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Micron-sized colloidal particles provide a unique window into the workings of

statistical mechanics. These particles are large enough to be easily imaged with

a microscope, allowing for detailed, mechanistic testing of statistical theories, yet

small enough to still feel the effects of Brownian motion and thermal forces. More-

over, these thermal forces result in dynamics that are controlled by energy scales at

room temperature and time scales on the order of seconds. In addition to allowing

detailed control over a colloidal suspension, these accessible scales allow for the

possibility of driving the suspension far from equilibrium and the exploration of

non-equilibrium statistical mechanics. Much work has focused on the behavior of

spherical colloidal particles, which lack an orientational degree of freedom and have

simpler dynamics. However, many real suspensions are composed of particles with

an orientational degree of freedom. In this thesis I explore the dynamics of dilute

suspensions of nonspherical colloidal particles far from equilibrium. First, using

an experiment I show that the rotational diffusivity of rodlike colloidal particles

is enhanced under shear. Second, using a simplified theory I analytically solve for

these dynamics far from equilibrium (in the limit of large Péclet numbers). The

diffusivity is enhanced at a rate proportional to the square of the particle’s aspect

ratio. Interestingly, this solution also provides insight into the oscillatory shear dy-

namics of these particles, and into the continuous and oscillatory shear rheology of

these suspensions. Third, I use this solution to control the alignment and rheology



of a suspension of particles. Finally, I close by improving the microscope’s resolu-

tion by 10-100× through image analysis alone, without modifying the microscope

itself. By improving the resolution we expect to be able to see new dynamics of

colloidal particles at unprecedented scales.
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4.1 (a) ρ(φ) for particles with aspect ratio p = 5.0 under continuous
shear is sharply peaked and constant in time. (b) The correspond-
ing phase-angle distribution f(κ) (upper panel) is constant in κ and
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changes in a complicated manner with time, stretching and rotat-
ing with the flow. In contrast, the phase-angle picture in (d) is
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sin(4φ(κ + ūΓ)) (yellow), which determines the normal stress, and
cos(4φ(κ + ūΓ)) (magenta), which determines the shear stress, at
two separate times in the cycle: the minimal strain (solid curves)
and the maximal strain (dashed curves). (c) The instantaneous
viscosity throughout the cycle, for both the normal stress (yellow)
and shear stress (magenta). (d) The instantaneous stress through-
out the cycle, for both the normal stress (yellow) and shear stress
(magenta). Both the normal stress and the shear stress have two
blips near the peak of the strain signal, where most of the shearing
occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 PERI overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Fitting the generative model to experimental data . . . . . . . . . 138
5.3 Extracting Interparticle Potentials . . . . . . . . . . . . . . . . . . 141

6.1 Platonic sphere generation . . . . . . . . . . . . . . . . . . . . . . . 154
6.2 Illumination field residuals . . . . . . . . . . . . . . . . . . . . . . . 156
6.3 ILM generated biases . . . . . . . . . . . . . . . . . . . . . . . . . 159

xvii



6.4 PSF widths vs depth . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5 PSF generated biases . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6 Experimental background image . . . . . . . . . . . . . . . . . . . 166
6.7 Noise spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.8 Component complexity residuals . . . . . . . . . . . . . . . . . . . 171
6.9 Lens Positioning Jitter . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.10 Effect of missing particles . . . . . . . . . . . . . . . . . . . . . . . 178
6.11 Influence of particles outside of the image . . . . . . . . . . . . . . 180
6.12 CRB of edge particles . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.13 Pixel Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.14 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.15 Accuracy benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.16 A high-SNR image of the 1.3 µm silica spheres as reconstructed with

PERI. Upper panel: The raw data, in an xy (center), yz (right), and
xz (lower) cross-section. Lower panel: The difference between the
data and the best-fit model, at the same cross-sections; the scale
in this image is 3× brighter than in the residuals in the text of
chapter 5. At this high SNR, the rings around the particles due to
an imperfect PSF are clearly visible. The region of strong residuals
at the left-center of the image is from a small piece of “schmutz”
in the sample and not from a regular particle. . . . . . . . . . . . 199

6.17 Particle radii as a function of position in images of size (z, y, x) =
(50, 256, 512). Each measured particle radius is plotted with a small
gray dot; the plots contain approximately 1200 particles in 1000
separate different images, for about 1,200,000 different points. The
red line is the best-fit polynomial curve. The particle radii are
plotted vs z (left panel), y (right panel), and x (right panel). On
the top of each plot is the standard deviation of the best-fit line,
giving an idea of the radii featuring errors. . . . . . . . . . . . . . 205

7.1 Slider Design. The modified Zeiss slider (right) as compared to
the original (left). Note that this is a mock-up to illustrate the
principles of the design and not a proper engineering schematic;
parts are neither drawn to scale nor completely faithful to the ac-
tual machined material. There is an additional access hole on the
opposite side of the slider from the set screw, to allow for turning
of the 1/4 wave plate mount without disassembling the slider. . . 210

7.2 Liquid-Crystal Shear Cell. A rough schematic of the re-
machined pieces and assembly of the liquid crystal shear cell. The
view is a cross-section through the center of the roughly circularly
symmetric apparatus. The dark gray corresponds to machined com-
ponents which are solid in the cross-section; the light gray corre-
sponds to circular or square holes which allow light to pass through. 213

xviii



CHAPTER 1

INTRODUCTION

The alarm’s soft bleating awakens you. Your hand mechanically fumbles for

your phone, as the soft glow from its LCD screen illuminates the paint’s mountain-

ous texture on your wall. Rote hands grasp at clothes as rote feet carry you towards

the shower. The hot water trickles down your neck in the same rivulets it always

has while the shampoo oozes its way out of the bottle to spiral on your palm. The

bubbly lather of soap and shampoo drips on the shower floor at your feet. Awake,

you step out and grab a fresh piece of toast. The butter runs smoothly over its

hot surface, joined by the slow drizzle of thick honey and the uneven spreading of

strawberry jam. Soon, the last tastes of honey and jam are joined by the minty

taste of the rod of toothpaste that your right hand extrudes from the tube. The

key turns in the ignition; the engine’s mellifluous rumble greets your ears. The

smooth feel of the shifter in your right hand mirrors the smooth surface of the

latte in your left. The morning sun glistens off the closing car door as you stride

towards the office to begin your day.

As you recall your morning, the wide array of fluid behaviors that you have

witnessed astounds you. Water and honey flowed simply, but the jam and shampoo

did not, instead holding their form after they stop flowing. The toothpaste leaves

the tube as a giant plug, without changing shape like a normal fluid. These complex

flow behaviors arise due to structured elements in the fluid – added polymers, small

colloidal particles, and surfactants. These additives allow for a tuning of the fluid’s

rheology beyond what is possible with simple liquids. Additives in your motor oil

and transmission fluid allow them to remain inviscid enough to allow the engine

to turn over at low temperatures, yet viscous enough to function as a lubricant at
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high temperatures. The paint on your wall has colloidal particles added to make

it shear-thin, making it easy to apply to the wall with your roller at high shear

rates but preventing it from flowing off the wall at low shear rates, which creates

the mottled texture on the wall. The glistenting spray paint on your car door

also has colloidal particles added to it to change the film’s rheology and prevent it

from slipping off as it dries. Even objects whose use does not directly depend on

their flow properties are frequently made of structured fluids – your LCD screen

utilizes the orientational structure of a nematic liquid crystal, and your bar of soap

is composed of mesogenic molecules that form nematic and smectic phases when

mixed with water.

In most of these examples, the material consists of a suspending fluid phase

and a dispersed phase – micellar surfactants in the oil, coffee particles in the latte,

polymeric additives in the shampoo. The dispersed phase tends to be made up of

small (10 nm - 10 µm) particles. Due to their small size, these particles behave

qualitatively different from more macroscopic objects. First, they undergo Brown-

ian motion and are randomly kicked in all directions due to thermal collisions with

the solvent molecules. Second, interparticle interactions are important. Frequently

the interaction strength is on the scale of thermal energy or the strength of the

applied flow, which results in a rich phase behavior of the suspension as it flows or

as the temperature changes slightly – think of the butter’s solid-like behavior as

you cut it with a knife but liquid-like flowing as you spread it over the hot toast.

One of the simplest model systems for these substances is nondeformable collo-

dial particles suspended in a fluid. For many of the systems – the milk and coffee

in your latte – the particles are mostly spherical. For other systems, the particles

have an orientational degree of freedom – polymer orientations in the shampoo or
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disc-like clay particles which can be added to the spray paint on your car. Occa-

sionally these particles have nearly no interactions, and occassionally they attract

or repel one another. For simplicity, much work in colloidal science has focused

on hard colloidal spheres suspended in Newtonian solvents. However, spheres lack

an orientation degree of freedom. As a result, their rheology in the dilute limit

is trivial, and their behavior in denser suspensions is difficult to understand from

first principles.

In this thesis, I discuss the flow and static behavior of colloidal dispersions. In

the next three chapters of this thesis, I describe the orientational dynamics of dilute

suspensions of axisymmetric particles under flow, through experiments, theory, and

simulation. In chapter 2 I demonstrate experimentally that rotational Brownian

motion is effectively enhanced under shear flows, due to a Taylor-dispersion-like

coupling between the varying, deterministic rotation of the particle in a shear flow

(Jeffery orbit) and the random rotational Brownian motion of the particle. In

chapter 3, I analytically solve for the particle’s orientation dynamics in the sim-

ple case of a particle confined to rotate in the flow-gradient plane at high Péclet

numbers, under both simple shear flow and under an arbitrary periodic shear. I

use this analytical solution to shed insight on the experimental measurements in

chapter 2. Since the particle orientations couple to the suspension rheology, I then

use this solution to discuss the transient and oscillatory shear rheology of a di-

lute suspension of axisymmetric particls. Since the system is a physical system

with an analytical solution, it provides new insight into the types of nonlinear

and non-Newtonian rheological responses of suspensions. In chapter 4 I use the

exact solution from chapter 3 for an arbitrary oscillatory shear waveform to find

an optimal waveform for a desired set of properties. I show that particle alignment

and suspension rheology are highly tunable, including the creation of large, non-
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transient hydrodynamic normal stresses in dilute suspensions. Surprisingly, the

optimal waveforms are simple, allowing for them to be easily understood in the

framework of chapter 3. Finally, I change gears and create a featuring algorithm

that precisely identifies colloidal particle positions and sizes in a confocal micro-

scope image, which are frequently used in the studying of colloidal suspensions.

This algorithm relies on a detailed physical model of the image formation in a

confocal microscope, which I (briefly) explain and implement. Since this method

identifies particle positions and sizes to nanometer resolution, we use this method

to measure interparticle interaction potentials in systems of colloidal spheres.
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CHAPTER 2

ENHANCING ROTATIONAL DIFFUSION USING OSCILLATORY

SHEAR

Taylor dispersion – shear-induced enhancement of translational diffusion – is an

important phenomenon with applications ranging from pharmacology to geology.

Through experiments and simulations, we show rotational diffusion is also en-

hanced for anisotropic particles in oscillatory shear. This enhancement arises from

variations in the particle’s rotation (Jeffery orbit) and depends on the strain am-

plitude, rate, and particle aspect ratio in a distinct manner from the translational

diffusion. This separate tunability of translational and rotational diffusion opens

the door to new techniques for controlling positions and orientations of suspended

anisotropic colloids. 1

1This work has already been published; see ref. [88].
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2.1 Main Text

G. I. Taylor [145] was the first to point out that a Brownian particle in a pipe

diffuses faster when the suspension is flowing. Qualitatively, this behavior arises

because diffusion along the radius of the pipe allows the particle to be advected

with the flow at different speeds [145, 7]. This effect on translational diffusion

is general. As such, Taylor dispersion has become a useful paradigm for under-

standing diverse phenomena ranging from fluid transport in rock strata [137, 19],

nutrient distribution in farm soils [23], controlling drug delivery [44], and measur-

ing the diffusion constants of slowly-diffusing substances [2, 12].

Given the importance of enhanced translational diffusion, we ask whether dis-

persant orientations are also affected by shear. Colloidal particle orientations are

randomized by thermal motion via rotational diffusion [43]. However, the effect of

flows on orientational diffusion remains poorly understood. Enhanced translational

diffusion under shear results from the particle accessing streamlines with different

flow velocities. Similarly, we expect that a particle with access to rotational trajec-

tories with different angular velocities might display enhanced rotational diffusion.

Particles with axial symmetry “tumble” with an unsteady rotation in what are

known as Jeffery orbits. The orientation of these particles is completely specified

by a unit normal ~n. For a particle with effective aspect ratio p in a flow with strain

rate γ̇, the periodic tumbling is described by [73, 24]

tanφ(t) = p tan
(

γ̇t
p+1/p

)
tan2 θ =

[
κ2
(
p cos2 φ+ 1/p sin2 φ

)]−1
,

(2.1)

where φ is the azimuthal angle from the gradient direction, θ is the polar angle

between the vorticity direction and the particle’s orientation, and κ2 is an orbit

constant set by the initial conditions. For isotropic particles p = 1 and the particle
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tumbles uniformly. However, if p 6= 1, a particle’s orientation is advected with

different angular velocities depending on its position in the periodic orbit. Thus, in

analogy with results for translational Taylor dispersion, we would expect enhanced

rotational diffusion for nonspherical particles under shear.

Here we report experiments and simulations addressing rotational and trans-

lational diffusion of colloid dimers under oscillatory shear. We find the rotational

diffusion is enhanced and depends on the dimensionless strain rate or Péclet num-

ber Pe, effective aspect ratio p, and shear strain γ. Moreover, the dependence of

rotational diffusion on these three parameters differs markedly from the transla-

tional diffusion. With the advent of new techniques for synthesizing nonspherical

particles and their increasing importance in novel materials [27, 58], separate tun-

ability of rotations and orientations promises important applications in mixing and

self-assembly.

To explore rotational diffusion under shear, we used hollow silica colloidal

dimers whose lobes are ≈1 µm in diameter [94] suspended in an index-matched but

density-mismatched 80:20 glycerol:water solution dyed with fluorescein salt. The

dimers are slightly elongated, with a length-to-width aspect ratio of 2.5. In addi-

tion, we determined the dimer hydrodynamic aspect ratio by fitting 200 measured

Jeffery orbits to Eq. 2.1. We measure a median aspect ratio 2.3 ±0.9, consistent

with previous predictions and measurements for true dimers [154, 153].

Previous studies demonstrated that dense suspensions of rod-like particles un-

der shear display enhanced translational or rotational diffusion, which can arise

from many-body hydrodynamic effects [115], collisions [49], or particle-particle in-

teractions [114]. To focus solely on coupling between Brownian motion and shear,

we use suspensions at very dilute volume fractions ≈ 10−4. Consequently, to ob-

7



tain statistical power each particle must be tracked for days at a time. While

such measurements are challenging due to limitations in apparatus stability, they

cleanly eliminate many body effects and clarify the interpretation of our results.

The suspension is loaded in a shear cell consisting of 4 mm × 4 mm silicon wafer

positioned above a glass cover slip and held parallel with less than 1 µm variation

over the length of the wafer. The gap separation was tuned from 7 to 12 µm in order

to vary the strain amplitude. While the plate separation could be set accurately,

over the duration of our long experiments we measured that the gap size could

drift by up to 20%, which in turn affected the applied strain. The silicon wafer

is held stationary, while the glass cover slip is sheared by a piezo controller under

oscillatory triangle-wave shear. Our setup mounts on a fast confocal microscope

allowing us to accurately image the three-dimensional position and orientation of

a colloidal dimer at peak-to-peak shear strains up to γ = 3.4 and frequencies up

to 0.2 Hz.

We image the dimer’s position and orientation with a full three-dimensional

scan, oversampling in all three directions to increase measurement precision

(Fig. 2.1a). After accounting for optical distortion [63], we use a custom featuring

code to reconstruct the particle voxels (Fig. 2.1b). Principal component analysis is

used to determine the particle orientation 21. Using this method we can determine

the particle orientation to within ≈ 5◦ as well as locate the particle’s position with

subpixel resolution - within 30nm in the flow x and vorticity z directions, and

within 100 nm in the gradient direction y.

Under shear, the dimer’s position is advected with the flow, while its orientation

tumbles in a Jeffery orbit. Translational and rotational Brownian motion addition-

21Code is available online at cohengroup.ccmr.cornell.edu
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Figure 2.1: a) Representative confocal microscope images of a dimer. b) The
reconstructed voxels and orientation of the dimer. c) Reconstructed trajectory of
dimer under triangle-wave shear. The flow direction is indicated by arrows. The
peak-to-peak strain is γ = 3.4 and the period T=100 seconds. The dimer’s position
and orientation are represented by the rod, and the color variation represents the
time. In our analysis, we record the dimer position and orientation at the cycle
extrema, corresponding to the cyan, blue, and red rods. d) A trajectory of 250
strobed positions, color coded in time. e) The corresponding orientations, plotted
on the unit sphere.

ally randomize the position and orientation, resulting in a net displacement after

each cycle (Fig. 2.1c). To track the long-time behavior of the dimer under shear,

we take a strobed image at both ends of the triangular cycle (Fig. 2.1d,e) and

reconstruct its trajectory [36]. From these trajectories we extract the orientational

distributions (Fig. 2.2). The effective translational diffusion tensor Deff, and the

effective rotational diffusion constant Dr
eff are extracted using the time correlations:

〈~n(t) · ~n(t+ ∆t)〉 = e−2Dr
eff∆t

〈xi(t)xj(t+ ∆t)〉 = 2(DT
eff)ij∆t ,

(2.2)

where ∆t is an integer number of periods T (Fig. 2.3a,b). While we find that
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the rotational data in 3b are well-fit by a single exponential decay, we note that

rotational diffusion is strictly speaking a tensorial quantity that can in principle

vary with orientation.

To complement our experimental investigations, we model a colloidal dimer in

a shear flow with a Langevin equation. The particle orientation ~n evolves as:

d~n

dt
=

{
Ω · ~n+

p2 − 1

p2 + 1
[E · ~n− ~n(~n · E · ~n)]

}
+

(2Dr
0)1/2~Γ(t)

(2.3)

The first term in the brackets describes a uniform rotation due to a shear flow,

and the second term accounts for the effects arising from particle shape and orien-

tation relative to the imposed shear strain [73]. The final term on the right hand

side accounts for rotational Brownian motion. Here Dr
0 is the rotational diffusion

constant of the particle and ~Γ is a diffusive white-noise term. Ω is the vortic-

ity tensor and E is the rate-of-strain tensor for triangle-wave oscillatory shear:

Ωij = 1
2
(∂iuj − ∂jui), Eij = 1

2
(∂iuj + ∂jui).

Our experiment consists of suspension of sedimenting spheroids in a shear flow

bounded by rigid surfaces, whereas our simulation models the rotation of a single

spheroid in an infinite fluid. While our experiment minimizes interparticle hydro-

dynamic interactions [150, 1, 115, 127] by using extremely dilute volume fractions,

due to the geometry of the experiment we cannot avoid interactions with the wall

[111, 139]. Nevertheless, we find similar behavior between our experiments and

simulations, despite the fact that the walls considerably influence the translational

dynamics. We posit the reason for this agreement is, as simulations have shown,

the wall’s effect is only at the few percent level on the Jeffery orbits [111], which

is what ultimately affects the rotational diffusion.

Three dimensionless parameters control the particle’s distribution and diffusiv-
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Figure 2.2: a,b) Measured orientation distribution from 12, 000 simulation cycles
at p = 2.3, Pe = 600, and γ = 3.4, plotted on the unit sphere. The distribution
oscillates with the flow. Thus different orientations are observed at integer versus
half-integer cycles. c,d) The same distribution as in (a & b), but plotted with an
equiareal mapping where θ is the polar angle measured from the gradient direction,
and φ is the azimuthal angle measured from the flow direction. e,f) The orientation
distribution from experiment, separated by full (e) versus half(f) cycles, measured
at the same Pe, γ. All images share the same color scale.

ities: the aspect ratio p, the dimensionless strain rate or Péclet number Pe=γ̇/Dr
0,

and the peak-to-peak strain amplitude γ = γ̇T/2 (Eq. 2.3). Previous works [66]

have shown that Eq. 2.3 leads to an inhomogeneous steady-state distribution of

particle orientations under continuous shear. In contrast, our experiments and

simulations for oscillatory shear show the orientational distribution oscillates with

the flow (Fig. 2.2 b,d versus c,e). While the distributions show the ~n→ −~n sym-

metry required by Eq. 2.3, they are not symmetric about either the gradient or

flow axes separately 2. At low Pe, γ, or near p = 1, the orientational distribution

becomes isotropic. Interestingly, increasing Pe at fixed γ strengthens the align-

ment, whereas increasing γ at fixed Pe both strengthens the alignment and alters

its direction. We find excellent agreement between simulations and experiments.

Moreover, at high amplitude and high Pe the simulated distributions approach

previous calculations for rods under continuous shear [66].

2 See EPAPS for details about the experimental setup and additional data, including movies of
the orientational distributions over a range of shear parameters and enhanced rotational diffusion
as a function of aspect ratio.
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Figure 2.3: a) Measured mean-square displacement along flow (red squares), vor-
ticity (green circles), and gradient (blue triangles) directions. b) Measured cor-
relation of the corresponding orientations. c) Normalized translational diffusion
DT

eff/D
T
0 , along all three axes versus γ at fixed Pe = 80. Symbols correspond to

measurements while the black lines correspond to predicted values (Eq. 2.4). The
gray band indicates the effects of experimental uncertainty in γ on the prediction.
Inset: The predicted diffusion along the flow direction for 0 < γ < 15. Red box
illustrates range in main panel. d) Dr

eff/D
r
0 for the same dataset as (c), as mea-

sured from experiment (cyan squares) and simulation at p = 2.3 (black points).
Shaded band indicates the effect of experimental uncertainty in aspect ratio. Inset:
simulated rotational diffusion for 0 < γ < 15. Red box illustrates range in main
panel. e,f) Translational (e) and rotational (f) diffusion at constant γ = 3.4 and
varying Pe. Overlaid in black lines are the expected values from theory (c) and
simulation (d).
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In addition to distributions, we simultaneously measure the particle’s rotational

and translational diffusion after an integer number of cycles. We find the particle’s

translational [114, 95] and rotational motions are well fit by diffusive trajectories of

Eq. 2.2. The translational mean-square displacement, shown in Fig. 2.3a, increases

linearly with time while the time-correlation of particle orientations, shown in

Fig. 2.3b, exponentially decays. From these curves we extract effective diffusion

constants, which depend on the dimensionless parameters Pe, γ, and p.

The experimental data in Fig. 2.3c show the translational diffusion along the

flow direction (DT
eff)xx increasing with γ. (DT

eff)xx ranges from its equilibrium value

at γ = 0 to ≈ 3.5× its equilibrium value at γ = 3. In contrast, the diffusion

constants along the gradient and vorticity directions (DT
eff)yy and (DT

eff)zz remain

at the equilibrium value. Theory predicts that for spherical particles in triangle

wave shear the diffusivity is [95]:

〈x2〉 = 2Dxt+ 2
3
Dyγ

2t 〈y2〉 = 2Dyt 〈z2〉 = 2Dzt (2.4)

where x, y, and z are the flow, gradient, and vorticity directions and t is taken at

integer multiples of the cycle period. Clearly, an anisotropic particle has different

diffusivities along its different axes [61, 108]. Since the particle’s orientation couples

to the flow, Dx, Dy, and Dz in Eq. 2.4 will depend on the applied shear flow.

Building on results for continuous shear [52], however, we calculate this change to

be at the few percent level in our experiments. We thus compare our data with

Eq. 2.4 in Fig. 2.3 using equilibrium values for Dx, Dy, Dz. We find excellent

agreement between theory (black lines) and experiments (data points) for all the

effective diffusion constants. As predicted, only (DT
eff)xx increases with γ. As

shown in Fig. 2.3 inset the effective diffusion along the flow direction increases

quadratically with γ indefinitely.
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Since at fixed γ DT
eff depends on Pe only through Dx, Dy, Dz,we predict an

enhanced (DT
eff)xx even as Pe → 0 and no measurable dependence of DT

eff on Pe.

As expected, we observe that (DT
eff)yy and (DT

eff)zz remain constant while (DT
eff)xx is

significantly enhanced even at the lowest Pe measured (Fig. 2.3e). However, there

is a weak trend in the (DT
eff)xx data. We attribute this trend to experimental effects

from fluctuations in the shear cell gap (gray band) and gravitational settling that

can affect data at low Pe 32.

We find that Dr
eff is also enhanced by shear, nearly doubling by γ = 3 (Fig 2.3d).

A similar trend is observed in our simulations (black line; gray band accounts

for uncertainty in p). However, simulations at larger γ than those accessible in

experiments show that Dr
eff saturates at a value that depends on Pe and p (Fig.

2.3d inset). Because Jeffery orbits are periodic with strain, after the orientation

has completed 1/2 a period (γ = π(p+ 1/p)) no new rotational dynamics appear.

Since larger strain does not provide access to new changes in the streamlines, the

rotational diffusion saturates. In contrast, the translational diffusion increases

indefinitely, as there is no strain scale for translations.

The Pe dependence of Dr
eff contrasts with translational diffusion. While (DT

eff)xx

remains enhanced at low Pe, in both experiment and simulation Dr
eff increases

continuously with Pe (Fig. 2.3f). Our simulations also suggest that for large Pe

Dr
eff still increases, albeit slowly 42.

A more complete map of the dependence of Dr
eff on Pe and γ for p = 2.8 is

shown in Fig. 2.4a. This figure summarises 778 simulations of Dr
eff in the range

0 < γ < 30 and 0 < Pe < 1400. The heat maps show that both trends - Dr
eff

increasing slowly with Pe and saturating at high γ - are general over a large range

of parameters. In addition, they illustrate two unexpected trends. First, the slight
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Figure 2.4: Dr
eff/D

r
0, plotted against both Pe and γ at p = 2.83 (a) and p = 7.0

(b). c) Data from (a) at Pe=1400 demonstrating oscillations in Dr
eff with γ. d)

Dr
eff/D

r
0 vs. λ = (p2− 1)/(p2 + 1), taken at fixed γ = 2.83 and at four separate Pe:

10 (blue circles), 40 (red vertical triangles), 289 (green horizontal triangles), and
1000 (cyan squares). Inset: Dr

eff/D
r
0 versus λ at Pe =10,40,1000 and γ = 15.

slopes observed for the contours of Dr
eff indicate that the dependence on Pe and γ

is coupled. Second, we find multiple resonances in Dr
eff with increasing γ, visible

as the dark red “bumps” at high Pe in Fig. 2.4a and the peaks in Fig. 2.4c.

These oscillations result from the Jeffery orbit periodicity. Particle rotation under

triangle wave shear maps onto rotation under continuous shear when γ corresponds

to an integer number of half Jeffery orbits (distance between vertical dashed lines

in Fig.2.4c).

While it is known increasing aspect ratio can at most vary translational diffusion

anisotropy by a factor of 2 for rods in bulk fluids [86], here we find a much stronger

dependence of the rotational diffusion on aspect ratio. Although it is difficult to

alter the aspect ratio in experiments, we can examine the dependence of Dr
eff on p

in simulation. To this end, we evaluated Dr
eff at 537 different γ and Pe values and

at fixed p = 7.0 (Fig. 2.4b). At large Pe the rotational diffusion again saturates

when γ ∼ π(p + 1/p). However, while Dr
eff at p = 2.83 was enhanced by 2.4, we
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find that Dr
eff at p = 7 is enhanced by a factor of 9. The general trends in the

data for the dependence of Dr
eff on p can be examined by plotting Dr

eff versus the

Jeffery coefficient λ = (p2−1)/(p2 + 1) at fixed Pe and γ (Fig. 2.4d). We find that

Dr
eff remains finite as p → ∞. For γ = 2.8 this value is roughly 2 at Pe = 1000

(cyan squares, main panel) whereas for γ = 15 this value increases to 14 at Pe =

1000 (inset). Finally, for all simulated Pe and γ, we find no enhanced diffusion in

the limit of spherical particles and uniform rotation (p → 1). Just as enhanced

diffusion due to Taylor dispersion requires access to a gradient in the real-space

streamlines, enhanced rotational diffusion requires access to nonuniform rotational

trajectories.

Overall, the diffusion of a colloidal dimer shows a complex dependence on the

shear flow and the particle aspect ratio. Simply by changing the applied shear, the

rotational diffusion of a colloidal particle can be tuned absolutely and relative to

the translational diffusion. In particular, by changing γ the translational diffusion

increases indefinitely, whereas the rotational diffusion saturates. This separate

tunability of orientations and positions opens the door to new techniques for ma-

nipulating self-assembly, particle separation, and suspension rheology. Moreover,

the formulation of these results extends to two and even three axis shear flows,

allowing an additional handle for manipulating particle orientations and positions.

Further measurements with larger data sets may be able to look for anisotropy in

the rotational diffusion. Nearly 60 years after Taylor originally showed that trans-

lational diffusion could be enhanced by flow, new techniques in particle synthesis

and measurement of orientational trajectories show that these general principles

can be extended to rotational diffusion.
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2.3 Experimental Setup & Featuring Method

Our shear cell consists of a homebuilt “confocal rheometer” that is described else-

where [30]. The shear cell consists of two macroscopic (≈20 cm) machined objects

which are precisely positioned within several microns of each other. Over the

course of the long experiments, the temperature in the room drifts by a degree or

two Celsius. The small changes from thermal expansion of these parts is enough

to change the gap size by several microns, which can be a large relative change in

the gap size and thus the strain rate. We have measured a 20% change in the gap

size - corresponding to only a 2 micron drift - for some of our experiments, which

is what set the size of the shaded regions in Fig. 3 c&e. Achieving more stable

gaps over the course of the week that is necessary to collect enough statistics for

an experiment will require substantially better temperature control and therefore

a redesign of the apparatus.

We use a fast confocal z-stack to image our dimers under shear. The z-stack

consists of 50 512× 128 pixel (at .12 µm/pixel) slices, separated by 0.165 µm in

z and taken at a slice rate of 216 frames per second, or 1/4 of a second for the

entire z-stack. This allows the particle to be completely imaged before it has sig-

nificantly moved due to the shear flow. A typical reconstructed dimer thus has

≈1500 voxels in its reconstruction. We identify the particle by noise-filtering and

carefully thresholding the image. After accounting for stretching along the confo-

cal’s vertical axis (the gradient axis of the shear) due to optical distortion, [63], we

use a custom featuring code to reconstruct the entire particle from the image. We

then determine the particle’s position and orientation by taking the brightness-

weighted mean and brightness-weighted covariance matrix of the particle’s voxels.

The eigenvector of the covariance matrix with the largest eigenvalue is identified as
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the particle’s orientation; we avoided the ambiguity in the sign of the particle’s ori-

entation by selecting the orientation closest to the particle’s previous orientation.

We checked that this method accurately identifies the particle orientation by test-

ing the method on generated images of colloidal dimers at arbitrary orientations

and with a noise level similar to that in our experimental images.

We determined the uncertainty in our particle positions by extrapolating the

experimentally measured correlations (〈xx〉, 〈yy〉, 〈zz〉, and 〈~n(t) · ~n(t + ∆t)〉) to

∆t = 0 and finding the intercept. From this we find that we can measure particle

orientation to within 5◦, and the particle position to within 30 nm in the flow

and vorticity directions and 100 nm in the gradient direction. Our resolution in

the gradient direction is dominated by lack of precision in the confocal’s vertical

positioning relative to the shear cell.

In addition to checking the uncertainty in our particle locations, we also checked

to see whether sedimentation could play a strong role. Since our dimers are hol-

low silica shells and since the solvent is viscous, they do sediment, although more

slowly than a solid particle in water would. From looking at the mean-square ver-

tical position 〈z2〉 of quiescent dimers, we estimate that the sedimentation time

of our dimer is approximately 150 seconds. While this is faster than 1/Dr
0, which

is about 1000 seconds, for all but the lowest shear frequencies the sedimentation

time is considerably larger than the time for one shear cycle and is much larger

than 1/γ̇. In addition, the particle can also rotate freely in all directions. The

Brownian height
√
〈z2〉 of the particle is about 1 particle size, allowing rotations

in the gradient-flow plane. Moreover, even particles near the walls exhibit full

3D Jeffery orbits – the necessary criterion for the enhancement of rotational dif-

fusion. Furthermore, as mentioned above, we can measure angular displacements
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corresponding to times much less than the sedimentation time so that even if sed-

imentation were hindering the full motion of the particle we can still measure its

diffusive displacements. Thus we do not think that the density-mismatch has a

strong influence on the experimental results.

2.4 Diffusion under Oscillatory Shear

The effect of continuous shear on translational diffusion is well-understood. Like

a purely diffusive particle, the mean displacement 〈~x〉 = 0 in the reference frame

where the particle starts at z = 0. However, the mean square displacement tensor

〈xixj〉 no longer increases linearly in time. Instead, it is given by [32, 76, 101, 95]

〈x2〉 = 2Dt+ 2/3Dγ̇2t3 〈y2〉 = 2Dt 〈z2〉 = 2Dt

〈xy〉 = 0 〈xz〉 = Dγ̇t2 〈yz〉 = 0
(2.5)

where x, y, and z are the flow, gradient, and vorticity directions, respectively.

For 〈x2〉, the linear term 2Dt arises from ordinary diffusion, while the nonlinear

term 2/3Dγ̇2t3 arises from the Taylor dispersion mechanism, sampling different

trajectories in z. Note also that unlike in ordinary diffusion, there is a correlation

between the motion in the flow direction and the gradient direction: 〈xz〉 6= 0.

For a particle under triangle-wave oscillatory shear, we can view its probability

distribution after an integer number of cycles as the sum of two random variables:

a displacement after shearing at constant strain rate γ̇ for a time T/2, and a second

displacement after shearing with −γ̇ for a time T/2. Since the mean and variance

of the sum of two random variables is the sum of each random variable’s mean and

variance, we can simply add the values for 〈~x〉 and 〈xixj〉 from Eq 2.5, one with
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γ̇T/2 and one with −γ̇T/2:

〈x2〉 = 2Dt + 2/3Dγ2t 〈y2〉 = 2Dt 〈z2〉 = 2Dt

〈xy〉 = 0 〈xz〉 = 0 〈yz〉 = 0
(2.6)

where γ = γ̇T/2 is the strain amplitude and t is measured after an integer number

of cycles (t = nT ). Alternatively, one can follow the derivation presented D.

Leighton [95]. When evaluated at a cycle extrema, it provides the same result.

For all our experimental data, we find that 〈xx〉, 〈yy〉, 〈zz〉 increase linearly with

time, and that the cross terms 〈xy〉, 〈xz〉, 〈yz〉 are zero to within our experimental

precision.

2.5 Effect of changing p on diffusion

With our current particle synthesis methods we are unable to probe experimen-

tally the behavior of large aspect ratio particles; however, we can estimate these

effects. The only effect of Pe on diffusion is through the orientation of the particle.

The reason the orientational distribution matters is that the particle has different

diffusion constants along different axes. Coupled to the particle orientation, this

anisotropic diffusion affects the average diffusion constants along the flow, vortic-

ity, and gradient directions. However, even at long aspect ratios, the anisotropic

translational diffusion is at most a factor of 2 different between diffusions along the

perpendicular and long particle axis [86]. Thus at most there would be a factor of

2 difference between a very long and very short rod.
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Figure 2.5: Dr
eff vs. Pe at γ = 2.83, for p = 5.0 (linear scale, (a) and log scale, (b))

and p = 1.85 (linear scale, (a) and log scale, (b)). Intermediate values of p show
similar trends.

2.6 Simulated Dr
eff at large Pe

As mentioned in the text and shown in the figure below, we observe that Dr
eff

increases with Pe for as far as we have simulated. Shown below is Dr
eff vs. Pe for

two separate aspect ratios; intermediate aspect ratios show similar behavior. The

effect is not an artifact of of a finite simulation timestep; decreasing the timestep

by a factor of 2 at the highest Pe produces no change within statistical uncertainty.

2.7 Simulated Dr
eff for continuous shear

While our main text discusses rotational diffusion under oscillatory shear, we also

note that the same qualitative effect can happen in continuous shear. Instead of

strobing after an integer number of cycles, we can strobe at integer multiples of the

particle Jeffery orbit’s period. Similar to the rotaitonal diffusion under oscillatory

shear, under continuous shear the rotational diffusion is also enhanced with Pe and
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Figure 2.6: Dr
eff vs. Pe at p = 2.83 for continuous shear. Like oscillatory shear,

we observe an increase in the rotational diffusion, when measured after an integer
number of Jeffery Orbits.

p. Figure S2 below shows a log-log plot of Dr
eff/D

r
0 vs. Pe for a fixed aspect ratio

p = 2.83.
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2.8 Discussion & Future Work

In the past three years since this paper has been published [88], new techniques

and knowledge have suggested better future experiments. In this section, I would

like to briefly review what these new techniques and knowledge suggest about new

experiments. First, I will talk about re-analyzing the same or very similar data,

collected on a confocal microscope with the same dimer particles and the same

shear cell apparatus. Second, I will discuss how a similar but new experiment

should be designed. I will not mention what new directions could be included in a

totally new experiment, as these are briefly discussed in chapter 3 and 4.

2.8.1 Re-analyzing the same data

While in chapter 2 we had shown experimentally that rotational diffusion is en-

hanced under shear, we did not experimentally determine the full orientation dy-

namics. As shown in recent theoretical analyses [89], at high Pe the orientation

relaxation are better described in terms of the particle’s phase angle κ and possi-

bly the orbit constant C. It would be interesting to re-examine the experimental

dynamics in ref. [88] and see if they are well-described by the theory in ref. [89].

At high Pe the orientational dynamics should follow the theory. However as Pe

decreases, there should be deviations from the theory. It would be interesting to

see how these deviations scale with Pe and what they look like experimentally.

The particle orientations and positions were extracted using the heuristic algo-

rithm described in section 2.2. In light of the rest of the work in this thesis (i.e

chapter 5), it would be interesting to extract particle positions and orientations

with a physical reconstruction of the image. This would especially matter for the
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orientations. The algorithm in section 2.2 functions by thresholding an image and

identifying voxels of the image that correspond to the particle. The particle’s ori-

entation is defined as the principle eigenvector of the covariance matrix of the voxel

positions, either weighted or not weighted by the image intensity. Empirically, I

was able to determine that this produces a fairly unbiased measurement of parti-

cle orientation by looking at orientation distributions under zero shear. However,

the asymmetric point-spread function of the microscope slightly elongates particles

along the optical axis. This effect must produce a bias in the measured particle

orientations, although the bias must in turn be small.

In principle, featuring the images with a physical reconstruction (PERI) will

eliminate this bias. However, PERI functions by creating a generative model of

the image, which requires a detailed knowledge of the particle shape. While this

knowledge is easy to acquire for colloidal spheres – only the radius needs to be fit,

and the functional form is known to be a sphere – for the dimers used in ref. [88]

creating this generative model is more difficult. The dimers are not simply two

osculating spheres, but are somewhat “peanut” shaped. In addition, both the size

and the shape of the dimers varies from dimer to dimer. Since both the shape and

the mode of variations of this shape are unknown, parameterizing these dimers is

not simple.

However, PERI not only extracts parameters from an image, but it also creates

maximally-realistic generated data. Thus, instead of using PERI directly to feature

the images, PERI could be used indirectly to calibrate a heuristic algorithm. In

addition to allowing for estimation of featuring errors, PERI could be used to

compare different heuristic algorithms on realistic generated data (such as the one

in ref. [13]) or even to guide design of accurate heuristic algorithms.
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2.8.2 Re-doing an experiment

The experiment in chapter 2 was done using a line-scanning confocal microscope to

acquire the data. While fast, this microscope still required about 0.25 s to complete

a scan, restricting the range of strain rates usable. To image with this microscope,

the suspending fluid needs to be index-matched to the particle, and to be able to

suspend the particles, the fluid must be compatible with the particle. This severely

restricts the range of suspending fluids that can be used, essentially leaving only

a mixture of ≈ 80% glycerol and 20% water. As a result of the restricted strain

rates and viscous samples, only a moderate range of Pe is accessible, with data

at low Pe requiring very slow imaging with very long times between frames. As

a result, collecting the data in ref. [88] required 10 days of continuous imaging

on the confocal microscope. However, as the microscope is in an ordinary room,

the temperature in the room fluctuates by several degrees over the course of a few

hours, as people enter and exit the room and other microscopes and lights are

turned on and off. These temperature changes are on the scale of a 1-2 K and do

not significantly affect the diffusion constant or viscosity of the solvent. However,

since the shear cell (described in ref. [97]) is a macroscopic machined piece of

equipment with a microscopic gap, these small changes in temperature result in a

large change in the microscopic gap, due to differential thermal expansion of the

shear cell apparatus. Since the displacement and frequency of the motion of the

bottom plate are controlled, this change in the gap results in a large change in

both the strain amplitude and the strain rate of the applied flow. This results

in the large uncertainty in the applied flow and some of the large uncertainty

in the measured parameters visible in figure 2.3. Moreover, since the confocal

operates by taking a three-dimensional image stack as opposed to a single two-

dimensional image, the memory and hard-disk space on the computer rapidly fill
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up. To partially circumvent this, I attempted to image the particle only at the

start and end of the shear cycle. At fast shear frequencies there is some small error

in this, due to a lag between sending the signal for the confocal to image and the

confocal actually responding, although by attempting many times and timing the

delay it is possible to narrow this phase mismatch to ≈ 5% of a cycle. However,

by only imaging at the start and end of a cycle, information about the dynamics

during a cycle are lost. Finally, since the dimers are polydisperse, I attempted to

continuously image one dimer to reduce systematic noise due to different sizes of

dimers. (Since rotational diffusion scales with the size a as ∼ 1/a3, a 10% change in

particle size results in a 30% change in the particle diameter. And there were many

different sized particles in the sub-par sample I was provided with. While I did

my best to only include dimers that were the same size, it is impossible to do this,

resulting in more errors.) However, by continually including one dimer over a long

period of time, the dye photobleaches. This photobleaching results in seriously

decreased contrast in the image, making the feature extraction significantly more

difficult. As a result of these issues, confocal microscopy is probably not the best

way to re-collect this data.

Instead, I would recommend the usage of holographic imaging. In holographic

imaging, a coherent laser is used to illuminate the sample. This laser scatters off

particles in the field of view. The scattered field and incident field interfere to

produce a scattering pattern on the detector in the image plane of the microscope.

Fitting this interference pattern provides information about the particle size and

particle position, including its position along the optical axis. For anisotropic par-

ticles, the scattering pattern also gives information about the particle orientation.

Since the scattering pattern is only collected at one plane, the resulting data is

two-dimensional. As a result, holographic imaging both (1) is very fast – the frame
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rate is only limited by the frame rate of the camera, and fast cameras with 100,000

frames per second are easy to purchase – and (2) has a low memory and disk-space

footprint. In addition, reported fit errors in holographic imaging are very small –

typically around a few nm for spherical particle positions. The laser could be easily

ported through a the modified shear cell I machined from scratch with both a top

and bottom glass plate for imaging liquid crystals (briefly mentiond in ref. [97]).

Finally, holographic imaging relies on there being some index contrast between

the particle and the fluid, as opposed to confocal microscopy which requires that

they be exactly index matched. As a result, the range of available suspending

fluids and hence fluid viscosities is much, much greater with holographic imag-

ing. Finally, since the imaging is scattering-based, holographic imaging does not

suffer from photobleaching. Holographic imaging would thus overcome many of

the limitations of the confocal microscopy used – acquisition speed, range of Pe

accessible, duration of experiment and temperature and gap-size drift, quantity of

data, dynamics within one oscillation and phase shifts from imaging vs. shearing,

photobleaching. In addition, holographic microscopy is fairly simple to set up as

compared to a complex confocal.

However, holographic microscopy is not a panacea. The technique functions

by fitting a known scattering distribution to the data. In general, these scattering

distributions are complicated to calculate for all but one particle and for any shape

but spheres. Complications due to multiple-particle scattering will not affect a new

experiment, since the experiment concerned single particles. However, difficulties

will arise from the lack of a scattering solution for the peanut-shaped particles.

Nevertheless, this is a problem with a defined, conceptually straightforward solu-

tion – calculate a scattering matrix – and any techniques developed in solving this

problem are likely to be useful for other systems.
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Finally, there are a few small things that could now also be improved about

the experiment. In the past few years, new particle synthesis techniques have

been developed that allow for synthesis of colloidal rods or bullets [85]. These

particles seem easier to synthesize and seem easier to stabilize, which was another

source of problems for the dimers. Moreover, their simpler shape would allow

for a parameterized description of them either for PERI or for fitting holography

images. They also would provide a validation of the measurements at a different

aspect ratio than that of the dimers. Finally, a better temperature control box

could be designed for the shear cell, reducing the drift in the gap and providing

better measurements.
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CHAPTER 3

THE EFFECT OF SHEAR FLOW ON THE ROTATIONAL

DIFFUSION OF A SINGLE AXISYMMETRIC PARTICLE

Understanding the orientation dynamics of anisotropic colloidal particles is im-

portant for suspension rheology and particle self-assembly. However, even for the

simplest case of dilute suspensions in shear flow, the orientation dynamics of non-

spherical Brownian particles are poorly understood. Here we analytically calculate

the time-dependent orientation distributions for nonspherical axisymmetric parti-

cles confined to rotate in the flow-gradient plane, in the limit of small but nonzero

Brownian diffusivity. For continuous shear, despite the complicated dynamics aris-

ing from the particle rotations, we find a coordinate change that maps the orien-

tation dynamics to a diffusion equation with a remarkably simple ratio of the

enhanced rotary diffusivity to the zero shear diffusion: Dr
eff/D

r
0 = 3

8
(p− 1/p)2 + 1.

For oscillatory shear, the enhanced diffusion becomes orientation dependent and

drastically alters the long-time orientation distributions. We describe a general

method for solving the time dependent oscillatory shear distributions and finding

the effective diffusion constant. As an illustration, we use this method to solve for

the diffusion and distributions in the case of triangle wave oscillatory shear and

find that they depend strongly on the strain amplitude and particle aspect ratio.

These results provide new insight into the time dependent rheology of suspensions

of anisotropic particles. For continuous shear, we find two distinct diffusive time

scales in the rheology that scale separately with aspect ratio p, as 1/Dr
0p

4 and as

1/Dr
0p

2 for p� 1. For oscillatory shear flows, the intrinsic viscosity oscillates with

the strain amplitude. Finally, we show the relevance of our results to real suspen-

sions in which particles can rotate freely. Collectively, the interplay between shear

induced rotations and diffusion has rich structure and strong effects: for a particle
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with aspect ratio 10, the oscillatory shear intrinsic viscosity varies by a factor of

≈ 2 and the rotational diffusion by a factor of ≈ 40. 1

1This work has already been published; see ref. [89].
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3.1 Introduction

Stir a solution and the solute will mix faster than when the solution is left quies-

cent. This mixing is enhanced even at low Reynold’s numbers due to the coupling of

random Brownian motion and spatially-varying fluid velocities. Brownian motion

causes solute particles to access different fluid streamlines, which in turn differen-

tially advect the solute particles. On long times, this combination of diffusion and

advection looks the same as an enhanced translational diffusion. This mechanism,

known as Taylor dispersion, occurs in a wide variety of natural and industrial

processes ranging from drug delivery in the bloodstream [44] to microfluidic lab-

on-a-chip setups [38], with high Reynolds number analogs even determining mixing

in streams and rivers [47]. Taylor dispersion is only one example of the broader

coupling that occurs between advection and diffusion that is used to manipulate

mass transport across many scales, ranging from chaotic mixing in microchannels

[141] through particle clustering in turbulent fluids [9].

Anisotropic particles allow for more complex coupling between diffusion and

convection, due to the additional orientational degrees of freedom they possess.

Under shear, an isolated ellipsoid’s orientation is not constant, but instead rotates

with the flow in an unsteady motion known as a Jeffery orbit [73]. In colloidal

suspensions, rotational Brownian motion also changes the particles’ orientations,

creating the possibility of a coupling between the Jeffery orbit and rotational diffu-

sion. Recently, through experiments and simulations Leahy et al [88] observed an

enhancement of the rotational diffusion for colloidal dimers under shear, suggest-

ing that such a coupling does exist. However, little is known about this coupling

compared to its translational counterparts.

In this paper, we take the first steps towards calculating analytically the effects
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of rotary diffusion coupled with Jeffery orbits. In the rest of section 3.1, we first

review previous work on the effects of rotational diffusion coupled with Jeffery

orbits. In section 3.2, we find the time-dependent orientation distribution for a

dilute suspension of axisymmetric particles subjected to continuous shear. To make

the analysis tractable, we examine the limit where the shear rate is large (i.e. Pe �

1, where the Péclet number Pe ≡ γ̇/Dr
0 is the ratio of the shear rate to the zero-

shear rotary diffusion constant), and we restrict the particle orientations to reside

in the flow-gradient plane, which is a representative Jeffery orbit. Remarkably, we

find that the complicated convection-diffusion equation describing the particle’s

orientations maps to a simple diffusion equation in a new coordinate with an

enhanced diffusion constant. In section 3.3, we generalize these results to derive

the time-dependent evolution of nonspherical particle orientations under oscillatory

shear. Even in the limit of large shear rates, the oscillatory shear distributions and

diffusive dynamics differ considerably from the continuous shear distributions. In

section 3.4, we examine particular solutions of the oscillatory shear equations,

taking triangle-wave shear as an analytically tractable example. In section 3.5,

we use our results to explore how rotational diffusion affects the rheology of a

suspension of nonspherical particles at large shear rates. Finally, in section 3.6, we

close by comparing our results to traditional Taylor dispersion and demonstrating

their relevance to real three-dimensional particle orientations.

While Jeffery explained the rotation of an ellipsoid, his solution does not ad-

dress particles of other shapes. However, symmetry and group theory arguments

can be used to ascertain how a general particle rotates [62]. For an axisymmetric

particle, the orientation is completely specified by a unit normal n. As shown by

Bretherton [24], any axisymmetric particle in Stokes flow rotates in a Jeffery orbit
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as:

dn

dt
= n·Ω + λ [E·n− n (n·E·n)] (3.1)

Here Ω and E are the fluid vorticity and rate-of-strain tensors, Ωij ≡

(∂iuj − ∂jui) /2 and Eij ≡ (∂iuj + ∂jui) /2. The coefficient λ is a scalar con-

stant which depends on the particle geometry and can be found from solving

the full Stokes equations. Jeffery [73] showed for an ellipsoid of revolution that

λ ≡ (p2 − 1)/(p2 + 1), where p is the particle aspect ratio. For simple, continuous

shear with strain rate γ̇, equation (3.1) simplifies considerably. If |λ| < 1, which

is usually the case, then the magnitude of the second term is always less than the

first term, and the particle rotates indefinitely. Denoting θ as the polar angle mea-

sured from the vorticity direction and φ as the azimuthal angle from the gradient

direction in the flow-gradient plane, (3.1) admits the solution

tanφ = p tan

(
γ̇t

p+ 1/p
+ κ

)
tan θ =C

(
p cos2 φ+

1

p
sin2 φ

)−1/2

,

(3.2)

where p is an effective aspect ratio and the phase angle κ and orbit constant

C capture the particle’s initial orientation. Equations (3.1) and (3.2) show a

symmetry under the transformation p → 1/p, φ → φ + π/2; thus, the motion of

disc-like and rodlike particles are the same up to a change of axes. Note that

(3.2) employs different definition of C than usual in the literature to emphasize

the p → 1/p symmetry. The particle rotates in one of an infinite number of

Jeffery orbits, each of which is described by an orbit constant C determined by the

particle’s initial orientation. Since the orbits are periodic, there is no mechanism

to select a unique long-time distribution of orientations.

In colloids, rotational diffusion also affects the particles’ orientations. The

probability distribution ρ of finding a rod at orientation (θ, φ) is given by a Fokker-
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Planck equation:

∂ρ

∂t
= Dr

0∇2ρ−∇·(ρu) , (3.3)

u = φ̂
γ̇

p+ 1/p

(
p cos2 φ+

1

p
sin2 φ

)
sin θ + θ̂

γ̇(p2 − 1)

4(p2 + 1)
sin 2φ sin 2θ . (3.4)

Here t is the time, Dr
0 is the rotary diffusion constant, u is the Jeffery orbit’s rotary

velocity field from (3.1), φ̂ and θ̂ are unit vectors in the φ and θ directions, and the

divergence and Laplacian operators act in orientation space (θ, φ). The relative

strength of the diffusive term Dr
0∇2ρ to the advective term ∇·(ρu) is quantified

by a rotary Péclet number Pe = γ̇/Dr
0. While ordinarily the diffusion in (3.3) is

due to Brownian motion, equation (3.3) has also been used to capture the effects

of random hydrodynamic interactions in non-Brownian fibre suspensions at finite

concentrations [48, 115]. As a result, (3.3) has been analysed in many different

limiting values of the Péclet number, which we now describe.

Low shear rates, Pe � 1: When there is no shear, (3.3) reduces to a simple

diffusion equation, and the particle orientations become isotropically distributed

on times longer than 1/Dr
0. When Pe is small but nonzero, the distribution can

be found through a straightforward perturbation approach. If the particle is elon-

gated (p > 1), to first order in Pe the steady-state orientation distribution is

enhanced along the flow’s extensional axis, where the Jeffery orbit has a negative

divergence, and the distribution is suppressed along the flow’s compressive axis,

where the Jeffery orbit has a positive divergence. This perturbation expansion

can be extended to yield a power series in Pe = γ̇/Dr
0 [109, 136, 140] and has

been evaluated numerically up to many orders in Pe. However, the series does not

converge for Pe & 1, and other methods must be used to find the distribution for

such flows [81].

High shear rates, Pe � 1: Early attempts to calculate the distributions in
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the limit of weak diffusion simply looked for a steady-state solution to (3.3) with

Dr
0 = 0. However, this procedure produces an apparent indeterminacy in ρ, since

without diffusion there is no mechanism to select a steady-state distribution of orbit

constants. Leal and Hinch realized that weak diffusion primarily acts to select a

distribution of the particles’ phase angles κ and orbit constants C [92, 66]. When

p� 1 the mode of the steady-state distribution has an orbit constant C ≈
√
p/8,

corresponding to an orbit that bends strongly towards the flow direction when

φ = π/2 but returns to a moderate distance away from the gradient direction

when φ = 0. Diffusion also randomizes κ and orients most particles near the flow

direction, where the orbit’s rotational velocity is slow. As a result, the steady-state

distribution is strongly aligned with the flow for large p.

Intermediate shear rates, 1� Pe� (p+1/p)3: When the particle aspect ratio

is large p� 1, equation (3.4) shows that the particle rotates extremely slowly when

oriented near the flow direction. As a result, for large p it is possible for the Jeffery

orbit to be dominant compared to diffusion over most of the orbit, but for diffusion

to be important in a small orientational boundary layer of size ∼ 1/p near φ = π/2.

Hinch and Leahy [66] showed that in this intermediate regime (1� Pe � p3), the

fraction of particles oriented away from the flow direction decreases as ∼ 1/Pe1/3.

These predictions at high and intermediate Pe have been verified experimentally,

both quantitatively [151] and qualitatively [53, 74, 57, 25, 113, 88].

Dynamics. The time evolution of ρ is of interest since it determines the startup

rheology of a suspension of rodlike particles. At low Pe, the time dynamics are

determined by rotational diffusion, and there is only one time scale of interest. At

Pe = 0, the evolution of the particle orientations is described by a simple diffusion

equation, which has been studied extensively [56, 152, 69]. At low but nonzero

36



Pe, the dynamics of (3.3) have been studied since the 1930s [109] through series

expansions in Pe, partly as a model polymeric solutions under startup flows. At

second order and higher in Pe, the orientation transients in a suspension cause a

stress overshoot, followed by an undershoot [16, 136, 140].

At high Pe the time variation due to the Jeffery orbit becomes important.

However, since the rotation is periodic, the Jeffery orbit by itself does not lead to

a steady-state distribution. The distribution in (3.3) instead approaches steady-

state due to diffusion, which occurs on a longer time scale. Thus, in contrast to the

low Pe case, at high Pe there are two time scales which determine the evolution

of ρ. The time-dependence of ρ due to the Jeffery orbit at high Pe has been

well-studied. At short times, the Jeffery orbit causes oscillations in ρ, which have

been observed experimentally through direct imaging [106, 105], flow dichroism

[53, 118], and suspension rheology [72].

Comparatively less work has focused on the approach of ρ to steady-state due

to diffusion. Hinch and Leal [67] attempted to solve (3.3) exactly by separation of

variables. While they were not able to obtain an exact solution, they made scaling

arguments based on the orthogonality of the eigenfunctions of the convection-

diffusion operator to qualitatively understand the time evolution of ρ, arguing that

at high Pe there were two diffusive time scales in the rheology. Recently, through a

combination of experiments and simulation Leahy et al [88] showed that oscillatory

shear at high Pe enhances rotational diffusion, as measured from the orientational

correlations. This enhancement was attributed to a mechanism where rotational

diffusion allows different particles to access regions of different rotational velocity,

leading to an enhanced effective diffusion. An analytical solution of the rotational

dynamics under shear would provide additional insight into the effect of shear on
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rotational diffusion.

3.2 Orientation dynamics under continuous shear

A full time-dependent solution to (3.3) has not been found for over seventy years.

Even in the limit of large shear rates (Pe � 1), a uniformly valid time-dependent

solution does not exist. Rather than attempt to solve (3.3) exactly, then, we

examine the case where the particle is restricted to the most extreme Jeffery orbit

along the flow-gradient plane (i.e. θ = π/2). Equation (3.3) then simplifies to

∂ρ

∂t
= Dr

0

∂2ρ

∂φ2
− ∂

∂φ
[ρu(φ)]

u(φ) =
γ̇

p+ 1/p

(
p cos2 φ+

1

p
sin2 φ

) (3.5)

Since this Jeffery orbit has the largest variation in angular velocities and is repre-

sentative of the Jeffery orbit’s φ dynamics, we expect that it captures the essence

of the orientation dynamics along the Jeffery orbits in three dimensions; we defer

a discussion of three-dimensional orientation dynamics to section 3.6.

At high Pe, the complicated advective term is dominant, while the much sim-

pler diffusive term is weak. The reverse case would be easier to treat: If the

advective term were simple and the diffusion term complicated, we could hope to

solve the dominant advective portion exactly and to treat the weak diffusion with

a singular perturbation scheme. When written in the φ coordinate, the advective

term is complicated due to the rotation of the Jeffery orbit. This suggests that we

parameterize the particle’s orientation by a coordinate that does not change due
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to the Jeffery orbit. We define new coordinates (κ, t′) such that

∂κ

∂φ
=

ū

u(φ)

∂κ

∂t
= −ū

∂t′

∂φ
= 0

∂t′

∂t
= 1

(3.6)

where ū is the mean velocity over an entire Jeffery orbit, i.e. ū ≡ ∆φ/TJO =

γ̇/(p + 1/p) where ∆φ = 2π and TJO is the Jeffery orbit period from (3.2). The

constant ū non-dimensionalizes the velocity; the reason for this choice is discussed

in section 3.3. For a Jeffery orbit, the new coordinates are the same as the phase

angle defined in (3.2):

p tan(ūt′ + κ) ≡ tanφ (3.7)

t′ ≡ t ; (3.8)

the definition in (3.6) gives a construction of κ for arbitrary rotary velocity fields.

These coordinates are illustrated schematically in figure 3.1. Under the angular

portion of the coordinate change, lines spaced by constant φ (panel 3.1a) get

bunched in κ (3.1b) to reflect the velocity differences along the orbit, causing the

particles’ motion (red arrows) to look like a uniform rotation. This angular portion

of the coordinate change is the coordinate space used by Leal and Hinch [92] to

determine the steady-state distributions under continuous shear. The t dependence

of κ in (3.6) removes this uniform rotation (3.1c).

In this new phase-angle coordinate κ, advection due to the Jeffery orbit is

completely removed. The probability of finding a particle with a phase angle in

(κ, κ+ dκ) evolves solely due to diffusion. Thus, instead of writing (3.5) with the

distribution ρ(φ), we recast equation (3.5) in terms of an ancillary distribution

f(κ) that describes the probability of finding a particle in the region (κ, κ+ dκ):

f(κ) ≡ ρ
∂φ

∂κ
= ρ

u

ū
. (3.9)
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Figure 3.1: The continuous-shear distributions ρ(φ) from (3.18) for a particle with
aspect ratio p ≈ 2.83. (a) ρ(φ) in steady-state. Here the value of ρ is shown by
the distance from the central black ring; the dotted black line shows the zero-shear
equilibrium distribution (ρ = 1/2π). The solid black lines correspond to 12 equally-
spaced angles at φ = nπ/6. The red arrows indicate the Jeffery orbit velocity (3.1).
(b,c) The ancillary distribution f in the stretched space. The angular portion of
(3.8), shown in (b), stretches the space significantly, visible from the bunched φ
gridlines, and turns the Jeffery orbit into a uniform rotation. By transforming to
a rotating reference frame (c), the uniform rotation in (b) is removed.

With the new coordinates (κ, t′) and the ancillary distribution f , equation (3.5)

can be recast into a simpler form. Direct substitution of the definition of f into

(3.5) gives

ū

u(φ)

∂f

∂t
= Dr

0

∂2

∂φ2

(
ū

u(φ)
f

)
− ū∂f

∂φ
(3.10)

Transforming the derivatives to the new coordinates, equation (3.10) can be written

after some simple rearrangements as

∂f

∂t′
= Dr

0

∂

∂κ

[
ū

u

∂

∂κ

( ū
u
f
)]

, where

ū

u(φ)
=

[
p cos2 φ+

1

p
sin2 φ

]−1

=
1

p
cos2(κ+ ūt) + p sin2(κ+ ūt)

(3.11)

This construction of κ and f(κ) results in an ancillary distribution f that does not

move with the Jeffery orbit; all the time evolution of f(κ) arises from diffusion, as

visible from (3.11). The initial equation (3.5) is a complicated partial differential

equation in simple coordinates. By making the coordinate change φ → κ, (3.5)

has been transformed into a more tractable partial differential equation in compli-
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cated coordinates. Since the coordinate change is straightforward, we can analyse

equation (3.11) in the stretched coordinates to understand the rod’s dynamics, and

easily transform back to φ afterward.

Equation (3.11) is exact, describing both the significant long-time diffusion of

the particle orientations and the small, less important short-time changes due to

coupling between the Jeffery orbits and diffusion. To understand the orientation

distribution when diffusion is small, we introduce a dimensionless advective time

t = ūt′ and the dimensionless diffusion or inverse Pe number ε ≡ Dr
0/ū. In

dimensionless form, (3.11) then becomes

∂f

∂t
= ε

∂

∂κ

[
ū

u

∂

∂κ

( ū
u
f
)]

. (3.12)

We wish to understand the evolution of f on long times t & 1/ε, in the limit ε→ 0.

To isolate the long-time behaviour, we find the net change of f after a full Jeffery

orbit by integrating (3.11) over a period of a Jeffery orbit, ūTJO = 2π. Expanding

the derivatives in (3.12) and integrating gives

f(κ, t + 2π) = f(κ, t) + ε

{∫ t+2π

t

(
ū

u(φ(κ, τ))

)2
∂2f

∂κ2
dτ+

3

2

∫ t+2π

t

∂

∂κ

(
ū

u(φ(κ, τ))

)2
∂f

∂κ
dτ+

1

2

∫ t+2π

t

∂2

∂κ2

(
ū

u(φ(κ, τ))

)2

f dτ

} (3.13)

where τ is a dummy variable of the integration.

By assuming that the diffusion is weak (i.e. the dimensionless diffusion ε ≡

Dr
0/ū� 1), these integrals can be simplified considerably. Since f changes slowly

with time, cf. (3.12), f and its derivatives in κ can be Taylor expanded in t about

t = 0: f(κ, t) = f(κ, 0)+ t∂f/∂t(t=0)+O(t2). But by construction ∂f/∂t = O(ε),

so f(κ, t) can be approximated by f(κ, 0), with a correction to (3.13) of O(ε2). In
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contrast, the function u(κ + t) cannot be approximated by u(κ), since ∂u/∂t is

O(1). Thus, to first order in ε, equation (3.13) can be written as

f(κ, t + 2π)− f(κ, τ) = ε

{
∂2f

∂κ2

∫ t+2π

t

(
ū

u(κ+ τ)

)2

dτ+

3

2

∂f

∂κ

∫ t+2π

t

∂

∂κ

(
ū

u(κ+ τ)

)2

dτ+

1

2
f
∂2

∂κ2

∫ t+2π

t

(
ū

u(κ+ τ)

)2

dτ

}
+O(ε2)

(3.14)

This finite-time update equation can be recast as a differential equation in the limit

ε → 0. Define a new dimensionless time τ ≡ εt ≡ Dr
0t. Rewriting the integrals in

(3.14) as averages gives

f(κ, τ + 2πε)− f(κ, τ)

2πε
=

〈( ū
u

)2
〉
∂2f

∂κ2
+

3

2

∂

∂κ

〈( ū
u

)2
〉
∂f

∂κ
+

1

2

∂2

∂κ2

〈( ū
u

)2
〉
f

(3.15)

where 〈·〉 denotes the average over a Jeffery orbit period. In the limit of large shear

rates ε→ 0, and this update equation becomes a differential equation. Re-casting

back to the dimensional (κ, t′) coordinates, (3.14) can be written as the differential

equation:

∂f

∂t′
= Dr

0

[〈( ū
u

)2
〉
∂2f

∂κ2
+

3

2

〈
∂

∂κ

( ū
u

)2
〉
∂f

∂κ
+

1

2

〈
∂2

∂κ2

( ū
u

)2
〉
f +O(ε)

]
(3.16)

In addition, the second and third integrals on the right hand side of (3.16) can

be simplified. Since the rotation rate u is a function of κ + ūt′ only, cf. (3.11),

the derivatives of u can be rewritten as ∂u/∂κ = ū∂u/∂t′. Consequently, the

second and third terms become integrals of a derivative, and vanish since u and its

derivative are periodic. As a result, only the first of the three integrals in (3.16) is

nonzero.

Remarkably, in the limit ε→ 0 these manipulations transform the complex ori-
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entation dynamics in (3.5) into a simple diffusion equation with a uniform diffusion

constant:

∂f

∂t′
= Dr

0

〈( ū
u

)2
〉
∂2f

∂κ2
(3.17)

where the angle brackets denote a time-average over one orbit. On long times, the

rod’s orientation moves diffusively in the stretched space with an effective diffusion

constant Dr
eff = Dr

0〈(ū/u)2〉. When diffusion is small, it acts to randomize the

phase angle κ of the rod’s Jeffery orbit. While the randomizing kicks of diffusion

coupled to the Jeffery orbit do not produce diffusive behaviour in real φ space,

their combined effect results in an emergent simple diffusion in the stretched κ

space.

Up to this point, none of the results depend on the specific form of the Jeffery

orbit. All that is required to proceed up to (3.17) is a rotary velocity field u(φ) that

is non-zero and gives rise to periodic orbits, allowing for an appropriate coordinate

change. The details of the Jeffery orbit only enter into the value of the effective

diffusion constant Dr
eff and in the definition of κ and f(κ). At long times, f(κ) =

1/2π and κ is completely randomized, giving a steady-state distribution

ρ(φ) =
1

2π

[
p cos2 φ+ 1/p sin2 φ

]−1
, (3.18)

i.e. rods with p > 1 mostly orient along the flow direction (φ ≈ π/2), where the

Jeffery orbit velocity is slowest, cf. figure 3.1. This long-time distribution is the

2D version of Leal and Hinch’s solution.

More importantly, our derivation also allows us to calculate an analytical so-

lution for the orientation dynamics. Evaluating the average 〈(ū/u)2〉 we find a

simple form for the effective diffusion constant Dr
eff :

Dr
eff/D

r
0 =

3

8
(p− 1/p)2 + 1 (3.19)
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Equation (3.19) states that the effective diffusion of rodlike particles is enhanced

under shear, in agreement with experiments in three dimensions [88]. The effective

diffusion constant Dr
eff is symmetric with respect to p→ 1/p, respecting the sym-

metry of the Jeffery orbits. For spherical particles, which have p = 1 and undergo

uniform rotation, the rotational diffusion is not enhanced: Dr
eff(p = 1)/Dr

0 = 1.

Just as Taylor dispersion requires nonuniform translational velocities to enhance

the diffusion, a nonuniform Jeffery orbit is required to enhance the rotational dif-

fusion.

The ∼ p2 enhancement of the diffusion for p � 1 can be understood from the

structure of the Jeffery orbit. As can be seen from (3.5), for most of the rod’s

possible orientations the Jeffery orbit’s rotation scales as u ∼ γ̇, independent of

aspect ratio. Thus, over most of the Jeffery orbit, the relative effect of diffusion

compared to advection is Dr
0/u ∼ Dr

0/γ̇. However, when the particle is aligned with

the flow (φ ≈ π/2), the particle’s rotation is considerably slower, of order ∼ γ̇/p2

when p is large. Thus, near the flow direction, the relative effect of diffusion is

Dr
0/u ∼ Dr

0p
2/γ̇, larger by a factor of p2. This p2 enhancement of the effect of

diffusion produces the p2 scaling of the effective diffusion in (3.19).

Since (3.17) is a simple diffusion equation in the phase angle coordinate κ, a

solution for f(κ, t′) is easy to obtain by separation of variables. For a particle with

phase angle κ0 at time t′ = 0, the ancillary distribution f evolves as

f(κ, t′) =
1

2π
+

1

π

∞∑
m=1

cos[m(κ− κ0)]e−m
2Dr

eff t
′
. (3.20)

In practice, however, the orientation dynamics in the original φ space are of

interest, not the dynamics in κ space. In principle, the dynamics of any distribution

in φ space can be calculated by substituting the relation between κ and φ, given

in (3.8), into a solution of (3.17) such as (3.20). Alternatively, the evolution of a
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Figure 3.2: Rotational diffusion under continuous shear in the stretched κ-space.
(a) Semi-log plot of the correlations 〈cos(m∆κ)〉 vs. time for an aspect ratio p ≈
2.83 and Pe = 104. The black dotted lines correspond to diffusive correlations with
the diffusion constant from (3.19); the colored lines correspond to the simulated
correlations. There is excellent agreement with no adjustable parameters. At
long times, higher-order corrections in 1/Pe are visible as the broadening into
bands when the correlations decrease below ≈ 10−4 (grey shaded region). (b) The
diffusion constant Dr

eff , extracted from simulated m = 1 correlations, plotted vs.
aspect ratio (cyan circles), alongside the prediction from (3.19) (black line).

rod’s orientation in κ space can be measured instead. Correlations in κ, such as

〈cosm(κ− κ0)〉 = e−m
2Dr

eff t suggested by (3.20), provide direct information about

the enhanced diffusion constant. Additionally, any function of φ also can be written

in terms of κ and t′, allowing for any expectation value to be evaluated in κ space.

Nevertheless, even without this substitution, many details of the orientation

dynamics in φ can be gleaned from the solutions for f(κ) in (3.20). In particular,

the distributions ρ or f relax to their steady-state values with a spectrum of

exponential decays superimposed on the Jeffery orbit’s oscillation. The spectrum

of decay times for these exponentials is 1/m2Dr
eff for integer m – the same decay

times as the zero-shear diffusion equation, but with an enhanced diffusion constant

Dr
eff instead of Dr

0. The slowest of these time scales, 1/Dr
eff , will determine how fast

a generic expectation value relaxes to its steady state, including the correlations

determining the rheology discussed in section 3.5.
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To test our solution (3.19) for the orientation dynamics, we simulated (3.5) over

a large range of aspect ratios at a large Péclet of Pe ≡ γ̇/Dr
0 = 104, as described

in appendix 3.7. The φ correlations 〈cosm(φ − φ0)〉 are not diffusive but instead

exhibit oscillations with complicated damping and orientational dependence. In

contrast, the theory described above predicts that the correlations in κ-space fol-

low a diffusive behaviour with correlations that decay as simple exponentials. We

test this prediction by fitting the κ correlations in our simulations to the expo-

nential decay 〈cos[m(κ(t) − κ(0))]〉 = e−m
2Dr

eff t suggested by (3.20), as shown in

figure 3.2. We find excellent agreement over a wide range of particle aspect ratios,

with diffusion constants given by (3.19).

Equation (3.11) only describes the singular contribution of diffusion to the

distribution and is not correct to O(ε) at long times. Indeed, the steady-state

solution ρ ∝ 1/u in (3.18) only satisfies the ∇·(ρu) portion of (3.5); the ε∇2ρ term

remains. Thus our solution is not a full solution to O(ε) but only captures the

cumulative effects of the small diffusion that accrue over long times. It is this O(ε)

discrepancy which appears as the broadening of the bands in figure 3.2a. The true

steady-state distribution ρ(φ) can be written as ρ(φ) = ρ0(φ)+ερ1(φ), where ρ0(φ)

is the solution given in (3.18). After long times, the correlations 〈cosm∆κ〉 are

then

〈cosm∆κ〉 =

∫ 2π

0

cos(m∆κ)ρ0 dφ+ ε

∫ 2π

0

cosm(∆κ)ρ1 dφ (3.21)

While the first term is zero by construction of κ, in general the second term is

nonzero and gives an O(ε) correction to the correlations at long times. Since

φ = φ(κ+ ūt), the function cosm∆κ oscillates in time, in turn creating a residual

O(ε) long-time oscillation in the correlations. This oscillation is visible in figure 3.2

at correlation values below ∼ 1/Pe, appearing as solid bands due to the many

Jeffery orbits spanned by the x-axis.
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3.3 Oscillatory shear equations

The success of equations (3.17) and (3.19) at accurately describing the dynamics

of rodlike particles subjected to continuous shear suggests that we use a similar

framework to examine the dynamics of rods in intrinsically unsteady flows. To

this end, we derive an equation analogous to (3.17) that describes the distribu-

tion’s evolution under an arbitrary oscillatory shear waveform. We show a general

method for its solution, which we then implement in section 3.4.

To find the distributions under oscillatory shear, we follow the spirit of the

derivation in section 3.2 for continuous shear. Under oscillatory shear, the distri-

bution ρ is described by a convection-diffusion equation similar to (3.5), except

that the magnitude of the rotational velocity changes with time. If Γ̇(t) is the

dimensionless waveform describing the oscillatory shear, such that the instanta-

neous shear rate is Γ̇(t)γ̇, then the convection-diffusion equation for the particle’s

orientation takes the form

∂ρ

∂t
= Dr

0

∂2ρ

∂φ2
− ∂

∂φ

[
ρΓ̇(t)u(φ)

]
. (3.22)

When written in the coordinate φ, the advective portion is exceptionally compli-

cated since the rotational velocity field itself oscillates with the flow through Γ̇(t),

in addition to the change of φ with time. Like the case for continuous shear, the

advective term will be considerably simpler when written in terms of the phase

angle κ. Thus, we define new coordinates (κ, t′) such that κ changes only due to

diffusion:
∂κ

∂φ
=

ū

u(φ)

∂κ

∂t
= −Γ̇(t)ū

∂t′

∂φ
= 0

∂t′

∂t
= 1 ,

(3.23)

where ū and u(φ) are defined as before. These coordinates are defined the same

way as for continuous shear, except that there is an additional factor of Γ̇(t) in
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∂κ/∂t to capture the shear flow’s oscillation. Continuing to follow the continuous

shear derivation, we recast (3.22) in terms of the ancillary distribution f . Since the

angular part of the coordinate change ∂κ/∂φ remains the same as for continuous

shear, f(κ) again takes the form (3.9).

With the new oscillatory shear coordinates (κ, t′) and the ancillary distribution

f , (3.22) can be cast into a simpler differential equation, following the continuous

shear argument. Direct substitution of the definition of f gives

ū

u(φ)

∂f

∂t
= Dr

0

∂2

∂φ2

(
ū

u(φ)
f

)
− Γ̇(t)ū

∂f

∂φ
(3.24)

By transforming the derivatives to the new coordinates, (3.24) can be written as

∂f

∂t′
= Dr

0

∂

∂κ

[
ū

u

∂

∂κ

( ū
u
f
)]

. (3.25)

Once again, the construction of κ and f(κ) results in an ancillary distribution f

that only evolves due to diffusion. Equation (3.25) exactly describes this evolution

in the new coordinates for all Pe.

Equation (3.25) is the same form as (3.11) for continuous shear, but it has a

hidden difference in the value of u(φ(κ, t′)) which we now elucidate. Rearranging

the coordinate derivatives (3.23) to find ∂φ/∂t′ and ∂φ/∂κ gives an equation for φ

in terms of κ and t′:

∂φ

∂t′
= Γ̇(t)ū

∂φ

∂κ

Thus, φ is a function of κ + ūΓ(t′), where Γ(t′) is the antiderivative of Γ̇(t′). In

comparison, under continuous shear φ has a simpler dependence on κ+ūt′, without

the complication due to the functional form of Γ(t′). For the particular case of a

Jeffery orbit, ū/u is

ū

u(φ)
=

[
p cos2 φ+

1

p
sin2 φ

]−1

=
1

p
cos2[κ+ ūΓ(t′)] + p sin2[κ+ ūΓ(t′)] (3.26)
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which is similar to (3.11) for continuous shear but contains a different t′ depen-

dence.

Since equation (3.25) is the same form as its continuous shear counter-

part (3.11), it can be analysed in the same manner in the limit of large Pe. In

particular, we can find the change in f after one cycle of oscillatory shear, in-

stead of after one Jeffery orbit, by following the steps in (3.12-3.14). An update

equation similar to (3.14) can be obtained by writing (3.25) with dimensionless

variables ε ≡ Dr
0/ū and t ≡ ūt and integrating over the period of one oscillation

(t, t + ūTcyc), where Tcyc is the period of the oscillatory shear waveform Γ(t). The

same argument in (3.15-3.16) then recasts this update equation into a differential

equation for the time evolution of f , valid in the limit that f does not change

significantly over a cycle εūTcyc → 0:

∂f

∂t′
= D(κ)

∂2f

∂κ2
+

3

2

∂D

∂κ

∂f

∂κ
+

1

2

∂2D

∂κ2
f , where (3.27)

D(κ)/Dr
0 ≡

〈(
ū

u(κ+ ūΓ(τ))

)2
〉
≡ 1

Tcyc

∫ Tcyc

0

(
ū

u(κ+ ūΓ(τ))

)2

dτ . (3.28)

Equation (3.27) is similar to (3.17), but with an angularly-varying diffusion co-

efficient D(κ). For continuous shear, the effective diffusion constant arises from

averaging the rotary velocity field over the entire Jeffery orbit. Since the Jeffery

orbit is periodic, after a fixed time a particle at any initial orientation has sampled

the entire rotary velocity field, leading to an effective diffusion which is indepen-

dent of starting orientation. For oscillatory shear, a particle does not in general

sample an entire Jeffery orbit. The particle’s effective diffusion instead results from

an average over the portions of the orbit which the particle does sample, and par-

ticles at different orientations experience an angularly varying diffusion coefficient

D(κ).

There are salient differences between the oscillatory shear equation (3.27) and
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the continuous shear equation (3.17). Equation (3.27) is not a simple diffusion

equation in the κ coordinate: terms proportional to both f and ∂f/∂κ appear,

and the coefficient D(κ) of the second derivative term ∂2f/∂κ2 is not constant.

Even more striking, the long-time solution to (3.27) is not constant in κ, evidently

depending on the effective diffusivity D(κ). The variation of D(κ) with orienta-

tion causes particles to drift away from an isotropic distribution in κ, similar to

the mechanisms driving concentration gradients induced by turbophoresis [9, 119],

orientation gradients of rods flowing through a fixed bed [128], or the creation of

absorbing states observed in dense suspensions of non-Brownian spheres and rods

under oscillatory shear [35, 77, 49].

The difference between the oscillatory shear and the continuous shear distri-

butions arises from diffusion. While the continuous shear distribution in the limit

Dr
0/ū = 0 is the same for forward and backward shear, there are higher-order

corrections in Dr
0/ū to the distribution that break this symmetry [66]. Under

oscillatory shear at large strain rates, these small corrections to the distribution

oscillate with the flow, building up after many cycles to create a long-time dis-

tribution that differs from the continuous shear distribution, even in the limit of

infinitesimal diffusion.

Rearranging (3.27) provides additional insights into the oscillatory shear dis-

tributions’ evolution. Writing (3.27) in the form ∂f/∂t′ = −∂J/∂κ, where J is a

probability flux, explicitly shows the conservation of probability:

∂f

∂t′
= − ∂

∂κ

[
−D∂f

∂κ
− 1

2

∂D

∂κ
f

]
(3.29)

Here the flux J consists of two terms: one reminiscent of a diffusive term with

a diffusion constant D and one reminiscent of a drift term with a drift velocity

−1/2× ∂D/∂κ. It is this latter effective drift velocity, arising from the spatially-
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varying diffusion in (3.28), that causes the particle orientations to drift away from

the continuous shear steady-state distribution. Setting ∂f/∂t′ = 0 gives the dis-

tribution at long times as

f(κ) ∝ (D/Dr
0)−1/2 ρ(φ) ∝ ū

u
(D/Dr

0)−1/2 . (3.30)

To obtain a simple description of the dynamics of the orientation distribution,

we follow a procedure similar to that in section 3.2 and transform into a coordinate

z yielding a simple diffusion equation. First, we define another ancillary distribu-

tion g(z) such that the probability of finding a particle in the region (z, z + dz) is

g(z)dz, in analogy to the original definition of f :

g(z) = f(κ(z))
∂κ

∂z
. (3.31)

Next, we choose the coordinate z such that g(z) is constant at long times. Rear-

ranging (3.31) and steady-state f in (3.30) immediately gives one possible definition

of z as:

∂z

∂κ
= (D/Dr

0)−1/2 . (3.32)

When these definitions of z and g(z) are substituted into (3.29), the factors of D

in the diffusive term and ∂D/∂κ in the diffusive drift velocity term are cancelled,

resulting in a simple diffusion equation for g:

∂g

∂t′
= Dr

0

∂2g

∂z2
. (3.33)

Interestingly, recasting (3.29) into a simple diffusion equation requires the rela-

tionship between the diffusive flux term and the diffusive drift velocity term to be

what it is in (3.29). In general, a convection-diffusion equation with a drift velocity

that is not related to a spatially-varying diffusion constant cannot be recast into

a simple diffusion equation via the line of reasoning presented here.
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While the coordinate change specified by (3.32) recasts (3.27) into a diffusion

equation, any other coordinate z̃ related to z by z̃ ≡ αz will also do so, with a

different diffusion constant D̃ = Dr
0/α

2 – indeed, this is simply a restatement of the

scaling symmetries in a diffusion equation. However, while changing coordinates

can produce any numerical value of D̃, the physical spectrum of time scales will be

independent of these coordinate changes. To find the effective diffusion constant,

we return to the specific case of diffusion on a circle. Equation (3.33) can then be

solved by separation of variables to give

g(z, t) =
∑
m

ame
imze−D

r
0m

2t′ . (3.34)

Imposing a single-valuedness condition on g, g(z(κ)) = g(z(κ+ 2π)), constrains m

such that mz(κ = 2π) = 2πn, where n is an integer, or m = 2πn/z(κ = 2π). With

this constraint, equation (3.34) becomes

g(z, t′) =
∑
n∈Z

Ane
−Dr

0n
2t′[2π/z(κ=2π)]2einz[2π/z(κ=2π)] . (3.35)

This solution has the same form as the solution to a diffusion equation on a circle,

in a new coordinate z̃ ≡ z×2π/z(κ=2π). In particular, the spectrum of the decay

times is the same as that for diffusion on a circle with diffusion constant:

Dr
eff/D

r
0 =

(
2π

z(κ=2π)

)2

. (3.36)

Incidentally, this same argument provides the reason for choosing the factor of ū

in the definition of the continuous shear κ in (3.6), since it is the factor of ū that

sets κ(φ= 2π, t=0) = 2π and gives the correct spectrum of time scales.

Making this coordinate change κ→ z transforms (3.27) into a simple diffusion

equation in a more complicated coordinate system. The recast form allows for an

exact solution if the new coordinate z is known and provides additional intuition

into the evolution of the orientation distribution. In general, the new coordinate
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z(κ) is difficult to find analytically. However, the coordinate change is simpler

to solve numerically than the full partial differential equation, and (3.28), (3.30),

and (3.36) allow for a direct calculation of the effective diffusion constant and

the long-time distributions without a full determination of z(κ). Moreover, for

certain strain amplitudes and oscillatory waveforms the distribution and effective

diffusion can be solved for analytically. We provide the results of these solutions

for triangle-wave shear in the next section.

3.4 Triangle-wave oscillatory shear solutions

As visible from equations (3.32-3.36), the strain amplitude affects both the dy-

namics and the distributions under oscillatory shear. To gain intuition for the role

played by oscillatory strain amplitude, we examine analytically-tractable triangle-

wave shear. We solve for three limiting cases – low amplitudes, large amplitudes,

and intermediate resonant amplitudes – and compare the calculations with sim-

ulations. Finally, we compare numerical solutions for Dr
eff and ρ at arbitrary

amplitudes with the results from our simulation before discussing similarities be-

tween changing the strain amplitude and changing the shear rate. We find that

changing the strain amplitude allows for significant control over both the particle

orientations and diffusion.

Triangle-wave oscillatory shear D: The solutions of (3.32-3.36) depend on the

particular waveform Γ̇(t) through D(κ). To gain intuition for the distributions

under oscillatory shear, we solve for the simplest possible waveform, triangle-wave

oscillatory shear. Here the waveform is Γ̇(t) = 1 for the first half of a cycle,

0 < t < Tcyc/2, and is Γ̇(t) = −1 for the second half, Tcyc/2 < t < Tcyc. If the
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peak-to-peak strain amplitude is γ, then Tcyc = γ/γ̇ and D from (3.28) can be

written as

D(κ)/Dr
0 =

γ̇

γ

∫ γ/γ̇

0

(
ū

u(κ+ ūτ)

)2

dτ . (3.37)

Since Γ̇(t) has the same form for the first and second half of each cycle, the contri-

bution to D from shearing forward is the same as from shearing backward, and D

takes the simple form given above. For the particular rotational velocity field u(φ)

from a Jeffery orbit, D for triangle-wave shear can be solved exactly using (3.26):

D(κ)/Dr
0 =

3

8
(p− 1/p)2 + 1 +

1

4γ
(p2 − 1/p2)

{
1

8
(p− 1/p)

[
sin 4

(
κ+

γ

p+ 1/p

)
− sin 4κ

]

− (p+ 1/p)

[
sin 2

(
κ+

γ

p+ 1/p

)
− sin 2κ

]}
;

(3.38)

however, in what follows we will not need to use the complete form of D.

Small strain amplitudes: We begin by solving equations (3.32-3.36) for both

the distributions and the diffusion in the limit of small strain amplitudes γ � 1,

while the strain rate is still large (Pe � 1). By Taylor expanding the integrands

in (3.37) about τ = 0 and integrating, the coordinate change ∂z/∂κ =
√
Dr

0/D(κ)

can be written as

∂z

∂κ
=
u

ū

[
1 +

γ

2γ̇

ū

u

∂u

∂κ
+O(γ2)

]
, (3.39)

where we have also Taylor expanded the inverse square root and truncated both

Taylor series to O(γ2). Following (3.30) & (3.36) above, we use this coordinate

transformation ∂z/∂κ to find both the distributions and the effective diffusion.

To find the distribution ρ(φ), we substitute (D/Dr
0)−1/2 from (3.39) above into

(3.30):

ρ(φ) ∝ 1 +
γ

2γ̇

ū

u

∂u

∂κ
+O(γ2) . (3.40)

54



Further manipulation can eliminate the κ dependence in this equation. The deriva-

tive ū/u×∂u/∂κ can be written in terms of the divergence of the velocity by writing

∂u/∂κ = ∂u/∂φ×∂φ/∂κ and using ∂φ/∂κ = u/ū, cf. (3.23). Since ∂u/∂φ = ∇ · u,

this substitution with the appropriate normalization constant gives ρ at the start

of a cycle as:

ρ(φ) =
1

2π

[
1 +

γ

2γ̇
∇ · u

]
=

1

2π

[
1− γ

2

p2 − 1

p2 + 1
sin 2φ

]
+O(γ2) . (3.41)

where we have used the definition of u from the Jeffery orbit, equation (3.5).

To find the effective diffusion, we first find z(κ=2π) by integrating (3.39) over

κ = (0, 2π). The O(1) term in z(2π) is simply 2π, since the integral of u over

a period is 2πū by definition. For the O(γ) correction to z(2π) from (3.39) and

(3.36), the additional integral is ∼
∫ 2π

0
∂u/∂κ dκ, which is zero since u is periodic

in κ. Substituting these values of z(κ = 2π) into equation (3.36) shows that to

O(γ), the diffusion is not enhanced:

Dr
eff = Dr

0 +O(γ2) . (3.42)

In the limit of γ → 0, both the distributions and the diffusion remain unchanged

from their zero-shear value, despite the strain rate dominating over diffusion (γ̇ �

Dr
0). In this limit, the frequency of the shear is large compared to the rotary

diffusion. The distribution remains isotropic because the flow oscillates so rapidly

that diffusion cannot alter the distribution at all over a cycle. Similarly, since the

portion of the Jeffery orbit traversed by a given particle is so small, over one cycle

the particle does not explore the varying rotary velocities needed to enhance the

diffusion. As a result, the diffusion remains at its equilibrium value and is not

enhanced.

As γ is increased, the particles start to sample more of the Jeffery orbit. At
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Figure 3.3: Small-amplitude oscillatory shear orientation distributions, for par-
ticles with aspect ratio p = 2.83 at Pe = 104. (a) The distribution ρ(φ) from
simulation at a strain amplitude of γ = 0.3. (b) The corrections to the distribu-
tion δρ ≡ ρ(φ)− 1/2π as measured from simulation, for strain amplitudes ranging
from γ = 0.02 (red) to γ = 2.0 (blue), with four curves equally spaced in γ high-
lighted in black. At amplitudes near γ = 2, higher-order corrections cause the
distribution to move away from 45◦ extensional axes. The circular gridlines are
spaced at separations of δρ = 0.5/2π, with the second gridline corresponding to
δρ = 0; the radial gridlines are equally spaced in φ. (c) Log-log plot showing the
maximal deviation ρ − ρ0 of the simulated distributions from the zero-amplitude
distribution (red) and the maximal deviation ρ− ρ1 from the first-order correction
(green), as a function of γ. The second-order corrections are about 20% of the
first-order correction at γ = 1.

these larger amplitudes, enough of the Jeffery orbit is traversed where it can in-

teract with diffusion. This interplay results in an O(γ) correction to the distri-

butions, (3.41). Physically, the form of the distribution arises because the Jeffery

orbit starts to align the distribution. Since the flow oscillates too fast for the

distribution to align completely, the result is a partial alignment along the exten-

sional axis, where the stretching due to the Jeffery orbit is largest. Interestingly,

this ∝ sin 2φ correction to the distributions for large Pe and low γ is the same

form as the correction to the continuous shear distribution at low Pe and large

γ, cf. [109, 81, 136, 140]. However, this similarity is somewhat coincidental as it

depends on the form of u. There is excellent agreement between the predictions
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for the distributions and our simulations, as shown in figure 3.3.

In contrast, due to symmetry the diffusion constant is only enhanced at O(γ2),

cf. (3.42). The diffusion constant Dr
eff describes the long-time orientation dynam-

ics; thus Dr
eff must be symmetric under a reversal in the flow direction. Since

reversing the flow direction corresponds to changing γ → −γ and φ → −φ, Dr
eff

cannot be enhanced at O(γ); the quadratic increase of Dr
eff with γ is shown in the

inset to figure 3.5a. The distributions, on the other hand, depend on both γ and

φ and therefore can have an O(γ) correction while still respecting this symmetry.

Intermediate resonant amplitudes: By noting other symmetries of oscillatory

shear and the Jeffery orbits, we can find another solution to the oscillatory shear

equations. The Jeffery rotary velocity field repeats itself after half an orbit, as

visible from (3.1) and figure 3.1. Thus, a particle starting at a given orientation

samples the same velocities whether it is sheared forwards or backwards for half an

orbit. This symmetry is reflected in the triangle-wave D(κ) in (3.38): at resonant

strain amplitudes γr ≡ nπ(p + 1/p) corresponding to half a Jeffery orbit, D(κ)

takes its constant continuous shear value. As a result, at half-integer Jeffery orbit

amplitudes, triangle-wave oscillatory shear is exactly the same as continuous shear,

with the same distributions and diffusion constant.

Since (3.27) and (3.37) are considerably simplified at resonance under triangle-

wave shear, they allow for a perturbative treatment near γr. The procedure is

similar to the low-amplitude strain treatment outlined above, except here the small

parameter is the difference δγ from a resonant strain amplitude γr; i.e. γ = γr+δγ.

Since resonant amplitude shear is similar to continuous shear, the distribution is

simplest in the continuous shear coordinate κ. To first order in δγ, the ancillary
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Figure 3.4: Oscillatory shear orientation distributions for particles with aspect
ratio p = 2.83 (i.e. Jeffery orbit period γ̇TJO = 20) at Pe = 104 and a strain
amplitude near the first resonance. (a) The ancillary distribution f(κ) from sim-
ulation at a strain amplitude of γ = 10.6; note the small bias away from the flow
direction. (b) The difference between the continuous shear f and that measured
from simulation, for positive distances from resonance δγ = 0 (red) to δγ = 1.0
(blue), with four curves equally spaced in δγ highlighted in black. The circular
gridlines are spaced at intervals of δf = 0.15/2π, with the second gridline cor-
responding to δf = 0. The radial gridlines are equally-spaced in φ (not κ). (c)
Log-log plot showing the maximal deviation f − f0 of the ancillary distribution
from the continuous shear f (red) and the maximal deviation f − f1 from the
first-order correction (green), as a function of δγ. The second-order corrections
are about 20% of the first-order correction at δγ = 0.4.

distribution f(κ) and the diffusion are

f(κ) =
1

2π

{
1 +

δγ

γr

[
λ

1 + λ2/2
cos(2κ)− λ2

4(1 + λ2/2)
cos(4κ)

]}
+O(δγ2) (3.43)

Dr
eff/D

r
0 =

3

8
(p− 1/p)2 + 1 +O(δγ2) . (3.44)

Like the low-amplitude case, the distributions change to first order in δγ, and the

diffusion does not change until O(δγ2). However, unlike the low-amplitude case,

the correction to the distribution is not a single harmonic, but it is composed of

two harmonics in the stretched κ space. These predictions are compared against

simulation results in figure 3.4 for the distributions and figure 3.5a for the diffusion.

While figure 3.4 only compares the simulated and predicted distributions near the

first resonant peak for a single aspect ratio, we find good agreement between
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equations (3.43) & (3.44) and the simulation over a range of both aspect ratios

and resonant amplitudes.

Very large amplitudes: Since continuous shear can be thought of as triangle-

wave oscillatory shear with infinite strain amplitude, we expect that at very large

amplitudes the distributions only vary slightly from the continuous-shear distribu-

tions. This approach to continuous shear can be seen directly from (3.37) & (3.38).

The function D(κ; γ), which determines both Dr
eff and ρ, is an average value of a

periodic function where the strain amplitude γ sets the range of the integration.

As γ is increased, more and more periods of the integrand are averaged over, and

D(κ) approaches its infinite-period average value of the continuous shear Dr
eff from

(3.19). In the limit of infinite amplitude, the oscillatory shear equation (3.27) be-

comes the continuous shear equation (3.17). Examining the many-cycle averages

in (3.28) shows that the difference between D(κ; γ) and the continuous shear limit

decreases as ∼ 1/γ, which is echoed by the distributions near resonance in (3.43).

Both empirically and by evaluating the many-cycle averages, we find that Dr
eff

approaches its continuous shear value like ∼ 1/γ2, faster than the distributions do.

Arbitrary amplitudes: The oscillatory shear equations (3.32-3.36) give predic-

tions for Dr
eff and the distributions at all amplitudes, not just at the ones treated

perturbatively above. We find the effective diffusion and distributions at arbitrary

amplitudes by evaluating (3.30) and (3.36) numerically for triangle-wave shear.

Since oscillatory shear can also be used to control the alignment of colloidal rods,

we quantify ρ via the liquid crystal scalar order parameter S which captures the

degree of total alignment irrespective of the direction. The order parameter S

is defined as the largest eigenvalue of the traceless orientation tensor Q; in two

dimensions Q is defined as Q = 2〈nn〉 − δ, where δ is the identity tensor and n
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Figure 3.5: (a) Oscillatory shear diffusion Dr
eff vs. γ for particles with aspect ratio

p ≈ 2.83, as calculated from (3.36) (green line) and as measured from simulation at
Pe = 104 (red circles). The results from simulation and from (3.36) are the same to
the resolution of the plot. The oscillations in the diffusion constant with increasing
strain amplitude are clearly visible. Inset: Dr

eff/D
r
0 at low amplitudes. (b) The

liquid crystal order parameter S vs. γ at the start of a shear cycle for particles
p ≈ 2.83, as predicted from (3.30), green line, and measured from simulation at
Pe = 104, red dots. At zero strain amplitude the distribution is randomly aligned
(S = 0); with increasing strain amplitude the distribution becomes more aligned,
with maximum alignment at γ = 6. Inset: S at low amplitudes. In the main
panels of both (a) and (b) only 1% of the simulated points are plotted to avoid
overcrowding.

the orientation unit normal. For an isotropic distribution, S = 0; for a perfectly

aligned distribution, S = 1. Figure 3.5 compares these predicted values (green

lines) of Dr
eff , panel (a), and S, panel (b), vs. γ against those measured from sim-

ulation (red dots). We find excellent agreement between this semi-analytic theory

and full numerical simulations for both the diffusion coefficients and distributions,

both for the aspect ratio p = 2.83 shown in figure 3.5 and over a range of aspect

ratios (not shown). The diffusion increases gradually from its zero-amplitude value

Dr
eff/D

r
0 = 1, reaching the continuous shear value at the resonant amplitude γr.

At higher amplitudes, the diffusion undergoes damped oscillations with γ, asymp-

totically approaching its continuous shear value at large strains. In contrast, the
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order parameter S increases from 0 linearly with γ when γ is small. Moreover, S is

not maximal at the resonant amplitudes, but is instead maximal at an amplitude

slightly below the first resonance. The order parameter then decreases slightly to

its continuous shear value, with damped oscillations at larger γ.

3.5 Rheology

The orientation distribution of axisymmetric particles affects the suspension rhe-

ology. In the dilute limit, the additional deviatoric stress σp due to the particles

is

σp = 2ηc

{
2AH (E : 〈nnnn〉 − δE : 〈nn〉)

+ 2BH

(
E·〈nn〉+ 〈nn〉·E− 2

3
δE : 〈nn〉

)
+ CHE + FHD

r
0

(
〈nn〉 − 1

3
δ

)} (3.45)

where η is the solvent viscosity, c is the volume fraction of particles, E is the far-field

rate-of-strain tensor of the fluid, δ is the identity tensor, and AH , BH , CH , andFH

are hydrodynamic coefficients [73, 11, 82, 66, 127, 20]. The terms ∝ E result from

the additional hydrodynamic resistance due to the particles, which depends on the

particles’ specific orientations through the average tensors 〈nn〉 and 〈nnnn〉. The

final term ∝ FHD
r
0 is an additional stress due to Brownian rotations of the rods.

If the distribution of rods is not isotropic, these Brownian rotations result in a net

stress. As the particle orientations and thus the tensors 〈nn〉 and 〈nnnn〉 couple

to the flow, even a dilute suspension of elongated particles has a non-Newtonian

rheology. Since 〈nn〉 and 〈nnnn〉 are in general not multiples of the identity,

equation (3.45) generically predicts normal stresses. Moreover, both the normal

stresses and shear stresses display transients before reaching their steady-state
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values, which in turn depend on the shear rate.

These effects have been well-studied for steady-state distributions, over a range

of Péclet numbers and particle aspect ratios from theory [109, 92, 66, 93, 68, 136,

140], experiments [15, 110, 26, 25, 74], and simulations [125, 140, 138]. Less is

known about the rheology of rod suspensions in time-dependent flows at high Pe.

Hinch and Leal [67] made qualitative arguments describing the stress oscillations

with time in a rod suspension; there have also been several simulations of the

time-dependent orientation distributions, e.g. [41, 45], that also examined tran-

sient stresses. Our theory of rod dynamics builds on these results by providing a

quantitative physical picture of the unsteady rheology of a suspension of rods at

high Pe, albeit with orientations confined to the flow-gradient plane.

Rheological transients during startup shear: From (3.17) and (3.45) we calcu-

late the shear stress of the suspension of ellipsoidal particles during the startup of

shear, for two suspensions with aspect ratios p = 2.83 and p = 5.00 at Pe = 104.

The orientation distribution starts out isotropically oriented. When the flow starts,

the ellipsoids start to tumble in periodic Jeffery orbits, resulting in the large-scale

periodic oscillations in the shear stress (figure 3.6a). These oscillations slowly

damp out with time as the enhanced rotational diffusion brings the orientation

distribution to steady-state. Since the diffusion is enhanced ∼ p2 for large p, the

oscillating stress for p = 5.00 damps faster than the oscillating stress for p = 2.83.

At very short times, two additional small peaks in the stress are visible in these

oscillations. However, this stress feature decays extremely rapidly – even at a large

Pe = 104, it disappears before half a Jeffery orbit for p = 5.00.

To understand the origins of these two types of temporal oscillations in the

shear stress shown in figure 3.6a, we examine equation (3.45) term by term. For
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Figure 3.6: (a) The additional suspension stress σp
xy/η0cγ̇ under continuous shear,

normalized by the solvent viscosity, shear rate magnitude, and aspect ratio, as a
function of dimensionless time γ̇t. The stress for two suspensions at Pe = 104

are shown: with aspect ratios p = 2.83 (blue) and p = 5.00 (orange). (b) The
orientation-dependent stress term (1 − cos 4φ)/8 as a function of κ for p = 5.00.
The stress term translates with time, as shown by the bright orange curve at ūt = 0
and the drab orange curve at ūt = 0.4π. The double-peaks in the stress term are
separated in κ by a distance that scales as ∼ 1/p when p is large. (c) The ancillary
distribution f(κ), at two times: immediately after startup (black line) and at a
time slightly after the double peaks have disappeared (grey line). (d) The times
for the double peaks (magenta) and single peaks (cyan) to decay, as a function of
aspect ratio. The decay times follow the ∼ 1/Dr

0p
4 and ∼ 1/Dr

0p
2 large-p scalings,

respectively, shown in the dotted lines.

large shear rates, the last term ∝ Dr
0 is negligible compared to the other terms

∝ E, being smaller by a factor of 1/Pe. The third term CHE is independent of

time, since the strain rate E is fixed. For orientations confined to the flow-gradient

plane, the second term’s contribution to the shear stress is also independent of

time, since 2 (E·〈nn〉+ 〈nn〉·E)xy = 〈n2
x + n2

y〉 = 1. Thus, at high Pe, only the

first term ∝ E : 〈nnnn〉 in (3.45) contributes significantly to the time-dependent

shear stress. This term provides an additional shear stress (〈nnnn〉 : E)xy =

〈1 − cos 4φ〉/8 that is largest at the four orientations along the principle strain

axes, φ = (n/2 + 1/4)π. Likewise, the stress term is minimal at four orientations

that occur when the particle is either aligned with the flow or perpendicular to the

flow, φ = nπ/2. Thus the time varying suspension stress arises from the interplay
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between the time-varying distributions and the orientation-dependent stress term

(1− cos 4φ)/8.

As discussed in section 3.2, the evolution of the orientations is simplest in

the stretched coordinate κ. In this coordinate space, the orientation-dependent

stress term (1 − cos 4φ)/8 is bunched in κ and moves with a constant velocity

ū = γ̇/(p + 1/p). The four maximal stress orientations φ = (n/2 + 1/4)π are

mapped to κ + ūt = tan(±1/p) and tan(±1/p) + π, creating a double-peak in

the stress term whose separation decreases as 1/p when p is large, cf. (3.6) and

figure 3.6b. For an initially isotropic suspension, the ancillary distribution f(κ)

starts out tightly peaked and evolves diffusively to a constant value, figure 3.6c.

The resulting suspension stress arises from the average of the product of the κ-

and t-dependent stress term and the time-dependent distribution f(κ).

On short times, the ancillary distribution f remains essentially constant while

the stress term translates in κ. At time t = 0, the double peaks in the stress

term are centered around the highly peaked initial distribution, which creates a

relatively high stress as illustrated by figure 3.6a-c. After a short time ∼ 1/γ̇, the

stress term has moved to the left by the small amount ∼ 1/p, and f centers on one

peak of the stress term. This large overlap produces the short-lived increase in the

suspension stress occurring immediately after startup in panel a. At a slightly later

time ∼ p/γ̇, the stress term progresses further to the left by an amount ∼ O(1),

as shown by the drab orange curves, and the troughs in the stress term align with

the peaks of f(κ), giving rise to the large single troughs in the suspension stress.

As the shear continues, the double peak of the stress term moves half a period and

realigns with f(κ). This realignment produces the observed double peaks in the

stress, and the cycle repeats.
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On longer time scales, the enhanced diffusion starts to broaden the ancillary

distribution. As f(κ) broadens, it simultaneously samples multiple regions of the

orientation-dependent stress term, and features in σp
xy(t) start to disappear. The

first to disappear is the double-peak in the suspension stress. When f has broad-

ened by the ∼ 1/p separation between the double-peaks in the stress term, fig-

ure 3.6c, both the double peaks and the single trough between them are sampled

simultaneously, and the double-peaks in σp
xy(t) become blurred into a single peak.

Diffusion broadens f(κ) by this ∼ 1/p amount after a time ∼ (1/p)2/Dr
eff ∼ 1/Dr

0p
4

for large p. Even with moderate aspect ratios at high Pe, the decay of the double-

peaks in the suspension stress onsets extremely quickly: at Pe = 104 and p = 5.0

in figure 3.6a, the peaks have disappeared before the first half Jeffery orbit. Be-

yond this time scale, the suspension stress continues to oscillate but only with a

single-peaked structure. These single peaks in turn disappear after f(κ) broadens

by an O(1) amount and samples the entirety of the stress term simultaneously.

This O(1) broadening only occurs after a much longer time ∼ 1/Dr
eff ∼ 1/Dr

0p
2 for

large p.

The aspect ratio dependence of these two decay times is shown in figure 3.6d. To

verify the predicted large aspect ratio scaling, we evaluated the stress from (3.45)

using the distributions predicted by the continuous shear theory, equation (3.17)

and section 3.2. We define the double-peak disappearance time as the time when

the stress at a half-integer Jeffery orbit switches from a local minima to a local

maxima, and we define the single-peak disappearance time as the time when the

amplitude of the double peaks decays to 1/e of its initial value, as described in

detail in appendix 3.8. We find good agreement between the simulated time scales

and those predicted from the scaling argument above (figure 3.6d). These two

timescales ∼ 1/Dr
0p

4 and ∼ 1/Dr
0p

2, first noticed by Hinch and Leal [67], both
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Figure 3.7: (a) The normalized additional suspension shear stress σp
xy/η0cγ̇ as

a function of time for triangle-wave oscillatory shear at amplitude γ = 5.0. We
define the effective viscosity [ηeff ] as the average of this varying stress over one
cycle (dashed black line in inset); the additional variation in the stress we quantify
by range of the normalized stress over one-half cycle (grey band in inset). (b) The
oscillatory shear effective viscosity [ηeff ] as a function of γ. (c) The range of the
normalized suspension stress as a function of γ; it is always small compared to
[ηeff ].

arise from the mixing of the phase angle in the Jeffery orbit. For orientations in

three dimensions, there will be additional time scales associated with the relaxation

of the orbit constants.

Overview of triangle-wave oscillatory shear rheology at long times t � 1/Dr
eff :

A representative shear stress signal during one cycle of oscillatory shear is plotted

in figure 3.7a, for spheroids with aspect ratio p = 2.83 and peak-to-peak strain

amplitude γ = 5, after f(κ) has reached steady-state. Although the transients of

the orientation distribution have decayed, ρ still oscillates with the period of one

cycle. This oscillation in ρ modulates the stress over one half-cycle (figure 3.7a

inset), and strictly there is no effective viscosity for a rodlike suspension under

oscillatory shear. Nevertheless, since the variations in the stress are small, it is

convenient to describe the stress response under oscillatory shear with its value

averaged over a half-cycle. To this end, we define the “effective intrinsic viscosity”

[ηeff ] of the suspension as the additional shear stress due to the ellipsoids normalized
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by the solvent viscosity, particle volume fraction, and shear rate, σp
xy/(ηcγ̇), and

averaged over a half cycle. The slight variation of the suspension stress we quantify

by the range of the normalized stress over one-half cycle, shown in panel 3.7c.

As is the case for continuous shear, the interplay between the orientation dis-

tribution and the stress term (E : nnnn)xy = (1 − cos 4φ)/8 determines the

oscillatory shear rheology. However, there are a few differences between the pro-

cedure for understanding the suspension stress under oscillatory shear and under

continuous shear. First, the stresses in the first and second half-cycle have the

same magnitude, so we only examine the stress during the first half cycle. Sec-

ond, since diffusion is weak (Dr
effγ/γ̇ � 1), f(κ) is constant throughout a cycle,

and only the motion in κ of the stress term produces a time-dependent suspension

stress. Third, the change in the long-time f(κ) with strain amplitude effects a

change in the suspension stress with γ. Fourth, due to its amplitude-dependent

displacement ūγ/γ̇ the motion of the stress term (1− cos 4φ)/8 produces an addi-

tional γ dependence in the suspension stress. By examining in this way the overlap

between the ancillary distribution f(κ) and the orientation-dependent stress term

(E : nnnn)xy(κ + ūt), we can reconstruct the suspension stress during one cycle

of triangle-wave oscillatory shear and understand the oscillatory shear rheology

shown in figure 3.7. Rather than laboriously examine each amplitude in the figure,

we now examine three salient amplitude regions of interest: (1) low amplitudes

γ � 1, (2) the strain amplitude with the maximal viscosity γ ≈ 1.7, and (3)

amplitudes near resonance γ ≈ γr.

Low amplitude [ηeff]: For γ → 0, the orientation distribution is isotropic,

cf. (3.41), and σp(t) is the same as in an isotropic distribution at shear startup.

For finite but low amplitudes, the suspension stress is constant during each half
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Figure 3.8: Low-amplitude γ = 0.3 oscillatory shear rheology for a dilute suspen-
sion of particles with aspect ratio p = 2.83 confined to the flow-gradient plane.
(a) The normalized additional suspension stress σp

xy/η0cγ̇ as a function of dimen-
sionless time γ̇t throughout one cycle of oscillatory shear, with a closeup of the
stress during the first half cycle in the inset. (b) The orientation-dependent stress
term (E : nnnn)xy as a function of κ. The stress term starts with its minimum
centered at κ = 0, shown in light blue. During the cycle, the Jeffery orbit advects
the stress term through the lightly shaded region. At the end of the half-cycle,
the stress term reaches its final position, shown in dark blue. (c) The ancillary
distribution f(κ). The shaded region denotes the area swept out by the centre of
the stress term. The peak of f(κ) is shifted from κ = 0 to the centre of the region
the stress term sweep out during a cycle.

cycle at O(γ), figure 3.8a. During each half-cycle of shear, the stress term moves

by a small displacement ūt = ūγ/γ̇, as shown in panel b. In addition, f(κ) shifts

from its zero-amplitude value (vertical line) as γ increases, panel c. This shift can

be seen from (3.30) and (3.39): f at small amplitudes is the first-order term in a

Taylor series in γ of an initially isotropic distribution f0(κ) shifted in κ by half the

displacement of the stress term:

f(κ) = f0

(
κ+

γū

2γ̇

)
+O(γ2) , (3.46)

Thus, to first order in γ the centre of the stress term oscillates about the centre

of f . Since both f and the stress term are constant to first order in κ about their

centres, σp(t) changes from its zero-amplitude value only at O(γ2) during the cycle.

The displacement of f in κ space corresponds to a distribution ρ(φ) at the start
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of a cycle that is larger along the flow’s compressional axis and is smaller along

the extensional axis, reversing as the flow oscillates, cf. figure 3.3. The increase in

the stress from orienting particles along the extensional axis at φ = π/4 is exactly

cancelled by the particle reorientation away from the compressional axis.

Amplitude resulting in maximal [ηeff]: Despite the lack of an exact analytical

solution for the distributions at arbitrary amplitudes, we can qualitatively under-

stand the existence of a maximum in [ηeff ]. As shown above, for small amplitudes

f(κ) shifts as γ increases but is otherwise unchanged. This shift suggests a mech-

anism for the maximal [ηeff]. As f(κ) is shifted by a larger amount, eventually its

peak is centered on one peak in the stress term, producing a large suspension stress

at the cycle’s start. During the cycle, the stress term translates until its trough

and then second peak overlap with f , creating first a slightly lower before another

large stress again at the end of the half-cycle, similar to the double-peaks in the

stress under continuous shear. This translation of f corresponds to a distribution

ρ(φ) that is isotropic at the centre of the cycle, but is nonlinearly distorted by

the Jeffery orbit to orient more particles along the flow’s extensional axis than are

removed from the compressional axis, cf. the γ ≈ 2 contours in figure 3.3. This

double-peak structure in the suspension stress and the shifted f(κ) are borne out in

figure 3.9a & b. Since σp(t) increases at the ends of the cycle, [ηeff ] increases from

its zero-amplitude value, and the stress’ range is nonzero. While the argument

captures the essence of the occurrence of a maximal viscosity, there are higher-

order corrections in γ to f that cause the suspension stress to deviate slightly from

the expected results.

The argument above suggests a scaling with aspect ratio for the strain ampli-

tude resulting in a maximal viscosity. As visible from the definition of κ in (3.8),
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Figure 3.9: Oscillatory shear rheology at the strain amplitude γ = 1.67 resulting in
maximal viscosity for a dilute suspension of particles with aspect ratio p = 2.83. (a)
The additional suspension stress as a function of dimensionless time γ̇t throughout
the cycle. (b) The stress term (E : nnnn)xy as a function of κ. The stress
term starts with its minimum centered at κ = 0, shown in light blue. During
the first half-cycle, the Jeffery orbit advects the stress term through the lightly
shaded region until it reaches final position, shown in dark blue. (c) The ancillary
distribution f(κ); the shaded region denotes the area swept out by the centre of
the stress term. (d) Semi-log plot of the strain amplitude resulting in the maximal
viscosity vs. p.

the separation between the double-peaks in the stress term scales as ∼ 1/p for

large p. From (3.46), the small-amplitude correction to the ancillary distribution

shifts f by an amount ∼ γ/p, since ū/γ̇ = 1/(p+1/p). Thus, at a strain amplitude

γ ∼ 1 independent of p, the peak of f is roughly centered on one of the peaks in the

stress term. As a result, the amplitude producing the maximal viscosity should be

independent of the particle aspect ratio p. This prediction is verified in figure 3.9d.

The amplitude resulting in the maximal viscosity is practically constant with p,

varying by less than 10% from γ ≈ 1.6 at an aspect ratio p = 2 to its asymptotic

value γ ≈ 1.74 at p = 100.

Resonant amplitude [ηeff]: For resonant amplitudes γ = γr corresponding

to half a Jeffery orbit period, the ancillary distribution does not vary with κ:

f(κ) = 1/2π. As the stress term moves during the cycle, its overlap with the
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Figure 3.10: Oscillatory shear rheology for an aspect ratio p = 2.83 and an ampli-
tude γ = 10.6 slightly above resonance. (a) The normalized additional suspension
stress σp

xy/η0cγ̇ as a function of dimensionless time γ̇t throughout one cycle of
oscillatory shear. (b) (E : nnnn)xy as a function of κ. The stress term starts
with its minimum centered at κ = 0, shown in light blue, and is advected by the
Jeffery orbit through the lightly shaded region. Since γ = 10.6 is slightly above
resonance, the stress term translates by more than half a period and ends at the
final position shown in dark blue. (c) The ancillary distribution f(κ). The shaded
region denotes the area swept out by the centre of the stress term; with the darkly
shaded region illustrating the regions where the minimum in the stress term has
traversed twice.

constant f does not change, and the suspension stress remains constant during the

cycle. A constant f(κ) corresponds to a distribution ρ(φ) that does not change

with time due to the Jeffery orbit, resulting in a suspension stress that is constant

during a cycle. Thus, the resonant f(κ) yields the same suspension stress and [ηeff ]

as for continuous shear at long times.

For amplitudes slightly away from resonance γ = γr + δγ, the suspension stress

changes at O(δγ), as shown in figure 3.10. The first-order correction to f(κ)

indicates additional particles are oriented along the maximal stress directions. As

a result, the suspension stress at the start of a cycle for amplitudes near resonance

is O(δγ) larger than the suspension stress at resonant amplitudes γr. As the stress

term moves, at the centre of the cycle it centers on regions where f(κ) is less than its

resonant-amplitude value, which decreases the suspension stress. Thus, the range
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of the stress increases linearly with δγ, figure 3.7c. However, since the effective

intrinsic viscosity [ηeff ] is an average of the suspension stress, the oscillations during

one half cycle cancel out, and [ηeff ] remains the same as at resonance, as shown by

the smooth minima in figure 3.7b.

3.6 Conclusion and discussion

In the preceding pages, we have solved for the time-dependent orientation distri-

bution of rodlike particles under shear. Under continuous shear, the convection-

diffusion equation is greatly simplified by a change of coordinates φ → κ that

removes the rotation of the Jeffery orbit. This coordinate transformation compli-

cates the diffusion term, but allows it to be treated perturbatively with a method

of averages, similar to that used for certain nonlinear ordinary differential equa-

tions [124] or for homogenization methods for effective medium properties [8, 31].

The convection-diffusion equation cleanly maps to a simple diffusion equation in

the new coordinate, with an enhanced diffusion that depends on averages of the

rotational velocity field: Dr
eff = Dr

0〈(ū/u)2〉. For particles rotating in a Jeffery

orbit, the diffusion under continuous shear is enhanced as ∼ p2 when p is large.

Since the orientation dynamics are an exact diffusion equation in the stretched

κ-coordinate at high Pe, a complete solution for any initial distribution can be

easily constructed, and all initial distributions relax to a constant ancillary dis-

tribution in the κ-coordinate. This steady-state ancillary distribution is the two-

dimensional analogue of the three-dimensional steady-state solution found by Leal

and Hinch [92].

Under oscillatory shear, a particle does not sample all orientations during each
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cycle. As a result, the effective diffusion in the κ-coordinate is an average over

the regions the particle does sample, instead of an average over the entire Jeffery

orbit. Since different particles sample different regions during a cycle, the effective

diffusion changes with orientation κ. This varying diffusion causes particles to

drift away from the continuous shear distribution, changing f from its continuous

shear form. As a result of the orientationally dependent diffusion, the orientation

dynamics in κ-space become complicated. However, it is always possible to map

the κ-dynamics under oscillatory shear to a simple diffusion equation in a new

coordinate z. Once this mapping is known, a full time-dependent solution for the

distributions under oscillatory shear is easily constructed. While the coordinate

change κ → z cannot in general be solved analytically, it can be treated per-

turbatively at certain amplitudes, particularly for triangle-wave shear, or solved

numerically. The solutions for triangle-wave shear show that, for small strain am-

plitudes γ � 1, the orientation distribution remains isotropic and the rotational

diffusion is not enhanced. Moreover, the distributions when γ � 1 at large Pe

take the same form as the distributions when Pe � 1 at large γ. At resonant am-

plitudes corresponding to half integer Jeffery orbits, the orientation dynamics map

exactly to the continuous shear orientation dynamics, providing the same effective

diffusion constant and orientation distribution.

Since the moments of the orientation distribution determine the suspension

rheology, the solutions for the orientation distributions allow for a detailed un-

derstanding of the suspension shear stresses. Examining the time evolution of

the overlap between the orientation dependent stress term E : nnnn and the

ancillary distribution f(κ) quantitatively explains all the features in both the con-

tinuous and oscillatory shear suspension rheology. In particular, our formalism

demonstrates the existence of two diffusive time scales in the continuous shear
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rheology, and predicts an amplitude-dependent effective intrinsic viscosity under

oscillatory shear.

3.6.1 Comparison to Taylor dispersion

Our approach of mapping the rod dynamics to an effective diffusion equation is

reminiscent of Taylor dispersion. The canonical Taylor dispersion was calculated

by G. I. Taylor for Poiseuille flow in a circular pipe [145, 146]. As the nonuni-

form flow in the pipe moves different solute parcels at different speeds, the solute

spreads out along the axial direction while diffusion erases the flow-induced radial

inhomogeneity. Taylor realized that this combination of diffusion and differential

advection maps to a simple diffusion equation along the pipe’s axis, with a greatly

enhanced effective diffusion constant. This result is reminiscent of the rotational

dynamics discussed above – the combination of diffusion and differential rotation

due to the Jeffery orbit maps to a simple diffusion equation. A natural question

to ask is whether the enhanced rotational diffusion is simply a modified Taylor

dispersion, or whether it is only similar.

The most general formulation of Taylor dispersion was realized by Howard

Brenner and others in the 1980s [50]. He viewed the essence of Taylor’s method

as examining long times where the distribution is equilibrated in a small subspace

q (e.g. the cross-section of the pipe) to allow for simple calculations of behaviour

in other, larger subspaces Q (e.g. along the axis of the pipe). This abstraction of

Taylor dispersion to arbitrary spaces allows for a rigorous, clean calculation of long-

time behaviors. In addition to describing the original Taylor dispersion problem,

Brenner and others used this insight to understand the dynamics of seemingly

disparate systems, such as the sedimentation velocity of a nonspherical particle
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[21] or of a cluster of particles [22], as well as for more intractable problems such

as Brownian motion of particles under shear flow [51, 95, 52].

However, the orientation dynamics described in the current paper do not fit

simply into the canonical generalized Taylor dispersion picture. In the generalized

Taylor dispersion picture, there are two separate positional subspaces q and Q. In

the rotational dynamics calculated in this paper, there is only one positional sub-

space, corresponding to the angular coordinate φ or κ. Thus, Brenner’s approach

will not work for the problem of rotational diffusion. In part, this limitation arises

from the nature of the rotary velocity field and the diffusion. In Taylor dispersion,

the enhanced diffusion arises from Brownian motion perpendicular to the rotary

velocity field. In the enhanced rotational diffusion calculated here, the enhance-

ment arises from Brownian motion parallel to the rotary velocity field, and the

varying velocity along the streamline enhances the rotational diffusion. In con-

trast, in traditional Taylor dispersion diffusion parallel to streamlines does not

enhance dispersion, since the fluid flow is presumed incompressible.

While our analysis for the evolution of the orientation distribution equations

does not fit neatly into Brenner’s generalized Taylor dispersion, there are still some

mathematical similarities between the two. Instead of integrating over a small

positional subspace q, the analysis in this paper proceeds by integrating over a

short time, either one period of a Jeffery orbit or one oscillatory cycle. It is this

step that allows for a mapping to a diffusion equation, as it is the small subspace

step that allows generalized Taylor dispersion to map complicated dynamics to

simpler equations.
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3.6.2 Applicability to particle orientations in three dimen-

sions

The analysis presented above is for particle orientations confined to the flow-

gradient plane. A natural question to ask is how relevant these results are for real

particle orientations in three dimensions. Previous work by Hinch and Leal [67] has

investigated theoretically how the orientation dynamics of a suspension of rodlike

particles changes due to shear. While the analysis of the full three-dimensional

problem proved intractable, they were able to make scaling arguments based on

generic properties of the orthogonal eigenfunctions of the convection-diffusion op-

erator. From these arguments, they surmised that there were two timescales in

the orientation dynamics: a ∼ 1/Dr
0p

2 time for the orbit constant relaxation and

a ∼ 1/Dr
0p

4 time for the phase angle relaxation. In section 3.5, we find the same

two timescales for the orientation dynamics in the continuous shear rheology but

strictly for the phase angle relaxation, as the orbit constant is fixed for particles

in the flow-gradient plane. There is one timescale, ∼ 1/Dr
0p

2, for the phase an-

gle to relax over the full range of the κ coordinate. However, a secondary time

scale ∼ 1/Dr
0p

4 is produced since the κ coordinate stretches the φ coordinate by

an amount ∼ p near the flow direction. Thus, our solution shows there are two

time scales in the phase angle dynamics, instead of the one suggested by Hinch

and Leal [67]. This nuance in the two-dimensional dynamics suggests that a full

solution for freely rotating particles would provide additional insight into the ori-

entation dynamics.

When the orientations are not confined to the flow-gradient plane, diffusion

randomizes both the Jeffery orbit’s phase angle and its orbit constant. If the orbit

constant is fixed, diffusion randomizes the phase angle via the same mechanism

76



described in this paper for particles confined to the flow-gradient plane. Indeed,

simply substituting the Jeffery orbit velocity u for a fixed orbit constant into

(3.17) provides an effective phase-angle diffusion for any Jeffery orbit. It might

be hoped that a full three-dimensional solution could be created by combining

this enhanced phase angle diffusion with a diffusive mixing among orbit constants.

However, equation (3.2) shows that, for large p, the distance between two Jeffery

orbits decreases near the flow direction by a factor ∼ 1/p compared with their

distance near the gradient direction. This bunching of orbit constants results in

an enhanced orbit constant diffusion that increases with p, creating an additional

set of time scales for diffusion across orbits. Moreover, the diffusion across orbit

constants could be coupled to the diffusion along an orbit, preventing a simple

piecewise analysis.

To test the relevance of our predictions to three-dimensional orientations, we

have explored the suspension rheology through a Langevin simulation of three-

dimensional particle orientations under continuous shear. As discussed above,

there should be two sets of time scales in the suspension rheology: one set for the

phase angle relaxation, discussed in section 3.5, and a second set of time scales for

the orbit constant relaxation. To discern the origins of the simulated rheology time

scales, we ran two sets of Langevin simulations with initial particle orientations

(θ, φ) drawn from two separate distributions.

The first set of simulations consists of particles drawn from an initial distri-

bution with an equilibrated orbit constant, but with a single phase angle in the

flow-vorticity plane (i.e. from the steady-state distribution in Leal and Hinch [92]

with φ restricted to π/2). Since the orbit constants start completely relaxed, any

change in the suspension rheology arises solely from the phase angle dynamics.
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Figure 3.11: Rheology of a suspension of rodlike particles with orientations allowed
to rotate freely in three dimensions, for particle aspect ratios p = 2.83 and p = 5.00
and Pe = 104, drawn from two separate initial distributions: (a) equilibrated orbit
constant but a single phase angle, and (b) equilibrated phase angle but single orbit
constant. Note the difference in scale for both axes. (c) The decay times of the
single- and double-peak structures in the suspension stress, from simulations over
a range of aspect ratios. Since the double-peak structure decays extremely rapidly,
our simulation cannot resolve the double-peak decay time for the last two aspect
ratios p ≈ 7 and p ≈ 8. (d) The decay time of the suspension stress at intermediate
times due to the orbit constant relaxation, as fit over the shaded time window in
(b).

The suspension rheology for this initial distribution is shown for two aspect ratios

p = 2.83 and p = 5.00 at Pe = 104 in figure 3.11a. The qualitative features of the

suspension shear stress are the same as for the two-dimensional continuous shear

rheology in figure 3.6a. There is a distinct double-peak structure in the suspension

stress for both aspect ratios at short times. At slightly longer times, the double-

peaks fade into single peaks with period of one-half a Jeffery orbit. These single

peaks appear to decay more slowly. Note that, since the initial distribution starts

from a single phase angle, the double-peaks in the suspension stress start more
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pronounced than for the initially isotropic distribution in figure 3.6a.

The second set of simulations consists of particles drawn from an initial distri-

bution with an equilibrated phase angle, but with a single orbit constant in the

flow-gradient plane (i.e θ = π/2 but φ drawn from the continuous-shear distri-

bution in (3.18)). Since the phase angle starts completely relaxed, any change in

the suspension rheology arises solely from the diffusive relaxation of the orbit con-

stant. The suspension rheology for this initial distribution is shown for two aspect

ratios p = 2.83 and p = 5.00 at Pe = 104 in figure 3.11b. Since the phase angle

starts completely relaxed, the suspension rheology does not change on the time

scale of the Jeffery orbit. Instead, the suspension stress only changes on the much

longer diffusive time for the orbit constant relaxation, decaying monotonically to

its steady-state value.

These time scales for the rheology are shown over a range of aspect ratios in

figure 3.11c&d. The time scales are extracted from Langevin simulations of 4000

particles at Pe = 104, as described in appendix 3.8. The two phase angle time

scales are defined similarly to those in section 3.5. The orbit constant time scales

shown are defined by fitting the stress at intermediate times to an exponential

decay. If the picture for phase angle dynamics laid out in this paper is relevant

for three dimensions, then for large p the double peak should decay quickly on a

time scale of ∼ 1/Dr
0p

4 while the single peak should decay more slowly on a time

scale of ∼ 1/Dr
0p

2. To check for this dependence we plot these two time scales

for the phase angle relaxation as a function of aspect ratio on a log-log scale in

figure 3.11c. There are clearly two separate aspect ratio dependences for the two

phase-angle time scales, which seem to be consistent over the limited range with

the ∼ 1/Dr
0p

4 and ∼ 1/Dr
0p

2 scaling for particles confined to the flow-gradient
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plane. Thus the two-dimensional analysis presented in this paper captures much

of the three dimensional orientation dynamics. The decay of the stress due to the

orbit constants also shows a time scale that scales with p. By fitting the simulated

suspension stress to an exponential decay, we find that the orbit constant relaxation

time scale is consistent with the 1/Dr
0p

2 scale argued by Hinch and Leal [67]. These

orbit constant time scales are similar in magnitude to the phase angle time scales,

suggesting that the distribution’s for freely rotating particles is strongly affected

by diffusion both along and across orbits.

Under oscillatory shear, we also expect qualitative features of the two-

dimensional solutions to be present in three dimensions. As shown by Leahy

et al [88], in three dimensions the orientation distributions change with strain

amplitude under oscillatory shear in a manner similar to the two-dimensional os-

cillatory shear distributions in section 3.4. The oscillatory shear diffusion Dr
eff

as measured from correlations in three dimensions also showed oscillations at the

resonant Jeffery orbit amplitudes. Thus, the qualitative features of orientation

dynamics for particles confined to the flow-gradient plane are present for the full

three-dimensional dynamics under oscillatory shear.

3.6.3 Proposed experiments and possible applications

The results presented above suggest several experiments that are possible with

current particle synthesis techniques. The detailed predictions in this manuscript

could be tested by confining particles to rotate in a single Jeffery orbits, preferably

in the flow-gradient plane. This confinement could be accomplished either via a

magnetic field [3] or by shearing particles adsorbed to a liquid-liquid interface [135].

Moreover, as discussed in section 3.6.2 many of the scalings and qualitative pre-
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dictions of this paper should be relevant for particles rotating in three dimensions.

Precise single-particle measurements via confocal or holographic microscopy of Dr
eff

over a range of aspect ratios and strain amplitudes could further verify the orienta-

tion dynamics described above. Alternatively, the average degree of alignment of

an anisotropic particle suspension under oscillatory shear could be measured with

flow dichroism or a similar technique. Our rheological predictions could be most

easily checked for [ηeff ] as a function of γ, as this measurement allows averaging

the stress signal over many cycles to reduce noise. Moreover, the strain amplitude

at which [ηeff] is maximal is roughly independent of p and thus will be robust to a

suspension with aspect ratio polydispersity.

Our results could also be extended to other regimes and applications. Since the

analysis in sections 3.2 and 3.3 does not depend on the details of the Jeffery orbit,

it could be easily extended to velocity fields other than a Jeffery orbit, such as for

weakly inertial particles [142] or for particles in weakly non-Newtonian suspending

fluids [90, 91, 139, 70, 71]. On a practical level, oscillatory shear could be used to

align rod suspensions for colloidal self-assembly or for 3D printed inks with fibres

embedded in them [130, 33]. As shown in figure 3.5b, the maximal orientational

alignment is not obtained under continuous shear but is at a resonant amplitude

that depends on the aspect ratio. By using the arbitrary-waveform oscillatory shear

equations (3.27) and (3.28), it might be possible to design a specific waveform for

a desired degree of particle alignment. Over ninety years after Jeffery’s solution

for particle rotations in a viscous fluid, rodlike particles still have intellectually

interesting and practically applicable features worthy of discovery.
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3.7 Appendix 1: Continuous and oscillatory shear numer-

ical solutions

3.7.1 Continuous shear simulation

We numerically solved the Fokker-Planck equation for the distribution’s time evo-

lution (3.5) by expanding the distribution ρ in Fourier space and transforming

(3.5) into a sparse matrix equation. For our simulations, we truncated the Fourier

series to the first 301 terms (i.e. m ∈ [−150, 150] for basis functions eimφ); the

resulting coupled ordinary differential equations were solved with a fourth-order

Runge-Kutta integration scheme with a time step of dt = 5 × 10−4/γ̇. Either

increasing or decreasing the number of terms or the time step had little effect on

the simulation results. Rather than simulate a specific set of initial conditions, we

evolve 301 separate initial conditions corresponding to ρm(φ, t= 0) = eimφ. Using

the linearity of (3.5), we can then reconstruct an arbitrary distribution from this

set of initial distributions. We can also use these simulation results to rapidly

numerically solve for triangle-wave oscillatory shear, as described below.
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3.7.2 Construction of oscillatory shear propagators

Rather than numerically integrate equation (3.22) for triangle-wave oscillatory

shear at each strain amplitude, we instead opted to numerically create a set of

oscillatory shear propagators and find the oscillatory distribution from these prop-

agators. The propagators can be constructed rapidly from the continuous shear

solutions and allow for rapid evaluation of the oscillatory shear distributions after

an arbitrary time.

To find these propagators, we first find the change in ρ after one full cycle from

the continuous shear simulations. One cycle of triangle-wave oscillatory shear can

be viewed as two separate pieces: continuous shear going forward for a time γ/γ̇,

followed by continuous shear going backward for the same time. Let the probability

distribution ρF = ρF (φ, t |φ0) be the probability density of finding a particle with

orientation φ after undergoing forward shear for a time t, given that the particle

started at an orientation φ0. Similarly, let ρB(φ, t |φ0) be the probability density of

finding a particle at orientation φ after undergoing backward shear for a time t. The

orientation of the particle φ after a full cycle is a two-step process: after the first

half of a cycle, the particle rotates to an intermediate orientation φ1/2 with some

probability ρF (φ1/2, t=Tcyc/2 |φ0), then rotates during the second half of the cycle

from φ1/2 to its final orientation φ1 with some other probability ρB(φ1, t |φ1/2).

We integrate over φ1/2 to find the conditional probability distribution ρ(φ1, t =

Tcyc |φ0) of the particle’s final orientation after a full cycle:

ρ(φ1, Tcyc |φ0) =

∫
ρF (φ1/2, Tcyc/2 |φ0)ρB(φ1, Tcyc/2 |φ1/2) dφ1/2 (3.47)

Now, we Fourier expand ρF (φ1/2, Tcyc/2 |φ0) in both φ1/2 and φ0, and similarly for
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ρB:

ρF (φ1/2, Tcyc/2 |φ0) =
∑
kl

AFkle
ikφ1/2eilφ0 (3.48)

ρB(φ1, Tcyc/2 |φ1/2) =
∑
mn

ABmne
imφ1einφ1/2 (3.49)

Substituting into (3.47) and integrating gives a Fourier expansion of ρ(φ1, Tcyc |φ0)

as

ρ(φ1, Tcyc |φ0) =
∑
ml

B1
mle

imφ1eilφ0 ,

where B1
ml ≡ 2π

∑
n

AF−n,lA
B
mn

(3.50)

Thus, we can calculate the distribution after one cycle of triangle-wave oscillatory

shear from the continuous shear distributions by using matrix multiplication. In

contrast, most other waveforms require a full numerical solution for ρ at each strain

amplitude.

To find the distribution after N + 1 cycles, we follow a similar argument. We

can view the probability of finding the particle at an orientation φN+1 after N + 1

cycles as a two-step process: The particle started at φ0 and rotated to φN after N

cycles with some probability ρ(φN , NTcyc |φ0), followed by a rotation from φN to

φN+1 with probability ρ(φN+1, Tcyc |φN) after the final cycle. Following the same

argument as above, the distribution ρ(φN+1, (N + 1)Tcyc |φ0) can be written as

ρ(φN+1, (N + 1)Tcyc |φ0) =
∑
lm

BN+1
ml eimφN+1eilφ0 ,

where BN+1
ml ≡2π

∑
n

BN
−n,lB

1
mn

(3.51)

Thus the distribution after an arbitrary number of triangle-wave oscillation cy-

cles can be reconstructed from the simulated forward and backward probability

distributions, once the coefficients AFkl, A
B
mn are known.
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The coefficient matrices AFkl, A
B
mn can in turn be calculated from the continuous

shear solutions. Let

ρk(φ, t) =
∑
l

akl(t)e
ilφ (3.52)

be the continuous-shear solution of (3.5) subject to the initial condition ρk(φ, 0) =

eikφ, i.e. akl(0) = δkl. Due to linearity, any distribution ρ(φ, t) can be written as a

sum over the ρk. In particular, we can write ρF (φ, t |φ0) in this way:

ρF (φ, t |φ0) =
∑
k

qk(φ0)ρk(φ, Tcyc/2) (3.53)

where qk(φ0) are the coefficients of the Fourier expansion whose values depend on

φ0. Substituting the definition of ρk ≡
∑

k akle
ilφ, we can write this as

ρF (φ, t |φ0) =
∑
k

qk(φ0)
∑
l

akl(t)e
ilφ

=
∑
kl

qk(φ0)akl(t)e
ilφ

(3.54)

The distribution ρ(φ, t |φ0) is defined such that ρ(φ, 0 |φ0) = δ(φ − φ0) ≡

1/2π
∑

k e
ik(φ−φ0). Substituting this into (3.54) at t = 0 and using the defini-

tion of AFkl from (3.48), the forward shear propagator AFkl and the continuous shear

coefficients akl can be related as

AFkl =
1

2π
a−l,k(Tcyc/2) . (3.55)

To obtain the coefficients for backward shear ABkl, we note that shearing backwards

is the same as taking φ → −φ, φ0 → −φ0, as visible from (3.5). This is in turn

the same as switching the signs of the indices, so the backward shear propagator

ABkl is

ABkl =
1

2π
al,−k . (3.56)

Thus, from our simulation for continuous shear in one direction only, we can quickly

recreate the time-dependent distribution ρ under triangle-wave oscillatory shear
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for strains of arbitrary amplitude. This same procedure can be used to solve the

convection-diffusion equation after a time t in O(ln t) steps instead of the normal

O(t) steps needed for direct numerical integration; we use this procedure to rapidly

find the long-time distributions under oscillatory shear. We used this fast method

to find both ρ and Dr
eff numerically at ≈ 3000 separate amplitudes, equally spaced

from γ = 0.02− 60.00.

3.7.3 Extracting diffusion constants from simulation

For continuous shear, the diffusion coefficients shown in figure 3.2 were calculated

by fitting exponentials to correlations 〈cosm(κ−κ0)〉 from 20 separate initial orien-

tations κ0 which were sampled from the steady-state distributions. As mentioned

in the text, the fitted correlations in κ-space are independent of the starting orien-

tation, while the correlations in the unstretched φ-space do depend on the starting

orientation.

For oscillatory shear, the situation is slightly more complicated since the orien-

tations are diffusive in a new, stretched z-space. Rather than fitting correlations

in the new z-coordinate, which must be computed for each strain amplitude, we

examine the long-time decay of an arbitrary correlation. Since the ancillary distri-

bution g(z) evolves according to a diffusion equation in z space with an effective

diffusion Dr
eff, any correlation C(∆t) will decay as a sum of exponentials:

C(∆t) =
∑
m

Cme
−m2Dr

eff∆t (3.57)

At long times Dr
eff∆t � 1, only the term with the smallest m (m = 1) remains;

the others have decayed. To find the effective diffusion under oscillatory shear,

we examine the decay of a correlation C after a long time such that C(t) ∼
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10−3. For diffusive correlations, the further decay is entirely due to the m = 1

term; the terms m = 2 and higher are exponentially smaller, approximately C4 ∼

10−12 as can be seen from (3.57), and do not contribute to the decay. From these

long time decays of the correlation C, we extract the oscillatory shear diffusion

constant Dr
eff. To check the robustness of this technique, we evaluate two separate

correlations, 〈cos ∆φ〉 and 〈cos ∆κ〉, for 20 separate initial orientations sampled

from the long-time distribution. Empirically, the value of Dr
eff obtained from the

long-time correlations is independent of either the particle’s starting orientation

or the type of correlation fitted. In contrast, at short and intermediate times

the extracted Dr
eff varies with both the initial particle orientation and the type of

correlation fitted. This difference at short times arises because the orientation is in

general not diffusive in either the original φ space or the continuous-shear stretched

κ space, but is diffusive in the (uncalculated) z space for oscillatory shear.

3.8 Appendix 2: Rheology calculations and rheological

timescale definitions

Calculating the rheology: To calculate the suspension rheology for the two-

dimensional particle orientations under continuous shear, we used the theory of

two-dimensional rod dynamics presented in section 3.2 to find the time-dependent

ancillary distribution f(κ, t) at Pe = 104. Once the ancillary distribution is known,

the suspension stress can be calculated from (3.45). To find the rheology for ori-

entations in three dimensions, we numerically integrated a Langevin equation for

4000 separate initial particle orientations at Pe = 104, by integrating (3.1) with an

additional noise term using an Euler method. The time step size dt = 5× 10−4/γ̇
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gives an integration error after each time step that is 10−3 that of the random

motion. The orientation moment tensors 〈nn〉 and 〈nnnn〉 are evaluated from

direct averages of the particle orientations.

To calculate the triangle-wave oscillatory shear rheology for two-dimensional

particle orientations, we first obtained the oscillatory shear distributions at long

times. The ancillary distribution f(κ) can be found from (3.30). While the coordi-

nate derivative ∂z/∂κ and thus the functional form of f can be exactly evaluated

analytically, the distribution’s normalization must be evaluated numerically. Al-

ternatively, the distribution ρ can be found from the simulations at Pe = 104;

we find that both procedures produce the same rheology to within ≈ 1/Pe . To

find the stress during one-half cycle, we evolved the distributions in the limit of

no diffusion for the duration of the half-cycle; since our theory describes the limit

of large strain rates the ancillary distribution does not diffusively evolve during a

cycle. The maximal [ηeff ] amplitudes are found only from (3.30) which is orders of

magnitude faster than simulating the orientation distributions; we use a Nelder-

Mead simplex algorithm we find the maximal [ηeff ] amplitudes for the 1000 aspect

ratios logarithmically spaced from p = 1.5− 100.0 shown in figure 3.9c.

Definitions of rheological time scales: The double-peak decay time scale in

figure 3.6c is defined as the time when the suspension stress at half-integer Jeffery

orbits switches from a local minimum to a local maximum. To find this time

scale, we examined the second derivative of the suspension stress via our analytical

solution after a fixed time corresponding to 200 half-integer Jeffery orbits and

varied the rotary diffusion Dr
0. Examining the stress after these long times prevents

the decaying envelope of the suspension stress from biasing the second derivative.

Traces of the single peaks are always present, in contrast to the double peaks which
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completely disappear after a well-defined time. To minimize short-time transients

in the single peak decay time, we looked for the time when the magnitude of the

single peaks decayed to 1% of their initial value, by examining the stress at a fixed

time corresponding to the first trough after 200 half-integer Jeffery orbits (i.e.

γ̇t = 200.5π(p + 1/p)) and varying Dr
0. Since the double-peak structure obscures

the height of the suspension stress’s initial peak at t = 0, we examine the decay

of the minimum of the troughs in the stress, occurring every (n + 1/2)/2 Jeffery

orbits. We then rescaled this time to give the corresponding 1/e decay time of the

single peaks.

We extracted the double-peak and single-peak decay times for the three-

dimensional suspension rheology in a similar manner. However, since there is no

closed-form solution for three-dimensional rod orientations, we looked at a single

set of simulations at Pe = 104 for each aspect ratio and initial distribution. The

double-peak decay time shown in figure 3.11c is the time at which the (smoothed)

second derivative of the stress at each half-integer Jeffery orbit is zero, interpo-

lated between half-integer Jeffery orbits to improve temporal resolution. For all

but the lowest aspect ratios, this zero occurs after only a few half Jeffery orbits.

The single-peak decay times are measured from the same set of simulations. To

minimize the effects of noise inherent in a Langevin simulation, we calculated the

1/e decay time for the three-dimensional orientations from when the troughs in

the stress decayed to 10% of their initial value, instead of 1%.

The orbit constant decay times shown in figure 3.11d are also taken from a single

set of simulations for each aspect ratio at Pe = 104. We defined the time scale for

the orbit constant decay by fitting the shear stress at times 0.06 < Dr
0t < 0.1 to an

exponential decay, after subtracting off the steady-state shear stress. To minimize
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the effects of noise inherent in the Langevin simulation, we smoothed the simulated

shear stress by convolving with a boxcar filter with a width of half a Jeffery orbit;

the data shown in figure 3.11b are not smoothed. While there are some transients

in the suspension stress at shorter times, empirically we find that the suspension

stress is well-described by an exponential decay for all the aspect ratios measured,

within the limited resolution of our simulations.
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CHAPTER 4

CONTROLLING SUSPENSIONS OF RODLIKE COLLOIDAL

PARTICLES

While colloidal suspensions of nonspherical particles have been studied for

decades, most work has focused on describing their behavior in simple flows with

simple time behavior. Little is known about their behavior in flows with complex

variations in time, and in particular the possibility of varying the flow with time to

control the suspension’s properties. Here we take advantage of a recent solution for

the orientation dynamics of a dilute suspension under an arbitrary periodic shear

flow to control particle alignment and suspension rheology. We use a periodic shear

waveform to align particle orientations significantly stronger than under continuous

simple shear, increasing the alignment by an amount proportional to the particle

aspect ratio. Since particle orientations couple to the suspension stress, we can

strongly control the rheology, maximizing and minimizing the viscosity and creat-

ing large normal stress signals. Surprisingly, the optimal waveforms are extremely

simple, providing a simple understanding of the mechanisms for controlling particle

alignment and suspension rheology.
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4.1 Introduction

Colloidal suspensions of axisymmetric particles are of considerable interest both as

a model system and for their practical applications in engineering. Since nonspher-

ical particles possess an extra, orientational degree of freedom that couples to the

rheology, suspensions of these particles exhibit interesting rheological properties

such as viscoelasticity and shear-thinning, even in the dilute regime. In addition

to being an excellent model system, suspensions of axisymmetric particles arise

in numerous biological and engineering applications – from microtubules and red

blood cells to nanoparticle metamaterials and extruded fiber composites.

As a result, much work has focused on the flow behavior of suspensions of

axisymmetric particles. Jeffery [73] was the first to investigate suspensions of

ellipsoidal particles under shear. He found that the particles rotate in an unsteady

motion known as a Jeffery orbit. For a particle of aspect ratio p in a simple shear

flow, the particle’s unit normal n(θ, φ) evolves with time t as

tanφ = p tan

(
Γ(t)

p+ 1/p
+ κ

)
tan θ =C

(
p cos2 φ+

1

p
sin2 φ

)−1/2 (4.1)

where Γ(t) is the accumulated shear strain of the applied flow and the phase angle

κ and orbit constant C are constants of integration. The particle’s orientation

n(θ, φ) is parameterized by the polar angle from the vorticity direction θ and the

azimuthal angle from the gradient direction φ. For most particles [131] the Jeffery

orbits are periodic, and thus hydrodynamics alone does not determine the particle

orientations at long times under a simple shear flow.

In colloidal suspensions, rotational diffusion acts to randomize particle orien-

tations. In a shear flow, both the deterministic Jeffery orbits and the random
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rotational diffusion determine the final orientation distribution ρ as described by

a Fokker-Planck equation in orientation space:

∂ρ

∂t
= D∇2ρ− ~∇ · (ρ~u) (4.2)

where D is the rotational diffusivity. For dilute suspensions in a time-varying

simple shear flow, the rotational velocity ~u is the Jeffery orbit rotational veloc-

ity. Either Jeffery’s solution or symmetry considerations [24] give this rotational

velocity as

~u =n ·Ω +
p2 − 1

p2 + 1
[E · n− n(n ·E · n)]

= φ̂
γ̇(t)

p+ 1/p

(
p cos2 φ+

1

p
sin2 φ

)
sin θ + θ̂

γ̇(t)(p2 − 1)

4(p2 + 1)
sin 2φ sin 2θ ,

(4.3)

where Ω and E are the instantaneous vorticity and rate-of-strain tensors and

γ̇(t) the instantaneous strain rate of the flow. The combined effects of diffusion

and Jeffery orbits produce an interesting array of orientation distributions and

suspension rheology that are fairly well understood for continuous shear at long

times. The Péclet number Pe, the ratio of the flow’s shear rate to the particle’s

rotational diffusivity, determines the relative importance of diffusion versus particle

reorientation by the Jeffery orbit. At low Pe, diffusion dominates and results in

an isotropic orientation distribution and a relatively high suspension viscosity. To

first order in Pe the flow creates a slight alignment along the extensional axis, but

the suspension viscosity remains the same. Conversely, at high Pe, diffusion causes

a randomization of the rod’s orientations only insofar as to result in a distribution

that does not change in time [92]. Particles tend to align fairly strongly with

the flow, where the Jeffery orbit is slowest, which also results in a relatively low

suspension viscosity. Interestingly, because the rotational velocity of the Jeffery

orbit becomes increasingly varied with increasing aspect ratio p of the particles,

there is a third regime at intermediate Pe, where the Jeffery orbit is dominant over
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diffusion almost everywhere except in a small region near the flow direction, where

diffusion dominates [66].

While extensive research has focused on describing continuous shear of rodlike

particle suspensions, much less work has focused on describing their behavior in

time-varying flows [67]. The time-dependent convection-diffusion equations for rod

orientation dynamics are extremely complicated to solve even in the dilute limit;

as yet there is not a complete solution even for the simple case of continuous shear.

As a result, an engineer who desires to control a suspension of rodlike particles

through shear is essentially limited to either exploring continuous shear at various

Pe, or to experimenting through trial-and-error. In this paper, we take the first

steps towards creating a theory for controlling the flow behavior of suspensions of

rodlike particles, instead of reacting to it. We take advantage of a recent analytical

solution to the orientation dynamics of rodlike particles under an arbitrary periodic

shear flow, albeit for particles confined to the flow-gradient plane at high Pe [89].

We use this exact solution to optimize desired properties of the suspensions, such as

maximizing particle alignment, maximizing and minimizing the suspension shear

viscosity, and maximizing the normal stress difference. Surprisingly, the optimal

waveforms for controlling suspension behavior are extremely simple and allow for

a precise intuition for the mechanism for controlling suspension properties. Along

with previous similarities between the restricted and full orientation dynamics [89,

88], this intuition suggests that the qualitative features of the optimal waveforms

and results will carry over to real suspensions of particles that can rotate freely in

three dimensions.
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4.2 Orientations confined to the Flow-Gradient Plane

For particles confined to the flow-gradient plane, the complicated advection-

diffusion equation in orientation space ∂ρ/∂t = D∇2ρ− ~∇ · (ρ~u) simplifies to

∂ρ

∂t
=D

∂2ρ

∂φ2
− ∂

∂φ

[
Γ̇(t)u(φ)ρ

]
,

u(φ) =
1

p+ 1/p

(
p cos2 φ+

1

p
sin2 φ

) (4.4)

where Γ̇(t) is the instantaneous strain rate of the applied flow and u(φ) the ro-

tational velocity per unit strain rate. As discussed in reference [89], at high Pe

the distribution ρ(φ, t) changes with time in an exceptionally complicated man-

ner. The non-uniform velocity of the Jeffery orbit compresses and expands ρ(φ, t)

and rotates these inhomogeneities with the orbit. These distortions occur on two

fast timescales – a flow timescale ∼ 1/Γ̇ and an oscillation timescale associated

with time variations in Γ̇(t). Diffusion then relaxes the distribution on an addi-

tional, diffusive timescale ∼ 1/D that is much slower than the flow and oscillation

timescales. The distribution does not necessarily relax to a steady state, but may

continue to change with the flow’s oscillations. At high Pe, ρ(φ, t) changes rapidly

with time because a particle’s phase angle κ and orbit constant C in equation 4.1

are roughly constant with time, while its orientation φ changes rapidly with time

due to the Jeffery orbit.

As a result, at high Pe the orientation dynamics are much simpler when de-

scribed in terms of the distribution f(κ) of the particles’ phase angles instead of

the distribution ρ(φ) of their orientations. The phase-angle distribution f(κ) and

the orientation distribution ρ(φ) are related by f(κ) dκ = ρ(φ) dφ; using the coor-

dinate relationship between κ and φ defined by the Jeffery orbit in equation 4.1
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the relation between f(κ) and ρ(φ) simplifies to [89]

ρ =
ū

u(φ)
f(κ)

=
1

p cos2 φ+ 1/p sin2 φ
× f(κ)

=
[
1/p cos2(κ+ ūΓ(t)) + p sin2(κ+ ūΓ(t))

]
× f(κ) ,

(4.5)

where ū = 1/(p + 1/p) is the average particle rotation per unit strain. When

D = 0, the distribution of phase angles f(κ) remains constant with time, as the

particles only reorient due to their Jeffery orbits. In contrast, the orientation

distribution ρ(φ) changes rapidly, as the Jeffery orbit stretches and advects the

distribution. Likewise, when the rotational diffusion is nonzero but weak, the

particle orientations are described much more simply in terms of f(κ) than ρ(φ).

By construction, f(κ) evolves only due to diffusion, and as a result changes only

on the long time scale ∼ 1/D. For an arbitrary periodic strain waveform Γ(t), the

phase-angle distribution f(κ) evolves as [89]

∂f

∂t
= − ∂

∂κ

[
−D(κ)

∂f

∂κ
− 1

2

∂D

∂κ
f

]
(4.6)

in the limit that the characteristic diffusion time is large compared to the period

of the waveform Tcyc: Pe ≡ 1/DTcyc � 1. Here D(κ) is an effective phase-angle

dependent rotational diffusion, defined through the inverse-square of the particle’s

rotational velocity time-averaged over a cycle:

D(κ)/D =
1

Tcyc

∫ Tcyc

0

(
ū

u(κ+ ūΓ(t))

)2

dt

=
1

Tcyc

∫ Tcyc

0

[
1

p
cos2

(
κ+

Γ(t)

p+ 1/p

)
+ p sin2

(
κ+

Γ(t)

p+ 1/p

)]2

dt .

(4.7)

In particular, at long times f(κ) has a simple steady-state solution that does not

change with time:

f(κ) ∝ (D(κ)/D)−1/2 , (4.8)
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regardless of how complicated the applied shear flow is. In contrast, even at long

times ρ(φ, t) changes rapidly with time for all but the simplest flows. Physically,

the orientation distribution is determined through diffusion by a memory of the

average applied shear flow through D(κ). The particles migrate to phase-angle

regions of low diffusivity, as is common in systems ranging from the creation of

concentration gradients in turbophoreis [119, 9] to absorbing states in dense, non-

Brownian suspensions [35, 49]. The memory of the applied flow is only determined

by time-averages of functions of the shear strain, independent the strain rate,

the frequency of the oscillation, and the orders in which the strains occurred. The

particle orientations forget their initial conditions on an enhanced time scale∝ 1/D

[89].

Figure 4.1 illustrates these two distinct ways of viewing the evolution of parti-

cle orientations with time. Under continuous shear, a steady-state solution for ρ

exists, as shown in figure 4.1a for a suspension of particles with p = 5.0. The dis-

tribution is symmetric with respect to inverting the particle’s orientation (n̂→ −n̂

or φ→ φ+π), keeping the symmetry of the Jeffery orbit. As Pe→∞, the steady-

state solution corresponds to an orientation distribution ρ(φ) that is inversely

proportional to u(φ), resulting in a ∝ 1/p suppression of particle orientations near

the gradient direction at φ = 0, π, where the particles rotate rapidly, and a ∝ p

enhancement of particle orientations along the flow direction at φ = π/2, 3π/2,

where particles rotate slowly. In contrast, in κ-space the distribution f(κ) is con-

stant, as diffusion effectively erases the memory of the starting time of the shear

(panel b). Translating from f(κ) to ρ(φ) involves multiplying by the prefactor

ū/u(φ) in equation 4.5. Since φ = φ(κ + ūΓ(t)) (cf. equation 4.1) and since

Γ(t) = γ̇t for continuous shear, this prefactor ū/u translates with a fixed velocity

in κ space, as illustrated by the lower portion of panel b.
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Figure 4.1: (a) ρ(φ) for particles with aspect ratio p = 5.0 under continuous
shear is sharply peaked and constant in time. (b) The corresponding phase-angle
distribution f(κ) (upper panel) is constant in κ and time. The sharp-peaks of
ρ(φ) correspond to the sharp peaks in the prefactor ū/u which multiply f(κ).
The prefactor translates as the strain increases, leaving ρ(φ) unchanged in time
as f(κ) = 1/2π is constant in κ. (c) ρ(φ) under oscillatory shear Γ(t) = 1.0 sin(t)
changes in a complicated manner with time, stretching and rotating with the flow.
In contrast, the phase-angle picture in (d) is much simpler. f(κ) does not change
with time (top), and has a peak near κ = 0 and κ = π. The time-varying ρ(φ)
corresponds to the motion of the prefactor ū/u in time (bottom, motion indicated
by arrows), as its peaks and troughs align with various features in f(κ).
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Under oscillatory shear the long-time distributions are considerably simpler

when described in terms of f(κ) than when described in terms of ρ(φ). As the

flow oscillates, the orientation distribution ρ(φ, t) does not approach a steady-

state value but is stretched and rotated with the flow in a complicated manner

throughout each cycle, as indicated in figure 4.1c. For the sinusoidal shear with

strain amplitude 1 shown in the figure, at the center of the cycle the distribution

is almost isotropic, but is slightly distorted. As the suspension is sheared, the

distribution is first stretched along the extensional axis by the term ∝ E ·n−n(n ·

E · n) in equation 4.3, then rotated by the flow to be more closely aligned along

the flow axis (Γ(t) = 1 curve). Reversing the flow first returns the distribution to

its value at the center of the cycle before repeating the stretching and rotation in

the opposite direction.

In contrast, at high Pe this picture is much simpler in terms of the phase-

angle distribution f(κ). The phase-angle distribution f(κ) attains a steady-state

form that is constant in time (upper portion of panel d) and is determined solely

by D(κ) through equations 4.7-4.8. From the definition of D(κ), at moderate

strain amplitudes, regions where the Jeffery orbit velocity is small correspond

to regions where the phase-angle diffusivity D(κ) is large, and vice versa. As a

result, in figure 4.1d f(κ) is enhanced at phase angles corresponding to particles

which rotate rapidly with the Jeffery orbit (near κ = 0, π), and is suppressed

at phase angles corresponding to particles which rotate slowly with the Jeffery

orbit (near κ = π/2, 3π/2). This f(κ), in conjunction with the initial centering

of the trough in ū/u about the peak in f(κ), corresponds to the initially mostly-

constant distribution ρ(φ). The stretching and rotation of ρ(φ) with time simply

corresponds to the oscillation of the prefactor ū/u about the peak in f(κ). As the

trough in ū/u shifts slightly to either side of the peak in f(κ), the overlap between
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f(κ) and ū/u increases and ρ(φ) becomes more strongly peaked.

Motivated by the simple description for orientation dynamics at high Pe, we

proceed to optimize the orientation distribution for a desired property. Equa-

tions 4.5, 4.7, and 4.8 completely determine the steady-state orientation distribu-

tions at long-times for an arbitrary shear waveform. Moreover, while in practice

D(κ) may be difficult to calculate analytically, it is extremely simple to calculate

numerically – one integration determines D(κ), which in turn determines the form

of f(κ) aside from a normalization constant. As a result, we can simply param-

eterize an arbitrary waveform and fit these parameters to optimize any desired

property determined by the orientation distribution.

4.3 Maximizing Alignment

Strongly aligned particle orientations are crucial for engineering applications of

nonspherical particle suspensions. For instance, a well-defined orientation strongly

affects the mechanical stiffness [55] and thermal or electrical conductivity [120,

129, 144] of a fiber-reinforced composite, and orientation alignment determines the

optical activity of a suspension [54]. For many processes, such as extruding fiber-

reinforced composites, the alignment is desired at a specific moment in time, e.g.

when the composite is cured or when the dichroism is measured, rather than over

the entirety of the cycle. As such, rather than maximize the particle alignment

averaged over a cycle, we instead maximize the alignment at one point in the

oscillatory shear cycle, envisioning a situation where the suspension is rapidly cured

into a solid matrix when the desired alignment has been achieved. Alternatively,

a maximal alignment at one point in the cycle could be useful for calibrating
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suspension characterizations such as flow dichroism, where the process of taking

a measurement is rapid and a strong signal is desired. Most of these measured

properties are determined through moments of the particle orientation, such as

the standard rank-two liquid crystal order parameters Q and S2 for dichroism

and conductivity, where Q is the traceless, symmetric, second-order orientation

tensor (Q = 2〈nn〉 − δ in two dimensions) and S2 is its maximal eigenvalue. For

properties such as elasticity, higher-order tensorial parameters such as an analogous

S4 determine the material properties. The behavior of these order order parameters

under flow are difficult to visualize, as they depend on integrals of the orientation

distribution ρ(φ) over φ. Instead, we examine the largest value of ρ(φ), which

is simpler to visualize. Empirically, the optimal waveforms that maximize ρ(φ)

are identical to the optimal waveforms that maximize many of the more complex

order parameters, including the rank-two and rank-four scalar liquid-crystal order

parameters S2 or S4. The high symmetry of the Jeffery orbit prevents pathological

distributions, such as a ρ(φ) with many large peaks along different directions, and

ensures that maximizing ρ(φ) produces a highly-aligned distribution.

We maximize the largest value of ρ by first parameterizing the waveforms by

60 Fourier coefficients and optimizing over those coefficients. Without loss of

generality, we optimize the value of ρ at the start of an oscillatory cycle. Likewise,

there is a gauge freedom in selecting an overall offset for Γ(t), corresponding to

any transient shear done on the suspension infinitely far in the past; we choose

Γ(0) = 0 throughout the paper. Surprisingly, the optimal waveforms for maximal

alignment and for the other properties considered in this paper have extremely

simple forms. As a result, both for maximizing ρ and for the rheology waveforms

considered later, we first optimize using the 60 Fourier coefficients to find the

simple optimal waveform, then re-optimize using the simpler waveform. The simple
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Figure 4.2: (a) The spike waveform that maximizes the maximum value of ρ(φ)
for p = 5.0. The actual optimal waveform has a spike of zero width; panel a
shows one of width π/5 for clarity. (b) The optimal ρ(φ) (green curve) is much
more strongly peaked than the continuous-shear ρ(φ) (dotted-black curve), even
at moderate p = 5.0. (c) f(κ) (top) for the spike waveform. The prefactor ū/u
starts antialigned with f(κ) (black curve), and translates to align its peak with
that of f(κ) (gray curve), as indicated by the arrow. (d) The maximal value of
ρ(φ) (red) and the optimal strain (cyan), as a function of p.

optimal waveform always produces more extremal values of the desired property

than the naive Fourier parameterization.

Figure 4.2a shows the waveform that maximizes the alignment in a dilute sus-

pension of rods with aspect ratio p = 5.0. The waveform involves not shearing

for almost all of the cycle, then straining by an amount Γ = π(p + 1/p)/2 ≈ 8.17

that is precisely one-quarter of a Jeffery orbit. For the optimal waveform, the
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duration of this spike goes to zero; panel a shows the spike at finite width for ease

of viewing. Even for the moderate aspect ratio p ≈ 5.0 this waveform produces an

exceptionally strong alignment, as shown in panel b. The peak of the orientation

distribution ρ for the optimal waveform (green curve) is 5× greater than that for

continuous shear (black dotted curve), even though the suspension is not being

sheared for most of the optimal cycle!

Why is this alignment so strong compared to continuous shear? While the

answer is not immediately obvious when examining the behavior of equation 4.4

in terms of ρ(φ), it is readily apparent in terms of f(κ). There are two terms

that determine the orientation distribution ρ(φ) in equation 4.5: a prefactor ū/u

that does not depend on the waveform but changes during a cycle, and the phase-

angle distribution f(κ) that depends on the waveform but does not change during

a cycle. The prefactor ū/u varies strongly with κ, having strong ∝ p peak at

κ + ūΓ(t) = π/2. Under continuous shear, the particle phase angle is completely

randomized – f(κ) = 1/2π – and the alignment of ρ arises solely from the peaks in

ū/u. Thus, from the standpoint of equation 4.5, continuous shear is a terrible way

to align the distribution! Almost any other waveform will produce variations in

f(κ), and shifting the peak in ū/u over a peak in f(κ) will produce a more aligned

distribution. To maximize the alignment, we should look for a waveform that

creates the maximal peak in f(κ), and then attempt to add a negligible motion on

top of that waveform that will align the peak in f(κ) with that in ū/u.

One waveform with a strongly-peaked f(κ) is low-amplitude sinusoidal shear.

As the amplitude of the sinusoidal shear approaches zero, the orientation distri-

bution ρ(φ) becomes isotropic. Since ρ(φ) = ū/u× f(κ), and since ū/u is sharply

peaked, the isotropic ρ(φ) implies that f(κ) is strongly peaked with a magnitude
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∼ p as p → ∞, as visible from equation 4.5. From the naive viewpoint of ρ(φ),

zero-amplitude sinusoidal shear is a terrible way to align particles, as ρ(φ) = 1/2π

is completely isotropic. But from the viewpoint of the phase-angle distribution,

this is a great way to align the distribution, since f(κ) is sharply peaked. The

only slight problem is that, at zero strain, the prefactor ū/u exactly cancels any

peaks in f(κ). However, this problem can be rectified by straining by an amount

exactly 1/4 of a Jeffery orbit Γ = π(p+ 1/p)/2, aligning the peak of ū/u with that

of f(κ). Moreover, since D(κ) and f(κ) are determined by time-averages of the

waveform (cf. equation 4.7), a rapid shift in strain will not affect the phase-angle

distribution f(κ).

This approach is precisely what the optimal waveform in figure 4.2 takes. Not

shearing for most of the cycle creates the sharply-peaked f(κ) shown in panel c

which is the same as under low-amplitude shear, except for a shift resulting from

our choice of Γ(0). Exactly at the start of the cycle, the waveform shifts the peak

of ū/u to align with the peak of f(κ), resulting in a strong alignment. Combining

this shifted prefactor with the zero-shear f(κ) gives an orientation distribution

ρ(φ) =
1

2π

1

p2 cos2 φ+ 1
p2 sin2 φ

. (4.9)

Since the maximal value of the zero-amplitude f(κ) is p/2π and that of ū/u is p for

p > 1, the waveform produces a peak of height p2/2π in ρ(φ), as shown in panel d,

as opposed to the ∼ p peak height from simple continuous shear. Aligning these

peaks in ū/u and f(κ) requires a strain π(p+ 1/p)/2 that is 1/4 a Jeffery orbit.

This mechanism has a simple explanation in terms of ρ(φ) and the velocity

field of the Jeffery orbit. As the suspension is not sheared for most of the cycle,

the orientation distribution is isotropic except for the duration of the spike. This

isotropic distribution corresponds to orienting a sizeable fraction of the particles
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near the gradient direction, where the Jeffery orbit rotates rapidly. The spike then

rotates these particles by one-fourth of a Jeffery orbit, aligning them near the flow

direction. The Jeffery orbit rotational velocity is suppressed by∼ 1/p2 compared to

the velocity near the gradient direction, resulting in the ∼ p2 bunching of particles

visible in figure 4.2.

While the above argument shows that a ∼ p2 particle alignment is possible, it

does not prove that the spike waveform in figure 4.2a is the optimal one nor divulge

how robust it is to deviations from perfection. We can further understand the

optimal waveform by delving deeper into the functional form of D(κ). Expanding

out the sines and cosines in equation 4.7 gives a simplified form for D(κ):

D(κ)/D =
3

8
(p− 1/p)2 + 1− 1

2
(p2 − 1/p2)A2 cos(2κ+ δ2)

+
1

8
(p− 1/p)2A4 cos(4κ+ δ4) , where

Ane
iδn =

1

Tcyc

∫ Tcyc

0

einΓ(t)/(p+1/p) dt

(4.10)

Both D(κ) and f(κ) are determined by the waveform Γ(t) only through the four

variables A2, δ2, A4, δ4, which in turn only determine the magnitude and phase of

their cos(2κ) and cos(4κ) variations. In general, either A2e
iδ2 or A4e

iδ4 can take

any values in the complex unit disk, although they cannot be varied completely

independently of each other. For some simple oscillatory waveforms these coeffi-

cients can be calculated exactly – for example, for Γ(t) = Γ0 sin(ωt) the coefficients

are A2 = J0(2Γ0/(p+ 1/p)), δ2 = 0 and A4 = J0(4Γ0/(p+ 1/p)), δ4 = 0, where J0

is the zeroth-order Bessel function – but for a generic waveform these coefficients

are not expressible analytically. Nevertheless, equation 4.10 still divulges much

information about a generic waveform. Waveforms which only deviate from one

another for a short time will have similar phase-angle distributions. Moreover,

since f(κ) ∝ 1/
√

D(κ), an increasing A2 and A4 will increase the alignment in
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Figure 4.3: Numerical results for finite spike width on distribution alignment. (a)
f(κ) for a spike waveform, with spike widths of 0% (cyan), 1%, 10%, 50%, and
100% (black) of the triangle-wave limit of 2π, at fixed amplitude Γ = π(p+ 1/p)/2
and for a suspension with p = 5. (b) The peak height of f(κ) as a function of the
spike width; in general the peak height decreases as the spike width increases, but
it always remains considerably greater than the constant f(κ) for continuous shear
(dashed line). (c) The maximum of ρ(φ) for a spike waveform as a function of the
spike width, with the spike centered at t = 0. (d) The scaling of the maximal ρ(φ)
as a function of aspect ratio for an infinitesimally fast spike (dashed yellow line),
a spike of width π/500 (cyan), a spike of width π/5 like that in figure 4.2 (red),
and continuous shear (dashed black line).

f(κ).

The effect of a finite-spike width duration on particle alignment can be seen

from its effects on the coefficients A2 and A4. For the optimal waveform in fig-

ure 4.2, the spike is of zero duration, and A2 = 1, A4 = 1, resulting in an O(1)
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minimum in the otherwise O(p2) D(κ), cf equation 4.10. Since f(κ) ∝ 1/
√

D(κ),

cf. equation 4.8, and since f(κ) is normalized, this O(1) minimum in D(κ) corre-

sponds to an O(p2) peak in f(κ). If the spike occupies a fraction τ of the cycle,

then the phase of exp(inūΓ) in equation 4.10 will be reduced by an amount ∝ τ ,

and A2, A4 will decrease by≈ τ . Since the prefactors to both A2 and A4 scale as

∼ p2 as p→∞, a finite-width spike results in an ∼ τp2 increase in the minima of

D(κ), which decreases the maximum of f(κ) by ∼ τp2. Thus, an O(1) spike width

will unfortunately produce an O(p2) decrease in the alignment. Physically, the

spike duration needs to be . 1/p2 due to diffusion. The optimal waveform creates

a ∼ p2 alignment and therefore ∼ p2 gradients in ρ(φ). These enhanced gradients

enhance the effect of diffusion by the same ∼ p2 factor, requiring an extremely

brief spike duration before diffusion smooths out the distribution.

This behavior is shown in figure 4.3. Panel a shows f(κ) for a particle with

p = 5.0 for spike strains Γ = π(p + 1/p)/2 and widths varying from 0 (cyan) to

2π (i.e. triangle-wave shear, in black). Since a spike width of ∼ 1/p2 produces

a significant decrease in the peak of f(κ), even at moderate p = 5.0 a spike that

occupies 1% of the duration of the cycle significantly decreases the peak value

of f(κ). This peak value decreases rapidly with increasing spike width (panels a

and b), which correspondingly decreases the maximal value of ρ(φ) (panel c).

Regardless of the spike width, however, the spike waveform always aligns ρ(φ)

more than continuous shear does. As f(κ) = 1/2π is constant for continuous

shear, aligning the ū/u prefactor with any peak in f(κ) improves alignment over

continuous shear. Panel d shows the scaling of the alignment with aspect ratio.

While a spike of infinitesimal width creates a ∼ p2 orientational alignment, any

fixed-width spike reduces the scaling to ∼ p, as shown by the curves for a spike

width of π/5 (the waveform in figure 4.2a) and of width π/500, although either
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width always results in significantly more enhancement than continuous shear.

4.4 Maximizing and Minimizing Viscosity

Colloidal rods are a classic model system for exploring non-Newtonian rheo-

logical behaviors, with the first investigations dating back almost 100 years

[73, 109]. Even dilute suspensions in simple shear flows can exhibit interesting

non-Newtonian behavior such as shear-thinning, stress overshoots, and normal

stresses [126, 26, 96, 41], arising from a combination of viscoelastic, flow-memory,

and relaxation effects [80, 93, 67, 140, 29]. This non-Newtonian behavior arises

because the particle orientations both couple to the flow and affect the suspension

stress. As rodlike particle suspensions produce a wide array of rheological behav-

iors even for simple flows, we expect that we can strongly control their rheology

under arbitrary-waveform oscillatory shear flows.

The stress at one instant in time in a suspension of rodlike particles is deter-

mined by the current strain rate and moments of the particle orientations:

σ =2ηE + 2ηc{2AH(E : 〈nnnn〉 − δE : 〈nn〉)

+ 2BH(E · 〈nn〉+ 〈nn〉 · E − 2

3
δE : 〈nn〉)

+ CHE + FHD(〈nn〉 − 1

3
δ)}

(4.11)

where E is the rate-of-strain tensor of the fluid, δ the Kronecker-delta, η the

suspending fluid viscosity, c the volume fraction of rods, and AH , BH , CH , and FH

are shape-dependent hydrodynamic coefficients [11, 82, 67, 20]. At high Pe, the

potentially elastic Brownian stress in the last term is negligible compared to the

other terms, and the suspension stores no elastic energy.
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For particles confined to the flow-gradient plane at high Pe, these equations

simplify considerably. The increase in the effective shear viscosity due to the

particles, per unit concentration and normalized by the fluid viscosity, is

(σ/2η − E)xy/c = AH〈1− cos 4φ〉/8 +BH + CH . (4.12)

As a result, for particles orientations confined to the flow-gradient plane, control-

ling the shear stress in a suspension only involves controlling the 〈cos 4φ〉 moment

of the distribution. As equations 4.11-4.12 show, at high Pe the suspension re-

sponse is always proportional to the instantaneous strain rate and never has an

elastic component. However, since the particle orientations change with time,

the proportionality constant in equation 4.12 between the stress and the strain

rate changes with time, producing a purely viscous but non-Newtonian response.

We call this proportionality constant the instantaneous viscosity ηinst, as it can

change during an oscillatory shear cycle. This non-Newtonian ηinst arises from the

suspension’s memory of the average waveform through D(κ). At high Pe, the sus-

pension has a negligible Brownian stress and hence no true viscoelasticity. While

the theory of orientation dynamics at high Pe can describe relaxation effects due

to diffusion [89], since we are considering the long-time rheology under rapid oscil-

lations these transients have already decayed, and long-term relaxation effects no

longer affect ηinst.

The instantaneous viscosity provides information about the particle properties

through the hydrodynamic coefficients AH , BH , CH , which depend on the parti-

cle shape. In a typical rheological measurement at high Pe all three coefficients

are measured simultaneously. For idealized particle orientations confined to the

flow-gradient plane, it is impossible to separately measure the coefficients BH and

CH . However, the coefficient AH can be measured from two separate waveforms

that produce separate particle distributions, cf. equation 4.12. Ideally, these two

109



waveforms should produce an ηinst that is maximally different from one another.

Motivated by this, we look for the waveforms that maximize and that minimize

ηinst. For simple waveforms such as continuous shear or sinusoidal shear, the sus-

pension viscosity ηinst is simply related to the suspension stress. For more complex

waveforms, these two can differ dramatically, as the shear rate can be small or

even zero when the viscosity is large. As a result, a waveform that extremizes

the viscosity will not in general extremize the measured stress. However, an ad-

ditional high-frequency, small-amplitude “probe” flow will measure the viscosity

that is created by the “pump” waveform. The probe flow will not change the dis-

tributions, since f(κ) and D(κ) only depend on the average strain and not on the

strain rate (cf. 4.7. Since the time-average value that the probe will measure is the

time-average of the viscosity, we maximize and minimize the time-average of ηinst.

In addition, the extremal ηinst waveforms are simple to analyze, as the viscosity

depends only on the strain waveform and not directly on the strain rate.

As for the case with maximizing the distributions, extremizing the viscosity is

simpler in terms of f(κ). Since f(κ) dκ = ρ(φ) dφ by construction, the average in

equation 4.12 can also be taken in phase-angle space instead of orientation space:

〈cos(4φ)〉 =
∫

cos(4φ)ρ(φ) dφ =
∫

cos(4φ(κ + ūΓ))f(κ) dκ. From this standpoint,

the waveform Γ(t) determines f(κ), which does not change in time. Instead, during

a cycle the strain shifts the position of cos(4φ) in κ space, and the nonlinear

transformation between φ and κ warps its shape. Maximizing or minimizing the

viscosity then corresponds to selecting a waveform that maximizes or minimizes

the overlap between cos(4φ) and the f(κ) that the waveform creates.

Figure 4.4a displays the waveform that maximizes ηinst for a suspension of

particles with aspect ratio p = 5.0 (dashed red line). Similar to the waveform that
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maximizes ρ(φ), during most of the cycle the suspension is not sheared. In contrast

to the waveform in figure 4.2, however, the maximal-stress waveform spends an

equal amount of time at two separate strains: at a strain Γ = 0 and at Γ ≈

1.26. Since the strain is relatively small, this waveform creates a well-peaked f(κ)

(dashed curve, upper portion of panel b) with the peak slightly offset from κ = 0.

At Γ = 0, the peak in f(κ) aligns with the peak at φ = −π/4 in the stress term

(1 − cos 4φ)/8 from equation 4.12. Increasing the strain to Γ = 1.26 aligns the

second peak at φ = π/4 with the peak of f(κ). As a result, the viscosity is large

and constant during the cycle, except for two small dips as the strain changes from

Γ = 0 to Γ = 1.26, cf. panel c.

The waveform that minimizes ηinst is similar to the one that maximizes ηinst,

as shown by the solid red line in figure 4.4a. The waveform is also a boxcar,

alternating between a strain of Γ = 0 and Γ ≈ 8.17. However, while this waveform

is similar to the one that maximizes ηinst, their phase-angle distributions f(κ) differ

significantly. As the strain Γ = 8.17 is relatively large, f(κ) no longer has a sharp

peak, but is almost constant with small, cos(4κ) oscillations, as shown by the solid

line in panel b. These oscillations create a minimum in f(κ) at κ = π, near the

double-peak of the stress term. The waveform then shifts this double-peak from

the trough in f(κ) at κ = π to the trough at κ = π/2. As a result, the viscosity

that is small and constant during a cycle, except for two small bumps as Γ(t)

changes from 0 to 8.17, cf panel c.

From this picture, we can understand the scaling with aspect ratio of the wave-

forms that maximize and minimize ηinst and their corresponding viscosities. The

waveform that maximizes ηinst alternates between positioning either of the two

closely-separated maxima of the stress term (1− cos 4φ)/8, located at φ = ±π/4,
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Figure 4.4: (a) The boxcar waveforms which maximize ηinst (dashed red line)
and minimize ηinst (solid red line), for a suspension with p = 5.0. Both optimal
waveforms have a ramp-width of zero, as shown in the figure. (b) Top panel: The
phase-angle distributions which maximize (dashed) and minimize (solid) ηinst. The
bottom panel shows the corresponding stress term at the start of the cycle (black),
and its position at the middle of the cycle (dashed and solid gray lines). (c) The
maximal and minimal viscosities, as a function of time in the cycle. (d) The scaling
of the Γ that produces the maximal ηinst (dashed red line), the Γ for the minimal
ηinst (solid red line), and the difference between the two viscosities (orange), as a
funcion of p.
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on the peak in f(κ). As is visible from the coordinate relations between φ and κ

in equation 4.1, the distance between these maxima is compressed in κ space, to

a separation that scales ∼ 2/p as p → ∞. Since ū also scales ∼ 1/p, alternat-

ing placement of the two peaks in the stress term to maximize ηinst requires fixed

strain, independent of p. This asymptotic approach to a constant Γ ≈ 1.30 at large

p is visible in figure 4.4d. Likewise, the waveform that minimizes ηinst alternates

between positioning the double-peaks in the stress term on the minima in f(κ) at

κ = 0 and κ = π/2. This π/2 shift in κ requires a strain Γ = π(p+1/p)/2, as shown

by the minimal-ηinst strain in panel d. Moreover, this shift of Γ = π(p+1/p)/2 sets

the coefficient A2 = 0 in equation 4.10, leaving f(κ) with the cos(4κ) modulation

visible in the figure. Finally, we can estimate the scaling of the maximal and mini-

mal ηinst with p. The expectation value of (1− cos 4φ)/8 is always O(1), as for the

maximal viscosity 〈1−cos(4φ)〉/8 < 1/4 always and for the minimal viscosity f(κ)

never approaches zero. As a result, the difference between the maximal viscosity

and the minimal viscosity will scale as a constant fraction of the hydrodynamic

coefficient AH in equation 4.12. The difference between the maximal and minimal

viscosities in panel d reflects the ∼ p2/ ln p scaling of the hydrodynamic coefficient

AH [82].

The waveforms which maximize and minimize the viscosity are robust to a finite

ramp width even at large p, in contrast to the spike waveform which maximizes

ρ(φ). Increasing the ramp width of the waveform to τ results in an ∼ τ change

in the coefficients A2, A4. However, neither A2 nor A4 equal 1 for the maximal

or minimal strain waveforms. As a result, there are no sensitive minima in D(κ),

unlike the case for the maximal ρ(φ) waveforms, and D(κ) changes proportional

to an O(τ) factor everywhere, instead of O(τp2) in some locations. As a result,

replacing the boxcar waveform by a trapezoidal waveform with a small ramp time
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of duration τ changes the maximal and minimal viscosities change by a small ∼ τ

fraction. Plotting the difference between the viscosities for an infinitesimal ramp

width and for a ramp width of π/5 results in a curve that is indistinguishable from

the curve in figure 4.4d on the scale of the figure.

4.5 Maximizing Normal Stresses

The presence of hydrodynamic normal stresses is severely restricted by the linear-

ity reversibility of Stokes flow. Since reversing time corresponds to changing the

sign of the shear rate, the linearity Stokes flow implies that reversing time will

change the sign of a the stress tensor. Thus, for an oscillatory flow, all stresses –

including normal stresses – must time-average to zero, as an average value does

not change sign upon reversing time. While in principle, a hydrodynamic normal

stress difference can be nonzero at any instant of time, in practice any hydrody-

namic normal stress difference is usually prevented by additional symmetries. For

instance, in simple shear reversing time corresponds to reflecting the flow axis. If

the suspension microstructure is symmetric under this reflection, then the normal

stress difference will be identically zero by symmetry. This symmetry prevents

hydrodynamic normal stress differences from arising in suspensions of rods both

at infinite Péclet [66] and at zero Péclet.

As a result, most normal stresses in suspensions of nonspherical particles have

a non-hydrodynamic origin, such as from Brownian motion and particle contacts

[93, 110, 126, 100, 134, 80]. These non-hydrodynamic mechanisms can create nor-

mal stress differences either directly or through altering the suspension microstruc-

ture, creating a hydrodynamic normal stress created by non-hydrodynamic struc-
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ture. Since the normal stresses can have non-hydrodynamic origins, there can be

arbitrary normal stress differences, even those that do not time-average to zero

under oscillatory or continuous shear.

While shear flows that vary simply in time usually do not give nonzero hy-

drodynamic normal stress differences, more complex waveforms can give rise to a

nonzero first normal stress difference N1 strictly from hydrodynamics. In general,

reversibility of Stokes flow requires that N1 time-average to 0. However, it is in

principle possible to create complex waveforms that have a nonzero N1 at any

instant of time during the oscillation.

To understand the microstructural origins of N1, we look at the normal stress

components σxx and σyy of equation 4.11, where the x is the flow direction and y

the gradient. Substituting n = (nx, ny, 0) and evaluating the dot products shows

that the hydrodynamic normal stress difference N1 = σxx − σyy is again given by

moments of the orientation distribution weighted by the hydrodynamic coefficient

AH , in the limit of large Pe:

N1/ηγ̇c =
1

2
AH〈sin 4φ〉 . (4.13)

An orientation distribution that is symmetric φ→ −φ will always produce a hydro-

dynamic normal stress difference that is identically zero, which is why continuous

shear and low-amplitude oscillatory shear have N1 = 0. For a general waveform,

however, ρ(φ) does not have this symmetry. The normal stress term sin(4φ) has

four equal maxima and minima, equally spaced in φ. However, the nonlinear trans-

formation φ→ κ strongly warps the normal stress term, causing the maxima and

minima to bunch together into two separate groups. As sin(4φ) is odd in φ, the

transformation creates a normal stress term that is also odd in κ+ūΓ(t), in contrast

to the shear stress term (1− cos 4φ)/8 which is even in both φ and κ+ ūΓ(t).
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The normal stress difference N1 directly provides information about particle

shape through the hydrodynamic coefficient AH , like measurements of the shear

stress. Measuring this coefficient with the normal stress difference would provide

information on rodlike particle suspensions. Frequently, normal stress differences

are measured in continuous shear at high Pe. These normal stress differences

arise due to particle contacts, especially in the semi-dilute regime [143, 42, 46,

134]. However, in a more dilute suspension this measured N1 could arise either

directly, from contacts, or indirectly, through the effect of particle contacts on the

orientation distribution. Measuring the normal-stress coefficient AH would provide

insight into the range of normal stress differences that could be expected from

hydrodynamics alone and further elucidate the origins of normal stress differences

in suspensions of Brownian rods.

In light of this, we look for a waveform that optimizes the magnitude of the

normal stress viscosity AH〈sin(4φ)〉/2 from equation 4.13, imagining a measure-

ment of this viscosity with a pump-probe experiment as for the shear viscosity.

In contrast to the shear viscosities, due to reversibility of Stokes flow the average

normal stress viscosity is always zero. Instead, we maximize the average of the

absolute value of the normal-stress viscosity |N1/ηcγ̇|, which will maximize the

normal stress signal from a probe experiment at any given time. Moreover, maxi-

mizing the normal stress viscosity would facilitate a direct measurement of nonzero,

hydrodynamic normal stress differences in a dilute suspension, as opposed to the

usually non-hydrodynamic and/or semidilute regime normal stress differences that

are currently measured [143, 110, 126, 78, 134].

Figure 4.5a displays the waveform that maximizes the signal fromN1 for a dilute

suspension with p = 5.0. Like the waveforms that maximize and minimize the
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viscosity, the strain Γ(t) takes a boxcar shape, alternating between a strain Γ = 0

and a moderate strain Γ ≈ 3.77. This moderate strain produces a moderately-

peaked f(κ), as shown in the upper portion of panel b. The waveform aligns one

of the broad peaks in the normal-stress term sin(4φ)/2 with the peak of f(κ),

before translating to align the nearby broad trough with the peak of f(κ) for the

second half of the cycle. This produces a symmetric N1 signal that averages to

zero but has constant magnitude throughout the cycle, as shown in figure 4.5c.

Examining equation 4.13 in detail divulges the structure of this normal stress

waveform. The normal stress term has four maxima corresponding to sin(4φ) = 1,

at φ = (4n + 1)π/8, and four minima at φ = (4n − 1)π/8. Once again, the

nonlinear φ → κ transformation warps these equally-spaced maxima in φ into

the bunches of maxima and minima visible in figure 4.5b. For instance, the close

maximum/minimum pair near κ = π are the image of the maximum at φ = 9π/8

and the minimum at φ = 7π/8. The Jeffery transformation in equation 4.1 places

these at phase angles κ+ ūΓ = π−tan−1((
√

2−1)/p) and at π+tan−1((
√

2−1)/p).

Likewise, the broad outer extrema at κ+ ūΓ = π−tan−1((
√

2+1)/p) and κ+ ūΓ =

π+ tan−1((
√

2 + 1)/p) correspond to the maximum at φ = 5π/8 and the minimum

at φ = 11π/8. This cluster of four extrema are separated from the other cluster by

a large, ∼ π distance. One could try to maximize |N1| by aligning the peak of f(κ)

either with the inner set of extrema, at π ± tan−1((
√

2− 1)/p), or with the outer

set of extrema, at π ± tan−1((
√

2 + 1)/p). However, the peak of f(κ) is at least

of width ∼ 1/p, so aligning the inner maximum with the peak of f(κ) results in

significant overlap of f(κ) with the inner minimum. Instead, the optimal waveform

aligns the outer, broad extrema with the peak of f(κ). Since these extrema are

separated by a distance of δκ = 2 tan−1((
√

2 + 1)/p), and since ū ∼ 1/p, the

optimal waveform has a strain jump of Γ ≈ 2p tan−1((
√

2 + 1)/p), which is ≈ 4.8
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Figure 4.5: (a) The boxcar waveform which maximizes the average of the absolute
value of the normal-stress viscosity, for a suspension with p = 5.0. The optimal
waveform has a ramp-width of zero, as shown in the figure. (b) The corresponding
f(κ) (top panel). The bottom panel shows the corresponding normal stress term
sin(4φ)/2 at the start of the cycle (black), and its position at the middle of the
cycle (gray). (c) N1/ηcγ̇ as a function of time in the cycle. N1/ηcγ̇ is equal and
opposite during the two halves of the cycle, averaging to zero. (d) The scaling
of the maximal-|N1| viscosity (orange) and the corresponding strain (red), as a
function of p. Note the slow approach with p to the asymptotic value of Γ.
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for large p. Panel d shows that Γ asymptotically approaches a strain slightly higher

than this value. By positioning the peak in f(κ) slightly outside the skewed, broad

extrema in the normal stress term, the optimal waveform reduces overlap with the

nearby inner extrema. At moderate p . 5, the strain producing the maximal-

|N1| approaches its asymptotic value slowly but still approximately follows the

Γ ∼ 2p tan−1((
√

2 + 1)/p) scaling above. Like the case for the shear viscosity, f(κ)

for the normal stress waveform never approaches zero. As a result, the maximal and

minimal values of the expectation 〈sin(4φ)〉 are always of order ±1 independent of

p, and the magnitude of the N1 signal in figure 4.5d grows solely due to the growth

of AH with aspect ratio.

In this paper, we have explored the possibility of designing oscillatory shear

waveforms to control suspensions of rodlike particles. Our approach to optimizing

an oscillatory shear waveform is generic and can be implemented to optimize any

desired property of a sheared suspension that depends on particle orientations,

including for more practical cases than those considered here. While an exhaustive

exploration of waveforms for any property is impossible, many simple properties

will be optimized by waveforms similar to those shown here. For instance, while

particle alignment determines suspension conductivity [120] and flow-dichroism

[53], the relevant order parameter is not the maximum of ρ but the liquid-crystal

order parameter S2, which is the maximal eigenvalue of the traceless symmetric

second-rank orientation tensor Q = nn − δ/2. Likewise, the elasticity of a fiber-

reinforced composite depends on fourth-order moments of the particle orientation,

such as the analogous S4. While these order parameters are different from the

maximum of ρ, we find empirically that the waveform that maximizes ρ at the

start of a cycle also maximizes S2 and S4. Alternatively, rather than maximize the

particle alignment by maximizing ρ(φ), one might desire to minimize the particle
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alignment along one direction. We find empirically that the waveform in figure 4.2

that maximizes particle alignment along one direction also most strongly minimizes

the particle alignment – the strong enhancement of ρ(φ) ∼ p2 at φ = π/2, 3π/2

also results in a ∼ 1/p2 suppression of orientations at φ = 0, π.

All of our analysis has necessarily been limited to orientations confined to

rotate in the flow-gradient plane at high Pe, as there is no simple solution for

fully-rotating particle orientations under arbitrary shear waveforms. Nevertheless,

while the quantitative details of the results may change for fully three-dimensional

orientations, the qualitative picture should remain the same. The φ dynamics of

a freely-rotating particle in a simple shear flow are the same as one confined to

the flow-gradient plane. Moreover, preliminary analysis [89] and experiments [88]

suggests that the κ dynamics remain similar for freely-rotating orientations as for

those confined to the flow-gradient plane. Since the results above have simple

interpretations in terms of the particle phase angles κ, the optimal waveforms

should be similar for real suspensions.

The waveform that maximizes particle alignment should remain the same for

freely-rotating orientations. As most of the waveform involves zero shear, the parti-

cle distributions will remain isotropic except for the spike portion of the waveform.

The spike in Γ would then not only bunch the particle orientations’ φ values into

a ∼ 1/p2 region, they would also bunch the orientations’ θ values, as there is a

∼ 1/p “pinching” of the Jeffery orbits near the flow direction, cf. equation 4.1. In

contrast, the waveforms that control the viscosity would likely change slightly. In

equation 4.12 and equation 4.13 only AH multiplies the particle orientations. For

freely-rotating equations the hydrodynamic coefficient BH also affects the shear

stress through the particle orientations, entering as a term ∝ BH〈n2
x + n2

y〉. As
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a result, the difference between the maximal and the minimal viscosity will de-

pend on both AH and BH , although N1 is still only determined by AH at high Pe.

Moreover, this new expectation 〈n2
x+n2

y〉 depends on both κ and C. As a result of

this additional degree of freedom, the waveform and distribution of phase angles

and orbit constants that extremize ηinst might be slightly different from those in

figure 4.4. Possessing a full solution to the orientation dynamics would allow for

verification and investigation of these properties. More interestingly, a full solution

would allow for the possibility of controlling shear flows where the principle axes

of the strain change directions during the course of a cycle. Such waveforms could

perhaps separately maximize the signal from all the hydrodynamic coefficients AH ,

BH , and CH .

4.6 Appendix

Numerical methods To find the optimal waveforms, we parameterized the dis-

tributions by the lowest 60 real Fourier coefficients and optimized over those pa-

rameters using a BFGS algorithm as implemented in Python (scipy) [112]. As

there are many local minima in this fit space – for instance, frequency-doubling a

waveform produces almost the same distributions as the original waveform – we

found the optimal values from 100 randomly-chosen initial guesses for the Fourier

coefficients. Examining the best waveforms by eye quickly divulges what the cor-

rect simple, optimal waveform should be (e.g. the spike and boxcar waveforms).

Using the realization that the optimal waveforms are simpler spikes or boxcars,

we then re-optimize using the simpler waveform with several free parameters. For

the spike waveform, we optimize the spike height, ramp time, and phase, and for

the boxcar the boxcar height, boxcar width, and ramp time – since the optimized
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viscosities are averages over the waveform, we do not optimize the boxcar phase.

For the optimal distributions as well as the shear and normal stresses, the simple

waveforms always produce a better value than any of the Fourier-parameterized

waveforms. Finally, to evaluate the scalings with aspect ratio we only optimized

over the simple waveform, at 100 aspect ratios logarithmically spaced from 1 to

100.

To evaluate distributions and stresses for a particular waveform, we evaluated

the coefficients A2, δ2, A4, δ4 from equation 4.10 numerically and used those coef-

ficients to reconstruct D(κ) and a numerically-normalized f(κ). Empirically it is

necessary to use a somewhat high number of quadrature points (900 for p = 5.0

and up to 12000 for the p = 100.0 values shown in the scaling plots), as the

waveforms discussed in this paper are somewhat pathological and not analytic,

and a simple trapezoidal rule is therefore not exponentially convergent [112]. For

the tent and spike waveforms, we choose the quadrature points to be only where

the waveform is varying, while for the Fourier waveforms we used equally-spaced

quadrature points.

4.7 Discussion & Future Work

In chapter 4 I have necessarily focused on optimizing only a select few properties

of a suspension under oscillatory shear. As mentioned briefly in the text, many

properties related to particle alignment and suspension rheology will be optimized

by waveforms similar to those shown there (e.g. the waveform that maximizes

particle alignment is also the waveform that minimizes particle alignment along one

direction). Some additional simple properties are optimized by trivial waveforms –
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for instance, minimizing the global alignment or minimizing an orientational order

parameter such as S2 can be done by simply not shearing. However, there are

some interesting additional properties that can be extremized easily, which I have

not put in the main text for space and for unity of theme.

4.7.1 Maximizing Normal Stress : Shear stress signals

In the text, I optimized shear and normal stress viscosities essentially because they

are simple to understand and are a good heuristic for more physically reasonable

stress signals. One reason I avoided optimizing stress signals is that empirically

they either tend to depend on the details of the optimized metric, or they tend

to result in trivial waveforms. For example, zero-amplitude shear minimizes dissi-

pation over a cycle; infinite amplitude shear maximizes dissipation. Interestingly,

maximizing the normal stress signal also results in an infinite-amplitude waveform,

despite the lack of normal stresses in continuous shear. However it is difficult to tell

if this is real or a numerical or parameterization artifact (for instance, frequency-

doubling will double the stress signal without changing the distributions). Despite

these complexities, in reality we almost always actually care only about the stress,

so it is enlightening to examine the maximal stress.

One of the cleanest examples is maximizing the ratio of the normal stress signal

to the shear stress signal. In general, N1 will be easy to measure not so much when

it is large but when it is large compared to other stresses in the suspension. To

explore a waveform that would make it easy to measure N1, I searched for a

waveform that maximized the ratio of the L2 norm of N1 to the L2 norm of the

shear stress:
√∫ 2π

0
N2

1 (t) dt/
√∫ 2π

0
σ2
xy(t) dt. These results are shown in figure 4.6,

as fit with a parameterization of 20 Fourier coefficients (i.e. up to cos(10t)).
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Figure 4.6: (a) The strain waveform that maximizes the ratio of the L2 norm of the
normal stress to the L2 norm of the shear stress. (b) Top panel: The f(κ) produced
by the waveform. Bottom panel: sin(4φ(κ + ūΓ)) (yellow), which determines the
normal stress, and cos(4φ(κ+ūΓ)) (magenta), which determines the shear stress, at
two separate times in the cycle: the minimal strain (solid curves) and the maximal
strain (dashed curves). (c) The instantaneous viscosity throughout the cycle, for
both the normal stress (yellow) and shear stress (magenta). (d) The instantaneous
stress throughout the cycle, for both the normal stress (yellow) and shear stress
(magenta). Both the normal stress and the shear stress have two blips near the
peak of the strain signal, where most of the shearing occurs.
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Surprisingly, the waveform is comparatively simple – a sharp peak in the strain

that gradually decays down to zero, like an isolated mountain with distributed

foothills. This waveform is robust – fitting 100 different initial conditions at the

same aspect ratio results in ≈ 70 of them converging to this waveform modulo

phase shifts and inversions. Likewise, the same structure is present for aspect

ratios of p = 2.83, 5.0, and 10.0. This waveform is also not a delta function or

a spike – it is possible to get a much sharper spike with the amount of Fourier

coefficients used, and a much sharper spike is achieved by the Fourier optimization

of the maximal alignment waveforms. However, since the optimized parameters

depend on both the strain and the strain rate, understanding why this waveform

is optimal is not as simple as the ones in the main chapter text. For instance, by

looking at the viscosity alone this waveform does not seem to be promising – there

is only a small blip in the N1 viscosity (“large” but negative for this waveform),

and a small decrease in the shear viscosity. Since these two blips align with the

region where the shear rate is highest, the relative signal is maximized. As a result,

for this aspect ratio the L2 norm of the normal stress is ≈ 18% of the L2 norm of

the shear stress – small, but large compared to most waveforms and even compared

to non-hydrodynamic normal stresses.

4.7.2 Extremizing Dynamics

While in chapter 4 I only discussed the long-time behavior of the particle orien-

tations, the results in ref. [89] and chapter 3 provide an analytical solution to the

orientation transients as well. As I show in chapter 3, the phase-angle distribu-

tion f(κ) relaxes to its steady-state value by decaying with a spectrum of time

scales Deffm
2, for m an integer and Deff a dresssed diffusive timescale that depends
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on the oscillatory cycle through D(κ). Each of these eigenvalues is associated

with an eigenfunction which is exp(imz(κ)), where z(κ) is an allowable coordinate

transformation defined through D(κ). As a result, the dynamics are completely

determined by two quantities: the scalar Deff and the function z(κ).

The simplest thing to optimize about the dynamics is Deff. We could look for a

waveform that either maximizes or minimizes Deff, and we might expect that these

waveforms have interesting properties. However, it so happens that both of these

optimal waveforms are trivial. The waveform that minimizes Deff is zero-amplitude

shear, and the waveform that maximizes Deff is continuous shear or equivalently

triangle-wave shear [89] with amplitude Γ = nπ(p + 1/p), for n an integer. This

result is somewhat easy to understand from equation 4.10 and equation 3.36, which

can be recast to state:

Deff/D =

(
2π/

∫ 2π

0

(D(κ)/D)−1/2 dκ

)2

(4.14)

Maximizing Deff thus corresponds to minimizing the average of 1/
√
D(κ). As

visible from equation 4.10, the waveform affects the variations in D(κ) but not its

mean value. Increasing these variations will make D(κ) become closer to zero at

certain values of κ, which will increase the average value of 1/
√
D(κ). Thus, the

maximal value ofDeff should correspond to a constant D(κ), which is precisely what

continuous shear creates. Conversely, the minimal value of Deff should correspond

to the maximally-varying D(κ), with both A2 = 1 and A4 = 1, which is precisely

what zero-amplitude shear creates. Optimizing over a Fourier parameterization of

a waveform produces results that converge to these two limits.
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4.7.3 Maximizing ρ(φ) via f(κ)

In the text, we sought to directly maximize ρ through one oscillatory shear wave-

form. We saw that ρ(φ) varies with time, but is always proportional to ū/u×f(κ),

where ū/u is a function that is independent of the details of the waveform and

that translates with strain, and where f(κ) is determined by averages of the strain

waveform. We saw that, to maximize ρ(φ), the optimal strategy was to create a

strong peak in f(κ) and then align peaks in ū/u with that peak in f(κ).

This strategy suggests another approach – rather than maximize ρ(φ) directly,

we could search for a waveform that instead maximizes f(κ). Then, at the precise

moment when alignment is desired, we could align ū/u with this f(κ), maximizing

alignment. However, this strategy does not improve on the maximal ρ(φ). As

alluded to briefly in the text, the waveform that maximizes f(κ) is zero-amplitude

shear. Furthermore, sufficiently rapid spikes – like the one that occurs in the opti-

mal waveform – do not influence f(κ), so this indirect strategy can be implemented

via oscillatory shear alone. This approach is really what the waveform in chap-

ter 4 achieves – it maximes f(κ) by zero-amplitude shear, then aligns f(κ) with a

peak in ū/u only when alignment is desired. The periodicity of this spike does not

affect f(κ) if it is sufficiently fast. However, this does suggest an alternative and

equivalent way of maximizing alignmnet – do nothing, let ρ(φ) relax to isotropy,

then rapidly strain by 1/4 of a Jeffery orbit to align the particles.

4.7.4 Wobbly Continuous Shear

The averaged equations derived in ref. [89] rely on periodicity in the rotational

velocity experienced by this particle. Without this periodicity there would not be
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an average equation, but it does not matter where this periodicity comes from –

whether the periodic rotation of the Jeffery orbit or the periodic forcing of the

flow. In chapter 3 I explored these two possibilities for the origins of periodicity.

There is a third option for creating periodicity in the particle’s velocity field.

Rather than having only a continuous shear and periodic orbits or only a periodic

shear and orbits that return to their initial starting position, it is possible to

combine these two. In the language of chapter 4 this corresponds to having Γ(t)

not be strictly periodic but having Γ(t = 2π) = π(p+ 1/p)n, where n is an integer.

In other words, the strain waveform does not have to be strictly periodic but it can

wind the particles around the sphere, as long as the particles wind by an integer

number of half-Jeffery orbits during each period (it is half a Jeffery orbit because

the rotational velocity is n → −n symmetric). Carrying through the derivation

in ref. [89] results in the exact same equations as for oscillatory shear, including

the simple description of D(κ) in terms of A2, δ2, A4, δ4 in equation 4.10, but

with the new, winding Γ(t). For a fixed winding number, the space of waveforms

is equal to the space of periodic waveforms – transform any periodic waveform

Γ(t)→ Γ(t) +n(p+ 1/p)/2× t. The winding number n corresponds to the number

of times that the strain winds around the unit disk in the complex plane for δ2 in

equation 4.10. Again, for simple waveforms D(κ) can be calculated analytically –

Ak = Jn(kΓ0/(p+1/p)) for Γ(t) = Γ0 sin(t)+n(p+1/p)/2×t – but in general results

are not calculable analytically. Wobbles that are a rational fraction of a Jeffery

orbit period are easily included in this framework – if the period of the wobble is

p/q Jeffery orbits, then after every q Jeffery orbits the wobble has repeated itself p

times, so the p-repeated wobble winds around the disk correctly. While irrational

periods are not included, the obvious argument of rational approximants suggests

that they behave similarily.
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Naively, one might think that allowing for wobbly continuous shear allows for

a wider range of optimizable values than just for oscillatory shear. However, this

is not the case. Since the coefficients A2 etc. that determine D(κ) are insensitive

to rapid changes in strain, a winding waveform Γw(t) that produces a given D(κ)

can be imitated by an oscillatory waveform Γo(t) that tracks Γw(t) exactly right

until t = 2π − ε, then rapidly reverses the shear to instantly return to the origin.

Conversely, any oscillatory shear D(κ) can be imitated by a winding waveform

that tracks the oscillatory Γo(t), then immediately spikes at t = 2π− ε to complete

one winding.

However, there are optimizable properties that are unique to wobbly continuous

shear. One such property is dissipation under continuous shear. One might try

to wobble the shear, modifying the rod distribution and hence the suspension

rheology, thereby decreasing the net dissipation throughout the cycle. While the

actual dissipation depends on the particle volume fraction as well as on aspect

ratio and details of the waveform, we could try to minimize just the dissipation

produced by the particles. However, numerically exploring this shows that the

waveform which minimizes particle-induced dissipation is simply continuous shear;

the constant contribution to the suspension viscosity through BH and CH and its

penalization of increases in the strain rate outweighs any change in the viscosity

due to modifying the waveform.

129



CHAPTER 5

LIGHT MICROSCOPY AT MAXIMAL PRECISION

Microscopes provide an extraordinary vista into the dance of defects in atomically

thin silica, the mesmerizing self-organization of active colloids into crystals, the

intricate separation of chromosomes during mitosis. Tremendous effort has been

put into improving both microscope design and imaging techniques over the past

few decades, resulting in an enormous increase in image quality and resolution.

Here, we show that a similarly large improvement can be achieved in the analysis

of microscopy images. We demonstrate our approach on an image of colloidal par-

ticles, improving the measurement of object positions and radii in a microscope

image by up to a factor of 100 over current methods. We measure object properties

by fitting experimental images to a detailed model of the physics of image forma-

tion, a method we call Parameter Extraction from Reconstructing Images (PERI).

This unprecedented resolution immediately opens a new window into colloidal sci-

ence, which we illustrate by measuring interparticle potentials at the nanometer

scale. Importantly, the ideas behind our technique can be readily applied to other

imaging modalities such as brightfield microscopy or even STEM and STM.
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Microscope technology has progressed to near perfection. Crisp images

speak of precisely engineered microscope components – large-aperture and nearly

aberration-free lenses, high-frame-rate and low noise cameras, powerful and uni-

form light sources. Nanometer-scale details boast of super-resolution techniques

thought impossible mere decades ago – PALM [14], STORM [123], STED [65].

The continued development of more powerful techniques – SIM [84], Lattice-light

sheet microscopy [28] – reassures that resolution will continue to improve.

However, our ability to extract quantitative information from microscopy im-

ages has not kept pace. Current methods rely on heuristic approaches, such as

blob and centroid methods, for identifying feature locations and even for analyz-

ing super-resolution images [121, 107, 59, 6, 133, 4]. While these methods rapidly

provide information about structure in microscopy images, their simple nature

necessarily ignores confounding physical attributes of image formation, such as

illumination and point-spread functions that vary with location. As a result, sys-

tematic errors and inefficient estimates plague these techniques for all but the

simplest images.

In this paper, we increase the precision of features extracted from standard

confocal microscopy images by up to a factor of 100, without modifying the micro-

scope or the image acquisition. Our method, dubbed parameter extraction from

reconstructing images (PERI), creates a detailed model of the image that incor-

porates all the physics of image formation and fits the parameters in that model

to find their correct values. In principle, this method measures parameters at the

information-theoretic limit, determined by noise in the image. In practice, system-

atic errors arising from incomplete knowledge of the image formation eventually

cut off the continued improvement of precision with decreasing noise. We illustrate
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this approach using confocal images of dense suspensions of colloidal spheres. We

measure each particle’s position to within 2 nm and each particle’s radius to within

3 nm – limited only by the incomplete description in the literature of the micro-

scope’s optics. Finally, we close by using this extreme precision to probe colloidal

interactions at an unprecedented scale for simple microscopy.

How precisely can an object be located in an image? The fundamental limi-

tation in locating an object arises from statistical noise in the image formation,

not directly from diffraction or optical limitations [116]. This limit is determined

through the interplay of the image signal and noise, as described by the Cramer-

Rao Bound. Specifically, the Cramer-Rao Bound states that the covariance matrix

of the estimated parameters is always larger than the inverse of the Fisher informa-

tion matrix of the noise distribution [117]. For an image with Gaussian white noise

of variance σ2, sampled at points ~xk, the minimum uncertainty in the parameters

~θ measured from the image is

cov θij ≥ σ2

(∑
k

∂I(~xk)

∂θi

∂I(~xk)

∂θj

)−1

, (5.1)

where I(~x) is the image that would be measured in the absence of noise. We can

use this equation to estimate the minimum uncertainty in measuring a colloidal

particle’s radius and position. For a particle of radius R blurred by diffraction

over a width w, the derivatives with respect to particle radius in equation (5.1)

are only nonzero on a shell at the particle’s edge of approximately 4πR2w voxels.

At the particle’s edge, the intensity changes from a characteristic brightness ≈

I to ≈ 0 over a width ≈w, and the derivatives are thus of magnitude ≈ I/w.

Substituting these values gives a minimum uncertainty in a particle’s radius as

σR ∼
√
w/4πR2/SNR, where SNR = I/σ is the signal-to-noise ratio. Likewise,

changing the particle’s position only affects the edge voxels in the direction of
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Figure 5.1: PERI overview – A demonstration of model information recovered
from real confocal microscope images of 〈a〉 = 1.343(8) µm colloidal spheres at
a volume fraction of φ = 0.130(5). On the top row, we compare (left) the true
microscope image including CCD noise (middle) the reconstructed model image
(right) the difference between the true image and model image. Notice that most
of the structure in the difference image is uncorrelated white noise. In the lower
left panels, we show reconstructed global parameters of the image along two dif-
ferent slices of the 3D confocal image, perpendicular to the scanning direction and
including the scanning direction. We show the platonic (perfect) spheres as well as
the coverslip (top), the spatially varying illumination field produced by the confo-
cal scanning laser (middle), and the fitted point spread function of the microscope
(bottom). Finally, in bottom right we show a histogram of x-y positions sampled
from a single particle displaying a variance of 2 nm in each coordinate.
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the particle’s motion. The positional derivatives will thus be of magnitude ≈I/w

only on a shell of ≈πR2w voxels, giving the minimal uncertainty in the particle’s

position as σx ∼
√
w/πR2/SNR. For a colloidal particle of diameter 1 µm, imaged

with a confocal microscope with voxel size of 100 nm and diffractive blur of w ≈

200 nm at an SNR = 25, these uncertainties correspond to σR ≈ 1.5 nm and

σx≈3 nm, a fantastically high precision.

Actually achieving this localization without serious systematic errors requires a

detailed knowledge of the image formation process. To incorporate this knowledge,

we create a generative model of the microscope image based on the physics of the

light interacting with the sample and with the microscope’s optical train. We then

fit every parameter in the model by comparing the image produced by the model

to the experimental image. Our model describes the physics of image formation in

the order that it occurs: (1) fluorescent dye is distributed unevenly throughout the

sample, (2) the dyed sample is illuminated unevenly by the laser, (3) the resultant

image is blurred due to diffraction, and (4) the final image is noisy.

Dye Distribution: To reconstruct the image, we start with the continuous

distribution of the fluorescent dye in the sample. For the image in figure 5.1, the

dye is distributed everywhere except in a slab, representing the glass cover-slip

slide, and in a collection of spherical lacunae, representing the colloidal particles.

To represent this continuous dye distribution on a pixelated grid, we draw these

objects in real-space using a function that is tuned to match the exact Fourier

representation of a sphere (see SI for an extensive discussion of this and the rest

of the generative model). We call this correctly-aliased representation on a finite

grid the Platonic image. While we focus on featuring only spheres in this work,

PERI is flexible enough to include any parameterizable object in the generative
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model, such as ellipsoidal [79, 102], rodlike [85], or polyhedral [60] particles.

Illumination field and background: This distribution of dye is illuminated

by a scanned laser. Due to imperfections and dirt in the optics, the illumination is

not uniform but instead varies in space. For instance, our line-scanning confocal’s

illumination field is highly striped, as any imperfections in the line illumination are

dragged across the field of view. We describe this spatially-varying illumination

as a continuous field that varies throughout the image. Empirically, we find that

combining a Barnes interpolant along the scan direction and Legendre polynomi-

als in the perpendicular directions accurately describes both the rapidly-varying

stripes and the slowly-varying changes in the illumination of our line-scan confo-

cal. Additionally, the microscope always registers a non-zero background signal,

which we include in our model. We parameterize this background similarly to the

illumination field.

Point spread function: Diffraction prevents the illuminated dye from be-

ing imaged exactly onto the detector. Instead, each dye molecule in the sample

projects a comparatively large blur, known as the point-spread function (PSF),

onto the imaging camera. As a result, the image captured on the camera is a

convolution of the illuminated Platonic image with the PSF, and not simply the

illuminated dye itself. While complicated, this PSF has been calculated exactly

by many researchers for different geometries [63, 155, 158, 103, 34, 40, 156, 18].

For microscope samples with a refractive index different from what the optical

train is designed for, the PSF worsens with depth, becoming significantly broader

and more aberrated. We use an adaptation of these exact PSF calculations for a

line-scanning confocal as our PSF model, optimizing over parameters such as the

numerical aperture of the lens and the index mismatch of the sample to the optics.
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Putting these three processes together, our model image M sampled at pixels

~x is described by

M(~x) = B(~x) +

∫
d3~x′ [I(~x′)(1− (1− c)Π(~x′))]P (~x− ~x′; ~x) (5.2)

where I is the illumination field, B is the background, Π is the platonic image, and

P is the PSF; we include a constant offset c to partially capture rapidly-varying

variations in the background.

Noise: Finally, noise degrades the image recorded on the camera. We treat

the noise using a Bayesian framework, and look for the maximum-likelihood model

given the microscope data, complete with possible priors on parameter values.

Since the noise is empirically Gaussian (see SI), the most likely model is the least-

squares fit of the model to the microscope image.

As a result, we least-squares fit every parameter in our generative model to

find the correct particle positions, radii, illumination field, and point-spread func-

tion. A typical confocal image contains a few times 103 particles, each with 4 fit

parameters (x, y, z, R). In addition, there are a few hundred global parameters

to optimize, such as the illumination and PSF parameters and the lens’s z-step

size along the optical axis, resulting in ≈104 parameters per image – a daunting

optimization problem. We begin with an initial guess for the Platonic image using

standard particle locating techniques [36], and we simultaneously fit the particle

positions and the global variables using a Levenberg-Marquardt algorithm mod-

ified for large parameter spaces [99, 147, 148, 149]. From here, we ensure that

we have correctly identified every particle in the image by automatically adding

and subtracting particles based on the the difference between the model and the

microscope image. After finding the best-fit parameters, we sample from the log-

likelihood using standard Monte Carlo techniques [104] to estimate the errors in
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the image reconstruction. (See SI for a detailed description of the fitting method

and numerical optimizations.) It is important to note that this fit is over all the

pixels in the image – to get a meaningful extraction of parameters, every pixel must

be described accurately. Imperfectly fit regions – due to e.g. deformed particles or

PSF leakage from objects outside the image – can bias the extracted positions of

particles in the region and even affect the entire image reconstruction through the

influence on image-scale variables.

Using PERI to measure positions with nanometer accuracy requires rigorous

checks on our method, with both generated and experimental data. We gener-

ate images with a detailed physical model, employing an exact, spatially-varying

point-spread function [63], experimentally-measured spatially-varying illumina-

tion, dense collections of particles with varying radii, and a realistic amount of

noise. PERI successfully fits these generated data, converging to the global fit

minimum in the extremely large dimensional parameter space despite a host of

possible numerical complications. From this fit, PERI extracts both the particle

positions and radii at the Cramer-Rao bound (≈2 nm and ≈1 nm, respectively). In

contrast, current heuristic-based algorithms cannot measure the particle positions

to better than 60 nm on realistically generated datasets. (See SI for a detailed

comparison of PERI to other featuring algorithms.)

Emboldened by this success, we next test PERI on real experimental data.

We take fast, three-dimensional movies of a suspension of ≈1.3 µm silica spheres

suspended in a glycerol and water mixture (see SI) and feature these images us-

ing PERI. By analyzing each frame in the movie independently, we can extract

systematic errors from PERI’s featuring.
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Figure 5.2: Fitting the generative model to experimental data – We ex-
perimentally verify our featuring algorithm by looking at the residuals in real and
Fourier domains as well as comparing the radii of tracked particles between two
different frames of a movie. (A) We plot three cross sections of the real space resid-
uals showing nearly Gaussian white noise. The ‘shadows’ of spheres can be seen
due to complications of the PSF. However, the probability distribution of all resid-
uals (lower right) is very nearly Gaussian as shown as a quadratic on a logarithmic
scale. (B) The Fourier power spectrum of the same residuals displayed along qx,
qy, or qz = 0. In all panels, excess power is visible at scales larger than the particles
themselves but smaller than the features given by the ILM. These residuals are
associated with the approximations we have made in the point spread function,
particularly the difficulty in calculating the long tails of the PSF and the cutoff we
employ to speed up numerical computations. The q-space histogram is also very
nearly Gaussian with slight deviation from quadratic in the tails. (C) We plot the
difference in radii across frames (red) as compared to the difference that we esti-
mate using the radii CRB (green). The difference in peak high is proportional to
the distance our experimental measurements are from the theoretic limit, roughly
3× larger.

First, we analyze the residuals of our fits to the experimental data. Fig-

ure 5.2(a,b) shows these residuals in both real- and Fourier-space. If our fit to

the experimental image were perfect, the residuals would be perfectly Gaussian.

Instead, while the overall probability distribution is nearly Gaussian in both do-

mains, in Fourier-space there are distinct wave vectors above the noise floor. Com-

prising roughly 10−5 of the power in the experimental image, the extremely small

size of this remaining signal demonstrates the quality of our generative model. The

deviations of our model from the experimental data occur at length scales slightly
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larger than the particle diameter but smaller than typical illumination variations.

These unexplained residuals most likely arise from approximations in models of

line-scanning point spread function, excess aberrations in the microscope, and the

artificially finite but large size we use in our PSF calculation to speed up optimiza-

tion. Additionally, sharp peaks at high wave-vectors can be seen in one slice of

the Fourier-space residuals, which arise from noise in the scanning of the lens and

line illumination. The remaining question is how much these residuals affect the

parameters of interest, the particle positions and radii.

We can use the extracted particle positions and radii to test the accuracy of

PERI. Physically, the particle radii do not fluctuate in time and particles can-

not overlap. Measuring any particle overlaps within a frame and individual radii

fluctuations over time provides a model-independent measurement of errors in the

particle positions and radii. In Fig. 5.2(c), we see a radius variation of 3 nm be-

tween consecutive images in the movie, corresponding to an error that is roughly

3× the minimal error from the Cramer-Rao Bound. Additionally, in the samples in

Fig. 5.1 and Fig. 5.2, we find an overlap only every few frames, which is consistent

with the measured radii uncertainty. Combined, these measurements demonstrate

that we are able to measure particle positions and radii to within 3 nm.

This extraordinary accuracy in locating object positions provides a method to

measure interparticle interactions on an unprecedented scale for light microscopy.

When silica particles are suspended in an aqueous solution, the particles charge,

as the polar solvent dissociates ions on the particles’ surface groups. This charge

results in an electrostatic repulsion, which is in turn screened by counterions in

the bulk. For a typical suspension, this screening length can be as short as 10 nm.

In addition, dispersion forces create a slight attraction between the particles. The
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combination of these two interactions, known as the DLVO potential, creates an

interparticle potential that deviates from a hard-sphere potential only at nanome-

ter separations. This potential ever so slightly biases the distribution of particle

positions away from that expected for a hard sphere suspension.

We measure these nanometer-scale interactions using PERI by taking a large

set of 600 images of 1.3 µm silica spheres suspended in a water-glycerol mixture.

To prevent kinetic effects from confounding our measurements, we allow the sample

to fully sediment for an hour. This produces the open layer of sediment approx-

imately 2-3 particle layers deep that is shown in figure 5.3a. We then image this

suspension repeatedly over the course of several hours, extracting simulation-level

detail of ≈1200 particle positions and radii in each of the 1000 images. The particle

interactions determine the structure of the suspension. We quantify this structure

with the probability Ps(δ) of finding a pair of particles with surface-to-surface

separation δ, accounting for radii polydispersity and sedimentation in a manner

preferable to the usual pair-correlation function. To reconstruct the interparticle

potential, we use the extracted particle radii and particle number from the data

and we simulate the particle dynamics using Brownian dynamics, incorporating

gravitational settling, interparticle van der Waals attraction, and interparticle De-

bye repulsion [122]. We then fit these parameters by simulating, reconstructing

Ps(δ) from the simulation at each set of potential parameter values, and fitting

these parameters to find the best Ps(δ) that matches experiment.

Figure 5.3b shows the experimental and best-fit simulation Ps(δ). The experi-

mental Ps(δ) has some slight extra particle overlaps due to mis-featuring of particle

positions and radii. Both the simulation and experimental Ps(δ) show a rapid but

not instantaneous rise near contact, followed by a slow increase with oscillations.
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Figure 5.3: Extracting Interparticle Potentials (A) The dilute image of par-
ticles we use to extract interaction potentials. (B) The experimentally-measured
distribution of particle separations Ps(δ) (red) and the best-fit simulation Ps(δ)
(green, upper portion). While the best fit agrees excellently with experiment, the
Ps(δ) for perfect hard spheres (green, lower portion) does not agree with experi-
ment. (C) The best-fit interaction potential as a function of particle separation δ.
Note the clear resolution of the screening length between 0 and ≈0.05 µm.
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At long distances, the probability grows due to the increased volume where parti-

cles can be located; this growth is approximately linear and not quadratic because

particle settling restricts particles to a quasi-two-dimensional region. From the

excellent agreement of the simulation Ps(δ) with experiment, we can reconstruct

the interparticle potential shown in panel c. Surprisingly, we find an extremely

short 15 nm Debye screening length, in contrast to what is naively expected from

the amount of salt from the added dye. This short screening probably arises due

to salt impurities on the particle surfaces, in the fluorescent dye, and possibly in

the deionized water. We also find a nonzero but extremely weak van der Waals

interaction – 0.001 kT as opposed to the ≈ 1 kT Hamaker constant for silica par-

ticles in water. The weak attraction probably results from a combination of the

index-matching of the spheres to the suspending fluid and retarded van der Waals

interactions. These parameters reproduce the nearly hard-sphere potential shown

in panel c. Our experimental data firmly constrains the possible potentials felt by

the particles, strongly excluding both hard-sphere interactions and DLVO theory

with naive van der Waals and electrostatic parameters, as shown by the disagree-

ment between these simulated pair correlation functions and the experimental one

in figure 5.3a. Importantly, both the hard-sphere potentials and the naive DLVO

potentials are excluded by the values of Ps(δ) near contact. Without an accurate

featuring method such as PERI, it is impossible to discern the potential at this

accuracy.

Our technique and the ideas within it provide more than just a description of

colloidal interactions. A nanometer accuracy in locating colloidal particle posi-

tions would revolutionize fields as diverse as the study of glassy systems to the

measurement of biological forces in force-traction microscopy. Moreover, the prin-

ciple of accurately reconstructing an image to extract parameters is applicable to
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a wide range of fields. PERI could be easily extended to brightfield microscopy by

implementing an accurate description of image formation in a brightfield micro-

scope, which would greatly increase the applicability of PERI. Further applying

these ideas to imaging modalities such as STEM or STM will usher in a new era of

precision measurements, for objects whose sizes range from microns to angstroms.
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CHAPTER 6

LIGHT MICROSCOPY AT MAXIMAL PRECISION:

SUPPLEMENTARY INFORMATION AND DETAILS

6.1 Overview

In this supplemental material we describe the details of our method for extracting

parameters from experimental confocal images at the highest resolution possible

without modifying the microscope itself. To achieve maximal resolution, we build a

generative model which aims to describe the value of every pixel in the experimental

image. That is, we create simulated images by explicitly modeling every relevant

aspect of image formation including particle positions and sizes, the location of

dirt in the optics, amount of spherical aberration in the lens, and the functional

form of the point spread function. We describe each of these model components

in detail in Section 6.3 and how we decided on these particular components in

Section 6.4. In order to fit this model to the experiment, we adjust all model

parameters until the features present in the true experimental image are duplicated

in the simulated one. We decide when the fit is complete and create a fair sample

of the underlying parameters by using a traditional Bayesian framework which

is described in general terms in Section 6.2. This high dimensional optimization

is in general very difficult and so we describe our algorithmic improvements and

particular techniques in Section 6.5. Finally, we assess the accuracy of this method

in extracting underlying parameters and compare its performance with traditional

featuring methods in Section 6.6.

Overall, this document is meant to provide a roadmap for other researchers

to follow when adapting this technique to other types of microscopy and other
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types of samples in order to extract the maximal amount of information from their

experimental images.

6.2 Bayesian framework

When fitting a model to noisy data, it is useful to adopt a Bayesian framework

in which we rigorously treat the noise as part of our model. In the case of our

featuring method, we fit a model of each image pixel Mi to experimental data di,

which can be described as a combination of signal and noise di = Si+ηi. This noise

is present due to the detection of a finite number of photons by the microscope

sensor, noise in the electronics, etc. and can be well described for our system by

uncorrelated 〈ηiηj〉 = 2σ2δij, Gaussian noise ηi ∼ N (0, σ) (see Section 6.3).

In a Bayesian framework, the likelihood that an individual pixel is correctly

described by our model is given by the Gaussian likelihood,

L(Mi | di) =
1√

2πσ2
i

e−(Mi−di)/(2σ2
i ) (6.1)

For uncorrelated pixel noise, the entire likelihood of the model given the image is

given by the product over all pixels, L( ~M | ~d) =
∏

i L(Mi | di). We are ultimately

interested in the probability of the underlying parameters given the image we

record. According to Bayes’ theorem, we can write this as

P (~θ | ~d) ∝ P (~d | ~θ)P (~θ)

∝ L( ~M(~θ) | ~d)P (~θ)

where P (~θ) are priors that allow us to incorporate extra information about the

parameters ~θ. These priors can be as simple as the fact that the particle radius

is positive definite or that a group of images share similar PSFs. For example, an
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overlap prior Poverlap(~xi, ~xj, ai, aj) = H(ai+aj−|~xi−~xj|), where H is the Heaviside

step function, can be used to impose the physical constraint that particles cannot

overlap. However, we found that the overlap prior only becomes relevant when the

free volume of a particle is small compared to the average sampling error volume

(when a particle is caged by ∼ 1 nm on all sides) and so we ignore it most of the

time.

We primarily work with the log-likelihood function logL because the number

of pixels in the image can be very large, on the order 107. For Gaussian noise,

the log-likelihood is precisely the square of the L2 norm between the model and

the data. Therefore, we are able to maximize this log-likelihood using a variety

of standard routines including linear least squares and a variety of Monte-Carlo

sampling techniques. After optimizing, we use Monte-Carlo algorithms to sample

from the posterior probability distribution to extract full distributions of the model

parameters. In this way, any quantity of interest that is a function of particle

distribution can be calculated using Monte-Carlo integration by

〈O(~θ)〉 =

∫
O(~θ)P (~θ | ~d) d~θ

=
1

N

N∑
i

O(~θi)

Here, ~θi is a parameter vector sampled fairly from the posterior probability dis-

tribution and O(~θi) is an observable such as the pair correlation function, packing

fraction, or mean squared displacement. Calculating higher-order moments pro-

vides estimated errors and error correlations on these observables. This is one of

the more powerful aspects of this method – one can generate a probability distri-

bution for each parameter and directly apply these distributions to any observable

that can be inferred from the parameters.
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Given this Bayesian framework, the main idea of this work is to create a full

generative model for confocal images of spherical particles and provide algorithmic

insights in order to implement the model on commodity computer hardware.

6.3 Generative model

Most of the difficulty in our method lies in creating a generative model that ac-

curately reproduces each pixel in an experimental image using the fewest number

of parameters possible. Our model is a physical description of how light interacts

with both the sample and the microscope optics to create the distribution of light

intensity that is measured by the microscope sensor and rendered as an image on

the computer. In this section, we describe the model which we use to generate

images similar to those acquired by line-scanning confocal microscopy of spherical

particles suspended in a fluorescent fluid.

Our generative model aims to be an accurate physical description of the mi-

croscope imaging; it is not a heuristic. Creating this model requires a detailed

understanding of image formation of colloidal spheres in a confocal microscope.

In the simplest view, our samples consist of a continuous distribution of dye dis-

tributed throughout the image. If the fluid is dyed (as for the images in this work),

due to diffusion the dye is uniformly distributed through the fluid. The fluid-free

regions, such as those occupied by the particles, are perfectly dye-free. The sample

is illuminated with a laser focused through an objective lens. This focused laser

excites the fluorescent dye only in the immediate vicinity of the lens’s focus. An

objective lens captures the dye’s emitted light, focusing it through a pinhole to

further reject out-of-focus light. The collected light passes through a long-pass
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or band-pass filter, which eliminates spurious reflected laser light before collec-

tion by a detector. This process produces an image of the sample at the focal

point of the lens. Finally, rastering this focal region over the sample produces a

three-dimensional image of the sample.

However, the actual image formation is more complex than the simple view out-

lined above. Excessive laser illumination can cause the dye to photobleach. Due

to dirt and disorder in the optical train, the sample is not illuminated uniformly.

Diffraction prevents the laser light from being focused to a perfect point and pre-

vents the objective lens and pinhole from collecting light from a single point in the

sample. Aberrations are present if the sample’s refractive index is not matched

to the design of the objective lens, broadening the diffractive blur deeper into the

sample. Both the illuminating and fluorescing light can scatter off refractive index

heterogeneities in the sample due to the particles.

Some of these complications can be eliminated by careful sample preparation.

In practice, we eliminate photobleaching by using an excessive amount of dye in

our samples and illuminating with a weak laser light. We eliminate scattering by

matching the refractive index of the particles to the suspending fluid – it is fairly

easy to match the refractive indices to a few parts in 103. Since the scattering is

quadratic in the index mismatch, the effect of turbidity due to multiple-scattering

is very weak in our samples. However, the rest of these complications must be

accurately described by the generative model.

Based on this physical setup, we can describe the confocal images through three

main generative model components:

• Platonic image Π(~x) – the physical shape of the dye distribution in the
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sample (unmodified by perception of light).

• Illumination field I(~x) – the light intensity as a function of position, includ-

ing both laser intensity variation from disorder in the optics and intensity

attenuation into the sample.

• Point spread function P (~x; ~x′) – the image of a point particle due to diffrac-

tion of light, including effects from index mismatch and finite pinhole diam-

eter.

plus three minor additional fit model components:

• Image Background c, B(~x) – the overall exposure of the image c and the

background values corresponding to a blank image without dye, B.

• Rastering Step Size zscale – the displacement distance of the lens as it rasters

along the optical axis.

• Sensor noise σ – the noise due to shot noise from finite light intensity reaching

the sensor or electronic noise at the sensor.

These components are combined to form the image through convolution

M(~x) = B(~x) +

∫
d3x′ [I(~x′)(1− Π(~x′)) + cΠ(~x′)]P (~x− ~x′; ~x) (6.2)

which is sampled at discrete pixel locations to give the final image Mi =M(~xi).

Here, we describe each part of our model in detail along with our explanations

and motivations behind any simplifications. In subsequent sections we will also

discuss other aspects of image formation which may result in other model choices

and why we omit them from the final form of the model.
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6.3.1 Platonic image

The Platonic image must accurately represent the continuous distribution of flu-

orescent dye in the sample on the finite, pixelated image domain. The colloidal

sample consists of a collection of spherical particles embedded in the solvent, with

either only the particles or only the solvent dyed. Our Platonic image should then

consist of the union of images of individual spherical particles, with their corre-

sponding radii and positions. Thus, if we have a method to accurately represent

one colloidal sphere, we can easily construct the Platonic image in our generative

model.

A näıve way to generate the Platonic image of one sphere would be simply

to sample the dye distributions at the different pixel locations, with each pixel

being either 0 (if it is outside the sphere) or 1 (if it is inside the sphere) with no

aliasing. This method will not work, since a pixel value in the Platonic image

can only change when a sphere’s position or radii has shifted by one pixel. This

method of Platonic image formation would produce a generative model that does

not adequately distinguish between particle locations separated by less than 1 pixel

or 100 nm! Simply multiplying the resolution and corresponding coarse-graining of

the boolean cut by a factor of N in each dimension increases the resolution of this

method to 1/N pixels. However, calculating these high resolution platonic spheres

is computationally expensive, requiring 109 operations to draw spheres capable of

determining positions within 0.01 px.

To find the correct representation of a Platonic sphere, we examine the mecha-

nism of image formation in Eq. 6.2. The final image results from a convolution of

the Platonic image with the point-spread function P (~x − ~x′; ~x). Thus, we need a

representation of a sphere that will produce the correct image after being convolved
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with the point-spread function. To do this, we recall that a convolution is a mul-

tiplication in Fourier space. However, creating the image of the sphere in Fourier

space is problematic since there will be undesirable ringing in the Platonic image

due to the truncation from the finite number of pixels (i.e. Gibbs phenomenon).

Moreover, each update of one particle requires updating all the pixels in the image,

which is exceedingly slow for large images.

Instead, we look for a functional form in real space that approximates the

numerically-exact truncated Fourier series, where the truncation arises due to a

finite number of pixels. For a sphere with radius a at position ~p, this truncated

Fourier series is given byΠ̃(~q; ~p, a) = 4πa3(j1(q)/q)ei~q·~p, where ~q is sampled only at

frequencies in the image. We can view the truncation operation as a multiplica-

tion in Fourier space by a boxcar H(1− |qx|)H(1− |qy|)H(1− |qz|), where ~q is the

variable inverse to position, measured in px−1. By the convolution theorem, this

truncation corresponds to a convolution in real space with sinc(x) sinc(y) sinc(z),

using the inverse Fourier transform of the boxcar as the sinc function. Thus,

the numerically exact image of a sphere would be the analytical convolution of

sinc(x) sinc(y) sinc(z) with a sphere of radius a at position p, represented on a

discrete grid. However, the convolution with the sinc function is analytically in-

tractable. To circumvent this, we approximate the sinc function by a Gaussian.

This gives a representation of the correctly-aliased Platonic image Π( ~x; a) of a

sphere of radius a as

Π(~x) = S(~x) ∗
[(

2πσ2
xσ

2
yσ

2
z

)−1/2
e−x

2/2σ2
xe−y

2/2σ2
ye−z

2/2σ2
z

]
(6.3)

where S(~x; ~p, a) = H(|~x−~p|−a) where H(x) is the Heaviside step function, which

is either 0 or 1 depending on whether |~x−~p| > a or < a, and ∗ denotes convolution.

The Gaussian widths σ should be approximately 1 px; however, if the ratio of the

z pixel size to the xy pixel size zscale 6= 1, then σz will not be the same as σx and
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σy.

While Eq. 6.3 does not generally admit a simple solution, there is a closed-

form functional form for the symmetric case σx = σy = σz. In the symmetric case

(zscale = 1) Eq. 6.3 takes the form

Π(~x) =
1

2

[
erf

(
a− r
σ
√

2

)
+ erf

(
a+ r

σ
√

2

)]
− 1√

2π

σ

r

[
e−(r−a)2/2σ2 − e−(r+a)2/2σ2

]
(6.4)

where r is the distance from the particle’s center. The first bracketed group of

terms corresponds to treating the sphere as a flat surface, and the second bracketed

group corresponds to the effects the sphere’s curvature on the integral. In each

sub-grouping, the first term that depends on r− a reflects the contribution due to

the particle’s nearer edge, and the second term that depends on r + a reflects the

contribution due to the particle’s farther edge. We then fit σ in Eq. 6.4 to best

match the exact Fourier space image of a sphere, giving a value σ ≈ 0.276.

Although Eq. 6.3 does not admit a simple solution for zscale 6= 1, we can use the

exact form for zscale = 1 to construct an approximate solution. Since both erf(x)

and e−x
2

approach their asymptotic values extremely rapidly, and since at the best

fit σ ≈ 0.276 (a + r)/σ � 1 for even moderately small radii, the terms erf((a +

r)/σ
√

2) ≈ 0.5 and exp(−(r+a)2/2σ2) ≈ 0 to an excellent accuracy. We then write

the position vector in terms of its direction x̂ and a vector ~δx as ~x ≡ ax̂+ ~δx, and

replace (a−r)/σ in Equation (6.4) by
√

(δx/σx)2 + (δy/σy)2 + (δz/σz)2. Note that

this approximation is exact in the limit of infinite sphere radii. Empirically, we find

that this approximation works quite well, giving differences in the Platonic image

of a few percent from a numerical solution to Eq. 6.3 as well as high resolution

boolean cut real-space spheres (see Fig. 6.1).

While this implementation of the Platonic image correctly captures most of
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the effects of finite-pixel size, there are still some minor details that need to be

fixed to give unbiased images. By construction, Eq. (6.4) conserves volume – its

integral over all space is 4/3πa3 since the Gaussian kernel is normalized. However,

when Π(~x) is sampled on a pixelated grid, its sum is not exactly 4/3πa3 but is

slightly different, depending on the position of the particle’s center relative to a

voxel’s center. The slight change in volume is important for two reasons. First, the

convolution with the PSF in our image generation (see next subsection) suppresses

high-frequency portions of the image, but it does not affect the ~q = ~0 component,

i.e. the image sum or the particle volume. Since we aim to create a Platonic

image that accurately represents the final image, we need the ~q = ~0 component

of the Platonic image to be correct. Secondly, as discussed in section 6.4 the real

microscope image is actually an integral over a finite pixel area. As such, the image

recorded on the detector preserves the particle’s volume or the ~q = ~0 component

of the image. To circumvent this issue of incorrect particle volume, instead of

drawing the particle at its actual radius we draw it with a slightly different radius

that preserves the particle’s volume, which we accomplish with an iterative scheme.

The results of this iterative scheme are shown in Fig. 6.1 along with the errors it

introduces. Incidentally, the effects of image pixelation on image moments higher

than 〈1〉, e.g. 〈~x〉 and its effects on the particle positions, are much smaller than

the noise floor in our data at a moderate SNR (see section 6.4).

The representation in equation 6.4 is the best method for forming Platonic

spheres on a pixelated grid that we have found. However, there are other, sim-

pler methods which work almost as well as the Platonic sphere. Aside from the

important curvature term, equation 6.4 is basically an erf() interpolation between

particle and void at the particle’s edge. Other interpolation schemes can provide

similar results. For instance, the spheres could be constructed by ignoring the
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Figure 6.1: Platonic sphere generation. A comparison of our approximate
platonic sphere generation method to a sphere created by performing a boolean
cut Π(~x) =

∫
pixel

d~x′H(|~x−~x′−~p|−a) on a lattice 100× higher in resolution in each
dimension compared to the final image. On the left we show the super resolution
sphere with fractional volume error δV/V = 10−6 and an inset displaying the
jagged edges caused by discrete jumps in distance. This is in contrast to the
iterative approximate platonic sphere with volume error δV/V = 10−16 drawn at
an effective radius with change δa/a = 2×10−4. The differences between individual
pixels along the center of the sphere (right panel) show a high frequency structure
with a maximal relative value 0.08. These high frequency features are dramatically
reduced later in the image formation process through the convolution with the
point spread function.

curvature term and replacing the erf with a logistic 1/(1+exp((r−a)/α)), a linear

interpolation between particle and void at the pixel edge, or a cubic interpola-

tion at the pixel edge. We have also implemented these methods for generating

Platonic images of spheres, fitting the parameters to match the exact Fourier rep-

resentation. For the logistic we fit α, for the linear interpolation we fit the slope,

and for the cubic we fit one parameter and constrain the other two such that the

Platonic image and its derivative are continuous. While all of these methods are

functional, they are not significantly faster than the exact Gaussian approximation

in equation 6.4 and result in slightly worse featuring errors (see table 6.1). As a

result, we use the exact Gaussian approximation, but include these other options

in our package for ease of use with more complicated shapes where the integral in

equation 6.3 might not be analytically tractable.
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The Platonic image needs to represent accurately all objects in the image,

not just the spheres. In particular, when the solvent is dyed, the image usually

contains a dark coverslip or its shadow from the point-spread function. We model

this dark coverslip as a slab occupying a half-space. The slab is characterized by

a z-position and by a unit normal n̂ denoting the perpendicular to the plane. To

capture accurately sub-pixel displacements of the slab, we use the image of a slab

convolved with a Gaussian as above for a sphere; for the slab this gives a simple

error (erf) function.

6.3.2 Illumination field

In order to illuminate the sample, confocal microscopes scan a laser over the field of

view using several distinct patterns including point, line, and disc scanning. This

illumination laser travels through the optics train and interacts with fluorescent

dye in the suspension causing it to emit light in a second wavelength which is then

detected. The intensity of this illumination pattern depends on the aberrations in

the optics as well as dirt in the optical train which creates systematic fluctuations in

illumination across the field of view. Accounting for these variations is important

as they can account for most of the intensity variation in an image. In the case of

our line scanning confocal microscope, these patterns manifest themselves as stripe

patterns perpendicular to the scan direction, as the line-scan drags dirt across the

field of view, overlaid on aberrations and optical misalignments which cause the

corners of the image to dim.

Confocal microscopes image by rastering in z, illuminating each xy plane sep-

arately. Ideally, the microscope illuminates each plane identically. In practice,

aberrations due to refractive index mismatches cause a dimming of the illumina-
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Figure 6.2: Illumination field residuals. A blank confocal image and its fit
to the Barnes ILM in equation 6.7 over varying number of coefficients. Fitting
the illumination with a low-order ILM of (3, 3) Barnes points removes the large
fluctuations over the image but clearly shows stripes in the image. The nota-
tion (n0, n1, n2, ...) corresponds to a Barnes ILM with n0 coefficients in the ex-
pansion for P0(y), n1 coefficients for P1(y), etc. Increasing the number of points
to (7, 7, 5, 5, 5) or (14, 9, 7, 5, 5, 5) removes the overall modulation in y but leaves
clear stripes in the image. Only at high orders of (50, 30, 20, 12, 12, 12, 12) or
(200, 120, 80, 50, 30, 30, 30, 30, 30, 30, 30) do these stripes disappear. The residuals
shown in the figure are all at the same scale and are averaged over the image z for
clarity.

tion with depth into the sample [63]. Since this overall dimming only depends

on the depth z from the interface and not on the xy position in the sample, it is

natural to describe the illumination field as a product of an xy illumination and a

z modulation:

I(~x) = Ixy(x, y)× Iz(z) . (6.5)
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Empirically we find that illumination fields of this form can accurately describe

our real confocal images, without incorporating any coupling between xy and z.

We describe each of the separate functions Ixy and Iz by a series of basis

functions. Since the modulation in z is fairly smooth [63], we describe Iz(z) by

a polynomial Pz(z) of moderate order ≈ 7-11 for 50-70 z-slices; typically we use

a Legendre polynomial as the orthogonality accelerates the fitting process. The

in-plane illumination of a confocal is determined by its method of creating images.

Our confocal is a line-scanning confocal microscope, which operates by imaging

a line illumination parallel to the x axis and simultaneously collecting the line’s

fluorescent image. This line is then scanned across the image in y. As a result of

this scanning, any dirt in the optics is dragged across the field of view, creating

the illumination with stripes along the x-direction visible in figure 6.2. To model

these stripes, we treat the variation along x and y differently. We write the xy

illumination field as

Ixy(x, y) =
∑
k

B(x;~ck)× Pk(y) , (6.6)

where Bk(x;~ck) is a Barnes interpolant in x and Pk(y) a Legendre polynomial

in y. Barnes interpolation is a method of interpolating between unstructured

data using a given weight kernel [10], similar to inverse distance weighting, using

a truncated Gaussian kernel to allow for strictly local updates to the high fre-

quency illumination structure. We use an interpolant with equally spaced anchor

points in x throughout the (padded, see section 6.3.3) image. The kth Barnes

interpolant has a large number of free parameters, described by the vector ~ck;

the size of ~ck is equal to the number of anchoring points in the Barnes. To ac-

count for the fine stripes in the image, we use a large number of points for the

Barnes associated with low-order polynomials, and decrease the number of points

for higher-order polynomials. For a typical image of size (z, y, x) = (50, 256, 512)
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pixels, we use coefficient vectors of length (~c0,~c1,~c2,~c3,~c4,~c5,~c6,~c7,~c8,~c9,~c10) ≈

(200, 120, 80, 50, 30, 30, 30, 30, 30, 30, 30). While this is a large number of coeffi-

cients, there are orders of magnitude fewer coefficients than pixels in the image.

As a result, all of the ILM parameters are highly constrained (on the order of a

few parts in 105, varying wildly with the parameter), and we do not overfit the

image.

Putting this all together, we use an ILM given by:[∑
k

Bk(x;~ck)Pk(y)

][∑
j

djPj(z)

]
. (6.7)

This ILM accurately describes measured confocal illuminations, as determined

both from blank images and from images with colloidal particles in them. While

the Barnes structure of this ILM is optimized for line-scanning microscopes, it can

easily be changed. For ease of use for different microscopes or imaging modalities

we have implemented various ILMs consisting of simple Legendre polynomial series,

as functions Pxy(x, y)×Pz(z), Pxy(x, y) +Pz(z), and as Pxyz(x, y, z). Other illumi-

nation structures – such as a radially or azimuthally striped ILM for spinning-disk

confocals – could also easily be incorporated into PERI’s framework.

How well do these functional forms fit to experimental data for a line-scanning

confocal microscope? We acquire blank images of a water-glycerol mixture as a

function of depth and fit this data with Barnes illuminations of the form 6.7. As

a function of the number of Barnes points in x and the polynomial degree in y, we

look at the magnitude and patterns of the residuals. In Fig. 6.2, we see large scale

structure in the ILM residuals, suggesting that high-order polynomials and Barnes

interpolants with a large number of points are necessary. Fitting out the low-order

background reveals the find stripes in x emerge due to the line-scan nature of our

machine. Finally, at higher orders of interpolants and polynomials we are able to
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adequately capture all illumination variation independent of depth into the sample.

Figure 6.3: ILM generated biases. Using an incorrect illumination field results
in significant biases. The upper left panel shows an image featured with a (9, 5, 5)
order polynomial in (x, y, z). In the foreground are the featured particle radii,
color-coded according to their difference from the mean. In the background is
the residuals of the featured image. Clear stripes are visible in both the featured
radii and the residuals. The particles are systematically much larger on the left
side of the image, before decreasing in size in the middle and increasing again in
a small stripe on the image’s right side. In contrast, when the image is featured
with a higher-order (25, 5, 5) degree polynomial, shown in the upper right, these
systematic residuals disappear. The bottom panel shows the particle radii and
image residuals for the two illumination fields as a function of the image x direction.

Fitting the ILM correctly is essential for finding the correct particle positions

and radii. Fig. 6.3 demonstrates the effect of featuring a real confocal image with
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an illumination field of insufficient order. In the left panel is an image featured

with a high-degree polynomial illumination of 9th order in the x-direction and of

5th order in the y- and z- directions. While these polynomials are high-order, they

are not high enough to capture all of the structure in the light illumination. There

is a clear bias in the featured radii, with particle radii being systematically larger

on the edge of the image and smaller in the middle. These biases arise from large

stripes in the confocal illumination due to the line-scanning nature of our confocal.

Using a higher-order 25th degree polynomial in the x-direction (upper right panel)

eliminates the effect of these stripes, as visible in the featured particle radii plotted

as a function of x in the bottom panel. Note that the particle radii may be biased

by as much as 1 px or 100 nm due to effects of the spatially varying illumination

field.

6.3.3 Point spread function

Due to diffraction, the illuminating laser light focused from the microscope’s lens

and the detected fluorescent light collected from the sample are not focused to a

single point. Instead, the light is focused to finite-sized diffraction-limited blur.

To reconstruct an image correctly we need to account for the effects of diffraction

in image formation.

A confocal microscope first illuminates the sample with light focused through

the microscope lens. The lens then collects the light emitted from fluorophores

distributed in the sample. As a result, the final image of a point source on the

detector results from two separate terms: an illumination point-spread function

Pilm that describes the focusing of the incoming laser light, and a detection point

spread function Pdet that describes the focused fluorescent light collected from the
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emitted fluorophores. Since a fluorophore is only imaged if it is both excited by the

laser illumination and detected by the camera, the resulting point-spread function

for a confocal with an infinitesimal pinhole is the product of the illumination and

detection point-spread functions: P (~x) = Pilm(~x)Pdet(~x). For a confocal with a

finite-sized pinhole, this product becomes an convolution over the pinhole area.

The two separate point-spread functions (PSFs) Pilm and Pdet can be calculated

from solutions to Maxwell’s equations in the lens train [63, 155, 158, 103]. The

PSFs can be written as integrals over wavefronts of the propagating light.

An additional complication arises from the presence of an optical interface.

Most microscope lenses are essentially “perfect” lenses, creating a perfect focus

in the geometric optics limit. However, refraction through the optical interface

destroys this perfect focus and creates an image with spherical aberration. In

addition, the refracted rays shift the point of least confusion of the lens from its

original geometric focus. For a confocal geometry, this spherical aberration and

focal shift depend on the distance of the nominal focal point from the optical

interface zint.

All of these effects have been calculated in detail by many previous researchers

[63, 155, 158, 103]. The PSFs depend on several parameters: the wave vectors of

the incoming and outgoing light kin and kout, the ratio of the indices of refraction

nsample/nlens of the sample and the optical train design, the numerical aperture

of the lens or its acceptance angle α, and the distance focused into the sample

zint. For completeness, we repeat the key results here. In polar coordinates, the

illumination PSF Pilm(ρ, φ, z) for illuminating light with wave vector kin traveling
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Figure 6.4: PSF widths vs depth. The x (left panel), y (center panel), and
z (right panel) widths of the PSF as a function of distance from the interface,
for various refractive index mismatches. The width of the point-spread function
generally increases with depth and with index mismatch due to increased spherical
aberrations. The width is broadest in the z (axial) direction, and is narrower in
the y direction than along the x direction of the line illumination.

through a lens focused to a depth zint from the interface is [63]

Pilm(~x) = |K1|2 + |K2|2 +
1

2
|K3|2 + cos 2φ

[
K1K

∗
2 +K2K

∗
1 +

1

2
|K3|2

]
, where

K1

K2

K3

 =

∫ α

0

√
cos θ′ sin θ′e−ikinf(z,θ′)


1
2
(τs(θ

′) + τp(θ
′) cos θ2)J0(kinρ sin θ′)

1
2
(τs(θ

′)− τp(θ′) cos θ2)J2(kinρ sin θ′)

J1(kinρ sin θ′)τp(θ
′)n1

n2
sin θ′

 dθ′

f(θ) = zint cos θ − n2

n1

(zint − z)

√
1−

(
n1

n2

)2

sin2 θ

(6.8)

Here τs(θ
′) and τp(θ) are the Fresnel reflectivity coefficients for s and p polarized

light, Jn is the Bessel function of order n, and θ2 is the angle of the refracted

ray entering at an angle θ′ (n2 sin θ2 = n1 sin θ′). To derive this equation from

equation (12) in Ref. [64], we used the additional assumption that all distance scales

in the image (including zint) are small compared to the focal length of the lens.

The corresponding detection PSF Pdet is identical to Pilm except for the removal
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of the
√

cos θ and the replacement of kin by the wave vector of the fluorescent light

kout. For an infinitesimal pinhole, the complete PSF is the product of these two

point spread functions:

P (~x; zint) = Pilm(~x; zint)Pdet(~x; zint) . (6.9)

The expressions in equations 6.8-6.9 are for a perfect pinhole confocal, whereas

our confocal is a line-scanning confocal. While there have been several works

describing line-scanning confocals [156, 40], these authors have treated where the

line is focused onto the sample by a cylindrical lens. In our confocal, however,

an image of a line is focused onto the sample through the large-aperture objective

lens. As such, the illumination PSF in equation 6.9 is replaced by the integral of

the detection PSF over a line in the x direction.

We use this model for a line-scanning point spread function with aberrations as

our model for our exact PSF, fitting the paramters that enter into equations 6.8-6.9.

These parameters are the acceptance angle α of the objective lens, the wavelength

of the laser, the ratio of energies of the fluorescent light to the excitation light,

the index mismatch n1/n2 of the sample to the optics, the position of the optical

interface zint, and the amount that the lens is moved as the scan is rastered in z.

In principle, other details could be included – polychromaticity and distribution

of the fluorescent light, finite pinhole width of the illuminating line, etc. – but we

find that these parameters are both relatively unconstrained by the fit and have

little impact on the other reconstructed parameters, such as particle positions and

radii.

In addition, for initial featuring we occasionally use a Gaussian approximation

to the PSF. Based on calculations of the exact PSF, ≈ 90% of the function can be

described by a Gaussian [158]. We verified this for PSFs calculated from Eq. 6.8,
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and found that although the presence of aberrations from the interface worsens

the Gaussian approximation, generally a Gaussian accounts for ≈ 90% of the PSF

except for in the most aberrated cases (large index mismatch imaging deep into

the sample). Our simplest approximation of the PSF is as an anisotropic Gaussian

with different widths in x, y, and z, with the widths changing with distance from

the interface. We therefore parameterize the Gaussian widths as a function of

depth,

P (~x; z) =
∏
i

e−x
2
i /2σ

2
i (z)

√
2πσi(z)

(6.10)

where each width σi(z) is described by a polynomial in z, typically a second order

Legendre polynomial.

Figure 6.5: PSF generated biases. Using an incorrect point-spread function
results in significant biases, as PSF leakage affects neighboring particle fits. More-
over, since the PSF gets significantly broader with depth, using a spatially constant
PSF, there are systematic biases with depth in both the z positions (left panel) and
a characteristic drift in the fitted radii errors with depth (right panel), as shown
for the delta-function (identity), an (x, y, z) anisotropic Gaussian, and a depth-
varying Gaussian point-spread function. In contrast, using the correct Chebyshev
PSF eliminates the errors in both the radii and z positions.

Figure 6.5 shows the effects of ignoring these details about the point-spread

function on the extracted positions. We generate confocal images using a simu-
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lated, exact PSF with random distribution of particles up to a depth of 30 µm.

Featuring this data using a 3D anisotropic Gaussian, we find a strong depth-

dependent bias in the featured z position and radii measurements. Using a low

order z-dependent Gaussian PSF decreases this bias only slightly. Interestingly

however, ignoring the effects of diffraction completely and replacing the PSF with

a Dirac delta-function does not cause significantly worse results than treating the

PSF as a spatially-varying Gaussian. As shown by figure 6.5, an exact PSF is re-

quired to locate particle’s positions and radii to within 20 nm (0.2 px). Therefore,

we employ the full line-scan PSF calculation into our model.

The point-spread function defined in equations 6.8-6.9 decays extremely slowly

with z and somewhat slowly in ρ. To accurately capture these long-tails of the

PSF in our generative model, we calculate the PSF on a very large grid for con-

volutions, corresponding to ≈ 40×25×30 px or ≈6×3×4 µm in extent, which

is considerably larger than the size of the 5 px radii particles. The long tails of

the PSF bring information about structure far outside the image into the image

region. As such, our generative model is defined not only in regions correspond-

ing to the interior microscope image but also in an exterior padded region, which

is cropped out when comparing to the model. For completeness, we still define

the ILM and Platonic image (including exterior particles) in the exterior padded

region; however parameters confined to this exterior region of the image are rela-

tively unconstrained. We make up for this loss in speed due to the increased size

by doing an extremely accurate but approximate convolution based on Chebyshev

interpolation, as described in a future paper.
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Figure 6.6: Experimental background image. The measured background from
our line-scan confocal microscope captured by adjusting the exposure to a full
brightness image, removing the sample, and capturing a set of images with no
illumination including room lights. Note that the range of values is from 1 to 7 out
of a maximum 255 given by the 8-bit resolution of the CCD. While only a variation
of 3%, we have seen in the illumination field section that this can create a bias
that significantly alters our inference as a function of the position in the field of
view. To remove this bias we fit the background field to a low order polynomial
and add it to our model image.

6.3.4 Background

Due to background, the detector CCD pixels always read a non-zero value even

when there is no light incident on them. We incorporate this into our generative

model by fitting a nonzero background level to the images. Ideally, this background

would be constant at every pixel location. Empirically, however, we find from

blank images that this background varies with pixel location in the detector (see

Fig.6.6). For our confocal microscope, we find the background is slowly-varying in

the optical plane, perhaps due to different dwell times for different regions of the

line scan and different sensitivies of different pixels; the background does not vary

in z. As a result, the background is well-modeled by a low-order polynomial in x
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and y.

However, due to the long-tails of the PSF, the coverslip slab affects the image

in a much larger z region than that of a typical particle. Rather than dealing

with this by using an even larger point-spread function, we use the calculated

point spread function to capture the effects of the PSF’s moderate tails on the

particles and slab, and fit a polynomial in z to capture the residual slab correction.

This residual correction is mathematically the same as a background level in the

detector. As a result, while the “true” background in the image is P (x, y), our

model uses a background P (x, y) + Pslab(z), as the coverslip is usually oriented

along the z direction.

6.3.5 Sensor noise

The last feature of the generative model is our understanding of the unrecoverable

parts of the image: noise. To study the intrinsic noise spectrum of the confocal

microscope, we subtract the long wavelength behavior from the blank image of

Fig. 6.2. After removing the background we find that the noise appears white and

is well approximated by a Gaussian distribution (see Fig. 6.7). There are, however,

some highly localized non-Gaussian parts to the noise spectrum, arising due to the

specific nature of our confocal. For instance, at high scan speeds slight intensity

fluctuations in the laser’s power couple to the dwell time on each stripe of line-

scanned pixels. This produces periodic stripes across the image with a wavevector

mostly parallel to the scan direction, but with a random noisy phase. How can

we handle these sources of correlated noise and do they affect the quality of our

reconstruction?
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In principle, these correlated noise sources can be represented in the Bayesian

model by introducing a full noise covariance matrix. That is, instead of writing

that log-likelihood as the product of all pixel values, we can write

logL( ~M | ~d) = −1

2
(Mi − di) Λ−1

ij (Mj − dj) (6.11)

where Λ−1
ij is the covariance matrix between each pixel residual in the entire im-

age. In our optimization, we would form a low dimensional representation for this

covariance matrix and allow it to vary until we find a maximum. In doing so, we

would reconstruct the image and the correlated noise simultaneously. In practice,

this introduces a large computational overhead due to the need for a full image

convolution during each update as well as many new free parameters that need to

be optimized.

Therefore, when desired we address the effect of correlated noise by working

in reverse – we identify the several intense Fourier peaks in the confocal noise

spectrum and remove them from the raw data before the fitting process. An

example of this noise pole removal is given in Fig. 6.7. There, we can see that

removing only 5 distinct poles (Fig. 6.7(d)) removes almost all visible correlated

noise structure while changing the overall noise magnitude by a negligible amount.

This small shift in estimated noise magnitude only affects the estimate of the errors

associated with parameters such as positions and radii in a proportional way. Since

these errors are very small and do not bias our inferred parameters, we often ignore

the confocal’s noise poles in our analysis entirely.
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6.4 Model considerations

Here, we investigate several complexities of image formation in confocal micro-

scopes and systematically analyze whether or not it is necessary to include them

in our generative model. In particular, we will first analyze how much complexity

we must introduce into the model elements listed in the previous section, including

the platonic image, illumination field, and point spread function. We will also look

at elements of image formation which we have not explicitly included in our model.

First, confocal microscopes build a 3D image by rastering in 1, 2, or 3 dimensions

(see section 6.3) . There is noise in this rastering procedure that affects the image

formation process. Second, The final image that comes from this scan is a cropped

view of a much larger sample; the edges of this cropped image are influenced by the

excluded exterior particles. Third, while the actual distribution of light intensity

is a continuous field, the detector only measures a pixelated representation of this

field. Fourth, while the exposure is made by the camera, particles undergo diffu-

sional motion, blurring their apparent location. In this section, we address each of

these image formation complexities and their effects on the inferred parameters.

We would like to systematically investigate at what level omitting a detail of the

image formation from the model affects the fitted parameters. We can understand

this quantitatively by examining the optimization procedure. Let us assume that

the true image formation is completely described by a set of N parameters ~Θ.

Then, near its maximum, the log-likelihood is approximately quadratic: logL =

1
2

∑
ij HijΘiΘj, where the true value of the parameters is arbitrarily set to ~Θ = 0.

Empirically, we find that with the starting parameter values provided by our initial

featuring, the log-likelihood is extremely well-approximated by a quadratic.

If our model were complete, then the maximum of logL would be exactly at the
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true parameter values ~Θ = 0. However, our model is incomplete. This means that,

instead of fitting all N parameters ~Θ, we only fit the first (say) M parameters,

which for convenience we denote as ~θ. Thus we can write the log-likelihood as

three separate terms:

logL =
1

2

M∑
i,j=1

Hijθiθj +
N∑

i=M+1

M∑
j=1

HijΘiθj +
1

2

N∑
i,j=M+1

HijΘiΘj . (6.12)

The first term, containing only the parameters ~θ that we are fitting, is the quadratic

in the reduced space, with a maximum at the true parameter values. The unim-

portant third term reflects the separate contribution to logL of the unknown or

ignored portions of the model, and is constant in the ~θ space. However, the second

term mixes both the fitted parameters θ and the unknown parameters Θj. This

mixing results in a linear shift of logL in the ~θ space away from the true parame-

ters, and causes a systematic bias due to an incomplete model. Minimizing logL

with respect to θ gives the fitted values of the parameters gives an equation for

the best-fit incomplete model parameters ~θ:

θj =
M∑
k=1

H̄−1
jk

N∑
i=M+1

HikΘi (6.13)

where H̄−1 is the inverse of the sub-block H̄ of the Hessian matrix H that corre-

sponds to the fitted parameters ~θ.

We can use equation 6.13 to estimate the effect on one of the estimated pa-

rameters θj, if we ignore one aspect of the generative model Θk. Ignoring the

off-diagonal terms in H−1 to capture the scaling gives θj ≈ HkjΘk/Hjj. Thus, the

error in the fitted parameter θj is proportional to both the coupling Hkj between

that parameter and the ignored aspect of the generative model, and the magnitude

of the error of the generative model Θk.
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6.4.1 Component complexities

There are several choices one can make concerning the form and complexity of

each of the components of our model image. As discussed in the Section 6.3, we

have implemented many forms of the platonic image, illumination field, and point

spread function and each one of these forms has a varying number of parameters

with which to fit. How do we decide which form to use and at which complexity

(number of parameters) to stop? To decide on a per-image basis, we could employ

Occam’s factor, which is a measure of the evidence that a model is correct given the

data [98]. In practice, however, we are mainly concerned with how these models

influence the underlying observables which we are attempting to extract. That is,

we wish to use knowledge of the physical system to check which model best predicts

the particle locations and sizes. To do so (as mentioned in the main manuscript),

we often turn to particle sizes versus time as well as particle overlaps, both physical

statements that assert almost no assumptions on our system.

We can also get a sense of the magnitude of the effect these choices have on

inferred positions and radii by creating synthetic data and fitting it using a sim-

pler model. In Fig. 6.8 we show the residuals of such fits for various simplifications

made to the platonic form, illumination field, and point spread function. In the

left columns of the figure we see the reference image formed using the most com-

plex image model available and in each row the residuals for each choice with a

description of that choice above the panel. For all but the last column, in which we

fit the image with the exact model once again, we can see systematic errors in the

fit. We compute how much these residuals influence the extracted positions and

radii and report these errors in Table 6.1. In particular, most choices of platonic

image aside from the naive boolean cut do not influence particle featuring below
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Fitting model type Position error (px) Radius error (px)

P
la

to
n

ic
fo

rm

Boolean cut 0.03376 0.01577
Linear interpolation 0.00778 0.00386
Logistic function 0.00411 0.00352
Constrained cubic 0.00674 0.00249
Approx Fourier sphere 0.00000 0.00000

Il
lu

m
in

a
ti

o
n Legendre 2+1D (0,0,0) 0.18051 0.13011

Legendre 2+1D (2,2,2) 0.06653 0.03048
Barnes (10, 5) Nz = 1 0.13056 0.06997
Barnes (30, 10) Nz = 2 0.04256 0.02230
Barnes (30, 10, 5) Nz = 3 0.00074 0.00022

P
S
F

Identity 0.54427 0.57199
Gaussian(x, y) 0.47371 0.14463
Gaussian(x, y, z, z′) 0.34448 0.04327
Cheby linescan (3,6) 0.03081 0.00729
Cheby linescan (6,8) 0.00000 0.00000

Table 6.1: Position and radii errors by model complexity. Here we tabulate
the position and radius errors associated with the model component choices made
in Fig. 6.8. Note that while the components with the largest impact on determining
underlying parameters are the ILM and PSF, the choice of platonic image cannot be
ignored in order to reach the theoretical maximum resolution. Interestingly, in the
case of PSF selection, Gaussian(x, y, z, z′) (3+1D) is almost no better at extracting
particle positions than Gaussian(x, y) (2D). However, its ability to extract particle
sizes increases by 3 since it takes into account the variation of the PSF in space.
Additionally, in the case of the ILM, capturing the stripes in the illumination
using a 30 control point Barnes increases the resolution by 3 whereas capturing
the illumination’s dependence in depth causes the resolution to increase 10 fold.

an SNR of 30. However, the complexity of the illumination field always matters

until all long wavelength structure is removed from the image. Finally, the choice

of PSF is crucial, requiring the use of a calculated confocal PSF to even approach

the CRB.
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6.4.2 Scan jitter

Confocal microscopes operate by taking an image with the lens at a fixed z position

to create one layer of the three-dimensional image, then moving the lens up a fixed

amount to take the next layer. In our generative model, we assume that these

steps of the lens (and the resultant image slices) are perfectly equally spaced by an

amount which is fitted internally. However, a real confocal microscope will have

some error in the vertical positioning of the lens. As a result, the actual image

taken will not be sampled at exactly evenly spaced slices in z, but at slices that

are slightly shifted by a random amount.

To test the effect of this z-scan jitter on our parameter estimation, we simulate

images taken by a confocal microscope with imperfect z-positioning. Instead of

sampling the image at a deterministic z position, we instead sampled the image at

a z position shifted from the ideal position by an uncorrelated Gaussian amount

of varying standard deviation. A representative image of a 5 px radius particle

with a step positioning error of 10% is shown in Fig. 6.9(a). There is very little

difference between this image with z jitter and the perfectly-sampled image, as

shown by the difference image in panel b. We then fit an ensemble of these images

at varying image SNR levels, over a random sampling of image noise, z-jitter noise,

and random shifts of particle positions by a fraction of a pixel.

The results of these fits are shown in Fig. 6.9c, showing the actual error in the

featured positions versus the size of the z-positioning noise. For our confocal which

is equipped with a hyper-fine z-positioning piezo, we expect the z positioning error

to be a few nm, or a few percent of a pixel. For a 3% error in positioning, the

signal-to-noise ratio must be ≈ 100 for the effects of z-positioning jitter to be

comparable to the theoretical minimum effect from the image noise. This small
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Figure 6.9: Lens Positioning Jitter (a) The xz cross-section of a simulated image
of a 5 px radius colloidal particle taken with a 10% error in the lens positioning. (b)
The difference between the image with positioning error and a reference image with
zero positioning error. The differences between the images are both random and
small, for this image no more than 7% of the perfect image intensity. (c) The effect
of lens positioning error on featured particle positions, at signal-to-noise ratios of
20, 50, 200, and 500. The solid symbols and dashed lines show the position error
for images with imperfect lens positioning, while the solid lines denote the Cramer-
Rao bound for an image with no positioning error. At lens positioning errors of
≈ 10% or larger, the error in featured positions from the z-slice jitter dominates
that from the simple image noise, even for an SNR of 20. However, the featuring
error due to a z jitter of ≈ 1% is less than the error due to image noise, for any
noise level than can be captured by an 8-bit camera.

effect of the error is partially due to the large size of our particle. If each z slice

of the image is randomly displaced with standard deviation σ, then we expect

roughly a σ/
√
N scaling for the final error in the particle’s z-position, where N is

the number of z slices the particle appears in. A 5 px diameter particle with a 4 px

axial point-spread function occupies ≈ 18 difference slices, decreasing the effect of

scan noise by a factor of ≈ 4 and putting it below the CRB for our data.

As the error in z-positioning increases, however, the effect on the featured

particle positions increases correspondingly. The error due to a ≈ 10% z jitter is

comparable to the CRB for image noises of SNR = 20. For exceptionally large
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z-jitters of 40% the error due to the lens positioning dominates all other sources of

error. However, even with this large error in lens positioning, the error in featured

positions is still only 10% of a pixel, or about 10 nm in physical units.

6.4.3 Missing and Edge particles

The point spread function delocalizes the particle’s image over a region larger

than the particle’s size. As a result, if two particles are close enough together,

their images can overlap. This overlapping is a significant problem for heuristics

such as centroid fitting, as the true particle centers do not coincide with the fitted

centroid. In contrast, PERI’s accuracy is negligibly affected by the presence of

a second, close particle, since PERI correctly incorporates close particles in its

generative model. The CRB of two touching, 5 px diameter particles increases by

only ≈ 3%, and PERI finds particles to this accuracy when close.

However, large systematic errors can affect PERI when one of these particles is

missing in the generative model. This situation is illustrated in its simplest form in

Fig. 6.10. If one of the two touching particles is missing from the generative model,

then the second particle will be enlarged and drawn into the first particle’s void

to compensate, as shown in panel b. As a result, the missing second particle will

severely bias the fitted positions and radii of the first particle. Figure 6.10c shows

the magnitude of this effect. For particles separated by 1 px or less, significant

biases on the order of 0.4 px appear in the identified particle’s featured position.

These biases matter at essentially all values of the SNR, only being comparable

to the CRB for SNR < 1. As a result, it is essential for PERI to identify all the

particles in the image to return accurate results. For this reason, we take extra

precaution and thoroughly search the image for missing particles before fitting, as
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Figure 6.10: Effect of missing particles. (a) The xz-cross section of an image
of two 5 px radius particles placed in contact. (b) The difference image for a bad
generative model that includes only the particle on the left. To minimize the effect
of the missing right particle, the left particle is drawn to the right and expanded in
radius. This effect is visible as the red and blue ring on the right border of the left
particle. (c) The error in position along the separation axis, as a function of true
surface-to-surface distance, for a model with a missing particle. When the particles
are separated by ≈ 10 px the featured particle is located correctly. However, as
the particles get closer than ≈ 2 px significant biases start to appear. These biases
saturate at a separation of ≈ 0.1 px, corresponding to a featuring error of ≈ 0.4 px.

detailed in section 6.5.

The biases caused by missing particles appear whether or not the missing par-

ticle is located inside or outside the image. As a result, accurately locating edge

particles requires identifying all their nearby particles, even ones that are out-

side the image! We attempt to solve this problem by padding the Platonic and

model images and the ILM by a significant portion, and including this padded

extra-image region in both the add/remove and relaxation portions of the PERI

algorithm. Nevertheless, it is extremely difficult to locate all the particles out-

side the image, for obvious reasons. As such, there is the possibility for moderate

systematic errors to enter for particles located at or near the edge.
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Nevertheless, if the exterior particle is identified, PERI correctly locates the

interior particle, as shown in Fig. 6.11. To demonstrate this, we create simulated

images of two particles near the boundary of an image. One particle is placed

at z = a so that its edge just touches the boundary while the other is placed at

z = −(a + δ) on the other side of the border. We plot the CRB of the interior

particle and the measurement errors of both PERI and trackpy as a function of the

exterior particle’s coordinate in Fig. 6.11. While the CRB only changes by a factor

of 2 as the particles come within contact, the featuring errors grow drastically for

traditional featuring methods due to biases introduced by the exterior particle.

For this same data set, PERI featuring errors follow the CRB allowing precise

unbiased featuring of particles at the edge of images.

This apparent conundrum of edge particles presents an interesting positive side-

effect. Missing edge particles affect the fits because they contribute a significant

amount to the image. As such, we might expect that a particle outside the field of

view can still be located very precisely. This prediction is borne out by a calculation

of the Cramér-Rao bound, as shown in Fig. 6.12. Until the particle and PSF fall

off the edge of the image (distance > 1R), the CRB remains constant for all

particle parameters. When the particle is centered on the image edge (distance

of 0), the CRB is twice that of the bulk, intuitively corresponding to a loss of

half of the information about the particle. As the volume of the particle leaves

the image, the CRB decreases as 1/δ2 until the particle is no longer part of the

image. Interestingly, Fig. 6.12 shows that the PSF constrains the particle position

to within 0.1 px even when the particle is entirely out of the image! If correctly

seeded with a moderate guess for the particle position outside the image, PERI will

locate the particle to a precision of the Cramér-Rao bound. However, in practice it

is very difficult to seed these particles into PERI, as a slight change of the intensity
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Figure 6.11: Influence of particles outside of the image. Here we place one
particle at x = a and a second particle at x = −(a + δ) so that one is completely
inside the image and the other outside. We plot the CRB for the x, y, and z
positions and radius a of the interior particle as well as measured errors for PERI in
triangles and a centroid algorithm (trackpy) in circles as a function of the position
of the second particle. When the exterior particle is further than a pixel outside
the image we see that the measurements of the interior particle are constant.
However, as the PSF of the exterior particle begins to overlap the interior particle
the CRB and all measured errors increase dramatically. While PERI’s measured
error continues to follow the CRB, trackpy’s error increases beyond pixel resolution.
Note that pixel separations at the edge are generic in colloidal images especially
in dense suspensions.

at the image edge could be either a missing particle outside the image or a slight

variation in the ILM near the image edge. Nevertheless, PERI is very good at

locating particles that are partially outside the image.

6.4.4 Pixel intensity integration

Our generative model considers the image formed on the camera as if the camera

pixels had an infinitesimal size. In reality, the camera pixels have a finite extent.

As a result, the image at each pixel on the camera is not a discrete sampling of
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Figure 6.12: CRB of edge particles. Here we calculate the Cramér-Rao bound of
the x, y, and z positions as well as radius (in red, blue, green, purple respectively)
for an isolated particle as a function of its distance to the edge of the image. For
positive displacement (inside the image) we see very little change with position
as expected. As parts of the PSF leak out of the image (displacements close to
zero, positive) we see that the expected error increases slightly since information
is lost. Finally, as the particle itself leaves the image, information is lost more
dramatically as indicated by a sharp rise in the CRB. However, note that even at
a displacement of one radius a, the PSF allows us to locate the particle outside
of the image to within a pixel. While in practice it is difficult to identify these
particles systematically, their presence can greatly influence the measured positions
of other edge particles.

the light intensity, as in our generative model, but is instead an integration in the

detector plane over the pixel’s size.

To check whether the effect of pixel integration matters, we generated images

that were up-sampled by a factor of 8 in the xy-plane. We then numerically

integrated these images over the size of each pixel. A representative image is

shown in Fig. 6.13a. There is very little difference between the xy-integrated

image and the generative model, as visible in panel b. We then fitted an ensemble

of these xy-integrated pixel images, both over an ensemble of noise samples and

over an ensemble of particle positions shifted by a random fraction of a pixel.
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Figure 6.13: Pixel Integration (a) The xz cross-section of a simulated image
of a 5 px radius colloidal particle, where each pixel contains the light intensity
integrated over its area instead of sampled at its center. (b) The difference between
the pixel-integrated image and a reference image sampled at the center of the
pixels. The differences between the images are small (10%) and centered in a
ring which has mean 0 and is positioned at the particle’s edge. (c) The effect
of pixel integration on featured particle positions as a function of particle radius,
at signal-to-noise ratios of 20, 200, and 2000. The solid symbols and dashed lines
show the position error for images generated with pixel integration and fit without,
while the solid lines denote the Cramer-Rao bound for the images (without pixel
integration). Integrating over a pixel area has no effect on the featured positions
for any SNR compatible with an 8-bit depth camera. The effect of pixel integration
only starts to matter for an SNR ≥ 400 (not shown).

The results are shown in Fig. 6.13c. We find that there is no discernible effect

of pixel integration at a SNR of 200 or less. The error due to neglecting pixel

integration becomes comparable to that due to noise only for SNR ≥ 400, which

is significantly higher than the maximum allowed by an ordinary 8-bit camera.

Thus, the effect of integrating over a pixel size for a colloidal particle essentially

always has a negligible effect on the fitted parameters.
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6.4.5 Diffusional motion

A typical colloidal particle is not fixed in its location, but diffuses about due to

Brownian motion. For an isolated colloidal particle, this Brownian motion results

in a random walk with mean displacement 〈~x〉 = ~0 and a mean-square displacement

〈x2〉 = 6Dt that is linear in time, with a diffusion constant D = kT/6πηR where

η is the solvent viscosity and R the particle radius. As a result, the microscope

takes an image not of a colloidal particle at a single position, but of an integrated

image of the colloidal particle over the trajectory that it has diffused.

First, at what length- and time- scales is a colloidal particle de-localized due

to Brownian motion by a scale that is larger than the resolution? For a 1 µm

diameter particle in water to diffuse the 1 nm resolution provided by PERI takes

a fantastically small time of t = 1 nm2/D ≈ 10µs. Even for our relatively viscous

samples of ≈ 80% glycerol and 20% water this time slows down to only ≈ 600µs.

These times are orders of magnitude faster than the≈ 5ms required by our confocal

to take a 3D image of the particle, corresponding to a 8 nm displacement. Thus,

a freely diffusing particle has always diffused much more than the featuring errors

than the uncertainty intrinsic to PERI.

However, this does not mean that the precision past 8 nm is empty. The parti-

cle’s positions are Gaussian distributed about its mean value during the exposure

time. While the extent of the distribution is much larger than the PERI featuring

errors, the particle’s mean position during the exposure time is well-defined. More-

over, the actual image on the camera from the diffusing particle is a convolution of

the particle’s trajectory with a single particle image. Since this convolution is like

an averaging, we might expect that the small Brownian excursions are averaged

out in the image formation, and that the image allows for accurate featuring of
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the particle’s mean position.

We can use the formalism of Eq. 6.13 to show that Brownian motion does not

affect our featuring accuracies. Let the particle’s mean position be ~̄x0, and its

Brownian trajectory be ~x0(t). Then the actual image I(~x)on the detector is

I(~x) =
1

texp

∫ texp

0

I0(~x0(t)) dt = I0(~̄x0) +
1

texp

∫ texp

0

I0(~x0(t))− I0(~̄x0) dt (6.14)

where I0(~x) is the image of one particle at position ~x and texp is the camera exposure

time. As before, we view the actual image as I(~x) = I0(~̄x0; θ) + (1 − Θ)∆I, in

terms of a group of fitted parameters ~θ and an additional parameter Θ describing

the effects of Brownian motion ∆I. For the true image Θ = 0 but for our model

image Θ = 1. Then equation 6.13 says the error will be θj ≈ Hkj/Hjj, where

HΘj = ∂Θ∂θjI = ∂θj∆I. However, for small displacements the effect of Brownian

motion on the image is

∆I =
1

texp

∫ texp

0

∂I(~̄x0)

∂xi
(~x− ~̄x0) dt = 0

since ∂I(~̄x0)/∂xi does not depend on time. As a result, ∂θk∂Θ∆I = 0 and there is

no affect of Brownian motion on the image to first order in the displacements, i.e.

when the particle displacement is moderately small compared to the radius.

Finally, in Fig. 6.14 we show empirically that the effect of Brownian motion

is negligible for our exposure times. To create an image of a diffusing particle

captured by a slow camera, we simulated a 200 point Brownian trajectory of a

R = 5 px radius particle, generating an image for each point in the particle’s

trajectory. We then took the average of these images as the noise-free image cap-

tured by the microscope. One such image is shown in Fig. 6.14a. Once again,

there is a slight difference (10%, as shown in panel b) between the slow image of

a diffusing particle and the reference image taken of a particle at a single loca-

tion. We then fitted an ensemble of these images, over a variety of both Brownian
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Figure 6.14: Brownian Motion (a) The xz cross-section of a simulated image of a
5 px radius colloidal particle undergoing strong Brownian motion τexposure/(R

2D) =
0.01 during the image formation. (b) The difference between the diffusing-particle
image and a reference image without diffusion. The differences between the images
are small (10%) and are mostly in a ring with mean 0 at the particle’s edge. (c) The
effect of Brownian motion on featured particle positions as a function of exposure
time, at signal-to-noise ratios of 20, 50, 200, and 500. The image exposure time for
our camera is located in the shaded grey band for 20/80 water/glycerol and blue
band for pure water. The solid symbols and dashed lines show the error between
the fitted positions and the mean position in the particle’s trajectory, while the
solid lines denote the Cramer-Rao bound for the generated images. At our exposure
times and SNR of 20, the effects of Brownian motion are small compared to those
from noise in the image. Interestingly, for higher SNR or slower exposure times,
Brownian motion starts to have a noticeable effect and must be incorporated into
the image generation model.

trajectories and noise samples. Figure 6.14c shows the results of these fits as a

function of the mean displacement during the collection τexposure/(R
2D), where

τexposure is the exposure time of the camera and D the particle’s diffusion con-

stant. Brownian motion has a negligible effect on the featured positions for our

experimental images of freely-diffusing particles (camera exposure time of 100 ms

and D = 0.007 µm2/s corresponding to a 1 µm particle in 80:20 glycerol:water,

corresponding to τexposure/(R
2D) ≈ 10−3). Interestingly, however, to achieve a

higher localization accuracy at a higher SNR of ≈ 200, Brownian motion must be
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correctly taken into account in the image formation. Incorporating Brownian mo-

tion at these high signal-to-noise ratios would allow the teasing out of information

about the particle’s trajectory from a single image.

6.5 Implementation

A typical confocal image is roughly 512 x 512 x 100 pixels in size and contains 104

particles meaning that the number of degrees of freedom in our fit is roughly 107

described by 105 parameters, a daunting space to optimize. On modern hardware

using the highly optimized FFTW, the typical time for an FFT the size of a single

image is ∼ 1 sec. Given this time, a single sweep through all parameters would

take an entire week while a full optimization would consume a year of computer

time. However, since particles have finite size, we are able to optimize most of

these parameters locally with a small coupling to global parameters (ILM, PSF).

Additionally, the finite intensity resolution of microscope sensors, typically 8 or 16

bits, allows us to make further simplifications to our model. Here we describe the

practical algorithmic optimizations that we have made as well as the optimization

schedule that we have devised to quickly reach the best fit model.

6.5.1 Partial image updates

First and foremost, we optimize our fitting procedure by working in image updates

and only updating parts of the image that are required at any one time. In order

to modify the position of one particle by a small amount, the number of pixels

that are affected is simply (2a + w)3 where a is the particle radius and w is the
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PSF width, both in pixels. For a typical particle, the ratio of this volume to the

entire image volume is typically 10−2 which represents a speed up of the same

factor due to the roughly linear scaling of FFT performance with problem size

(N logN). In addition, since the PSF decreases with distance from a particle’s

center, a localized object produces only a weak signal in regions far away from it.

For confocal microscope PSFs, the distance scale associated with this signal change

is only a few tens of pixels. Therefore, we employ a technique common applied

to inter-atomic potentials in molecular dynamic simulation – we simply cutoff the

PSF at this distance scale allowing for exact partial updates. By cutting off the

PSF, we are able to incrementally apply image updates in an exact procedure (up

to floating point errors). For example, when moving a single particle from ~x0 to

~x1, we must simply calculate the local image change given by

∆M(~x) =

∫
d3x′ [I(~x′)(1− c)(Π(~x; ~x1)− Π(~x; ~x0))]P (~x− ~x′; ~x) , (6.15)

cf. equation 6.2, then calculate M+ ∆M only in a small local region around the

particle being updated. We are able to use similar update rules for all variables

except for those effecting the entire image such as the PSF, offset, zscale, and

estimate of the SNR.

Additionally, in our code, we generously employ the principle of “space-time

trade-off” in which we cache intermediate results of all model components and

reuse them later in the computation. In particular, we maintain a full platonic

image and illumination field, which we update along with the model image. We

also cache the calculated PSF so that we may utilize previous results until the PSF

is sampled. In doing so, we are limited in our current implementation by the speed

of the FFT, which takes 70% of the total runtime.
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6.5.2 Optimization of parameters and sampling for error

Once an approximate initial guess is obtained by more traditional featuring meth-

ods [37], we optimize the parameters by fitting using a modified Levenberg-

Marquardt routine. Our Levenberg-Marquardt algorithm uses previously-reported

optimization strategies designed for large parameter spaces [149]. However, a

Levenberg-Marquardt minimization requires the matrix Jiα ≡ ∂m(xi)/∂θα, which

is the gradient of each pixel in the model with respect to all the parameters. For

the ≈ 105 parameters and 107 pixels in our image, this matrix would be many

thousand times too large to store in memory. Instead, we construct a random

approximation to Jiα by using a random sub-section of pixels xi in the image to

compute J . This approach works well for the global parameters (PSF, ILM, etc)

but fails for the particles, which appear in a relatively small number of pixels. For

the particles, we instead fit small groups of adjacent particles using the full Jiα for

the local region of affected pixels. As the global parameters and particle parame-

ters are coupled, we iterate by optimizing first the globals, then the particles, and

repeating until the optimization has converged.

Once the model is optimized, we use Monte Carlo sampling to estimate param-

eter errors. Our Monte Carlo sampler sweeps over each parameter and updates the

particle position, accepting or rejecting based on the change in the log-likelihood

of the model. We use slice sampling to produce highly uncorrelated samples, al-

lowing an excellent error estimate from only a few sweeps. Our error sampling

doubles as a check for convergence. If the log-likelihood increases after sampling,

then the optimization has not converged and either more Monte Carlo sampling

or more traditional optimization is needed. In practice, when desired we check

with ≈ 5− 10 Monte Carlo sweeps, and ensure that the log-likelihood remains the
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Figure 6.15: Accuracy benchmark. We compare the featuring errors of PERI
and a traditional centroid (Crocker Grier or CG) featuring method with the optimal
featuring parameters. The panels show the featuring errors vs. particle separation
(upper left panel), vs PSF aberration through the index mismatch n2/n1 (upper
right panel), vs. particle radius (lower left panel), and vs. the suspension volume
fraction (lower right panel).

same or fluctuates by a few times
√
N , where N is the number of parameters in

the model.
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6.6 Benchmarks of featuring algorithms

We check our algorithm by benchmarking it against physically realistic image mod-

els, as shown in Fig. 6.15. For maximal realism, we generate these images with

every model component in equation 6.2 as realistic as possible. We use our ex-

act calculation for line-scanning confocal microscopes, with physical parameters

expected from an experiment. From the structure of our fitted line-scan confo-

cal images, we re-create a random illumination field that closely mimics the power

spectrum of our actual confocal. We position the particles randomly, without plac-

ing them preferentially on the center or edge of a pixel. Since real images have

particles that are also outside or partially inside the image, we generate the image

on a large region before cropping to an internal region, resulting in edge particles

and particles outside the field of view. 1

We then fit these algorithms both with PERI and with traditional centroid-

based featuring algorithms. When we fit these images with PERI we start with

initial guesses that are not near the correct parameter values, to ensure that our

method is robust to realistic initial guesses. For the centroid featuring methods,

there are several algorithms and variants that can be used. We use the most com-

monly used of these versions, as implemented by Crocker and Grier [37] in the IDL

language. All of these centroid algorithms require the user to select various pa-

rameters, such as a filter size for smoothing of the noisy image and a mask size for

finding the centroid positions. As is well-known in the colloid community, using

the incorrect parameters can result in significantly poorer results. To overcome

1Unless otherwise specified, we use an index mismatch n2/n1 = 0.95, a ratio of fluorescent
light to excitation light energies of 0.889, an excitation wavelength of 488 nm, and a lens aperture
acceptance angle of 1.173 corresponding to a 1.4 NA lens. The particles are 1 µm in diameter,
with a pixel size used of 100 nm, and extend from a region from just above to ≈ 5 µm above the
coverslip.
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any possible limitation from using the incorrect parameters, we fit all the possi-

ble parameters2 in the Crocker-Grier (CG) algorithm and use only the ones that

produces the best global featuring of the data, as compared to the correct particle

positions. (Centroid methods do not accurately find particle radii). Needless to

say, an actual experimenter does not have access to the ground truth or to the

optimal parameters for the featuring. Moreover, even with these optimal param-

eters, the centroid algorithm frequently misses a large fraction of particles, even

in simple images. As such, we view the centroid featuring errors as unrealistically

optimistic and probably not attainable with centroid methods even by experts.

The results of these comparisons are shown in figure 6.15.

When two particles are close, their images overlap due to the breadth of the

point-spread function. This overlap causes centroid methods considerable diffi-

culty. To compare the effects of PSF overlap on both PERI and CG featured

positions, we generate an ensemble of realistic images with isolated pairs of parti-

cles at random orientations and at a fixed particle edge-to-edge separations. The

upper-left panel shows these results for edge-to-edge separations from 0.01 px to

2.0 px, with a fixed noise scale of about 0.05 of the illumination amount. As the

randomly-generated illumination fields vary from image to image, and the illumi-

nation varies from region to region within an image, there is not truly a global SNR

for all of the images; the fluctuations in this SNR from image to image are the

origins of the fluctuations in featuring error throughout figure 6.15. PERI features

particles at the Cramer-Rao bound regardless of their separation. In contrast, even

at large separations of 2 px, CG has significant errors due to particle overlaps.

Aberrations due to index mismatch significantly affect image quality and ex-

2We fit the x, y, z bandpass sizes for both the lowpass and hipass filters, the centroid size or
diameter, the particle mass size “masscut”, the minimum particle separation, and a threshold
below which pixels are ignored.
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tracted particle locations. The upper right panel shows the effect of these aberra-

tions on localizing isolated particles, as measured by the ratio between the index

of refraction of the optics n1 and of the sample n2. Moving the ratio n2/n1 away

from 1 increases aberration in the image. While increasing the aberrations in the

lens negatively affects PERI’s ability to feature particles, the localization accuracy

always remains excellent. In contrast, CG methods perform poorly throughout,

with extremely poor performance as the aberrations increase.

Since the CRB decreases with particle radius, we expect that increasing the

particle radius should result in an increase in localization accuracy. The lower-

left panel of figure 6.15 shows that PERI’s precision improves with increasing

particle radius. In contrast, the Crocker-Grier precision worsens with increasing

particle radius. We hypothesize this arises due to the flat intensity profile near the

center of a large particle, whereas a centroid method assumes that the intensity is

peaked at the particle center. As a result, slight noise can significantly worsen a

large particle’s localization with centroid methods. Conversely, centroid algorithms

improve for small particles, performing only 3× worse than PERI’s localization

accuracy for particles with radius 2 px. For particles small to the PSF size, the

image is essentially a single peak, which centroid methods work well for.

Realistic images taken with confocal microscopes consist of particles randomly

distributed, occasionally close together and occasionally far apart. To examine

the localization in these images, we use a Brownian dynamics simulation to create

a random distribution of particles at volume fractions from φ = 0.1 to φ = 0.6.

PERI localizes particle positions and radii excellently in all of these images, as

visible in the lower-right panel. In contrast, centroid methods perform uniformly

poorly, with localization accuracies of approximately half a pixel. Interestingly,
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these centroid algorithms do not localize significantly worse for dense suspensions

despite the presence of more close particles, although they do frequently fail to

identify particles.

Finally, we check how the complexity of our synthetic data affects the accuracy

of standard featuring methods. In Table 6.2 we see, surprisingly, that there is a non-

monotonic relationship between positional error and image complexity, becoming

optimal when there is significant striping in the image but little variation in depth.

However, the rate of missing particles decreases significantly with simpler models

and rising to as much as 40% for our most complex model images. The effective

resolution of CG is never much smaller than a single pixel in these synthetic tests,

most likely due to pixel edge biases.

6.7 Experimental Details

The microscope is a Zeiss LSM 5 Live inverted confocal microscope, used

in conjunction with an infinity-corrected 100x immersion oil lens (Zeiss Plan-

Apochromat, 1.4 NA, immersion oil with index n = 1.518). The LSM 5 Live

confocals operate by line-scanning. Rather than rastering a single point at a time

to form the image, a line-scanning confocal images an entire line at once. An image

of a line is focused onto the sample, and the sample fluorescence is detected on a

line CCD. Rastering this line allows images to be collected much faster. However,

the different line-scanning optics worsen the point-spread function compared to a
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point-scanning confocal and cause illumination imperfections such as dirt to be

smeared out over one direction in the image. Importantly, our confocal is outfitted

with a hyper-fine piezo scanner which gives precise z-positioning of the lens. This

precise z-positioning is important for accurate reconstruction of images – with the

less-precise standard positioning our image reconstruction and results suffer con-

siderably. The data shown in the main text were taken at 108.1 in-plane frames

per second.

Our experimental images consist of ≈ 1.3 µm silica particles (MicroPearl) sus-

pended in a mixture of glycerol and water. The glycerol/water mixture is tuned

to match the refractive index of the particles by minimizing the sample scattering.

For these particles we find the optimal refractive index is n ≈ 1.437 correspond-

ing to ≈ 80% glycerol and 20% water. We match the index of refraction of the

spheres and the suspending fluid to within a few parts per thousand, resulting

in practically zero scattering by the spheres of the laser or fluorescent light. The

glycerol has the additional advantage of creating a very viscous suspension, slowing

down the Brownian motion of the particles. We add fluorescein sodium salt to dye

the suspending fluid. The fluorescein diffuses rapidly compared to the particles,

and is effectively uniformly distributed throughout the regions occupied by the

fluid. By using a considerable amount of dye and a low laser power, we minimize

photobleaching during our experiments.

The samples used for determining interparticle interactions were prepared in

a similar way. The suspending fluid was a mixture of glycerol and water. Since

glycerol is hygroscopic, we controlled the concentration of glycerol and water by

measuring the index of refraction. We tuned the index to n = 1.437 that matches

the index of refraction of the silica particles; this corresponds to ≈ 76.4% glycerol
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and 23.6% water. To this we added fluorescein sodium salt dye, to a concentra-

tion of 0.4 mg/mL. Fluorescein sodium salt (molar weight 376.27) consists of two

sodium ions bound to a dye molecule. As a result, this concentration of dye cor-

responds to ≈ 2 moles/mL of monovalent sodium ions and 1 mole/mL of divalent

fluorescein ions. To this solution we added the 1.3 µm silica particles (MicroPearl)

at a concentration of 6.8 mg particles per 1 mL of solution. These particles are

placed in a 100 µm deep sample cell; since the particles sediment the experimen-

tal volume fraction is determined equally by settling and the sample cell height

as compared to the density of particles in the original suspension. We allow the

suspension to sediment for several hours to achieve equilibrium before taking any

measurements. The data is collected over the course of a 1-2 hours; we do not

observe any change in the Ps(δ) from the earlier samples to the later ones.

To extract the interparticle potential, we use Molecular Dynamics simulations

to find Ps(δ) and vary the parameters to find the best-fit Ps(δ). Since we know the

particles’ positions and radii via PERI, we seed the simulation with the featured

particle positions and radii and relax the particle positions thoroughly before sam-

pling for Ps(δ). Using the extracted particle parameters enforces both the correct

amount of particle radii polydispersity and the number density of particles. In the

simulation we use a standard DLVO potential, consisting of non-retarded van der

Waals attractions and Debye-Huckel repulsion [122], augmented by gravitational

settling. The free parameters we fit are the strength of the attraction, the strength

and screening length of the repulsion, and the settling strength; physically these

correspond to the Hamaker constant, a combination of the particle zeta potential

and salt concentration, and the average particle density. As mentioned in the text,

we find that the potential is nearly hard-sphere, with a fitted Hamaker constant of

0.001 kT, a screening length of 15 nm, a maximal electrostatic repulsion strength
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of 1 kT, and a gravitational settling height of about 0.45 µm. In contrast, if all

the salt present in the suspension were due to the fluorescein dye, we would ex-

pect a huge screening length of 700 nm, which would be very easy to see even by

eye. However, previous experiments have already shown that, even in suspensions

where the ion concentration is carefully controlled by an ion exchange resin to be

as dilute as possible, the screening length is usually much shorter ranged, around

100 nm [39]. As a result, we expect a short-ranged screening for our suspension

without an ion exchange resin and with extra salt added via fluorescein dye. As

is well known in the colloid literature, an increased electrostatic repulsion can be

counteracted by an increased van der Waals attraction and vice versa; this trade-

off is also present in our fits. The reported numbers are the best-fit values from

the simulation; however the uncertainties in these parameters are correlated so a

range of similar potentials with different values is possible. This tradeoff in the

fit landscape, along with possible featuring errors, may also explain some of the

deviations of the parameters from those expected naively. However, we believe

that these fitted values are relatively correct, and that deviations arise due to real,

physical changes in the system such as index matching and other sources of ionic

contaminants.

6.8 Discussion & Future Work

As mentioned in the text, currently PERI features particle radii to within 3 nm.

While this is fantastically precise, for the data shown in the paper the Cramer-

Rao Bound is approximately 1 nm, or even slightly smaller. WHile it is more

difficult to measure accuracy to which particle positions are identified, given that

the radii are not perfect I would imagine that, for sufficiently high SNR images,
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the particle positions have some slight systematic errors at around 1 nm. In this

section, I would like to briefly discuss what I think the reasons are for this current

limitation. Incidentally, while Matt Bierbaum and I have discussed this extensively,

these thoughts are my own, and while Matt may agree with some of them he may

also disagree with some of them.

Featuring errors above the CRB can only arise from an incomplete model.

Generally, there are two broad possibilities for an incomplete model: (1) The

model equation used in PERI (e.g. equation 5.2 in the main text) is correct, but

different components of the model are implemented correctly, or (2) The model

equation used in PERI is wrong and the image formation process is actually a

similar but distinct model. I will briefly address each of these two possibilities in

order.

6.8.1 Incorrect Model Components

The residuals between the data and the model provide information about what is

incorrect about the model. For the typical SNR ≈ 30 data shown in the paper, it

is difficult to see structure in the residuals clearly, since the scale of the structure

is about the same as the noise. In Fourier space there is a clear ring of residuals,

shown in figure 5.2, that shows that the model is missing something on the scale

of the particles. However, it would be easier to see the difference in real space. To

this end, figure 6.8.1 shows an image of colloidal spheres in real space at a very

high SNR ≈ 100, taken with a lot of fluorescent dye and a high laser power. In

this image, rings are clearly visible around the particles. The rings are small in

magnitude, but are delocalized over several pixels.
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Figure 6.16: A high-SNR image of the 1.3 µm silica spheres as reconstructed
with PERI. Upper panel: The raw data, in an xy (center), yz (right), and xz
(lower) cross-section. Lower panel: The difference between the data and the best-
fit model, at the same cross-sections; the scale in this image is 3× brighter than
in the residuals in the text of chapter 5. At this high SNR, the rings around the
particles due to an imperfect PSF are clearly visible. The region of strong residuals
at the left-center of the image is from a small piece of “schmutz” in the sample
and not from a regular particle.
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This structure helps us determine what the issues could be with the model. If

the model in equation 5.2 is correct, there cannot be a large problem with correctly

aliasing the Platonic image, since this would produce residuals on the scale of one

pixel. There cannot be a problem with the description of the illumination field

or the background, as the residuals are always localized to near a particle. Only

the PSF could be a problem. While the PSF we use is calculated exactly from

the most realistic models in the literature of confocal point spread functions for

large-aperture lenses, these models have some approximations and may not be

completely correct.

Finite Focal Length: The focus of a lens arises due to constructive and desstruc-

tive interference. A perfect lens shapes the incoming wavefront to be equiphasal

on a spherical cap surface, with the opening angle of the spherical cap equal to the

acceptance angle of the lens. Since the center of this sphere is equidistant from

each point on the surface, the secondary waves propagating from this spherical

surface constructively interfere at the center, creating a bright focal spot. A point

slightly off the center of the sphere is not equidistant from every point on the

sphere, and the secondary waves will have some slight destructive interference at

this point, creating a slightly dimmer intensity here. As a result, the intensity is

brightest at the focus (the center of the sphere) and decreases (non-monotonically)

with distance away from the focus. For a lens with aberrations, the light is not

equiphasal on the spherical cap, and the structure of light near the focus is more

complicated.

The intensity variation in the focal region depends on the pathlength differ-

ence traveled by light from different points of the spherical cap. In general, the

pathlength difference depends on both the position of the point in the focal re-
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gion, which we will parameterize by (x, y, z), and on the position on the spherical

cap, which we will parameterize by spherical coordinates (f, θ, φ), where the con-

stant f is the focal length of the lens or the spherical cap’s radius of curvature.

The intensity at a given point (x, y, z) is then determined by integrating over all

the wavelets that leave each point (θ, φ). However, for positions near the focus

(x, y, z)/f ≈ (0, 0, 0), basic geometry shows that the pathlength difference is in-

dependent of f . As a result, the intensity structure near the focus is independent

of f , eliminating one parameter from the description of the PSF and considerably

simplifying the intensity strucutre. This approximation is used in large-aperture

lens confocal PSF calculations, and it is what is used in PERI. Without this, the

PSF described by equation 6.8 would be considerably more difficult to implement.

However, empirically we find that PERI requires knowledge about the PSF rel-

atively far from the focal point, especially along the optical axis direction. At these

large distances, ignoring the finite size of f might not be a good approximation.

From classic work done in the small-aperture limit [17], a finite f should tighten

the focus of the lens, changing its behavior at the longest distances calculated

by PERI. Ignoring this correction at long distances could bias the PSF at short

distances, as it tries to trade off errors at different distances, providing the rings

visible in figure 6.8.1. The effects could be included as a power series in (x, y, z)/f ,

but some analysis would be required to understand what the correct form is and

to make it rapidly numerically calculable.

Residual Aberrations: Aberrations in the lens distort the cophasal surface from

a spherical cap into something more complicated. These aberrations arise either

from residual aberrations in the lens or from aberrations induced by index mis-

match between the sample and the optics. Usually these aberrations are discussed
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for low-aperture lenses, where the spherical cap is simple a flat disk. The wave-

front aberration can depend not only on the position ~xd on the disk, but also on

the position ~xi in the image space. For cylindrically-symmetric microscope optics

which are the norm, symmetry dictates that the aberration can only depend on

the invariant products x2
d, x

2
i , and ~xd · ~xi. As a result, usually the aberrations are

described in power series in terms of these three variables. The lowest order aber-

ration enters at quartic powers such as x4
d; quadratic powers simply correspond to

a change in the focal position.

Since PERI fits the index mismatch and the distance of the lens from the

interface, PERI already includes some of the possible residual aberrations in the

lens. However, the aberrations that PERI currently fits are only one combination

of fourth- and sixth- order spherical aberration, corresponding to one term which

is a combination of x4
d and x6

d. Any other residual aberration in the lens is not fit,

which would affect the PSF and bias the measurements. Due to some structure in

the fit residuals, at one point I had guessed that including a different combination

of fourth and sixth order aberrations could describe the PSF better. Spherical

aberration is particularly simple to include, as it only depends on |xd| and thus the

PSF does not change with in-plane position; the integrals in equation 6.8 simply

change slightly. However, including this additional correction did not significantly

improve the fit or the radii errors. Including other aberrations such as coma,

say, is much more difficult. These other aberrations couple to the position in the

image. As a result, the point-spread function at one point is not simply given by a

one-dimensional integral like that in equation 6.8, but requires a two-dimensional

integral over both θ and φ. Moreover, since the strength of the aberration changes

with the position in the image, the PSF no longer describes a convolution in x

and y but a spatially-varying convolution, which is much slower to implement
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numerically. While the residual aberrations might be a problem, they should have

a signal which is radii errors and fit residuals that are large away from the center

of the image and that vary with position. We do not see significant errors like this

in our fits, but since the effect we are looking for is small these aberrations may

still be important.

6.8.2 Incomplete Model: two PSFs

The actual process of image formation is more complex than the simple model

of equation 5.2. Light is focused through dirty optics onto the sample. This

fluoresces a distribution of dye, which then travels back through the dirty optics

but along a different path to be focused on the detector. Both of these focusing

operations produce a separate point-spread function. For confocal microscopy with

uniform illumination or with a pointwise-rastered collection, the combined effect

of these PSFs is to simply create one PSF which is the product of a detection and

illumination PSF, as discussed in chapter 5. However, for uneven illumination this

is no longer the case. The sample should be modeled as illuminated with the dirty,

uneven image of a line, and then that image propagated back onto the detector.

This will result in a split-PSF model with two separate PSF convolutions – one to

describe the illumination and one to describe the detection, rather than only one

PSF that describes both illumination and detection.

The split-PSF and the single-PSF model should be equivalent for slowly-varying

illumination that is uniform on the scale of the PSF. Likewise, any difference be-

tween these two models should arise as structure that is similar to the illumination

scale. Figure 6.8.2 suggests that this might be the case. The figure shows the

featured radii plotted versus each of the z, y, and x position of the particle, for
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about 1.2 million particles.

The solid line is a fit of the radii to a polynomial of degree 5, 25, or 50, in the z,

y, or x position, respectively. If there were no biases, these best fits would be com-

pletely flat, aside from a small amount of noise or perhaps some settling in z. As

shown in the figure, the mean featured radii have slight systematic biases that are

on the scale of the 3 nm errors in particle radius and are commensurate with the

illumination stripes in the image. However, the residuals of the fit, averaged over

the y and z directions, do not show this fluctuation (see figure 6.2). This suggests

that the illumination is sufficiently well-fit and of high-enough order to capture

the illumination flucutations, leaving a reason for this mismatch as the difference

between the split-PSF and the single PSF. Implementing a second, complete ILM

would be impractical, since the second ILM would be highly un-constrained as

much of the fit power could be transferred between either of the two ILMs. How-

ever, the fit could be more constrained by requiring the incoming-light ILM and

the detection-light ILM to be the same. The fit would still be much slower, as

PERI would require a second set of convolutions. Alternatively, if the radii er-

rors do result from an uneven illuminating line requiring a second PSF, another

solution would be to thoroughly clean the optics. Decreasing the disorder should

proportionally decrease the error in treating the illuminating line as disorder-free.

Moreover, since this is a small effect, decreasing it by a factor of 2 or 3 would push

it well below the CRB and make it negligible. In contrast, even for clean optics an

ILM would still need to be fit, as it strongly couples to the particle positions and

radii.
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Figure 6.17: Particle radii as a function of position in images of size (z, y, x) =
(50, 256, 512). Each measured particle radius is plotted with a small gray dot; the
plots contain approximately 1200 particles in 1000 separate different images, for
about 1,200,000 different points. The red line is the best-fit polynomial curve. The
particle radii are plotted vs z (left panel), y (right panel), and x (right panel). On
the top of each plot is the standard deviation of the best-fit line, giving an idea of
the radii featuring errors.
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CHAPTER 7

EXPERIMENTAL APPARATI FOR IMAGING & SHEARING

LIQUID CRYSTALS

Most imaging of liquid crystals is done using a set of crossed polarizers. This

technique is a modification of a simple brightfield microscope. A polarizer is placed

in the optical train immediately before the sample, causing the sample to be illu-

minated with polarized light. A second polarizer is placed immediately after the

sample and aligned orthogonal to the first. If the sample is a simple material with

an isotropic index of refraction, then the polarized light emitted from the first

polarizer will be completely extinguished upon incidence with the second crossed

polarizer. However, if the sample is birefringent, then the polarization direction of

the light can be rotated relative to the first polarizer’s direction, and some of the

incident light can pass unabsorbed through the second polarizer. In general, the

light will be rotated whenever the principle axes of the refractive index tensor are

not aligned with polarizer angles, i.e. light will be transmitted when the in-plane

projection of the molecular director’s orientation is not aligned with either of the

two polarizer directions. Since the contrast results from an extinguishing of rotated

light between two crossed-polarized, the intensity at the detector for a perfectly

aligned sample is proportional to cos2 θ sin2 θ, where θ is the angle between the

director and any one of the crossed polarizers. A full analysis for spatially-varying

three-dimensional director fields results in a more complicated expression [83].

Crossed-polarized microscopy has the advantage of being extremely simple to

use – all that is required is the ability to place one polarizer in the optics train

before the sample and one polarizer after the sample. However, the technique

does not give detailed information about the sample. The crossed polarizers only
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give information about the director averaged over the optical z axis, while in

reality the director can vary freely in three-dimensions. Moreover, since all the

transmitted light is extinguished when the director is aligned along either of the two

polarizers axes, polarized light microscopy does not distinguish between a director

configuration and that same configuration rotated by 90◦ about the optical axis.

As such, better techniques are needed to measure more detailed properties of a

liquid crystal director field.

One such technique is Fluorescence Confocal Polarizing Microscopy

(FCPM) [132, 87]. FCMP works by impregnating the liquid crystal with a di-

lute amount of fluorescent dye. The dye is chosen so that it orients itself at a

fixed orientation with respect to the director, usually with the dye’s excitation

axis parallel to the local director field but sometimes with the dye’s axis perpen-

dicular to the director. (Fluorescent dyes are usually well-modeled by a dipole;

absorption occurs from the light parallel to the dipole axis and emission occurs

as radiated by a dipole oscillating along the dye’s axis, see e.g. [5, 75] for a very

brief discussion of this.) The sample is then imaged with a confocal microscope,

modified so that the excitation laser’s polarization is controlled along a fixed axis.

Only the portion of the excitation light that is polarized along the dye’s orienta-

tion contributes to the dye’s excitation, resulting in one factor of ∝ cos2 θ in the

contrast. The dye then fluoresces, and this fluorescent light is then passed through

a polarizer oriented along the same axis as the excitation polarizer before it is

detected by the detector. This second extinction creates an additional factor of

∝ cos2 θ in the contrast, resulting in an overall ∝ cos4 θ intensity signal. There

are several advantages to FCPM over cross-polarized microscopy. First, the cos4 θ

contrast is much greater than the ordinary cos2 θ contrast from polarized light

microscopy. Second, since dye excitation is essentially a local measurement, the
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behavior of the collected signal is not complicated by a director field that varies

along the optical axis direction. Third, since FCPM relies on excitation and not

on rotation, FCMP can easily distinguish between 90◦ rotations of the director, in

contrast to polarized-light microscopy. Fourth, and most importantly, since FCPM

is a confocal technique, the image plane can be scanned throughout the sample

to reconstruct a full, three-dimensional image of the director field instead of the

z-averaged image taken from polarized light microscopy.

Outfitting a confocal microscope for FCPM normally requires a serious mod-

ification of the microscope. Here, I describe a plug-and-play modification for a

Zeiss confocal microscope that instantly equips any confocal with FCPM capabili-

ties. While I tested this design on a line-scanning confocal (5 Live), the apparatus

should work on any confocal, including spinning disk or pinhole scanned confocals,

as long as the microscope chassis is standard Zeiss chassis such as an AxioObserver

Z1. The only determining factor is the physical dimensions of the slider slot in the

beam path, which is the same on most of the Zeiss microscopes.

The Zeiss confocals operate by illuminating from one direction (the bottom) and

collecting the fluorescent light from the same direction. As a result, the easiest way

to outfit the microscope with an excitation and fluorescent polarizer is to use one

polarizer, placed in a region of the beam path that both excitation and fluorescent

light pass through. This setup also ensures that the excitation and fluorescent

polarizers are always aligned. From the design of the microscope, the best place

to place the polarizer is near the filter cube assembly, which is immediately before

the objective lens in the excitation beam path. Ideally, the user should be able

to rotate the polarization direction while collecting data. This creates a problem,

however, since the intensity of the polarized incoming laser will be attenuated by
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the rotating polarizer, confounding any quantitative measurements of the director

direction. Placing a quarter-wave plate immediately in before of the polarizer fixes

this problem. When properly aligned, the quarter-wave plate circularly polarizers

the laser, and the sample is illuminated with the same intensity regardless of the

polarizer orientation. After the detected light passes back through the polarizer,

it will again be rotated in a random direction by the quarter-wave plate. However,

since the detector detects the intensity independent of polarization, this second

passage through the quarter wave plate will not affect the recorded intensity, aside

from the possibility of slight polarization-dependent reflectivities within the optical

path.

The challenge is implementing this fixed, calibrated quarter wave plate and

rotating polarizer within the confined space of the microscope. Unless the filter

cube is removed, the only viable location in the beam path is the slider position,

a small gap about 12 mm high and 21 mm wide. This small height must contain

both the polarizer and the quarter wave plate in series, mounted in such a way

that the polarizer can easily rotate while the quarter wave plate remains rigidly

fixed. To accomplish this, I designed and machined parts for a FCMP slider that

fits in the slider section.

The FCPM slider is a modification of a Zeiss slider (Zeiss part number

4281030000000000), as shown in figure 7.1. The original slider consists of a slider

body, which contains a set of mounts for a geared knob that is connected to a

polarizer mount by a belt. The polarizer mount has an additional upper surface

which mounts into a slight groove in the cover, ensuring that it rotates concentri-

cally. The polarizer sits in the mount at a 4◦ angle to minimize complications due

to scattered reflections, and is rotated by a belt (yellow).
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Figure 7.1: Slider Design. The modified Zeiss slider (right) as compared to
the original (left). Note that this is a mock-up to illustrate the principles of the
design and not a proper engineering schematic; parts are neither drawn to scale nor
completely faithful to the actual machined material. There is an additional access
hole on the opposite side of the slider from the set screw, to allow for turning of
the 1/4 wave plate mount without disassembling the slider.

The modified slider differs from the original mainly in the rotating mount.

The mount is re-machined, trimming off material on both the top and the bottom

to allow for the quarter-wave plate mount to sit inside the slider as well. The

polarizer’s seat is also flattened, removing the 4◦ angle on the polarizer to allow

for more space and remove some confounding reflections. The polarizer mount

rotates on an “axle” on the upper surface of the quarter-wave plate mount itself,

which projects far enough into the polarizer mount to allow it to rotate smoothly

but not so far as to grind on the polarizer itself. Below this axle is a thin, wide

plate on the quarter wave plate mount, which allows the mount to be fixed in

place. A portion of this plate is notched to allow for rotation of the fixed quarter

wave plate with a screwdriver via an access port; the rest of the plate is smooth

to allow for a set screw to bite strongly onto the plate and fix it in place. The

bottom of the quarter wave plate mount is machined to sit smoothly in the hole at

the bottom of the slider body. The quarter wave plate itself is snugly snapped into

the mount; in the final version both optics were also later glued. A printed grid

with 2.5◦ marks is affixed on the bottom of the quarter wave plate mount to allow

for precise rotation and alignment of the mount. The quarter wave plate mount
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is machined of one piece of material. In addition to these parts, the body of the

slider is modified slightly with an access port and with a tapped set screw hole.

The slider requires some initial calibration. The quarter wave plate is designed

to be positioned at an arbitrary angle, since manually loading a quarter wave plate

at the correct position to within a fraction of a degree is impossible. Calibration

involves first setting the quarter-wave plate to the correct angle, then measuring

the intensity variation across the field of view as a function of polarizer angle.

(While the intensity should be uniform, even at the optimal quarter-wave plate

position the intensity is not uniform and the variations in intensity change with

polarizer angle.) To do the calibrations, a slide filled with a heavily dyed, isotropic

liquid is placed on the microscope. In principle, the random isotropic distribution

of the dye ensures that a perfectly aligned quarter wave plate will result in no

change of the recorded intensity with polarizer angle. If the quarter wave plate

is misaligned with respect to the polarization of the incoming laser beam, there

will be a modulation of the intensity with polarizer angle. The quarter wave plate

is rotated to the orientation that produces the minimum variation of transmitted

laser intensity with changing polarizer angle, and fixed in place using the set screw.

While FCPM is an excellent technique for investigating the static structure of

liquid crystals, the slow scanning nature of confocals means that FCPM is ill-suited

for studying rapid dynamics. Here polarized light microscopy shines. The time

resolution is only limited by the camera speed and the intensity of the light source,

which are both easy to increase to well beyond confocal speeds. To that end, I

re-machined a liquid-crystal cross-polarized shear cell for use with a microscope.

The design of the liquid crystal shear cell builds heavily on the design of the

confocal rheometer in ref. [97]. Two plates are aligned carefully to a small gap
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with a set of differential screws. The shearing motion is controlled by a piezo,

allowing for precision control of complex, bi- or even tri-axial strain waveforms. A

solvent trap isolates the sample from evaporation to the environment. The entire

apparatus mounts on a microscope stage, allowing for simultaneous shearing and

imaging.

However, the liquid-crystal shear cell differs in several key aspects from the

shear cell in ref. [97]. First, porting the light through the apparatus for crossed-

polarizing microscopy prevents the use of the Force-Measurement Device (FMD).

There is instead a different top-plate portion that still contains a solvent trap.

Second, the piezo stage is mounted on the top plate, not the bottom plate. The

piezo then drives the top plate back and forth with a shearing motion, leaving the

bottom plate stationary. This has the advantage of reducing the motion of the

sample near the bottom plate, where the microscope images, and of preventing

the bottom plate from possibly grinding against the lens. Third, since the base

plate mounts directly on the lower mounting plate, the bottom coverslip height is

positioned at the same height as an ordinary sample would be. As a result, the

lens does not need to be lofted, in contrast to the ordinary shear cell. In addition

to removing the need for an adapter that complicates the optical alignment, it

also eliminates the possibility of smashing the delicate lens against the shear cell

frame by accidentally selecting a different lens in the software and causing the

microscope to automatically, rapidly rotate the lens turret; these accidents have

damaged lenses in the past.

These differences are shown in figure 7.2. Both the upper and lower mounting

plates are disks of the same size as in the original shear cell, with similarly ma-

chined mounts for both the thumbscrew posts and springs. In addition, the lower
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Figure 7.2: Liquid-Crystal Shear Cell. A rough schematic of the re-machined
pieces and assembly of the liquid crystal shear cell. The view is a cross-section
through the center of the roughly circularly symmetric apparatus. The dark gray
corresponds to machined components which are solid in the cross-section; the light
gray corresponds to circular or square holes which allow light to pass through.

mounting plate has the same set of screw holes to mount the microscope mount

directly on the lower plate. Other than these features, the two mounting plates

differ. The lower mounting plate is outfitted to directly mount the (standard) base

plate and solvent trap, such that the bottom of the base plate sits flush with the

bottom of the microscope mount. The top plate is machined with a square hole

on the inside, of the same dimensions as the internal hole on the piezo; a rotating

polarizer can be mounted in this square hole (not shown). In addition, there are

screw holes to mount this piezo directly on the top plate. On the bottom of the

piezo is mounted the upper portion of the top plate. This upper piezo mount has

a large through hole and a large groove. After this upper piezo mount is mounted

on the lower surface of the piezo, the rest of the upper plate and upper solvent

trap is lowered through the piezo into the hole in the mount. The upper plate

consists of a disk that bolts into the groove in the upper piezo mount; once the

shear cell is assembled the top plate can be quickly changed by removing these

bolts and the upper plate. Bolted to the disk is a cylinder with a through hole in
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the center to allow the light to pass through. The bottom of this flat surface is

not smooth. Instead, there are raised rings at the center and edge of the cylinder.

On the center ring a small, 13 mm circular glass coverslip mounts and serves as

the upper portion of the sample chamber. The outer ring serves as the upper

portion of the solvent trap, penetrating into the pool of solvent in the base plate

and solvent trap. To allow for small gaps without mechanical contact between

the upper and base plates, the solvent trap ring is shorter than the coverslip ring.

Finally, to prevent the sample from evaporating through gaps in the apparatus,

the cylinder portion of the upper plate is machined from one piece of material.

Thus, the only possibility for outside air to exchange with the sample when the

solvent trap is filled is through improper gluing of the glass coverslips to the upper

or base plates. This is in contrast to the normal shear cell, where air can exchange

through the wiring path of the FMD; even when the FMD is sealed the normal

shear cell chamber is quite large and can result in some temporary evaporation of

the sample.
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CHAPTER 8

CONCLUSIONS

Nonspherical colloidal particles have a wide variety of interesting behavior, even

in the dilute limit. While their orientation dynamics are somewhat complicated,

they can be simply understood in terms of the particle phase angle and orbit con-

stant. Not only does this understanding allow for detailed control of a suspension

(chapter 4), but it also has physically measurable consequences (chapter 2). While

these experiments and theory were done in the dilute limit, their ideas and lessons

should be applicable to at least semidilute suspensions. It would be interesting to

explore the behavior of axisymmetric colloidal particle suspensions away from the

dilute limit. Furthermore, the analysis and experiments in this thesis were done

only for axisymmetric particles. While the rotational trajectories of some particles

that are not axisymmetric is described by a Jeffery orbit [24], a particle that is not

axisymmetric will in general have a more complicated rotational orbit – indeed, for

non-axisymmetric particles the orientation is not even defined on a unit sphere. As

shown by in ref. [157], the orientation dynamics of even weakly non-axisymmetric

particles can be considerably richer than a simple Jeffery orbit, even when their

symmetries are still ellipsoidal. As such, investigations of non-axisymmetric par-

ticles would be a fertile ground for exploring non-Newtonian suspension dynamics

and physics far from equilibrium.

To what directions could these projects lead? One possible avenue of future

research would be studying the orientation dynamics of particles confined to the

flow-gradient plane as a rheological model system. While in practice confining ori-

entations to the flow-gradient plane is difficult, this system is still a well-defined,

physically reasonable rheological system which displays a host of rheological phe-

215



nomena. Importantly, there exists an analytical solution at arbitrary strain am-

plitudes and for arbitrary strain waveforms. At high Pe, the solution in chapter 3

includes both memory effects and relaxation effects, and the dynamics create rhe-

ological signals ranging from shear-thinning to normal stresses, with even some

slight shear thickening or “amplitude” thickening. Extending the solution to finite

Pe could allow for the exploration of viscoelastic effects as well, through the elastic

Brownian stresses. By exploring this solution, more intuition could be built up for

a realistic model system at strains large compared to unity.

Another possible direction for future research would be examining more com-

plex flows than oscillatory simple shear, especially after a complete solution for

the full orientation space is found. As I showed in chapter 4, even for particles

confined to the flow-gradient plane it is possible to richly control the orientation

dynamics. This control would be greatly extended using shear flows where not

only the strain rate but also the strain axes change with time. Even for a flow

controlled only by two parallel plates there is much flexibility here. For instance,

the plate could be sheared along one direction of simple shear, say x, then along

a second, orthogonal simple shear direction, say y, and also moved perpendicular

to the plane to create an extensional flow. Coupling these motions together might

allow for strong control of particle orientations. Since Stokes flow is reversible, any

oscillatory cycle must not create a net drift of the particles orientations. However,

it may be possible to create strong focusing of particle orientations when this cycle

is coupled to diffusion, similar to the behavior seen in chapter 4. Furthermore, for

multiaxial shear it may be possible to focus the particle orientations along more

directions than just one flow direction, as the flow direction could rotate with time.

In this thesis I have also discussed reconstructing images to extract physical pa-
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rameters. This method works because of an exhaustive attention to detail and the

inclusion of the most-realistic physical models. As discussed in chapter 5, ignor-

ing these tiny details or using heuristic physical models will not extract accurate

parameters. However, this is as much an art as it is a science – some details may

not need to be included, as discussed in section 6.4. Determining which aspects

of the image formation matter and which do not can only be done through either

trial and error or thorough analysis of the corresponding effects. Moreover, the

model needs to be implemented in a numerically stable method to avoid getting

the optimization stuck. As an example, we originally tried to vary the size of the

calculated PSF, depending on the fitted parameters. However changing the PSF

size by one pixel even for a large image can create serious discontinuities in the

cost, preventing most algorithms from converging. While we found several meth-

ods to avoid some of this discontinuity, we found that the best method is simply

not to vary the PSF’s calculated size. Ignoring this and similar numerical details

will result in a fit that will not converge, returning incorrect answers. Paying at-

tention to these physical and numerical details will provide a method that allows

for extremely precise localization of objects.

The apparatus of PERI is very flexible and could easily be extended to other

imaging modalities. By accurately, quantitatively understanding the physics of

the corresponding image formation, PERI could be extended to examine micro-

scope imaging modalities such as brightfield, darkfield, differential image contrast,

crossed polarized microscopy, or even a combination of these techniques examining

the same sample. More exotically, PERI could be extended to analyze atomic po-

sitions in modalities such as Transmission Electron Microscopy (TEM), Scanning

Transmission Electron Microscopy (STEM), or Scanning Tunneling Microscopy

(STM). For imaging such as STEM or TEM the size of an atom is determined
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mostly by the electron optics point-spread function. Measuring these point-spread

functions using PERI could allow for better determination of optical aberrations in

the electron beam, possibly allowing for better aberration corrections. In STM, the

finite size of the atom’s image is due to the delocalization of the wave function. As

such, accurately measuring data with PERI could possibly allow for discrimination

of details of atomic wavefunctions at the surfaces of condensed matter systems. But

even in its current confocal form, PERI will provide us with an unprecedented view

on colloidal science, from nanometer interparticle interactions to system-spanning

networks in gels and force chains in glasses and jammed suspensions.
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