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ABSTRACT

In this paper, we address the problem of determining how much inventory to
stock after a bottleneck operation to provide adequate service in meeting demand
schedules that have a low to moderate degree of variability. Specifically, we consider a
one-product, one-machine production/inventory problem in which the production occurs
continuously. The production rate is constant, and the demand process is assumed to be
time-homogeneous and additive. By limiting attention to the case of no set-up cost, we
obtain simple, exact, and explicit formulas for the stationary optimal operating rules of

this problem. Computational results are provided to reveal the behavior of the solutions.



1 Introduction

Consider a battery manufacturer whose daily production volume is on the order of 4500
batteries per day. The customers are automobile assembly plants and warehouses for
general distribution. Daily demand for batteries is such that the battery manufacturing
line is highly utilized (greater than 85%). The demand, after production smoothing, is
relatively stable but it has some daily variation due to last-minute changes in assembly
production schedules and the timing of warehouse replenishment orders. In the case
of unanticipated variations in the demand, it is possible to run overtime to increase
daily production capacity. Typically, however, it is cheaper to hold some inventory of
batteries after the bottleneck stage of production to meet these variations and to avoid
the costs of overtime. The line then operates on a produce-up-to-S type policy. That
is, the line will shut down before achieving maximum production capacity if demand
for the day has been met and the inventory has been restored to level S. Orders in
excess of maximum daily production capacity are backordered to the next day. The
purpose of this paper is to provide simple models that would yield a reasonable value
of S to use in order to achieve acceptable customer service in a manufacturing line
such as this. The option of running overtime is not explicitly considered. By applying
stochastic models of storage processes, we are able to develop explicit formulas for
key performance measures such as average inventory, average backorders, and demand
fill rate. From these, we construct cost and fill rate models that can be optimized to
determine the value of S.

In the actual battery manufacturing study alluded to above, there were multiple
products being produced so that the actual policy recommended was to produce-up-to
S;, with a different S; used for each product. A simple heuristic, not described here,
was used to divide the single value of S among the different S;. In Carr et al. [3],
we address the multi-product version of this problem in more detail, but with more
restrictive assumptions.

The particular model considered in this paper is a one-product, one-machine pro-
duction/inventory problem in which the production occurs continuously, and the pro-
duction rate is constant. Let the cumulative demand during the interval (0,t] be
denoted by D(t). The demand process, {D(t); t > 0}, is assumed to be a time-
homogenous, additive process (i.e. a process with stationary, independent increments).
Such a process is an infinitely divisible process (see Prabhu [17], p.69). It is assumed
that the production facility can produce at a rate r (0 < r < oo) units per unit time.

Our main modelling assumption is that the fixed costs of the start-up and shut-down



of the production facility are assumed to be negligible. We consider inventory holding
and shortage costs as well as fill rate performance. The intent of this paper is to present
simple, exact, and explicit formulas for the parameter S of an optimal produce-up-to
S policy. These formulas would provide guidance as to the appropriate amount of
capacity to store in the form of inventory in the face of stochastic demand and limited
production capacity.

The demand process D(t) is very general, in the sense that most of the demand
processes considered in the literature of production/inventory theory are covered under
the umbrella of the time homogenous, additive processes. In this paper we separately
investigate the case where D(t) > 0 for all ¢ > 0, and the case where D(t) is unre-
stricted. In the former case, we show that the produce-up-to S policy minimizes the
average expected holding and backorder costs per unit time. By using results from
the study of storage processes we give a formula to compute the optimal value of S.
However, the processes for which we give explicit formulas are single parameter de-
mand processes. In the latter case, we further assume that D(t) is Brownian Motion
with drift . We compute the safety stock level required to achieve a stated fill rate
policy. The advantage of the Brownian process is that it allows us to specify both an
instantaneous mean and an instantaneous variance. For the Brownian process to make
sense as a demand process we must limit consideration to relatively low instantaneous
coefficient of variation.

There are a number of papers which attempt to analyze class of problems similar to
the class that we consider here. Heyman [14] investigates optimal operating policies for
M/G/1 queueing systems under the existence of server start-up and shut-down costs,
and a cost per unit time spent in the system for each costumer. Sobel [22] considers
a GI/G/1 queueing system operating under a very general cost structure. He shows
that any pure stationary policy is equal to that of an (M,m) policy: If the queue
length is less than or equal to m then do not provide service until it increases to M
(where M > m), at which point service begins and continues until the queue length
drops to m again. The equivalence mentioned above is shown to be in the sense that,
there exists an epoch T after which the sequence of states generated by an arbitrary
pure stationary policy will be the sequence that would have been generated by an
(M, m) type of policy. An application of the (M, m) policy on a M/D/1 queueing sytem
integrated with an inventory model is performed by Gavish and Graves [12]. Graves and
Keilson [13] consider a one-product production/inventory problem where the demand
arrivals are governed by a Poisson process and the demand sizes are exponentially

distributed. Assming a two critical numbers type (51, S2) policy and a constant rate



continuous production system, they derive a closed form expression for the system
cost. De Kok et. al [4] extend this model to accomodate two levels of production rates.
Assuming a two-critical numbers (51, Sz) policy (depending on the stock level , one of
the production rates is employed), they derive approximate solutions based on some
service level objectives. Given the difference of the critical numbers (Sz — S1), and the
service levels (as the fraction of the demand or costumers that are lost), De Kok and
Tijms [5] propose approximate solutions for the value of 5.

Application of diffusion processes in the theory of production/inventory problems
was initiated by Bather [1] where a positive set up cost for the production facility
and infinite production rate (instantaneous replenishments) is assumed. Puterman
[19] investigates solutions to the stationary (s, S) type policies under the assumption
that the stock levels can be represented by a diffusion process. The parameters of the
diffusion process are determined according to the position of the stock level (below or
above s). Doshi [6] considers a similar setting where the stock level is modelled as a
Brownian Motion( a special diffusion process), and there are two modes of control. A
cost is incurred every time the mode of the control is changed. Furthermore, when the
state of the process is z, a cost of cz? is incurred, ¢ > 0.

Here, our intent is to limit the survey of the related literature to the continuous
time, finite rate production models. For the treatment of the discrete time problems
(with finite production capacity in each period) we refer the reader to Federgruen and
Zipkin [8], Federgruen and Zipkin [9].

This paper differs from earlier work on continuous time models in that we limit
attention to the special case in which there is no charge for changing the production
rate. The fixed charge models are more difficult to analyze and few models have been
found that are both exact and computationally tractable. The special case we consider
does admit exact, explicit solutions. We believe that there are real situations, such as
the battery manufacturing example, in which our formulas yield useful guidelines for
operating practice.

The rest of this paper is organized as follows. In Section 2 we derive optimal policies
for the continuous time production/inventory problem for the case D(t) > 0. The fill
rate analysis of the case where D(t) is approximated by a Brownian Motion is presented

in Section 3. We present some computational findings in Section 4.



2 Application of the Storage Processes

The treatment of the production/inventory problems using tools developed in analysis
of storage processes has been performed recently by Tayur [23]. In that paper, Tayur
computes the optimal stationary policy of a capacitated, discrete time inventory prob-
lem ( where the production capacity is finite, say C in each period) under the average
expected cost per period criterion. In this section our goal is to point out a different
class of problems that can be analyzed in the same spirit.

Consider the following dam (or water reservoir) model in the continuous time.
Let D(t) denote the total input (say, rainfall) into a dam during an interval (0,1].
{D(t);t > 0} is assumed to be a process with stationary and independent increments
(time homogenous additive). Furthermore, assume D(t) is nonnegative for all £ > 0.
We assume a constant rate continuous release of water from the dam, and the units of
time and of volume are chosen so that the release rate is unity except when the dam
is empty. Let Z(t) denote the water content of the dam at time ?. Then, Z(t) can be

expressed as
t
Z() = 2(0) + D) = t+ [ Lizc-opdr (1)

where the integral in (1) gives the length of time the dam is empty during the interval
(0,t]. We assume that the dam has infinite storage capacity. For an extensive treatment
of dam models we refer the reader to Prabhu [Chapters 6,7] [16], Gani [10] and Prabhu
[17].

Now, consider the produce-up-to S policy for the production/inventory problem.
Let I(t) denote the inventory position of the the item under control at time ¢t. If
I(t) is less than a prespecified number S, then the production is continued until I(#)
reaches the level S. Whenever it does, the production is stopped until it drops below
S again. A shortage cost p, and a holding cost h is charged linearly, per unit per
unit time, depending on the position (below or above zero) of I(t). We assume that
production can be switched on and off without cost. The correspondance with the dam
model described above can be seen as follows. Let the demand process of the inventory
system be identical to the input process of the dam. Also, let the continuous production
process be identical to the release process of the dam. Then, if the water level is Z(t)
at time ¢ this corresponds to the inventory position I(¢) = S — Z(t). Assume that the
inventory system has an inventory position of S at time 0, which corresponds to the
case where the dam is empty at time 0. Note that If Z(¢) > S, the inventory system
is in the backorder state, which explains why we need a dam of infinite capacity. The

following table, similar to Table 1 in Tayur [23], summarizes the above correspondence.



Dam Model Inventory Model
Rainfall Demand

Continuous Release Continuous Production
Water Content S—Inventory Position
Empty Dam Inventory Position is S
Critical Level Is Crossed | Backorders

Stated simply, the process generated by the inventory system is what a person sitting
in the dam upside down observes.

The limiting distribution of Z(t) as t — oo exists if and only if 0 < p < 1 where
p is the mean input per time. In this case it can be shown that (see the remarks by
H.E. Daniels following Kendall [15], and see also p.248 of Prabhu [16] ) for z > 0 the
limiting distribution of Z(t) is given by

F@y:u41-m/ dK (2 + w,w), 2)
w=0

where K (z,1) is the input distribution function. Also it follows that

/wﬂﬂwwﬁ=ﬂl~m*,
0+

so that F(0) =1~ p.
Example 1: Gamma type input.

The input during an interval (0,t] has the gamma distribution given by

k(z,t)de = P{z < D(t) <z +dz}
e—x/p (33/p)t~1d511

T(t)y
for 0 < z < oo, and ¢ > 0. Then, for z > 0
0o (Z + w)w—le—(z+w)/p
Flz)=1—-(1- / dw. 3
() =1-(-p) [ v 3)

Note that this process is determined by the single parameter, p.
Example 2: Poisson type input.

The input during an interval (0,¢] has the distribution function

[] )"
K(z,t)=>_ e—”ty%)—,
"t r.

where [z] is the largest integer contained in . For z > 0 we obtain

F(z)=1-(1-p) i: Me—p(%z)‘ (4)

|
] T
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This process is also determined by the single parameter, p.
Let C(S) denote the average expected cost per unit time of the inventory system
for a given value of S. Also let p and h denote the unit shortage and holding costs per

time respectively. Then,

0(8) = b [ wiGw) +p [ (~w)iG(w), (5)

where G(z) is the distribution function of I := lim;_.c, I(¢). But (5) can be written as

S)-—h/ —zsz)+p/ 2 — §)dF(z) (6)

Hence, the optimum value of S can be found by using (6) and (2), which yields :

= inf {s: F'(s) 2 p/(h + p)} (7)

In some of the practical applications one needs to find the produce-up-to level (Sa)
such that the (asymptotic) probability of being out of stock does not exceed, say 1 — «
(see, for example, De Kok and Tijms [4], De Kok and Tijms (5] ). Then

l—a > tl_i_}rg()Pr{I(t) <0}
= lim Pr{S - Z(t) < 0}
— 1-F(S)
(1 —p)/ dK (S + w,w).

i

Thus, S, is given by
Sa:inf{S:(l—-p)/Oo dK(S +w,w) <1 —a} (8)
w=0

We conclude this section by showing the optimality of the order-up-to level policy for
the continuous time production/inventory problem. Results (7), (8), and the following

proposition are the principal contributions of this section.

Proposition 1 The produce-up to-S policy defined by (7) is optimal for the continuous

time production/inventory problem.

Proof: Let the input into the dam during a time interval (0,#] be denoted by D(t). If
D(t) is a time-homogenous, nonnegative, infinitely divisible process with a continuous

distribution, having finite mean and variance, then its Laplace transform is given by

E[e—f?D(t)] — e—t{(@)

7



where
€0)= [ (1 =™ (w)du
0
so that A(u) > 0, finite, A(u) — oo as u — 0. Fix A = n~" for a positive integer n.

Consider the discrete time dam model in which
i. The length of each time interval is A

ii. The input into the dam, D,, in the interval (¢A, (¢t + 1)A] has probability distri-
bution P,

iii. Release from the dam occurs at the end of each interval except when the dam is

empty. Furthermore, the release does not exceed A units.

By the properties of the process {D(t),t > 0}, we can always construct such a dam
model. Moreover, as we have demonstrated earlier, this dam model corresponds to the
discrete time, finite capacity inventory problem. Tayur [23] (also see Federgruen and

Zipkin [8] ) shows that the produce-up-to S policy 1s optimal for this problem. Define
W,=2,+D,

where Z, is the stationary water content of the discretized dam at the beginning of the
interval (A, (t + 1)A] right after the release, with distribution function F.(w). Let
RS =W, W, <S5
9(8, We) = { p(W,—S) W, > S
so that g(S, W, ) maps the inventory positions(or the water level) at the end of a period
to their respective cost values. Hence, by using the above, the long run average cost

function of the constructed discrete time problem can be written for a given level of S

Cal8) = [ (S, w)d(Py * Fu)(w) (©)

where * denotes the convolution operator.
It can be shown that (Prabhu [16], p.232) F), has the corresponding Laplace trans-

(1—p)(e” —1)
e — ¢(0,A)

where #(0, A) is the Laplace transform of D,, and is given by

form

PYall) =

¢(9,A) — e—Aﬁ(O,A)%—o(A)'



It can also be shown that (Prabhu [16]) £(8, A) — £(6) as A — 0. It follows by using
Taylor’s expansion that (1 )0
—p

Pa(f) — =)
as A — 0. We note that this is the Laplace transform of the stationary water content,
7. in the continuous time process with the corresponding distribution function (2).
Therefore, by the Continuity Theorem for Laplace Transforms (Durret [7], p.83) we
have Z, => 7 where == stands for weak convergence. Also note that as n — oo,
D, — 0 with probability 1. Hence, W, = Z, + D, = Z by Theorem 25.4. of
Billingsley [2], sometimes referred as Slutsky’s Lemma. Therefore, by using a corollary
to the Continuous Mapping Theorem (Theorem 25.7. of Billingsley [2]) we can conclude
that

Cu(S) = Elg(S, W)l — Elg(S, 2)] = C(5)

Asn — oo as A — 0) the discrete time model approaches (by shrinking) the contin-

uous time model. Therefore,

C(8) = [ 9(S,w)dF(w)

‘s the true cost function of the continuous time model . Note that C(S) is convex,

whence the form of the optimal policy follows, by standard arguments.

3 Analysis of the Brownian Motion Demand

Process

In this section we present simple control rules for the production/inventory problem
introduced in Section 1 under the assumption that D(t) follows a Brownian Motion
with drift parameter x, and instantaneous variance o? (denoted by B(p, o?). At first
sight, modelling the demand process as a Brownian Motion may seem unrealistic.
However, if we consider any time interval (¢, + 6], it is a property of the Brownian
Motion that the increment D(t+6)— D(t) has N(8p, 0%) distribution. Therefore, if we
have a discrete time problem with independent, identical distributed demands in each
period, the total demand accumulated over a time interval should approximately have
normal distribution by the Central Limit Theorem. Hence, it provides a reasonable

approximation provided that the instantaneous coefficient of variation o /p is not large.
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In this section the following operating rule will be investigated. If the inventory position
of the product under control is less than a level S, then the production is continued
at a finite, constant rate r > p until the inventory position reaches the level S, where
the production is stopped. It should be noted that, in the neighborhood of S this
implies very rapid transitions between production and non-production. The intent of
this section is to derive some performance measures based on a service level constraint
so that we can solve for the value of S that satisfies a prespecified service level.

Let I(t) denote the inventory position at time t. It easily follows that if S < I(t)
then I(t) follows a B(r — p,0?) process. Else, I(t) follows a B(—p,a?) process. Let
(S —¢, 5+ ¢) be an € neighborhood of S. Assume the production is stopped as soon as
I(t) enters in (S — ¢, S + ¢) from below. We mark the times the process I(t) hits S+ €
from S — € as a;, and the times the process I(t) hits S — € from 5 + € as B3;. Formally,

o = inf{t > i1 : I(t) = S + ¢},
and
B =inf{t > a;: I(t) = S —¢}.

The variable 7 indexes the production cycles. Since we are interested in stationary
solutions, we can choose arbitrary initial conditions and take I(0) =5 —¢ and (3 = 0.
Let C; be the collection of events between f3;, and f;—1. By Markov property of the
Brownian Motion {C;} forms a regenerative process. Now, we introduce some more

definitions. Let B; be a Brownian Motion with drift fi, and variance 2.

gas(z) := E[Time B; spends below a until it reaches b > z|By = ]

for a < b < y, and for some y < oo. The following proposition is the key result of this

section.

Proposition 2

(10)

()= @0~ HHECDNP, () iz >a
a’? x = e fi .
Job a=z 4 (] — e %)) yfr <a

i 2/
where i i
ot )
e 2&21) —e 252:1:
Pop(z) = i

6*2'&&:6’ . e~—-2:~;§a‘
Proof: In order to derive the result, we follow the general theory of diffusion processes.
For the diffusion process B, there exists a linear second order differential operator £
of the form 4 2
L=j— 2
o + dz?

10



If we further parameterize g,(z) such that the starting time of the Brownian Motion

is u, rather than 0, g, (z) satisfies the so called Kolmogorov’s backward equation (see

Gard [11], p.30)

dg
g&%‘}cgmo

which in our case yields

‘&dga,b(x) + _1_~ 2 dzga,b(w)

dx 20 dz? = ~lo<a) (11)

where 13 is the indicator function. By using standard methods of differential equations
(see Simmons [21], p.90) we can solve gq5(z). One can also directly verify that (10)
satisfies (11).

In light of the above development we can prove the final result of this section.

Proposition 3 Assume r < p/(1 — «). Then lim_o Pr{I(t) < 0} <1 — o if and

only if S > —2—('7%2’3 In(%(1 — «))

Proof: First note that by the regenerative property of the cycles {C;}, we can use the
Theory of Regenerative Processes, and by Proposition 5.9. of Ross [20] we conclude
that

. _ go,s+<(S —¢€)
a5 - B 53
Next note that
E[ﬁl — Bl = E[ﬂﬂ

= E[f — a1+ a1

= E[B — o]+ Elay]
2e 2¢
_+_ R
r—H 1z
2er

p(r — )

Of course, gos4c(S — €) is obtained by choosing ¢ =0, b= S+¢, 2 =5 —¢€ ji = 1

and & = o in (10). Now, we let € — 0 to obtain the result, which yields

lim Pr{I(t) <0} = B o-2s (12)
— OO r

11



Now, by using (12), the claim follows. The range of r is so chosen that S > 0, and
hence the previous proposition applies (with @ = 0, and b= 5+ €).

Let S, denote the minimum safety stock level required to satisfy the fill rate:

g
7 ln(—r—

[ p——
20r—p) p

(1 —a)). (13)

It can quickly be checked that S, has the following intuitively-satisfying characteristics:

ds,
>
da — 0,
ds,
>
do — 0,
4 > 0, and lim S, = oo
dp p-+1

where p = p/r. It should be noted that the safety stock level provided by equation
(13) provides an analogous characterization to (8) for the Brownian Process demand
case. Now, we note another form of (13), which exhibits interesting properties. Let

St := S,/r. Then we can write S, as

2
51 = P (=), (14)
which is a function of p, o/u, and « only. Hence, by considering only the utilization
rate and the coefficient of variation of the process one can find the relative safety stock
level to satisfy a specified fill rate. Then, the real safety stock levels can be obtained
by multiplying S7 by the production rate r. Computations on (14) are presented in

Section 4.

4 Computational Results

In this section we present our implementation of the safety stock level characterizations
given by equations (8), (13), and (14). Computations are performed on an IBM PS/2
PC. Two examples are considered for the implementation of equation (8): Gamma
demand process, and Poisson demand process. For the case of Gamma demand process,
in order to evaluate the integral in (3) we used Romberg Integration Algorithm (Press
et al.[18]). For the Poisson demand case, the summation in (4) is evaluated until the
tail of the distribution dies out.

12



Table 1: Comparison of the Safety Stock Levels

p | Gamma | Poisson | Brownian Process (o = p)
0.20 0.80 0.038
0.25 | 0.30 1.00 0.067
0.70 1.70 0.134
4.30 5.10 3.33
0.80 | 5.80 6.70 4.43
9.30 10.40 7.01
6.30 7.00 5.15
0.85| 8.30 9.20 6.82
13.20 14.30 10.70
10.10 10.80 8.89
0.90 | 13.30 14.20 11.70
20.80 21.90 18.22
21.50 22.10 20.31
0.95} 28.10 29.00 26.57
43.50 44.40 41.10
112.10 | 113.80 112.00
0.99 | 147.00 | 148.10 146.00
226.10 | 228.00 225.00

The first set of computations we present is a comparison of safety stock levels for
different demand processes. We perform our analysis for p = (0.80,0.85,0.90, 0.99)
where r is chosen to be equal to one for the Brownian demand process. Also, we set
o = p for the Brownian demand case. Table (1) gives the minimum safety stock levels

required to satisfy a fill rate of o = (0.90,0.95,0.99). Figure 1 plots the safety stock

levels for a = 0.99.
As expected, the safety stock level increases with p and . More interesting obser-

vations can be summarized as follows:

i. The Poisson Process yields the highest safety stock level at a fixed utilization and
fill rate. This is partly expected becouse the Poisson Process has the highest
instantenous coefficient of variation among the three processes ( note that o = p

for the Brownian demand process in this set of computations).

ii. The safety stock levels become less sensitive to the demand process used as the
utilization rate approaches to one. Note that for low p (such as 0.25), the ratio

of safety stock levels for different demand processes may be as high as 5, whereas

it is very close to 1 for high p (such as 0.99).

13



Table 2: Relative Safety Stock Levels for the Brownian Process Demand

p |lo/u=01]0c/p=03]0/p=05]0/p=038
0.051 0.464 1.289 3.299
0.85 0.068 0.614 1.706 4.367
0.107 0.963 1.675 6.848
0.090 0.800 2.225 5.695
0.90 0.117 1.053 2.927 7.492
0.182 1.640 4.556 11.663
0.020 1.828 5.079 13.003
0.95 0.266 2.391 6.643 17.007
0.411 3.700 10.275 26.303
1.123 10.111 28.086 71.901
0.99 1.463 13.170 36.578 93.640
2.250 20.267 56.296 144.118

iii. As the utilization rate increase the safety stock levels increases exponentially. This

effect can be observed for a = 0.99 in Figure 1.

The next set of computations involves the implementation of the Brownian motion
model (equation (14)) for p = (0.85,0.90,0.95,0.99), and o = (0.5,3.0,10.0) at o =
(0.90,0.95,0.99). Table (2) summarizes the results. Using Table(2) we can easily
determine the actual safety stock levels. For example, at p = 0.95, and o/p = 0.3,
if r = 10, then Spgs = 3.7* 10 = 37. Figure 2 shows the effect of the coefficient of
variation on the relative safety stock level at 99% fill rate and different utilization rates.

Finally, it is interesting to note a different characterization of S, for (14)
Soe =kao (15)

ofp . 1—a
T91p 1n(-—p—)
p

where ko =

is a unitless quantity. For example, for the battery manufacturer example, the standard

deviation of the daily demand is on the order of 250 units, then by using (15),

250/4500 1-0.95
T T91-095 In( 0.95 )

0.95

= 1.553,

ke

and S, = 388.75.

14



Figure 1. Comparison of Safety Stock Levels at 0.99 Fill Rate
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5 Conclusion

In this paper we considered a single-item, capacitated, continuous time production /in-
ventory problem with no setup costs. Under a very general demand structure, we
proved that the produce-up-to level type of an operating policy is optimal for the
continuous time problem. We presented explicit formulas (3), (4) and (7) to compute
this level when the demand is Gamma or Poisson distributed. For the case that the
demand follows a Brownian Process, we derived a formula (14) for the produce-up-to
level to satisfy a pre-specified fill rate. We also provide various computations in this

case, including comparisons with the other demand distributions

References

[1] Bather, J.A., “A Continuous Time Inventory Model,” J. Appl. Prob. 3, 538-549
(1966).

[2] Billingsley, P. Probability and Measure, Wiley, New York (1986).

[3] Carr, A.S., Gillli, A.R., Jackson, P.L., Muckstadt, J.A., “Exact Analysis of the
No B/C Stock Policy,” Technical Report No.1051, Cornell University (1993).

[4] De Kok, A.G. , Tijms, H.C. and Van der Duyn Schouten, F.A., “Approximations
for the Single Product Production-Inventory Problem with Compound Poisson

Demand and Service Level Constraints,” Adv. Appl. Prob. 16, 378-401 (1984).

[5] De Kok, A.G., Tijms, H.C., “A Stochastic Production/Inventory System with
All-Or-Nothing Demand and Service Measures,” Commun. Statist. - Stochastic
Models 1, 171-190 (1985).

[6] Doshi, B.T., “Two-Mode Control of Brownian Motion with Quadratic Loss and
Switching Costs,” Stoch. Proc. Appl. 6, 277-289 (1978).

[7] Durrett, R., Probability : Theory and Ezamples. Wadsworth and Brooks/Cole
Series, New York (1991).

[8] Federgruen, A. and Zipkin, P., “An Inventory Model with Limited Production
Capacity and Uncertain Demands. [.The Average Cost-Criterion,” Math. Oper.
Res. 11, 193-207 (1986b)

15



[9] Federgruen, A. and Zipkin, P., “An Inventory Model with Limited Production
Capacity and Uncertain Demands. I1.The Discounted Cost Criterion.” Math. Oper.
Res. 11, 208-215 (1986b).

[10] Gani, J., “Problems in the Probability Theory of Storage Systems,” Journal of
Roy. Stats. Soc. 19, 182-206 (1957).

[11] Gard, T.C., Introduction to Stochastic Differential Equations, Dekker, New York
(1988).

[12] Gavish, B. and Graves, S.C., “A One-Product Production/ Inventory Problem
under Continuous Review Policy,” Opns. Res. 28, 1228-1236 (1980).

[13] Graves, S.C. and Keilson, J., “The Compensation Method Applied to a One-
Product Production/Inventory Problem,” Math. Oper. Res. 6, 246-262 (1981).

[14] Heyman, D.P., “Optimal Operating Policy for M/G/1 Queueing Systems,” Opns.
Res. 16, 362-383 (1968).

[15] Kendall, D.G., “Some Problems in the Theory of Dams,” Journal of Roy. Stats.
Soc. 19, 207-233 (1957).

[16] Prabhu, N.U., Queues and Inventories, John Wiley, New York (1965).

[17] Prabhu, N.U., Stochastic Storage Processes : QQueues, Insurance Risk, and Dams,
Springer-Verlag, New York (1980).

[18] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Numerical Recipes
in C: The Art of Scientific Computing, Cambridge University Press, Cambridge
(1989).

[19] Puterman, M.L., “A Diffusion Process Model for a Storage System,” Logistics,
Special Issue of Management Science (1974).

[20] Ross, S. M., Applied Probability Models with Optimization Applications, Dover,
New York (1970).

[21] Simmons, G.F., Differential Equations, McGraw Hill, New York (1972).

[22] Sobel, J. J., “Optimal Average Cost Policy for a Queue with Start-up and Shut-
down Costs,” Opns. Res. 17, 145-162 (1969).

16



[23] Tayur, S.R., “Computing the Optimal Policy for Capacitated Inventory Models,”
Technical Report, Carnegie Mellon University (1992).

17



