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 Early stages in the development of the mouse embryo are characterized by rapid growth 

and dynamic changes in patterning and morphology. However, technical challenges in accessing 

and manipulating embryos after implantation in the uterus have hampered the identification of 

genes involved in these processes. Here I present the characterization of two mouse mutants, 

cetus and Mgrn1
md-nc

. Together these studies have uncovered novel roles for genes in regulating 

early development and patterning of the mouse embryo.  

 cetus mutants were isolated from a forward genetic screen for recessive mutations which 

disrupt the overall morphology of the developing embryo. cetus embryos are small with defects 

in closure of the neural epithelium and a severe reduction in somitic mesoderm. Interestingly, 

positional cloning of cetus revealed a novel point mutation in helicase motif V of the DEAD/H-

box helicase, Ddx11. I found that the cetus mutation in Ddx11 results in widespread apoptosis at 

early embryonic stages without disrupting proliferation. These studies identified novel, tissue-

specific requirements for DDX11 during mouse development and show that helicase motif V is 

essential for these processes. 

 Mgrn1
md-nc 

is a spontaneous, semi-lethal mutation that results in loss of MGRN1 

(Mahogunin RING-finger 1). While the effects of loss of MGRN1 on pigmentation are well 

studied in Mgrn1
md-nc 

mutant mice, the developmental defects in these mice have not been well 

characterized. I found that loss of MGRN1 results in the mis-expression of nodal target genes 



 

controlling left-right patterning including Lefty1, Lefty2 and Pitx2, resulting in congenital heart 

defects and death in ~50% of embryos. My characterization of Mgrn1 mutants uncovered a role 

for this ubiquitin ligase in the regulation of Nodal signaling and left-right patterning. To this 

date, MGRN1 remains the only ubiquitin ligase to have been identified with a direct role in left-

right patterning.  

 



 

i 
 

BIOGRAPHICAL SKETCH 

  

Christina Donata Cota was born in Orlando, FL. The eldest of five children born to Charles 

Walter and Jill Ann Cota, Christina spent the majority of her childhood in upstate New York. 

There upon graduation from high school in 1998, Christina first attended the State University of 

New York (SUNY) at Cobleskill where she received her A.S. in Liberal Arts and Science in 

2000. Upon completion of this degree, she transferred to Skidmore College where in 2002 she 

received a B.A. in Biology. Degree in hand, Christina relocated to Ithaca where she obtained a 

job as a technician in the lab of Dr. Teresa M. Gunn at Cornell University. Here she was 

introduced to working with mouse as a model genetic system and began work on the project that 

would send her to graduate school and result in half of the dissertation that follows this 

biographical sketch.  After two and a half years working as a technician Christina applied to and 

began graduate school in the Department of Biomedical Sciences at Cornell, first via the 

employee degree program in 2005 and later as a fulltime student in 2007. In the summer of 2008 

Christina moved to the lab of Maria J. Garcia-Garcia in the Department of Molecular Biology 

and Genetics where she completed her Doctorate of Philosophy in Molecular and Integrative 

Physiology in 2012. 

 

 

 

 

 

 

 

 



 

ii 
 

 

 

 

 

For my parents Charles and Jill Cota. 



 

iii 
 

ACKNOWLEDGMENTS 

 

There are many people who I would like to thank and without whose support this thesis would 

not have been possible. I was extremely fortunate to have had the opportunity to work under two 

great scientists and inspirational women, Maria García-García and Teresa Gunn. I thank them 

both for their mentorship and support along with the members of my committee; Mark Roberson, 

Marianna Wolfner and John Schimenti. 

I thank all of my labmates for their helpful discussions and critiques, especially my 

benchmates: Seung-woo Jung, Will Walker, Maho Shibata, Pooneh Bagher and Kristin Blauvelt 

whose comments, suggestions and friendship I believe have helped to make me a better scientist 

and lab member. I thank Joe Peters and his lab, especially Qiaojian Shi, for welcoming into their 

lab and for all of their help with biochemical experiments.  

I would like to thank the many wonderful faculty and staff at Cornell University who 

have made themselves available as resources especially the members of and participants in the 

Gunn/O’Brien/Garcia-Garcia/Schimenti Joint Lab Meetings (GOGGS), Vertebrate Genomics 

Club (VERGE), Developmental Biology Journal Club (DBJC) and Replication, Recombination 

and Repair (R3) group as well as Sylvia Allen, the staff and veterinarians of the Cornell Center 

for Animal Resources and Education who care for our animals. 

Finally I would like to thank my friends and family for their unwavering support and 

understanding throughout this and all my endeavors. I am truly grateful to you all.  



 

iv 
 

TABLE OF CONTENTS 

 

BIOGRAPHICAL SKETCH                       i 

DEDICATION                                    ii 

ACKNOWLEDGEMENTS                    iii 

TABLE OF CONTENTS                  iv 

LIST OF FIGURES                 vii 

LIST OF TABLES                  ix 

LIST OF ABREVIATIONS                  x 

 

CHAPTER 1                                1 

INTRODUCTION              

A. Early post-implantation development in the mouse              2 

B. Cell proliferation in early post-implantation development:              5 

     Cell proliferation and growth of the murine epiblast 

C. Morphogenetic cell movements during gastrulation:             10 

     Cell migration and morphogenesis. 

D. Post-gastrulation patterning of the embryo             20 

E. Organization of Dissertation               24 

F. References                  27 

 

CHAPTER 2                               38 

The Cetus Mutation in the Mouse DEAD/H-box Helicase DDX11  

Uncovers an Essential Role for Motif V that is Required for  

Embryonic Development 

A. Abstract                  39 

B. Introduction                       40 



 

v 
 

C. Materials & Methods                42 

D. Results                  48 

E. Discussion                  63 

F. Conclusions                 65 

G. Acknowledgements                66 

H. References                  67 

 

CHAPTER 3                   71 

Mice with mutations in Mahogunin Ring Finger-1 (Mgrn1)  

exhibit abnormal patterning of the left-right axis 

A. Abstract                    72 

B. Introduction                    73 

C. Materials & Methods                75 

D. Results                  77 

E. Discussion                  95 

F. Conclusions                 96 

G. Acknowledgements                96 

H. References                  97 

 

CHAPTER 4                 101 

Conclusions and future directions 

References                  108 

 

APPENDICES  

APPENDIX A                           112 

Analysis of DDX11 interactions with cohesion complex proteins 

A. Introduction                  112 



 

vi 
 

B. Materials & Methods                         112 

C. Results & Discussion              114 

D. Conclusions               114 

E. Acknowledgements              117 

F. References                118 

 

APPENDIX B                           119 

Yeast-2-Hybrid analysis of Mgrn1 interacting proteins 

A. Introduction                  119 

B. Materials & Methods                         120 

C. Results & Discussion              120 

D. Conclusions               125 

E. Acknowledgements              125 

F. References                126



 

vii 

LIST OF FIGURES 

 

1.1 Early post-implantation development in the mouse                           3 

1.2 Cell fate and morphogenetic movements in the early-to-mid                    4      

      streak mouse embryo      

1.3 Cell cycle and checkpoints                             11 

1.4 Genetic specification of the Left-Right axis and models for              22 

      breaking symmetry  

1.5 Pigment-type switching                              25 

2.1 Morphologic defects in cetus mutants              49 

2.2 cetus mutant embryos have severe embryonic defects             50 

2.3 Positional cloning of cetus          52-53 

2.4 Expression of Ddx11 at E8.5 and E9.5               54 

2.5 The cetus mutation disrupts Ddx11               55 

2.6 Apoptosis and proliferation in Ddx11 mutant embryos            57 

2.7 Purification of recombinant DDX11 proteins             59 

2.8 ATPase activity of DDX11 proteins              60 

2.9 Gel mobility shift analysis of DDX11 binding to single-       61-82 

        strand DNA structures 

3.1 Situs defects in Mgrn1 mutant mice          79-80 

3.2 Cardiac and pulmonary defects in 16.5 days post coitum      82-83 

      (d.p.c) Mgrn1 mutant mice 

3.3 Cardiac and outflow tract defects in 18.5 days post coitum      85-86 

      (d.p.c) Mgrn1 mutant mice 



 

viii 

3.4 Embryonic expression of Mgrn1 RNA and protein       88-89 

3.5 In situ hybridization analysis of Nodal, Lefty         92-93 

      and Pitx2 expression in Mgrn1 mutant embryos 

A1.1 Expression of DDX11-FLAG proteins in Hek293T cells          115 

A1.2 DDX11 proteins interact with components of the cohesion ring complex        116 

A2.1 Mgrn1 isoforms                121 

A2.2 Gene ontology analysis of MGRN1 interactions           123



 

ix 

LIST OF TABLES 

 

1.1 DNA damage checkpoints                           8-9 

1.2 Mitotic spindle checkpoint                        12-13 

1.3 DNA repair                      14-16 

2.1 SSLP Primers                  43 

2.2 DNA substrate oligonucleotides                47 

3.1 Lethality in Mgrn1 mutants at weaning                              78 

3.2 Embryonic lethality at late stages of gestation in Mgrn1 mutants           81 

3.3 Cardiovascular and pulmonary phenotypes in Mgrn1 mutant mice           87 

3.4 Asymmetric gene expression in Mgrn1 mutant embryos                                94 

A.1 MGRN1 interacting proteins                                       122 

       



 

i 

LIST OF ABBREVIATIONS 

 

AP: anterior-posterior 

APC: anaphase promoting complex 

AVE: anterior visceral endoderm 

BrdU: Bromodeoxyuridine 

BSA: Bovine serum albumin 

CHD: Congenital Heart Defect 

C-terminus: Carboxy-terminus 

DNA: Deoxyribonucleic acid 

DORV: double-outlet right ventricle 

DSB: double-strand break repair 

DTT: Dithiothreitol 

DV: dorsal-ventral 

ECM: extracellular matrix 

EMSA: Electrophoretic Mobility Shift Assay 

EMT: epithelial-to-mesenchymal-transition 

ENU: N-ethyl-N-nitrosourea 

ESC: Embryonic Stem Cell 

ESCRT: Endosomal Sorting Complex Required for Transport 

H&E: Hematoxylin & Eosin 

IAP: Intracisternal A Particle 

ICM: inner cell mass 

IPTG: isopropyl--d-1-thiogalactopyranoside 

LPM: lateral plate mesoderm 

LR: left-right 

MMR: mis-match repair 



 

ii 

NTA: Ni
2+

-nitrilotriacetic acid 

N-terminus: Amino-terminus 

NVP: Nodal vesicular particle 

OCT: Optimal Cutting Temperature medium 

PBS: Phosphate buffered saline 

PCR: Polymerase Chain Reaction 

PD: proximal-distal 

RING: Really Interesting New Gene 

RNA: Ribonucleic acid 

SAC: spindle assembly checkpoint 

SF2: Superfamily 2 

SSLP: Simple Sequence Length Polymorphism 

TB: Terrific broth 

TGA: transposition of the great arteries 

TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling 

X-gal: X-galactosidase



 
 

 1 

 

Chapter 1 

Introduction 
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A. Early post-implantation development in the mouse. 

 Proper development of the mammalian embryo relies on the coordination of three 

processes; cellular proliferation, specification and morphogenesis. In the mouse, the initial 

establishment of the proximal-distal axis (PD), initiation of gastrulation and early cellular 

rearrangements resulting from patterning of the anterior-posterior (AP) axis are all reliant upon 

cell proliferation (Rossant and P. P. L. Tam, 2004; P. P. Tam and R R Behringer, 1997). 

Specification of embryonic and extra-embryonic cell lineages, and later those of the endoderm, 

mesoderm and ectoderm turn on genes that help to regulate this proliferation as well as the 

cellular and environmental changes that allow for cell movements which ultimately shape the 

embryo.  

In the mouse, attachment of the developing blastocyst to the uterine wall occurs between 

e4.5 and e5.0. At this time, proliferation and differentiation of the inner cell mass (ICM) 

generates a radially symmetric epiblast of primitive ectoderm (R. S. P. Beddington, 2001). As 

the epiblast proliferates and grows along a PD axis, a group of cells located at the distal tip of the 

developing embryo adjacent to the epiblast in the extra-embryonic visceral endoderm, begin 

secreting signaling molecules that will pattern the epiblast. These cells comprise a signaling 

center called the anterior visceral endoderm (AVE). Among the molecules secreted by the AVE 

are the antagonists LEFTY1 and CERL which are potent inhibitors of NODAL signaling (P. P. 

L. Tam et al., 2006). Inhibition of Nodal in the visceral endoderm at the AVE reduces 

proliferation in the region which, along with the active migration of these cells, results in the 

anterior displacement of the AVE (M. Yamamoto et al., 2004).  The relocation of the AVE to the 

anterior additionally results in the restriction of Nodal expression within the epiblast to the  
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Figure 1.1.  Early post-implantation development in the mouse. Illustration of three stages of 
mouse development; pre-gastrulation, gastrulation and neurulation/organogenesis. Embryonic 
cell types are indicated in different colors: ectoderm (ect, blue) endoderm (end, yellow) and 
mesoderm (mes, red). Extra-embryonic tissues are indicated as: ectoplacental cone (epc, grey), 
extra-embryonic ectoderm (exect, green) and extra-embryonic/visceral endoderm(exend, 
orange). Exoceloemic (exoc) cavity is indicated. Orange and red arrows indicate the location and 
direction of movement of the anterior visceral endoderm (AVE) and mesoderm respectively. 
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Figure 1.2.  Cell fate and morphogenetic movements in the early-to-mid-streak mouse 
embryo. Illustration of the regional cell fate and directional cell movements (grey arrows) in the 
developing germ layers. Figure adapted from (P. P. Tam and R R Behringer, 1997). 
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posterior contributing to the establishment of AP polarity within the embryo (Rossant and P. P. 

L. Tam, 2004, Figure 1.1). 

  By e6.5 a group of cells in the posterior region of the epiblast adjacent to the extra-

embryonic ectoderm begin to invaginate at the primitive streak indicating the onset of 

gastrulation. As the primitive streak elongates along the proximal-distal axis of the embryo cells 

continuously ingress, undergoing an epithelial-to-mesenchymal transition (EMT) which 

generates the definitive germ layers of the embryo (Figure 1.1; Nowotschin and Hadjantonakis, 

2010). The relative order of migration and position of cells within the epiblast at the time of 

ingression have been correlated with ultimate fate of those cells within the embryo. Cells which 

ingress first at the most proximal sites within the epiblast contribute to extra-embryonic 

mesoderm while cells that ingress at the most proximal (anterior) regions of the primitive streak 

contribute to the cranial and cardiac mesoderm and the definitive endoderm of the gut (Figure 

1.2; P. P. Tam and R. S. Beddington, 1987; Lawson et al., 1991).   

B. Cell proliferation in early post-implantation development: 

Cell proliferation and growth of the murine epiblast. 

 Upon implantation, the embryonic ectoderm that makes up the epiblast undergoes a burst 

of proliferation. This proliferative burst peaks during gastrulation and results in an approximate 

120 fold increase in cell number over 2 days of development from e5.5 to e7.5 (Snow, 1977). 

The majority of this increase is seen in the primitive ectoderm, the source of progenitor cells for 

the embryonic germ layers (Poelmann, 1980). It has been shown that, while not alone sufficient 

to drive the process, this proliferative burst is necessary to achieve a threshold number of cells 

required for the initiation of gastrulation (Power and P. Tam, 1993; P. P. Tam, 1988). This likely 

provides one explanation for the recent observation that blastocyst cell number at implantation is 

a good predictor of the overall developmental potential of a mouse embryo in embryo transfer 
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experiments (Ajduk et al., 2011). 

 Estimates made from careful study of the mitotic cell populations calculate that the 

average cell cycle duration during gastrulation in the mouse embryo is only 7.5 hours (Lawson et 

al., 1991; Poelmann, 1981; Snow, 1977). By comparison, cell cycle duration in proliferative 

tissues of the adult mouse varies greatly, from 18 hours in the rapidly proliferating intestinal 

crypt to greater than 60 hours in slowly proliferating cells of the corneal epithelium and 

esophagus (Lehrer et al., 1998; Burholt, 1986; Atlas and Bond, 1965).  

In the adult mouse, the length of the cell cycle is typically accomplished by variation in 

the duration of G1 (Pardee, 1989). However, studies in mouse and rat embryos have determined 

that the short cell cycle duration at peri-implantation stages is achieved through a shortening of 

G1, G2 and S phases (Mac Auley et al., 1993; Power and P. Tam, 1993). A major consequence 

of such a shortening of the cell cycle is that cells in gastrulating mammalian embryos would be 

predicted to have little, if any, capacity for DNA repair. The most compelling evidence 

supporting a lack of functional repair pathways during this period stems from experiments in 

which gastrulating embryos were exposed to low doses of ionizing radiation. Treatment of cells 

with ionizing radiation induces double-strand breaks in the DNA which must then be recognized 

and repaired by the cell. In most cells, DNA damage induced by ionizing radiation is recognized 

by components of the G1/S and G2-M cell cycle checkpoints. Activation of either of these 

checkpoints results in cell cycle arrest allowing time for the DNA lesions to be repaired (Sancar 

et al., 2004).  In contrast, gastrulating embryos exposed to ionizing radiation displayed wild type 

levels of proliferation as indicated by Bromodeoxyuridine (BrdU)-incorporation with no 

evidence for cell cycle arrest. Instead, irradiated embryos showed a massive increase in ATM 

and p53-dependent apoptosis in embryonic tissues (B. S. Heyer et al., 2000).  

In spite of the significant contribution of cell proliferation to the development of the 
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embryo, and the intriguing mechanistic questions posed by the massive up regulation of the rate 

of cell proliferation during gastrulation, the mechanisms that regulate the proliferative rate of 

embryonic tissues at early stages of embryogenesis remain poorly understood. What has become 

apparent is that the requirement for genes involved in cell cycle progression, cell cycle 

checkpoints and DNA repair pathway activation in the embryo differs from what has been 

observed in adult tissues (Artus and Cohen-Tannoudji, 2008; Ciemerych and Sicinski, 2005).  

DNA damage checkpoints 

 DNA damage checkpoints within the cell cycle protect the genome from the 

accumulation and propagation of deleterious mutations and chromosomal alterations including 

translocations, deletions, rearrangements and aneuploidies. In mammalian cells, DNA damage 

checkpoints coincide with points of cell cycle transition at G1/S, intra-S and G2/M (Figure 1.3). 

These checkpoints, while distinct in timing; are controlled by a common molecular pathway 

composed of a core set of DNA damage sensors, signal transducers, mediators and effectors that 

recognize and respond to genetic lesions (Sancar et al., 2004). Loss of individual components of 

the DNA damage checkpoint machinery, such as Ataxia telangiectasia and Rad3 related (Atr) or 

Hus1 homolog (Hus1), often results in embryonic lethality at or shortly after gastrulation that has 

been attributed to the increased stress imposed by the rapid proliferation within the embryo 

(Weiss et al., 2000; E. J. Brown and Baltimore, 2000). (Table 1.1) 

Mitotic checkpoint complex  

 The mitotic spindle assembly checkpoint (SAC) prevents improper chromosome 

segregation by detecting failed attachment of spindle microtubules to chromosomes at the 

kinetochore. In the absence of an appropriate kinetochore attachment, the anaphase promoting 

complex (APC), a large multi-subunit ubiquitin ligase is inactive and unable to degrade securin.  
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Table 1.1. DNA DAMAGE CHECKPOINTS   

Protein Function Gene Symbol Gene Name Null Mutant Phenotype 

Sensors 
   

 

Hus1 Hus1 homolog  Abnormal embryonic development 
appearing at gastrulation 
accompanied by widespread 
apoptosis. Embryonic lethal by 
e10.5 (Weiss et al., 2000).  

 

Rad9 Rad9 homolog  Abnormal embryonic development 
appearing at gastrulation 
accompanied by widespread 
apoptosis and reduced 
proliferation. Embryonic lethality 
occurs between e9.5-12.5 
(Hopkins et al., 2004). 

 
Rad1 Rad1 homolog  Unknown 

 

Rad17 Rad 17 homolog  Abnormal embryonic development 
appearing at e8.5. Null embryos 
display growth retardation, 
hemorrhage, somite and neural 
tube closure defects. Embryonic 
lethal by 11.5 (Budzowska et al., 
2004). 

 

ATM ataxia telangiectasia 
mutated homolog  

Homozygous null mice are viable. 
Adults display growth retardation, 
sensitivity to ionizing radiation and 
male and female infertility (Barlow 
et al., 1996).  

 

ATR ataxia telangiectasia 
and Rad3 related 

Peri-implantation lethal by e7.5 
due to defects in proliferation and 
caspase-dependent apoptosis 
downstream of chromosome 
instability (E. J. Brown and 
Baltimore, 2000). 

 
 
 
  

ATRIP ATR interacting 
protein 

Unknown 
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Table 1.1 continued. DNA DAMAGE CHECKPOINTS  
 

Protein Function Gene Symbol Gene Name Null Mutant Phenotype 

Mediators    

 

Mdc1 mediator of DNA 
damage checkpoint 1 

Homozygous null mice are viable 
and hypersensitive to ionizing 
radiation. Adults display growth 
retardation due to defects in 
proliferation. Homozygous males 
are infertile and females are sub-
fertile (Lou et al., 2006).  

 

Trp53BP1 transformation related 
protein 53 binding 
protein 1; 53BP1 

Homozygous null mice are viable 
and fertile. Adults display growth 
retardation, immune defects and 
sensitivity to ionizing radiation (I. 
M. Ward et al., 2003).  

 

TopBP1 Topoisomerase (DNA) 
II binding protein 1 

Peri-implantation lethal by e7.5 
due to decreased proliferation (Y. 
Jeon et al., 2011). 

 
Claspin claspin homolog  Unknown 

  

BRCA1 Breast cancer 1 Abnormal embryonic development 
appearing at gastrulation. Embryos 
are small, lack mesoderm and 
display varying degrees of germ 
layer disorganization due to 
decreased proliferation. Embryonic 
lethal by e9.5 (C. Y. Liu et al., 
1996; Ludwig et al., 1997) 

Transducers    

 

Chek1 checkpoint kinase 1 
homolog  

Peri-implantation lethal by e7.5 
due to decreased proliferation and 
increased apoptosis (Q. Liu, 
Guntuku, et al., 2000; Takai et al., 
2000). 

  
Chek2 CHK2 checkpoint 

homolog  
Homozygous null mice are viable 
and fertile (Hirao et al., 2002).  

Effectors    

 

Trp53 transformation related 
protein 53; p53 

Homozygous null mice are viable 
and fertile (L A Donehower et al., 
1992).  

  
Cdc25c cell division cycle 25 

homolog C  
Homozygous null mice are viable 
and fertile (M. S. Chen et al., 
2001).  
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The presence of securin inhibits the activity of separase (Xingxu Huang et al., 2005; Ciosk et al., 

1998) which is required to degrade cohesion proteins connecting sister chromatids (Hornig et al., 

2002) .  Checkpoint activation results in prometaphase arrest (Musacchio and Salmon, 2007). 

Several components of the SAC such as budding uninhibited by benzimidazoles 3  (Bub3; 

Kalitsis et al., 2000),  MAD2 mitotic arrest deficient-like 1 (Mad2L1; Dobles et al., 2000) and 

cell division cycle 20 (Cdc20; Li et al., 2007) have been knocked out in the mouse and are 

required for embryo survival at either pre-implantation or peri-implantation stages (Table 1.2).  

DNA Repair Pathways 

 DNA repair pathways during development repair damage to the genome resulting from 

increased cell proliferation and cell metabolism, reactive oxygen species and both endogenous 

and exogenous genotoxins (Pachkowski et al., 2011). Three major DNA repair pathways are 

active in the developing embryo: double-strand break repair (DSB), excision repair (including 

both base and nucleotide excision repair pathways) and mis-match repair (MMR). Loss of 

components of these pathways has extremely variable effects on the embryo (Pachkowski et al., 

2011).  Many components of the MMR pathway are dispensable for embryonic development. 

Conversely, loss components of the DSB pathway have severe effects on development resulting 

in early embryonic lethality (Table 1.3). This apparent differential requirement for DNA repair 

proteins may be reflective of the multiple roles of these genes in a wide variety of processes 

including cell cycle progression (Ludwig et al., 1997) and redox pathways (Xanthoudakis et al., 

1996). 

 
C. Morphogenetic cell movements during gastrulation:  

Cell migration and morphogenesis. 

 While it has been estimated that the high rates of proliferation alone are sufficient to 

account for the absolute growth of the mouse embryo during gastrulation (Poelmann, 1981), it is  
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Figure 1.3.  Cell cycle and checkpoints. Schematic representation of the eukaryotic cell cycle
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Table 1.2. MITOTIC SPINDLE CHECKPOINT 
 

Protein Function Gene Symbol Gene Name Null Mutant Phenotype 

Mitotic Checkpoint Complex 
 

 

Cdc20 cell division cycle 20 
homolog  

Embryonic lethal at the 2-cell 
stage due to metaphase arrest 
(M. Li et al., 2007). 
 

 

Bub3 budding uninhibited 
by benzimidazoles 3 
homolog 

Peri-implantation lethal by e7.5 
with mitotic defects resulting in 
a progressive cessation of 
proliferation (Kalitsis et al., 
2000). 
 

  

Mad211 mitotic arrest deficient 
2-like 1 

Peri-implantation lethal by e7.5 
with defects in proliferation, 
chromosome segregation and 
apoptosis (Dobles et al., 2000). 

Anaphase Promoting Complex 
 

 

Anapc2 anaphase promoting 
complex subunit 2  

Homozygous lethal by e6.5, no 
further characterization of the in 
vivo embryonic defects (Wirth 
et al., 2004). 
 

  

Anapc11 anaphase promoting 
complex subunit 11 

Unknown 

Cohesions 
   

 

Smc1a structural 
maintenance of 
chromosomes 1A 
 

Unknown 

 

Smc3 structural 
maintenance of 
chromosomes 3 
 

Unknown 

 

Stag1 stromal antigen 1; 
SA1 

Unknown 
 

  

Rad21 RAD21 homolog; 
Scc1 

Required for zygotic sister 
chromatid cohesion however in 
vivo embryonic development 
remains uncharacterized 
(Tachibana-Konwalski et al., 
2010). 
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Table 1.2 continued. MITOTIC SPINDLE CHECKPOINT 

Protein Function Gene Symbol Gene Name Null Mutant Phenotype 

Regulatory kinases 
  

 

Mad1l1 mitotic arrest 
deficient 1-like 1 

Embryonic lethal, embryonic 
defects were not characterized 
(Iwanaga et al., 2007). 

 

Cdk1 cyclin-dependent 
kinase 1 

Embryonic lethal by e1.5 
(Santamaría et al., 2007). 

 

Bub1 budding uninhibited 
by benzimidazoles 1 
homolog 

Peri-implantation lethal by 
e6.5 (Jeganathan et al., 2007). 

  

Bub1b budding uninhibited 
by benzimidazoles 1 
homolog, beta, 
BubR1 

Abnormal peri-implantation 
development. Embryos are 
small with elevated apoptosis. 
Embryonic lethal by e8.5(Q. 
Wang et al., 2004). 

Transient centromere interacting proteins 
 

 

Aurkb aurora kinase B Abnormal embryonic 
development appearing at 
gastrulation. Embryos are 
small with elevated 
proliferation and apoptosis. 
Embryonic lethal by e9.5 
(Fernández-Miranda et al., 
2011). 

 

Birc5 baculoviral IAP 
repeat-containing 5; 
Survivin 

Null embryos fail to hatch and 
exhibit abnormal nuclear 
morphology including micro 
and macronuclei (Uren et al., 
2000). 

 

Incenp inner centromere 
protein 

Null embryos fail to hatch and 
exhibit abnormal nuclear 
morphology including micro 
and macronuclei (Cutts, 1999). 

Protease    

 Espl1 extra spindle poles-
like 1; Separase 

Embryos homozygous for a 
null mutation embryos are 
peri-implantation lethal with 
defects chromosome 
segregation during mitosis 
(Kumada et al., 2006). 
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Table 1.3. DNA REPAIR 
 Protein Function Gene Symbol Gene Name Null Mutant Phenotype 

Double-strand Break Repair 
 

 

Mre11a meiotic 
recombination 11 
homolog A  

Embryonic lethal; in vivo defects 
not characterized (Buis et al., 
2008). 
 

 

Rad50 RAD50 homolog  Abnormal development appearing 
at gastrulation. Embryos are small 
and disorganized with embryonic 
lethality occurring by e7.5 due to 
decreased proliferation (G. Luo, 
1999). 
 

  

Nbn Nibrin Peri-implantation lethal by e7.5. 
Embryos are small and cells are 
disorganized prior to death (J. Zhu 
et al., 2001). 

Mis-match Repair 

   Mlh1 mutL homolog 1  Homozygous null mice are viable 
and sterile (W Edelmann et al., 
1996). 
 

 Msh2 mutS homolog 2  Homozygous null mice are viable 
with a predisposition to lymphoma 
(de Wind et al., 1995). 
 

 Msh4 mutS homolog 4  Homozygous null mice are viable 
and sterile (Kneitz et al., 2000). 
 

 Msh5 mutS homolog 5  Homozygous null mice are viable 
and sterile (de Vries et al., 1999). 
 

 Msh6 mutS homolog 6  Homozygous null mice are viable 
with an increased predisposition to 
GI tumors, B- and T-cell 
lymphomas resulting in a 
decreased lifespan (Winfried 
Edelmann et al., 1997). 
 

 Pms1 postmeiotic 
segregation increased 
1  

Homozygous null mice are viable 
(Prolla et al., 1998). 
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Table 1.3 continued. DNA REPAIR 

Protein Function Gene Symbol Gene Name Null Mutant Phenotype 

Excision Repair 
   Apex1 apurinic/apyrimidinic 

endonuclease 1 
Abnormal development appearing 
post-implantation with embryonic 
lethality occurring by e7.5 due to 
apoptosis (Xanthoudakis et al., 
1996). 
 

Fen1 flap structure specific 
endonuclease 1 

Homozygous null embryos are 
peri-implantation lethal with 
defects in proliferation and 
blastocyst outgrowth (Larsen et 
al., 2003). 
 

Xrcc1 X-ray repair 
complementing defective 
repair in Chinese hamster 
cells 1 

Abnormal development appearing 
post-implantation with growth 
retardation and apoptosis 
resulting in embryonic lethality 
by e8.5 (Tebbs et al., 1999). 
 

  Ercc1 excision repair cross-
complementing rodent 
repair deficiency, 
complementation group 1 

Peri-natal lethal by weaning. 
Mice are susceptible to oxidative 
stress and die due to liver failure 
(McWhir et al., 1993). 
 

Ercc8 excision repair cross-
complementing rodent 
repair deficiency, 
complementation group 8; 
Csa 

Homozygous null mice are viable 
with increased sensitivity to UV 
and predisposition to develop skin 
cancer (Gijsbertus T J van der 
Horst et al., 2002). 
 
 

Ercc6 excision repair cross-
complementing rodent 
repair deficiency, 
complementation group 6; 
Csb 

Homozygous null mice are viable 
with increased sensitivity to UV 
and predisposition to develop skin 
cancer (Gijsbertus T.J van der 
Horst et al., 1997)( van der Horst 
et al., 1997). 
 

Rad23b RAD23b homolog; Hr23b Loss of Rad23b is semi-lethal. 
Surviving homozygous males are 
sterile and females are sub-fertile 
with facial and vascular defects 
(Ng et al., 2002)(Ng et al., 2002).  
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Table 1.3 continued. DNA REPAIR 

Protein Function Gene Symbol Gene Name Null Mutant Phenotype 

Excision Repair  
Pold1 

 
polymerase (DNA 
directed), delta 1, 
catalytic subunit 

 
Homozygous null embryos 
are peri-implantation lethal 
with defects in 
proliferation and blastocyst 
outgrowth and increased 
apoptosis (Uchimura et al., 
2009) 
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the migration of these newly formed cells that is essential for the morphogenetic events that 

shape the basic body plan in gastrula stage embryos (Figure 1.2; Parameswaran and P. P. Tam, 

1995; Lawson et al., 1991).  A great number of genes and molecules have been identified to play 

a role in these processes including extracellular matrix (ECM) components, cell surface receptors 

and signal transduction molecules capable of activating intracellular signaling molecules and 

cytoskeletal components (P. P. L. Tam et al., 2006). Still the mechanisms that coordinate gene 

expression, activation and signaling transduction cascades necessary to define the shape of the 

embryo remains an active area of research. It is clear; however, that morphogenesis of the 

embryo is dependent upon interactions between cells, their neighbors and their environment. 

Integrins 

 The integrin family of cell surface receptors is the major transducers of signals from the 

ECM. Upon ligand binding, integrin receptors initiate cascades of intracellular signaling which 

ultimately result in cell movement. There are 18  subunits and 8  integrin subunits in 

mammals, the subunits heterodimerize to bind ligands (J. T. Yang et al., 1999). Functional 

redundancies amongst the integrin receptor heterodimers have made separating their functions 

difficult. However, loss of v integrin in mice results in embryonic lethality with the majority of 

embryos dying by 10.5 dpc due to vascular defects, defects in cell proliferation, cell survival and 

posterior mesoderm-derived structures (Goh et al., 1997; Bader et al., 1998; Yang et al., 1993).  

Intracellularly, integrins have been shown to associate with the cytoskeletal components -

ACTININ, TALIN and FILAMIN as well as the intracellular signaling molecule focal adhesion 

kinase (FAK) (S Liu, Calderwood, et al., 2000).  

More recent work has revealed that four of the v-integrin heterodimers are capable of 

activating extracellular transforming growth factor beta (TGF (Asano, Ihn, et al., 2005;  

Asano, Ihn, et al., 2005; Mu et al., 2002; Munger et al., 1999). TGF has been shown to inhibit 
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cell proliferation and promote cell differentiation (Kitisin et al., 2007). The three mammalian 

TGFisoforms- TGF1, 2 and 3- are secreted from the cell in a protected inactive state resulting 

from interactions between the mature TGFisoforms, the cleaved portion of the 

TGFpropeptides (latency-associated peptide, LAP) and latent-TGF-binding protein (LTBP) 

(Annes, 2003). Mutating the integrin-binding motif (located in the LAP) of Tgf1 recapitulates 

the null phenotype including in defects in vasculogenesis (Z. Yang et al., 2007). 

Fibronectin 

 Fibronectin (FN) is a secreted dimeric protein that promotes cytoskeletal rearrangements 

by forming fibrous associations between integrin heterodimers that result in clustering of these 

receptors (Wierzbicka-Patynowski and Schwarzbauer, 2003). Twelve fibronectin splice isoforms 

have been identified in mice as well as a fibrillar cellular fibronectin (cFN) which is expressed in 

most tissues and a non-fibrillar plasma fibronectin (pFN) present in hepatocytes and secreted in 

blood (Leiss, et al., 2008). In the absence of fibronectin, mouse embryos are small with 

shortened anterior-posterior axes, lack somites, have kinked neural tubes, misshapen headfolds 

and die by e8.5 (George, 1993). 

 Like integrins, FN also facilitates TGFsignaling in cells. However, unlike integrins 

which directly activate TGF by binding the inhibitory LAP; FN is required for the incorporation 

of the TGFinhibitory co-factor, LTBP, into the ECM. Loss of LTBP in the absence of 

fibronectin results in an inability to retain TGF in the ECM (Dallas et al., 2005).  

Laminins 

 The laminins are a family of heterotrimeric extracellular glycoproteins that act as 

molecular scaffolds and which are essential to for the formation of basement membranes (Sasaki 
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et al., 2004). Eighteen laminin heterotrimers have been identified in vertebrate species each 

composed of a single ,  and subunit (Durbeej, 2010). In vivo, laminins are capable of 

undergoing calcium-dependent polymerization. It is believed that the polymerization of collagen-

associated laminin heterotrimers aides the redistribution of their receptors, integrins, in the 

plasma membrane, which in turn stimulates the rearrangement of cytoskeletal proteins within 

cells (Colognato and Yurchenco, 2000). All laminin subunits have been mutated in mouse 

models, revealing essential roles for laminin-111 (Laminin-1) and laminin-511 (Laminin-10) 

during embryonic development (Durbeej, 2010). In mice, the absence of the  subunit alone, 

results in the loss of basement membranes and peri-implantation lethality by 5.5 dpc (Smyth et 

al., 1999). 

Focal Adhesion Kinase (FAK) 

 FAK is a cytoplasmic tyrosine kinase which becomes autophosphorylated upon binding 

to integrins and subsequently activated by Src kinases to interact with a number of downstream 

targets including phosphotidyl inositol 3-kinase (PI3K), GRB2, PAX, and p130CAS activating 

MAPK, JNK and ERK signal transduction pathways (D D Schlaepfer and Hunter, 1997; Mitra et 

al., 2005).  Mutations which affect Integrin/FAK signaling have also been implicated in the 

control of cell proliferation and apoptosis presumably via downstream effects on MAPK and PI3 

kinase (Sonoda et al., 2000). Knock out models of Fak (Furuta et al., 1995; Ilić et al., 1995) and 

all three mammalian Src kinases; Src, Fyn and Yes (SFY;Klinghoffer, Sachsenmaier, Cooper, & 

Soriano, 1999); in mice result in gastrulation defects similar those observed in FN null mice and 

embryo lethality suggesting that FN-stimulated integrin signaling is the major mechanism of 

activation FAK during this period of development.  

Ddx11 

 Ddx11 is a member of the DEAD/H (Asp-Glu-Ala-Asp/His)-box family of DNA 
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helicases. Physical interactions have been identified  between DDX11 and components of the 

multimeric cohesin complex that encircles sister chromatids during DNA replication and cell 

division (Parish et al., 2006; Sherwood et al., 2010; Uhlmann, 2009) as well as cohesion 

establishment factors (Farina et al., 2008; Leman et al., 2010) and components of the replication 

fork machinery (Leman et al., 2010). These interactions have implicated a role for DDX11 in the 

establishment of sister chromatid cohesion.  

 Consistent with this hypothesis, loss of Ddx11 in mice results in defects in sister 

chromatid cohesion and mid-gestation embryonic lethality (A. Inoue et al., 2007). My work 

presented in this dissertation identifies a novel point mutation in Ddx11 that results in 

morphological defects in closure of the neural tube epithelium as well as a severe loss of somitic 

mesoderm. These defects are reminiscent of those that have been described previously for mice 

carrying mutations in components of cell adhesion pathways such as Fn (George, 1993; Georges-

Labouesse et al, 1997) as well as the integrin-activated FAK (Ilić et al., 1995; Furuta et al, 1995). 

Interestingly, a similar loss of somitic mesoderm has also been described in mice lacking 

components of the DNA check point and repair machinery including the checkpoint component, 

Hus1 (Weiss et al., 2000).  

 

D. Post-gastrulation patterning of the embryo. 

 

Establishment of the left-right body axis. 

 In the mouse, three embryonic axes divide the initially symmetric epiblast. The 

establishment of the anterior-posterior (AP) and dorsal-ventral (DV) axes occur just prior to and 

concomitant with gastrulation, respectively (P. P. L. Tam et al., 2006). However, the third and 

final embryonic axis, which defines the left and right sides of the embryo (LR), is not established 
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until well after gastrulation. Both the molecular signals and mechanism of axis establishment 

involved in AP and DV axis establishment are well conserved across vertebrates. Whether this 

degree of mechanistic conservation exists for the establishment of LR asymmetries remains 

unclear (Aw and Michael Levin, 2008).  

  The initial break in bilateral symmetry occurs at the node, a mammalian organizer located 

at the posterior end of the primitive streak. The node is equivalent to the Hensen’s node in the 

chick or Spemann’s organizer in Xenopus (R. S. Beddington and E J Robertson, 1999) and 

results in the asymmetric expression of the TGF- related gene, Nodal (Jane Brennan et al., 

2002). This symmetry breaking event, which occurs around e8.0 is dependent on monocilia that 

cover the ventral surface of the node (S. Takeda et al., 1999; Yasushi Okada et al., 1999; S 

Nonaka et al., 1998). However, the mechanism by which these cilia contribute to the break in 

symmetry remains unclear.  

 Two models have emerged, largely from the analysis of mutations that affect LR 

patterning. The chemical-gradient model proposes that the break in symmetry begins with the 

creation of a leftward current of extracellular fluid generated by rotation of beating monocilia. 

This flow is believed to contribute to the buildup of a nodal vesicular particles (NVPs) released 

within the node, which carry morphogens important for initiating left-specific signaling in the 

embryo. As a consequence of the differential distribution of NVPs Nodal becomes 

asymmetrically expressed in the left side of the node (Figure 1.4B, Shigenori Nonaka et al., 

2002; Yosuke Tanaka et al., 2005). A second “two-cilia model” recognizes the existence of two 

populations of cilia within the node; motile cilia that line the ventral surface of the pit and 

immotile cilia that line the lateral edges. This model proposes leftward nodal flow generated by 

the motile pit cilia activates, either directly or indirectly, the mechano-sensory immotile cilia at 

the edges of the node (Figure 1.4C, Tabin and Vogan, 2003).  Accompanying these signals it has  
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Figure 1.4.  Genetic specification of the Left-Right axis and models for breaking symmetry. 
(A) Left-right patterning pathway: Cilia-dependent asymmetric Nodal expression in the node 
initiates a left-specific Nodal signaling cascade in the LPM. Nodal in the LPM initiates left-
specific Lefty-1 expression in the floorplate.  LEFTY-1 and LEFTY-2 with FOXH1 shut off the 
Nodal signals. (B, C) Two models of nodal flow-dependent symmetry breaking. (B) The 
chemical-gradient model postulates that cilia-dependent leftward nodal flow carries morphogens 
in nodal vesicular particles (NVPs) which accumulate on the left side and initiate left-specific 
signaling. (C) The Two-cilia model of symmetry breaking recognizes that two populations of 
cilia reside in the node: motile cilia at the surface of the ventral pit and immotile cilia at the 
lateral edges. This model postulates that the immotile cilia act as mechno-sensors, responding to 
leftward nodal flow directly or chemical stimuli and initiating left-specific signaling. Both 
models recognize left-specific genetic signals are accompanied by an increase in intracellular 
calcium although the mechanism of calcium accumulation remains unclear. Figure adapted from 
(Shiratori and Hiroshi Hamada, 2006). 
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 been observed that there is an increase in left-specific intracellular calcium at the node although 

data regarding the contribution of nodal flow to this localization is conflicting (McGrath and 

Martina Brueckner, 2003; Yosuke Tanaka et al., 2005).  

Genetic patterning of the left-right body axis. 

 Regardless of the symmetry-breaking mechanisms, the end result is the initiation of a 

cascade of signaling that starts in the node and is propagated to the lateral plate mesoderm 

(LPM).  This cascade initiated with a buildup of Nodal on the left side of the node (Collignon J. 

and E J Robertson, 1996). NODAL then induces asymmetric expression of other signaling 

molecules in both the left LPM and then the floor plate of the neural tube. Targets of NODAL 

include two other TGF-family members, Lefty1 and Lefty2 and a bicoid-like homeobox 

transcription factor, Pitx2 (Figure 1.4A, Shiratori and Hamada, 2006).  

TGF-molecules signal through heterodimeric receptor complexes to initiate a cascade 

of SMAD-mediated phosphorylation events which ultimately result in the activation of 

transcriptional targets. NODAL binds to the ACTR1B/ACVR2B receptor complex with the aid 

of the EGF-CFC co-receptor, CRIPTO (Reissmann et al., 2001; Yan et al., 2002). The activation 

of the receptor complex upon ligand binding results in the phosphorylation of SMAD proteins, 

which in turn associate with the winged-helix transcription factor, FOXH1, to bind activin 

response elements (AREs) located in the regulatory regions of target genes to activate 

transcription. Mutations that affect the localization, expression or binding capacity of these 

molecules have been shown to result in a variety of defects in the expression of LR patterning 

genes and heart development (Michael M Shen, 2007). 

Mgrn1 

 MGRN1 is a RING-type E3 ubiquitin ligase first identified for its role in pigment-type 
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switching (Lane, 1960; Phillips, 1963; Miller et al., 1997; L He et al., 2001)). While the exact 

mechanism by which MGRN1 regulates pigment production remains unclear, genetic studies 

have indicated a role for MGRN1 as an accessory protein which acts upstream of the 

Melanocortin 1 receptor (Mc1R) and downstream of agouti transcription (Lin He et al., 2003; W. 

P. Walker and Teresa M Gunn, 2010). Mice lacking Mgrn1 have completely black fur from the 

resultant loss of pheomelanin production (Figure 1.5; L He et al., 2001; Lin He et al., 2003) . 

 In addition to defects in pigment production, Mgrn1 mutant mice have a variety of 

pleiotrophic defects including a progressive adult-onset spongiform neurodegeneration, 

craniofacial defects and embryonic lethality (Lin He et al., 2003; Cota et al., 2006; Phillips, 

1963, 1971; Jiao, H. Y. Kim, et al., 2009). My work presented in this dissertation uncovered a 

previously unidentified role of Mgrn1 in patterning of the LR axis. Characterization of Mgrn1 

mutants revealed loss of Mgrn1 results mis-expression of nodal target genes including Lefty1, 

Lefty2 and Pitx2 (Cota et al., 2006).  

E. Organization of dissertation 

 The goal of the work presented in this dissertation is to identify genes with novel roles in 

the regulation of embryonic development.  

 In Chapter 2, I present work on the identification of a novel mutation in Ddx11, 

characterization of the embryonic defects in these mutants and the biochemical activity of the 

both wild type and mutant murine DDX11 protein. These results indicate that Ddx11 is required 

for genomic stability and embryonic survival in the mouse. 

 In Chapter 3, I present work on the phenotypic characterization of embryonic patterning 

defects in Mgrn1 mutant mice. These results indicate a novel role for Mgrn1 in the regulation of 

Nodal signaling and left-right patterning of the mouse embryo.  

 Appendix A and B contain unpublished data that was not included in previous chapters.  
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Figure 1.5.  Pigment-type switching. Binding of alpha melanocyte stimulating hormone (-
MSH) to the g-protien coupled receptor, MC1R, results in the production cyclic adenocine 
monophosphate (cAMP) necessary for the conversion of dopaquinone to eumelanin (left). 
Transient expression of agouti during the hair cycle results in the competitive binding of the 
agouti signaling peptide (ASIP) to MC1R along with the accessory proteins attractin (ATRN) 
and MGRN1. The interactions of these proteins with the MC1R, in the case of MGRN1 and 
ATRN via unknown mechanisms, is sufficient to inhibit the production of cAMP and resulting in 
the conversion of dopaquinone to pheomelanin (right, adapted from Walker and Teresa M Gunn, 
2010). 
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These data are considered supportive and preliminary. Appendix A contains data from co-

immunoprecipitation experiments conducted to examine the effect of the cetus mutation on 

interactions between DDX11 and cohesin ring complex proteins. Appendix B contains data from 

yeast-2-hybrid screens conducted to identify MGRN1 interacting proteins.  
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Chapter 2 

The cetus ENU-induced mutation in the mouse DNA helicase Ddx11 reveals an essential 

role of its motif V for embryonic development 



 

39 

 
ABSTRACT 

DDX11 (DEAD/H (Asp-Glu-Ala-Asp/His)-box polypeptide 11) is a member of the 

highly conserved FANCJ family of Superfamily 2 (SF2) DNA helicases. Studies in yeast and 

human cells have demonstrated an involvement of DDX11 in sister chromatid cohesion, cell 

cycle progression and genome stability. In mouse, loss of DDX11 has been previously shown to 

result in embryonic lethality. However, the developmental defects that lead to embryonic death 

in mice lacking Ddx11 are still poorly understood. Here we describe the phenotypic 

characterization and positional cloning of cetus, a mouse ENU-induced mutation that disrupts 

Ddx11. Homozygous cetus mutant embryos are small, display shortening of the anterior-

posterior axis and fail to thrive beyond E8.5.  Analysis of cell-type specific gene expression by in 

situ hybridization showed a specific reduction in paraxial mesoderm structures in cetus mutant 

embryos including somites. Positional cloning of cetus revealed a non-synonymous point 

mutation in the sequence encoding motif V of DDX11. The cetus mutation failed to complement 

a null allele of Ddx11, indicating that the point mutation in motif V completely disrupts DDX11 

function. Together these results indicate a role for Ddx11 in early development of the mouse 

embryo and a essential role for motif V in mediating DDX11 function. 

. 
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INTRODUCTION 

Initially identified in genetic screens for mating type switching and chromosome 

transmission fidelity in saccharomyces cerevisiae, Ddx11 (Chl1 ,yeast) has been found to aid in 

the proper segregation of sister chromatids (Liras et al., 1978; F Spencer et al., 1990). Sister 

chromatid cohesion ensures the proper segregation of chromosomes during mitosis and is 

facilitated by a number of proteins collectively known as the cohesin complex. In mammals, the 

cohesin complex contains two structural maintenance of chromosomes proteins (SMC1 and 

SMC3) as well as a sister chromatid cohesion subunit (SCC3) and a single -kleisin protein, 

SCC1 (RAD21) (Ciemerych and Sicinski, 2005; Razqallah Hakem, 2008). In human cells, 

physical interactions have been identified  between DDX11 and components of the cohesin 

complex, SCC1, SMC1 and SMC3 (Parish et al., 2006) as well as the cohesion establishment 

factor Ctf18-RFC and the endonuclease, FEN1 (Farina et al., 2008). These interactions indicate a 

role for DDX11 in the establishment of cohesion (for a recent review see Sherwood et al., 2010).  

Loss of Ddx11 both in yeast (S. L. L. Gerring et al., 1990) and mouse (A. Inoue et al., 

2007) has been shown to result in a G2/M cell cycle delay.  In human cells, RNAi knockdown of 

Ddx11 results in prometaphase arrest, mitotic failure and aneuploidy (Parish et al., 2006). 

Furthermore, mutations in members of this family of proteins that also includes the ERCC2 

(Excision Repair Cross-Complementation Group 2), FANCJ (Fanconi Anemia Group J) and 

RTEL1 (Regulator of Telomere Length 1) have been identified in a number of human diseases. 

These include Fanconi anemia (MIM 609054), xeroderma pigmentosum (MIM 278730) and 

cerebro-oculo-facio-skeletal syndrome (MIM 610756). Recently, mutations in hDdx11 were 

found to be the genetic defect in a patient with Warsaw Breakage Syndrome (WBS, MIM 

613398), a human cohesinopathy characterized by hypersensitivity to DNA damaging agents and 

defects in sister chromatid segregation resulting in severe developmental defects (van der Lelij et 
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al., 2010).  

The importance of Ddx11 during development has been further highlighted by the recent 

generation of a targeted Ddx11 knockout in the mouse (Ddx11
KO

, also referred to as ChlR1
KO

). 

These mice develop post-implantation with defects in cell cycle progression and apoptosis. 

Death of Ddx11
KO

 embryos has been attributed to a failure to form placental structures (A. Inoue 

et al., 2007). However, the embryonic defects in these mutants remain poorly understood. 

Additionally, while the biochemical activity of DDX11 is well established (Hirota and J M Lahti, 

2000; Farina et al., 2008; Yuliang Wu et al., 2012), comparatively little is known regarding how 

individual motifs contribute to DDX11 activity  (reviewed by Fairman-Williams et al., 2010).  

Here we describe the identification and characterization of cetus, a novel N-ethyl-N-

nitrosourea (ENU)-induced allele of Ddx11. Positional cloning and genetic complementation 

analysis of cetus revealed a mutation in DDX11 helicase motif V that generates a null allele. 

Ddx11
cetus

 mutant embryos display shortening of the anterior-posterior axis and a loss of 

mesodermal structures including somites. We have found that both Ddx11
cetus

 and Ddx11
KO

 

embryos display widespread cell death during gastrulation. These cellular defects precede the 

gross morphological abnormalities in the mutant embryos and result in embryonic death by mid 

gestation. In contrast to mutations in the motif V of other SF2 helicases, which have been shown 

to disrupt ATP hydrolysis or DNA binding, no defect was detected in the ATP hydrolysis or 

DNA binding activities of the DDX11
cetus

 mutant protein. Together, these results demonstrate a 

specific role for Ddx11 during early development of the mouse embryo and that motif V is 

essential for DDX11 function. 
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MATERIALS AND METHODS 

Positional cloning and sequencing of cetus 

The cetus mutation was generated by ENU-mutagenesis as described previously (Garcia-

Garcia et al., 2005; Kasarskis et al., 1998). Mapping with polymorphic MIT (www.informatics. 

jax.org) and SKI (http://mouse.ski.mskcc.org) SSLP markers indicated linkage to distal mouse 

chromosome 17. Additional markers were generated from genome sequence data with the 

etandem EMBOSS software (http://bioweb2.pasteur.fr/docs/EMBOSS/etandem.html) for high-

resolution refinement of the candidate interval. Primer sequences for these novel Simple 

Sequence Length Polymorphic (SSLP  markers are specified below (Table 2.1). cDNAs of all 

annotated genes (www.ensembl.org) in the cetus candidate interval (E13009J12Rik, VapA, 

Txndc2, Rab31,Ppp4r1, Ralbp1, Twsg1, Ankrd12, Ndufv2, Orf19 and Ddx11) were amplified by 

RT-PCR (Superscript One-Step RT-PCR, Invitrogen) using RNA from E8.5 cetus and C57BL/6J 

(control) embryos extracted using RNA-STAT (Tel-Test). Amplification products were 

sequenced at the Cornell University Life Sciences Core Laboratory Center (CLC). A single T to 

C mutation was identified at amino acid 2228 of the Ddx11 ORF. This point mutation generated 

a BseRI restriction fragment length polymorphism that was assayed for by digestion of PCR 

products generated from amplification of genomic DNA.  

Mouse (mus musculus) strains 

Ddx11
cetus

 was analyzed in CAST/Ei and C3H/FeJ genetic backgrounds and genotyped 

with D17CU33 and D17CU40 or D17CU35 and D17CU39 SSLP markers respectively (Table 

2.1). Ddx11
KO

 were obtained from Dr Jill Lahti (A. Inoue et al., 2007) and backcrossed to 

C3H/FeJ. 
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Table 2.1. SSLP Primers 

Name Sequence 

D17CU33L 5'-ACACAGGAGAACGGAATGGA-3' 

D17CU33R 5'-TTTTTAGGTGAGTTAGCCCAACA-3' 
D17CU35L 5'-TGCGTTCAGCTTACAGAGGA-3' 

D17CU35R 5'-CAATCATTTCTATCAGTTGACATGG-3' 

D17CU39L 5'-GCCACTCCATTACCACACG-3' 

D17CU39R 5'-GGATTCAGGGGAGTCCATTT-3' 

D17CU40L 5'-CTCCCTCTGCTTCCAAAGTG-3' 

D17CU40R 5'-AATGCAGCTCCAGGACATCT-3' 

D17CU38L 5'-TCAGTGACACAGGCACTTCC-3' 

D17CU38R 5'-TGGCCTTTTGTCTCCTCATT-3' 

D17CU41L 5'-TCCTCTCACACATAAATTGAGCA-3' 

D17CU41R 5'-AGAGCTCTTACCGCATTGGT-3' 

D17CU44L 5'-TGTACAGCATTTGGCAGAGC-3' 

D17CU44R 5'-AAGCACAGAGGATGCCACTC-3' 

D17CU45L 5'-GGTGTGAGTCAGCGGAAAAG-3' 

D17CU45R 5'-GTCCCCAAAGACGGAGATTA-3' 

D17CU39L 5'-GCCACTCCATTACCACACG-3' 

D17CU39R 5'-GGATTCAGGGGAGTCCATTT-3' 

D17CU29L 5'-TGACCTAACTGGCTCGCTCT-3' 

D17CU29R 5'-GGTGGGAGAGAAAATGGACA-3' 

D17CU47L 5'-AAGCCCCAAATGGTTTGTTT-3' 
D17CU47R 5'-CATGGCAACTACAGGGAAGAA-3' 
D17CU48L 5'-TCCTCCCTCATGAGTCTTGC-3' 
D17CU48R 5'-AGGCTCAGTCATCTGCCAAA-3' 
D17CU49L 5'-CAAATTCCTTAGGGTGTCAAGC-3' 
D17CU49R 5'-GAAAGCCTAGCACTCCAGCA-3' 
D17CU51L 5'-CCCAGTGTCCAGGACCAATA-3' 
D17CU51R 5'-ACTGGTTATGCCCCATCAAA-3' 
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Analysis of Mutant embryos 

Embryos were dissected in PBS containing 0.4% BSA at different stages as indicated. 

Whole-mount RNA in situ hybridization was performed as described (Belo et al., 1997). For 

phospho-histone-H3 immunohistochemistry and TUNEL, e7.5 embryos were cryosectioned at  

10μm as previously described (García-García and Kathryn V Anderson, 2003). All comparisons 

of wild type and mutant embryos are at the same magnification unless otherwise noted. Anti-

phospho-histone H3 (Ser10) (Upstate) was used at 1/250. TUNEL was performed using the 

ApopTag Detection Kit (Chemicon). As positive controls for TUNEL, sections were treated with 

DNAse I. Extra-embryonic tissue was removed prior to embedding and used for genotyping with 

primers 5’- GAGTCCACTGCCTCTGGAAG-3’ and 5’-

CTAGGTCGACGGTTATACCAGACTTGGGTGTG-3’.  

Protein expression & purification  

The coding region of the full length murine Ddx11 was amplified from cDNA isolated 

from e10.5 C57BL/6J mouse embryos using the primers 5’-

CTAGAGATCTATGGCTGACGAAAACCAGGA-3’ and 5’-

CTAGGTCGACGGTTATACCAGACTTGGGTGTG-3’. The resulting sequence was cloned 

into the Not1 and SalI sites of the ppSUMO (Navarro et al., 2009). This generated an in frame N-

terminal His/SUMO-tagged construct. HIS/SUMO-DDX11
cetus

 and HIS/SUMO-DDX11
K50R

 

mutant sequences were generated by site-directed mutagenesis of the wild type vector using the 

primers 5’-CTGACAGGGGCCTTGCCCCTCTCTGTGGTTGGAG-3’/ 5’-

CTCCAACCACAGAGAGGGGCAAGGCCCCTGTCAG-3’ and 5’- 

TCCAACTGGCACGGGAAGGTCCTTAAGTCTGATTTG-3’/ 5’-

CAAATCAGACTTAAGGACCTTCCCGTGCCAGTTGGA-3’ respectively. All sequences 

were verified by Sanger sequencing at the Cornell University Life Sciences Laboratories Center. 
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BL21(DE3) cells were transformed and grown at 37
o
C overnight in Terrific Broth (TB) with 50 

mg/L kanamycin. Expression was induced by the addition of 0.3 mM isopropyl-β-d-1-

thiogalactopyranoside (IPTG) when cultures reached an OD600 of 0.8. After 3 hours, cells were 

lysed in Lysis buffer, pH 8.0 (50 mM NaH2PO4, 300 mM NaCl, 10 mM Imidazole). Lysates 

were purified under native conditions by affinity chromatography using Ni
2+

-nitrilotriacetic acid 

(NTA) agarose (Protocol 9, The QIAexpressionist, 2003). Eluted fractions were combined and 

subjected to dialysis overnight at 4
o
C in storage buffer (50 mM NaH2PO4, 300 mM NaCl, 5% 

glycerol). Dialyzed samples were further concentrated and loaded on a Superdex-200 size 

exclusion column (GE Healthcare) which had been equilibrated with storage buffer. Fractions 

were collected, glycerol concentration was adjusted to a final concentration of 10% and 

purification was verified by SDS-PAGE and western blot. 

Western Blot 

Proteins were denatured by boiling in an equal volume of 2X Laemmli sample buffer 

(126 mM Tris-Cl (pH 6.8), 20% glycerol, 4% sodium dodecyl sulfate (SDS), 0.005% 

Bromophenol Blue, 5% -mercaptoethanol (BME) or 200 mM Dithiothreitol (DTT) ) and 

separated by SDS-PAGE (4-6% w/v acrylamide). Proteins were transferred to F-polyvinylidene 

difluoride (PVDF) membranes, blocked in either 5% BSA or non-fat dry milk in Tris-buffered 

saline (pH 7.6) with 0.1% Tween-20. Primary antibody binding was accomplished by overnight 

incubation of blots at 4
o
C in Tris-buffered Saline (pH 7.6) with 0.1% Tween-20 and either 5% 

BSA or non-fat dry milk. Washes and secondary antibody binding were performed at room 

temperature in Tris-buffered saline (pH 7.6) with 0.1% Tween-20.  Antibodies used included 

anti-DDX11 (1: 1500, SantaCruz) and anti-Goat HRP (1:5000, SantaCruz). Proteins were 

detected using an enhanced chemiluminescence (ECL) detection kit (Pierce).  
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ATP hydrolysis assays 

Gel filtration fractions collected for recombinant HIS/SUMO-DDX11
WT

 or mutant 

proteins were incubated at 37°C in 100 mL reactions containing 5 or 10 L of the recombinant 

protein fraction, 25 mM Tris-Cl (pH 7.5), 200 μg/ml bovine serum albumin, 50 mM cold ATP, 3 

mM Mg(CH3OO)2, 2 mM DTT, 45 fmol ssM13mp18 DNA (NEB) and 30 nM [
32

P]ATP (Perkin 

Elmer) for ≤120 min. Reactions were stopped by the addition of 10 L of 0.5 mM EDTA. 

Separation of ADP from ATP was achieved by thin layer chromatography on PEI–cellulose 

sheets (Merck, Darmstadt, Germany) in 0.6 M K2HPO4 (pH 3.4). Plates were dried and exposed 

to phosphor imaging screens overnight. ATPase activity was determined by quantification of 

[
32

P]ADP on a STORM 860 PhosphorImager (Amersham Life Sciences, Inc.) using the 

ImageQuant 5.2 software package.  

Gel mobility Shift Assays 

Experiments were performed as native polyacrylamide gel electrophoresis assays using 

[
32

P]ATP (Perkin Elmer) as described (López de Saro and O’Donnell, 2001). Each 50L 

reaction contained 25 mM Tris-Cl (pH 7.5), 5% glycerol, 200 μg/ml bovine serum albumin, 25 

mM KCl, 2 mM DTT, 100 g/mL poly-dIdC (Sigma), 25mM Mg(CH3OO)2 , 100 mM ATP and 

85 fmol of  
32

P-labeled substrate (Table 2.2). Recombinant HIS/SUMO-DDX11 wild type or 

mutant proteins were included as indicated in the figure legends. In some cases, RecQ (Abcam) 

was used as positive control.  Samples were incubated at 37°C for 20 min, and then 20 μl of the 

reaction was run on a 6% native polyacrylamide gel (6% acrylamide/bisacrylamide 29:1, 0.5 × 

TBE buffer). Electrophoresis was performed in 0.5 × TBE buffer (45 mM Tris borate, 45 mM 

boric acid, and 2.5 mM EDTA) at 150 V for 3 hr. Binding affinities (dissociation constants) were 

calculated as the reciprocal of the protein concentration at which half the available labeled 

substrate was bound (Hishida et al., 2004). 
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Table 2.2. DNA substrate oligonucleotides 
 Name Sequence Reference 

JEP167 
(100nt) 

5'-
CCATTAGCAAGGCCGGAAACGTCACCAATGCAAC
GATCAGCCAACTAAACTAGGACATCTTTGCCTTTT
TGGCAAAGATGTCCTAGTTTAGTTGGCTGAT-3’ 

N/A 

JEP325 
(65nt)  

5’-
ATCAGCCAACTAAACTAGGACATCTTTGCCTTTTT
GGCAAAGATGTCCTAGTTTAGTTGGCTGAT-3’ 

N/A 

NLC710 
(30nt) 

5’-GGCAAAGATGTCCTAGTTTAGTTGGCTGAT-3’ Peters & Craig, 
2001 

NLC707 
(65nt)  

5’-
CCATTAGCAAGGCCGGAAACGTCACCAATGCAAC
GATCAGCCAACTAAACTAGGACATCTTTGCC-3’ 

Peters & Craig, 
2001 
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RESULTS 

Morphogenetic defects in cetus mutant embryos 

 The cetus mutation was isolated from an N-ethyl-N-nitrosourea (ENU) mutagenesis 

screen designed to identify recessive lethal mutations that disrupt the overall morphology of the 

developing embryo (Garcia-Garcia et al., 2005). Homozygous cetus mutant embryos implant 

normally and are morphologically indistinguishable from their wildtype littermates at E6.5. A 

subset of cetus mutant embryos arrest during gastrulation (53.1% on a C3H/HeJ congenic genetic 

background and 88.9% on a CAST/Ei mixed background) yet many survive the process albeit 

with widespread morphological defects. cetus mutant embryos with late developmental arrest are 

approximately one third the size of their wild type littermates. These embryos display a 

shortened anterior-posterior axis and lack distinguishable somites (Figure 2.1). The neural tube 

epithelium in cetus mutants appears distorted and/or wavy and fails to fuse in even the most 

developmentally advanced embryos, a defect highlighted by analysis of the expression of the 

gene Sox2 (Figure 2.1, Figure 2.2I-J). Additionally, many cetus mutant embryos have 

rudimentary headfolds and prominent epithelial blisters on the dorsal surface (Figure 2.1B). 

 To characterize the developmental defects of cetus embryos,  I  analyzed by in situ 

hybridization the expression of genes expressed in the allantois (Tbx4, Chapman et al., 1996),  

lateral plate mesoderm (FoxF1, Mahlapuu et al., 2001), paraxial/somitic mesoderm (Mox1, 

Candia et al., 1992) and axial mesoderm (brachyury, T, Wilkinson et al., 1990). Tbx4 was found 

to be expressed in cetus mutants, but the allantois was found to be disproportionate, rudimentary 

and/or round in shape (Figure 2.2 A-B &D).  The lateral plate mesoderm marker FoxF1 was 

expressed normally in cetus embryos (Figure 2.2E-F) as shown by whole mount in situ 

hybridization as was the expression of T was also normal in these embryos (Figure 2.2G-H). 

However, analysis of the expression of Mox1 revealed an extreme reduction in somitic  



 

49 

Figure 2.1. Morphologic defects in cetus mutants. Lateral views of wild type (A) and cetus 
mutant (B) embryos at E9.5. In the cetus mutant the neural epithelium tube remains open and the 
heart (Ht) fails to loop and remains as a straight tube. Arrowhead in B points to dorsal blisters 
which are devoid of cells. Bracket in B highlights the absence of discernible somites (som). 
Scale bars in A and B represents 200µm and 100µm, respectively.
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Figure 2.2. cetus mutant embryos have severe embryonic defects. Whole mount in situ 

hybridizations with Tbx4 (A-B), Mox1 (C-D), Foxf1 (E-F), T (G-H) and Sox2 (I-J) probes on 

E8.5 wild type (A, C, E, G, I) and cetus mutant (B, D, F, H, J) embryos. Solid arrowhead in D 

points to the ball-like allantois of a cetus mutant. Empty arrowhead in D points to vestigial 

expression of Mox1 in the anterior part of a cetus embryo. This phenotype was only observed in 

a few cases, most cetus mutants completely lacked Mox1 expression as shown in Figure 2. 

Bracket in D highlights the lack of somites (som). al, allantois. LPM, lateral plate mesoderm. 

not, notochord (axial mesoderm). ps, primitive streak. NE, neuroepithelia. Scale bars represent 

200µm. 
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mesoderm in cetus mutants relative to wild type littermates, and a failure of these cells to 

condense in the mutant embryos. Most embryos lacked Mox1 expression entirely, while a small 

proportion retained a low level of bilateral expression in the anterior region of the embryo 

(Figure 2.2C-D).  Together, these results indicate the cetus mutation results in a severe and 

specific reduction in somitic mesoderm, but not other mesenchymal cell types.  

The cetus mutation disrupts the DEAD/H-box helicase DDX11 

 Microsatellite based linkage analysis mapped the cetus mutation to a 1.1Mb interval on 

chromosome 17. All 11 genes within the candidate interval were sequenced and subsequent 

analysis identified a single T-C base transition in the DEAD/H-box helicase, Ddx11 

(Figure2.3A-B). No mutations were found in any of the other genes in the interval. Further 

analysis of Ddx11 by in situ hybridization found the expression of this gene to be ubiquitous in 

both embryonic and extra-embryonic tissues at e8.5 and e9.5 (Figure 2.4). 

 DDX11 (DEAD/H (Asp-Glu-Ala-Asp/His)-box polypeptide 11) is  as a member of the 

FANCJ sub-family of the super family 2 (SF2) DNA helicases that also includes the ERCC2, 

FANCJ and RTEL1 (reviewed by Wu et al., 2009). The cetus mutation results in a Leu-Pro 

amino acid substitution in a highly conserved residue of motif V, one of the seven conserved 

motifs characteristic of these proteins (Figure 2.3C). To confirm that the mutation in Ddx11 is 

responsible for the cetus phenotype, and determine the severity of the allele, I performed a 

genetic complementation test with a previously described null allele of Ddx11 (Ddx11
KO

). 

Ddx11
KO

 mice were generated by the targeted deletion of exons 3-5 which encode the Walker A 

domain required for the ATP hydrolysis activity of the DDX11 protein (A. Inoue et al., 2007). 

We generated both Ddx11
cetus/KO 

and Ddx11
KO

 homozygous embryos. Like Ddx11
cetus

, compound 

heterozygous and Ddx11
KO

 embryos were small and lacked epithelial 
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Figure 2.3.  Positional cloning of cetus. (A) cetus was mapped to a 1.1 Mb interval on 

chromosome 17 containing 11 genes (red line). Numbers to the right of the chromosome indicate 

the number of independent recombinants separating the mutation from the corresponding SSLP 

markers indicated to the left. For linkage analysis, a total of 2,018 chromosomes were analyzed. 

(B) Sequence chromatograms showing the Ddx11 nucleic acid sequence in wild type and cetus 

mutant embryos. Indicated in red is the T-C base transition in the cetus mutant sequence which is  

predicted to result in a L743P amino acid substitution. (C) Schematic representation of the 

DDX11 protein structure. Conserved helicase motifs are indicated (not to scale). The location of 

the cetus mutation in helicase motif V is indicated in red. The positions of known human 

disease-associated mutations in the vicinity are indicated (adapted from Fan et al., 2008). Black 

arrowhead, Warsaw Breakage syndrome (WBS); Green stars, xeroderma pigmentosum (XP) ; 

Blue stars, trichothiodistrophy (TTD); Orange star, cockayne syndrome (CS). Red arrow 

indicates the position of the leucine residue mutated in cetus.  
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Figure 2.4. Expression of Ddx11 at E8.5 and E9.5. (A-B) Whole mount in situ hybridizations 
with a Ddx11 probe in wild type E8.5 (A) and E9.5 (B) embryos. The discontinuous lines in A-B 
indicate the section planes shown in C-D, respectively. emb, embryo. pl, placenta. al, allantois. 
ys, yolk sac. ht, heart. me, mesoderm. NT, neural tube. lmb, limb. Scale bar in A (for A-B 
pictures) represents 200µm and in C (for pictures in C-D) 50µm. 
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Figure 2.5.  The cetus mutation disrupts Ddx11. Genetic analysis revealed that the cetus 
mutation did not complement a null (KO) allele of Ddx11, as judged from the similarities 
between the phenotypes of KO (C), cetus/KO (D) and cetus (E) embryos dissected at E9.5. 
Brackets highlight the absence of somites (som). All images depicted represent at 20X 
magnification. 
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somites (Figure 2.5B-D). These results indicate the ENU-induced cetus mutation represents a 

null allele of Ddx11. 

 In these experiments, we also noted the accumulation of a substantial number of cells in 

the amniotic cavity of Ddx11 mutants. Many of these cells contained nuclei with pyknotic 

morphology indicating that they might be undergoing apoptosis. To confirm this, I performed 

TUNEL staining on cryosections from gastrulation stage embryos (Figure 2.6A, C, E). 

Quantification of the TUNEL positive cells in these assays revealed Ddx11
cetus

 mutant and 

Ddx11
KO

 embryos displayed a greater than 15-fold increase in the levels of apoptosis compared 

to wild type (Figure 2.6G). This apopotosis was widespread, occurring throughout the embryo in 

both epithelial and mesenchymal cell layers, an observation consistent with the ubiquitous 

expression pattern of the Ddx11 transcript (Figure 2.4). At e7.5 both Ddx11
cetus

 and Ddx11
KO

 null 

mutant embryos were also noticeably smaller than their wild type littermates. However 

proliferation rates as detected by phospho-histone-3 (pH3) staining in the nucleus were 

comparable (Figure 2.6B, D, F & H), indicating that apoptosis, and not a lack of proliferation, is 

responsible for the small size of Ddx11 mutants.  

DDX11
cetus

 maintains DNA-binding and ATP hydrolysis activity 

Previous studies have shown experimentally that hDDX11 is capable of acting as a ATP-

dependent DNA helicase in vitro (Hirota and J M Lahti, 2000; Farina et al., 2008; Yuliang Wu et 

al., 2012). Several mutations that have been implicated in human disease that occur within or in 

close proximity to motif V in related FANCJ helicases have implicated this motif in ATP 

hydrolysis, DNA binding and helicase activity (Figure 2.3C; Fan et al., 2008). To address the 

possibility that the cetus mutation disrupts DDX11 ATP hydrolysis activity, recombinant 

HIS/SUMO-DDX11
WT

 and HIS/SUMO-DDX11
cetus

 mutant proteins were expressed in bacteria 

and affinity purified. As a control for these assays, a second mutant protein, HIS/SUMO-  
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Figure 2.6. Apoptosis and proliferation in Ddx11 mutant embryos. (A,C,E) TUNEL (green) 
and DAPI (blue) staining in E7.5 wild type (A), Ddx11

cetus
 (B) and Ddx11

KO
 (C) embryos. (G) 

Quantification of TUNEL positive cells revealed a dramatic increase in apoptosis in Ddx11 
mutants as compared to wild type littermates. (B, D, F) Phospho-histone 3 (pH3; red) and DAPI 
(blue) staining in E7.5 wild type (B), Ddx11

cetus
 (D) and Ddx11

KO
 (F) embryos. (H) 

Quantification of Phospho-histone 3 positive cells failed to reveal statistically significant 
differences between wild type and Ddx11 mutants. Error bars represent the standard deviation 
across 4 or more sections from 3 independent embryos. Asterisk indicated p<0.05. 
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DDX11
K50R

, was also generated. This K50R mutation affects the ATP-binding site and has been  

previously shown to significantly reduce the ATP hydrolysis activity of the hDDX11 protein 

(Hirota and J M Lahti, 2000; Yuliang Wu et al., 2012). Protein fractions were analyzed by 

western blot for the presence of full-length HIS/SUMO-DDX11 protein and ATP hydrolysis 

activity (Figure 2.7). The presence of ATP hydrolysis activity corresponded well with fractions 

containing HIS/SUMO-DDX11
WT

 and HIS/SUMO-DDX11
cetus

 mutant proteins. As expected, 

little ATP hydrolysis activity was observed in fractions containing HIS/SUMO-DDX11
K50R

 

mutant protein. Taken together these results serve as validation of the purification of the 

recombinant HIS/SUMO-DDX11 proteins. 

ATP hydrolysis activity was further assayed quantitatively in fractions containing 

HIS/SUMO-DDX11 protein. Quantification of the rate of ATP hydrolysis by the HIS/SUMO-

DDX11 proteins showed there was no significant difference between the HIS/SUMO-DDX11
WT

 

and HIS/SUMO-DDX11
cetus

 mutant proteins (Figure 2.8). These results indicate that the cetus 

mutation does not disrupt ATP hydrolysis.  

 DDX11 ATP hydrolysis activity has previously been shown to be dependent upon DNA 

binding (Hirota and J M Lahti, 2000), suggesting that the HIS/SUMO-DDX11
cetus

 mutant protein 

would also retain this function. Using electrophoretic mobility shift assays (EMSA), I found the 

murine HIS/SUMO-DDX11
WT

 protein was indeed able to bind single-stranded DNA and 3’ 

recessed end structured DNA in vitro but not blunt-end double strand structures (Figure 2.9; data 

not shown). HIS/SUMO-DDX11
cetus

 mutant protein and the HIS/SUMO-DDX11
K50R

 protein 

bound DNA with similar affinities to the wild type (Figure 2.9D). These results are consistent 

with the known role of DDX11 as a DNA helicase and indicate that the cetus mutation does not 

disrupt HIS/SUMO-DDX11 DNA binding.  
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Figure 2.7. Purification of recombinant DDX11proteins. Analysis of recombinant wild type 
(A), cetus mutant (B) and K50R (C) His/SUMO-DDX11 protein purification. Bar graphs in each 
panel depict quantification of ATP hydrolysis activity calculated for individual protein fractions 
as described in the Materials & Methods. Protein concentrations were determined by Bradford 
assay (BioRad) and represent the total protein concentration in each fraction. Signal and staining 
in western blots and coomassie stained SDS-PAGE gels depict the location and relative 
concentrations of His/SUMO-DDX11 protein present in each fraction. 
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Figure 2.8.  ATPase activity of DDX11 proteins. The graph depicts a comparison of the ATP 
hydrolysis activities of recombinant wild type, cetus and K50R mutant HIS/SUMO-DDX11 
proteins. All proteins were assayed in the presence of single stranded DNA. Error bars represent 
the standard deviation across experiments conducted on samples prepared from two independent 
protein purifications. The asterisk indicates p<0.05. 
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Figure 2.9.  Gel mobility shift analysis of DDX11 binding to single strand DNA structures. 
Analysis of DNA binding by wild type, cetus and K50R mutant HIS/SUMO-DDX11 proteins 
DDX11 as detected by electrophoretic mobility shift assays (EMSA) to (A) linear single strand, 
(B) 3’ recessed and (C) 3’ recessed foldback DNA structures. HIS/SUMO-DDX11 proteins were 

added at 0.425 M, 4.25 M, 21.25 M and 42.5 M concentrations. Recombinant RECQ (425 

M, Abcam) was used as a binding control. Binding reaction conditions and calculations were 
performed as described in the Materials & Methods. A summary of dissociation constants for 
HIS/SUMO-DDX11 proteins with various substrates is provided (D).  
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DISCUSSION 

DDX11 is required for development of the early mouse embryo 

 Previous studies have demonstrated that Ddx11 is essential for maintaining genome 

integrity and that loss of Ddx11 results in embryonic lethality in mice (S. L. L. Gerring et al., 

1990; A. Inoue et al., 2007; Parish et al., 2006). However, the embryonic defects of Ddx11
KO

 

were poorly characterized. Analysis of Ddx11
cetus

 and Ddx11
KO

 mutants showed that these 

embryos arrest by E8.5 with widespread morphological defects including a severe reduction in 

somitic mesoderm. The L743P cetus mutation disrupts motif V, one of seven highly conserved 

motifs characteristic of DEAD/H box helicases. Genetic complementation revealed that 

disruption of this motif in the Ddx11
cetus

 mutants likely generates a null allele. Together, these 

results indicate a specific requirement for motif V in mediating essential DDX11 functions 

during development.     

Genome instability and mesoderm defects  

The original characterization of the Ddx11
KO

 embryos showed defects in sister chromatid 

cohesion and cell cycle progression (A. Inoue et al., 2007). Consistent with a role for DDX11 in 

these processes, I found that loss of DDX11 in Ddx11
KO

 and Ddx11
cetus

 mutant embryos resulted 

in significant widespread apoptosis at very early embryonic stages. However, despite evidence 

for apoptosis throughout the embryo and ubiquitous expression of Ddx11 transcript, our results 

show that some mesodermal populations are substantially more sensitive to these defects (Figure 

2.1). Ddx11
cetus

 mutant embryos display an extreme reduction in paraxial mesoderm as detected 

by expression of Mox1 while lateral plate mesoderm and notochord are relatively unaffected.  

Precisely why some mesodermal populations appear to be more sensitive to the defects 

present in Ddx11
cetus

 mutants is unclear. It has been well established that cohesion and cohesion-

related proteins are important regulators of development (reviewed in Dorsett, 2011; Wood et al., 
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2010). However, understanding the nature of cohesion-related protein involvement in the 

regulation of developmental processes has been hampered by the complexity of separating 

mitotic defects from potentially direct regulation of developmental pathways by these proteins. 

 During early mouse embryogenesis, epithelial cells that comprise the embryo undergo a 

massive up-regulation in proliferation that generates the 120-fold increase in cell number 

between e6.5 and e7.5 (Snow, 1977; Lawson et al., 1991). In contrast, mesodermal cell 

populations have been described to divide at a rate similar to that of adult populations and 

significantly slower than corresponding ectodermal cell populations at the same stage of 

development (Snow, 1977; Solter et al., 1971). This degree of variation in the duration of the cell 

cycle is dependent, at least in part, upon a loss of DNA damage checkpoint and repair pathway 

activation in the embryo (reviewed by Artus & Cohen-Tannoudji, 2008). In yeast, inactivation of 

the mitotic spindle checkpoint in conjunction with the loss of chl1 significantly increased the 

occurrence of cell death in progeny of dividing cells (R. Li and A. W. Murray, 1991). 

Furthermore, loss of function mutations in other determinants of proper cell cycle progression 

such as the tumor suppressors Brca2 (R Hakem et al., 1998) and Palb2 (Rantakari et al., 2010) as 

well as a component of the RAD9/RAD1/HUS1 checkpoint complex, Hus1 (Levitt et al., 2005) 

cause defects in somitic mesoderm similar to those we observe in Ddx11 mutants. Thus the 

increased cell cycle duration in mesodermal cell populations coupled with properties intrinsic to 

the somitic mesoderm such as small differences in the length of the cell cycle and the mitotic 

index might make this tissue particularly sensitive to DNA damage. 

DNA binding and DNA-dependent ATP hydrolysis are not sufficient for DDX11 function 

 Previously characterized mutations in motif V of related FANCJ helicases which 

are associated with xeroderma pigmentosum in humans have been shown to reduce, but not 

abolish, both DNA binding and ATP hydrolysis activity (L. Fan et al., 2008). Furthermore, it has 
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recently been shown that the DDX11
K897

 associated with Warsaw Breakage Syndrome in 

humans, reduced DNA binding and DNA-dependent ATP hydrolysis in in vitro assays (Yuliang 

Wu et al., 2012). The structural incompatibility of a leucine to proline amino acid substitution 

(Gray et al., 1996) like the L743P cetus mutation in the DDX11 protein implies that folding of  

the region surrounding the cetus mutation in the DDX11 protein is perturbed. However, I was 

unable to detect any obvious defect in the ability of the DDX11
cetus

 protein to mediate either ATP 

hydrolysis or DNA binding. These results indicate that while the DNA binding and ATP 

hydrolysis activity of DDX11 may be required for proper DDX11 function in vivo, they are not 

alone sufficient to mediate these processes. Additional studies aimed at identifying the 

biochemical, protein and/or DNA interactions that are required for DDX11 functions during 

development are necessary to identify which of these may be compromised in the cetus mutants 

(see Appendix A). 

CONCLUSIONS  

Results of our phenotypic and biochemical analysis of Ddx11
cetus

 mutants, suggest that 

the cetus mutation disrupts a crucial function of DDX11 that is critical for embryonic 

development. The identification of mutations in Ddx11 in human patients underscores the 

importance of understanding the functions of this gene. Further investigation in to the molecular 

and biochemical nature of the defects in Ddx11
cetus

 mutants should provide novel insight into the 

role of this protein in sister chromatid cohesion as well as the function of helicase motif V in 

FANCJ helicases. 
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CHAPTER 3 

 

Mice with mutations in Mahogunin Ring Finger-1 (Mgrn1) exhibit abnormal patterning of the 

left-right axis.
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1
This work has been published as Cota CD, Bagher P, Pelc P, Smith CO, Bodner CR & Gunn 

TM (2006), Mice with mutations in Mahogunin Ring Finger-1 (Mgrn1) exhibit abnormal 
patterning of the left-right axis. Dev Dyn. DOI: 10.1002/dvdy.20992.  

Authors contributions are as follows: Analysis of left-right gene expression defects in Mgrn1 
mutants and generation of the Mgrn1

XC712
 mice was done by Cota CD. Bodner CR performed 

preliminary in situ experiments and provided initial technical support. Analysis of cardiac and 
pulmonary defects as well as expression of Mgrn1was done by Bagher P with technical support 
from Pelc P and Smith OC. Cota CD, Bagher PB and Gunn TM all contributed to the writing of 

the manuscript. 
Modifications to fit the dissertation format requirements of Cornell University have been made 

by Cota CD. 



 

72 

ABSTRACT 

 Mahogunin Ring Finger 1 (Mgrn1) encodes a RING-containing protein with ubiquitin 

ligase activity that has been implicated in agouti pigment-type switching. In addition to having 

dark fur, mice lacking MGRN1 develop adult-onset spongy degeneration of the central nervous 

system and have reduced embryonic viability. Observation of complete situs inversus in a small 

proportion of adult Mgrn1
 
mutant mice suggested that embryonic lethality resulted from 

congenital heart defects (CHDs) due to defective establishment and/or maintenance of the left-

right (LR) axis. Here we report that Mgrn1 is expressed in a pattern consistent with a role in LR 

patterning during early development and that many Mgrn1 mutant embryos show abnormal 

expression of asymmetrically expressed genes involved in LR patterning. A range of complex 

heart defects was observed in 20% of mid-late gestation Mgrn1 mutant embryos and another 

20% were dead. This was consistent with 46-60% of mutants being dead by weaning age. Our 

results indicate that Mgrn1 acts early in the LR signaling cascade and is likely to provide new 

insight into this developmental process as Nodal expression was uncoupled from expression of 

other nodal-responsive genes in Mgrn1 mutant embryos. Our work identifies a novel role for 

MGRN1 in embryonic patterning and suggests that the ubiquitination of MGRN1 target genes is 

essential for the proper establishment and/or maintenance of the LR axis.  

 



 

73 

INTRODUCTION 

 The establishment of the left-right (LR) body axis during early development in vertebrate 

embryos is essential to proper morphology and placement of the visceral organs. The LR axis is 

the final of the three body axes to be established during development, with the initial symmetry 

breaking event occurring at the late neural fold stage (Hiroshi Hamada et al., 2002). Over the 

past decade, a number of genes involved in these steps have been identified including those 

encoding the transforming growth factor- (TGF-)-related signaling molecules Nodal, Lefty1 

and Lefty2 and the bicoid-type homeobox gene, Pitx2 (Collignon J. and E J Robertson, 1996; L. 

A. Lowe et al., 1996; C Meno et al., 1998; Yoshioka et al., 1998). The initial symmetry-breaking 

event has been attributed to a leftward flow that is a result of beating monocilia located on the 

ventral surface of the mammalian node. This flow is thought to cause a build-up of NODAL on 

the left side of the node which is then transferred to the lateral plate mesoderm (LPM) where it 

sets off a cascade of signaling on the left side of the developing embryo maintained by a midline 

barrier (Shigenori Nonaka et al., 2002; S Nonaka et al., 1998). While this theory of nodal flow 

has been widely accepted and modified to include means for both chemical (S Nonaka et al., 

1998; Yasushi Okada et al., 2005) and physical (McGrath et al., 2003) modes of generating a 

left-specific signaling event, other theories have been presented including a prolonged and stable 

upregulation of Ca
2+

 in the left side of the node which has been proposed to be involved 

regulating the left-sided signaling cascade (McGrath et al., 2003; Yosuke Tanaka et al., 2005). 

Mice lacking the membrane cation channel Polycystin-2 (PKD2) have impaired left–right axis 

determination and do not show left-sided elevation of Ca
2+

 in the node (Pennekamp et al., 2002; 

McGrath et al., 2003). Although the mechanism of Ca2
+
-dependent regulation of left–right 

asymmetry remains unclear, work in chick embryos has shown that transient accumulation of 

extracellular calcium leads to asymmetric activation of Notch (A. Raya et al., 2004). In mice, 
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Notch activity has been shown to regulate Nodal expression around the node (Krebs et al., 2003; 

A. Raya et al., 2003).  

 Nodal expression in the node is required to induce Lefty1 expression in the floorplate and 

Nodal expression in the left LPM (M. Yamamoto et al., 2003; J Brennan et al., 2001). Lefty1 is a 

feedback inhibitor of nodal that restricts its signaling and duration of expression. Nodal in the 

left LPM acts as a left-side determinant and activates Lefty2 expression (M. Yamamoto et al., 

2003). In the absence of Lefty1 or Lefty2, early Nodal expression in the LPM is asymmetric but it 

subsequently becomes bilateral (C Meno et al., 1998, 2001). Abnormal expression of any of 

these genes typically results in LR patterning defects. 

 LR patterning defects result in a variety of situs abnormalities including situs inversus 

(complete reversal of the left and right body axes), isomerism (resulting in symmetrical situs of 

an organ or organs) or heterotaxia (reversed symmetry of at least one but not all organs). 

Morbidity and mortality of laterality defects are generally attributed to associated complex 

congenital heart defects (CHDs), suggesting that the developing heart is particularly susceptible 

to disturbances in LR patterning (Kathiriya and Srivastava, 2000). Individuals with situs inversus 

have a higher incidence of CHDs than individuals with normal LR development (~3% vs. 

<0.1%), while ~90% of individuals with heterotaxia or isomerism are estimated to show complex 

CHDs (Ferencz et al., 1985; Bowers et al., 1996; Freed, 2001; Walmsley et al., 2004; Ramsdell, 

2005). Cardiac malformations most commonly associated with LR patterning defects include 

atrial and ventricular septal defects, single (common) ventricle, transposition of the great arteries 

(TGA), double-outlet right ventricle (DORV), and pulmonary stenosis or atresia (Freed, 2001). 

 Mahogunin RING Finger-1 (Mgrn1) encodes a C3HC4 RING domain-containing protein 

with ubiquitin ligase activity (Lin He et al., 2003). Mutations in mouse Mgrn1 were first 
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identified for their effect on pigmentation (Lane, 1960; Phillips, 1963; Miller et al., 1997). Mice 

homozygous for a null allele, Mgrn1
md-nc

, produce no detectable mRNA transcript, have black fur 

and exhibit reduced embryonic viability (Phillips, 1963, 1971; Lin He et al., 2003). Mice 

homozygous for a hypomorphic allele, Mgrn1
md-2J

, produce reduced amounts of aberrant mRNA 

transcript, have dark fur and also exhibit reduced embryonic viability (Phan et al., 2002; Bagher 

et al., 2006). We observed complete situs inversus in a small number (<1%) of adult Mgrn1
md-nc

 

mutant mice, which led to the hypothesis that reduced viability in Mgrn1 mutants was due to 

congenital heart defects resulting from abnormal LR patterning. Histological examination 

revealed a range of complex heart defects in 20% of mid-to-late gestation Mgrn1 mutant 

embryos, while another 20% of 12.5-19.5 d.p.c. embryos were dead. These observations were 

consistent with 46-60% mortality of homozygotes by weaning age. MGRN1 expression during 

embryogenesis was consistent with a role in LR patterning, and while most Mgrn1 mutant 

embryos showed normal expression of Nodal, a high proportion had aberrant (absent, bilateral 

and/or right-sided) expression of Lefty1, Lefty2 and Pitx2. Our work suggests that MGRN1 acts 

early in the LR signaling cascade and that studying Mgrn1 mutants will provide novel insight 

into the molecular mechanisms of LR patterning.   

 
MATERIALS & METHODS 

Mice 

 Mgrn1
md-nc

 mutant mice (Lin He et al., 2003) were maintained on an inbred (>20 

generations of brother-sister inbreeding) C3H X 101 (C3.101) background. Attempts to make 

this allele congenic on the C3H/HeJ or 129S1/SvImJ backgrounds were unsuccessful as 

embryonic lethality approached 100% by the 5
th

 backcross generations. C3H/HeJ-Mgrn1
md-2J

 

mice (Sweet and Davisson, 1995) have an ~8 kb IAP insertion in exon 13 that results in the 

production of aberrant Mgrn1 RNA transcripts (Phan et al., 2002; Bagher et al., 2006). Mice 
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were obtained from a cryopreserved stock at the Jackson Laboratory and subsequently 

maintained by intercrossing siblings. As these mice did not breed well, a homozygous mutant 

was mated to a non-mutant 129S1/SvImJ mouse to obtain F1 heterozygotes, which were 

intercrossed to obtain Mgrn1
md-2J

 homozygotes; experiments were performed using these mice 

and further intercrossed progeny. C3H/HeJ and 129S1/SvImJ control mice were originally 

obtained from the Jackson Laboratory and maintained in-house by brother-sister inbreeding. 

 Mgrn1
Gt(pGT1Lxf)XC712Wcs

 (abbreviated to Mgrn1
XC712

 ) mutant mice were generated from a 

mouse embryonic stem cell (ESC) line generated by BayGenomics that carries a gene-trap 

insertion in intron 17 of the Mgrn1 locus, trapping 2 of the 4 normal RNA isoforms (Bagher et 

al., 2006). The gene-trap vector is composed of a strong splice acceptor sequence upstream of a 

-geo reporter gene (-galactosidase fused to neomycin phosphotransferase) followed by a poly 

adenylation signal (Stryke et al., 2003). The trapped ESC, generated from 129P2 ESC lines, were 

injected into C57BL/6J blastocysts. One chimeric male was mated to a 129S1/SvImJ female and 

genotyped progeny were intercrossed for 6-8 generations to generate animals used for 

experiments described herein. Mice homozygous for the Mgrn1
XC712

 mutation have slightly 

darker fur on the dorsum but no discernible embryonic patterning defects. 

Histology 

 Mgrn1
md-nc

 and Mgrn1
md-2J

 homozygous embryos were collected from timed pregnancies 

between 16.5 and 18.5 d.p.c and fixed in 10% formalin.  Embryos were ethanol-dehydrated and 

paraffin-embedded for sectioning.  Transverse serial sections were made at 8 m and 

subsequently stained with hematoxylin and eosin (H&E) using a standard protocol.   

X-Galactosidase Staining and Cryosectioning Sectioning  

Mgrn1
XC712

 homozygous embryos were collected from timed pregnancies at 7.5-9.5 d.p.c., fixed 



 

77 

in 4% paraformaldehyde for 10-15 minutes and assayed for -GEO expression by X-

galactosidase staining following a standard protocol 

(www.rodentia.com/wmc/docs/lacz_bible.html). Stained embryos were embedded in 1% agarose 

and cryoprotected in 60% sucrose prior to secondary embedding in OCT. Sagittal or transverse 

serial cryosections were made at 25-30 m.  

Whole-Mount in situ Hybridization 

 Whole mount in situ hybridization was performed as previously described (IC et al., 

2000). RNA probes for Nodal, Lefty (which recognizes Lefty1 and Lefty2) and Pitx2 have been 

described previously (L. A. Lowe et al., 1996; C Meno et al., 1996; Yoshioka et al., 1998). The 

Mgrn1 probe was a 420-bp portion of the 3’UTR (common to all 4 isoforms) generated by PCR 

using forward primer CAGTTCCCCCGCACAGGTC and reverse primer 

AGGAAGGAGCAGGGTTAGAGTCAG and IMAGE cDNA clone 3481878 as template. All 

embryos were collected from timed pregnancies where females were checked daily for 

copulatory plugs and the day of detection of a plug was considered 0.5 d.p.c. Developmental age 

of embryos was verified by somite number. 

RESULTS  

LR patterning defects in Mgrn1 mutant mice 

 The pigmentation phenotype of Mgrn1 mutant mice is fully penetrant. Based on crosses 

between heterozygous and homozygous Mgrn1 mutants where equal proportions of heterozygous 

(agouti) and homozygous (dark) pups are expected, 46% of C3.101-Mgrn1
md-nc

 and 60% of 

CeH/HeJ-Mgrn1
md-2J

 homozygotes die before birth or during the first 3 weeks of life (Table 3.1). 

Surviving animals have other phenotypes, including dark fur and adult-onset spongy 

degeneration of the central nervous system (Mgrn1
md-nc

 only). In addition, while most adult 

Mgrn1 mutants show normal situs of asymmetric internal organs such as the heart, lungs, liver,  
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Table 3.1. Lethality in Mgrn1 mutants at weaning 

  
died 

before 
weaning*      

n (%) 

animals weaned 

homozygotes 
missing at weaning Cross 

mice 
born      

n 

heterozygotes     
n (%) 

homozygotes**      
n (%) 

Mgrn1md-nc/+ x Mgrn1md-nc/md-nc 2009 32 1285 (65%) 692 (35%) 46% [1-(692/1285)] 

Mgrn1md-2J/+ x Mgrn1md-2J/md-2J 581 12 406 (71%) 163 (29%) 60% [1-(163/406)] 

* Genotype of dead embryos unknown 
  **Number of homozygotes are expected to be equivalent to heterozygotes in this cross 
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   Figure 3.1. Situs defects in Mgrn1 mutant mice. (A-C) Wild-type, C3H/HeJ, mice show 

situs solitus (normal) (A) as do most Mgrn1
md-nc/md-nc 

mutant mice (B), although a small 

proportion of adults were observed with complete situs inversus (C). Upper panel shows the 

positions of the heart (H), stomach, spleen (Sp), lungs (Lu) and liver (Lv). Lower panels show 

reversed positions of the left (lK) and right (rK) kidneys in the affected animal. (D-K) Situs 

defects were also observed in some Mgrn1 mutants during embryonic development. 16.5 d.p.c. 

wild-type (C3H/HeJ) pup (D) and an unaffected Mgrn1
md-nc/md-nc

 pup (E) showed normal 

positioning of the heart (black arrows) while an affected Mgrn1
md-nc/md-nc

 (F) that was runted (E 

and F are at same scale) had mesocardia (F, black arrow). The heart of the runted animal (K, 

right, designated with *) was also hypoplastic relative to wild-type (J) and to its unaffected 

littermate (K, left). 
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Table 3.2. Embryonic lethality at late stages of gestation in Mgrn1 
mutants 

Genotype 
Age 
(dpc) 

# 
embryos 

# resorptions        
(%) 

# with 
hemorrhage 

(%) 

Mgrn1
mdnc-nc/md-nc

 12.5 16 2 (11%) 0 
Mgrn1

mdnc-2J/md-2J
 12.5 16 7 (30%) 0 

     Mgrn1
mdnc-nc/md-nc

 14.5 17 3 (15%) 2 (10%) 
Mgrn1

mdnc-2J/md-2J
 14.5 15 4 (21%) 1 (5%) 

     Mgrn1
mdnc-nc/md-nc

 15.5 5 2 (30%) 0 
Mgrn1

mdnc-2J/md-2J
 15.5 17 2 (11%) 2 (11%) 

     Mgrn1
mdnc-nc/md-nc

 16.5 4 2 (33%) 0 
Mgrn1

mdnc-2J/md-2J
 16.5 9 0 1 (11%) 

     

Mgrn1
mdnc-nc/md-nc

 
18.5-
19.5 5 3 (38%) 0 

Mgrn1
mdnc-2J/md-2J

 
18.5-
19.5 6 2 (25%) 0 

      Total 110 27 (20%) 6 (4%) 
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Figure 3.2. Cardiac and pulmonary defects in 16.5 d.p.c. Mgrn1 mutant mice. (A-D) 

Normal C3H/HeJ embryo (A) and two Mgrn1
md-nc/md-nc

 embryos with hemorrhage (black arrows). 

Boxed region in C is shown at higher magnification in D. (E-J) H&E-stained transverse sections 

of a control C3H/HeJ, an unaffected Mgrn1 mutant mouse and a Mgrn1 mutant mouse exhibiting 

cardiac and pulmonary defects. The affected embryo corresponds to embryo 5 in Table 2 and is 

labeled in the bottom right corner. Individual structures are labeled, with abnormal structures in 

capital letters.  (E-F) C3H/HeJ embryo with normal anatomy and situs. (E) An intact inter-atrial 

septum (ias) separates the left and right atria, the left ventricle (lv) and right ventricle (rv) are 

separated by an inter-ventricular septum (ivs). (F) Normal positioning of the aorta (ao) and 

pulmonary artery (pa) with a normal right ventricular outflow tract (rvot) and the esophagus (es) 

slightly left of the midline. (G-H) Unaffected Mgrn1
md-nc/md-nc 

embryo with anatomy and situs 

comparable to the C3H/HeJ control. Partial penetrance of the phenotype results in homozygous 

mutants with normal positioning and development of the heart. (I-J) Mgrn1
md-nc/md-nc 

embryo 

with cardiac and pulmonary defects. (I) A ventricular septal defect (VSD) and common atrium 

(CA) are present with a visible thinning of the ventricular myocardium in the compact zone 

(arrow). This embryo also exhibits left pulmonary isomerism (LPI), having two left lungs (LL), 

and mesocardia of the heart in the body cavity. (J) The outflow tract developed normally with 

correct positioning of the great vessels but midline positioning of the esophagus.  All images in 

D-I were taken at 5x magnification.  
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stomach, spleen and kidneys (Figure 3.1A-B), complete reversal (situs inversus) was observed in 

a very small proportion (estimated to be <1%) of adult Mgrn1
md-nc/md-nc 

mice (Figure 3.1C). This 

suggested that loss of Mgrn1 causes a defect in LR patterning. 

 To further investigate the hypothesis that LR patterning is altered in Mgrn1 mutants, we 

examined embryos for laterality defects. Between 12.5 and 19.5 d.p.c, 20% of Mgrn1 mutant 

embryos were dead (Table 3.2).  Gross examination of resorbed embryos indicated that they did 

not all die at the same stage of development as they varied greatly in size and condition of the 

tissue; in some cases, only a small, dark mole was observed while in the same litter, the 

anatomical structures of a pale, degenerating embryo could still be discerned. When examined at 

9.5-10.5 d.p.c 1% (1/106) of Mgrn1 mutant embryos exhibited leftward heart looping, reversed 

axial rotation (tail positioned to the left of the midline/head), and/or improperly placed 

attachment points of extra-embryonic membranes, while another 2% (2/106) exhibited 

ambiguous heart looping with no other apparent situs defects. At later stages of development 

(12.5-18.5 d.p.c.), 4% (5/109)  embryos showed hemorrhage (Figure 3.2A-D) and 25% (5/20) 

displayed complex CHD including atrial and ventricular septal defects, thinning of the 

myocardium, right aortic arch, double outlet right ventricle, unroofed coronary sinus, 

malposition of the great arteries, retroesophageal left subclavian artery, abnormal heart situs 

(mesocardia or dextrocardia), and/or pericardial and pleural effusion (Figures 3.1-3.3 and Table 

3.3). Some embryos also showed left pulmonary isomerism and/or pulmonary hemorrhage 

(Figure 3.3 and Table 3.3).  Additional situs defects would not have been detected as only the 

chest region of these embryos were sectioned and analyzed. Taken together, our observations 

support the hypothesis that LR patterning is abnormal in Mgrn1 mutant embryos and leads to  
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Figure 3.3. Cardiac and outflow tract defects in 18.5 d.p.c. Mgrn1 mutant mice. H&E-

stained transverse sections of wild-type and Mgrn1 mutant mice.  Affected embryos are labeled 

in the bottom right corner and their numbers correspond to embryos in Table 2. Individual 

structures are labeled, with abnormal structures in capital letters. (A-B) C3H/HeJ embryo with 

normal anatomy and situs.  (A) The left ventricle (lv) and right ventricle (rv) are separated by an 

inter-ventricular septum (ivs). (B) Normal positioning of the aorta (ao) and pulmonary artery 

(pa). (C-D) Mgrn1
md-nc/md-nc 

embryo with normal anatomy and situs. (E-F) Mgrn1
md-2Jnc/md-2J 

embryo (#10) with cardiac defects and symptoms of congestive heart failure. (E) Pericardial and 

pleural effusion signifying congestive heart failure in this embryo.  Atrioventricular septal defect 

(AVSD) resulting in one large heart chamber with thinning of the ventricular myocardium 

(arrow). (F) The outflow tract developed normally relative to wild-type and unaffected Mgrn1 

mutant. (G-H) Mgrn1
md-nc/md-nc 

embryo (#13) with cardiac and outflow tract defects. (G) 

Presence of an AVSD results in one large heart chamber. This embryo also exhibited 

dextrocardia. (F) Associated outflow tract abnormalities including a right aortic arch (RAA) 

emerging from a double outlet right ventricle (DORV) were also observed.  (I-J) Mgrn1
md-nc/md-nc 

embryo (#18) with cardiac, situs and outflow tract defects. (I) An unroofed coronary sinus (UCS) 

drains into a common atrium (CA). This animal exhibits dextrocardia and abnormal ventricular 

situs with reversal of the lv and rv relative to unaffected animals. (J) Malposition of the great 

arteries (MGA) with a more ventral PA as compared to wild-type.  The AO continues to the right 

of the es as a RAA, with a retroesophageal left subclavian artery (LRESA). (K-L) Mgrn1
md-nc/md-

nc 
(#19) embryo with cardiac, situs and outflow tract defects. (K) This embryo had similar 

cardiac defects to Embryo #18 (I-J), such as dextrocardia, UCS, CA, and reversal of ventricular 

situs. In addition, this embryo had reversed lung situs, pericardial effusion and transposition of 

the great arteries (TGA) (K-L).  Although the global situs of this animal is unknown, both the 

heart and lungs developed reversed situs.  All images were taken at 5x magnification.  
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Table 3.3 Cardiovascular and pulmonary phenotypes in Mgrn1 mutant mice 

Embryo Age (dpc) Phenotype 

5 16.5 thinning of the myocardium (compact zone), left pulmonary isomerism, common 
atrium, ventricular septal defect, mesocardia 

10 18.5 pericardial effusion, pleural effusion, atrioventricular septal defect, thinning of the 
myocardium, malposition of the great arteries 

13 18.5 atrioventricular septal defect, right aortic arch, double outlet right ventricle, 
dextrocardia 

18 18.5 right aortic arch, retroesophageal left subclavian artery, double outlet right 
ventricle, common atrium, unroofed coronary sinus, dextrocardia, reversed heart 
situs 

19 18.5 dextrocardia, reversed lung situs, common atrium, pericardial effusion, 
transposition of the great arteries, reversed heart situs 
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Figure 3.4.  Embryonic expression of Mgrn1 RNA and protein. The MGRN1--GEO fusion 

protein expressed in Mgrn1
XC712/XC712

 embryos was detected by X-gal staining (A, E-I, K) and 

Mgrn1 mRNA was detected by in situ hybridization in wild-type embryos using a 3’UTR probe 

(B-D, J). Similar expression patterns were observed with both methods. (A) MGRN1--GEO 

was expressed in the node (arrow) of pre-somite embryos. (B-D) Ventral (B, boxed region 

enlarged in C) and right lateral (D) views of a 2-3 somite embryo showing strong Mgrn1 

expression in the node (arrow) and heart (h). (E) Right lateral  view of a 6 somite embryo in 

which X-gal was developed for 24 hours, showing with expression in the node (arrow), 

neuroepithelium, floorplate, paraxial mesoderm, somites and heart (h). (F) Sagittal section of 6-7 

somite embryo showing strong expression in node (arrow, boxed region enlarged in G) as well as 

expression in neuroepithelium, heart (h) and mesoderm. Angle and approximate position of 

section is represented by line on adjacent sketch of 8.5 d.p.c. embryo. (H) Ventral view of a 6 

somite embryo developed for 12 hours showing strong MGRN1--GEO expression in the 

midline (arrow) and heart (h). (I) Transverse section of a 13 somite embryo developed for 12 

hours, showing symmetric floorplate expression (arrow) of MGRN1--GEO. Angle and 

approximate position of section is represented by line on adjacent sketch of 8.5-8.75 d.p.c. 

embryo. (J-K) By 9.5 d.p.c., MGRN1--GEO (J) and Mgrn1 mRNA (K) are broadly expressed. 
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high a proportion of embryonic and early post-natal lethality due to complex congenital heart 

defects. 

Mgrn1 expression in the developing embryo 

 We determined whether the expression pattern of MGRN1 was consistent with a role in 

LR patterning. MGRN1 expression was examined in normal mouse embryos from the late neural 

fold (pre-somite) stage through gastrulation and up to 10.5 d.p.c by in situ hybridization of wild-

type embryos and X-galactosidase (X-gal) staining of homozygous Mgrn1
XC712

 embryos, which  

carry a gene-trap insertion in intron 17 (Bagher et al., 2006), to visualize the MGRN1--GEO 

fusion protein they produce. X-gal staining and in situ hybridization gave comparable results. 

Embryos were examined in whole mount and/or frozen sections. In pre-somite and early somite-

stage embryos, Mgrn1 was strongly expressed in the node (Figure 3.4A-D) and more weakly in 

the neuroepithelium. In 6- to 12- somite embryos, Mgrn1 was strongly expressed in the node, 

symmetrically in the floorplate of the neural tube, and in the developing heart (Figure 3.4E-I). 

Weaker staining was observed in paraxial mesoderm, somites, the neuroepithelium and the hind- 

and fore-gut pockets. By E9.5, expression was virtually ubiquitous (Figure 3.4J-K). 

Mgrn1 acts downstream of Nodal but upstream of Lefty-1, Lefty-2 and Pitx2 

 To determine where MGRN1 acts in the known LR patterning pathway, we examined the 

expression of the (normally) asymmetrically expressed genes Nodal, Lefty1, Lefty2 and Pitx2 in 

Mgrn1
md-nc

 and Mgrn1
md-2J

 mutant embryos. In control embryos (Figure 3.5A and Table 3.4), 

Nodal was expressed in the node at pre- and early-somite stages and in the left LPM from 3-4 

somites until 8-10 somites, consistent with other reports (L. A. Lowe et al., 1996). Nodal 

expression was normal in 98% (47/48) of Mgrn1 mutant embryos examined (Figure 3.5A-B and 

Table 3.4). One Mgrn1
md-2J

 homozygote had no Nodal expression in the node and bilateral 
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expression in the cardiac LPM (Figure 3.5C and Table 3.4). For Lefty1, Lefty2 and Pitx2, 

abnormal patterns of expression were observed in a large proportion (17-50%) of Mgrn1 mutant 

embryos (Figure 3.5D-L and Table 3.3). In control embryos, Lefty1 was expressed in the midline 

and Lefty2 was expressed in the left LPM (Figure 3.5D). In Mgrn1 mutant embryos, Lefty1 was 

either normal (76%) or absent (24%) while Lefty2 was normal (50%), reversed (right-sided only; 

3%), symmetric (bilateral; 25%) or absent (22%) (Figure 3.5E-I and Table 3.4). Mis-expression 

of Lefty2 in Mgrn1 mutant embryos did not correspond with absence of Lefty1 expression, 

supporting the hypothesis that NODAL activates Lefty2 independent of Lefty1 (Hiroshi Hamada 

et al., 2002; Mercola, 2003). In control embryos, Pitx2 was expressed in the headfold region and 

left LPM (Figure 3.5J). Pitx2 expression was normal in the headfold region of all Mgrn1 mutant 

embryos examined but either normal (66.7%), reversed (3.9%), symmetric (5.9%) or absent 

(23.5%) in the LPM (Figure 3.5K-L and Table 3.3). These observations suggest that Mgrn1 acts 

early in LR patterning. It is intriguing that such a small proportion of Mgrn1 mutants show 

abnormal expression of Nodal relative to the proportion with altered expression of other NODAL 

target genes. It is possible that a higher proportion of mutant embryos show low levels of 

aberrant Nodal expression that cannot be detected by in situ hybridization but can impact the 

expression of downstream target genes. However, the observation that the vast majority of 

Mgrn1 mutant embryos express Nodal in the node would not explain the high frequency at which 

no Lefty1 expression was observed in the floorplate, given that Nodal expression in the node 

induces Lefty1 expression. In addition, Nodal expression was always observed in the left LPM 

yet more than 25% of Mgrn1 mutants displayed no detectable Lefty2 expression in the left LPM. 

Thus, our results are particularly intriguing as Nodal expression appears to be uncoupled from  
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Figure 3.5.  In situ hybridization analysis of Nodal, Lefty and Pitx2 expression in Mgrn1 

mutant embryos. (A-C) Ventral views of Nodal expression in 5 somite C3H/HeJ (control) (A) 

and 3 somite Mgrn1
md-2Jmd-/2J 

(B) embryos showing normal expression in the node and left lateral 

plate (lpm) mesoderm in both. One 6 somite, Mgrn1
md-2Jmd-/2J

, embryo (C) expressed reduced 

levels of Nodal bilaterally in the cardiac lateral plate mesoderm (arrows). (D-I) Normal and 

various patterns of abnormal Lefty1/2 expression were observed in 8-8.5 d.p.c. C3H/HeJ and 

Mgrn1 mutant embryos. Ventral views of a C3H/HeJ (D) and  Mgrn1
md-nc/md-nc 

(E) embryo with 

normal Lefty1 expression in the floorplate and normal Lefty2 expression in the left lpm, and 

Mgrn1
md-2J/md-2J 

embryos with no Lefty1 expression in the floorplate and normal Lefty2 

expression in the left lpm (F), no Lefty1 in the floorplate and bilateral Lefty2 in the lpm (G), no 

Lefty1 expression in the floorplate and strong Lefty2 expression in the right lpm (low level of 

Lefty2 expression in the left lpm) (H) and normal Lefty1 expression in the floorplate and 

symmetric Lefty2 expression in the right and left lpm (I). (J-L) Normal and various patterns of 

abnormal Pitx2 expression were also observed in 8-8.5 d.p.c. Mgrn1 mutant embryos. Ventral 

views of C3H/HeJ (J) and Mgrn1
md-2J/md-2J 

embryos with normal Pitx2 expression in the headfold 

and in the left lpm (K) and normal Pitx2 expression in the headfold and symmetric expression in 

the right and left lpm (L).  
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Table 3.4. Asymmetric gene expression in Mgrn1 mutant embryos 
  

   LPM  Node  

Gene Genotype Somites % Left 
% 

Right 
% 

Bilateral 
% 

Absent  
% 

Normal % Absent 
Total 
(n) 

Nodal +/+
1
 0-2 --- --- --- ---  100 --- 2 

  3-7 100 --- --- ---  100 --- 15 

  8-10 100 --- --- ---  100 --- 5 

 Mgrn1
md-nc/md-nc

 0-2 --- --- --- ---  100 --- 5 
  3-7 100 --- --- ---  100 --- 10 
  8-10 50 --- --- 50  50 50 8 

 Mgrn1
md-2J/md-2J

 0-2 --- --- --- ---  100 --- 1 

  3-7 91.7 --- 8.3
 2
 ---  91.7 8.3

 2
 12 

  8-10 41.7 --- --- 58.3  41.7 58.3 12 

Lefty2 
3,4

 +/+
1
 4-8 100 (0) --- --- ---    16 

 Mgrn1
md-nc/mc-nc

 4-8 50 (3) --- 22.2 (0) 27.8 (1)    18 

 Mgrn1
md-2J/md-2J

 4-8 
27.3 
(1) 9 (0) 36.4 (2) 27.3 (1)    11 

Pitx2 +/+* 5-12 100 --- --- ---    8 

  13-21 100 --- --- ---    27 

 Mgrn1
md-nc/mc-nc

 5-12 50 8.3 --- 41.7    12 
  13-21 66.6 16.7 --- 16.7    6 

 Mgrn1
md-2J/md-2J

 5-12 71.5 --- 7.1 21.4    14 
  13-21 73.7 --- 10.5 15.8    19 

   Floorplate     

   % Left 
% 

Right 
% 

Bilateral 
% 

Absent     

Lefty1 
3
 +/+

1
 2-7 100 --- --- ---    11 

 Mgrn1
md-nc/md-nc

 2-7 66.7 --- --- 33.3    15 

  Mgrn1
md-2J/md-2J

 2-7 75 --- --- 25    12 
1+/+ (control) embryos were collected from 129S1/SvImJ and/or C3H/HeJ animals   
2 Nodal expression in 1 Mgrn1md-2J/md-2J embryo (Fig. 5C) was bilateral in the cardiac LPM and absent from the node  
3Lefty1 and Lefty2 expression were detected simultaneously using a single probe   
4
Number of embryos scored for Lefty2 expression with abnormal (absent) Lefty1 expression indicated in ( ) after % 
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expression of the Lefty genes and Pitx2 in Mgrn1 mutant embryos. This suggests a novel 

mechanism of gene regulation. To our knowledge, our work demonstrates the first instance of a 

component of the ubiquitination pathway being involved in LR patterning. 

DISCUSSION 

 We have identified a novel role for the MGRN1 ubiquitin ligase in LR patterning. 

Ubiquitination has been implicated in regulation of transcription (Z.-W. Sun et al., 2002; Gillette 

et al., 2004), endocytic trafficking and receptor down-regulation (Stang et al., 2000; Haglund et 

al., 2003) and marking of proteins for degradation by the 26S proteasome (Pickart, 2004). Based 

on gene expression patterns in Mgrn1 mutant mice, Mgrn1 acts early in the LR signaling 

cascade. MGRN1 is strongly expressed in the node from pre-somite stages onward, preceding 

asymmetric expression of Nodal. At later stages, it is also expressed in the floorplate but no 

significant or asymmetric expression was detected in the LPM. This expression pattern suggests 

that MGRN1 could be involved in early LR patterning in the node as well as later events, 

perhaps contributing to the midline barrier. Intriguingly, Nodal expression was normal in the 

node and LPM in the vast majority of Mgrn1 mutant embryos yet other nodal-responsive genes 

(Lefty1, Lefty2, Pitx2) showed high frequencies of aberrant expression. This suggests that 

understanding the role of MGRN1 in LR patterning will provide new insight into the previously 

described signaling pathways involved in this critical developmental process.  

 A high proportion of Mgrn1 mutant embryos develop CHDs that are consistent with LR 

patterning defects. MGRN1 is expressed in the developing heart, however, and in neuroepithelial 

cells (most likely including neural crest cells). Some of the CHDs observed in Mgrn1 mutant 

mice, such as double outlet right ventricle and malposition of the great arteries, could also result 

from neural crest cell defects (Kirby and Waldo, 1995). It will be of future interest to examine 

whether Mgrn1 has a role in heart development independent of its role in LR patterning. 
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CONCLUSIONS 

 While the pigment defects in Mgrn1 mutants have been extensively studied and 

defects in the embryonic viability of these animals had been previously reported, no prior studies 

had sought to identify the underlying defects in these mice. My analysis of the expression of 

genes required for proper patterning of the LR axis in Mgrn1 mutant embryos has revealed a 

requirement for Mgrn1 in this process. The precise mechanism by which MGRN1 mediates LR 

patterning is unknown, however, it is likely that ubiquitin-mediated trafficking and/or 

degradation of MGRN1 target proteins will be required. Future work should focus on the 

identification of the direct MGRN1-interacting proteins and the characterization of the role of 

these interactions in left-right axis specification (see Appendix B). It will be of special interest to 

determine contribution of MGRN1’s ligase activity to these processes.    
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CHAPTER 4 

 

Conclusions and future directions.
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1
Reference Cota et al., 2006 of this chapter is also Chapter 3 of this dissertation. 
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The study of spontaneous and chemically-derived mutations in the mouse have enabled 

the identification of numerous genes with previously unknown roles in regulating the various 

cellular and morphological process required for proper mammalian development (Lyon, MF and 

Searle, 1989; Holdener-Kenny et al., 1992; Kasarskis et al., 1998; García-García et al., 2005; 

Kile et al., 2003; Boles et al., 2009; Herron et al., 2002; Wilson et al., 2005; Stottmann et al., 

2011; Sandell et al., 2011).  The goal of the work presented in this dissertation was to identify 

genes with novel roles in regulating the development of the mammalian embryo. The study of 

the ENU-derived mutant cetus presented in Chapter 2 identified a novel leucine-to-proline 

mutation in the DEAD/H-box helicase, Ddx11, that results in severe defects in somitic 

mesoderm. In Chapter 3, I presented data demonstrating that defects in patterning of the LR axis 

are responsible for the reduced viability of mice with mutations in the E3 ubiquitin ligase, 

MGRN1 (Cota et al., 2006). In this chapter I present overall conclusions from each of these 

studies as well as ideas for future lines of investigation. 

Mutations in Ddx11 result in mid-gestation embryonic lethality in the mouse 

Loss of sister chromatid cohesion and cohesion-associated factors have been associated 

with defects in chromosome segregation, as well as defects in embryonic development (Robert V 

Skibbens, 2005; Dorsett, 2011; Wood et al., 2010). The identification and characterization of 

defects in chromosome segregation and mitotic progression in Ddx11
KO

 mice is supportive of 

previous data from the analysis of loss-of-function mutations in yeast, mouse and human that 

DDX11 plays a critical and conserved role in the establishment of sister chromatid cohesion 

(Parish et al., 2006; A. Inoue et al., 2007; Farina et al., 2008; R. V. Skibbens, 2004; Leman et al., 

2010). Furthermore, the generation of Ddx11
KO

 mice uncovered a specific requirement for this 

gene in embryonic development (A. Inoue et al., 2007). However, precisely how cohesion 

establishment factors like DDX11 and its interacting partners (e.g. Ctf18-RFC) themselves 
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contribute to the process of sister chromatid cohesion and thereby promote genome stability 

remains unclear.  

  Previous work done to characterize the null allele of Ddx11 in the mouse revealed defects 

in sister chromatid cohesion, and concluded that death of these embryos was due to a failure of 

proper chorio-allantoic fusion (A. Inoue et al., 2007).  In Chapter 2 of this dissertation I present 

data from my analysis of cetus mutants. Positional cloning and complementation analysis of 

cetus revealed a point mutation in Ddx11 which severely disrupts the function of this gene in 

mice. cetus mutant embryos displayed an extreme and specific reduction of somitic mesoderm, a 

phenotype which had not previously been described in Ddx11 mutant embryos.  

 In order to identify the mechanism underlying the somitic mesoderm defects in cetus 

mutants, I analyzed the expression pattern of the Ddx11 transcript in embryos by in situ 

hybridization. These experiments found that the Ddx11 gene was widely expressed throughout 

the embryonic and extra-embryonic tissues at mid-gestation indicating that the expression pattern 

of the gene could not alone explain the differential requirement for Ddx11 within the embryo.  

Analysis of cell death in gastrulating Ddx11 mutant embryos showed a massive increase in 

apoptosis in comparison to wildtype embryos. However, this apoptosis was not confined to the 

mesoderm of mutant embryos. These results, along with data from analysis of the effects of 

mutations in genes with similar roles in promoting genome stability that also display a loss of 

somitic mesoderm; suggest that variations in sensitivity to genomic instability may exist between 

different cell populations within the embryo. Further studies of cell cycle regulation in the 

mammalian embryo are needed to fully appreciate the extent of these variations. 

Determining the molecular defects in cetus mutants 

 In an attempt to identify the molecular defect in DDX11 caused by the cetus mutation, I 

assayed the ATP hydrolysis and DNA binding activity of recombinant HIS/SUMO-DDX11
WT
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and HIS/SUMO-DDX11
cetus

 protein. My data suggests that these biochemical activities, while 

required for proper sister chromatid cohesion (A. Inoue et al., 2007), may not themselves be 

sufficient for the process. A numbers of studies have shown the helicase activity of FANCJ 

family helicases, including DDX11, to be both ATP and DNA-dependent (Y Wu et al., 2009; 

Hirota and J M Lahti, 2000; Farina et al., 2008; Gupta et al., 2007). Future work should directly 

address the effect of the cetus mutation on DDX11 helicase activity. Such studies would 

definitively answer a prevalent question in the field of cohesion; is helicase activity required for 

sister chromatid cohesion? 

  Previous studies have identified physical interactions between DDX11 and components 

of the cohesin complex as well as cohesion establishment factors and components of the 

replication fork machinery (Parish et al., 2006; Farina et al., 2008; Leman et al., 2010). It is 

possible that the cetus mutation disrupts one or more of these interactions which is crucial for 

development of the embryo. In order to begin addressing this possibility, I conducted co-

immunoprecipitation experiments to assess the ability of the DDX11
cetus

 protein to interact with 

the cohesin complex (Appendix A). These experiments, while not exhaustive, showed no defect 

in the ability of DDX11
cetus

 to interact with RAD21 or SCC1, two core components of the 

cohesion complex. It remains possible that another known DDX11 protein interaction is 

disrupted by the cetus mutation and future experiments to assess these interactions should be 

conducted.  Alternatively, the cetus mutation may disrupt the interaction of the DDX11 with 

other as yet unidentified effector proteins. This could be addressed by conducting yeast-2-hybrid 

experiments. 

 The identification and characterization of the cetus mutation in Ddx11 has identified a 

previously unreported requirement for this gene in mesoderm development. Despite the 

relevance to human disease, little is known about the roles of FANCJ helicases in development. 
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Future studies should be directed at identifying the precise molecular function of DDX11 that is 

perturbed in cetus mutants. 

Loss of MGRN1 results in defects in LR patterning 

 Significant progress has been made in understanding the genetic and molecular 

mechanisms that pattern the left-right axis over the past fifteen years. Following the initial 

identification of asymmetric Nodal expression in the chick (M Levin et al., 1995), studies in 

mouse, chick and xenopus have identified a network of asymmetrically expressed genes, ions 

and transport mechanisms (C Meno et al., 1998; Yoshioka et al., 1998; M. Yamamoto et al., 

2003; C Meno et al., 1996; Collignon J. and E J Robertson, 1996; Michael Levin et al., 2002; Aw 

et al., 2010; Morokuma et al., 2008). How these signals are regulated is less well understood.  

 In Chapter 3, I present data from the phenotypic analysis of embryonic defects in mice 

with loss-of-function mutations in Mgrn1. The discovery of situs inversus in a small proportion 

of adult Mgrn1
md-nc 

mutant mice raised the possibility that defects in LR axis specification might 

underlie the lethality in these mutants. In order to address this possibility I assayed the 

expression patterns of genes required for proper LR-patterning of the embryo in Mgrn1 mutants. 

These experiments showed that loss of Mgrn1 results mis-expression of NODAL target genes 

controlling left-right patterning including Lefty1, Lefty2 and Pitx2.  

 Work in mice by Meno et al. (C Meno et al., 1998) established the foundation for what 

has become the prevailing hypothesis regarding the mechanism of maintaining left-specific 

expression domains in the embryo. It is believed that the left-specific expression domain of 

Nodal in the LPM is maintained by antagonism at the level of the NODAL co-receptor, 

CRIPTO, by LEFTY-1 present in the midline. Data presented in this dissertation demonstrating 

ectopic right-sided induction of Nodal signaling in the LPM in the presence of unperturbed Lefty-

1 expression was among the first to challenge this hypothesis (Cota et al., 2006). More recent 
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data from zebrafish models suggest that Lefty-1 in the midline alone is not sufficient to prevent 

the propagation of Nodal and associated downstream nodal signaling to the right LPM and shows 

evidence for the existence of at least two additional barrier signals (Lenhart et al., 2011). Future 

studies are required to confirm the relevance of these signals in other model organisms. If these 

barrier mechanisms are functional in the mouse it would be interesting to examine them in the 

context of the Mgrn1 mutations to determine what, if any, role this gene might be playing.  

Identifying MGRN1 interacting proteins required for LR patterning 

The data presented in Chapter 3 of this dissertation identifies MGRN1 as the first and 

only ubiquitin ligase which has been shown to date to have a direct role in left-right patterning. 

Ubiquitination has been implicated in diverse set of cellular processes from protein degradation 

to receptor trafficking and desensitization (Komander, 2009). Ubiquitin ligase proteins provide 

specificity to the ubiquitination process by interacting directly with target proteins (Hershko et 

al., 1986), therefore identifying MGRN1 interacting proteins is essential for determining the 

precise mechanism of MGRN1-mediated LR patterning. In order to address this, I conducted a 

series of yeast-2-hybrid experiments (Appendix B). These experiments identified a number of 

putative MGRN1 interacting proteins, including the previously validated MGRN1 interacting 

protein, TSG101(Jiao, K. Sun, et al., 2009; B Y Kim, J A Olzmann, et al., 2007). However, none 

of the MGRN1 interacting proteins identified in these screens have previously reported roles in 

LR patterning. While it is possible, despite a lack of evidence, that one or more of these proteins 

does have a role in LR axis specification; it likely that further experiments will be required to 

identify the interaction required for MGRN1-mediated LR patterning. Yeast-2-hybrid screens 

using a full-length MGRN1 construct would likely identify additional, more complex, 

interactions that require multiple regions MGRN1. Once a protein of interest is identified, it will 

be necessary to determine contribution of MGRN1’s ligase activity to these processes using in 
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vitro and in vivo ubiquitination assays.    

 The characterization of patterning defects in Mgrn1 mutants has expanded the current 

knowledge of MGRN1-mediated functions in the mouse and has identified MGRN1 as a novel 

regulator of LR axis establishment. Future studies should be aimed at identifying MGRN1 target 

proteins and improving our understanding of the role of MGRN1’s ubiquitin ligase activity in 

patterning of the embryo.  

 In summary, the study of mutant mice has uncovered many genes are required for the 

proper development of the embryo. Characterization of the embryonic defects present in 

Ddx11
cetus

 and Mgrn1 mutant mice has uncovered novel roles for these genes. Future studies to 

characterize the molecular mechanisms used by DDX11 and MGRN1 will add to our 

understanding of the roles of these proteins during development of the mammalian embryo. 
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APPENDIX A 
 

ANALYSIS OF DDX11 INTERACTIONS WITH COHESIN COMPLEX PROTEINS 

 

INTRODUCTION 

Previous characterization of the cellular defects present in Ddx11
KO

 embryos have 

provided genetic evidence indicating that DDX11 is required for sister chromatid cohesion and 

G2-M cell cycle progression in the mouse (A. Inoue et al., 2007). Consistent with these 

observations, physical interactions between DDX11 and components of the cohesion ring 

complex, a large ring-shaped multimeric protein complex consisting of four proteins:SMC1, 

SMC3 and SCC1/RAD21 have also been described (Parish et al., 2006; Leman et al., 2010). 

While cohesion and cell cycle defects were not directly assayed in the Ddx11
cetus

 mutants, it is 

likely that such defects are present based upon the extensive phenotypic similarity we have seen 

to the Ddx11
KO 

(Chapter 2). In order to address the possibility that the cetus mutation might 

disrupt interactions between DDX11 and the cohesion complex, I conducted a series of 

immunoprecipitation experiments.  

MATERIALS & METHODS 

Site-directed mutagenesis 

 A previously published mammalian expression vector encoding a FLAG-tagged human 

Ddx11 (ChlR1), pcDNA3-ChlR1-FLAG (DDX11
WT

-FLAG), was obtained from Eishi Noguchi 

(Leman et al., 2010). The following set of primers was used to introduce the murine cetus 

mutation (Figure 2.3, Chapter 2) via site-directed mutagenesis in to the  pcDNA3-ChlR1-FLAG 

vector: 5’-ACAGGG GCCTTGCTCCCCTCTGTGGTTGGAG-3’ and 
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5’CTCCAACCACAGAGGGGAGCAAGGCCCCTG T-3’.  

Immunoprecipitation (IP) 

HEK293T cells were transfected with pcDNA3-FLAG, pcDNA3-ChlR1-FLAG 

(DDX11
WT

-FLAG) or pcDNA3-ChlR1
cetus

-FLAG (DDX11
cetus

-FLAG) using FUGENE 6 

(Roche). Cells were washed twice with ice-cold 1X PBS and lysed with IP lysis buffer (250mM 

NaCl 50mM Tris (pH 7.5), 1mM Ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100, 

0.05% SDS and protease inhibitor cocktail (Roche)). Lysates were cleared by centrifugation at 

8,000 rpm for 3 min. Antibodies were pre-bound by 1 hour incubation at 4
o
C with protein-G 

magnetic Dynabeads (Invitrogen). Cleared lysates were added to the antibody conjugated beads 

and incubated for an additional 1 hour at 4
o
C. Beads were collected and washed four times with 

IP lysis buffer. Immunoprecipitated proteins were eluted by the addition of 1X SDS loading 

buffer (0.25 M Tris-HCl (pH 6.8), 10% Glycerol, 1% (w/v) SDS and 0.05% (w/v) Bromophenol 

Blue) and analyzed by western blot. FLAG-M2 antibody (Sigma), RAD21 (Bethyl Labs), SMC1 

(Chemicon) or mouse IgG (Santa Cruz) were used for IP’s and subsequent western blots. 

Western Blot 

Proteins were denatured by boiling and separated by SDS-PAGE (4-6% w/v acrylamide). 

Proteins were transferred to polyvinylidene difluoride optimized for fluorescence 

immunodetection (FL-PVDF) membranes, blocked in either 5% BSA in Tris-buffered saline (pH 

7.6). Primary antibody binding was accomplished by overnight incubation of blots at 4
o
C in Tris-

buffered saline (pH 7.6) with 0.1% Tween-20 and 5% BSA. Washes and secondary antibody 

binding were performed at room temperature in Tris-buffered saline (pH 7.6) with 0.1% Tween-

20. Antibodies used included: FLAG-M2 antibody (Sigma, 1:1,500), RAD21 (Bethyl Labs, 

1:1,500), SMC1 (Chemicon, 1:1,500), IR Dye 800 or 680LT goat-anti-mouse and goat-anti-
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rabbit (LI-COR, 1:15,000). All blots were imaged using an Odyssey CLx infrared imaging 

system and analyzed using Image Studio Version 2.0 imaging software (LI-COR). 

 

RESULTS & DISCUSSION 

In order to assess the effects of the cetus mutation on reported interactions between 

DDX11 and components of the cohesin ring complex (Parish et al., 2006), I introduced the cetus 

mutation in to a previously characterized mammalian expression vector encodinging a FLAG-

tagged human DDX11 protein (Leman et al., 2010). The resulting expression constructs were 

transfected into Hek293T cells (ATCC). Expression of both the DDX11
WT

-FLAG and the 

mutant DDX11
cetus

-FLAG was readily detected in lysates from transfected cells (Figure A1.1 and 

Figure A1.2) indicating that the introduction of the cetus mutation had little effect on the stability 

of the DDX11-FLAG protein.  

As previously reported for the endogenous human DDX11 protein (Parish et al., 2006), 

components of the cohesion ring complex, SMC1 and RAD21 were readily detected upon 

immunoprecipitation of the tagged DDX11
WT

-FLAG with a commercial FLAG antibody (Figure 

A1.2). The cetus mutation did not result in any obvious decrease in either of these interactions in 

the experiments conducted. These results suggest that the embryonic defects and apparent loss of 

DDX11 activity observed in cetus mutant mice are not due to an inability of the DDX11
cetus

 

mutant protein to interact with these components of the cohesin ring complex.  My results 

CONCLUSIONS 

Studies in yeast and human models have identified a role for DDX11 in the establishment 

of cohesion (Leman et al., 2010; Farina et al., 2008; R. V. Skibbens, 2004). The prevailing 

hypothesis put forth by Parish et al. (Parish et al., 2006) predicts that DDX11 is required for the 

loading of the cohesion ring complex on to sister chromatids during DNA replication.  
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Figure A1.1. Expression of DDX11-FLAG proteins in Hek293T cells.  Hek293T cells were 
transiently transfected with 60ng of FLAG-vector (Lane 1), DDX11

WT
-FLAG (Lane 2) or 

DDX11
cetus

-FLAG (Lane 3). Both the DDX11
WT

-FLAG and the DDX11
cetus

-FLAG proteins 
were readily detected in transfected cell lysates using a FLAG antibody (Sigma). Expression of 
GAPDH was used as a loading control. 
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Figure A1.2. DDX11 proteins interact with components of the cohesion ring complex. 
Hek293T cells were transiently transfected with FLAG-vector (Lane 1), DDX11

WT
-FLAG (Lane 

2) or DDX11
cetus

-FLAG (Lane 3) were immunoprecipitated with a FLAG antibody (Sigma) and 
Western blots were performed for components of the cohesion ring complex, SMC1 and RAD21 
(A). Immunoprecipitation with mouse IgG was conducted as a negative control for non-specific 
antibody binding. Endogenous expression of SMC1 and RAD21 as well as the expression of the 
transfected DDX11 constructs in cell lysates used immunoprecipitation are shown (B).  
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I have been unable to detect any defects in the interaction between the DDX11
cetus

 protein and 

components of the cohesin ring complex or in DNA binding (Figure 2.9, Chapter 2). These 

results may suggest that if DDX11 is required for cohesion loading then neither interaction with 

cohesion ring complex nor the ability to bind DNA alone is sufficient for the process. Of broader 

relevance, details on how the cohesin ring complex assembles around sister chromatids remain 

unclear. It is unknown to what extent cohesion establishment factors like DDX11 influence or 

are influenced by this assembly (Robert V Skibbens, 2005). Further studies looking at the 

loading of the cohesion ring complex onto DNA in Ddx11
cetus

 mutants would aid in resolving 

these questions.   
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APPENDIX B 

IDENTIFICATION OF MGRN1 INTERACTING PROTEINS 

 

INTRODUCTION 

MGRN1 is a C3HC4-RING domain-containing protein that has been shown to function 

as an E3 ubiquitin ligase both in vitro (Lin He et al., 2003) and in vivo (Jiao, K. Sun, et al., 2009; 

Bong Yoon Kim, James A Olzmann, et al., 2007). Protein ubiquitination has been shown to be a 

key step of signaling in developmental, regulating both components of the canonical WNT and  

NOTCH pathways (Aberle et al., 1997; Mukai et al., 2010; Hay-Koren et al., 2011; Callow et al., 

2011; Berndt et al., 2011; E. C. Lai et al., 2005; Jehn et al., 2002; Qiu et al., 2000). The 

identification of a direct role for MGRN1 in LR patterning (Chapter 3; Cota et al., 2006) 

implicated a role for protein ubiquitination in this process which had not previously been 

identified.  

Ubiquitination is a multi-step, hierarchical process whereby the 76-amino acid protein 

UBIQUITIN is covalently attached to target proteins at lysine or unstable amino-terminal 

residues. Canonical ubiquitination begins with the binding of UBIQUITIN by an E1 ubiquitin-

activating enzyme which, in an ATP-dependent manner, catalyzes in the formation of a thioester 

bond between the carboxy-termini of the UBIQUITIN molecule and an active site cysteine 

residue of the E1. The activated UBIQUITIN is then transferred to the active site cysteine 

residue of an E2 ubiquitin-conjugating enzyme (Schulman and Harper, 2009). Finally an E3 

ubiquitin ligase facilitates the transfer of UBIQUITIN from the E2 to the target protein. To date, 

as many as eight mammalian E1, thirty nine E2 as well as several hundred RING-type E3 

proteins have been identified in mammals (Markson et al., 2009; Wenzel et al., 2010; Groettrup 

et al., 2008) Ubiquitination of proteins has been shown to result in degradation via the ubiquitin-
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proteasome system or, in the case of some membrane receptors, changes in receptor trafficking 

and/or down-regulation of receptor signaling.  

As the most downstream component of the ubiquitination process, E3 ubiquitin ligase 

proteins are the major determinant of specificity in this system. Therefore, the identification of 

E3 target proteins is essential for determining mechanism for ubiquitin regulation. In order to 

identify MGRN1 interacting proteins that might play a role in MGRN1-mediated LR pattering 

events, I performed a series of yeast-2-hybrid experiments. 

MATERIALS & METHODS 

Yeast-2-Hybrid Screening 

 Yeast-2-hybrid assays were performed using the ProQuest Two-Hybrid System with 

Gateway Technology (Invitrogen). Mgrn1 cDNA fragments encoding regions N-  (amino acids 

1-278) and C-terminal (amino acids 342-519/532/541) to the RING domain of Mgrn1 isoforms I, 

II and III (Figure A2.1) were cloned into the pDEST32 bait vector and screened against a mouse 

e8.5 embryo cDNA library (ProQuest, Invitrogen). Plasmid DNA was isolated from colonies 

screened as positive for MGRN1 interactions using a commercial yeast plasmid isolation kit 

(Clontech). Plasmid DNA was sequenced at the Cornell University Life Sciences Core 

Laboratory Center (CLC). Gene ontology analysis was performed using the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) bioinformatics resource v6.7 (D. 

W. Huang, Sherman, and Lempicki, 2009a, 2009b). 

RESULTS & DISCUSSION 

 In order to identify MGRN1 interacting proteins that might provide a mechanistic 

explanation for the left-right patterning defects identified and described in Chapter 3 of this 

dissertation, yeast-2-hybrid screens were performed using the regions of MGRN1 N- and  
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Figure A2.1.  Mgrn1 Isoforms. Mgrn1 encodes a C3HC4-RING domain (black box, labeled 
RING) containing E3 ubiquitin ligase. Alternative splicing of exons 12 (dark grey box, labeled 
12) and 17 (light grey boxes, labeled 13aa or 37aa) generate four isoforms (indicated as I, II, III 
and IV). For yeast-2-hybrid assays, regions were used corresponding to the N-terminal domain 
or C-terminal domain of isoforms I, II and III. The dotted line indicates the position of the PSAP 
motif required to mediate interactions with the ESCRT complex protein, TSG101. Figure was 
adapted from (Jiao, K. Sun, et al., 2009). 
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Table A2.1. MGRN1 interacting proteins 
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Figure A2.2.  Gene Ontology analysis of MGRN1 interactions. Gene ontology analysis of 

MGRN1 interactions identified by yeast-2-hybrid analysis was performed using the DAVID 

bioinformatic resource. Represented are the top 10 functional categories of genes most often 

associated with MGRN1 interacting proteins. The y-axis represents the –log(p-value). All 

categories exceed a threshold p-value of 0.05 (-log(p-value)=1.3).  
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C-terminal to the RING domain fused to the DNA binding domain of the yeast transcription 

factor Gal4 as “bait”. A commercial mouse e8.5 cDNA library (ProQuest, Invitrogen) consisting 

of sequences fused to the Gal4 activation domain was used as “prey”. This region of the Mgrn1 

transcript has been shown to undergo alternative splicing which generates four distinct isoforms 

(Figure A2.1). Previous analysis of transgenic mice expressing each of the four Mgrn1 isoforms 

has suggested both overlapping and independent functions for the Mgrn1 isoforms I, II and III 

during development. Isoform IV was unable to rescue the developmental defects associated with 

embryonic lethality in these assays (Jiao, K. Sun, et al., 2009). Thus, Mgrn1 fragments 

corresponding to each of these isoforms were assayed. 

 Yeast-2-hybrid analysis identified 36 potential MGRN1 interacting proteins (Table 

A2.1), including the previously reported MGRN1 interacting protein, TSG101 (B Y Kim, J A 

Olzmann, et al., 2007; Jiao, K. Sun, et al., 2009).  Gene ontology analysis showed a significant 

enrichment for genes involved in metabolic processes within the data set of MGRN1 interacting 

proteins (Figure A2.2) Of particular interest was CARBOXYPEPTIDASE E (CPE), the protein 

encoded by the gene mutated in Cpe
fat

 mutant mice (Naggert et al., 1995). This enzyme acts as 

an exopeptidase in the processing of proinsulin insulin (Naggert et al., 1995; Fricker et al., 1996). 

Previous work has demonstrated that loss of Mgrn1 in the mouse is able to suppress agouti-

mediated insulin signaling and that this suppression results in a global reduction in circulating 

insulin (Phan et al., 2006). While genetic analysis suggests that the effect of Mgrn1 on insulin 

signaling is at the level the MC4R receptor (Phan et al., 2006), evidence supporting a direct 

interaction between these two proteins is controversial (Overton and Leibel, 2011). Thus the 

mechanism by which MGRN1 participates in regulation of insulin signaling remains unclear. 

Future studies confirming a direct interaction between MGRN1 and CPE and investigating the 
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contribution of this interaction to MGRN1-mediated effects on insulin signaling are needed to 

address these questions. 

CONCLUSIONS 

 These assays have identified a list of potentially interesting MGRN1 interacting proteins; 

however they were unsuccessful in identifying interactions with obvious implications in LR 

patterning. Removal of the catalytic RING domain, intended to prevent ubiquitin-mediated 

degradation of candidate interacting proteins may have unintentionally prevented the 

identification of complex protein-protein interactions dependent upon multiple regions of the 

MGRN1 protein. Such a problem could be circumvented by conducting future yeast-2-hybrid 

screens using a catalytically inactive version of the MGRN1 protein (Lin He et al., 2003). 

Regardless, further studies are necessary to identify MGRN1 interactions relevant to its role in 

LR patterning of the embryo. 
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