Linking Crop Rotations & Feeding Programs

Joe Lawrence, CCA
Cornell University PRO-DAIRY

Many Ways to Feed Cows

- Must follow some basic rules
- Some strategies are more effective than others
- Balance
 - Cow Health
 - Herd Production
 - Feed Resources
 - Economics

Many Ways to Grow Crops

- Certain Crops fit Certain Situations
- Some strategies are more effective than others
- Balance
 - Soil resources
 - Production efficiency
 - Economics
 - Environment

.....the Chicken or the Egg

Crop Rotation matched to Herd Needs

Production Strategy matched to Crop Resources

Adapting Resources and Needs

Sometimes minor changes make all the difference

- Facilities can be renovated
- Land can be improved
- Herd characteristics can be changed
- Management can adjust

But will the change be adequate and does it match you?

Does the Peg fit the Hole?

Assessing the Situation

- S Strengths What do you do well?
- **W** Weaknesses What areas could be improved?
- Opportunities What resources can you capitalize on?
- Threats What areas could cause major problems?

Conventional

• Land base to meet forage needs

Pasture Based

- Contiguous acres
- Winter Forage Supply

Does the system match:

- Land Resources
- Facilities
- Available Markets

GMO Free

- Land base to meet forage needs
- Land base to meet grain needs

Organic

- Land base to meet forage needs
- Land base to meet grain needs

Herd Size

- Optimize production efficiencies
- Spread cost across production units

Does the system match:

- Land Resources
- Facilities
- Labor Resources
- Storage Infrastructure

Production Goals

- Milk production in line with inputs
- Ration Ingredients meet Herd Goals
- Does the facility support level of production

Crop Rotation

- Soil Health
- Pest Management

Owned/Rented

- Core Acres
- Land security
- Investments in Improvements

Does the system match:

- Soil Management Goals
- Crops
- Forage Needs

Soil Type / Growing Season

- Support desired crops
- Timely Harvest

Equipment

- Timely Harvest
- Match Crop Operation

Dairy Farm Case Study 14 year study of yield variation Q1: consistently high yield Q2: variably high yield Coefficient of variation 35 25 20 15 10 10 Corn silage Q3: variably low yield Q4: consistently low yield Q1 fields tend to be well drained, moderately high STP and generally higher SOM This producer pursuing no-till to increase SOM across farm Q1 Q4 10.0 Half of fields yielded higher' Half lower (22T/A @ 68%M) Half of fields had higher variability, **Half lower**

Carry Over

- Feed Consistency
- Buffer against Crop Shortfalls

Footprint

- Adequate Space to Store Properly
- Minimize Losses

Does the system match:

- Herd Size
- Crop Types
- Forage Needs

Intended Use

- Quality matches Animal Group
- Special Considerations
 - Low Potassium

Storage Capacity

Bunk	Avg. Current DM Density	Capacity at Current Densities	Capacity at 16	Capacity at 18
	lbs DM/cuft	tons (As Fed)	tons (As Fed) lbs/cuft	tons (As Fed) lbs/cuft
Corn 1 (Bunk 1)	12.8	1553	1942	2185
Corn 2 (Bunk 3)	10.2	815	1278	1437
Corn 3 (Bunk 5)	12	1640	2186	2460
Corn 4 (Bunk 6)	15.4	2637	2739	3082
SUM		6644	8145	9163
Difference			1501	2519
Haylage 1 (Bunk 2)	12.4	919	1186	1335
Haylage 2 (Bunk 4)	11.7	1732	2368	2664
SUM		2651	3555	3999
Difference			903	1348

Excess Feed

• Right Structure, Right Location

Does the system match:

- Herd Needs
- Land Base

Soil Type / Growing Season

- Consistent Production
- Weather influences quality

Pest Management

• Short Rotations

Soil Type / Growing Season

- Consistent Production
- Weather influences Quality

Soil Health

- Short Rotations
- Cover Cropping

2016 NY Corn Silage Hybrid Trials

Field Resiliency

Madrid

Corn – Sod Rotation
 1st yr. corn after sod

Higher Organic Matter Content

Water Holding Capacity

Nutrient Holding Capacity

• History of manure

Aurora

 Row Crop Rotation with no recent manure history

Table 1. NYS Corn Silage Trials, 2016 Weather Data					
Month	Precipitatio	n (inches)	GDD (86/50 F)		
IVIOTILIT	Aurora	Madrid	Aurora	Madrid	
May	2.00	0.94	303	323	
June	0.74	2.37	483	454	
July	1.90	2.22	673	627	
August	4.56	3.25	713	649	
Seasonal	9.20	8.78	2172	2053	
10 vr Mean	14.10	14.89	2094	1831	

2016 NY Corn Silage Hybrid Trials

		Madrid			Aurora	
	Relative Maturity days	Yield, 35% DM tons/acre	Dry Matter %	Yield, 35% DM tons/acre	Dry Matter %	
Relative Maturity Group Mean	96-100	28.3	34.6 33.9 31.9	15.3 17.5 19.8	32.	

Does the system match:

- Herd Needs
- Land Base

Soil Type / Growing Season

- Consistent Production
- Crop Consistently reaches Maturity

Straw

• Use on Farm

Storage

• Evaluate Risk of Loss

Additional Acreage

• Suitable for Grain Crops

Winter Cover Crops

- Soil Health
- Nutrient Management

Double Cropping

- Place in Ration
- Timely Harvest
- Storage Capacity

Does the system match:

- Herd Needs
- Land Base
- Labor Resources

Soil Type / Growing Season

- Establishment of Cover Crops
- Establishment of Crop Following Cover Crop

Summer Annual

- Planned vs. Emergency Forage
- Niche in Crop Rotation
- Place in Ration

Summer & Winter Annual Forages

What are your overall forage needs?

- Where does this feed fit into feeding plan?
 - Class of animals
 - Other ration ingredients
- How many acres are needed to make it useful?
 - Enough to integrate into ration at meaningful level for meaningful length of time
- Where will it be stored.

Double Cropping

What do you need most?

- Total Season Yield
 - In some years double cropping may out-yield single crop
 - In other years total season yield may be equivalent
 - Example

• Corn Silage

24 tons/acre

• Winter Grain + Corn Silage

6 tons/acre + 18 tons/acre

• Do you need all the corn silage you can get to meet ration needs or does the small grain haylage meet a need in your feed plan?

Winter Cereal Forage

- N at Spring Greenup
- Target Optimum Quality
 - Flag Leaf Stage (stage 9)
 - Before head emergence!!!!
 - Approx. 1 week before 1st cutting of hay crops
 - Later harvest will only result in modest yield increase with big drop in quality = non-lactating feed
- High Pottassium?

 $\underline{http://nmsp.cals.cornell.edu/publications/factsheets/factsheet56.pdf}$

Alfalfa / Grass

- Improved Yield & Quality
- Grass that matches Alfalfa

Alfalfa

- Soil Drainage
- Pest Management

Does the system match:

- Herd Needs
- Land Base
- Labor Resources

Grass

- Fiber Digestibility
- Nutrient Management

30% Average Grass vs. Pure Average Alfalfa

1/3 to 2/3 more tons/a of dry matter per season

6-7% units higher NDFD in mixture

CP near 20%, (vs. 20%+)

Meadow fescue (1-2%) units higher NDFD in mix (30%)

HQ Alfalfa(1-2%) units higher NDFD in mix (70%)

30% MF/HQ Alfalfa (vs. pure alfalfa) may be: 1/3 to 2/3 more tons/acre and 8-11% units higher NDFD

OR about 20% higher NDFD in mixture

Slide Credit: Jerry Cherney, Cornell

First Cut Forage Quality vs. Yield

Alfalfa

Daily alfa	lfa forage chan	ge in yield and	l quality during		
the growing	the growing season				
Cutting	Yield	RFV	RFQ		
	(lb/day)	per day	per day		
	Daily Change				
1	100	-5	-5		
2	100	-2 to -3	-5		
3	100	-2	-4		
4	100	-1	-4		

Undersander, Wisconsin

Grass

• Yield gain: ~150 lbs DM/a/day*

• NDFd decline: 1%/day

• Alfalfa/grass mix: falls in between

 Feeding trials: cows drop 0.5-1.0 lbs/cow/day with each 1% drop in NDFd

when crop reaches maturity DM increase/day slows way down

Cherney, Cornell

For 100 acres: ~5-7 ton DM/day during vegetative growth

^{*}leading up to maturity;

Grasses

Potential for very good feed on land not as well suited for other crops.

• Nitrogen for yield and protein.

Pure Grass - Select early heading variety

Early heading cultivars/species can be 10% units higher in NDFD at heading compared to late heading cultivars/species at heading.

- Jerry Cherney, Cornell

- Are you equip to harvest early and often?
- Can you get on ground in the spring?

Each Puzzle is Unique

- Analyzing your resources & how they fit your goals.
- Ability to adapt to align your business with your resources and goals.
- Develop a Plan and stick with it.
 - Too much on the line to "fly by the seat of your pants"

Thank You!

Joe Lawrence, CCA
Dairy Forage Systems Specialist
Cornell University PRO-DAIRY

<u>jrl65@cornell.edu</u> 315-778-4814

http://prodairy.cals.cornell.edu/