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Basis expansion around atoms…
In the previous talk this morning, you learned about a delocalized 
basis set (plane waves)

Muffin tin approaches (KKR & LMTO)
Spherical potentials around each atom
Wavefunction expanded in spherical waves (s, p, d, f character)
Potential is zero in space between atoms
Solution of different sites connected together (multiple scattering, 
cancellation of orbital tails)
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Multiple Scattering Theory (MST)
From Point Scatterers to Solids

Multiple scattering techniques determine electronic structure by 
accounting for the scattering events an electron wavefunction
experiences within a solid.

This is tougher than it looks
single scatterer, single scattering event – analytic solution
two or more scatterers, infinite number of possible scattering 
events, recursive solutions required for wavefunctions

!
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Short History of MST
Lord Rayleigh (1892) “On the Influence of Obstacles in 
Rectangular Order upon the Properties of a Medium” Phil Mag. –
Laplace Equation

N. Kasterin (1897) – extends MST to Helmholtz equation 
(scattering of sound waves by collection of spheres)

Korringa (Physica, 1947) – first use to find electronic states in 
solids (computational facilities however not up to the task)

Kohn and Rostoker – rediscover in 1950’s (Phys. Rev.)

This leads to the Korringa Kohn Rostoker approach - aka - KKR 

1960’s – first serious calculations using the approach –
computers begin to catch up with the theory!

*Images courtesy of Emilio Segré Visual Archives (http://www.aip.org/history/esva)



So your system has potential….

[ ] ( ) ( )rErVHo
rr ψψ =+

-Ho is the free space Hamiltonian
-V is the perturbing potential
−Ψ is the electron wavefunction

( ) ( ) ( ) ( ) ( ) rdrrrrGrr o ′′′′+= ∫ 3V, rrrrrr ψχψ

We can express the wavefunction at some position as a sum of the
free space wavefunction, χ, with no perturbing potential, and 
contributions from the perturbing potential, V, at different sites.

In this case, Go is the free electron propagator and describes motion
in regions where no scattering from the potential occurs.



Letting Green do the expansion

In analogy to the previous wave function equation, 
we can do a similar expansion for the system Green 
function.

VGGGG oo +=
George Green’s Mill
Nottingham, EnglandWe can expand this equation out to infinity…
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The total Green function acts as the system propagator.  This
expansion shows the infinite number of scattering events 
that can occur through potential interactions.  Electron propagation
in free space is described by Go.



Introducing the T matrix

We can rearrange the last equation to isolate 
the effects of the potential.
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where
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The scattering matrix, T, completely describes scattering
within the potential assembly.  It contains all possible
scattering paths.



Multiple Scattering Sites

Assume the potential is made up
of a sum of terms due to different
cells or atoms.

∑=
i

iVV

The T matrix in this case becomes:

...++=⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑∑∑

j

j
o

i

i

i

i

i

i VGVVVTT

We can separate out the sequences where the scattering always
involves the same cell or atom into the cell t matrix.
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Atomic t matrix uncovered

Solve the radial Schrodinger’s equation for an isolated 
muffin tin potential and determine the regular and
irregular solutions, Z and S.

The atomic t matrix is diagonal in the angular momentum
representation.

li
ll eit δα δsin=

The phase shift, δ, can be found from the atomic 
wavefunction.



All the possible paths…

We can now write the T matrix in terms of the single site
scattering matrix, t.
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This equation shows that the scattering matrix of an 
scattering assembly is made up of all possible 
scattering sequences.  

Each scattering sequence involves scattering at 
individual cells with free electron propagation between.
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Getting the Band Together

In the MT formalism, the T matrix becomes:
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There exists a matrix M such that Tij are the elements of its inverse.
The matrix m is just the inverse of the cell t matrix.
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The inverse of the T matrix is cleanly separated into potential
scattering components, mi, and structural components, Gij.

The poles of M determine the eigenenergies for the system for a 
given k through the following equation:

( )[ ] 0~det =− kGm
This allows us to calculate the system band structure.



Coherent Potential Approximation (CPA)
Best single-site solution for describing 
scattering in substitutional alloys

Scattering properties of alloy
can be represented by an 
effective medium

Treat scattering by atom as an
impurity in the effective medium.

Introduction of atom should 
give no scattering in the correct
effective medium 
(iterative solution). 

Atom in binary alloy Atom in equivalent effective
medium



FeCr Alloys

Cr magnetic 
moment

Fe magnetic 
moment

LKKR-CPA (D. Stewart, unpublished)
KKR-CPA (Kulikov et al., 1997)
Experimental (Aldred et al., 1976)

FeCr Alloy 
Magnetic Moment



Problems with the KKR approach

Linking interstitial region (V=0) with spherical regions 
with muffin tin potentials can be difficult

Determinant used to find band structure is a non-
linear function of energy (energy dependence carried 
in the site t matrices) – this can not be reduced to a 
standard matrix eigenvalue problem

The Solution – Linearize the equation – LMTO 
approach (Andersen, PRB, 1975 – 1370 citations)



Linear Muffin Tin Orbitals

Muffin Tin Sphere

r

Potential

Two sets of solutions
(1) Solves S. Eq. in sphere
(2) Solves Laplace Eq. in interstitial

E

rS

Orbitals based on angular 
momentum character – s, p, d, f
Small basis set!

Main challenges
(1) Matching conditions at sphere boundary
(2) Need an equation that is linear in energy

Need orbitals and 
1st derivatives to match 
at sphere boundary 



Making Life Easier with ASA
Atomic Sphere Approximation
Many crystals are close-packed systems 
(fcc, bcc, and hcp)

Most of the space is filled by atomic spheres

What if we cheat a little…
and have the spheres overlap.

Doing this, we remove the interstitial region
and our integration over space becomes an
integration of atomic spheres.

This approach works best when the system is close packed,
Otherwise we have to pack the system with empty spheres to fill space 



Solving for the Interstitial Region

( ) ( )[ ] ( ) 0,,2 =−+∇− EErVE R rr ϕϕ
Potential in interstitial region is zero
Interstitial region has no space, electron kinetic energy in region zero as well
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Take advantage of spherical symmetry – express wavefunction in terms of 
spherical harmonics and radial portion
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We get two solutions for Laplace’s equation an regular one, 
JL(r) (goes to zero at r=0) and irregular one, KL(r) (blows up at r=0)



Solving inside the Atomic Sphere
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We need to match radial amplitude up with interstitial solutions, J and K, at rS
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Muffin Tin Orbitals

We can define the total wavefunction as 
a superposition of muffin tin orbitals as

( ) ( )∑ Ψ=
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Where the muffin tin orbitals are given by:
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We also need to make sure solutions work in other atomic spheres…
Expansion theorem used to link solutions centered at different spheres
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Structure constants – lattice info



Canceling Muffin Tin Tails
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The form of the muffin-tin orbitals does not guarantee that it solves the
Schrodinger equation.  We must insure that it does 
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Tail Cancellation needed
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For periodic systems, we can write this in k-space and get the band structure!



The Linear Approximation
Taylor expansion of the orbital…

( ) ( ) ( ) ( )vRLvvRR ErEEErEr ,,, ϕϕϕ &
ll −+=

This allows us to express the system in terms of linear muffin tin orbitals that
depend on and      in a tight binding form  (TB-LMTO)

where

Speed Improvement: Removal of non-linearity in determinant equation, 
accelerates calculations.

Accuracy:  Eigenvalues correct up to third order in (E-Ev)

Limitations: Can run into problems with semi-core d-states outside of the 
effective energy window.

ϕ&ϕ
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Making everything self-consistent

No

Yes

Mix
in & 
out

Initial  guess
nin(r)

Calculate
Veff[n]in

Solve Schrodinger
Equation

Recalculate
nout(r)

nin(r) = nout(r) ?

Calculate
Total Energy 

*Diagram courtesy Xiaoguang Zhang (ORNL)



Coming up this afternoon

LMTO commands
Running LMTO calculations

Silicon – role of empty spheres
Magnetic properties – Nickel
Density of states, band structure, etc



An Introduction to Green’s Functions 



Move over Wavefunctions

[ ] 1−−= HEGR Off diagonal terms give you electron propagation,
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From the charge, we can calculate the potential and perform self-consistent calculations



Integration in the Complex Plane

Charge density is determined by integrating the Green’s
function over energy.

However, on the real axis, Green’s function is a very sharp function.
If we move off the real axis, the Green’s function becomes much smoother.

30 data points able to do the work of 1000’s!

ReE

ImE

EF

Core
states

Valence Bands

Zeller et al., Solid State Comm., 44, 993 (1982)



Tight Binding Models
Tight-binding model (results generalize to any first principles approach with
screening or short range interactions) – Take an infinite chain
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Isolated and Periodic Systems
Isolated system (finite Hamiltonian – sharp energy levels)
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Applications: molecules, quantum wells, finite nanowires/tubes

Infinite periodic system – still finite matrix! 
(Period N=4 here, coupling between layer 1 and layer N)
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Device Geometry
Device Region Right LeadLeft Lead

Semi-infinite leads –
coupling between layers in leads must be identical or periodic

Device region –
no constraints on coupling between layers

Coupling between device and leads –
this coupling determines how easy it is for electrons to enter and leave
the device region.  This is critical for device performance.



Green’s Function for Open System

How do we take an infinite system and reduce it to a manageable size?
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No interaction between leads

t01 tN,N+1

1,2,3………….N N+1,N+2,………-3,-2,-1,0

We can fold the information about the leads into self energies in the device region.
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R
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Leads provide a source and sink for electrons.

The self energies give the electrons in the device region a finite lifetime and
broaden the energy levels (no longer an isolated quantum box).

Surface Green’s function



Solving for Surface Green’s Functions

-3 -2 -1 0 1 Semi-infinite chain of atoms

We need the Green’s function at the end of chain

( ) ( )[ ] 1
0111011

−
−−= tEgtEEg RR ε

Several approaches for determining the surface Green’s function have been
devised (direct iterative, iterative with mixing, etc)

Most robust technique uses renormalization approach known as layer doubling.  
With each iteration, the algorithm doubles the size of the layer.  After n iterations, 
the effective layer thickness is 2n larger than the original thickness!

Rapid convergence at the price of more matrix operations:
M.P. Lopez-Sancho, J.M. Lopez Sancho, and J. Rubio, 
J. Phys. F: Metal Phys. 15, 851 (1985).



Ballistic Transport

Transport on length scales less than the scattering length for electrons,
no diffusive transport , concept of potential at positions in device is difficult
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Spin Polarized Tunneling from Co surface 
(LM Suite)

Tunneling from oxidized and 
unoxidized Co surfaces to Al 
probe.

Oxygen monolayer on Co 
flips the spin polarization of 
tunneling from negative 
(minority carriers) to positive 
(majority carriers).

oxox

Figure: k resolved transmission from clean 
Co for (a) majority and (b) minority
carriers and from oxidized Co for 
(c) majority and (d) minority carriers.
Units 10-11 for (a,b) and 10-14 for (c,d). 

Belashchenko et al., PRB, 69, 174408 (2004)



Transport in Molecular Junctions
(all-electron ab-initio calculation)

H

Au

S

C

R=195kΩ

T(E,V)

T(E,0)

Faleev et al., PRB, 71, 195422 (2005)



Benefits of Green’s Function Approach

Capable of Handling Open Systems (something 
periodic DFT codes have trouble with)

System Properties (electronic charge, density 
of states, etc) without using wavefunctions

Ability to Handle Different Scattering 
Mechanisms through Self Energy Terms (not 
discussed here)

Natural Formalism for Transport Calculations
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