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Abstract 

Spatial trends are often a significant source of variability in field trials. 
Since trends vary from block to block, they should be estimated as random 
effects. In this paper we propose to consider spatial covariates as post hoc 
random effects within the context of the experiment design. We demon­
strate that making use of the spatial information leads to more efficient 
estimation of treatment effects. The models considered for spatial effects 
include block effects which are part of the experiment design, random gra­
dients, regression trends, nearest neighbor analysis and smoothing. The 
analyses are applied to an example, which exhibits quite different results 
for the different methods. Since computations are tedious, programs for 
the various statistical procedures are presented. 

Key words andphmses: ANOVA, gradients, field trials, trend analysis, 
nearest neighbor, random effects, REML, smoothing, spatial analysis. 

1 Introduction 

Spatial trend is often a significant source of variation among experimental units 
in field trials. We propose a number of methods for accounting for smooth 
spatial variation which varies randomly from block to block. We demonstrate 
that accounting for spatial variation can improve the efficiency of estimating 
treatment effects, and may improve on removing row and column effects, even 
when the experiment has been designed to account for such effects. As well, we 
provide sample SAS code to obtain the maximum likelihood estimators (MLEs) 
of the treatment effects in the context of the linear mixed model. 

*The authors can be reached at the Biometrics Unit, 434 Warren Hall, Cornell University, 
Ithaca, NY 14853 or by e-mail at biometrics@cornell.edu. 

1 



A number of features of a standard analysis may alert the scientist to the 
need to consider spatial variation. The most effective diagnostic is often map­
ping the residuals on the field design. Patterns of positive and negative residuals 
may indicate spatial gradients. When the data are counts or indicators, a mean 
square error that is too large, indicating extra-Poisson or extra-Binomial varia­
tion, may also indicate the need to remove spatial trends. For some responses, 
the order of magnitude of the coefficient of variation is well known. For exam­
ple, depending on plot size, cereal yield experiments usually have a coefficient 
of variation of 4-8% and maize of 8-12%. Larger coefficients of variation may 
also indicate an uncontrolled source of variation. See Federer (1992) for other 
diagnostics. 

In the next section, a number of spatial analyses are introduced in the context 
of a lattice square experiment (Table 12.5 of Cochran and Cox, 1957). The 
models presented will be for this lattice square experiment, but it is straight­
forward to extend the procedures to other designs and situations. The key 
ideas are that spatial gradients should be smooth, and that the gradients vary 
randomly among blocks. A designed experiment should be analyzed with spatial 
effects taken into account, while retaining any restrictions to randomization that 
were part of the design. In addition, if the experimental design is not balanced 
with respect to the spatial gradients, treating the gradient as a random effect 
may substantially alter the MLEs of the treatment effects compared to their 
ANOVA estimators. The MLEs may be considered the "adjusted treatment 
means" in analogy with the adjusted treatment means obtained from classical 
incomplete block analyses. 

1.1 The Data 

The numerical example used for the analyses was presented by Wadley (1946) 
and is reproduced in Table 12.5 of Cochran and Cox (1957). The data are 
means of counts of three samples of 100 cotton squares indicating attack or not 
of boll weevils. The mean count for the experiment was 11. If the counts were 
distributed as a Poisson variable, one would expect the residual mean square 
to be near 11/3 = 3.667, since the counts are means of three samples. The 
anticipated coefficient of variation would be 1.91/11 = 17%. The experiment 
design is a balanced lattice square with v = 16 insecticide treatments arranged in 
r = 4 rows and c = 4 columns within each of b = 5 complete blocks or replicates. 
The randomization is restricted in such a manner as to have every ordered 
pair of treatments appear together once in each row and once in each column. 
Restrictions on randomization of treatments must be taken into account when 
an analysis is made. SAS code for each analysis is presented in the appendix. 
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2 Models for Analysis of Field Trials with Spa­
tial Gradients 

A number of models can be devised for taking into account spatial effects in 
field trials. In this section, we present a few possibilities. In the next section, 
the results of these models are discussed for the example. 

2.1 Standard Textbook (ANOVA) Model 

The first form of a spatial analysis is the usual textbook response model for a 
lattice rectangle designed experiment (See e.g., Cochran and Cox, 1957, Federer, 
1955, and Kempthorne, 1952.): 

Yghij = J.L + (3g + Pgh + "/gi + Tj + Eghij (1) 

where J.L is a general mean effect, (39 is the gth replicate effect distributed with 
mean zero and variance u$, Pgh is the ghth row effect distributed with mean 
zero and variance u;, "/gi is the gith column effect distributed with mean zero 
and variance u;, Tj is the lh treatment effect, Eghij is a random error effect 
distributed with mean zero and variance u;, g = 1, ... , b, h = 1, ... , r, i = 1, ... , 
c, and j = 1, ... , v = rc. 

The standard intrablock effects analysis of variance (ANOVA) can be ob­
tained by using, for example, SAS PROC GLM, treating replicate, row( replicate) 
and column( replicate) as fixed. To compute the MLEs of the treatment effects 
using REML (restricted maximum likelihood) solutions for the variance com­
ponents, SAS PROC MIXED could be used. Sample SAS code is displayed in 
the appendix (5.1). 

Sums of squares and intrablock means obtained are those presented in text­
books. Textbook analyses make use of ANOVA solutions for variance com­
ponents when recovering interblock information, whereas the REML solutions 
automatically adjust for interblock information. The adjusted treatment means 
can vary considerably between the methods for some situations since the esti­
mated variance components for REML and ANOVA can be quite different. 

2.2 Differential Trends within Blocks (Rows) 

Cox (1958) considered a situation wherein differential curvatures existed within 
the columns of a Latin square. Differential trends may also occur within each 
incomplete block of an incomplete block design or within each row (column) of a 
lattice rectangle (square) experiment (Federer, 1996). In such an event, equation 
(1) is an inappropriate response model. Instead, the following response model 
is used: 

Yghij = J.L + /3g + Pgh + 1f'ghO'.ghi + Tj + Eghij (2) 

where the column effects have been replaced by a linear trend within each row. 
In this model7rgh is the ghth linear regression coefficient of responses on the 
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ordered and centered positions, aghi, within a block and the remaining terms 
are as defined for equation (1). The linear regression coefficients are random 
variates distributed with mean zero and variance u;. (See Federer, 1996, for 
other models.) If desired, additional polynomial regressions could be added 
to the model, depending upon the nature of the trends within blocks or rows 
(columns). 

A continuous variable, a9 hP for position in the row (column) needs to be 
added to the data. (For example, the coefficients of the corresponding linear 
contrast can be used.) The standard analysis using SAS PROC GLM and 
most other analysis of covariance (ANCOVA) software treats the regression co­
efficients as fixed effects. To compute the adjusted treatment means (MLF..s) 
using the REML solutions for the random slopes, PROC MIXED or other gen­
eral linear mixed model software must be used. Sample SAS code is displayed 
in the appendix (5.2). The code is readily generalized to polynomial trends. 

2.3 Row and Column Regressions 

The analysis above is readily generalized to the case of polynomials in both row 
and column. In this case, the spatial trend need not be aligned to the row 
and column design of the experiment. (This situation has been considered by 
several authors over the past 50 years or more; also, see Federer, 1996, for the 
random effects situation.). A response model for this type of variation is: 

Yghij = J.t + /3g + Tj + 7r gl RLghi + 7r g2RQ ghi + 7r g3 CLghi 

+1r g4 CQ ghi + 1r 9sLLghi + 1r 9aL Q 9hi + 1r g7 QQ ghi + Eghii 
{3) 

where RLghi are the linear regression values of ordered row positions, RQghi are 
thequadratic regression values of ordered row positions, CLghi and CQghi are 
defined similarly,LL9 hi is the row linear by column linear interaction, LQghi is 
the row linear by column quadratic interaction, QQ9 hi is the row quadratic by 
column quadratic interaction, and the remaining terms are as defined for {1). 
As in {2), the regression coefficients, 1r gk are considered to be random effects. 
If appropriate, additional regression terms may be included or terms may be 
deleted from the model. 

Once again, standard ANCOVA software can be used to remove such trends 
if they are considered fixed. More realistically, however, the trends should be 
considered random effects and may be estimated by use of PROC MIXED or 
other linear mixed model software. An example is in the appendix {5.4). 

Note that other higher degree regression polynomials or other forms of re­
gression could be used as well. This analysis preserves the design structure. 
The above analysis is a form of what has been called trend analysis in the spatial 
statistics literature. It is, however, a technique that goes back at least toR. A. 
Fisher over 60 years ago for the fixed effects case. 
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2.4 Nearest Neighbor Analysis 

A response model equation for a nearest neighbor analysis (Papadakis, 1937) of 
a design laid out in a row-column arrangement is: 

Yghij = J1 + /3g + Tj + 7r gl Rghi + 7r g2 Cghi + 7r g3Pghi + f.ghij ( 4) 

where Rghij = (Eg(h-l)ij + f.g(h+I)ijk), Cghij = (Egh(i-l)j + Egh(i+l)j) are the 
averages of adjacent row and column errors respectively, and P ghij is the in­
teraction (product) of these terms, 1r gk are regression coefficients and the other 
terms are as defined in (1). This model induces a spatial covariance structure 
on the errors. Papadakis (1937) used a two-stage procedure in which the errors 
were estimated by the residuals from a RCB analysis, and the 1rgk were esti­
mated as fixed effects by using these residuals in an ANCOVA. The MLEs of all 
coefficients and treatment effects under a fixed effects model can be computed 
by iteratively fitting model (4), using the residuals from the previous iteration 
to estimate Rghi, Cghi and Pghi (Papadakis, 1937). Alternatively, REML can 
be used to fit the covariance structure and obtain the MLEs of the treatment 
effects. An interesting discussion of this is in Cressie (1993, Chap. 5.7). 

However, for random blocks the 1rgk should be random effects. Discussion of 
fitting a covariance model with random parameters for the covariance structure 
is in Section 2.6. As a "quick and dirty" approximation, we used Papadakis' 
(1937) two-step procedure, using SAS PROC GLM to generate the RCB residu­
als and PROC MIXED to estimate the regression coefficients as random effects. 
The program is listed in the appendix (5.4). 

2.5 Smoothing 

Polynomial trends (equations 2 or 3) can be replaced by general smooth trends. 
If the trends are assumed to line up with the column (row) layout of the design, 
the polynomial trends in (2) can be replaced with the model: 

Yghi = J1 + /3g + Pgh + 'Yghi + Tj + f.ghij (5) 

where 'Yuhi is a smooth trend within row Puh . If the trends are not assumed to 
line up with the rectangular layout of the design, then polynomial trends of the 
type in model (3) can be replaced with the model: 

Yghij = J1 + /3g + 'Yghi + Tj + f.ghij (6) 

where 'Yghi now represents a 2-dimensional spatial curve. In either case, we now 
have a semi-parametric additive model, (Hastie and Tibshirani, 1990), some­
times termed a partial linear model (Heckman, 1986; Speckman, 1988), and a 
number of methods have been developed for simultaneously fitting the smooth 
and parametric terms in the fixed effect case. The smooth terms in the model 
are fitted using a tuning parameter (the bandwidth, span or smoothing param­
eter) which controls the smoothness of the spatial term. For the fixed effects 
case, the tuning parameter should be fitted adaptively in each block, as there 
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is no a priori reason to expect the spatial trends to have the same degree of 
smoothness in different blocks. 

Smoothing splines (Wahba, 1990) and least squares smoothing (Green, Jen­
nison and Seheult, 1985; Jennison and Seheult, 1984) have natural extensions 
to the random effects case, as discussed in the papers cited. In this paper, 
we have followed the computational procedure outlined by Green et al (1985), 
using S-PLUS as the computational tool, to fit (5). A copy of the S-PLUS code 
is available upon request. 

2.6 Covariance Models 

Models (6) and (7) treat spatial gradients within a block as fixed in the sense 
that the gradient should persist under a new realization of the errors. Often 
spatial gradients are modeled as random correlated processes. A large literature 
exists for this approach in the spatial and geostatistics literature. See Cressie 
(1993) for a comprehensive treatment. The model is: 

Yghi = J.l + /3g + 'Yghi + Tj + fghij (7) 

where all the terms are as in (5.2) except that "(ghi is now the random realization 
of a spatially autocorrelated process "fghi "'"' (0, ~(09 )) where 09 are parameters 
defining the correlation structure. If the B 9 are considered fixed, this model may 
be fitted using REML to estimate the covariance structure. For 09 random we 
plan to use Monte Carlo Markov Chain methods for fitting hierarchical models 
(Geyer, 1992). We have not yet explored the intricacies of fitting such a model. 

3 Data Analysis 

In this section we apply the methods above to the lattice square experiment 
described in Table 12.5 of Cochran and Cox (1957). As well, we present a 
randomized complete block design analysis which, however, is inappropriate as 
it ignores the restrictions to randomization imposed by the design and row and 
column effects for which the design should adjust. 

In Table 1, Type III (partial) sums of squares are presented for treatments, 
spatial effects, and residual from each model. (The block mean has been re­
moved from the data prior to analysis, accounting for 4 degrees of freedom in 
the model.) The spatial sum of squares is an average of all the blocking vari­
ables within replicates. The F-value is the ratio of treatment and residual mean 
squares. 

In the RCB analysis, there appear to be significant treatment effects. How­
ever, a plot of the residuals within block shows that there is considerable within­
block spatial pattern which does not align with the row /column layout of the 
treatments. As well, the residuals are quite skewed, possibly indicating con­
founding of treatment and residual effects. Finally, the residual mean square 
is much greater than we would expect from Poisson data. 
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The standard lattice square analysis, LSD(1), suggests that variation among 
treatments is less than the residual mean square. The residuals are somewhat 
smaller than those obtained from the RCB analysis, but the treatment mean 
square has also been considerably reduced. Spatial patterning of the residuals 
is also evident, but is less clear than in the RCB analysis. 

The remaining analyses treat the spatial effects as continuous covariates with 
random coefficients. It is interesting to note that the treatment and residual 
mean squares differ considerably depending on the model. 

RG(2), CG, CLGr and RCreg(3) are all models in which the spatial effects 
are considered to be polynomials in rows and columns with random coefficients. 
RG(2) is model (2), with a separate linear gradient in each column. CG has 
a separate linear gradient in each column. CLGr assumes a linear gradient 
across the columns in each block, and a linear gradient within each column. 
RCreg(3) is model3. It is interesting to note that the F-ratio varies considerably 
among these models, as does the amount of variation ascribed to the treatment 
and spatial effects. However, the designs in which the gradient is assumed 
to be aligned with the row/column layout of the design (LSD(1), RG(2), CG 
and CLGr) all have about the same partial sum of squares for spatial effects, 
although they have different degrees of freedom. Conclusions drawn from these 
models range from "no significant treatment effects" (RG and CG) to "highly 
significant treatment effects" (RCreg(3) ). 

Of the linear models, model (3) appears to give the best fit, with a residual 
mean square of 11.9. However, this is still three times the variance which would 
be indicated if the counts were Poisson. 

If the experimenter had used the standard textbook analysis, he would reach 
the conclusion that there were no differences among the 16 insecticide treat­
ments. Using the RCreg(3) analysis, it would be concluded that there were sig­
nificant differences at the 2% level. These two completely different conclusions 
demonstrate how spatial patterns can sometimes distort treatment differences 
and why it is essential that an appropriate analysis be selected. 

4 Discussion 

For any given experiment design, a number of analyses are generally possible, 
besides the standard textbook one. Although the experiment design should, 
to the extent possible, control for known sources of variation, this is often not 
possible due to the inherent variability of the experimental material. When 
the experiment has a spatial component, this is particularly important, as field 
plots may have to adapt to existing field designs which have not been laid out 
taking spatial variability into account. Even when the field has been optimally 
oriented with respect to existing gradients, the gradients may not be orthogonal, 
so that row/ column designs cannot fully control for spatial effects. 

It is interesting to note the results presented by Kempton (1984) and Kemp­
ton and Howes ( 1981) on the relative efficiencies of standard textbook lattice 
square analyses and some spatial methods of analysis. They studied the results 
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Method of analysis mean median range 

Rows as incomplete blocks 124 112 91-270 
Lattice square 147 136 95-312 
lD row neighbors 138 124 96-282 
column neighbors 117 108 98-211 
maximum of row or column neighbor 144 133 98-282 
Papadakis {2 covariates) 148 136 96-297 

of 118 wheat variety trials all designed as five by five balanced lattice squares. 
See the results in the figure above. 

In these trials, the experimental unit was three times as long as wide so 
that the distance between rows was three times larger than between columns. 
So analyses involving columns will not control as much variation as ones with 
rows. An interesting statistic not reported would be the number of experiments 
in which each of the above analyses had the highest efficiency. The table 
demonstrates clearly the need to remove row and column effects, although for 
these trials the lattice square analysis appears to be just as effective as the more 
complex spatial models. 

A possible contender for the analysis RCreg{3) using response model equa­
tion {3) would be to replace LL, LQ, and QQ with first, second, and perhaps 
third principal components in the manner used for additive main effects and 
multiplicative interactions {AMMI) analysis {Gaugh, 1988). The interactions 
used in {3) may not maximize the sums of squares for variation whereas the 
principal components method would do this. Since this method is not for inter­
pretive purposes but to control extraneous variation, there would be no problem 
in using an AMMI analysis. 

As we have seen in our preceding numerical example as well as the exam­
ple above, a number of a priori reasonable models can lead to very different 
interpretation of treatment effects. There is little guidance in the literature for 
choosing among non-nested models of the types presented here, beyond graph­
ical analysis of the residuals. Serious concerns when choosing among several 
models are overfitting and bias. We are studying these via simulation stud­
ies. For the semiparametric methods such as nearest neighbors, smoothing and 
AMMI the appropriate degree of freedom adjustment to the error mean square 
also needs to be computed. 
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Source of Sum of Sum of Sum of 
variation df squares df squares df squares 

RCBD LSD(1) RG(2) 
Treatment 15 1244 15 320 15 347 
Spatial 0 0 30 1653 35 1650 
Residual 60 2333 30 680 25 474 
F-ratio 2.13 0.94 1.22 

CG CLGr RCreg(3) 
Treatment 15 514 15 614 15 435 
Spatial 35 1645 25 1637 30 1761 
Residual 25 614 35 695 30 357 
F-ratio 1.39 2.06 2.43 

NN(4) SMOOTH(5.2) 

Treatment 15 530 15 723 
Spatial ? 920 27.1 2147 
Residual ? 1151 36.9 738 
F-ratio ? 2.41 

Table 1: Partial sums of squares for treatment, spatial, and residual for various 
analyses// RCBD = randomized complete block; LSD(1) = lattice square, 
equation (1); RGr(2) =rows and gradients in rows, equation (2); CGr =columns 
and gradients in columns; CLGr = linear column effects within replicates with 
differential gradients in columns; RCreg(3) = linear and quadratic regressions 
and interactions as in equation (3); NN(4) =nearest neighbor within replicates 
as in equation (4); SMOOTH(5.2)=Least squares smoothing as in equation 5.2 
; F-ratio = treatment /residual. 

5 Appendix - SAS Programs 

5.1 Lattice Square (Model 1) 

AN OVA 
data lsgr; 

infile 'lsgr1645.dat'; 
input count rep row column treat; 

proc glm data = lsgr; 
class rep row column treat; 
model count= rep row(rep) column(rep) treat; 
random rep row(rep) column(rep); 
lsmeans treat; 

run; 
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Using REML to Obtain MLE of Treatment Effects 
data lsgr; 

infile 'lsgr1645.dat'; 
input count rep row column treat; 

proc mixed data = lsgr; 
class rep row column treat; 
model count = treat; 
random rep row(rep) column(rep); 
lsmeans treat; 

run; 

5.2 Random Gradients within Row (Model 2) 

The created variable "grad" is the coefficients of the linear contrast of columns, 
within each row. 

AN OVA 
data lsgr; 

infile 'lsgrl645.dat'; 
input count rep row column grad treat; 

proc glm data = lsgr; 
class rep row column treat; 
model count= rep row(rep) grad*row(rep) treat; 
random rep row(rep); 
lsmeans treat; 

run; 

Using REML to Obtain MLE of Treatment Effects 
data lsgr; 

infile 'lsgr1645.dat'; 
input count rep row column grad treat; 

proc mixed data = lsgr; 
class rep row treat; 
model count = treat; 
random rep row(rep) grad*row(rep); 
lsmeans treat; 

run; 

5.3 Row and Column Regressions (Model 3) 

RL and RQ are the linear and quadratic within row variables. CL and CQ are 
the linear and quadratic within column variables. 

AN OVA 
data lsgr; 
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infile 'lsgr1645.dat'; 
input count rep treat RL RQ CL CQ; 

LL = RL*CL; 
LQ = RL*CQ; 
QQ = RQ*CQ; 

proc glm data = lsgr; 

class rep treat; 
model count = rep RL *rep RQ*rep CL *rep LL *rep LQ*rep QQ*rep treat; 
random rep; 
lsmeans treat; 

run; 

Using REML to Obtain MLE of Treatment Effects 
data lsgr; 

infile 'lsgr1645.dat'; 
input count treat RL RQ CL CQ; 
LL = RL*CL; 
LQ = RL*CQ; 
QQ = RQ*CQ; 

proc mixed data = lsgr; 

class rep treat; 
model count= treat; 
random rep RL *rep RQ*rep CL *rep LL *rep LQ*rep QQ*rep; 
lsmeans treat; 

run; 

5.4 Two-step NN Analysis 

data lsgr; 
infile 'a:backslash lsgrl645.dat'; 

input count rep row column treat; 

proc sort; by rep row column; 
proc glm data = lsgr; 

class rep treat; 
model count = rep treat; 
output out = lsgr2 r = res; 
data lsgr3; 
merge lsgr lsgr2; 

proc iml; 
use lsgr3; 

sort data 
generate RCB residuaLs 

generate R, C and P, taking edge effects 
into account 
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read all var {rep row column res}; 
n = nrow(res); 
rnn = J(n,1,0); 
cnn = J(n,1,0); 
nr = max(row); 
nc = max(column); 
nb = max(rep); 
ind = 0; 
do k = 1 to nb; 

do i = 1 to nr; 
do j = 1 to nc; 
ind = ind + 1; 
if i = 1 then rnn[ind] = res[ind + nc]; 
else if i = nr then rnn[ind] = res[ind- nc]; 
else rnn[ind] = 0.5*(res[ind- rc] + res[ind + nc]); 
if j = 1 then cnn[ind] = res[ind + 1]; 
else if j = nc then cnn[ind] = res[ind- 1]; 
else cnn[ind] = 0.5*(res[ind- 1] + res[ind + 1]); 
end; 
end; 

end; 
create lsgr4 { rnn cnn }; 
append; 
quit; 
data lsgr5; 
merge lsgr3 lsgr4; 

proc mixed data = lsgr5; 

class rep treat; 
model count = treat; 

Compute REML estimators. 

random rep rnn*rep cnn*rep rnn*cnn*rep; 
run; 
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