption on the partial side information.

Assumption 5 The presence and the absence of an edge in the UIG G∗ε are revealed

by the partial side information ES
ε and ED

ε independently with probabilities pS and pD.

Assume that p2
S pD ≥ 1 − e−2/κ, where κ is defined in Assumption 4.

Note that as κ increases, for every arm i < B∗, the number of dissimilar arm

pairs that are similar to i increases. Therefore, smaller probabilities of observing

edges can still guarantee that arm i is elilminated with high probability.

Based on these assumptions, we provide performance guarantee for the of-

fline elimination step of LSDT-PSI through the following theorem. We also ver-

ify the results through numerical examples in Sec. 2.7.

Theorem 5 Given a UIG G∗ε , under Assumptions 3-5, with probability at least 1 − 1
K2 ,

every arm i < B∗ is eliminated by the offline elimination step of LSDT-PSI and thus,

EES
ε ,E

D
ε

[
|B0|

]
= |B∗| + o(1), (2.14)

as K → ∞, where B0 is the arm set remaining after the offline elimination step of

LSDT-PSI.

Proof 5 See Appendix A.6.
3Two equivalence classes are connected if and only if at least one pair of arms from the two

classes are adjacent in the UIG. It can be inferred from the equivalence relation that if there exists
an adjacent arm pair from the two classes, all arm pairs are adjacent.
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2.5.2 Online Aggregation

Now we present the second step, the online learning procedure of LSDT-PSI.

We first define a similarity graph G′ε = (V′,ES
ε
′) restricted to the remaining arm

set B0: V′ = B0 and ES
ε
′

= {(i, j)|i, j ∈ B0, (i, j) ∈ ES
ε }. For every arm i ∈ B0, we de-

fine an exploration value zi ∈ [0, 1], which measures the topological significance

of node i in the similarity graph G′ε and determines the frequency of playing

arm i. Intuitively, a node with a higher degree has a higher exploration value

since playing this node provides information about more (neighboring) nodes.

Specifically, we define exploration values {zi}i∈B0 as the optimal solution to the

following LP.

P2 : C2 = min{zi}i∈V′

∑
i∈V′ zi, (2.15)

s.t.
∑

j∈N ′[i] z j ≥ 1, ∀i ∈ V′, (2.16)

zi ≥ 0, ∀i ∈ V′, (2.17)

where N ′[i] is the set of neighbors of node i in G′ε (including i). In the online

learning procedure, the number of times arm i is played is proportional to its

exploration value zi. Note that if at least ni plays are necessary to distinguish

a suboptimal arm i from the optimal one in the classic MAB problem, now if

suffices to play only zini times by aggregating observations from every neigh-

boring arm j ∈ N ′[i] that is played z jni times. Note that zi ≤ 1,∀i and C2 is upper

bounded by the size of the minimum dominating set of Gε ′.

We briefly summarize the second step of LSDT-PSI: the algorithm is played

in epochs and during epoch m, arms are played up to τi(m) ∼ Θ(zi log T ) times.

Arms less likely to be optimal are eliminated at the end of every epoch and

only two types of arms will be played in the next epoch: 1) non-eliminated

arms and 2) arms with non-eliminated neighbors. After a sufficient num-
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ber of epochs, only arms close to the optimal one remain and we use single arm

indices for selection. Let x̄i(m) be the average reward from arm i up to epoch m.

Algorithm 4: Online Aggregation of LSDT-PSI

Input: G′ε = (V′,ES
ε
′), time horizon T , parameter λ > 0.

Initialization: Let ∆̃0 = 1, S0 = B0, {zi}i∈V′ be the solution to P2, m f =

min
{⌈

log2

(
8
√

2λε

)⌉
,
⌊

1
2 log2

T
e

⌋}
.

for m = 0, 1, ...,m f do

if |Bm| = 1 then Play i ∈ Bm until time T .

else

for each arm i ∈ Sm do

Play arm i until τi(m) =

⌈
λzi log(T ∆̃2

m)
∆̃2

m

⌉
.

Let Bm+1 = Bm.

for each arm i ∈ Bm do

Bm+1 ← Bm+1 \ {i} if∑
j∈N ′[i] x̄ j(m)τ j(m)∑

j∈N ′[i] τ j(m)
+

√
log(T ∆̃2

m)
2
∑

j∈N ′[i] τ j(m)
+ ε ≤

max
k∈Bm


∑

j∈N ′[k] x̄ j(m)τ j(m)∑
j∈N ′[k] τ j(m)

−

√
log(T ∆̃2

m)
2
∑

j∈N ′[k] τ j(m)

 . (2.18)

Let Sm+1 = {i : N ′[i] ∩ Bm+1 , ∅}.

Let ∆̃m+1 = ∆̃m/2.

for t =
∑

i∈V′ τi(m f ) + 1, ...,T do

Play arm i∗t = argmaxi∈Bm f +1
x̄i(t − 1) +

√
2 log(t−1)
τi(t−1) .
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2.5.3 Order Optimality

The following theorem provides an upper bound on regret of LSDT-PSI for any

given partially revealed UIG.

Theorem 6 Given a partially revealed UIG Gε . Assume that the reward distribution

of reach arm is σ = 1/2 sub-Gaussian4. Let Q = {i ∈ B0 : ∆i > 4ε}. Then the regret of

LSDT-PSI up to time T is upper bounded by:

R(T ) ≤
∑

j∈B0\(Q∪A)

∆ j max

8 log T
∆2

j

,
32z j log(T ε2)

ε2

 +
∑
i∈Q

∆izi
32 log(T ∆̂2

i )

∆̂2
i

+ O(|V′|),

(2.19)

where ∆̂i = max{min j∈N ′[i] ∆ j − 3ε, ε}.

Proof 6 See Appendix A.7.

Remark 5 For fixed ∆i, the regret of LSDT-PSI is of order

O
(
(γ(G′ε) + |B0 \ (Q ∪A)|) log T

)
, (2.20)

as T → ∞, where γ(G′ε) is the size of the minimum dominating set of graph G′ε and

|B0 \ (Q∪A)| is the number of sub-optimal arms that are 4ε-close to the optimal one. It

is not difficult to see that as ε increases, γ(G′ε) decreases and |B0 \ (Q∪A)| increases. For

an appropriate ε, a sublinear scaling of regret in the number of arms can be achieved.

Recall in Theorem 5, we show that under certain assumptions, the offline

elimination step of LSDT-PSI achieves the same performance as LSDT-CSI for

the case of complete side information. The following corollary further estab-

lishes the order optimality of LSDT-PSI in terms of both K and T .
4Certain sub-Gaussian distributions (e.g. Bernoulli distribution, uniform distribution on

[0, 1]) have parameters σ = 1/2. See Sec. 2.6 for extensions to general σ.
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Corollary 1 Assume that Assumptions 3-5 hold and ∆i > 4ε,∀i ∈ B∗imin
. For fixed

∆i, pS , pD, the expectation of regret of LSDT-PSI taken over random realizations of the

partial side information ES
ε , ED

ε is upper bounded as follows:

EES
ε ,E

D
ε
[R(T )] ≤ O

(
(1 + |B∗imax

\ A|) log T
)
, (2.21)

as T → ∞, which matches the lower bound on regret for the case of complete side

information established in Theorem 3.

Proof 7 See Appendix A.8.

2.6 Extensions

In this section, we discuss extensions of the proposed policies: LSDT-CSI and

LSDT-PSI as well as their regret analysis to cases with disconnected UIGs and

other reward distributions. We also discuss the extension of applying Thomp-

son Sampling techniques to the LSDT learning structure.

2.6.1 Extensions to disconnected UIG

Suppose that the UIG G∗ε has M (M > 1) connected components. It is not difficult

to see that every connected component of G∗ε is still a UIG and the set of left an-

chors of G∗ε is the union of left anchors of all components. Therefore, in the case

of complete side information, the offline elimination step of LSDT-CSI outputs

at most 2M equivalences classes and the second step of LSDT-CSI can be directly

applied by maintaining a class index for every equivalence class as defined in
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(2.8). Moreover, by extending the regret analysis of LSDT-CSI in Theorem 2 as

well as the lower bound on regret for uniformly good policies in Theorem 3 to

the disconnected case, we can show that LSDT-CSI achieves an order optimal

regret, i.e.,

R(T ) ∼ Θ
(
(M + |B∗imax

\ A|) log T
)
, (2.22)

as T → ∞. In the extreme case when M = K (e.g., ε → 0), LSDT-CSI degenerates

to the classic UCB policy and R(T ) ∼ Θ(K log T ).

In the case of partial side information, the LSDT-PSI policy along with its

regret analysis applies to any partially revealed UIG without assumptions on

the connectivity of the graph. The upper bound on regret in Theorem 6 still

holds when G∗ε has M connected components. In the extreme case where M = K,

the size of the minimum dominating set of the similarity graph G′ε equals K and

thus, R(T ) ∼ O(K log T ).

To show the order optimality of LSDT-PSI in the disconnected case, we need

certain modifications on the assumptions of the UIG. We consider every con-

nected component m of G∗ε with ` equivalence classes {B∗(m)

i }
`
i=1. We assume that

Assumptions 3 and 4 hold for every connected component and without loss of

generality, we assume that the optimal arm imax is in component m = 1. Then

under Assumption 5, we can extend the regret analysis in Corollary 1 to the

case where G∗ε has M connected components. It can be shown that the expected

regret of LSDT-PSI is upper bounded by

O
(
(M + |B∗imax

\ A|) log T
)
, (2.23)

as T → ∞, which matches the lower bound in the case of complete side infor-

mation.
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2.6.2 Extensions to Other Distributions

Recall that in the regret analysis of LSDT-CSI and LSDT-PSI, we assume sub-

Gaussian reward distributions with parameter σ = 1 (e.g., standard normal

distribution) or σ = 1/2 (e.g., Bernoulli distribution). We first discuss extensions

to general sub-Gaussian distributions with arbitrary parameters σ.

In LSDT-CSI, by replacing the second terms of the UCB indices defined

in (2.7) and (2.8) by
√

α log t
τ j(t)

and
√

α log t∑
j∈B∗i

τ j(t)
where α is an input parameter, the

regret analysis in Theorem 2 still applies and the upper bound on regret is only

affected up to a constant scaling factor, as long as α > 6σ2. A similar exten-

sion also applies to LSDT-PSI if we change the second terms of the UCB indicies

in (2.18) to
√

β log(T ∆̃2
m)∑

j∈N′[i] τ j(m) where β ≥ 2σ2.

Furthermore, we can extend the results for sub-Gaussian reward distribu-

tions to other distribution types such as light-tailed and heavy-tailed distribu-

tions. There are standard techniques for such extensions by replacing the con-

centration result with the corresponding ones for light-tailed and heavy-tailed

distributions (the latter also requires replacing sample means with truncated

sample means). Similar extensions for classic MAB problems without side in-

formation are discussed in [62, 61]. To illuminate the main ideas without too

much technicality, most existing work assumes an even stronger assumption of

bounded support in [0, 1] (see [9],[34], [47], etc.).
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2.6.3 Extensions to Thompson Sampling Techniques

The two-step learning structure LSDT is in general independent of the specific

arm selection rule adopted in the online learning step. We discuss here how

Thompson Sampling (TS) techniques can be extended and incorporated into

the basic structure with aggregation of reward observations.

Specifically, in the case of complete side information, after reducing the ac-

tion space to the candidate set via the offline step, we adopt a similar hierarchi-

cal online learning policy as that used in LSDT-CSI by maintaining two posterior

distributions on the reward parameters, one at the equivalence class level, the

other at the arm level. At each time, the policy first randomly selects an equiva-

lence class according to its class-level probability of containing the optimal arm

and then randomly draws an arm within the class according to its arm-level

probability of being optimal.

In the case of partial side information, similar to LSDT-PSI, an eliminative

strategy is carried out to sequentially eliminate arms less likely to be optimal.

At each time, an arm is randomly drawn according its arm-level posterior dis-

tribution of being optimal. The observation from the selected arm is also used

to update higher level posterior distributions of its neighbors, which aggregate

observations from all similar arms. According to the high level posterior dis-

tribution, the arm that is least likely to be optimal is eliminated if it has been

explored for sufficient times.

Simulation results in Sec. 2.7.4 show a similar performance gain by exploit-

ing the side information on arm similarity and dissimilarity through the two-

step learning structure when TS is incorporated in both cases. To achieve a full
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exploitation of the side information and establish the order optimality on regret,

however, further studies are required.

2.7 Numerical Examples

In this section, we illustrate the advantages of our policies through numerical

examples on both synthesized data and a real dataset in recommendation sys-

tems. All the experiments are run 100 times using a Monte Carlo method on

MATLAB R2014b.

2.7.1 Reduction of the action space

Complete Side Information

We use two experiments to show how much the action space can be reduced by

exploiting the complete side information. In the first experiment, we fix K = 100

arms with mean rewards uniformly chosen from (0, 1) and let ε vary from 0 to 1.

For every ε, we obtain a UIG G∗ε . We apply the offline elimination step of LSDT-

CSI to G∗ε and compare the size of the candidate set B∗ with K. In the second

experiment, we fix ε = 0.2 and let K increase from 10 to 200. We generate arms

and UIGs in the same way as in the first experiment. We show how |B∗|/K varies

as K increases. The results are shown in Figs. 2.4 and 2.5.

As we can see from Fig. 2.4, when ε is small (ε < 0.1), the graph is dis-

connected. As ε increases, the number of connected components decreases and

thus, |B∗| decreases. When the graph is connected (ε > 0.1), the candidate set B∗
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Figure 2.4: Reduction of the action space with complete side information:
|B∗| v.s. ε.

only contains two equivalence classes and thus |B∗| is much smaller than K.

When ε is large (ε > 0.9), the probability that the graph is complete increases

as ε increases. In this case, the candidate set contains all the arms. Thus, |B∗|

increases to K as ε grows to 1. In Fig. 2.5, we notice that B∗ has a diminish-

ing cardinality compared with K. Since the mean rewards are uniformly chosen

from (0, 1), the set of arms becomes denser on the interval (0, 1) as K grows. It

can be inferred from [43] that the maximum distance d between two consecu-

tive points uniformly chosen from (0, 1) is in the order of O( log K
√

K
) with probabil-

ity 1 − 1/K. If we choose ε =
ρ log K
√

K
for some ρ > 0, Gε will be connected with

high probability. Moreover, it can be shown that the cardinality of B∗imax
(B∗imin

) is

smaller than the number of nodes whose distance to imax (imin) is smaller than d.

Therefore, it follows that the cardinality of the candidate set in this setting is

smaller than O(K1/2 log K).
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Figure 2.5: Reduction of the action space with complete side information:
|B∗ |

K v.s. K.

Partial Side Information

We use two other experiments to show the reduction of the action space with

partial side information. In the first experiment, we fix K = 100 arms with mean

rewards uniformly chosen from (0, 1). We choose ε = 0.2 and obtain the UIG

G∗ε . We let pS = pD = p vary from 0.1 to 1 and for every p, we observe the

presence and the absence of edges in G∗ε independently with probability p. We

apply the offline elimination step of LSDT-PSI on Gε and compare the size of the

output set B0 with K. Note that when p = 1, G∗ε is fully revealed and we use

the offline elimination step of LSDT-CSI to obtain B∗. In the second experiment,

we fix ε = 0.2, pS = pD = 0.5 and let K increase from 10 to 150. We generate

arms and side information graphs in the same way as in the first experiment

and show how |B0|/K varies as K increases. The results of the two experiments

are shown in Figs. 2.6 and 2.7 .
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Figure 2.6: Reduction of the action space with partial side information: |B0|

v.s. p.
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It can be seen from Fig. 2.6 that as p increases, |B0| decreases to |B∗|. Besides,

when p > 0.5, the performance of the offline elimination step of LSDT-PSI is

as good as that of LSDT-CSI, which is optimal, i.e. only arms in B∗ remain.

Moreover, in Fig. 2.7, we see that |B0|/K decreases as K increases which indicates

a diminishing cardinality of the reduced action space in terms of K.

2.7.2 Regret on Randomly Generated Graphs

Complete Side Information

We compare LSDT-CSI with existing algorithms on a set of randomly generated

arms. We obtain the UIG G∗ε on K = 100 nodes with means uniformly cho-

sen from [0.1, 1] and ε = 0.1. Every time an arm i is played, a random reward

is drawn independently from a Gaussian distribution with mean µi and vari-

ance 1. We let T vary from 10 to 1000 and compare the regret of LSDT-CSI and

four baseline algorithms:

1. UCB1: classic UCB policy proposed in [9] assuming no relation among

arms.

2. TS: classic Thompson Sampling algorithm proposed in [60] assuming Beta

prior and Bernoulli likelihood on the reward model.

3. CKL-UCB: proposed in [55] for Lipschitz bandit exploiting only similarity

relations.

4. OSUB: proposed in [26] for unimodal bandits. Note that if the UIG G∗ε is

connected, it satisfies the unimodal structure: for every sub-optimal armi,
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Figure 2.8: Regret performance on randomly generated arms with com-
plete side information (K = 100, ε = 0.1): comparison with ex-
isting algorithms.

there exists a path P = (i1 = i, i2, ..., in = imax) such that for every t ∈ [1, n−1],

µit ≤ µit+1 .

5. OSSB: proposed in [25] for general structured bandits. At each time, OSSB

estimates the minimum number of times that every arm has to be played

by solving a LP.

The results shown in Fig. 2.8 indicate that LSDT-CSI outperforms the

baseline algorithms. In particular, when T < K, LSDT-CSI has already

started to exploit the optimal arm while the other algorithms are still ex-

ploring. We also compare LSDT-CSI with a heuristic algorithm apply-

ing UCB1 on the candidate set in Fig. 2.9. With the same setup, we see per-

formance gain due to the online step.

42



Time (logT)
101 102 103

C
um

ul
at

iv
e 

R
eg

re
t

0

10

20

30

40

50

60

70
LSDT-CSI
UCB1 (on B*)

Figure 2.9: Regret performance on randomly generated arms with com-
plete side information (K = 100, ε = 0.1): comparison with a
heuristic algorithm.

Partial Side Information

We compare LSDT-PSI with existing algorithms. We obtain the UIG G∗ε on K =

100 arms with means uniformly chosen from [0.1, 0.9] and ε = 0.1. We let pS =

pD = p = 0.5 and get the partially observed UIG Gε based on Assumption 5. The

random rewards for every arm i are independently generated from a Bernoulli

distribution with mean µi. We consider T ∈ [100, 1000].

Given that finding the candidate set is NP-complete, the OSSB policy is not

applicable since the LP is unspecified. Besides, OSUB is also inapplicable since

Gε is not unimodal in general. Therefore, we only compare LSDT-PSI with three

baseline algorithms: UCB1, TS and CKL-UCB. In LSDT-PSI, we choose the input

parameter λ = 1/8. Note that the choice of λ does not affect the theoretical upper

bound on regret. However, in practice, it is better to use a smaller λ to avoid
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Figure 2.10: Regret performance on randomly generated arms with partial
side information (K = 100, ε = 0.1, p = 0.5): comparison with
existing algorithms

excessive plays of suboptimal arms. The simulation results shown in Fig. 2.10

indicates that LSDT-PSI outperforms the other algorithms. Similar to the case

of complete side information, we compare LSDT-PSI with a heuristic algorithm

applying UCB1 on B0. A similar performance gain is observed in Fig. 2.11.

2.7.3 Online Recommendation Systems

In this subsection, we apply LSDT-PSI to a problem in online recommendation

systems. We test our policy on a dataset from Jester, an online joke recommen-

dation and rating system [36], consisting of 100 jokes and 25K users and every

joke has been rated by at least 34% of the entire population.5. Ratings are real

values between −10.00 and 10.00. In the experiment, we recommend a joke

5Available on http://eigentaste.berkeley.edu/dataset/.
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Figure 2.11: Regret performance on randomly generated arms with partial
side information (K = 100, ε = 0.1, p = 0.5): comparison with
a heuristic algorithm

(modeled as an arm) to a new user at each time and observe the rating, which

corresponds to playing an arm and receiving the reward. Note that although

different users have different preference towards items, every item exhibits cer-

tain internal quality that is represented by the mean reward, i.e., the average

rating from all users. The variations of ratings from different users correspond

to the randomness of rewards. Notice that the algorithms we propose work

for any reward distribution as long as it is sub-Gaussian, Jester is a suitable

dataset for the purpose of evaluating the performance of our algorithms since

any distribution with bounded support is sub-Gaussian. In accordance with the

assumptions of the policy, all ratings are normalized to [0, 1].

To test our policy using side information, we partition the dataset into a

training set (5% or 10% of the users) and a test set (20K users). We obtain the

partially revealed UIG from the training set as follows: we estimate the dis-
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tance between two jokes i, j by calculating the difference between their average

ratings from users in the training set who have rated both jokes. We define a

confidence parameter α > 0. If the distance between (i, j) is larger than (1 + α)ε,

we add (i, j) to ED
ε . Otherwise if the distance is smaller than (1 − α)ε, we add

(i, j) to ES
ε . It is clear that there exist certain pairs of arms whose relations are

unknown. We let α = 0.2 if the size of the training set is 2% of the entire dataset

or α = 0.1 if the size of the training set is 5%. Note that as the size of the training

set increases, the estimation of distances between jokes becomes more accurate

and thus, the confidence parameter can be smaller. As a consequence, the num-

ber of joke pairs whose relations are known increases. For the hyper-parameter

ε, we use an iterative approach to find the best ε that minimize the size of B0,

i.e., the set of arms that need to be explored. Intuitively, as ε increases, |B0| first

decreases since the side information graph becomes more connected and more

similarity relations can be observed. Therefore, the probability of eliminating

sub-optimal arms by the offine step becomes higher. When ε is large, the graph

approaches a complete graph and less dissimilarity relations are observed. As

a consequence, the probability of eliminating sub-optimal arms decreases and

thus |B0| increases. A similar tendency of variation can be observed on the over-

all regret performance of the learning policy. Based on this, the iterative ap-

proach starts from a small ε(0) (i.e., 0.01) at time t = 0 and find B0(0). It keeps

doubling the value of ε at each step until time t when |B0(t)| > |B0(t − 1)|. Then a

binary search method is applied to find the best ε∗ (with a minimum increment

of 0.01) between ε(t − 1) and ε(t) that achieves the minimum |B0|.

We use an unbiased offline evaluation method introduced in [49] and [50]

to evaluate algorithms including LSDT-PSI, UCB1, TS, CKL-UCB and UCB1

on B0, on the test set. Fig. 2.12 shows the average rating per user with con-
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Figure 2.12: Joke recommendation on Jester.

fidence intervals (scaled back to [0, 10.00]) of every policy. Note that CKL-UCB

needs to estimate the KL-divergence between two distributions. Since the dis-

tribution type in the real dataset is unknown, we can only use ∆2 to approxi-

mate the KL-divergence where ∆ is the distance between the average ratings.

For LSDT-PSI, we choose the input parameter λ = 1/32. Simulation results in

Fig. 2.12 show that LSDT-PSI has the best performance with relatively small

variations. Besides, the effectiveness of the adaptive approach on selecting the

hyper-parameter ε is verified. Moreover, it can be observed that as the size of

the training data increases, the performance of LSDT-PSI and UCB1 on B0 get

improved since more side information is available.
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2.7.4 LSDT with Thompson Sampling Techniques

As discussed in Sec. 2.6.3, we use numerical examples to show the performance

of applying TS techniques in the two-step learning structure: LSDT. We adopt

the same experiment setup with that in the simulation of regret analysis on ran-

domly generated graphs with complete side information (Sec. 2.7) and compare

LSDT-TS (CSI) (applying TS in LSDT learning structure in the case of complete

side information, which is introduced in Sec. 2.6.3) with classic TS that ignores

side information.

The results in Fig. 2.13 verify the advantage of our two-step learning struc-

ture, which fully exploits the topological structure of the side information

graph. Besides, we also compare LSDT-TS (CSI) with another heuristic algo-

rithm, which simply applies classic TS on the reduced action space B∗ without

aggregation observations from similar arms in the second step of online learn-

ing. The results in Fig. 2.14 further indicates that the online aggregations step

in the two-step learning structure improves the performance.

In the case of partial side information, we conduct an experiment similar

with that in Sec. 2.7 to evaluate the performance of LSDT-TS (PSI), which ap-

plies TS in LSDT learning structure in the case of partial side information as

discussed in Sec. 2.6. We compare LSDT-TS (PSI) with classic TS ignoring side

information and another heuristic algorithm applying TS on the reduced action

space without online aggregation. The results shown in Fig. 2.15 and Fig 2.16

verify the performance gain through both offline and online steps of LSDT.
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Figure 2.13: Regret performance with complete side information: LSDT-
TS (CSI) v.s. classic TS.
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Figure 2.14: Regret performance with complete side information: LSDT-
TS (CSI) v.s. TS on B∗.
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Figure 2.15: Regret performance with partial side information: LSDT-TS
(PSI) v.s. classic TS.
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Figure 2.16: Regret performance with partial side information: LSDT-TS
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2.7.5 Comparison of Running Times

We compare the running time of LSDT-CSI as well as the baseline algorithms in

Table 2.1 for the case of complete side information. It is not difficult to see that
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LSDT-CSI has a relatively low computation complexity in contrast to algorithms

with comparable performance, i.e., CKL-UCB and OSSB. Note that CKL-UCB

and OSSB are time consuming since they have to solve an optimization problem

at each time step. Besides, it can be seen that the time complexity of the offline

reduction step is not too high to be applied.

Algorithm UCB1 TS CKL-UCB
Running Time (ms) 9.7 37.6 849.5

Algorithm OSUB OSSB UCB1 on B∗

Running Time (ms) 880.3 3.3 × 105 9.1
Algorithm LSDT-CSI (offline) LSDT-CSI (online)

Running Time (ms) 14.1 18.6

Table 2.1: Running times in the case of complete side information.

For the case of partial side information, we summarize the running times

of LSDT-PSI and the other baselines in Table 2.2. Note that the running times

of UCB1 and TS are smaller than LSDT-PSI since they ignore the similarity-

dissimilarity relations across arms and have worse performance. When com-

pared with CKL-UCB (achieves a comparable performance by exploiting the

similarity relations), LSDT-PSI has a smaller computation complexity.

Algorithm UCB1 TS CKL-UCB
Running Time (ms) 10.3 38.3 354.2

Algorithm LSDT-PSI (offline) LSDT-CSI (online) UCB1 on B0

Running Time (ms) 12.6 161.4 10.1

Table 2.2: Running times in the case of partial side information.
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CHAPTER 3

BANDITS WITH MEMORY CONSTRAINTS

In canonical bandit models under both stochastic and adversarial settings, ex-

isting studies only focus on the regret performance of the learning policies with-

out considering their memory complexity. Classical learning policies require a

memory space with size linear in the number K of arms to store a statistic of

every arm summarizing its reward history throughout the entire time horizon,

which is infeasible in applications involving a large action space but limited

memory. In this chapter, we study the memory-constrained adversarial bandit

problem where a learning policy can only store the statistics of a subset of arms

in the memory at any given time.

The memory constraint gives rise to two new problems in addition to arm

selection: (i) which arms’ statistics should be stored in the memory at every time step,

and (ii) how to memorize the reward history of arms whose statistics are not stored?. In

this chapter, we develop a hierarchical learning policy as a solution to the two

new problems, which trades off the regret order with memory complexity.

3.1 Literature Review of MAB with Memory Constraints

Memory-constrained bandit problems have been recently studied under the

stochastic reward models in [51, 22]. Two policies adopting best-arm identifica-

tion techniques [14] in deciding which arm to store in the RMS were developed.

Specifically, both policies partition arms into groups (the group size depends

on the memory constraint) and time horizon into epochs. Within every epoch,
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a new group of arms are selected in a round-robin fashion and the arms are

stored in the RMS along with the predicted best arm that has been played so

far. The prediction of the best arm is iteratively refined according to a best-arm

identification strategy at the end of every epoch after exploring the new arm

group, and the statistics of sub-optimal arms are eliminated from the memory.

The difference between the two policies is that, the one in [51] is based on an

explore-then-exploit structure while the other in [22] conducts exploration and

exploitation simultaneously by a UCB policy during every epoch. Sublinear

regret orders were established for both policies in the stochastic setting.

In the adversarial setting, however, the above mentioned policies for

stochastic bandits are no longer applicable due to the inconsistency between the

comparison of arms within a time period and their true rankings over the entire

time horizon. Specifically, induced by the memory constraint, only a subset of

arms can be played and compared during a period of time. In the stochastic set-

ting with fixed reward distributions, the partial views on arm rewards within

a time period are consistent with the ground truth. Hence, arm eliminations

from the memory with sufficiently high probabilities can be carried out without

inflicting a large regret. In the adversarial setting, however, the partial views

and the ground truth over the entire time horizon are inconsistent. Therefore,

all arms need to remain in the contention until the end of the horizon. More-

over, the policies developed in the stochastic setting are deterministic, and thus

suffer linear regret orders in T against adversaries (we verify the claim numeri-

cally in Sec. 3.6). New learning policies are needed for the memory-constrained

adversarial bandit problem.

Another type of memory constraint that has been studied in the MAB litera-
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ture is temporal across time steps: a policy can only make decisions based on the

reward outcomes of the m most recent plays. This problem was first considered

in [56] where a two-armed bandit problem with Bernoulli rewards was studied.

It was later shown in [29] that there exsits a policy with m = 2 that achieves an

asymptotically optimal average reward in the two-armed bandit instance. The

decision process with temporal memory constraints was further modeled as a

finite-state machine in [28], where the past reward history was aggregated as a

finite-valued statistic. The objective considered in these studies was the asymp-

totic convergence of the empirical average reward. Analysis on the convergence

rate or the regret order, however, was lacking.

The objective of minimizing regret with temporal memory constraints was

considered in [53] under the full-information feedback setting (i.e., the rewards

of all arms that the player could have played are revealed after every time step).

A learning algorithm with O(mK) states (each arm statistic can take O(m) values)

was developed. It was shown that if m = O(
√

T ), the algorithm achieves an

optimal regret order up to a logarithmic factor. However, the full-information

feedback setting is fundamentally different from the bandit setting studied in

this dissertation. Moreover, the proposed learning algorithm needs to store a

statistic of every arm and the total number of states is exponential in K. There-

fore, the algorithm is inapplicable in cases with a massive number of arms.

3.2 Problem Formulation

We consider an adversarial bandit problem with a finite arm setA = {1, 2, ...,K}.

At each time t = 1, 2, ...,T , a player chooses one arm to play. The reward ri,t ∈
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[0, 1] of playing an arm i at time t is assigned by an adversary. We assume

that the adversary is oblivious, i.e., the assignment of the reward at time t is

independent of the player’s past actions. Equivalently, an oblivious adversary

determines the sequence of rewards ((r1,t, ..., rK,t))T
t=1 ahead of time. We assume

that the player can only observe the reward of the selected arm at each time.

The objective of the player is an online learning policy π that specifies a se-

quential arm selection rule at each time t based on the observation history. We

assume that the policy can only use M (M = o(K) as K → ∞) words of memory

space to store input values and necessary parameters. We follow the memory

model studied in [22] where each of the variables used by the policy takes O(1)

word space1 and thus, a policy with memory size M can only store the statistics

of at most M arms (or aggregated statistics of at most M groups of arms) at any

given time.

The performance of policy π is measured by regret, which is defined as the

reward loss against the best benchmark action sequence aT = (a1, ..., aT ) with the

greatest cumulative reward, i.e.,

Rπ(T ) = max
aT∈AT

T∑
t=1

rat ,t −

T∑
t=1

rπt ,t, (3.1)

where πt is the arm selected by policy π at time t. When there is no ambiguity,

the notation is simplified to R(T ).

As the regret R(T ) can be randomized due to the potential randomness of the

arm selection policy π, we consider two types of no-regret learning conditions in

this chapter. A policy π is said to achieve no-regret learning in expectation if, for

every sequence of rewards ((r1,t, ..., rK,t))T
t=1, the expected regret Eπ[R(T )] = o(T )

1The number of bits in a word depends on how real numbers are stored in the memory,
which is out of the scope of this chapter.
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as T → ∞, where the expectation is taken over the possible randomness of π.

The second condition states that a policy π achieves no-regret learning with high

probability if, for every sequence of rewards and every given δ ∈ (0, 1), the regret

R(T ) = o(T ) as T → ∞with probability at least 1 − δ.

It is not difficult to see that achieving no-regret learning, either in expecta-

tion or with high probability, is impossible if the benchmark sequence is chosen

arbitrarily [11]. Therefore, certain restrictions on the benchmark sequence is

necessary to make the problem feasible. In this chapter, we consider two types

of regret notions with different restrictions on the benchmark sequence. The

first regret notion is the so-called weak regret where the benchmark sequence

consists of a single arm, i.e.,

Rw(T ) = max
i∈A

T∑
t=1

ri,t −

T∑
t=1

rπt ,t. (3.2)

A stronger regret notion is the so-called shifting regret where the benchmark

sequence is constrained by its hardness. Specifically, the hardness of a sequence

aT = (a1, ..., aT ) measures the total number of action changes over time, i.e.,

H(aT ) , 1 +

T−1∑
t=1

I(at , at+1), (3.3)

where I(·) is the indicator function. The shifting regret with a hardness con-

straint V is defined as

Rs(T,V) = max
aT :H(aT )≤V

T∑
t=1

rat ,t −

T∑
t=1

rπt ,t. (3.4)

It is clear that the shifting regret is a stronger notion than the weak regret: no-

regret learning under the former implies no-regret learning under the latter, but

not vice versa.
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3.3 Hierarchical Learning with Memory Constraints

In this section, we propose a general learning structure: HLMC (Hierarchical

Learning with Memory Constraints) for the memory-constrained adversarial ban-

dit problem. We first present the general framework of HLMC with a multi-

level hierarchy on the partitions of the arm set and the time horizon. Then we

use a representative case with a two-level hierarchy to illustrate the details of

the HLMC policy.

3.3.1 A General Framework with Multi-Level Hierarchy

To address the issue that only the statistics of a subset of arms can be stored

in the memory at any given time, the key technique is to properly aggregate

and store the statistics of a group of arms to memorize their reward history

jointly. We introduce a general D-level hierarchy partitioning arms into D levels

of groups in an iterative way: the arm set is defined as the level-0 group, every

level-d (d ≤ D−1) group is partitioned into several level-(d+1) groups, and every

level-D group consists of a single arm. Similarly, the time horizon is iteratively

partitioned into D levels of epochs.

The HLMC policy with a D-level hierarchy is then specified by D selection

strategies at all levels in a recursive fashion: at the beginning of every level-

d epoch, a level-d group is selected by a level-d strategy. Within that epoch,

the policy zooms in to the selected group and conducts a level-(d + 1) selection

strategy based on the group statistics of all involved level-(d+1) groups. A level-

(d + 1) group statistics aggregates the reward information of arms within that
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Figure 3.1: HLMC with a three-level hierarchy.

group, and is stored in the memory until the end of the corresponding level-d

epoch. At the last level of the hierarchy, the selection strategy decides which arm

within the targeted group to play at every time step based on the arm statistics.

The set of arms (and arm groups) whose statistics are stored in the memory is

called the reward-memorized set (RMS). See Fig. 3.1 for an example of the HLMC

policy with a three-level hierarchy.

The HLMC policy solves the problem on deciding which arms’ statistics to

store in the memory: only arms within the targeted group at the last level is

stored in the RMS during the corresponding epoch. For the other arms outside

the targeted group, their reward information is jointly stored in the memory

through certain group statistics at higher levels.
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3.3.2 A Representative Case with Two-Level Hierarchy

We use D = 2 as a representative case to present the details of HLMC. The two

levels in the hierarchy are referred to as the group and the arm levels. Specifi-

cally, the setA of arms is partitioned into equal-sized groups {A`}
L
`=1 where

A` = {1 + N(` − 1), ...,min(N`,K)}, (3.5)

N = dM−
√

M2−4K
2 e is the group size (note that the number of arms in the last group

may be smaller than N), and L = dK
N e is the number of groups. The time horizon

is partitioned into equal-length epochs {Ts}
S
s=1 where

Ts = [1 + ∆(s − 1),min(∆S ,T )], (3.6)

∆ ∈ N+ is the epoch length to be determined later, and S = dT
∆
e is the number of

epochs. Note that the length of the S -th epoch may be smaller than ∆.

By treating each arm groupA` as a “super arm” ` and each epochTs a “super

time-step” s, we reduce the group selection problem to a classic adversarial ban-

dit problem. The reward of playing a “super arm” `s at a “super time-step” s is

defined as the average per-time reward from the corresponding arm group A`s

during the corresponding epoch Ts, i.e.,

y`s,s =
1
|Ts|

∑
t∈Ts

rit ,t, (3.7)

where it ∈ A`s is the arm selected at time t.

The problem on deciding which arm to store in the RMS is then addressed

by solving the adversarial bandit problem constructed by the reduction. Once a

group of arms is selected and stored in the RMS, the decision problem on play-

ing arms is addressed by conducting a learning algorithm for classic adversarial

59



bandits as a subroutine on the selected arm group during every epoch. The de-

tailed HLMC policy with a two-level hierarchy is summarized in Algorithm 5.

Algorithm 5: HLMC

Input: M the memory size, T the time length, A the set of K arms, and ∆ > 0

the epoch length.

if M ≥ K then

Run a classic adversarial bandit algorithm onA.

else

Obtain arm group partition {A`}
L
`=1 according to (3.5).

Obtain epoch partition {Ts}
S
s=1 according to (3.6).

Initialize and store the statistics of every arm group.

for s = 1, 2, ..., S do

Select arm group `s according to the group-level selection strategy.

Initialize and store the statistics of every arm inA`s .

Initialize y`s,s = 0, τ = 0.

for t ∈ Ts do

Play arm it according to the arm-level selection strategy and receive

reward rit ,t.

Update arm statistics in the memory using rit ,t.

Update y`s,s =
y`s ,sτ+rit ,t

τ+1 , τ = τ + 1.

Update all group statistics in the memory using y`s,s.

It should be noted that at both group and arm levels in the HLMC learning

policy, any adversarial bandit algorithm that achieves no-regret learning can be

incorporated as a subroutine to guarantee a sublinear regret order in T . In the

next section, we discuss applying three different learning algorithms for classic
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adversarial bandits to minimize two notions of regret in expectation and/or

with high probability.

3.4 Memory Complexity and Regret Performance in the Two-

Level Case

In this section, we analyze the memory complexity and regret performance of

the proposed HLMC learning policy in the case with D = 2. We notice that in

HLMC, the group-level strategy requires L words of memory to store a statis-

tic of every group. Once a groups is selected, the statistics of all arms within

the selected group should also be stored, which require N additional words of

memory. Therefore, the total memory size required by the HLMC policy is N+L.

As long as M ≥ 2
√

K, the group partition in (3.5) is legitimate and one can verify

that N +L ≤ M. Therefore, the minimum memory space required by HLMC with

a two-level hierarchy is or order Ω(
√

K).

In terms of the regret performance, it is clear that the regret order achieved

by HLMC depends on the specific selection strategies adopted as subroutines at

both group and arm levels. In the following three subsections, we discuss min-

imizing weak regret in expectation and with high probability, and minimizing

shifting regret in expectation respectively through adopting different learning

algorithms as subroutines.
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3.4.1 Minimizing Weak Regret in Expectation

We first consider minimizing the expected weak regret through applying EXP3

at both group and arm levels in the HLMC policy. The EXP3 algorithm was

first proposed in [10]. It randomly selects an action it according to a distribu-

tion (pi,t)i∈A at every time t. The probability pi,t is the sum of two components.

The first one is proportional to a weight wi,t exponential in the estimated cumu-

lative reward from arm i up to time t, i.e., wi,t =
∏t

τ=1 exp(γr̂i,τ/|A|), where γ > 0

is the learning rate and r̂i,τ is an unbiased estimator of ri,t with respect to the

random choice of it. The second component is a random exploration term γ/|A|

guaranteeing sufficient exploration of every arm. The EXP3 algorithm achieves

a sublinear regret order in the time length if γ is selected appropriately. The

details of EXP3 are summarized in Algorithm 6.

Algorithm 6: EXP3 [10, 11]

Input: A the arm set and γ ∈ (0, 1).

Initialize wi,1 = 1,∀i ∈ A.

for t = 1, 2, ...,T do

Let

pi(t) = (1 − γ)
wi,t∑

j∈A w j,t
+

γ

|A|
, ∀i ∈ A.

Draw arm it according to the probabilities (pi,t)i∈A.

Receive reward rit ,t.

Let r̂i,t =
ri,t

pi,t
I(it = i) and update

wi,t+1 = wi(t) exp
(
γr̂i,t

|A|

)
, ∀i ∈ A
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We show in the following theorem that adopting EXP3 at both group and

arm levels in HLMC (with learning rates γ1 and γ2 respectively) guarantees a

sublinear regret order in T under the notion of expected weak regret.

Theorem 7 For any T,K, and M, assume M ≥ 2
√

K. If the input parameter ∆ =⌈√
T N ln N

L ln L

⌉
(where N, L are defined in the algorithm), adopting EXP3 at both group and

arm levels with learning rates γ1 =

√
L ln L

2S and γ2 =

√
N ln N

2∆
guarantees that, for every

assignment of the reward sequence, the expected weak regret of HLMC with a two-level

hierarchy is upper bounded as follows:

EHLMC [Rw(T )] ≤ (4 + 2
√

2)T
3
4 K

1
4 (ln K)

1
2 . (3.8)

To obtain the upper bound in Theorem 7, we decompose the expected weak

regret into two parts by introducing an intermediate term C′max as follows: for

every fixed reward sequence, let imax be the best arm with the greatest cumula-

tive reward over the entire time horizon and A`max the arm group to which imax

belongs. We define C′max as the expected cumulative reward obtained by run-

ning the arm-level EXP3 algorithm with learning rate γ2 on A`max during all

epochs, i.e.,

C′max =

S∑
s=1

EArm-EXP3(A`max )

∑
t∈Ts

rit ,t

 , (3.9)

where EArm-EXP3(A`max )[·] denotes the expectation taken over the randomness

of the arm-level EXP3 algorithm when conducted on group A`max . Then the ex-

pected weak regret of HLMC is decomposed as:

EHLMC [Rw(T )] = (C′max −CHLMC)︸                 ︷︷                 ︸
R1(T )

+ (Cmax −C′max)︸           ︷︷           ︸
R2(T )

, (3.10)

where

CHLMC = EHLMC

 T∑
t=1

rit ,t

 ,
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Cmax =

T∑
t=1

rimax,t. (3.11)

Note that in the decomposition, R1(T ) corresponds to the group-level reward

loss due to not selecting A`max at every epoch, and R2(T ) corresponds to the

arm-level reward loss due to playing suboptimal arms in A`max assuming that

groupA`max is selected at all epochs.

We first upper bound the group-level reward loss R1(T ). Noticing that the

arm selection process during every epoch is independent of the group and arm

selection history in the past, we can thus rewrite the expected reward of the

HLMC policy as follows:

EHLMC

 T∑
t=1

rit ,t


= EGroup-EXP3

 S∑
s=1

EArm-EXP3(A`s )

∑
t∈Ts

rit ,t


 , (3.12)

where EGroup-EXP3[·] denotes the expectation taken over the randomness of

the group-level EXP3 algorithm, and A`s is the group selected at epoch s. To

ease the analysis, we assume without losing generality that all epochs have an

equal length ∆. We further define

x`,s = EArm-EXP3(A`)

 1
|Ts|

∑
t∈Ts

rit ,t

 . (3.13)

It is not difficult to see that

R1(T ) = ∆

 S∑
s=1

x`max,s − EGroup-EXP3

 S∑
s=1

x`s,s

 . (3.14)

It is then clear that upper bounding R1(T ) is equivalent to upper bounding

the weak regret of applying the group-level EXP3 algorithm to the adversar-

ial bandit problem constructed by the reduction in Sec. 3.3. Specifically, the
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reward of selecting a group A` at epoch Ts is defined as y`,s according to (3.7)

where it is randomly selected by the arm-level EXP3 algorithm. Therefore, y`,s

is a random reward with mean x`,s. The group selection problem is reduced

to a classic adversarial bandit problem with noisy observations. It should be

noted that after fixing an assignment of the reward sequence ((r1,t, ..., rK,t))T
t=1, the

expected reward x`,s is fixed. Meanwhile, the realization of y`,s is independent

across `, s and is independent of the arm (group) selection history up to epoch s.

We obtain the following result on applying the group-level EXP3 algorithm to

the constructed adversarial bandit problem.

Lemma 1 By choosing γ1 =

√
L ln L

2S , the group-level EXP3 algorithm guarantees that,

for every assignment of the reward sequence ((r1,t, ..., rK,t))T
t=1,

max
1≤`≤L

S∑
s=1

x`,s − EGroup-EXP3

 S∑
s=1

x`s,s

 ≤ 2
√

2S L ln L, (3.15)

where `s is the arm group selected by the group-level EXP3 algorithm at epoch s.

Proof 8 See Appendix B.1.

For the arm-level reward loss R2(T ), we notice that

R2(T ) =

S∑
s=1

(∑
t∈Ts

rimax,t − EArm-EXP3(A`max )

∑
t∈Ts

rit ,t

 ). (3.16)

It suffices to upper bound each term in the summation, that is, the weak regret of

conducting the arm-level EXP3 algorithm on groupA`max during each epoch Ts.

Lemma 2 (Corollary 3.2 in [11]) By choosing γ2 =

√
|A` | ln |A` |

2|Ts |
, the arm-level EXP3

algorithm conducted on arm group A` during epoch Ts guarantees that, for every as-

signment of the reward sequence,

max
i∈A`

∑
t∈Ts

ri,t − EArm-EXP3(A`)

∑
t∈Ts

rit ,t

 ≤ 2
√

2∆N ln N, (3.17)
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where it is the arm selected by the arm-level EXP3 algorithm at time t.

Theorem 7 is then proved by applying Lemma 1 and Lemma 2 to R1(T )

and R2(T ), respectively.

Proof 9 (Proof of Theorem 1) Combining (3.14) with Lemma 1, and (3.16) with

Lemma 2, we can derive that

R1(T ) ≤ 2∆
√

2S L ln L = 2
√

2T∆L ln L,

R2(T ) ≤ 2S
√

2∆N ln N = 2

√
2T 2

∆
N ln N. (3.18)

By choosing ∆ =

⌈√
T N ln N

L ln L

⌉
, we obtain the upper bound in Theorem 7.

It should be noted that although the proposed learning policy requires the

knowledge of the total time length T for choosing input parameters to achieve

no-regret learning, the issue of unknown T can be easily addressed by the dou-

bling technique as used in the classic adversarial bandit problem [11]. Specifi-

cally, we partition the time horizon into phases with length Tr = 2r, r = 0, 1, ...,

and run the HLMC policy as a subroutine in every phase. The input parameters

are chosen accordingly by letting T = Tr. It is not difficult to show that the same

regret order still holds.

3.4.2 Minimizing Weak Regret with High Probability

In this subsection, we further discuss applying EXP3.P [11, 13] at both group

and arm levels of HLMC to achieve no-regret learning with high probability

under the notion of weak regret.
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Different from EXP3 that uses an unbiased estimate r̂i,t =
ri,tI(it=i)

pi,t
in updat-

ing arm weights, the EXP3.P algorithm adopts an upper confidence bound r̃i,t

instead, which guarantees that the true reward is upper bounded by the new

estimate with high probability. The detailed EXP3.P algorithm is summarized

in Algorithm 7.

Algorithm 7: EXP3.P [13]

Input: A the arm set, η > 0, and γ, β ∈ (0, 1).

Initialize wi,1 = 1,∀i ∈ A.

for t = 1, 2, ...,T do

Let

pi(t) = (1 − γ)
wi,t∑

j∈A w j,t
+

γ

|A|
, ∀i ∈ A.

Draw arm it according to the probabilities (pi,t)i∈A.

Receive reward rit ,t.

Let

r̃i,t =
ri,tI(it = i) + β

pi,t
.

Update

wi,t+1 = wi(t) exp
(
ηr̃i,t

)
, ∀i ∈ A

We show in the following theorem that by adopting EXP3.P at both group

and arm levels with parameters (η1, γ1, β1) and (η2, γ2, β2) respectively, the weak

regret of HLCM has a sublinear growth rate in T with high probability.

Theorem 8 For any T,K,M, assume that M > 2
√

K. For any δ ∈ (0, 1), if the input

parameter ∆ =

⌈√
T N ln(2KT/δ)

L ln(2L/δ)

⌉
(where N, L are defined in the algorithm), and the EXP3.P

algorithm is adopted at both the group level with β1 =

√
ln(2L/δ)

LS , η1 = 0.95
√

ln L
LS , γ1 =
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1.05
√

L ln L
S , and the arm level with β2 =

√
ln(2KS/δ)

N∆
, η2 = 0.95

√
ln N
N∆
, γ2 = 1.05

√
N ln N

∆
,

then for any assignment of the reward sequence, the weak regret of HLCM with a two-

level hierarchy is upper bounded by

Rw(T ) ≤ 12.5T
3
4 K

1
4 (ln (2KT/δ))

1
2 , (3.19)

with probability at least 1 − δ.

Theorem 8 is proved through a similar structure with that used in analyzing

the expected weak regret of HLMC in Sec. 3.4.1. Specifically, the weak regret is

decomposed as:

Rw(T ) =

S∑
s=1

∑
t∈Ts

rimax,t −

S∑
s=1

|Ts|y`max,s

+

S∑
s=1

|Ts|y`max,s −

S∑
s=1

∑
t∈Ts

rit ,t (3.20)

= R1(T ) + R2(T ),

where imax is the arm with the greatest cumulative reward in hindsight, `max is

the group index of imax, y`max,s is the average reward obtained by running the

arm-level EXP3.P algorithm on A`max during epoch s, and it is the arm selected

by the algorithm at time t.

We first upper bound R1(T ), which corresponds to the arm-level reward loss

due to playing suboptimal arms in A`max assuming that A`max is selected at all

epochs. It suffices to upper bound∑
t∈Ts

rimax,t − |Ts|y`max,s, (3.21)

for every s. It is clear that (3.21) is equivalent to the weak regret of applying the

arm-level EXP3.P algorithm onA`max during epoch Ts, which is upper bounded

in the following lemma proved in [13].
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Lemma 3 (Theorem 3.2 in [13]) For every δ0 ∈ (0, 1), by choosing β2 =√
ln(N/δ0)

N∆
, η2 = 0.95

√
ln N
N∆
, γ2 = 1.05

√
N ln N

∆
, the arm-level EXP3.P algorithm conducted

on arm group A` during epoch Ts guarantees that, for every assignment of the reward

sequence, ∑
t∈Ts

rimax,t − |Ts|y`max,s ≤ 5.15
√

N∆ ln(N/δ0) (3.22)

with probability at least 1 − δ0.

To upper bound R2(T ), which corresponds to the group-level reward loss

due to not selectingA`max at every epoch, we rewrite R2(T ) as

R2(T ) = ∆

 S∑
s=1

y`max,s −

S∑
s=1

y`s,s

 (3.23)

where `s is the group selected by the group-level EXP3.P algorithm at epoch s

(we assume without loss of generality that every epoch has equal length ∆).

As argued in Sec. 3.4.1, the realization of y`,s is independent across `, s and

is independent of the past group selection history. Once we fixed a sequence

of realizations of ((y1,s, ...yL,s))S
s=1, Lemma 3 can be applied to upper bound the

group-level regret R2(T ) with high probability.

Proof 10 (Proof of Theorem 8) For any δ > 0, we apply Lemma 3 to all groups ` =

1, ..., L and all epochs s = 1, ..., S by choosing δ0 = δ
2LS . Then using the union bound,

we obtain that with probability at least 1 − δ/2, the upper bound in (3.21) holds for all

` and s. As a result, the arm-level regret R1(T ) is upper bounded as:

R1(T ) ≤ 5.15S
√

N∆ ln(2NLS/δ)

= 5.15

√
T 2

∆
N ln

(
2KS
δ

)
, (3.24)

with probability at least 1 − δ/2.
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Moreover, we apply Lemma 3 again to the group-level selection strategy by choosing

δ0 = δ/2. We obtain that with probability at least 1 − δ/2,

R2(T ) ≤ 5.15∆
√

LS ln(2L/δ)

= 5.15
√

T∆L ln(2L/δ). (3.25)

The upper bound on Rw(T ) in Theorem 8 is obtained by choosing ∆ =

⌈√
T N ln(2KT/δ)

L ln(2L/δ)

⌉
and combining (3.24) and (3.25) using the union bound.

3.4.3 Minimizing Shifting Regret in Expectation

To achieve no-regret learning under a stronger regret notion: shifting regret, we

consider applying EXP3.S, a variant of the EXP3 algorithm, at the group level of

the HLMC policy.

In the EXP3.S algorithm, a fixed share is added to the update process of arm

weights, i.e., g`,s+1 = g`,s exp(γ′ŷ`,s) + α′Gs. One step forward gives that g`,s+2 =

g`,s exp(γ′(ŷ`,s + ŷ`,s+1)) + α′Gs exp(γ′ŷ`,s+1). It is not difficult to see that ŷ`,s+1 has

a greater impact than ŷ`,s on future arm weights. As a result, the arm selection

relies more on recent rewards. The detailed EXP3.S algorithm is summarized in

Algorithm 8.

At the arm-level, we still adopt the EXP3 algorithm for arm selection. It

should be noted that the arm-level strategy in the HLMC policy is restarted at

the beginning of every epoch, which guarantees quick elimination of the past

experience. Therefore, the hierarchical structure automatically adapts to the

variation of the benchmark sequence. In the following theorem, we provide an

upper bound on the expected shifting regret of HLMC when EXP3.S and EXP3
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Algorithm 8: EXP3.S [11]

Input: A the arm set, γ ∈ (0, 1), and α > 0.

Initialize wi,1 = 1,∀i ∈ A.

for t = 1, 2, ...,T do

Let

pi(t) = (1 − γ)
wi,t∑

j∈A w j,t
+

γ

|A|
, ∀i ∈ A.

Draw arm it according to the probabilities (pi,t)i∈A.

Receive reward rit ,t.

Let r̂i,t =
ri,t

pi,t
I(it = i) and update

wi,t+1 = wi(t) exp
(
γr̂i,t

|A|

)
+

eα
|A|

∑
i∈A

wi,t.

are applied at the group and arm levels, respectively.

Theorem 9 For any T,K,M, and V , assume that M ≥ 2
√

K and T ≥ VK. If the input

parameter ∆ =

⌈√
T N ln N

VL ln(T L)

⌉
(where N, L are defined in the algorithm), adopting EXP3.S

at the group level with γ1 =

√
VL ln (LS )

S , α = 1/S , and EXP3 at the arm level with

γ2 =

√
N ln N

2∆
guarantees that, for every assignment of the reward sequence, the expected

shifting regret of HLMC with a two-level hierarchy is upper bounded by:

EHLMC[Rs(T,V)] ≤ 9T
3
4 V

1
4 K

1
4 (ln (KT ))

1
2 , (3.26)

under a hardness constraint V on the benchmark action sequence.

Corollary 2 If V = o(T ) as T → ∞, the HLMC algorithm achieves no-regret learning

in expectation under the notion of shifting regret with hardness constraint V .
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To upper bound the expected shifting regret of the HLMC algorithm against

an arbitrary benchmark action sequence aT with a hardness constraint V , the

key technique is to construct an alternative benchmark sequence bT such that:

(i) H(bT ) ≤ V , (ii) the cumulative reward achieved by bT is close to that achieved

by aT , and (iii) the actions specified by bT are invariant within each epoch. With

such a sequence bT , it suffices to show that the expected shifting regret of HLMC

against bT has a sublinear growth rate in T .

We follow the same proof structure with that used for analyzing the expected

weak regret in Sec. 3.4.1. First note that the constructed sequence bT is fixed

within each epoch. Therefore, the arm-level regret analysis in Lemma 2 directly

carries over. At the group-level, the reduction to a new adversarial bandit prob-

lem with noisy observations is still legitimate since the group specified by the

benchmark sequence is fixed within each epoch. Based on the reduction, we

obtain the following result on applying the EXP3.S algorithm at the group level.

Lemma 4 By choosing γ1 =

√
LV ln(LS )

S and α = 1/S , the group-level EXP3.S algorithm

guarantees that, for every assignment of the reward sequence ((r1,t, ..., rK,t))T
t=1 and every

benchmark sequence of arm groups hS = (h1, ..., hS ) where H(hS ) ≤ V ,

S∑
s=1

xhs,s − EGroup-EXP3.S

 S∑
s=1

x`s,s

 ≤ 4
√

VLS ln(LS ), (3.27)

where `s is the arm group selected at epoch s.

Proof 11 See Appendix B.2

The upper bound in Theorem 9 on the expected shifting regret of the HLMC

algorithm against any benchmark action sequence with hardness constraints V

is obtained by combining Lemma 2 in Sec. 3.4.1 and Lemma 4 together.
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Proof 12 (Proof of Theorem 9) For an arbitrary benchmark action sequence aT such

that H(aT ) ≤ V , we first construct an alternative benchmark sequence bT as follows:

suppose the time horizon is partitioned into V segments:

[T1,T2), [T2,T3), ..., [TV ,TV+1), (3.28)

where T1 = 1,TV+1 = T + 1, and at is fixed for all t ∈ [Tv,Tv+1) (let jv denote that arm

and hv denote the group it belongs to). Suppose Tv belongs to epoch sv. The alternative

benchmark sequence bT is defined as

bt = jv, if s(t) ∈ [sv, sv+1), (3.29)

where s(t) is the epoch to which time t belongs.

One can check that the action specified by bT is fixed within each epoch and H(bT ) ≤

V . Moreover, bT differs from aT only in the epochs when a change happens in aT , i.e.,

{sv}
V
v=1. Therefore,

T∑
t=1

(
rat ,t − rbt ,t

)
≤ V∆. (3.30)

We decompose the expected shifting regret against aT as:

EHLMC[RaT (T )]

=

T∑
t=1

(
rat ,t − rbt ,t

)
+

 T∑
t=1

rbt ,t −

V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s

 (3.31)

+

( V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s − EHLMC

 T∑
t=1

rit ,t

 )
= R1(T ) + R2(T ) + R3(T ). (3.32)

Note that R1(T ) ≤ V∆. For R2(T ), we have

R2(T ) =

V∑
v=1

sv+1−1∑
s=sv

∑
t∈Ts

rbt ,t −

V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s

≤ 2S
√

2∆N ln N, (3.33)
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where the last inequality uses Lemma 2.

For R3(T ), we can show that

R3(T ) =

V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s − EGroup-EXP3.S

 S∑
s=1

∆x`s,s


≤ 4∆

√
VLS ln(LS ), (3.34)

where the last inequality uses Lemma 3.

Combining the above inequalities together and choosing ∆ =

⌈√
T N ln N

VL ln(T L)

⌉
, we can

derive that

EHLMC[RaT (T )] ≤ 8T
3
4 V

1
4 K

1
4 (ln(KT ))

1
2 +
√

TVK ln K. (3.35)

Notice that if T ≥ VK, the first term on the RHS of (3.35) dominates. Since aT is chosen

arbitrarily with hardness constraint V , we obtain the conclusion in Theorem 2.

It should be noted that to achieve the upper bound established in Theorem

9, the knowledge of V is required in selecting input parameters. When V is un-

known, we show in the following theorem that no-regret learning under shifting

regret can still be achieved by HLMC in expectation under certain conditions.

Theorem 10 By selecting ∆ =

⌈√
T N ln N
L ln(T L)

⌉
and γ1 =

√
L ln(LS )

S (the other parameters

are selected as specified in Theorem 9), the expected shifting regret of HLMC with a

two-level hierarchy under hardness constraint V is upper bounded by:

EHLMC[Rs(T,V)] ≤ (V + 3)T
3
4 K

1
4 (ln (KT ))

1
2 . (3.36)

If V = o(T 1/4) as T → ∞, no-regret learning is achieved by HLMC in expectation under

shifting regret with hardness constraint V , even with V unknown.

Proof 13 The proof is similar to that of Theorem 9 and thus, we omit the details.
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3.5 Tradeoff Between Memory Complexity and Regret Perfor-

mance

In this section, we characterize the tradeoff between the memory complexity

and the regret order of the HLMC policy through analyzing its performance

with a general D-level hierarchy (D > 2). For simplicity, we provide detailed

analysis for the case with D = 3. All the results can be easily generalized to

cases with more than three levels.

We first introduce some notations used in the analysis. The three levels in the

hierarchy are referred to as the group, subgroup, and arm levels, respectively. In

the first level, the arm setA is evenly partitioned into N1 groups {A`}
N1
`=1. Within

each group A`, arms are further evenly partitioned into N2 subgroups {B`h}
N2
h=1

in the second level. In the last level, each subgroup B`h consists of N3 arms.

We assume without losing generality that the size of every group (subgroup) is

identical. It is clear that K = N1N2N3. Similarly, the time horizon T is evenly

partitioned into S 1 epochs {Ts}
S 1
s=1 and every epoch Ts is evenly partitioned into

S 2 subepochs {Is
τ}

S 1
τ=1. We assume that every sub-epoch consists of S 3 time steps

and thus, T = S 1S 2S 3.

The HLMC policy consists of three selection strategies at the group, sub-

group, and arm levels. At the beginning of every epoch Ts, the group-level

strategy selects an arm groupA`s . The statistics of all sub-groups withinA` are

stored in the memory during Ts. Within epoch Ts, the subgroup-level strategy

selects a subgroup B`s
hτ

at the beginning of every subepoch Is
τ and the statistics

of arms within B`s
hτ

are stored in the memory during Is
τ. The arm-level strategy

is conducted on the selected subgroup to play arms at every time step within
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the corresponding subepoch.

It is clear that the size of the memory space required by HLMC with a three-

level hierarchy equals N1 + N2 + N3. As long as M ≥ 3dK1/3e, there exists an

partition of groups and subgroups satisfying that N1N2N3 ≥ K and N1 + N2 +

N3 ≤ M. Therefore, the minimum memory space required by HLMC is of order

Ω(K1/3). More generally, if we adopt a D-level hierarchy where each level d

(d = 1, 2, ...,D) consists of Nd level-d groups such that
∏D

d=1 Nd ≥ K, the minimum

memory complexity of HLMC with D levels is of order Ω(DK1/D). It should be

noted that a level-d group should contain at least 2 level-(d + 1) groups. As a

result, the number D of levels is upper bounded by dlog2 Ke and the minimum

memory complexity that the general HLMC learning architecture can achieve

is Ω(log2 K).

We show that HLMC with a three-level hierarchy achieves no-regret learning

in expectation under the notion of weak regret if we adopt EXP3 at all three

levels. Using a similar approach with that in analyzing the regret performance

of adopting a two-level hierarchy, we prove an upper bound on the expected

weak regret of HLMC in the following theorem.

Theorem 11 For any T,K,M, suppose M ≥ 3dK1/3e and there exists an arm partition

with parameters N1,N2,N3 such that N1N2N3 = K and N1 +N2 +N3 ≤ M. Then at every

level i = 1, 2, 3, by choosing S i =

⌈
T 1/3(Ni ln Ni)2/3

(
∏

j,i N j ln N j)1/3

⌉
and applying EXP3 with parameter

γi =

√
Ni ln Ni

2S i
, the expected weak regret of HLMC with a three-level hierarchy against

every assignment of the reward sequence is upper bounded by

EHLMC[Rw(T )] ≤ 12T 5/6K1/6(ln K)1/2. (3.37)

Proof 14 See Appendix B.3.
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For the general HLMC policy with a D-level hierarchy (2 ≤ D ≤ dlog2 Ke), the

following corollary on the expected weak regret can be directly derived.

Corollary 3 If EXP3 is applied to all D levels of the general HLMC policy, the expected

weak regret is of order

O(DT 1− 1
2D K

1
2D ) (3.38)

up to a logarithmic factor, as T → ∞.

Proof 15 The proof is similar to that of Theorem 7 and 11 and thus, we omit the details.

Corollary 3 indicates that the regret order of the HLMC policy depends on

the depth of the adopted hierarchy: with less available memory, a deeper hi-

erarchy is required, and a larger regret order is induced. In particular, with M

available words of memory, we define the minimum number D∗(M) of levels

required by HLMC to achieve no-regret learning as:

D∗(M) = min{D ∈ N+ : DdK1/De ≤ M}. (3.39)

The minimum regret achieved by HLMC with M memory space is of order

O
(
D∗(M)T 1− 1

2D∗(M) K
1

2D∗(M)
)
. (3.40)

In the special case without memory constraints (i.e., M ≥ K), it is clear that

D∗(M) = 1 and the HLMC policy with a single-level hierarchy reduces to a clas-

sical learning policy for standard adversarial bandit problems. In this case, the

regret order achieved by HLMC is O(
√

KT ) up to a logarithmic factore, which

coincides with the classical results. In another extreme case when M = Θ(log2 K),
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the size of available memory space reaches the minimum requirement of a legit-

imate hierarchy where D∗(M) = dlog2 Ke. In this case, the regret order achieved

by HLMC is still sublinear in T .

One may notice that the theoretical regret performance of HLMC does not

improve when M increases but with D∗(M) unchanged since the dependency of

the regret order with respect to the available memory is quantized. However,

we show in Sec. 3.6.3 through numerical examples that in certain cases, a better

performance can be achieved with a larger memory space, even if the number

of levels in the hierarchy is unchanged.

3.6 Numerical Examples

In this section, we illustrate the regret performance of the proposed HLMC pol-

icy numerically through simulations. All the experiments are run 10 times using

a Monte Carlo method on Python 3.7.

3.6.1 Weak Regret Minimization

We conduct two experiments to compare the regret performance of the HLMC

policy with baseline ones under the notion of weak regret. Given that this is the

first work on memory-constrained adversarial bandits, we consider two base-

lines: UCB-M (proposed in [22] for memory constrained stochastic bandits) and

EXP3 (for classic adversarial bandits without memory constraints).

We first notice that the only randomness of UCB-M comes from the random
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shuffle of arm indices before playing arms, which provides no improvement on

the performance in the stochastic setting. Without the random shuffle, UCB-

M is purely deterministic and thus, we can easily construct a reward sequence

such that UCB-M incurs a regret linear in T . Specifically, in the first experi-

ment, we consider the following setup: let K = 100, M = 20, and T = 107. In

accordance with the UCB-M policy, we partition the time horizon into phases

with length 2ih0b0 (i = 0, 2, ...) and each phase evenly into h0 sub-phases with

length 2ib0. We select h0 = d K−1
M−1e and b0 = M(M + 2). For each phase, we as-

sign arm rewards as follows: during each subphase u = 0, 2, ..., h0 − 1, we let

arm (M(u + 1) mod K) offer reward 1 and the other arms offer reward 0. Since

UCB-M selects arm groups with size M in a round-robin fashion, it is clear that

arms selected by UCB-M offers 0 reward at almost all time steps. The weak

regret of UCB-M is clearly linear in T . For HLMC, For HLMC, we adopt a two-

level hierarchy and apply EXP3 to both group and arm levels. The simulation

results on the expected weak regret are presented in Fig. 3.2.

From Fig. 3.2, we can observe that the proposed HLMC policy outperforms

the UCB-M policy under the constructed adversarial environment. The error

bar indicates that the proposed learning policy is robust with low variance.

Note that although the EXP3 algorithm achieves the best performance, it re-

quires Θ(K) memory size, which is infeasible in the memory-constrained set-

ting. We also plot the theoretical upper bounds on the regret of HLMC and

EXP3 (i.e., T
3
4 K

1
4 (ln K)

1
2 and

√
T K ln K where the constant factors are omitted),

which verify that the expected weak regret of HLMC is indeed upper bounded

by the theoretical bound established in Theorem 7. It should be noted that the

gap between the theoretical and the simulated results is due to the fact that the

cumulative reward of the best arm is T/5 instead of T in this experiment. There-
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Figure 3.2: Weak regret v.s. time: comparison of UCB-M (without shuffle),
HLMC, and EXP3.

fore, the theoretical upper bound is not tight because we use T to upper bound

the cumulative reward of the best arm (see the proof of Lemma 1 in Appendix

B.1 for details).

We further use another example to show that even with random shuffle,

UCB-M still cannot avoid a linear regret in T against adversaries. We consider

the same experiment setup with a different reward assignment. Specifically, the

phase and subphase partitions are the same with those in the first experiment.

During each subphase u = 0, 2, ..., h0 − 1, we let arm 1 offer (u mod 2) reward

and the other arms offer ε = 1 × 10−4 rewards. It is not difficult to check that

after every time arm 1 is selected by UCB-M and offers reward 1, it will offer 0

reward in the next subphase and will be excluded from the arm memory. As a

result, the UCB-M policy suffers a linear regret order in T . For HLMC, we adopt

EXP3 at both group and arm levels. The results are shown in Fig. 3.3.
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Figure 3.3: Weak regret v.s. time: comparison of UCB-M (with shuffle),
HLMC, and EXP3.

The results in Fig. 3.3 illustrate the advantage of HLMC against UCB-M.

Moreover, the random shuffle step in UCB-M introduces extremely high vari-

ance with little improvement on the expected weak regret. The comparison

between the theoretical upper bounds and the simulated results again verifies

the correctness of the analysis in Theorem 7.

3.6.2 Shifting Regret Minimization

We further conduct an experiment to show the regret performance of HLMC

with a two-level hierarchy under the notion of shifting regret. As discussed in

Sec. 3.4.3, by adopting EXP3.S at the group level, HLMC achieves a sublinear

scaling of shifting regret in T . In this experiment, we compare the performance

of HLMC adopting EXP3.S at the group level and EXP3 at the arm level (referred
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Figure 3.4: Shifting regret v.s. time: comparison of HLMC.S, HLMC, and
EXP3.S.

to as HLMC.S in this subsection), HLMC adopting EXP3 at both group and

arm levels (referred to as HLMC in this subsection), EXP3, and EXP3.S. The

experiment is set up as follows: let K = 16,M = 8, and T = 106. The time

horizon is partitioned evenly into V = 10 phases. In phase v = 0, 1, ...,V − 1,

we let arm iv = (vN mod K) offer reward 1 and the other arms offer reward 0

(N is the group size defined in the HLMC algorithm, which equals 4 in this

experiment). It is clear that the best benchmark policy in the shifting regret

definition with hardness V is to play the best arm iv within every phase v. The

simulation results are presented in Fig. 3.4.

It can be observed from Fig. 3.4 that HLMC.S outperforms HLMC and

EXP3, which are designed for weak regret minimization. Adopting EXP3.S at

the group level of the HLMC structure improves the regret performance under

the notion of shifting regret. Moreover, the error bar verifies the robustness of
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Figure 3.5: Weak regret v.s. time: comparison of HLMC with M =

14, 20, 50, 80 memory space.

the proposed policies. It should be noted that although EXP3.S outperforms

HLMC and HLMC.S, it requires Θ(K) memory space, which is inapplicable in

the memory-constrained setting.

3.6.3 Impact of Available Memory on Regret Performance

In this subsection, we show the impact of the size of available memory space

on the regret performance of HLMC. We use the same experiment setup with

that in the first experiment in Sec. 3.6.1. We compare the weak regret of HLMC

with M = 14, 20, 50, 80. Specifically, when M = 14, the HLMC policy adopts a

three-level hierarchy with N1 = 5,N2 = 5, and N3 = 4. When M = 20, 50, 80, the

HLMC policy adopts two-level hierarchies with N = dM−
√

M2−4K
2 e and L = dK/Ne.
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The results in Fig. 3.5 show that the regret performance of HLMC improves

as the size of the memory space increases. In particular, adopting a hierarchy

with fewer levels improves the regret order as indicated in Corollary 3. Even

with the same number of levels, a smaller regret can be achieved with a larger

memory space. Intuitively, as M increases, the group size N and the epoch

length ∆ decrease. Since the reward sequence assigned in the experiment is

stable within a short period but varies vastly in the long run (it has been argued

in [70] that such a reward assignment is justified in various real-world applica-

tions), the arm-level regret is dominated by the group-level regret and the latter

decreases with the epoch length. We also plot the theoretical upper bounds on

the regret of HLMC with different levels of hierarchies. The comparison be-

tween the theoretical the simulated results verifies our analysis.
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CHAPTER 4

BANDITS IN DYNAMIC ENVIRONMENTS

Dynamicity abound in various application domains. A typical example is on-

line recommendation, in which users’ interests toward items are dynamically

changing and the preference changes are distinct and asynchronous across dif-

ferent items. For example, in news recommendation, changes on the prefer-

ences of readers towards different news categories are triggered by the occur-

rence of related hot events, which are unlikely to happen at the same time.

In e-commerce platforms, customers’ life-long interests over different products

also exhibit distinct changes: a customer is more likely to purchase toys in his

childhood while in adulthood, he may become more interested in sport-related

products. However, the preference changes over the two categories can happen

asynchronously as there may exist a time period (e.g., adolescence) when the

customer likes both toys and sports. Moreover, it is possible that the customer’s

preferences towards other products (e.g., snakes) remain unchanged over time.

To characterize the above phenomena in real applications, we introduce two

reward models within the contextual bandit framework in this chapter. Under

each model, we develop a learning strategy that adapts to the changing envi-

ronment. We provide performance guarantees of the proposed algorithms in

both theory and practice.
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4.1 Literature Review of MAB with Dynamic Reward Models

In addressing the issue of dynamic environments, various reward models have

been studied in the bandit literature. The adversarial bandit model discussed

in Chapter 3 is a typical example with dynamicity where the reward at every

time step is arbitrarily assigned. However, in applications such as online rec-

ommendation, users’ preferences toward items are usually stationary within a

short period of time, but may change abruptly in the long term.

Therefore, a more appropriate model is the piecewise-stationary stochas-

tic reward model, which allows arbitrary changes on the reward distributions

at certain unknown time points but remains fixed between two consecutive

change points. Under the piecewise-stationary assumption, the problem has

been well studied in the classical context-free setting. A number of learning

algorithms have been developed that adapts to the abrupt reward changes by

either triggering a reset of the learning algorithm after the detected changes

[41, 69, 17] or applying a discount factor on past observations [35]. Theoretical

regret analysis showed that a sublinear scaling of regret in T is achieved.

Within the contextual bandit setting, however, only a few recent studies have

taken the issue of non-stationary environment into consideration. In [40], a

contextual Thompson sampling algorithm with a change detection module was

proposed but theoretical regret analysis is lacking. In [65], a hierarchical bandit

algorithm was developed that detects and adapts to changes by maintaining a

suite of contextual bandit models and a regret sublinear in T was proved. How-

ever, the existing results assumed a uniform reward model where all arms share

a common coefficient vector representing the user interests, which fails to char-
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acterize the fact that users’ preferences towards different items vary differently.

Recently, a so-called context-dependent property was considered in [66] where

arms are partitioned into change-invariant and change-sensitive ones based on

their context vectors to characterize the distinct reward changes. However, the

changes are not completely asynchronous across arms. A more detailed com-

parison between various models is discussed in the next section.

4.2 Problem Formulation

Consider a contextual bandit problem with K arms and a time horizon of

length T . At each time t, a recommender system observes the current user ut

with a d-dimensional feature vector xut . A subset At ⊆ [K] of arms is available

for selection and each arm a ∈ At is associated with an m-dimensional feature

vector ya. The system recommends an arm at to the user ut and observes a ran-

dom reward rut ,at(t) (i.e., clicks, ratings, etc.), which is drawn from an unknown

distribution f (·; xut , yat ,W(t)) where W(t) = (w1(t), ...,wm(t)) ∈ Rd×m is a time-

varying unknown weight matrix representing the preferences of users towards

items in the feature space. The conditional expectation of the reward rut ,at(t)

given the feature vectors and the weight matrix is defined as

E[rut ,at(t)|xut , yat ,W(t)] = xT
ut

W(t)yat . (4.1)

Without loss of generality, we assume that the probability distribution of the

random reward rut ,at(t) is sub-Gaussian with parameter σ. The objective is an

arm selection policy π that maximizes the expected cumulative reward over the

entire time horizon, i.e., E[
∑T

t=1 rut ,πt(t)] where πt is the arm selected by policy

π at time t. Equivalently, we may find a policy π that minimizes the expected
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cumulative regret defined as the expected reward loss of policy π against the

best policy in the known model case, i.e.,

R(T ) = E

 T∑
t=1

rut ,a∗t (t) − rut ,πt(t)

 , (4.2)

where a∗t is the arm with the largest expected reward at t. It should be noted

that the benchmark policy is different from that in the stochastic bandit setting

discussed in Chapter 2: the best arm at every time step is specific to the given

context information and can be different across time. It is also stronger than

the benchmark policies adopted in the adversarial bandit setting discussed in

Chapter 3 where a best fixed action or a best action sequence with a hardness

constraint are considered. Moreover, in this chapter, we focus on the problem-

independent setting in analyzing the regret performance. In particular, the re-

gret is measure under the worst-case assignment (satisfying certain regularity

assumptions) of the context vectors of both users and items, the unknown pref-

erence matrix, and the resulting reward distributions.

In the stationary scenario where W(t) is fixed over time (i.e., W(t) ≡ W),

the above formulation is equivalent to the standard contextual bandit model

with linear rewards as studied in the literature [8, 24, 5]. Specifically, let zut ,a =

vec(xuty
T
a ) be the context vector1 associated with arm a at time t and β = vec(W)

be an unknown preference vector. It is clear that E[rut ,a(t)|xut , ya,W] = zT
ut ,aβ. The

unknown preference vector β can be efficiently estimated in an online fashion

at each time t via ridge regression (see the LinUCB algorithm in [49]), and is

applied to the reward estimation and the arm selection at time t + 1.

In the non-stationary scenario, however, estimating W(t) is in general chal-

lenging if elements of W(t) vary arbitrarily: without constraints on the variation

1vec(·) is the vectorization operator that concatenates columns of a matrix to a single vector.
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of the parameters, estimating W(t) is impossible. Moreover, to characterize the

fact that the preferences of users towards different items vary asynchronously

and distinctly, elements of W(t) should exhibit different varying patterns. How-

ever, the effects of different elements of W(t) on the obtained rewards are dif-

ficult to be distinguished, which leads to the challenge of detecting unknown

changes on each element from reward observations. To address the two chal-

lenges, we turn to consider approximated reward models to simplify the prob-

lem, and adopt certain assumptions on the varying patterns of the reward pa-

rameters. Specifically, we study two reward models, i.e., the disjoint reward model

and the hybrid reward model.

4.2.1 Disjoint Reward Model

In the disjoint reward model, we let the combination of W(t) and ya, i.e., θa(t) =

W(t)ya be the unknown preference vector associated with arm a at time t. The

expected reward of recommending item a to user u at time t is then equivalent

to the inner product of xu and θa(t), i.e.,

E[ru,a(t)|xu, θa(t)] = xT
u θa(t). (4.3)

We adopt a piecewise-stationary assumption on θa(t). To be specific, the time

horizon is partitioned into Ma stationary segments with Ma + 1 change points

{ν(`)
a }

Ma
`=0 where ν(0)

a = 0 and ν(Ma)
a = T . Within each segment, θa(t) is assumed

to be fixed, i.e., θa(t) ≡ θ(`)
a , ∀t ∈ [ν(`−1)

a + 1, ν(`)
a ], 0 ≤ ` ≤ Ma. The sequence of

changes points may be different across arms, which characterizes the fact that

users’ preferences towards different items may change asynchronously.
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4.2.2 Hybrid Reward Model

In a more general model with hybrid rewards, we further assume that W(t) con-

sists of both a time-varying component Wv(t) and a time-invariant component

Wc, i.e., W(t) = Wv(t) + Wc. In particular, Wv(t) represents the dynamically chang-

ing preferences of users towards items and Wc represents the stationary internal

interests of users that are unaffected by the external environment.

For the time-varying component Wv(t), we adopt the same approximation

method as the one used in the disjoint setting and define θa(t) = Wv(t)ya be the

arm-specific preference vector of arm a. For the time-invariant component, we

define β = vec(Wc) be the joint coefficient vector shared by all arms. It is not

difficult to see that the expected reward of recommending arm a to user u at

time t satisfies that

E[ru,a(t)|xu, zu,a, θa(t), β] = xT
u θa(t) + zT

u,aβ, (4.4)

where zu,a = vec(xuyT
a ) is a k-dimensional (k = d × m) cross-feature vector of

the user-item pair. We adopt the same piecewise-stationary assumption on the

arm-specific vectors θa(t) as that assumed in the disjoint setting, which allows

asynchronous changes across different arms.

4.2.3 Comparisons with Existing Models

We first compare the two reward models with the stationary ones in the classical

contextual bandit setting. It is clear that both models are direct extensions of the

stationary reward models studied in [49] where the preference vectors θa(t),∀a

are assumed to be fixed over time. As discussed in the introduction section, it
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is more realistic to consider non-stationary preferences in real applications as

users’ interests are in general time-varying.

In considering the non-stationary environment within the contextual bandit

setting, the majority of existing studies [65, 66] assumed a uniform (joint) re-

ward model where all arms share a common coefficient vector θu(t) representing

the interests of user u. The expected reward is thus defined as

E[ru,a(t)|ya, θu(t)] = yT
a θu(t). (4.5)

Notice that the uniform reward model is another approximation of the bilinear

model defined in (4.1): θu(t) is the combination of xu and W(t), i.e., θu(t) = WT (t)xu.

In the literature, θu(t) is assumed to be piecewise-stationary to model the time-

varying interests of users. The fact that users’ preferences change differently

towards different items is, however, not characterized.

The issue was partially addressed in [66] where the so-called context-

dependent property was considered. It has been assumed that the expected re-

wards of certain arms are insensitive to the changes of θu(t) (i.e., for some sta-

tionary periods i and j, |yT
a θ

(i)
u − yT

a θ
( j)
u | ≤ ∆L, where ∆L is a small constant), while

the other arms are change-sensitive. The partition of arms based on their con-

text vectors models the distinct reward changes on different arms. However,

the change points across arms are not completely asynchronous: it has been

assumed in [66] that between any two stationary periods, there should be a suf-

ficient number of change-sensitive arms undergo perceivable changes to distin-

guish the two periods. As a result, the user preferences towards a large fraction

of arms change simultaneously at the change points of θu(t).

Moreover, we further study a general hybrid reward model consisting of

both arm-specific and joint preference vectors that correspond to the time-
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varying and the time-invariant interests of users respectively. To the best of our

knowledge, the hybrid reward model with dynamically changing user interests

has not been studied in the literature.

4.3 PSLinUCB Algorithm in the Disjoint Reward Model

We first consider the disjoint reward model in this section. The key to achiev-

ing the objective of minimizing regret under the assumption of piecewise-

stationary rewards is to i) estimate the preference vectors accurately, and ii) de-

tect the abrupt changes timely and correctly. We propose a PSLinUCB (Piecewise-

Stationary Linear Upper Confidence Bounds) algorithm to address the two issues.

To estimate the preference vectors, we adopt a learning structure similar to

that of the LinUCB algorithm (proposed in [49] in the stationary contextual ban-

dit setting). In particular, the unknown preference vectors θa(t),∀a are estimated

through ridge regression and can be updated incrementally at each time t. To

detect the preference changes timely and correctly, the key technique adopted

in the algorithm is to maintain a sliding window for each arm consisting of the

most recent reward observations from the arm. If the preference vector learned

from observations before the sliding window cannot accurately predict the re-

wards observed within the window, it is likely that the preference vector has

changed. A new model should then be rebuilt based on the observations after

the change point.

To be more specific, the estimation and the change detection of the prefer-

ence vector θa(t) of every arm a can be executed independently in the disjoint

reward model. For every arm a, the algorithm maintains a sliding window S Wa
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and three different models Mpre
a ,Mcur

a , and Mcum
a . The sliding window S Wa of

lengthω consists of theω latest observations from arm a (including the observed

context vectors and the obtained rewards). Mpre
a consists of necessary statistics

for estimating the preference vector θa(t). It is learned from observations after

the last detected change point and before the sliding window S Wa. Similarly,

Mcur
a with the same set of statistics is learned from observations within the slid-

ing window, and Mcum
a is learned from all observations from the last detected

change point to the current time step. In the following subsections, we describe

the details of the three models and their usage in the two key components of the

PSLinUCB-Disjoint algorithm: (i) parameter estimation and arm selection, and

(ii) change detection and model update.

4.3.1 Parameter Estimation and Arm Selection

In each of the three models Mpre
a ,Mcur

a , and Mcum
a , the preference vector θa(t) can

be estimated by applying ridge regression to the associated set of observations.

Without loss of generality, we take Mcum
a for an example to illustrate the esti-

mation process. Denote {(xut , rut ,a)}t∈Icum
a as the set of observations where Icum

a

is the set of time steps when arm a is played from its last detected change

time (initialized to be 0) to the current time step. θ̂cum
a can be estimated as

θ̂cum
a = (Acum

a )−1bcum
a where Acum

a = Id +
∑

t∈Icum
a

xut x
T
ut

, Id is a d×d identity matrix, and

bcum
a =

∑
t∈Icum

a
rut ,a(t)xut . The statistics Acum

a and bcum
a can be updated incrementally

as described in[49].

Based on the estimated preference vector θ̂cum
a of every arm a ∈ At, we select

arms according to the UCB principle to balance the tradeoff between exploration
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and exploitation. Similar to the LinUCB algorithm, we define a UCB index for

every arm a at time t as xT
ut
θ̂cum

a + α
√

xT
ut

(Acum
a )−1xut . The arm with the greatest

index is selected and the reward observations from the selected arm is used to

update the corresponding models.

4.3.2 Change Detection and Model Update

To detect potential changes on an arm a, we use Mpre
a to predict the rewards

of playing arm a at the time steps within the sliding window. We compare

the predicted rewards with the observed ones to test if the model learned from

earlier data still fits the current observations. To be specific, let {(xs, rs)}ωs=1 be the

set of observations within the sliding window. We test if
∣∣∣ 1
ω

(
∑ω

s=1 xT
s θ̂

pre
at − rs)

∣∣∣ ≥ δ,
where δ is an input threshold.

If a change is detected on arm a, i.e., the average distance between the pre-

dicted rewards and the observed ones in the sliding window exceeds the thresh-

old, we have to restart the learning process of arm a using only observations af-

ter the detected change point. Instead of re-constructing a new model without

using history data, we exploit the observations within the sliding window again

as a warm-start to accelerate learning. In particular, we initialize Mcum
a ,Mpre

a ,

which are used for arm selection and change detection respectively, with Mcur
a ,

which is the model learned from the latest observations after the change point

(i.e., within the sliding window). The sliding window is then emptied to collect

new observations until its length reaches ω again.

If no change is detected on arm a, i.e., the earlier and the current reward

observations follow the same model, we should keep both sets of data to en-
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hance the estimation accuracy. Therefore, Mcum
a keeps unchanged and the slid-

ing window is right-shifted by one time step. Note that Mpre
a and Mcur

a should be

updated accordingly after the right-shifting of S Wa.

The detailed implementation of the entire algorithm is summarized in Algo-

rithm 9. Note that the computation complexity in each time step is O(Kd3) (a

finite number of matrix operations for each arm) and the memory size required

for learning is O(K(d2 + dω)) (three sets of statistics and a sliding window for

each arm).

4.4 PSLinUCB Algorithm in the Hybrid Reward Model

In the hybrid reward model, the preference of a user towards an arm a is de-

termined by both an arm-specific preference vector θa(t) and a joint coefficient

vector β, which should be estimated simultaneously. Therefore, in addition to

a sliding window S Wa and three models Mpre
a ,Mcur

a , and Mcum
a for each arm a,

the PSLinUCB-Hybrid algorithm maintains two global models Gpre and Gcum to

estimate β. Specifically, Gpre is the model learned from the observations from

all arms before their sliding windows and is used for change detection. Gcum is

the model learned from the observations from all arms up to the current time

step and is used for arm selection. The statistics in the two global models are

obtained by applying ridge regression to the associated data. We omit the te-

dious theoretical derivations of ridge regression and describe the key process of

updating the arm-specific and the global parameters below.
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Algorithm 9: PSLinUCB-Disjoint

Input: α > 0, ω ∈ N+, δ > 0.
for t = 1, 2, ...,T do

Observe the feature vector xut of the current user ut and the set of available

armsAt.
//Parameter Estimation and Arm Selection
for a ∈ At do

if a is new then
A{pre,cur,cum}

a ← Id, b{pre,cur,cum}
a ← 0d×1, S Wa ← ∅.

θ̂cum
a ← (Acum

a )−1bcum
a .

pt,a ← xT
ut
θ̂cum

a + α
√

xT
ut

(Acum
a )−1xut .

Play at = arg maxa∈At pt,a, obtain reward rut ,at(t).
Append (xut , rut ,at(t)) to the end of S Wat .

A{cur,cum}
at

← A{cur,cum}
at

+ xut x
T
ut

.

b{cur,cum}
at

← b{cur,cum}
at

+ rut ,at(t)xut .
//Change Detection and Model Update
if |S Wat | ≥ ω then

θ̂
pre
at ← (Apre

at
)−1bpre

at
.

Let S Wat = {(xs, rs)}ωs=1.

if | 1
ω

(
∑ω

s=1 xT
s θ̂

pre
at − rs)| ≥ δ then

A{pre,cum}
at

← Acur
at

, b{pre,cum}
at

← bcur
at

,

Acur
at
← Id, bcur

at
← 0d×1, S Wat ← ∅.

else
(x1, r1)← Popleft(S Wat).

Apre
at
← Apre

at
+ x1xT

1 , Acur
at
← Acur

at
− x1xT

1 ,

bpre
at
← bpre

at
+ r1x1, bcur

at
← bcur

at
− r1x1.

4.4.1 Parameter Estimation and Arm Selection

By applying ridge regression to the observed data, it can be shown that the joint

coefficient vector β̂cum is estimated as β̂cum = (Acum
0 )−1bcum

0 where Acum
0 and bcum

0 are
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coupled with arm-specific parameters Acum
at
,Bcum

at
and bcum

at
. Therefore, the global

and the arm-specific parameters should be updated simultaneously. Specifi-

cally, Acum
0 and bcum

0 are initialized to Im, 0m×k respectively and the parameters are

updated as follows:

Acum
0 ← Acum

0 + (Bcum
at

)T (Acum
at

)−1Bcum
at
,

bcum
0 ← bcum

0 + (Bcum
at

)T (Acum
at

)−1bcum
at
,

Acum
at

← Acum
at

+ xut x
T
ut
,

Bcum
at

← Bcum
at

+ xutz
T
ut ,at

, (4.6)

bcum
at

← bcum
at

+ rut ,at(t)xut ,

Acum
0 ← Acum

0 + zut ,atz
T
ut ,at
− (Bcum

at
)T (Acum

at
)−1Bcum

at
,

bcum
0 ← bcum

0 + rut ,at(t)zut ,at − (Bcum
at

)T (Acum
at

)−1bcum
at
.

The update procedures of Acur
at
,Bcur

at
and bcur

at
are similar to the ones of Acum

at
,Bcum

at
,

and bcum
at

as described above.

In the arm selection step, we follow [49] to define the UCB index of arm a

at time t as xT
ut
θ̂cum

a + zT
ut ,aβ̂

cum + α
√

st,a where θ̂cum
a = (Acum

a )−1(bcum
a − Bcum

a β̂cum). The

exploration term st,a = s(1)
t,a + s(2)

t,a + s(3)
t,a is computed as follows:

s(1)
t,a = zT

ut ,a(Acum
0 )−1zut ,a + xT

ut
(Acum

a )−1xut ,

s(2)
t,a = −2zT

ut ,a(Acum
0 )−1(Bcum

a )T (Acum
a )−1xut , (4.7)

s(3)
t,a = xT

ut
P(Acum

0 )−1PT xut ,

where P = (Acum
a )−1Bcum

a .

97



4.4.2 Change Detection and Model Update

We conduct a change detection process similar to the one adopted in PSLinUCB-

Disjoint to test if the preference vector θat(t) of arm at changes or not. The oc-

currence of a change on at is equivalent to at being replaced by a new arm with

a different set of arm-specific parameters specified by Acur
at
,Bcur

at
, and bcur

at
. As a

result, the global parameters Acum
0 and bcum

0 are coupled with two sets of arm-

specific parameters associated with both the old and the new arm. In particular,

the original arm-specific parameters (i.e., Acum
at
,Bcum

at
, and bcum

at
) used in estimat-

ing Acum
0 and bcum

0 should be replaced by the aggregation of the parameters corre-

sponding to the old arm (i.e., Apre
at
,Bpre

at
, and bpre

at
) and the new arm (i.e., Acur

at
,Bcur

at
,

and bcur
at

):

Acum
0 ← Acum

0 + (Bcum
at

)T (Acum
at

)−1Bcum
at
− (Bpre

at
)T (Apre

at
)−1Bpre

at
− (Bcur

at
)T (Acur

at
)−1Bcur

at

bcum
0 ← bcum

0 + (Bcum
at

)T (Acum
at

)−1bcum
at
− (Bpre

at
)T (Apre

at
)−1bpre

at
− (Bcur

at
)T (Acur

at
)−1bcur

at
.

(4.8)

Moreover, Gpre is re-initialized to the updated Gcum after the detected change

and the arm-specific parameters are updated in the same way with that in the

disjoint reward case.

If no change is detected on at, the updating process is similar to that in

PSLinUCB-Disjoint. Since the overall structure of PSLinUCB-Hybrid is simi-

lar to that in the disjoint case, and the detailed implementation of the algorithm

is rather lengthy, we present all details in Algorithm 11 in Appendix C.1.
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4.5 Theoretical Regret Analysis of a Modified Algorithm

In this section, we introduce a modified version of PSLinUCB and provide an

upper bound on regret in the disjoint reward model. While PSLinUCB un-

der both disjoint and hybrid reward models outperform existing baseline algo-

rithms as shown in Sec. 4.6, there are several technical difficulties in analyzing

their regret performance directly.

Specifically, a warm start after a detected change by initializing the parame-

ters based on reward observations in the sliding window introduces statistical

dependency between parameter estimation and future change detection. In ad-

dition, the change detection process exhibits heavy dependency across different

time steps since the sliding windows may overlap. Moreover, in the hybrid re-

ward model, estimations of arm-specific parameters and global ones can hardly

be decoupled. To avoid such technical difficulties, we make several modifica-

tions on the algorithm without changing the learning structure and key strate-

gies, and analyze its regret performance in the disjoint reward model.

4.5.1 Modified PSLinUCB in the Disjoint Reward Model

The modification includes three steps. First, to avoid dependency between the

estimation and the change detection of the underlying parameters, the obser-

vations in the sliding-window are not re-used for parameter estimation after a

detected change. Also, the change detection procedure only uses observations

within the sliding window rather than all observations after the last detected

change to get rid of heavy dependency across time.
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Second, once a change is detected on an arm, the learning procedures of all

arms get restarted. Note that this modification is only for the purpose of sim-

plifying the analysis. Its impact on the regret order is rather limited: instead

of only re-exploring the arm with reward changes, re-exploring every arm in-

creases the regret order in K. The regret orders in terms of the time length T and

the total number of reward changes are unaffected.

Finally, a round-robin exploration step is added to guarantee sufficient ex-

ploration of every arm so that reward changes can be detected timely. To further

simplify the algorithm design and regret analysis, we assume that the arm set

is fixed throughout the time horizon, i.e., At = A. The details of the modified

PSLinUCB-Disjoint algorithm are summarized below in Algorithm 10.

4.5.2 Regret Analysis

Before providing the theoretical regret analysis, we first introduce some nota-

tions. Let M be the number of total piecewise-stationary segments, i.e.,

M = 1 +

T−1∑
t=1

I(θa(t) , θa(t − 1) for some a ∈ A). (4.9)

Let {νi}
M
i=0 be the change points where ν0 = 0, νM = T . Define L = ωdK/γe where

ω, γ are input parameters of the modified PSLinUCB policy. Let ∆
(i)
a (x) be the

amplitude of the preference change of a user with feature vector x towards an

arm a at the i-th change point, i.e.,

∆(i)
a (x) =

∣∣∣xTθa(νi + 1) − xTθa(νi)
∣∣∣ . (4.10)

Without loss of generality, we assume that the sub-Gaussian parameter σ in

the distribution of the random reward is 1 and ||θa(t)||2 ≤ 1, ||xut ||2 ≤ 1,∀t,∀a ∈ A.
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Algorithm 10: Modified PSLinUCB-Disjoint

Input: α > 0, ω ∈ N+, b, c > 0, γ > 0, and the arm setA.

Initialization: τ← 0,Acum
a ← Id,bcum

a ← 0d×1, SW(a)← ∅,∀a ∈ A.

for t = 1, 2, ...,T do do

//Round-Robin Exploration

Let a = (t − τ) mod bK/γc.

if a ≤ K then

Play arm at = a.

else

//Parameter Estimation and Arm Selection

Observe the feature vector xut of the current user ut.

for a ∈ A do do

θ̂a ← (Acum
a )−1bcum

a .

pt,a ← xT
ut
θ̂a + α

√
xT

ut
(Acum

a )−1xut .

Play at = arg maxa∈At pt,a, obtain reward rut ,at .

Append (xut , rut ,at(t)) to the end of S W(at).

Acum
at
← Acum

at
+ xut x

T
ut

, bcum
at
← bcum

at
+ rut ,at xut .

//Change Detection and Model Update

if |S Wat | ≥ ω then

Let S Wat = {(xs, rs)}ωs=1.

Apre
at

=
∑bω/2c

s=1 xsxT
s , bpre

at
=

∑bω/2c
s=1 rsxT

s , θ̂pre
at ← (Apre

at
)−1bpre

at
.

if | 2
ω

(
∑ω

s=bω/2c+1 xT
s θ̂

pre
at − rs)| ≥ b + c then

∀a ∈ A : Acum
a ← Id,bcum

a ← 0d×1, S Wa ← ∅, τ← t.

Moreover, to guarantee that the reward changes are discernible to the learn-

ing process, we further assume that the lengths of stationary segments and the

magnitude of reward changes are sufficiently large.
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Assumption 6 Assume that νi+1 − vi ≥ L,∀1 ≤ i ≤ M − 1 and ν1 ≥ L/2.

Assumption 7 Assume that there exists ∆ > 0 such that for every user vector x and

change point i, ∆
(i)
a (x) ≥ ∆.

We provide an upper bound on regret of the modified PSLinUCB-Disjoint

algorithm in the following theorem.

Theorem 12 Suppose Assumptions 6 and 7 holds. With appropriate choices of the

input parameters, the cumulative regret of the modified PSLinUCB algorithm under

the disjoint reward model satisfies:

R(T ) ≤ C̃1

√
T MKω + C̃2

√
T MKd2 log2 T , (4.11)

where C̃1, C̃2 are constants independent of T , M, and K.

Proof 16 See the Appendix C.2.

Remark 6 The cumulative regret achieved by the modified PSLinUCB-Disjoint algo-

rithm has a sublinear scaling in T and M, i.e., R(T ) ∼ Õ(
√

MT ) where the Õ notation

hides the logarithmic factor. In other words, the average regret per time step diminishes

to zero as T → ∞ if M ∼ o(T ). Moreover, if we assume that M,K are constants, the

regret order in T is optimal up to a logarithmic factor since the lower bound on regret

in the stationary setting is Ω(
√

T ) [24].

We present here a sketch of the proof based on three key lemmas as pre-

sented below. We first consider a stationary scenario where the preference vec-

tor θa(t) is fixed for all a ∈ A.
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Lemma 5 Consider a stationary scenario with M = 1. For any δ0 ∈ (0, 1) and

α >
√

2d log T
δ0

, the expected cumulative regret of the modified PSLinUCB algorithm is

upper bounded as follows:

E[R(T )] ≤ TP(τ1 ≤ T ) + (δ0 + γ)T + K + 2α

√
2TdK log

T
d
, (4.12)

where τ1 is the first detection time.

Proof 17 See Appendix C.3.

Second, we upper bound the probability of raising false alarms, i.e., changes

are detected in the stationary environment.

Lemma 6 Consider a stationary scenario with M = 1 and let δ1 = 1/(2T 2), the proba-

bility of false alarm is upper bounded by

P(τ1 ≤ T ) ≤ KT−1. (4.13)

if the thresholds b, c are chosen to satisfy (C.22) (in Appendix C.4) for all a ∈ A and

c ≥
√

2
ω

log(2T ).

Proof 18 See Appendix C.4.

We further upper bound the probability of a late detection.

Lemma 7 Consider a piecewise-stationary scenario with M ≥ 2. Assume that ∆ ≥

b + c. Then we have

P(τ1 > ν1 + L/2) ≤ 2T−2. (4.14)

Proof 19 See Appendix C.5.
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Theorem 12 can be proved based on the above three lemmas. The detailed

proof is presented in Appendix C.2.

4.6 Numerical Examples

We use both synthetic and real-world data to evaluate the performance of the

proposed learning algorithms under the disjoint and the hybrid reward models.

4.6.1 Regret Analysis on Synthetic Data

We first use synthetic data to compare the regret performance of the proposed

learning algorithms with LinUCB, a representative algorithm for stationary con-

textual bandits [49, 24]. There are three versions of LinUCB corresponding to

three different models with uniform, disjoint, and hybrid rewards. We compare

the proposed algorithms with the disjoint and the hybrid versions of LinUCB

under the corresponding reward models.

In the first experiment, we generate a dataset under the disjoint reward

model. Specifically, we assume a time horizon of length T = 20000. We ran-

domly generate K = 10 arms. Each arm a is associated with a m-dimensional

(m = 5) feature vector ya with ||ya||2 ≤ 1. We consider a single user setting where a

user u is associated with a d-dimensional (d = 5) feature vector xu with ||xu||2 ≤ 1.

The d-dimensional preference vectors θa(t),∀a are randomly generated satisfy-

ing the piecewise-stationary assumption (the preference vector θa(t) changes ev-

ery 2000 time steps) and ||θa(t)||2 ≤ 1. The reward of playing an arm a at time t is

generated according to the disjoint reward model, i.e., ra(t) = xT
u θa(t) + ε, where
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ε is a Gaussian noise with µ = 0 (mean) and σ = 0.2 (standard deviation).

We compare the cumulative regret of PSLinUCB-Disjoint and LinUCB-

Disjoint. To guarantee a fair comparison, the parameters α balancing the trade-

off between exploration and exploitation in the UCB indices of the two algo-

rithms are equal (α = 1). In PSLinUCB-Disjoint, we set ω = 100 and δ = 0.35.

The experiment is run 100 times and the simulation results are included in Fig.

4.1. It can be seen that the PSLinUCB-Disjoint algorithm adapts to the changing

environment and achieves a lower cumulative regret (30% performance gain).
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Figure 4.1: Regret v.s. time under the disjoint reward model.

In the second experiment, we consider the hybrid reward model. In addition

to the parameters generated in the first experiment, we further construct an

m × d-dimensional joint preference vector β. The random reward of playing an
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arm a at time t is generated according to the hybrid reward model, i.e., ra(t) =

xT
u θa(t) + zT

u,aβ + ε, where zu,a = vec(xuyT
a ) and ε is a Gaussian noise with µ = 0 and

σ = 0.2. We compare the regret performance of PSLinUCB-Hybrid and LinUCB-

Hybrid with α = 1.5. In PSLinUCB-Hybrid, we set ω = 100 and δ = 0.4. The

experiment is also run 100 times and the simulation results are included in Fig.

4.2. Similar performance gain can be observed.
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Figure 4.2: Regret v.s. time under the hybrid reward model.

4.6.2 Recommendation Performance on Real-World Datasets

We use two real-world datasets to evalute the recommendation performance of

the proposed algorithms. The first dataset is a collection of user-visit log infor-
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mation from Yahoo! front page, which is widely used for algorithm evaluation

in the contextual bandit setting [49, 50]. The Yahoo! dataset contains 45,811,883

user-visits to Yahoo Today Module in a ten-day period in May 2009. The log

information of each user-visit includes a feature vector of the current user, a

pool of candidate articles (arms) for recommendation associated with feature

vectors, the recommended article, and the feedback from the user (click or not).

It has been observed in [66] that the preferences of users towards different items

are dynamically changing in this dataset.

The second dataset is extracted from the Last.fm online music system, which

is made available on the HetRec 2011 workshop. This dataset contains 1892

users, 17,632 artists (arms), and 92,834 user-artist listening records. Each user

may assign multiple tags to the listened artists, which can be preprocessed as

the context information to fit into the contextual bandit setting. Following [42],

a non-stationary environment can be simulated.

Except LinUCB, we further compare the proposed learning algorithms with

the following baselines:

1. Random: a policy that selects arms uniformly at random.

2. UCB [9]: one of the most well-known algorithms developed in the station-

ary context-free bandit setting.

3. MUCB [17]: an extension of UCB to the context-free setting with

piecewise-stationary rewards.

4. DenBand [66]: a new algorithm developed under the uniform reward

model with piecewise-stationary rewards. Under the assumption of con-

tinuous rewards with little noise, the original algorithm only compares
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the predicted reward at a single time step with the observed one to de-

tect potential changes. In cases with larger noise (e.g., binary rewards),

we modify the algorithm by using observations at multiple time steps for

change detection.

Yahoo! Dataset

We randomly sample a subset of data from the original dataset for testing (i.e.,

each user-visit is selected independently with probability 0.1). We adopt an

unbiased offline evaluation method proposed in [49, 50] to evaluate the online

performance of the proposed learning algorithms and the baseline ones.

The detailed recommendation performance (i.e., CTR) of the proposed al-

gorithms along with baseline ones are summarized in Table 4.1. In PSLinUCB-

Disjoint, we set α = 0.2, ω = 1000, and δ = 0.025. In PSLinUCB-Hybrid, we set

α = 0.15, ω = 1200, and δ = 0.03. In addition to the comparison results discussed

in the main file, PSLinUCB-Disjoint and PSLinUCB-Hybrid achieves a perfor-

mance gain of 59.2% and 61.2% compared with the Random policy, which does

not learn from the observation history.

Stationary Non-Stationary
Algorithm CTR Algorithm CTR
Random 0.03541 / /

UCB 0.04002 MUCB 0.04058
LinUCB-uniform 0.04121 DenBand 0.04353
LinUCB-Disjoint 0.05491 PSLinUCB-Disjoint 0.05639
LinUCB-Hybrid 0.05638 PSLinUCB-Hybrid 0.05711

Table 4.1: Comparison of CTR on Yahoo dataset.

We also illustrate the simulation results in Figure 4.3. We first observe that al-
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Figure 4.3: Average CTR v.s. time in the Yahoo! dataset.

gorithms exploiting the context information (i.e., PSLinUCB, LinUCB, and Den-

Band) outperform context-free ones (i.e., UCB and MUCB). This observation

is rather intuitive since context vectors provide significant side information on

the preferences of users towards items. In addition, under each reward model

(i.e., classical context-free bandits and contextual bandits with uniform, disjoint,

and hybrid rewards), the algorithm that adapts to reward changes outperforms

the one that does not (i.e., MUCB v.s. UCB, DenBand v.s. LinUCB-uniform,

PSLinUCB-Disjoint v.s. LinUCB-Disjoint, and PSLinUCB-Hybrid v.s. LinUCB-

Hybrid). In particular, PSLinUCB-Disjoint achieves a performance gain of 2.7%

(2.9% at the peak) against LinUCB-Disjoint and PSLinUCB-Hybrid achieves an

improvement of 1.3% (2% at the peak) against LinUCB-Hybrid. The compari-

son results verify the assumption that users’ interests are dynamically changing

and should be taken into consideration in learning.
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Moreover, within the contextual bandit setting, algorithms developed under

the hybrid reward model (i.e., PSLinUCB-Hybrid and LinUCB-Hybrid) or the

disjoint reward model (i.e., PSLinUCB-Disjoint and LinUCB-Disjoint) achieve

better performance compared with the ones developed under the uniform re-

ward model (i.e., DenBand and LinUCB-Uniform). This is because the uniform

reward model fails to exploit the personalized interests of different users. An

alternative approach is to learn the preferences of every user individually. How-

ever, the amount of data associated with a single user is rather limited. Fur-

thermore, the performance gain of PSLinUCB over DenBand (31.2% under the

hybrid model and 29.5% under the disjoint model) verifies the fact that users’

preferences towards different items vary differently.

LastFM Dataset

Given that the original LastFM dataset dose not provide context vectors of nei-

ther users nor items, we first preprocess the dataset to fit into the contextual

bandit setting. Specifically, following the settings in [19, 66], we treat the ‘lis-

tened artists’ of each user as positive feedback. For each artist, we use its as-

sociated tags to create a TF-IDF feature vector and then apply PCA to reduce

the dimension to 10. For each user, we adopt a method similar to the one used

in [49] to generate a feature vector: we use matrix factorization to obtain a raw

feature vector and then apply the K-means method to group users into 10 clus-

ters. The final user feature is a 10-dimensional vector corresponding to the soft-

membership of the user in the 10 clusters (computed with a Gaussian kernel

and then normalized). In the experiment, we only consider artists that have

been listened by at least 100 users and we follow [65] to generate the log data.
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We summarize the simulation results of the proposed algorithms and their

corresponding opponents in the stationary setting in Table 4.2. Note that in

PSLinUCB-Disjoint, α = 0.15, ω = 1200, δ = 0.035. In PSLinUCB-Hybrid, α = 0.2,

ω = 1000, δ = 0.02.

Stationary Non-Stationary
Algorithm CTR Algorithm CTR

LinUCB-Disjoint 0.03341 PSLinUCB-Disjoint 0.03408
LinUCB-Hybrid 0.04046 PSLinUCB-Hybrid 0.04143

Table 4.2: Comparison of CTR on LastFM dataset.

The results are also presented in Figure 4.4 and similar conclusions with

those in the experiment on the Yahoo! dataset can be drawn. In particular,

PSLinUCB-Disjoint achieves a performance gain of 2% against LinUCB-Disjoint

and PSLinUCB-Hybrid achieves a performance gain of 2.4% against LinUCB-

Hybrid, which again verify the advantages of the proposed algorithms.

Sensitivity Analysis

We further test the sensitivity of the proposed algorithms against hyper-

parameters: ω and δ on both the Yahoo! dataset and the LastFM dataset. Since

the effect of users’ changing interests on the recommendation performance

emerges after a sufficient time of learning, we use the first 1/2 of the Yahoo

dataset and the entire LastFM dataset for testing. From the results shown in Fig-

ure 4.5 and Figure 4.6, we observe that both PSLinUCB-Disjoint and PSLinUCB-

Hybrid are relatively robust towards the change of the hyper-parameter within

certain ranges.
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Figure 4.4: Average CTR v.s. time in the LastFM dataset.
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Figure 4.5: Sensitivity analysis on Yahoo! dataset.
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Figure 4.6: Sensitivity analysis on LastFM dataset.
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CHAPTER 5

CONCLUSION

This dissertation focused on the online learning problem within the frame-

work of multi-armed bandits. Three emerging issues in terms of the massive

number of actions, memory constraints on learning strategies, and dynamicity

in reward models were studied under various bandit models.

In the first part of the dissertation, we studied a stochastic multi-armed ban-

dit problem with side information on the similarity and dissimilarity across

arms to address the issue of a large action space. The similarity-dissimilarity

structure is represented by a UIG where every node represents an arm and the

presence (absence) of an edge between two nodes represents similarity (dis-

similarity) of their mean rewards. We considered two settings with complete

and partial side information based on whether the UIG is fully revealed, and

proposed a general two-step learning structure: LSDT consisting of an offline

reduction of the action space to the candidate set and online aggregation of ob-

servations from similar arms. Theoretical regret analysis along with matching

lower bounds in both settings showed the order optimality of LSDT in both the

size of the action space and the length of the time horizon. Extensive simulation

experiments were conducted to verify the performance of LSDT numerically.

In the second part of the dissertation, we studied the problem of adversar-

ial multi-armed bandits with memory constraints. We proposed a general hi-

erarchical learning architecture that adopts a multi-level hierarchy to partition

the arm set into groups and the time horizon into epochs. By adopting appro-

priate selection strategies as subroutines at all levels, we showed that the pro-

posed HLMC policy achieves no-regret learning under two regret notions using
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a memory space with size sublinear in the number of arms. We further char-

acterize the tradeoff between the regret order and the memory complexity by

establishing a memory-dependent regret bound of HLMC. We conducted nu-

merical experiments to verify the advantages of the proposed learning policies

against existing baselines.

In the third part of the dissertation, we studied a contextual bandit problem

for personalized recommendation in a non-stationary environment. To charac-

terize the fact that users’ interests towards different items vary asynchronously

and distinctly, two models with disjoint and hybrid piecewise-stationary re-

wards were considered. For each model, we proposed a PSLinUCB learning

algorithm that adapts to the changing environment via change detection and

restart. We further introduced a modified version of the learning algorithm with

theoretical analysis validating a near-optimal regret order in the time length un-

der the disjoint reward model. Numerical results on both synthetic data and

real-world datasets verified the advantages of the proposed learning algorithms

against baseline ones.
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APPENDIX A

PROOFS OF LEMMAS AND THEOREMS IN CHAPTER 2

A.1 Proof of Theorem 1

We first show that B∗imax
∪ B∗imin

⊆ B∗. Clearly imax ∈ B
∗. For each j ∈ B∗imax

, N[ j] =

N[imax]. Thus if we construct a new set of mean rewards (µ′1, ..., µ
′
K) where the

mean values of j and imax get switched and the others remain the same, the UIG

G∗ε remains unchanged. Thus, j ∈ B∗. Similar result holds for B∗imin
. Therefore

B∗imax
∪ B∗imin

⊆ B∗.

Next, we show that B∗ ⊆ B∗imax
∪ B∗imin

. For each j < B∗imax
∪ B∗imin

, consider two

cases:

1. j ∈ N[imax] ∪ N[imin]: without loss of generality, assume that j ∈ N[imax].

Since j < B∗imax
, there exists an arm k such that k ∈ N[ j] but k < N[imax].

Now suppose there exists an assignment of mean rewards (µ′1, ..., µ
′
K) con-

forming to G∗ε such that arm j is optimal, then µ′k, µ
′
imax
∈ (µ′j − ε, µ

′
j] and

thus, arm k and imax are neighbors. This contradicts the assumption that

k < N[imax]. Hence, there doesn’t exists a set of mean rewards conforming

to G∗ε where j is optimal. Thus j < B∗. Similar result holds for the case

when j ∈ N[imin].

2. j < N[imax] ∪ N[imin]: define

k1 = argmin
k<N[ j],µk>µ j

µk, (A.1)

k2 = argmax
k<N[ j],µk<µ j

µk. (A.2)
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Notice that k1, k2 are not neighbors. However, since the component is con-

nected, k1, k2 must connect with arms in N[ j]. Now suppose there exists

an assignment of mean rewards (µ′1, ..., µ
′
K) conforming to G∗ε such that j is

optimal, then µ′k1
, µ′k2
∈ (µ′j−2ε, µ′j− ε]. This contradicts the assumption that

k1, k2 are not neighbors. Thus, j < B∗.

Therefore, we have that if j < B∗imax ∪ B
∗
imin

, then j < B∗. This implies that B∗ ⊆

B∗imax
∪ B∗imin

. In summary,

B∗ = B∗imax
∪ B∗imin

. (A.3)

A.2 Proof of Theorem 2

When G∗ε is connected, B∗ = B∗imin
∪ B∗imax

where B∗imin
and B∗imax

are disjoint if G∗ε

is not complete. We upper bound the number of times that arms in B∗imin
have

been played up to time T . Let τB∗imin
(T ) =

∑
j∈B∗imin

τ j(T ), τB∗imax
(T ) =

∑
j∈B∗imax

τ j(T ).

Let ct,s =
√

(8 log t)/s. Let πt be the arm selected at time t and I{·} be the indicator

function. Let ` > |B∗imin
| be an arbitrary integer, then with Hi(t) defined in (2.8),

E[τB∗imin
(T )] = E

|B∗imin
| +

T∑
t=|B∗ |+1

I{πt ∈ B
∗
imin
}


≤ ` +

T∑
t=|B∗ |+1

P
(
πt ∈ B

∗
imin
, τB∗imin

(t − 1) ≥ `
)

≤ ` +

T∑
t=|B∗ |+1

P
(
Himin(t − 1) ≥ Himax(t − 1), τB∗imin

(t − 1) ≥ `
)

(A.4)

≤ ` +

T−1∑
t=|B∗ |

t∑
s=`

t∑
r=1

P(Himin(t) ≥ Himax(t), τB∗imin
(t) = s, τB∗imax

(t) = r).
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To upper bound each term on the RHS of the last inequality in (A.4), we consider

P

(∑
j∈B∗imin

τ j(t)x̄ j(t)

s
+ ct,s ≥

∑
j∈B∗imax

τ j(t)x̄ j(t)

r
+ ct,r

)
≤ P

(∑
j∈B∗imin

τ j(t)x̄ j(t)

s
≥

∑
j∈B∗imin

τ j(t)µ j

s
+ ct,s

)
+P

(∑
j∈B∗imax

τ j(t)x̄ j(t)

r
≤

∑
j∈B∗imax

τ j(t)µ j

r
− ct,r

)
(A.5)

+P

(∑
j∈B∗imax

τ j(t)µ j

r
<

∑
j∈B∗imin

τ j(t)µ j

s
+ 2ct,s

)
,

where τB∗imin
(t) = s, τB∗imax

(t) = r. The inequality holds because the event on the

LHS indicates that at least one of the three events on the RHS happens. To upper

bound the first term, let Zt =
∑

j∈B∗imin
I{πt = j}X j(t), where X j(t) is the random

reward from arm j at time t. Let νt =
∑

j∈B∗imin
I{πt = j}µ j. Note that if πt < B

∗
imin

,

Zt = νt = 0. Consider the first term on the RHS of (A.5):

P

∑t
τ=1(Zτ − ντ)

s
≥

√
8 log t

s
, τB∗imin

(t) = s

 ≤ P (I{τB∗imin
(t) = s} · eλ

∑t
τ=1(Zτ−ντ) ≥ eλ

√
8s log t

)
,

(A.6)

Using the Markov inequality, we have

P
(
I{τB∗imin

(t) = s} · eλ
∑t
τ=1(Zτ−ντ) ≥ eλ

√
8s log t

)
≤ e−λ

√
8s log t · E

[
I{τB∗imin

(t) = s}eλ
∑t
τ=1(Zτ−ντ)

]
.

(A.7)

Let Ft = σ(Z1, ...,Zt) be a filtration on the observation history, Yt = I{πt ∈ B
∗
imin
};

clearly Yt ∈ Ft−1. Let S t =
∑t
τ=1 Yτ, Gt = eλ

∑t
τ=1(Zτ−ντ) (note that G0 = 1 and S 0 = 0).

We show that
{
Gt/e

1
2λ

2S t
}

t
is a submartingale. Consider

E

[
Gt

e
1
2λ

2S t

∣∣∣∣∣∣Ft−1,Yt = 1
]

=

Gt−1E
[
eλ(Zt−νt)

∣∣∣∣Ft−1,Yt = 1
]

e
1
2λ

2(S t−1+1)
≤

Gt−1

e
1
2λ

2(S t−1+1)
e

1
2λ

2
=

Gt−1

e
1
2λ

2S t−1
,

(A.8)

and

E

[
Gt

e
1
2λ

2S t

∣∣∣∣∣∣Ft−1,Yt = 0
]

=

Gt−1E
[
eλ(Zt−νt)

∣∣∣∣Ft−1,Yt = 0
]

e
1
2λ

2S t−1
=

Gt−1

e
1
2λ

2S t−1
. (A.9)
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Note that the inequality in (A.8) holds because given Ft−1, πt is fixed and thus

Zt = Xπt(t) which is a sub-Gaussian random variable. Equation (A.9) holds be-

cause given Yt = 0, Zt = νt = 0. Therefore,
{
Gt/e

1
2λ

2S t
}

t
is a submartingale and

E

[
Gt

e
1
2λ

2S t

]
≤ E

[
G0

e
1
2λ

2S 0

]
= 1. (A.10)

Moreover, we have

E

[
I{S t = s}

Gt

e
1
2λ

2S t

]
≤ E

[
Gt

e
1
2λ

2S t

]
≤ 1, (A.11)

and thus

E [I{S t = s}Gt] ≤ e
1
2λ

2 s. (A.12)

Applying this to (A.7) and choosing λ =

√
8s log t

s , we have

P
(
I{τB∗imin

(t) = s} · eλ
∑t
τ=1(Zτ−ντ) ≥ eλ

√
8s log t

)
≤ e

1
2λ

2 s−λ
√

8s log t = e−4 log t = t−4. (A.13)

Similarly, the second term can also be upper bounded by t−4. For the third term,

let

` ≥
32 log T

(min j∈B∗imax
µ j −max j∈B∗imin

µ j)2 . (A.14)

Then, since s ≥ `, t ≤ T , we have∑
j∈B∗imax

n jµ j

r
−

∑
j∈B∗imin

n jµ j

s
− 2ct,s ≥ min

j∈B∗imax

µ j − max
j∈B∗imin

µ j −

√
32 log t

s
≥ 0. (A.15)

Therefore, if we choose ` = d
32 log T

(min j∈B∗imax
µ j−max j∈B∗imin

µ j)2 e, we get

E[τB∗imin
(T )] ≤ ` +

T−1∑
t=|B∗ |

t∑
s=1

t∑
r=1

2t−4

≤
32 log T

(min j∈B∗imax
µ j −max j∈B∗imin

µ j)2 + O(1) (A.16)

=
32 log T

(min j∈B∗imin
∆ j −max j∈B∗imax

∆ j)2 + O(1).
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Now we upper bound the number of times that arms in B∗imax
have been played

up to time T . For each i ∈ B∗imax
\ A,

E[τi(T )] = E

1 +

T∑
t=|B∗ |+1

I{πt = i}


≤ ` +

T∑
t=|B∗ |+1

P (πt = i, τi(t − 1) ≥ `) (A.17)

≤ ` +

T∑
t=|B∗ |+1

P
(
Li(t − 1) ≥ Limax(t − 1), τi(t − 1) ≥ `

)
.

Using an argument similar to that for τB∗imin
, we get

E[τi(T )] ≤
32 log T

∆2
i

+ O(1). (A.18)

Therefore, we get the upper bound on regret of LSDT-CSI in (2.9) if G∗ε is con-

nected but not complete.

A.3 Proof of Theorem 3

The basic structure of the proof follows that in [46] and [15]. For every subop-

timal arm i (µi < µimax), we construct a new set of reward distributions with

parameters θ(i) = (θ(i)
1 , θ

(i)
2 , ..., θ

(i)
K ) and means µ(i) = (µ(i)

1 , µ
(i)
2 , ..., µ

(i)
K ) such that

µ(i)
i = max j∈V µ

(i)
j . Then we can generate a new graph G(i)

ε = (V(i),E(i)) where

V(i) is the set of new arms, and (u, v) ∈ E(i) if and only if |µ(i)
u − µ

(i)
v | < ε.

To establish the relationship between the new problem and the original one,

we need to retain the same graph connectivity. Since B∗ is the set of arms that

could potentially be optimal givenG∗ε , we could only construct for each i ∈ B∗\A

a set of new reward distributions with parameters θ(i) such that arm i is optimal.

Thus, for each i ∈ B∗ \ A, consider θ(i) with mean rewards µ(i) satisfying:

120



1. If i ∈ B∗imax
\ A: µ(i)

i = µimax + η, µ(i)
j = µ j,∀ j , i.

2. If i ∈ B∗imin
: µ(i)

i = µ(θ′i ) + η, µ(i)
j = µ(θ′j),∀ j , i, where µ(θ′i ), µ(θ′j) are defined as

µ(θ′j) =


µ j, ∀ j ∈ B∗imax

,

µimax + mink∈B∗imax
µk − µimin , ∀ j ∈ B∗imin

,

µimax + mink∈B∗imax
µk − µ j, ∀ j < B∗.

(A.19)

One can check that in both cases, G(i)
ε and G∗ε have the same connectivity if

η < ε −max {µimax − min
j∈N[imax]

µ j, max
j∈N[imin]

µ j − µimin}. (A.20)

Then we define the log-likelihood ratio between the observations from two

sets of arms with distribution parameters θ = (θ1, ..., θK) and θ(i) = (θ(i)
1 , ..., θ

(i)
K ) up

to time T under any uniformly good policy π as

L(i)(T ) =
∑
j∈V

τ j(T )∑
s=1

log

 f (X j,s; θ j)

f (X j,s; θ
(i)
j )

 , (A.21)

where τ j(T ) is the number of times arm j has been played by policy π up to time

T and X j,s is the reward obtained when arm j is played for the s-th time. We

show that it is unlikely to have

∑
j∈V

τ j(T )I(θ j||θ
(i)
j ) ≤ (1 − γ) log T, (A.22)

under two separate cases: L(i)(T ) ≤ (1 − δ) log T and L(i)(T ) > (1 − δ) log T where

δ, γ > 0 are determined later.

1. If L(i)(T ) ≤ (1 − δ) log T : by the uniform goodness of policy π, we have

Pθ(i)

∑j∈V τ j(T )I(θ j||θ
(i)
j ) ≤ (1 − γ) log T


≤ Pθ(i)

{
τi(T )I(θi||θ

(i)
i ) ≤ (1 − γ) log T

}
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= Pθ(i)

T − τi(T ) ≥ T −
(1 − γ) log T

I(θi||θ
(i)
i )

 (A.23)

≤
Eθ(i)[T − τi(T )]

T − (1−γ) log T
I(θi ||θ

(i)
i )

= o(Tα−1),

for all α > 0 as T → ∞.

We let

H =

{∑
j∈V

τ j(T )I(θ j||θ
(i)
j ) ≤ (1 − γ) log T,L(i)(T ) ≤ (1 − δ) log T

}
. (A.24)

By a change of measure from Pθ(i) to Pθ, we have

Pθ{H} ≤
∫

H
dPθ =

∫
H

exp
(
L(i)(T )

)
dPθ(i) ≤ T 1−δo(Tα−1) = o(1), (A.25)

for all δ > 0 as T → ∞ if we choose α < δ.

2. If L(i)(T ) > (1 − δ) log T : by the strong law of large numbers, as t → ∞, we

have
1
t

t∑
s=1

log

 f (X j,s; θ j)

f (X j,s; θ
(i)
j )

→ I(θ j||θ
(i)
j ) almost surely. (A.26)

Rewrite L(i)(T ) as

L(i)(T ) =
∑
j∈V

τ j(T )
1

τ j(T )

τ j(T )∑
s=1

log

 f (X j,s; θ j)

f (X j,s; θ
(i)
j )

 (A.27)

and then

Pθ

{∑
j∈V

τ j(T )I(θ j||θ
(i)
j ) ≤ (1 − γ) log T, L(i)(T ) > (1 − δ) log T

}
= Pθ

{∑
j∈K

τ j(T )I(θ j||θ
(i)
j ) ≤ (1 − γ) log T,

∑
j∈K

τ j(T )
1

τ j(T )

τ j(T )∑
s=1

log

 f (X j,s; θ j)

f (X j,s; θ
(i)
j )

 > (1 − δ) log T
}

(A.28)

= o(1),

as T → ∞ if we choose γ > δ.
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Now we have proved that for all i ∈ B∗ \ A, we have

∑
j∈V

E[τ j(T )]
log T

I(θ j||θ
(i)
j ) ≥ 1. (A.29)

To be specific,

1. If i ∈ B∗imax
\ A, let η→ 0, we have

E[τi(T )] ≥
log T

I(θi||θimax)
, (A.30)

2. If i ∈ B∗imin
, let η→ 0, we have

∑
j<B∗imax

E[τ j(T )]I(θ j||θ
′
j) ≥ log T. (A.31)

Therefore, the optimal constant in front of log T is the solution to the linear pro-

gram P1:

P1 : C1 = min
{τi}i∈V

∑
i∈V

∆iτi,

s.t.
∑

j<B∗imax

τ jI(θ j||θ
′
j) ≥ 1,

τi ≥
1

I(θi||θimax)
, ∀i ∈ B∗imax

\ A, (A.32)

τi ≥ 0, ∀i ∈ V.

where θ′j is the parameter of the density function f (x j; θ′j) whose mean value

µ(θ′j) is defined in (A.19).

In light of the LP P1, each sub-optimal arm in B∗imax
has to be played Ω(log T )

times to be distinguished from the optimal one. Moreover, the total number of

times that arms in V \ B∗imax
are played should be at least Ω(log T ). Thus if we

consider the regret order in terms of the number of arms and the time length, we
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can conclude that for fixed ∆i, I(θi||θ
′
i ) and I(θi||θimax), the regret for any uniformly

good policy is of order

Ω
(
(1 + |B∗imax

\ A|) log T
)
,

as T → ∞, which matches the upper bound on regret of LSDT-CSI. Therefore,

LSDT-CSI is order optimal.

A.4 Proof of NP-Completeness of CONSISTENT-NAE-3SAT

The problem is clearly in NP since a given truth assignment can be verified

in polynomial time. To show the NP-completeness, we first show that 1-

CONSISTENT-NAE-3SAT is NP-complete. Note that 1-CONSISTENT-NAE-

3SAT asks if there exists a truth assignment such that every clause has exactly 1

true literal given true instance of NAE-3SAT.

It is clear that 1-CONSISTENT-NAE-3SAT is in NP. We give a reduction from

1-IN-3SAT, a known NP-complete problem [58], as follows: given an instance of

1-IN-3SAT, for every clause Ci = (xi,1, xi,2, xi,3), we construct three clauses in the

corresponding 1-CONSISTENT-NAE-3SAT instance with two additional vari-

ables ai, bi:

Ci,1 = (xi,1, xi,2, ai), Ci,2 = (xi,2, xi,3, bi), Ci,3 = (ai, bi, xi,2).

This is clearly a polynomial time reduction.

We first show that the 1-CONSISTENT-NAE-3SAT instance we constructed

is not-all-equal (NAE) satisfiable, i.e., there exists a truth assignment such that

every clause is satisfied and contains at most 2 true literals. For any arbitrary

truth assignment of (x1, ..., xn), we can choose (a1, b1, ..., am, bm) according to Table
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A.1. One can check that every clause is satisfied with at most 2 true literals.

Therefore, the 1-CONSISTENT-NAE-3SAT instance is NAE satisfiable.

xi,1 xi,2 xi,3 ai bi

0 0 0 1 1
0 0 1 1 0
0 1 0 0 0
1 0 0 0 1
0 1 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 1 0 0

Table A.1: Truth table for NAE-3SAT.

Now we assume that the original 1-IN-3SAT instance is satisfied by an as-

signment of (x1, ..., xn) with three cases:

1. only xi,1 is true: let ai = 0, bi = 1;

2. only xi,2 is true: let ai = 0, bi = 0;

3. only xi,3 is true: let ai = 1, bi = 0.

It is clear that the 1-CONSISTENT-NAE-3SAT is satisfied by the assignment of

(x1, ..., xn, a1, b1, ..., am, bm).

On the other hand, assume that the 1-CONSISTENT-NAE-3SAT instance is

satisfied by an assignment of (x1, ..., xn, a1, b1, ..., am, bm). Consider clause Ci,1 =

(xi,1, xi,2, ai):

1. only xi,1 is true: xi,2 = ai = 0. It is clear that bi = 1 since Ci,3 is satisfied.

Thus, xi,3 = 0 since Ci,2 is satisfied with only one true literal (bi). Therefore,

we have xi,1 = 1, xi,2 = 0, xi,3 = 0;

125



2. only xi,2 is true: since Ci,1,Ci,2,Ci,3 are all satisfied with only one true literal

in each clause, we have xi,1 = xi,3 = ai = bi = 0;

3. only ai is true: xi,1 = xi,2 = 0. since Ci,2,Ci,3 are satisfied with only one true

literal in each clause, we have bi = xi,2 = 0 and xi,3 = 1.

Therefore, every clause Ci = (xi,1, xi,2, xi,3) in the original 1-IN-3SAT instance is

satisfied with only one true literal.

In summary, we have shown that the 1-IN-3SAT instance is satisfiable if

and only if the corresponding 1-CONSISTENT-NAE-3SAT instance is satisfi-

able, which indicates the NP-completeness of 1-CONSISTENT-NAE-3SAT.

Finally, we show that CONSISTENT-NAE-3SAT (clearly in NP) is NP-

complete via a reduction from 1-CONSISTENT-NAE-3SAT. Given an instance of

1-CONSISTENT-NAE-3SAT with n variables (x1, ..., xn) and m clauses C1, ...,Cm,

we add a new clause C0 = (x1, x̄1, 0) and get an instance of CONSISTENT-NAE-

3SAT with n variables and m + 1 clauses. This is clearly a polynomial reduction

and there must exist a NAE satisfiable assignment for the new instance. Now

we assume that the original 1-CONSISTENT-NAE-3SAT instance has a satisfi-

able assignment (x1, ..., xn), it follows immediately that the CONSISTENT-NAE-

3SAT is also satisfied by the same assignment. On the other hand, we assume

that CONSISTENT-NAE-3SAT is satisfied by a truth assignment (x1, ..., xn). Since

C0 is satisfied with exactly 1 true literal, so are the other clauses. Thus (x1, ..., xn)

is a satisfiable assignment for the 1-CONSISTENT-NAE-3SAT instance. Hence,

we have shown that the 1-CONSISTENT-NAE-3SAT instance is satisfiable if and

only if the corresponding CONSISTENT-NAE-3SAT instance is satisfiable.

In conclusion, CONSISTENT-NAE-3SAT is NP-complete.
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A.5 Proof of Theorem 4

It is clear that LEFTANCHOR is in NP since given a graph, one can verify if

it is a UIG and if a specific node is a left anchor in polynomial time. Now

we show the NP-completeness of LEFTANCHOR through a reduction from

CONSISTENT-NAE-3SAT. The reduction is similar to the one used in proving

the NP-completeness of the UIG Sandwich Problem in [37].

Given an instance of CONSISTENT-NAE-3SAT, let x1, ..., xn be n vari-

ables and C1, ...,Cm be m clauses where Ci = (xi,1, xi,2, xi,3) and xi, j ∈

{x1, ..., xn, x̄1, ..., x̄n}. For every variable xi, we construct a variable gadget with 5

vertices (xi, x′i , p, x̄′i , x̄i) in the LEFTANCHOR instance: add 4 type-S edges

(xi, x′i), (x′i , p), (p, x̄′i), (x̄′i , x̄i) to E1 and 6 type-D edges (xi, p), (xi, x̄′i), (xi, x̄i), (x′i , x̄
′
i),

(x′i , x̄i), (p, x̄i) to E2 (see Figure A.1: solid line edges represent type-S edges in E1,

missing edges represent type-D edges in E2).

Moreover, for every clause Ci = (xi,1, xi,2, xi,3), we construct a clause gadget

with 6 vertices (xi,1, xi,2, xi,3, vi,1, vi,2, vi,3) in the LEFTANCHOR instance: add 3

type-S edges (xi, j, vi, j), j = 1, 2, 3 to E1 and 9 type-D edges (vi, j, xi,k), j , k and

(vi, j, vi,k), j , k to E2 (see Figure A.2: solid line edges represent type-S edges

in E1, missing edges represent type-D edges in E2, and dash line edges repre-

sent unknown edges in E1 ∪ E2). Note that every vertex xi, j in the clause gadget

belongs to one of the variable gadgets, we don’t create additional vertices.

In summary, there are 4n + 3m + 1 vertices in the LEFTANCHOR instance:

V = {p} ∪ {xi, x′i , x̄
′
i , x̄i|i = 1, ..., n} ∪ {vi,1, vi,2, vi,3|i = 1, ...,m},
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Figure A.1: Variable gadget

Figure A.2: Clause gadget

4n + 3m type-S edges:

E1 =
{
(xi, x′i), (x′i , p), (p, x̄′i), (x̄′i , x̄i)|i = 1, ..., n

}
∪

{
(xi, j, vi, j)|i = 1, ...,m, j = 1, 2, 3

}
,

and 6n + 9m type-D edges:

E2 =
{
(xi, p), (xi, x̄′i), (xi, x̄i), (x′i , x̄

′
i), (x′i , x̄i), (p, x̄i)

∣∣∣∣i = 1, ..., n
}

∪
{
(vi, j, xi,k)

∣∣∣∣i = 1, ...,m, j , k
}
∪

{
(vi, j, vi,k)

∣∣∣∣i = 1, ...,m, j , k
}
. (A.33)

Clearly the construction is done in polynomial time. Moreover, it is shown

in [37] that if there exists a truth assignment of (x1, ..., xn) such that every clause

Ci is satisfied with at most two true literals, there exists a UIG G′ = (V,E3) such

that E1 ⊆ E3 and E3 ∩ E2 = ∅. Now, let x1 and x̄1 be two nodes that we want to
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decide if they can be left anchors. Then we get two corresponding instances of

LEFTANCHOR for any given instance of CONSISTENT-NAE-3SAT. We need to

show that the instance of CONSISTENT-NAE-3SAT is satisfiable if and only if at

least one of the two corresponding instances of LEFTANCHOR is satisfiable, i.e.,

at least one of the two nodes x1 and x̄1 can be a left anchor of a UIG G′′ = (V,E4)

where E1 ⊆ E4 and E4 ∩ E2 = ∅.

We first assume that the CONSISTENT-NAE-3SAT instance is satisfied by

a truth assignment of (x1, ..., xn). Suppose every clause has only 1 true literal

and with out loss of generality, we assume x1 = 1. We show that x1 can be a

left anchor of a UIG satisfying the constraints. We assign a unit length interval

for every vertex in V as follows (see Figure A.3): we let I(p) = P. For i =

1, ..., n, if xi = 1, we let I(xi) = Ai, I(x′i) = L, I(x̄′i) = R and I(x̄i) = Bi; if xi =

0, we let I(xi) = Bi, I(x′i) = R, I(x̄′i) = L and I(x̄i) = Ai. In other words, we

put all the true (or false) literals to the left (or right) “staircases” and assign

x′i and x̄′i accordingly. For every clause Ci, i = 1, ...,m, let xi, j be the true literal

in Ci, then we let I(vi, j) = I(xi, j). For the other two false literals xi,k1 , xi,k2 , the

two corresponding intervals both have non-overlapping tails. Therefore, we

can assign I(vi,k1) and I(vi,k2) extending from the respective tails. For example

in Figure A.3: consider a clause (x1, x̄2, x̄3), A1, B2, B3 are assigned to the three

literals and V1,V2,V3 are assigned to the associated vertices vi,1, vi,2, vi,3. One can

easily check that the induced UIG from the interval assignment of vertices in

V satisfies all the edge constraints and x1 is a left anchor. Similarly, we can

show that if x1 = 0, then x̄1 can be a left anchor of a UIG in the LEFTANCHOR

instance. Now suppose every clause has 2 true literals, we can use similar proof

structure to show that if x1 = 0, then x1 can be a left anchor of a UIG satisfying

the edges constraints; otherwise x̄1 can be a left anchor.
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Figure A.3: Unit interval realization of a satisfiable instance of
CONSISTENT-NAE-3SAT.

On the other hand, we assume that at least one of the two nodes x1 and

x̄1 can be a left anchor of a UIG G′′ = (V,E4) satisfying the edge constraints

and we need to show that the original instance of CONSISTENT-NAE-3SAT is

satisfiable. Without loss of generality, we assume that x1 can be a left anchor.

Let I(v) be the unit interval assigned to vertex v in the UIM of the UIG G′′. By

changing scale and shifting, we can assume that every interval has length 1 and

I(p) = [0, 1]. Consider for every variable gadget i = 1, ..., n, It is not difficult to

see that I(xi) contains either −1 or 2. We assign truth values to the variables as

follows: let xi = 1 if I(xi) contains −1 and xi = 0 if I(xi) contains 2. Now we show

that every clause is satisfied with only 1 true literal OR every clause is satisfied

with only 2 true literals by the truth assignment.

Consider every clause gadget: we show that there is exactly one edge among

(xi, j, xi,k), j , k that belongs to E4:

1. if all three edges belong to E4, then vi,1, vi,2, vi,3 form an asteroidal triple1,

which is forbidden in a UIG [48];
1An asteroidal triple in a graph is a triple of mutually non-adjacent nodes i, j, k such that

between any two of them, there exists a path avoiding the neighborhood of the third.
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2. if exactly two edges belong to E4, e.g., (xi,1, xi,2) and (xi,1, xi,3), then

xi,1, xi,2, xi,3 and vi,1 form a claw (K1,3) which is also forbidden in a UIG [48];

3. I(xi, j) contains either −1 or 2. Hence, there always exist two intervals con-

taining the same point, thus intersecting. Therefore, at least one edge be-

longs to E4.

Since there is exactly one edge among (xi, j, xi,k), j , k that belongs to E4, it fol-

lows that every clause has only 1 or 2 true literals. Furthermore, since x1 is a left

anchor of G′′, within every clause gadget containing x1, the truth assignment of

x1 should be different from the other two variables: consider a clause gadget

containing x1, assume that xi,k has the same truth assignment as x1 and x1 is con-

nected to v1, then we have (x1, xi,k), (x1, v1) ∈ E4, but (v1, xi,k) < E4. This contradicts

the assumption that x1 is a left anchor since (v1, xi,k) should also belong to E4 if

x1 is a left anchor and (x1, xi,k), (x1, v1) ∈ E4.

We first consider if x1 = 1, then we claim that every clause has exactly

one true literal. We prove by contradiction: assume that there exists a clause

Ci = (xi,1, xi,2, xi,3) with two true literals, e.g., xi,1, xi,2. By the assignment of truth

values, it is clear that I(xi,1) = [l1, r1] and I(xi,2) = [l2, r2] contains −1. Without

loss of generality, we assume that l1 < l2. Then we consider I(vi,1) = [lv, rv]: since

(vi,1, xi,1) ∈ E4 and (vi,1, xi,2) < E4, we have l1 ≤ rv < l2. Then it is not difficult to see

that I(vi,1) doesn’t contain −1 and lv is smaller than the left coordinate of I(x1),

i.e., x1 is not a left anchor. Contradiction! Therefore, we have shown that every

clause has exactly one true literal. On the other hand, if x1 = 0, it can be shown

similarly that every clause has exactly two true literals. In summary, we have

shown that the original instance of CONSISTENT-NAE-3SAT is satisfiable if at

least one of the two nodes x1 and x̄1 can be a left anchor of the corresponding

131



UIG. This completes the entire reduction and we conclude that LEFTANCHOR

is NP-complete.

A.6 Proof of Theorem 5

We first show that with probability at least 1− 1
K2 , every arm i < B∗ is eliminated

by the offline elimination step of LSDT-PSI. Consider any i < B∗. Note that

under Assumption 3, there exists j, k ∈ [m] s.t. ∀u ∈ B∗j, v ∈ B
∗
k,

(u, i) ∈ E∗ε , (v, i) ∈ E∗ε , (u, v) ∈ E∗ε . (A.34)

Let N = min{|B∗j |, |B
∗
k|}. According to Assumption 4, we have N ≥ κ log K. We

select {u1, u2, ..., uN} from B∗j and {v1, v2, ..., vN} from B∗k, then for n = 1, ...,N, define

En,1 =
{
(un, i) ∈ ES

ε

}
, (A.35)

En,2 =
{
(vn, i) ∈ ES

ε

}
, (A.36)

En,3 =
{
(un, vn) ∈ ED

ε

}
. (A.37)

According to Assumption 5, {En,`}n=1,...,N,`=1,2,3 are independent and P(En,1) =

P(En,2) = pS , P(En,3) = pD. Therefore, according to the offline elimination step

of LSDT-PSI, the probability that arm i is not eliminated is upper bounded as

follows:

P(i is not eliminated from B0) ≤
N∏

n=1

1 − 3∏
`=1

P(En,`)

 = (1 − p2
S pD)N . (A.38)

Since N ≥ κ log K and according to Assumption 5, p2
S pD ≥ 1 − e−2/κ, we have

(1 − p2
S pD)N ≤ (e−2/κ)κ log K ≤

1
K2 . (A.39)
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Moreover, we can show that as K → ∞:

EES
ε ,E

D
ε

[
|B0|

]
=

K∑
i=1

P(i is not eliminated from B0)

= |B∗| +
∑
i<B∗

1
K2 ≤ |B

∗| + o(1). (A.40)

A.7 Proof of Theorem 6

The basic structure of the proof follows that in [12] and [15]. Define Q = {i ∈ V′ :

∆i > 4ε} (note thatV′ = B0). For each i ∈ Q, let

mi = min

m ≥ 0 : 2−m <

√
2λ(∆i − 3ε)

4

 . (A.41)

One can easily verify that

min

1
2
,

√
2λ(∆i − 3ε)

8

 ≤ 2−mi <

√
2λ(∆i − 3ε)

4
, (A.42)

and

max
i∈Q

mi ≤ max
{

1,
⌈
log2

(
8
√

2λε

)⌉}
. (A.43)

We first consider suboptimal arms in Q and analyze regret in the following

cases:

(a) Some suboptimal arm i ∈ Q is not eliminated in round mi (or before) with an

optimal arm imax ∈ Bmi .

Consider i ∈ Q, note that if∑
j∈N ′[i] x̄ j(m)τ j(m)∑

j∈N ′[i] τ j(m)
≤

∑
j∈N ′[i] µ jτ j(m)∑

j∈N ′[i] τ j(m)
+

√
log(T ∆̃2

m)
2
∑

j∈N ′[i] τ j(m)
, (A.44)

and ∑
j∈N ′[imax] x̄ j(m)τ j(m)∑

j∈N ′[imax] τ j(m)
≥

∑
j∈N ′[imax] µ jτ j(m)∑

j∈N ′[imax] τ j(m)
−

√
log(T ∆̃2

m)
2
∑

j∈N ′[imax] τ j(m)
, (A.45)
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hold for m = mi, then under the assumption that imax, i ∈ Bmi , we have√
log(T ∆̃2

mi
)

2
∑

j∈N ′[i] τ j(mi)
≤

√√
log(T ∆̃2

mi
)

2λ
∑

j∈N ′[i] z j log(T ∆̃2
mi

)/∆̃2
mi

≤
∆̃mi
√

2λ
<

∆i − 3ε
4

, (A.46)

√
log(T ∆̃2

mi
)

2
∑

j∈N ′[imax] τ j(mi)
≤

√√
log(T ∆̃2

mi
)

2λ
∑

j∈N ′[imax] z j log(T ∆̃2
mi

)/∆̃2
mi

≤
∆̃mi
√

2λ
<

∆i − 3ε
4

. (A.47)

Thus, ∑
j∈N ′[i] x̄ j(mi)τ j(mi)∑

j∈N ′[i] τ j(mi)
+

√
log(T ∆̃2

mi
)

2
∑

j∈N ′[i] τ j(mi)
+ ε

≤

∑
j∈N ′[i] µ jτ j(mi)∑

j∈N ′[i] τ j(mi)
+

∆i − 3ε
2

+ ε

≤ µi + 2ε +
∆i − 3ε

2

= µimax − ε −
∆i − 3ε

2
(A.48)

≤

∑
j∈N ′[imax] µ jτ j(mi)∑

j∈N ′[imax] τ j(mi)
− 2

√
log(T ∆̃2

mi
)

2
∑

j∈N ′[imax] τ j(mi)

≤

∑
j∈N ′[imax] x̄ j(mi)τ j(mi)∑

j∈N ′[imax] τ j(mi)
−

√
log(T ∆̃2

mi
)

2
∑

j∈N ′[imax] τ j(mi)
.

Therefore, arm i will be eliminated in round mi. Using Hoeffding’s inequal-

ity, we know that for every m = 0, 1, 2, ...,

P{(A.44) doesn’t hold} ≤
1

T ∆̃2
m

, (A.49)

P{(A.45) doesn’t hold} ≤
1

T ∆̃2
m

. (A.50)

As a consequence, the probability that a suboptimal arm i is not eliminated in

round mi (or before) by an optimal arm is bounded by 2/(T ∆̃2
mi

) and thus, the

regret contributed by case (a) is upper bounded by

Ra(T ) ≤
∑
i∈Q

2∆i

∆̃2
mi

= O(|V′|). (A.51)
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(b) The last remaining optimal arm imax is eliminated by some suboptimal arm i

in some round m∗ < m f .

Note that if (A.44) and (A.45) hold at m = m∗, then∑
j∈N ′[imax] x̄ j(m∗)τ j(m∗)∑

j∈N ′[imax] τ j(m∗)
+

√
log(T ∆̃2

m∗)
2
∑

j∈N ′[imax] τ j(m∗)
+ ε

≥

∑
j∈N ′[imax] µ jτ j(m∗)∑

j∈N ′[imax] τ j(m∗)
+ ε (A.52)

≥

∑
j∈N ′[i] µ jτ j(m∗)∑

j∈N ′[i] τ j(m∗)

≥

∑
j∈N ′[i] x̄ j(m∗)τ j(m∗)∑

j∈N ′[i] τ j(m∗)
−

√
log(T ∆̃2

m∗)
2
∑

j∈N ′[i] τ j(m∗)
.

Therefore, the optimal arm imax will not be eliminated in round m∗. Conse-

quently, by (A.49) and (A.50) the probability that imax is eliminated by a sub-

optimal arm i in round m∗ is upper bounded by 2/(T ∆̃2
m∗). Thus the regret con-

tributed by case (b) is upper bounded by

Rb(T ) ≤
m f∑

m∗=0

∑
i∈V′\A

2
T ∆̃2

m∗
max

j∈V′\A
∆ jT

≤
∑

i∈V′\A

m f∑
m∗=0

2
2−2m∗

=
∑

i∈V′\A

2(22m f +2 − 1)
3

(A.53)

≤
∑

i∈V′\A

2(16 · ( 8
√

2λε
)2 − 1)

3
= O(|V′|).

(c) Each arm i ∈ Q is eliminated in (or before) round mi. Note that arm

i will be played until the last arm in N ′[i] is eliminated or the last round

m f ≤ dlog2(8/
√

2λε)e. Thus,

Rc(T ) ≤
∑
i∈Q

∆izi

λ log(T ∆̃2
m′i

)

∆̃2
m′i

, (A.54)
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where

m′i ≤ min
{

max
j∈N ′[i]

m j,

⌈
log2

(
8
√

2λε

)⌉}
. (A.55)

Therefore, the regret contributed by arms in Q is upper bounded by

RQ(T ) ≤
∑
i∈Q

∆izi
32 log(T ∆̂2

i )

∆̂2
i

+ O(|V′|), (A.56)

where

∆̂i = max{ min
j∈N ′[i]

∆ j − 3ε, ε}. (A.57)

Moreover, for each arm j ∈ V′ \ (Q∪A), if j is eliminated before m f , then the

number of times that arm j has been played up to time T is upper bounded by

E[τ j(T )] ≤
32z j log(T ε2)

ε2 . (A.58)

Otherwise, j will only be played when L j(t) > Limax(t) if imax is not eliminated.

Since we have already shown in case (b) that the regret caused by the fact that

imax is eliminated before m f is upper bounded by O(|V′|), we assume that imax is

not eliminated after m f rounds. Using an argument similar to that in the proof

of Theorem 2, we have

E[τ j(T )] ≤
8 log T

∆2
i

. (A.59)

Note that the constant before log T becomes 8/∆2
i instead of 32/∆2

i because the

reward distributions are assumed to be 1/2 sub-Gaussian. Thus, the total regret

of LSDT-PSI is upper bounded by

R(T ) ≤
∑

j∈V′\(Q∪A)

∆ j max

8 log T
∆2

j

,
32z j log(T ε2)

ε2

 +
∑
i∈Q

∆izi
32 log(T ∆̂2

i )

∆̂2
i

+ O(|V′|).

(A.60)
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A.8 Proof of Corollary 1

According to Theorem 6, for every realization of the partially revealed UIG Gε =

(V,ES
ε ,E

D
ε ), the expected regret of LSDT-PSI is upper bounded by

O
(
(|V \ (Q ∪A)| +

∑
i∈Q

zi) log T
)
, (A.61)

where Q = {i ∈ V′ : ∆i > 4ε}.

Let CPSI = |V \ (Q ∪A)| +
∑

i∈Q zi, we need to show that

EES
ε ,E

D
ε
[CPSI] ≤ α(1 + |B∗imax

\ A|), (A.62)

where α is a constant independent of T and the size of the action space. We

simplify the notation of expectation in (A.62) to E[CPSI]. Note that

E[CPSI] = E[CPSI|F]P(F) + E[CPSI|F̄]P(F̄) (A.63)

where F = {every i < B∗ is eliminated from B0}.

From Theorem 5, the probability that every arm i < B∗ is not eliminated is

upper bounded by 1/K2, therefore, we have

P(F̄) ≤
∑
i<B∗

1
K2 ≤

1
K
. (A.64)

It is clear that E[CPSI|F̄] ≤ K and P(F) ≤ 1, therefore it suffices to show that

E[CPSI|F] ≤ α(1 + |B∗imax
\ A|) − 1. (A.65)

Notice that given F, every arm out of B∗ is eliminated. Besides, we assumed

that B∗imin
⊆ Q. Thus,

E[CPSI|F] = E
[ ∑

i∈B∗imin

zi

∣∣∣∣F]
+ |B∗imax

\ A|. (A.66)
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Moreover, it is clear that no matter what realization of the revealed UIG is, every

arm i ∈ B∗imin
will not be eliminated. The fact that every arm i < B∗ is eliminated

only affects the probabilistic assumptions on edges with at least one end point

not in B∗. Therefore, we can claim that conditioned on F, every type-S edge

between arms in B∗imin
is still observed independently with probability pS and

hence E[
∑

i∈B∗imin
zi|F] is equal to the expectation of the optimal value CL of the

following linear program:

CL = min
z1,...,zL

L∑
i=1

zi,

s.t. zi +
∑
j,i

z jI{(i, j) ∈ E} ≥ 1,∀i, (A.67)

zi ≥ 0,∀i.

where L = |B∗imin
| and ∀i, j ∈ [L], (i, j) ∈ E happens independently with probabil-

ity p = pS . We show that E[CL] ≤ cp where cp is a constant only related to pS .

We consider a solution z∗i = 2
pL ,∀i ∈ [L]. We first show that {z∗i } is in the feasible

region with probability at least 1 − 1/L. Define A = {{z∗i } is feasible}, then

P(Ā) ≤
L∑

i=1

P
(
z∗i +

∑
j,i

z∗jI{(i, j) ∈ E} < 1
)

(A.68)

=

L∑
i=1

P

(
1

L − 1

∑
j,i

I{(i, j) ∈ E} <
Lp − 2

2(L − 1)

)
(A.69)

≤

L∑
i=1

P

(
1

L − 1

∑
j,i

I{(i, j) ∈ E} <
p
2

)
(A.70)

≤

L∑
i=1

P

(( 1
L − 1

∑
j,i

I{(i, j) ∈ E}
)
− p < −

p
2

)
(A.71)

≤

L∑
i=1

e−2(L−1) p2
4 (A.72)

Note that the last inequality is derived through the Hoeffding inequality. With-

out loss of generality, we assume that
√

4 log L
L−1 < 1 (otherwise, E[CL] is trivially

upper bounded by a constant independent of L). If p >
√

4 log L
L−1 , the RHS of
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(A.72) is upper bounded by 1/L. Since it is obvious that CL ≤ L, we have

E[CL] = E[CL|A]P(A) + E[CL|Ā]P(Ā)

≤

L∑
i=1

z∗i + 1 =
2
p

+ 1 = βp,1. (A.73)

On the other hand, if p ≤
√

4 log L
L−1 (this is equivalent to that L is smaller than

a constant that only depends on p, we denote the constant as βp,2), we have

E[CL] ≤ L ≤ βp,2. In summary, if we let cp = max(βp,1, βp,2), we have that E[CL] ≤

cp. Finally, we let α = cp +1 and combining with (A.66), we get the desired result

in (A.65).
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APPENDIX B

PROOFS OF LEMMAS AND THEOREMS IN CHAPTER 3

B.1 Proof of Lemma 1

Let q`,s =
∏s

σ=1 exp(γ1ŷ`,σ) denote the weight of group ` at epoch s where

ŷ`,s =
y`,s
q`,s
I(`s = `) ≤

γ1

L
,

q`,s = (1 − γ1)
g`,s∑L
`=1 g`,s

+
γ1

L
≥
γ1

L
. (B.1)

Let Gs =
∑L
`=1 g`,s. We have

Gs+1

Gs
=

L∑
`=1

g`,se
γ1 ŷ`,s

L

Gs
=

L∑
`=1

q`,s −
γ1
L

1 − γ1
e
γ1 ŷ`,s

L

≤

L∑
`=1

q`,s −
γ1
L

1 − γ1

1 +
γ1ŷ`,s

L
+

(
γ1ŷ`,s

L

)2 (B.2)

≤ 1 +
γ1/L

1 − γ1

L∑
`=1

q`,sŷ`,s +
(γ1/L)2

1 − γ1

L∑
`=1

q`,sŷ2
`,s.

The second inequality holds due to the facts that ex ≤ 1 + x + x2,∀x ∈ [0, 1] and
γ1ŷ`,s

L ∈ [0, 1]. Notice that
L∑
`=1

q`,sŷ`,s = y`s,s,

L∑
`=1

q`,sŷ2
`,s = q`s,s

y`s,s

q`s,s
≤ ŷ`s,s =

L∑
`=1

ŷ`,s. (B.3)

Taking logarithms on both sides of (B.2) and summing over s gives

ln
GS +1

G1
≤

γ1/L
1 − γ1

S∑
s=1

y`s,s +
(γ1/L)2

1 − γ1

S∑
s=1

L∑
`=1

ŷ`,s. (B.4)

Meanwhile, for every `,

ln
GS +1

G1
≥ ln

g`,S +1

G1
= ln

g`,1e
γ1
L

∑S
s=1 ŷ`,s

G1

=
γ1

L

S∑
s=1

ŷ`,s − ln L. (B.5)
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Therefore, we have

S∑
s=1

y`s,s ≥ (1 − γ1)
S∑

s=1

ŷ`,s −
L ln L
γ1
−
γ1

L

S∑
s=1

L∑
`=1

ŷ`,s. (B.6)

We take expectation on both sides of (B.6) over the randomness of y`,s for all `

and s (more specifically, the randomness of the arm-level EXP3 algorithm run on

the `-the group within the r-th epoch), conditioned on the sequence of selected

arm groups (`1, ..., `s) and past observations {y`σ,σ}
s
σ=1. Note that for every fixed

sequence of reward assignment, y`,s is independent across ` and s. Moreover, y`,s

is independent of the past history of group selection, i.e., (`1, ..., `s). Therefore,

we can obtain

S∑
s=1

x`s,s ≥ (1 − γ1)
S∑

s=1

x`,s
q`,s
I{`s = `} −

L ln L
γ1
−
γ1

L

S∑
s=1

L∑
`=1

x`,s
q`,s
I{`s = `}. (B.7)

We further take expectation over the randomness of (`1, ..., `S ) selected by the

group-level EXP3 algorithm. Notice that

E`s

[
x`,s
q`,s
I{`s = `}

]
=

x`,s
q`,s

q`,s + 0 · (1 − q`,s) = x`,s. (B.8)

Therefore, we have

EGroup-EXP3

 S∑
s=1

x`s,s

 ≥ (1 − γ1)
S∑

s=1

x`,s −
L ln L
γ1
− γ1S . (B.9)

Since ` is chosen arbitrarily, by choosing γ1 =

√
L ln L

2S , we can conclude that

max
1≤`≤L

S∑
s=1

x`,s − EGroup-EXP3

 S∑
s=1

x`s,s

 ≤ 2
√

2S L ln L. (B.10)

B.2 Proof of Lemma 4

Let g`,s and q`,s denote the weight and the selection probability of group ` at

epoch s. Let Gs =
∑L
`=1 g`,s. For every hS = (h1, ..., hS ) such that H(hS ) ≤ V ,
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consider the V-partition of the time horizon [1, S ]:

[S 1, ..., S 2), [S 2, ..., S 3), ..., [S V , ...S V+1), (B.11)

where S 1 = 1 and S V+1 = S + 1, such that hs is fixed for s ∈ [S v, S v+1),∀v = 1, ...,V .

For each segment [S v, S v+1):

Gs+1

Gs
=

L∑
`=1

g`,s+1

Gs
=

L∑
`=1

g`,seγ1ŷ`,s/L + eαGs
L

Gs

=

L∑
`=1

q`,s −
γ1
L

1 − γ1
eγ1ŷ`,s/L + eα

≤

L∑
`=1

q`,s −
γ1
L

1 − γ1

(
1 +

γ1

L
ŷ`,s +

(
γ1

L

)2
ŷ2
`,s

)
+ eα (B.12)

≤ 1 +
γ1/L

1 − γ1

L∑
`=1

q`,sŷ`,s +
(γ1/L)2

1 − γ1

L∑
`=1

q`,sŷ2
`,s + eα.

We can further derive that

ln
Gs+1

Gs
≤

γ1/L
1 − γ1

L∑
`=1

q`,sŷ`,s +
(γ1/L)2

1 − γ1

L∑
`=1

q`,sŷ2
`,s + eα

≤
γ1/L

1 − γ1
y`s,s +

(γ1/L)2

1 − γ1

L∑
`=1

ŷ`,s + eα. (B.13)

Summing over s = S v, ..., S v+1 − 1, we have

ln
GS v+1

GS v

≤
γ1/L

1 − γ1

S v+1−1∑
s=S v

y`s,s +
(γ1/L)2

1 − γ1

S v+1−1∑
s=S v

L∑
`=1

ŷ`,s + eα(S v+1 − S v). (B.14)

By abuse of notation, we let hv be the action in this segment and then

ghv,S v+1 ≥ ghv,S v+1 exp

γ1

L

S v+1−1∑
s=S v+1

ŷhv,s


≥

eα
L

GS v exp

γ1

L

S v+1−1∑
s=S v+1

ŷhv,s

 (B.15)

≥
α

L
GS v exp

γ1

L

S v+1−1∑
s=S v

ŷhv,s

 ,
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where the last inequality holds since

ŷhv,s ≤ 1/qhv,s ≤ L/γ1,∀s. (B.16)

Therefore, we have

ln
GS v+1

GS v

≥ ln
(
α

L

)
+
γ1

L

S v+1−1∑
s=S v

ŷhv,s, (B.17)

and as a consequence,

S v+1−1∑
s=S v

y`s,s ≥ (1− γ1)
S v+1−1∑

s=S v

ŷhv,s −
L ln(L/α)

γ1
−
γ1

L

S v+1−1∑
s=S v

L∑
`=1

ŷ`,s −
eαL(S v+1 − S v)

γ1
. (B.18)

We sum over all segments v and take expectation on the both side of the in-

equality, using a similar argument as that used in the proof of Lemma 1, we can

obtain that

S∑
s=1

xhs,s − EGroup-EXP3.S

 S∑
s=1

x`s,s

 ≤ γ1S +
LV ln(LS )

γ1
+ γ1S +

eL
γ1

(B.19)

if we choose α = 1/S . We further choose γ1 =

√
LV ln(LS )

S to obtain the conclusion

of Lemma 3 (assuming without loss of generality that V ln(LS ) ≥ e).

B.3 Proof of Theorem 11

The proof follows the same structure with the one in the proof of Theorem 7. Let

imax be the arm with the greatest cumulative reward. Let A`max and B`max
hmax

be the

group and subgroup to which imax belongs. We decompose the expected weak

regret of HLMC with a three-level hierarchy as follows:

EHLMC[Rw(T )] ≤ (Cmax −C′max) + (C′max −C′′max) + (C′′max −CHLMC)

= R1(T ) + R2(T ) + R3(T ), (B.20)
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where

Cmax =

T∑
t=1

rimax,t, (B.21)

C′max =

S 1∑
s=1

S 2∑
τ=1

EArm-EXP3(B`max
hmax

)

∑
t∈Is

τ

rit ,t

 , (B.22)

C′′max =

S 1∑
s=1

ESubgroup-EXP3(A`max )

 S 2∑
τ=1

EArm-EXP3(B`max
hτ

)

∑
t∈Is

τ

rit ,t


 , (B.23)

CHLMC = EHLMC-3L

 T∑
t=1

rit ,t]

 , (B.24)

= EGroup-EXP3

 S 1∑
s=1

ESubgroup-EXP3(A`s )

 S 2∑
τ=1

EArm-EXP3(B`s
hτ

)

∑
t∈Is

τ

rit ,t



 .

Specifically, R1(T ) corresponds to the arm-level reward loss due to not play-

ing the best arm, assuming that group A`max and subgroup B`max
hmax

are selected at

all epochs and subepochs. By applying Lemma 2 at every subepoch, we have

R1(T ) ≤ 2S 1S 2

√
2S 3N3 ln N3. (B.25)

For R1(T ), which corresponds to the subgroup-level reward loss due to not

selecting subgroup B`max
hmax

at all subepochs, assuming that group A`max is selected

at all epochs, we apply Lemma 1 at every epoch by defining

x`,sh,τ = EArm-EXP3(B`h)

 1
S 3

∑
t∈Is

τ

rit ,t

 . (B.26)

Then we obtain that

R2(T ) ≤ 2S 1S 3

√
2S 2N2 ln N2. (B.27)

Finally, R3(T ) corresponds to the group-level reward loss due to not selecting

groupA`max at all epochs. By defining

z`,s = ESubgroup-EXP3(A`)

 1
S 2

S 2∑
τ=1

x`,shτ,τ

 , (B.28)
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we can apply Lemma 1 again to obtain that

R3(T ) ≤ 2S 2S 3

√
2S 1N1 ln N1. (B.29)

The upper bound in Theorem 11 is obtained by combining (B.25), (B.27), and

(B.29) together and selecting

S i =

⌈
T 1/3(Ni ln Ni)2/3

(
∏

j,i N j ln N j)1/3

⌉
,∀i = 1, 2, 3.
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APPENDIX C

ADDITIONAL RESULTS AND PROOFS IN CHAPTER 3

C.1 Implementation of PSLinUCB-Hybrid

Algorithm 11: PSLinUCB-Hybrid

Input: α > 0, ω ∈ N+, δ > 0, k = d × m.

Initialization: Apre
0 ,Acum

0 = Ik. bpre
0 ,bcum

0 = 0k×1.

for t = 1, 2, ...,T do

// Parameter Estimation and Arm Selection

Observe the feature vector xut of the current user ut and the cross-feature

zut ,a for every arm a ∈ At .

β̂cum = (Acum
0 )−1bcum

0 .

for a ∈ At do

if a is new then

A{pre,cur,cum}
a ← Id,b{pre,cur,cum}

a ← 0d×1, B{pre,cur,cum}
a ← 0d×k, S Wa ← ∅.

θ̂cum
a ← (Acum

a )−1(bcum
a − Bcum

a β̂cum).

pt,a ← xT
ut
θ̂cum

a + zT
ut ,aβ̂

cum + α
√

st,a.

Play at = arg maxa∈At pt,a, obtain reward rut ,at(t).

Append (xut , zut ,at , rut ,at(t)) to the end of S Wat .

Update Acum
0 ,bcum

0 ,Acum
at
,Bcum

at
,bcum

at
using (4.6).

Update Acur
at
,Bcur

at
,bcur

at
in the same way with that in updating Acum

at
,Bcum

at
,bcum

at

(replace cum with cur).

(continued in the next page.)
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Algorithm 12: PSLinUCB-Hybrid (continued)

//Change Detection and Model Update

if |S Wat | ≥ ω then

β̂pre ← (Apre
0 )−1bpre

0 , θ̂pre
at ← (Apre

at
)−1(bpre

at
− Bpre

at
β̂pre).

Let S Wat = {(xs, zs, rs)}ωs=1.

if | 1
ω

(
∑ω

s=1 xT
s θ̂

pre
at + zT

s β̂
pre − rs)| ≥ δ then

Update Acum
0 ,bcum

0 ,Apre
0 ,bpre

0 using (4.8).

Apre
0 ← Acum

0 ,bpre
0 ← bcum

0 , S Wat ← ∅.

A{pre,cum}
at

← Acur
at

, Acur
at
← Id.

B{pre,cum}
at

← Bcur
at

, Bcur
at
← 0d×k.

b{pre,cum}
at

← bcur
at

, bcur
at
← 0d×1.

else

(x1, z1, r1)← Popleft(S Wat).

Update Apre
0 ,bpre

0 ,Apre
at
,Bpre

at
,bpre

at
according to (4.6) (replace cum with pre

and (xut , zut ,at , rut ,at(t)) with (x1, z1, r1)).

Update Acur
at
,Bcur

at
,bcur

at
in the same way with that in updating

Apre
at
,Bpre

at
,bpre

at
(replace pre with cur and operation + with −).

C.2 Proof of Theorem 12

Define events Fi = {τi ≥ νi}, 1 ≤ i ≤ M − 1 and Di = {τi < νi + L/2}, 1 ≤ i ≤ M − 2,

DM−1 = {τM−1 ≤ T }. Then we have

E[R(T )] ≤ E[R(T )I(F1)] + T (1 − P(F1))

≤ E[R(ν1)I(F1)] + E[R(T ) − R(ν1)] + K (C.1)

≤ (δ0 + γ)ν1 + 2α
√

2ν1dK log
ν1

d
+ 2K + E[R(T ) − R(ν1)]
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Note that the first inequality follows from Lemma 6 on bounding the proba-

bility of false alarm in the first fist stationary segment [0, ν1] provided that b

satisfies (C.22) and c =

√
2
ω

log(2T ). The second inequality follows from Lemma

5 on [0, ν1]. The next step is to bound E[R(T ) − R(ν1)], which satisfies

E[R(T ) − R(ν1)]

≤ E[R(T ) − R(ν1)|F1D1] + T (1 − P(F1D1))

= E[R(T ) − R(ν1)|F1D1] + T (P(F̄1D1) + P(F1D̄1) + P(F̄1D̄1)) (C.2)

≤ E[R(T ) − R(τ1)|F1D1] + E[R(τ1) − R(ν1)|F1D1] + 2K

≤ Ẽ[R(T − τ1)] + E[τ1 − ν1|F1D1] + 2K

≤ Ẽ[R(T − τ1)] + ωdK/γe + 2K,

where the second inequality holds due to the following facts

1. P(F̄1D1) = P(F̄1) ≤ KT−1 according to Lemma 6, provided that b satis-

fies (C.22) and c =

√
2
ω

log(2T );

2. P(F1D̄1) = P(D̄1) ≤ 2T−2 according to Lemma 7;

3. P(F̄1D̄1) = 0 since F̄1 and D̄1 cannot happen simultaneously.

The third inequality holds due to the fact that the learning process is restarted

once a change is detected and Ẽ is the expectation taken over the random pro-

cess induced by the learning algorithm after the first detected change time.

Finally, if we recursively upper bound Ẽ[R(T − ν1)] by the same arguments

as above and repeat the process for M − 1 times, we have

E[R(T )] ≤ (δ0 + γ)T +

M∑
i=1

2α
√

2νidK log
νi

d

+4KM + ωMdK/γe. (C.3)
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Let δ0 = 1/T , γ =

√
KMω

T , α >
√

2d log T
δ0

, and apply Cauchy-Schwatz inequality

to the second term, we can obtain

E[R(T )] ≤ C̃1

√
T MKω + C̃2

√
T MKd2 log2 T . (C.4)

C.3 Proof of Lemma 5

Let I(·) be the indicator function and Rat be the one-step regret at time t when

the algorithm plays arm at. The expected cumulative regret can be partitioned

as follows:

E[R(T )] = E[R(T )I(τ1 ≤ T )] + E[R(T )I(τ1 > T )]

≤ T · P(τ1 ≤ T ) + E[R(T )I(τ1 > T )]

≤ T · P(τ1 ≤ T ) +

T∑
t=1

E[RatI(τ1 > T, at is random selected)] (C.5)

+

T∑
t=1

E[RatI(τ1 > T, at is selected by UCB index)].

According to the algorithm, it is not difficult to see that the second term on the

RHS of the above inequality satisfies

T∑
t=1

E[RatI(τ1 > T, at is random selected)] ≤ K ·
⌈Tγ

K

⌉
≤ K + Tγ. (C.6)

For the last term, we have:
T∑

t=1

E[RatI(τ1 > T, at is selected by UCB index)]

≤

T∑
t=1

E[(ra∗t − rat)I(∀a ∈ A,no change detected up to time t − 1,

at is selected by UCB index)] (C.7)

=

T∑
t=1

(xT
ut
θa∗t − xT

ut
θat)I(∀a ∈ A,no change detected up to time t − 1,

at is selected by UCB index).
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Note that if no change has been detected up to time t − 1, the estimation

of θa,∀a ∈ A has not been restarted and thus, θ̂a is calculated based on all

past observations. Thus, according to the algorithm, the RHS of (C.7) is upper

bounded by

T∑
t=1

(xT
ut
θa∗t − xT

ut
θat)I(∀a ∈ A,no change detected up to time t − 1,

at is selected by UCB index)

≤

T∑
t=1

(xT
ut
θ̂a∗t + ||θ̂a∗t − θa∗t ||Aa∗t

(t−1) · ||xut ||A−1
a∗t

(t−1) − xT
ut
θat)I(at is selected by UCB index)

≤

T∑
t=1

xT
ut
θ̂at + α||xut ||A−1

at (t−1) − xT
ut
θat (C.8)

≤

T∑
t=1

2α||xut ||A−1
at (t−1),

where Aa(t − 1) = I +
∑t−1
τ=1 I(aτ = a)xuτ x

T
uτ and ||x||A =

√
xT Ax. The first inequality

simply follows from Lemma 2 in [38]. By selecting α > ||θ̂a − θa||Aa(t−1),∀a ∈ A and

t, the second inequality follows from the fact that the UCB index of at is greater

than a∗t at time t. The last inequality also holds according to Lemma 2 in [38]

and the selection of α. It has been shown in [1] (specifically, Theorem 2) that for

an arm a and any constant δ ∈ (0, 1), with probability at least 1 − δ,

||θ̂a − θa||Aa(t−1) ≤ 1 +

√
d log

(
1 + t
δ

)
. (C.9)

Therefore, if we choose δ = δ0/K and α >
√

2d log(KT/δ0), then with proba-

bility at least 1 − δ0, we have α > ||θ̂a − θa||Aa(t−1), ∀a ∈ A and t, and consequently,

(C.8) holds with probability 1 − δ0. Moreover, with probability δ0 when (C.8)

does not hold, the cumulative regret is trivially upper bounded by T .

Furthermore, let Ta be the set of time steps when arm a is selected up to time
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T , the RHS of (C.8) satisfies:
T∑

t=1

2α||xut ||A−1
at (t−1) (C.10)

= 2α
∑
a∈A

∑
t∈Ta

||xut ||A−1
a (t−1) (C.11)

≤ 2α
∑
a∈A

√
|Ta|

∑
t∈Ta

||xut ||
2
A−1

a (t−1)
(C.12)

≤ 2α
∑
a∈A

√
|Ta| · 2d log

(
1 +
|Ta|

d

)
(C.13)

≤ 2α

√
2TdK log

(T
d

)
, (C.14)

where the first and third inequalities hold by Cauchy-Schwarz inequality and

the second inequality hold by Lemma 11 in [1] and Lemma 3 in [38]. In sum-

mary, the expected cumulative regret under the stationary environment is upper

bounded by

E[R(T )] ≤ T · P(τ1 ≤ T ) + K + T (γ + δ0) + 2α

√
2TdK log

(T
d

)
. (C.15)

C.4 Proof of Lemma 6

Define τa,1 be the first detection time of arm a. Then τ1 = mina∈A{τa,1} and

P(τ1 ≤ T ) ≤
∑
a∈A

P(τa,1 ≤ T ). (C.16)

Let {(xi, ra,i)}i=t−ω+1,..,t be the last ω observations of arm a before time t and define

S a,t =
2
ω

∣∣∣∣∣∣∣
t∑

i=t−ω/2+1

xT
i θ̃a(t − ω + 1, t − ω/2) − ra,i

∣∣∣∣∣∣∣ , (C.17)

where θ̃a(t − ω + 1, t − ω/2) is the estimate of θa based on the observations in

{(xi, ra,i)}
t−ω/2
i=t−ω+1. According to the modified PSLinUCB algorithm, we have

τa,1 = inf{t ≤ ω : S a,t ≥ b + c}. (C.18)
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Moreover, we define τ( j)
a,1 = inf{t = j + nω, n ∈ Z+ : S a,t ≥ b + c}. Then it is not

difficult to see that at each tn = j + nω, n ∈ Z+, the observations used for change

detection are disjoint and thus, τ( j)
a,1 is a random variable with the geometric

distribution:

P(τ( j)
a,1 = nω + j) = p(1 − p)n−1, (C.19)

where p = P(S a,ω > b + c) and thus

P(τa,1 ≤ T ) ≤ ω(1 − (1 − p)T/ω). (C.20)

To upper bound p, we have

P(S a,ω > b + c)

≤ P

 2
ω

∣∣∣∣∣∣∣
t∑

i=t−ω/2+1

xT
i θ̃a(t − ω + 1, t − ω/2) − xT

i θa

∣∣∣∣∣∣∣ > b

 (C.21)

+P

 2
ω

∣∣∣∣∣∣∣
t∑

i=t−ω/2+1

xT
i θa − ra,i

∣∣∣∣∣∣∣ > c

 .
For the first term in the RHS of (C.21), if we choose b to satisfy the following

condition for any t:

b ≥

√
2d log

(
ω

δ1

)  2
ω

t∑
i=t−ω/2+1

||xi||Ã−1
a (t−ω+1,t−ω/2)

 , (C.22)

where Ãa(t−ω+1, t−ω/2) = I+
∑t−ω/2

i=t−ω+1 xixT
i , then the first term in the RHS of (C.21)

is upper bounded by δ1 according to Lemma 2 in [38] and Theorem 1 in [1].

The second term can be bounded by 2 exp(−ωc2) according to the Hoeffding’s

inequality. Let δ1 = 1/(2T 2) and c ≥
√

2
ω

log(2T ), it is not difficult to see that

p = P(S a,ω > b + c) ≤ T−2. (C.23)

Since (1 − x)a > 1 − ax for a > 1 and x ∈ (0, 1), it can be shown that

P(τ1 ≤ T ) ≤
∑
a∈A

P(τa,1 ≤ T ) ≤ KT−1. (C.24)
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C.5 Proof of Lemma 7

Notice that the round-robin exploration in the algorithm guarantees that within

L/2 time steps, each arm is sampled at least ω/2 times. We upper bound the

probability of {τ1 > ν1 + L/2} as follows: consider a be the arm at which the

change point occurs. Let t be the time step when a is sampled ω/2 times in the

new stationary segment (notice that t ≤ ν1 + L/2). The change at a is not detected

only if one of the following events happens:

E1 =

 2
ω

∣∣∣∣∣∣∣
t∑

i=t−ω/2+1

xT
i θ̃a(t − ω + 1, t − ω/2) − xT

i θ
old
a

∣∣∣∣∣∣∣ > b

 , (C.25)

E2 =

 2
ω

∣∣∣∣∣∣∣
t∑

i=t−ω/2+1

xT
i θ

new
a − ra,i

∣∣∣∣∣∣∣ > c

 , (C.26)

E3 =

 2
ω

∣∣∣∣∣∣∣
t∑

i=t−ω/2+1

xT
i θ

old
a − xT

i θ
new
a

∣∣∣∣∣∣∣ < b + c

 , (C.27)

where θnew
a and θold

a correspond to the ground-truth preference vectors of arm

a after and before the change point. Therefore,

P(τ1 > ν1 + L/2) ≤ P(E1) + P(E2) + P(E3). (C.28)

The first two terms has been shown to be upper bounded by 1/T 2 in the proof of

Lemma 6 and the last term equals 0 under the condition that ∆ ≥ b+c. Therefore,

the conclusion in Lemma 7 holds.

153



BIBLIOGRAPHY

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algo-
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[14] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in
multi-armed bandits problems. In International Conference on Algorithmic
Learning Theory, pages 23–37. Springer, 2009.

[15] Swapna Buccapatnam, Atilla Eryilmaz, and Ness B Shroff. Stochastic ban-
dits with side observations on networks. In The 2014 ACM International
Conference on Measurement and Modeling of Computer Systems, pages 289–
300, 2014.

[16] Valeriı̆ Vladimirovich Buldygin and IU V Kozachenko. Metric characteriza-
tion of random variables and random processes, volume 188. American Mathe-
matical Soc., 2000.

[17] Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie. Nearly optimal
adaptive procedure with change detection for piecewise-stationary ban-
dit. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 418–427, 2019.
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