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In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable 

polymer nanocomposites were fabricated and characterized.  The properties of these polymer 

nanocomposites, and their relating mechanisms and corresponding applications were studied and 

discussed in depth.   

Chapter 1 introduces the research background and objectives of the current research.  

Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose 

(BC) production and fabrication and characterization of biobased polymer nanocomposites using 

produced BC and soy protein based resins.  The carbon source, soy flour extract (SFE), was 

obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high.  The 

results of this study showed that SFE consists of five sugars and Acetobacter xylinum 

metabolized sugars in a specific order.   

Chapter 3 discusses the fabrication and characterization of biodegradable polymer 

nanocomposites using BC and polyvinyl alcohol (PVA).  These polymer nanocomposites had 

excellent tensile and thermal properties.  Crosslinking of PVA using glutaraldehyde (GA) not 

only increased the mechanical and thermal properties but the water-resistance.   

Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) 

based biodegradable polymer nanocomposites by blending MFC suspension with PVA.  

(b) 



Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase 

the mechanical and thermal properties as well as to make the PVA partially water-insoluble.   

Chapter 5 reports the development and characterization of halloysite nanotube (HNT) 

reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA.  Several 

separation techniques were used to obtain individualized HNT dispersion.  The results indicated 

uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in 

excellent mechanical and thermal properties of the materials, especially for the crosslinked PVA.    

Chapter 6 presents the biodegradation of PVA based resins and nancomposites in a 

composting medium.  The results suggest that biodegradation of PVA based materials is mainly 

by enzymes secreted by fungi.  The three factors, namely, crystallinity, additives and 

crosslinking, may be utilized effectively to enhance the life of these materials in real life 

applications. 

Chapter 7 presents broad conclusions of the the entire study and possible suggestions for 

future research.  
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Charpter 1 Introduction 

Kaiyan Qiu, Anil N. Netravali
*
 

Fiber Science Program, Cornell University, Ithaca, NY 14853-4401 

 

1.1 Biobased and Biodegradable Polymers  

Most commercial polymers used today are prepared using non-biodegradable constituents.  

Most of these polymers are also derived from petroleum, a non-sustainable resource.  These 

materials at the end of their useful life cannot be easily consumed and simply pile up as waste 

and cause significant damage to the environment [1].  Over 30 million and 15 million tons of 

non-biodegradable polymeric waste, in the US and western Europe, respectively, are generated 

each year [2-4].  At the end of their life majority of the conventional plastics are traditionally 

disposed of in landfills where they may stay as is for several decades without degrading making 

that land unusable for any other applications.  About 6-7% of the petroleum produced today is 

used for making polymers, fibers and other chemicals [2-3].  It is estimated that we are currently 

consuming petroleum at an ‘unsustainable’ rate, 100,000 times faster than the nature can create it 

[3].  At the current rate of consumption, it is estimated that the current petroleum reserves will 

last for only 50-60 years [2].  These concerns have forced the development of environmentally 

friendly biobased and biodegradable polymers and their composites in recent years [2-4]. 

Biobased and biodegradable polymers are generally defined as those polymers that can 

decompose in natural aerobic (composting) and anaerobic (landfill) environments [2].  Biobased 

polymers are those that are derived from renewable plant based raw materials and tend to be 

inherently biodegradable [2-4].  They almost always have oxygen or nitrogen atoms in their 

polymer backbones which is the feature that is mainly responsible for their biodegradability [2].  

Biobased polymers can be further subdivided into two categories, natural biopolymers and 
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synthetic biopolymers [2].   Natural biopolymers often refer to those biobased polymers found 

directly in nature, including carbohydrates (starch, cellulose, chitin, agar, carrageenan, etc.), 

lignin, proteins and bacterial produced polyesters [2-4].  Synthetic biopolymers are polymers that 

are not found in nature but are made commercially from monomers that are found abundantly in 

nature [2].  Polylactic acid (PLA) and polyamino acids (PAA) are examples of important 

synthetic biopolymes [2].  Biodegradable polymers normally refer to petroleum-based 

biodegradable synthetic polymers, such as polyvinyl alcohol (PVA), polyglycolic acid (PGA), 

polycaprolactone (PCL), polyethylene oxide (PEO) etc. [2-4].  Biodegradation of biobased and 

biodegradable polymers can be achieved by enabling microorganisms in the environment to 

metabolize the polymer to produce an inert humus-like material that are less harmful to the 

environment and can get easily blended with the natural soil [2-4].   

1.2 Polymer Composites 

Although polymers are being employed more and more as structural materials, their use often 

is limited by their relatively low levels of stiffness and strength compared, for example, with 

metals [2, 5-7].  Because of the needs to be light weight and high stiffness as well as to possess 

other functionalities (wear resistance, thermal stability, electrical property, low-cost and high-

volume etc.) for materials to be used in diverse applications, advanced polymer composites have 

been developed over recent years with extremely high properties [5-7].  

Polymer composites consist of two or more distinct phases, normally including a polymer 

matrix (continuous) phase and fibrous or particulate material dispersed phase [2].  Based on their 

geometries, polymer composites can be categorized into three main classifications: particulate 

composites, continuous fiber composites and discontinuous fiber composites [5-7].  
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The polymers most commonly used as matrix materials at present are thermosetting network 

polymers such as unsaturated polyesters and epoxy resins [5, 8].  There have been developments 

in the field of thermoplastic polymer matrix composites using nylon or polypropylene as matrix.  

For dispersed phase, silicate-based minerals, glass, carbon and other high-modulus polymeric 

fibers are universally used as reinforcements in polymer composites, based on the properties 

desired [5, 8].  The dispersed phase size has become smaller to a few nanometers where 

significant benefits may be derived due to their small size.  These nanocomposites are described 

later.  Recently, polymer composites using biobased and biodegradable polymers and natural 

fibers have been widely studied and developed due to the increasing environmental and energy 

concerns [9-12].   

1.3 Nanomaterials and Its Applications 

1.3.1 Nanotechnology 

The field of nanotechnology is currently one of the most popular areas that deal with small 

structures or small-sized materials [13-16].  By definition, at least one dimension of the 

structures and materials must be between a nanometer to several hundred nanometers for it to be 

called a nanomaterial.  Extremely high specific area, as a result of the small size of the 

nanomaterials, allows packing of more functionalities in a given space.  Some specific properties 

of nanomaterials are remarkable and distinctively different from those of bulk materials [13-15].  

For example, crystals at nanometer scale have low melting points and reduced lattice constant, 

since the number of surface atoms or ions becomes a significant fraction of the total number of 

atoms or ions and the surface energy plays a significant role in the thermal stability.  Bulk 

semiconductor becomes insulator when the characteristic dimension is sufficiently small, a 

couple of nanometers.  Another good example is of gold.  Although bulk gold does not exhibit 
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catalysis properties, gold nanocrystal demonstrates to be an excellent low temperature catalyst 

[16].  

In general, nanotechnology can be understood as a technology of design, fabrication, and 

applications of nanostructures and nanomaterials.  Nanotechnology also includes fundamental 

understanding of physical properties and phenomena of nanomaterials and nanostructures.  In the 

United States, nanotechnology has been defined as being ‘concerned with materials and systems 

whose structures and components exhibits novel and significantly improved physical, chemical 

and biological properties, phenomena and processes due to their nanoscale size’ [16, 17]. 

1.3.2 Nanostructures and Nanomaterials 

Nanostructures of the nanomaterials possess a large fraction of surface atoms per unit volume.  

The ratio of surface atoms to interior atoms changes dramatically if one successively divides a 

macroscopic object into smaller and smaller parts [18].  Such a dramatic increase in the ratio of 

surface atoms to interior atoms in nanostructures and nanomaterials might illustrate why changes 

in the size range of nanometers are expected to lead to great changes in the physical and 

chemical properties of materials [16]. 

Top-down and bottom-up are two common approaches to the synthesis of nanomaterials and 

the fabrication of nanostructures [15, 16].  Attrition or milling is a typical top-down method in 

making nanoparticles, whereas the colloidal dispersion is a good example of bottom-up approach 

in the synthesis nanoparticles.  Lithography may be considered as a hybrid approach, since the 

growth of thin films is bottom-up whereas etching is top-down, while nanolithography and 

nanomanipulation are common bottom-up approaches [15, 16].  Both top-down and bottom-up 

approaches to nanomaterials play very important roles in modern industry, and most likely, in 

nanotechnology as well.  
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Structures of nanomaterials can be roughly categorized into zero-dimensional, one-

dimensional and two-dimensional nanostructures [16].  In zero-dimensional nanostructures 

category, nanoparticles and heteroepitaxial core-shell nanomaterials are two main examples.  

Nanomaterials with one-dimensional nanostructures have been called by a variety of names 

including: whiskers, fibers or fibrils, nanowires, and nanorods.  In many cases, nanotubes and 

nanocables are also included in one-dimensional nanostructures.  Thin films or sheets such as 

exfoliated nanoclay possess typical two-dimension nanostructures [16].  

Many applications for nanostructures and nanomaterials have been vastly investigated and 

developed.  Examples include nanoscale and molecular electronics, catalysis of gold 

nanocrystals, nanobots, nanoparticles as biomolecular probes, bandgap-engineered quantum 

devices, nanomechanics, carbon nanotube emitters, photoelectrochemical cells, lithium-ion 

rechargeable batteries, hydrogen storage, thermoelectrics, environmental applications, photonic 

crystals, plasmon devices, etc. [16].  However, using nanoparticles as fillers to fabricate polymer 

nanocomposites has been one of the most common applications as of yet [16].  

1.4 Polymer Nanocomposites and Biobased and Biodegradable Polymer Nanocomposites 

Polymer nanocomposites are polymers or copolymers having dispersed in its nanomaterials. 

These nanomaterials may be of different shape (e.g., platelets, fibers, spheroids), but at least one 

dimension must be in the range of nanoscale (normally less than 100 nm) [13, 19-24].  The 

addition (loading) of nanomaterials to polymers leads to significant changes in their physical, 

mechanical as well as thermal properties [19, 20].  For example, nanocellulose can improve the 

mechanical properties of polymer while nanoclays often increase thermal stability of polymers 

[21-24].  Many diverse topics, including composite reinforcement, barrier properties, flame 

resistance, electro-optical properties, cosmetic applications and bactericidal properties, exist in 
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the field of polymer nanocomposites [1].  At present, polymer nanocomposites have 

revolutionized the research in the field of material composites, providing significant 

enhancements in the composite properties at low nanomaterial (fillers) loading [21, 22].  This is 

a result of the uniform dispersion of the nanomaterials in the polymer matrices.  The fabricated 

polymer nanocomposites have been shown to possess excellent mechanical properties [1, 5, 13,]. 

However, most of them are non-biodegradable.  Recently, many polymer nanocomposites using 

biobased and biodegradable polymers and nanomaterials with excellent mechanical and thermal 

properties as well as other functionalities have been reported [21-24].  These biobased and 

biodegradable polymer nanocomposites have the potential to replace traditional non-

biodegradable plastic materials in many applications, including tennis/badminton/squash racket 

frames, ski pole, circuit board, automobile inside panels, etc. [1, 20-24]. 

1.5 Nanomaterials and Biobased and Biodegradable Polymers Used in Present Research 

1.5.1 Nanomaterials Used in Present Research 

All nanomaterials used in present research possess one-dimensional nanostructures.  They 

include bacterial cellulose (BC), microfibrillated cellulose (MFC) and halloysite nanotubes 

(HNTs).   While BC nanofibers were harvested from cellulose synthesis achieved through 

Acetobacter xylinum through media culture, MFC and HNTs were obtained from plant cellulose 

and halloysite mineral using top-down milling approach, respectively.  They are either biobased 

or produced by nature and are benign to the environment.  

1.5.1.1 BC 

Bacterial cellulose (BC) is a promising nanomaterial derived from biobased raw materials 

with excellent potential as reinforcement for composites.  BC is pure cellulose primarily 

produced by Acetobacter xylinum, a Gram-negative, obligately aerobic bacterium, in a nutritional 
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fermentation medium maintained at 30°C.  Traditionally, the medium requires carbon sources 

(e.g., mannitol, sucrose, fructose or others) and nitrogen sources (e.g., peptone, typtone, yeast 

extract, etc.), with optimum pH of 5.0 [25-29].  BC has the same chemical structure as other 

plant-based cellulose and is produced as fibers with diameters in the range of 70 to 90 

nanometers.  It displays many unique properties including higher purity (up to 99% or higher), 

higher degree of polymerization (up to 20,000), higher crystallinity (up to 68%), higher tensile 

strength and modulus (up to 114 GPa for modulus) and stronger biological adaptability [25-29].  

The BC material is already being used in many niche applications including artificial skin and 

blood vessels, binding agent for fibers and other materials, loud speaker diaphragms, high quality 

paper, foods, textiles, composite membranes, etc. [29-34].  BC can also be ground in to shorter 

fibers or hydrolyzed into BC nanowhiskers for further applications [35-38].  Though BC has 

excellent mechanical properties, the production cost is relatively high because of the high cost of 

the carbon source.  Therefore, a low-cost carbon source from defatted soy flour (SF) for BC 

production was investigated and developed in the present research [21]. 

1.5.1.2 MFC 

Microfibrillated cellulose (MFC) can be obtained by mechanical treatment, primarily 

shearing, of pulp cellulose fibers to small diameter fibrils through refining and high-pressure 

homogenization processes [39-42].  Since the widths or diameters of many of the fibrils in MFC 

are in submicron range, they may also be considered as nanofibers [39, 40, 43-45].  Being pure 

cellulose, MFC is biodegradable.  The MFC has high aspect ratio and high tensile properties as a 

result of high orientation and crystallinity.  Their modulus is estimated at 140 GPa and tensile 

strength between 2 and 6 GPa [39].  Much of the efforts until now have been focused on 

fabrication of MFC based composites using nonbiodegradable phenolic and other resins [39, 43-



8 
 

47].  Such composites, although greener, cannot be not fully biodegradable and hence still need 

to be disposed of in landfills at the end of their life.  This situation presents a significant 

opportunity to use MFC with biodegradable resins to fabricate fully biodegradable composites 

that can be composted at the end of their life.  MFC can also be combined with green resins to 

fabricate fully green composites [10, 22].  MFC blended resin may also be used with natural or 

biodegradable fibers to form hybrid composites. 

1.5.1.3 HNTs 

Halloysite is based on aluminosilicate clay nanoparticles that have hollow nanotubular 

structure and are mined from natural deposits [47, 48].  While the ideal unit formula for 

halloysite is Al2Si2O5(OH)4. n H2O (where n = 0 for halloysite-(7Å) and n = 2 for hydrated 

halloysite-(10Å)), the chemical composition is subject to variation due to the presence of 

impurities such as Fe oxides [48].  Halloysite occurs widely throughout the world in weathered 

rocks as well as in soils and has been identified as having formed by the alternation of a wide 

variety of igneous and non-igneous rocks [47-49].  It is often intermixed with dickite, kaolin, 

montmorillonite and other clay minerals [49].  The dominant morphology of halloysite is tubular 

when it is derived from crystalline minerals and hence it is commonly termed as halloysite 

nanotubes (HNTs) [48].  Unlike other nanostructured clays that must be exfoliated, HNTs 

naturally occur as cylinders with average diameters typically smaller than 100 nm and typical 

lengths ranging from 500 nm to over 1.2 µm [49].  HNTs have been used as bioreactor, time-

release capsules, catalysts of polymer degradation, templates for deposition of other 

nanoparticles, ceramic applications and polymer filler or property modifier [47]. 

 

 



9 
 

1.5.2 Biobased and Biodegradable Polymers Used in Present Research 

Biobased and biodegradable polymers used in our research include biobased soy protein 

based resin and biodegradable PVA.  These are described below.  

1.5.2.1 Soy Protein based Resin 

Defatted soy flour (SF) was used as a soy protein based resin.  Defatted soy flour (SF) is 

obtained as a by-product after extracting oil from the soybeans.  It is commercially available and 

consists mainly of protein (52-54%), carbohydrates (sugars) (30-32%), dietary fiber (2-3%), 

minerals and ash (3-6%) and moisture (6-8%).  SF is also very inexpensive, about $0.25/lb.  The 

soybean is a legume species native to East Asia and is classified as an oilseed.  It is an annual 

and economic crop and has been abundantly produced and used in many countries for over 5,000 

years [50].  Currently, it is an important global crop and provides major amount of edible oil and 

protein worldwide [51].  As mentioned earlier, SF contains carbohydrates in the form of various 

sugars and protein.  It is possible to dissolve and extract water soluble sugars from SF, termed as 

soy flour extract (SFE).  After removing SFE, the residual protein product, termed as modified 

soy flour (MSF) has higher protein content of between 60 and 70%.  MSF based resin has been 

shown to have better tensile properties than those of SF resin [52].  MSF resin also has higher 

interfacial bonding with ramie fiber compared to SF resin [52].  As a result, composites using 

MSF resin could be expected to have much better mechanical properties than those using SF 

resin [52]. 

1.5.2.2 PVA 

Polyvinyl alcohol (PVA) is a thermoplastic and biocompatible polymer prepared from the 

polymerization of vinyl acetate followed by alcoholysis.  It has been widely used making films, 

fibers, paper coating and adhesives due to the attractive properties of PVA [53, 54].  However, 
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unlike most of petroleum based polymers, it is one of the rare polymers with a carbon-carbon 

single bond backbone that is fully biodegradable in the presence of suitably acclimated 

microorganisms and their enzymes [2, 53, 54].  In addition, because of the hydroxyl (-OH) 

groups on alternating carbon atoms PVA is strongly hydrophilic and soluble in water (depending 

on molecular weight), which also helps to promote its degradation through hydrolysis [2, 53, 54].   

1.6 Development of Low-Cost Carbon Source for Production of BC Nanomaterials 

Many pure sugars such as glucose, sucrose, fructose, etc. and sugar alcohols such as mannitol, 

xylitol, sorbitol, etc. have been used as carbon source for BC culture [55-59].  Among them 

glucose, fructose and mannitol are the most common and have shown excellent results in terms 

of BC production [55-61].  However, these sugars and sugar alcohols are expensive and hence 

they are not considered to be ideal for large commercial scale BC production which needs to be 

inexpensive.  As a result, many attempts have been made to obtain higher BC yields as well as to 

reduce the cost of the carbon sources.  Some of these efforts have been successful.  For example, 

konjac powder hydrolyzate [55], sugarcane molasses [62], beet molasses [63] and processed rice 

bark [64] have been found to be useful in BC production.  While some of these sources may be 

used for industrial BC production in the near future, there is significant scope to further reduce 

the cost of BC production by using inexpensive waste products and expand its use in many mass 

volume applications. 

As mentioned earlier, soybeans contain decent amount of sugars, including fructose, glucose, 

sucrose, raffinose and stachyose [21, 65].  Out of these, fructose, glucose and sucrose have been 

used routinely as carbon sources for BC production [66].  It has also been reported that raffinose 

and stachyose can be metabolized by lactic acid bacteria [67].  To obtain higher protein content 

from SF, the sugars are extracted in the form of soy flour extract (SFE), a by-product.  Therefore, 
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the SFE, a mixture of five sugars with ideal sugar concentrations (using high performance liquid 

chromatography (HPLC) for the analysis), can be expected as an inexpensive carbon source to 

produce BC for reducing the cost of BC production.  The present research has successfully 

shown that SFE can be used for BC production and that the BC yields are comparable to 

commonly used sugars. 

1.7 Methods for Polymer Nanocomposite Fabrication, Crosslinking and Characterization 

1.7.1 Methods for Polymer Nanocomposite Fabrication 

Polymer nanocomposites have commonly been prepared using several different synthetic 

routes [68]. The first method is in situ polymerization synthesis.  It is based on the intercalation 

of the clay in the monomer followed by polymerizing the monomer in the presence of 

nanomaterial, thus trapping the nanomaterial within the polymer structure.  The second method 

is melt intercalations.  In this case, the polymer is melted at high temperature, and the 

nanomaterial filler is slowly added to the melt being sheared in the compounder.  The 

nanomaterial filler is sheared during compounding and kneading in the compounder and thus are 

well mixed with the polymer phase.  The third method for synthesizing polymer nanocomposites 

is solvent intercalation.  The polymer is dissolved in the same solvent in which the nanomaterial 

is also dispersed.  Evaporation of the solvent leads to entrapment of the polymer chains in 

between the nanomaterial layers [1, 68-70].  

1.7.2 Crosslinking of Polymers and Polymer Nanocomposites 

Crosslinking is the process of chemically joining (linking) two or more molecules at different 

locations along the polymer chains by covalent bonds or ionic bonds [71].  Crosslinking has been 

commonly used to improve the mechanical and thermal properties as well as to eliminate or 

reduce dissolution of polymers in solvents [71-75].  When used as resin, crosslinked polymers 
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can also improve composite properties.  As in the case of resins, the resulting modifications of 

mechanical and physical properties of the composites depend strongly on the crosslink density 

[76].  Very low crosslink densities can decrease the viscosities of polymer melts.  Intermediate 

crosslink densities transform gummy polymers into materials that have elastomeric properties 

and potentially high strengths.  Very high crosslink density can cause materials to become 

stronger and rigid or glassy by increasing their glass transition temperature [76].   

Crosslinking can be induced in polymers that are normally thermoplastic through exposure to 

radiation source, such as electron beam exposure, gamma radiation or ultraviolet light (UV) [77, 

78].  More commonly, for polymers that have reactive (functional) groups crosslinks are formed 

by chemical reactions with crosslinkers that are initiated by heat, pressure, change in pH or 

radiation [22-24].  Crosslinkers are often selected on the basis of their chemical reactivity with 

the functionalities present on the polymers [71].  Glutaraldehyde (GA) and glyoxal are two 

universally used crosslinkers for polymers and their nanocomposites that contain amine and 

hydroxyl groups, such as proteins, PVA and cellulose [21-24, 72-76, 79].  Although both of them 

are effective in crosslinking polymers, they are relatively toxic [80].  Therefore, less toxic 

crosslinkers are of interest in the crosslinking reaction, particularly to maintain the 

biodegradability of the polymers.  Malonic acid (MA) is a dicarboxylic acid produced from 

chloroacetic acid and can be used as a crosslinker [81].  In terms of toxicity, it is a significantly 

better choice as a crosslinker compared to GA or glyoxal [80].  Some researchers have shown 

crosslinking of PVA using dicarboxylic acids, including MA, where sulphuric acid was used as a 

catalyst to obtain esterification [82, 83].  In the present research, crosslinking was carried out for 

soy protein based resin as well as PVA using GA, glyoxal and MA and polymer nanocomposites 

were prepared using crosslinked resins.  
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1.7.3 Characterization of Polymers and Polymer Nanocomposites 

Morphology of nanomaterials in polymer matrix is one of the key factors that influence the 

properties of nanocomposites.  Transmission electron microscopy (TEM) and scanning electron 

microscopy (SEM) allow a direct morphological observation of polymers and polymer 

nanocomposites [84-86].  Currently, Föster resonance energy transfer (FRET) technique and 

laser scanning confocal microscopy (LSCM) were also jointly applied to reveal the interface 

between nanomaterial and polymer in polymeric nanocomposites [87].   

Chemical structure, as well as elemental composition, crystalline, thermal, tensile, water-

absorbent, soluble properties of nanocomposites are also of great interest since they determine 

their applications.  Therefore, several techniques have been used to characterize their properties.  

These include attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 

energy dispersive X-ray (EDX) analysis, wide-angle X-ray scattering (WAXS), 

thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile test, 

moisture content, swelling and sol-gel test are often applied to characterize the polymer 

nanocomposites [21-24].  Most of these techniques were used in the course of the present 

research and are described in the chapters. 

1.8 Biodegradation for Biobased and Biodegradable Polymers and Polymer 

Nanocomposites  

Biodegradation can be regarded as a process in which the degradation results from the action 

of microorganisms such as bacteria, fungi or algae [1, 88].  Biodegradation can be generally 

divided into two steps.  The first step is depolymerization or chain cleavage where the longer 

polymer chain undergoes backbone scission into smaller oligomeric fragments with the help of 

enzymes secreted by microorganisms.  The second step is mineralization, which occurs inside 

http://en.wikipedia.org/wiki/Infrared_spectroscopy
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the cell in which small oligomeric fragments are converted to biomass, minerals and salts, water 

and gaseous substances such as carbon dioxide under aerobic environments and methane under 

anaerobic environments [88-96].  Biobased and biodegradable polymers and their composites 

may be broken down by the enzymes secreted by microorganisms.  Once broken down to 

monomeric level, the polymer is used as the carbon source for the microorganism metabolism.  

The biodegradation process is chemical in nature but the source of the attacking chemicals 

(enzymes) is from microorganisms [89-93].  Biodegradation of the materials produces carbon 

dioxide under aerobic environments or methane under anaerobic environments, in addition to 

humus [1, 88].  The susceptibility of polymers and their composites to microbial attack generally 

depends on enzyme availability, availability of a site in the polymers for enzyme attack, enzyme 

specificity for that polymer and the presence of coenzyme [94].  Biodegradation results in the 

changes in surface properties since it begins at the surface where the microorganisms are present.  

Once progressed, it results in loss of strength, assimilation by microorganisms, degradation by 

enzymes or breakage of backbone chains and subsequent reduction in the average molecular 

weight of polymers [1, 88-94].  

The biodegradation and its mechanism under the effect of microorganisms for different 

polymers and their composites, including poly (butylene succinate) (PBS) and its silicate 

reinforced nanocomposites, poly (lactic acid) (PLA) and its silica and calcium carbonate 

reinforced nancomposites, whey protein, soy protein isolate (SPI), poly (ε-caprolactone) (PCL), 

poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV), noncrosslinked PVA etc., have been 

extensively studied [1, 2, 97-110].  Many factors can influence the biodegradation process, 

including surface area, hydrophilic/hydrophobic properties, chemical structure, molecular weight, 

crystallinity and melting temperature.  Polyesters with side chains and higher melting 
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temperature are less assimilated than those without side chains [97-110].  PCL with higher 

molecular weight degraded more slowly than that with low molecular weight [97-110].  The rate 

of biodegradation of PLA was shown to decrease with an increase in crystallinity since the 

enzymes mainly attack the amorphous domains of polymers [1, 97-100].  Addition of a dispersed 

phase also has an effect on the rate of biodegradation [107-110].  The relative rate of 

biodegradation for PBS-silica nanocomposites was faster than that of neat PBS which was 

attributed to the relatively low crystallinity of PBS in the PBS-silica nancomposites [107, 108].  

It was also observed that addition of layered silicate and calcium carbonate increased the rate of 

biodegradation of PLA [109, 110].  Besides, the degradation rate of PLA in compost was delayed 

with the introduction of crosslinks [111].  

PVA is a widely used thermoplastic and biocompatible polymer.  However, unlike most of 

petroleum based polymers, it is one of the rare polymers with a carbon-carbon single bond 

backbone that is fully biodegradable in the presence of suitably acclimated microorganisms and 

their enzymes [2, 101, 102].  In addition, because of the hydroxyl (-OH) groups on alternating 

carbon atoms PVA is strongly hydrophilic and soluble in water, which also helps to promote its 

degradation through hydrolysis [2, 53, 54, 101, 102, 112].  Therefore, both enzymatic and 

hydrolytic degradations can occur in all regions for hydrophilic PVA with moisture absorption 

[103].  Nevertheless, degradation of hydrophobic polymers, e.g., poly(hydroxybutyrate-co-

hydroxyvalerate) (PHBV) in compost medium is enzymatic rather than hydrolytic and occurs 

from the surface [102]. 

The first microorganisms capable of assimilating PVA as their sole carbon source were 

isolated from soil samples and identified as Pseudomonas species [54, 102, 105, 106, 113].  

Further studies have confirmed that other aerobic bacteria, such as Alcaligenes and Bacillus, 
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were also active in the degradation of PVA [54, 104, 113-115].  Fungal strains, such as 

Aspergillus niger, Pycnoporus cinnabarinus, Fusarium and Phanerochaete chrysoporium, have 

been reported to change not only the polymer (like PVA) surface from smooth to rough, but even 

to disrupt the polymer through enzymatic degradation [9, 116, 117].  It was observed that 

specific microbial strains were able to induce a rapid decrease of the viscosity of aqueous culture 

media containing PVA.  It was therefore assumed that at least the initial microbial attack should 

be consistent with a random cleavage of the polymer chains.  At the same time, the occurrence of 

oxidative reactions of the tertiary carbon atoms of PVA chains, leading to the formation of 

hydrolysable β-hydroxylketone and 1, 3-diketone groups along the polymer backbone, was 

established.  These reactions were catalyzed by specific oxidases and dehydrogenases that were 

isolated mainly as extracellular proteins from different bacterial species [54, 104, 101, 102].  

It has been reported that PVA can be degraded under different environmental conditions, 

including aerobic composting, soil burial, aqueous media and even anaerobic conditions [104, 

118-121].  Among these paths for biodegradation, composting is an effective technique to 

characterize the biodegradation of PVA and other biodegradable polymers and their composites 

[102].  Composting is defined as an exothermic bio-oxidative decomposition of organic materials 

by indigenous microorganisms in a controlled moist and warm aerobic environment leading to 

the production of ‘compost’, a mixture of carbon dioxide, water, minerals and a stabilized 

organic matter [105, 122].  As the compost pile becomes active, a succession of mesophilic and 

thermophilic microorganisms secret depolymerase enzymes.  These enzymes attack the substrate 

as nutrient in the presence of optimal moisture, temperature and nutrients [105, 120].  This being 

an exothermic process causes the temperature to rise above the ambient temperature of 23
o
C.  If 

the temperature increases to 40-45
o
C, the mesophilic bacteria, actinomycetes and fungi give way 
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to thermophilic organisms and if it reaches 70-75
o
C, the microbial activity is drastically reduced 

resulting in cooling down of the material and eventual maturity [105, 120].  It has been reported 

that hydrolytic degradation can occur in some polymers with high moisture sensitivity under the 

slightly acidic pH conditions [102, 103, 105, 106].  Composting of crosslinked PVA and PVA 

based nanocompostes can be expected to unveil the effects of crosslinking and nanomaterials on 

the biodegradation rate of PVA.  

1.9 Objective and Potential Applications 

The objective of this research was to fabricate and characterize biobased and biodegradable 

nanocomposites using different polymers and nanomaterials, and deeply understand their 

properties, relating mechanisms and corresponding applications.  A low cost ‘green’ carbon 

source obtained as a by-product from soy protein production process, soy flour extract (SFE), has 

been first utilized in BC production to reduce the cost of BC production.  The individual sugar 

components present in the carbon source and their consumption pattern during fermentation have 

been studied with the help of HPLC in this dissertation.  Nanomaterials, including fully 

degradable BC and MFC, and natural occurred clay HNTs have been used in biobased soy 

protein based resin and biodegradable PVA to fabricate biobased and biodegradable polymer 

nanocomposites using solvent intercalation approach.  BC-soy protein resin and BC-PVA 

nanocomposites are continuous fiber composites, MFC-PVA nanocomposites are discontinuous 

fiber composites, while HNT-PVA nanocomposites possess particulate composites structure.  

Chemical crosslinking using different crosslinkers (GA, glyoxal and MA) has been applied to 

further increase these properties.  Tensile, thermal, structural properties as well as water-

absorbency, solubility, crystallinity, of these polymer nanocomposites have been characterized 

using different testing approaches to understand the role each component plays.  In addition, 
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nanomaterial dispersion and interfacial properties were also characterized.  Composting was used 

to test the biodegradability and characterize changes in the properties for some of these biobased 

and biodegradable polymers and their nancomposites in this dissertation.  

It can be observed that tensile properties of these biobased and biodegradable polymer 

nanocomposites were comparable or higher than many traditional plastic materials based on 

theoretical calculation (rule of mixture), including polyethylene (Young’s modulus: 800 MPa; 

fracture stress: 15 MPa), polypropylene (Young’s modulus: 1900 MPa; fracture stress: 40 MPa), 

and nylon 6 (Young’s modulus: 1800 MPa; fracture stress: 70 MPa) [123].  In addition, the 

synthesized polymer nanocomposites can also obtain other useful properties based on the 

nanomaterials’ properties and resin crosslinking, including higher thermal stability and enhanced 

water-resistance [9-12, 115].  As a result, these nanocomposites have the potential to replace 

these traditional non-biodegradable plastic materials in many applications, including racket 

frame, ski pole, circuit board, automobile inside, etc. [21-24, 124].  These biobased and 

biodegradable polymer nanocomposites can be easily protected from water by applying varnish 

or other water-resistant coatings to increase their durability [21-24, 124].   
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2.1 Abstract 

A novel low cost carbon source, soy flour extract (SFE), was developed from defatted soy 

flour (SF) to culture bacterial cellulose (BC).  The enriched protein remaining after extracting 

sugars was used as resin to form BC based thin membrane-like ‘green’ composites.  The results 

of this study showed that SFE consists of five sugars; fructose, glucose, sucrose, raffinose and 

stachyose.  Further the study indicated that Acetobacter xylinum, the bacteria used in this study, 

metabolized sugars in the following order: fructose and glucose, sucrose, raffinose and stachyose 

during the culture process.  However, the consumption rates of raffinose and stachyose were 

extremely low.  Results also indicated that autoclaving process resulted in hydrolyzing sucrose to 

fructose and glucose.  Based on the same concentration of sugars, BC yield achieved using SFE 

medium (based only on the concentration of fructose, glucose and sucrose) was close to or even 

higher than the yields obtained using expensive conventional carbon sources such as fructose, 

mannitol and glucose.  Modified soy four (MSF), the residual protein after removing sugars from 

SF, was successfully used as a resin to fabricate ‘green’ BC-MSF membrane-like thin 

composites.  These composites had excellent tensile and thermal properties that were better than 

the BC-SF resin composites.  This is primarily due to the higher protein content in MSF 

compared to SF.  The sugars in SF also plasticized it thus reducing its modulus and increasing 

the fracture strain. 
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2.2 Introduction  

Bacterial cellulose (BC) produced by Acetobacter xylinum, is a promising, sustainable and 

biodegradable nanofibrous material that has the same chemical structure as the plant-based 

cellulose.  However, BC fibers have diameters in the range of a few nanometers and display 

many unique characteristics including high purity, high degree of polymerization, high 

crystallinity, high tensile strength, high modulus and strong biological adaptability [1-5].  The 

BC material is already being used in many applications including artificial skin and blood vessel, 

binding agent for fibers and other materials, loud speaker diaphragms, high quality paper, foods, 

textiles, composite membranes, etc. [5-10].  Many pure sugars such as glucose, sucrose, fructose, 

etc. and sugar alcohols such as mannitol, xylitol, sorbitol, etc. have been used as carbon source 

for BC culture [11-15].  Among them glucose, fructose and mannitol are the most common and 

have shown excellent results in terms of BC production [11-17].  However, cost of these sugars 

or sugar alcohols is high and hence they are not considered to be ideal for large scale, 

inexpensive BC production.  As a result, many attempts have been made to obtain higher BC 

yields as well as to reduce the cost of the carbon sources.  Some of these efforts have been 

successful.  For example, konjac powder hydrolyzate [11], sugarcane molasses [18], beet 

molasses [19] and processed rice bark [20] have been found to be useful in BC production.  

While some of these sources may be used for industrial BC production in the near future, there is 

significant scope to further reduce the cost of BC production by using inexpensive waste 
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products and expand its use in many mass volume applications.  This paper describes a novel and 

inexpensive source derived from soybeans for BC production. 

Defatted soy flour (SF) is obtained as a by-product after extracting oil from the soybeans.  It 

is commercially available and consists mainly of protein (52-54%), sugars (30-32%), dietary 

fiber (2-3%), minerals and ash (3-6%) and moisture (6-8%).  SF is also very inexpensive, about 

$0.25/lb.  The soybean is a legume species native to East Asia and is classified as an oilseed.  It 

is an annual and economic crop and has been abundantly produced and used in many countries 

for over 5,000 years [21].  Currently, it is an important global crop and provides major amount of 

edible oil and protein [22].  Soybeans contain decent amount of sugars, including fructose, 

glucose, sucrose, raffinose and stachyose [23].  Fructose, glucose and sucrose have been used 

routinely as carbon sources for BC production [24].  It has also been reported that raffinose and 

stachyose can be metabolized by lactic acid bacteria [25].  To obtain higher protein content from 

SF, the sugars are removed in the form of soy flour extract (SFE), a by-product.  The present 

research discusses the use of SFE, a mixture of five sugars mentioned earlier, as an inexpensive 

carbon source to produce BC. 

Because of excellent mechanical properties of BC, some research on fabrication of BC based 

composites with petroleum based resins has already been reported [26, 27].  High strength 

composites using BC sheet impregnated with phenolic resin or acrylic resin have been developed 

[24, 25].  Although useful, these resins are not biodegradable and as a result, composites are not 

biodegradable or environment-friendly.  It should, however, be possible to fabricate completely 

degradable BC based ‘green’ composites using sustainable and biodegradable resins.  

As mentioned earlier, SF contains sugars and protein.  It is possible to dissolve and extract 

water soluble sugars from SF, termed as soy flour extract (SFE).  After removing SFE, the 
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residual protein product, termed as MSF, has higher protein content of 65-70%.  MSF based 

resin has been shown to have better tensile properties than those of SF resin [28].  MSF resin 

also has higher interfacial bonding with ramie fiber compared to SF resin [28].  As a result, 

composites using MSF resin could be expected to have much better mechanical properties than 

those using SF resin. 

In the present research the sugar-containing SFE has been successfully developed for BC 

production as a high-yield and low cost carbon source [29].  The consumption of different sugars 

by Acetobacter xylinum and the compositional changes of sugars in the SFE medium during 

autoclaving were analyzed as well.  The residual insoluble protein, after SFE extraction, termed 

MSF, was successfully used as resin to fabricate BC based ‘green’ composite.  Thus both fibers 

and resins were produced from defatted soy flour as the sole feedstock.  The tensile and thermal 

properties of the composites were characterized and were found to be comparable or even better 

than those of traditional plastic materials. 

2.3 Materials and methods 

2.3.1 Microorganism and culture media 

Acetobacter xylinum, ATCC 23769, obtained from the American Type Culture Collection 

(ATCC, Manassas, VA), was used as the model strain and maintained on agar plates containing 

25 g/L D-mannitol, 5 g/L yeast extract and 5 g/L tryptone and 20 g/L agar.  The SFE medium 

used for BC production consisted of 5 g/L yeast extract, 5 g/L tryptone and the autoclaved SFE 

as the sole carbon source [29].  Other culture media used for comparison of BC yields consisted 

of 25 g/L carbon sources raffinose, glucose, sucrose, fructose and mannitol, individually, and 5 

g/L yeast extract and 5 g/L tryptone, which have the similar function for BC production as 

Hestrin–Schramm (HS) medium [17]. 
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2.3.2  Soy flour powder treatment     

The soy flour, SF, (7B) powder obtained from ADM Co. (Decatur, IL) was mixed with 

deionized water to get SFE.  SF powder was initially soaked in deionized water in a ratio of 3:17 

and the pH of the mixture was adjusted to 4.5, its isoelectric point, by adding hydrochloric acid.  

The mixture was kept at 50°C in a water bath for 1 hr.  After that, the mixture was filtered to 

remove the solid content (MSF), mostly the insolubilized protein.  Part of the filtrate, containing 

the soluble sugars (SFE), was then allowed to evaporate to obtain the desired sugar concentration 

for BC culture [29]. 

2.3.3 Sugar consumption of SFE medium during culture 

The concentrations of sugars in the SFE, including fructose, glucose, sucrose, raffinose and 

stachyose were determined before and after autoclaving using high performance liquid 

chromatography (HPLC) (UltiMate 3000 LC system, Dionex, Sunnyvale, CA) attached with the 

refractive index (RI) detector (RI-101, Ecom, Purage, Czech Republic).  Autoclaving of the SFE 

was carried out at 121°C and about 0.1 MPa pressure in a sterilizer (Market forge, Alfa Medical, 

Westbury, NY) for 25 min.  After autoclaving, the SFE was filtered to remove the remaining 

solid protein deposits and used for BC culture.  Sugar concentrations in the SFE during 10 days 

of culture were determined on a daily basis using HPLC to obtain a quantitative measure of the 

sugar consumption by the bacteria.  After filtering the SFE culture media samples through a 

polytetrafluoroethylene (PTFE) filter (0.45 μm pore size) and removing tiny BC fibrils and other 

impurities, concentration for each sugar was analyzed using a SUPELCOSIL LC-NH2 column 

(25 cm x 4.6 mm ID & 5 μm particles, Supelco, Bellefonte, PA) and the RI detector.  The HPLC 

column was used at 30°C temperature.  The mobile phase was the mixture of acetonitrile and 

deionized water (3:1, v/v) and was kept at a flow rate of 1 mL/min.  It is important to note that 
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while all sugar concentrations were determined individually, it was not possible to measure the 

fructose and glucose concentrations separately and hence was measured together and reported as 

‘fructose plus glucose’ [29]. 

2.3.4 BC Production 

The acetobacter strain was inoculated into a conical flask containing the prepared SFE 

culture medium as the seed culture.  The initial pH value of the medium was adjusted to 5.0 and 

was not regulated during the culture.  The seed culture was incubated at 30°C and 130 rpm on a 

rotary shaker for 2 days, and 6 mL of this was inoculated into a 100 mL culture medium in 600 

mL conical flask for production of BC.  The cultivation was carried out initially at pH of 5.0 and 

30°C in a static incubator for 10 days.  Samples of the culture medium and BC were extracted 

every day during the 10-day culture period to measure individual consumption of sugars and BC 

yields.  The BC pellicles taken out from the medium were washed successively with water and 

1% (w/v), aqueous NaOH at 90°C for 15 min, and then washed by deionized water to remove all 

microbial product contaminants.  The purified cellulose pellicles were finally dried at 105°C on a 

Teflon
®
 plate until constant weight was reached [29]. 

In another set of experiments BC pellicles produced using other culture media containing 

individual sugars mentioned in section 2.1 were harvested every day.  The BC pellicles were 

then washed and dried using the same procedure mentioned earlier.  BC pellicles cultured in SFE 

medium and other culture media mentioned in section 2.1 were compared for their yields.  Dried 

BC specimens were conditioned at ASTM conditions of 21
o
C and 65% relative humidity (RH) 

for 3 days before tensile testing [29]. 
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2.3.5 Preparation of SF and MSF resin sheets 

The SF powder and MSF obtained during SFE production were initially mixed with 

deionized water in a weight ratio of 1:15, respectively.  Glycerol was added (15% by weight) as 

a plasticizer, pH value of both solutions were adjusted to 10 by addition of sodium hydroxide 

[22].  The solutions were maintained at 75°C while stirring continuously for 30 min to obtain 

precured SF resin and MSF resin.  This ‘precuring’ process helps denature the globular protein 

by opening up the molecules.  Precured SF resin and MSF resin were cast on a Teflon
®
 coated 

glass plate and dried in a 35°C air circulated drying oven for 16 hr, respectively.  Dried SF resin 

sheet and MSF resin sheet were cured using Carver Hydraulic hot press (model 3981-4PROA00, 

Wabash, IN) at 120
o
C for 25 min under a pressure of 7 MPa.  The thickness of all resin sheets 

was in the range of 0.2 mm.  The cured SF and MSF resin sheets were conditioned at ASTM 

conditions for 3 days prior to characterizing their tensile properties. 

2.3.6 Fabrication of BC based ‘green’ composites with SF and MSF resins 

BC based membrane-like ‘green’ composites with SF resin and MSF resins were produced 

by using BC pellicles and impregnating them with precured SF and MSF resins, individually.  

Resin impregnation into the BC pellicle was achieved using ultrasonication for 30 min.  The wet 

BC-SF and BC-MSF resin composites were dried in an air circulating oven at 35ºC for 8 hr to 

obtain prepregs.  The BC content in the BC-SF resin composite and BC-MSF resin composite 

was kept around 50% in order to achieve tensile properties that are comparable to traditional 

non-biodegradable plastics.  While the BC content in both composites could be easily adjusted 

by varying the resin concentration, it was difficult to obtain uniform distribution of resin with 

higher BC concentration.  The prepregs were then cured by hot pressing at 120
o
C under a 

pressure of 7 MPa.  The thickness of all composites was in the range of 0.2 mm.  The cured 



39 
 

composites were conditioned at ASTM conditions for 3 days prior to characterizing their tensile 

properties. 

2.3.7 Characterization 

Freeze dried specimens of BC and BC-MSF resin composites were sputter coated with gold 

and their surface topographies were observed with scanning electron microscope (SEM, LEO 

1550 FESEM) at an accelerating voltage of 15 kV. 

Tensile testing was performed using an Instron tensile testing machine (Instron, model 5566).  

The test specimens were prepared by cutting the BC membranes and green composites into 10 

mm wide and 60 mm long strips using a precise cutter.  Young’s moduli of the specimens were 

determined from the tensile test results conducted according to ASTM D-882-02.  Two ends of 

the specimens were placed between the upper and lower jaws of Instrton, leaving a gauge length 

of 30 mm.  Crosshead speed during the tensile tests was maintained at 0.6 mm/min to obtain a 

strain rate of 0.02 min
-1

. 

Thermogravimetric analysis (TGA, TA instrument Model No. 2050) was carried out to 

analyze the thermal properties of both BC-SF and BC-MSF resin composites.  TGA runs were 

performed using aluminum pans between 25 and 600
o
C under nitrogen environment.  The 

scanning rate was 20
o
C/min and the nitrogen purge flow rate was maintained at 10 mL/min. 

2.4 Results and discussion 

2.4.1 Influence of autoclaving on the SFE medium 

The HPLC analysis of the as obtained SFE used in this study showed that it consisted of 1.92 

g/L fructose and glucose (combined), 21.21 g/L sucrose, 1.59 g/L raffinose, 11.92 g/L stachyose, 

water and other components including proteins.  The concentration of total sugars was over 36 

g/L.  After autoclaving (sterilizing) at 121°C and pressure of 0.1 MPa for 25 min, however, the 
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HPLC analysis showed a slightly different composition of sugars in the SFE medium.  Therefore, 

the influence of autoclaving on the SFE medium was further explored. 

It has been reported that sucrose is prone to partial hydrolysis during autoclaving and hence 

the sucrose-containing media sterilization will result in a mixture of D-glucose, D-fructose and 

sucrose [30].  In another study it was shown that 15 to 25% of the sucrose may hydrolyze to 

glucose and fructose during autoclaving at the elevated temperature [31, 32]. 

Table 2.1 presents the HPLC data of various sugar concentrations in SFE before and after 

autoclaving.  Table 2.1 also gives adjusted values for all sugars after taking into consideration 

the water evaporation during autoclaving.  Before autoclaving, the freshly made SFE medium 

had concentrations of 1.92 g/L for fructose plus glucose, 21.21 g/L for sucrose, 1.59 g/L for 

raffinose, and 11.92 g/L for stachyose.  After the autoclaving the concentrations changed to 7.54 

g/L for fructose plus glucose, 17.54 g/L for sucrose, 1.58 g/L for raffinose and 9.92 g/L for 

stachyose.  The concentration of total sugars was 36.58 g/L and the concentration of three 

traditional carbon sources (fructose, glucose and sucrose) for BC production was approximately 

23-25 g/L which was almost the same as the regular concentration of carbon source used for BC 

production by others [11] 
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Table 2.1 Effect of autoclaving on the concentrations of various sugars in the SFE medium 

 Concentrations of sugars in SFE medium 

 Fructose + Glucose 

(g/L) 

Sucrose 

(g/L) 

Raffinose 

(g/L) 

Stachyose 

(g/L) 

Total Sugars 

(g/L) 

SFE before 

autoclaving 

1.92 21.21 1.59 11.92 36.64 

SFE after 

autoclaving 

7.54 17.54 1.58 9.92 36.58 

SFE after 

autoclaving 

(adjusted data by 

considering water 

evaporation)  

 

7.16 

 

16.66 

 

1.50 

 

9.42 

 

34.74 

 

The data in Table 2.1 clearly indicate that there was a significant (about 20%) decrease in 

sucrose concentration and an almost equivalent increase in the fructose plus glucose 

concentration after autoclaving.  As a result, there was no significant change in the combined 

concentration of fructose, glucose and sucrose which remained in the range of 23-25 g/L, before 

and after autoclaving.  As discussed earlier, this was mainly due to the degradation of sucrose 

[30-32].  During the autoclaving process, our data also indicated a small decrease in the 

concentrations of both stachyose and raffinose (Table 2.1).  While the reasons for this are not 

well understood, this may be either due to hydrolysis of raffinose and stachyose similar to that of 

sucrose, or due to side reactions such as caramelization or maillard reaction [33].  The splitting 

of sucrose into glucose and fructose is, in fact, better as it will be seen later that the Acetobacter 

Xylinum bacteria metabolize glucose and fructose much more easily than sucrose. 

2.4.2 Sugar consumption in SFE medium during the culture 

Our preliminary study had indicated that all five sugars in SFE, fructose, glucose, sucrose, 

raffinose and stachyose, could be used as carbon sources separately for BC culture by 

Acetobacter xylinum and different sugars had different effectiveness for BC yields.  Detailed 
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discussion of this is presented later in this paper.  To measure the actual consumption of 

individual sugars in the SFE culture medium, specimens were analyzed for the sugar content 

every day. 

Figure 2.1 shows plots of changes in the concentrations of all five sugars as a function of 

culture time in days.  As can be seen from the plots, fructose plus glucose concentration 

decreased steadily and almost linearly until day 7.  During that period concentrations of the other 

three sugars remained more or less stable.  After the sixth day the sucrose concentration started 

to decrease.  This suggests that when fructose plus glucose concentration decreased to an 

extremely low value (around 1.09 g/L) from initial 7.54 g/L, the Acetobacter xylinum started to 

consume sucrose.  These results indicate that the Acetobacter xylinum preferred to consume 

fructose and glucose before the other three sugars present in the SFE medium.  During the entire 

10-day culture time, very little or no raffinose and stachyose were consumed and, as a result, no 

significant change was noticed in their concentrations. 

 

Figure 2.1 Consumption of sugars in SFE medium during BC culture by Acetobacter xylinum as 

a function of time in days 

Symbols: ♦, fructose plus glucose; ■, sucrose; ▲, raffinose; ×, stachyose 
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2.4.3 BC yield in SFE medium  

It has been reported that BC yield in fructose or glucose media was higher than in sucrose 

medium [24].  Based on our preliminary experiments, fructose and glucose were better carbon 

sources for BC production compared to a combination of sucrose, raffinose and stachyose, if the 

pH value of the media were kept constant.  As mentioned earlier, after autoclaving, the 

concentration of fructose plus glucose in the SFE medium reached 7.54 g/L from the initial 

concentration of 1.92 g/L.  This higher fructose plus glucose concentration was obviously 

beneficial for BC culture.  It is important to note that the total concentration of the three sugars 

(fructose, glucose and sucrose) in the SFE medium, that Acetobacter xylinum mainly consumed 

during the 10-day culture, was around 25 g/L which was almost the same concentration of 

conventional carbon sources used by other researchers for BC production [11]. 

Figure 2.2 shows plots of BC yields in SFE (blue),  fructose (brown), mannitol (green), 

glucose (purple) and sucrose (light blue) media as a function of culture time in days.   As seen in 

Figure 2.2 BC yield in SFE medium increased dramatically during the initial 3-4 days and then 

the yield growth significantly decreased after 7 days of culture.  The main reason for this was 

that the preferred carbon sources, fructose and glucose, were used up almost fully at this time.  

BC yield, however, continued to increase during the period of 7 to 10 days but with a relatively 

lower rate partially because Acetobacter xylinum started to consume sucrose and other sugars 

which were not as suitable or metabolizable as fructose and glucose for BC production.  The 

results in Figure 2.2 also indicate BC yield in SFE medium can reach 255 mg after 10 days of 

culture which is close to or even better than BC yields obtained with other conventional carbon 

sources under similar culture conditions [34, 11].  According to comparison diagrams shown in 

Figure 2.2, BC yields in mannitol and fructose media have almost same diagrams as in SFE 
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medium at the beginning 7 days of culture.  However, the BC yield rates in mannitol and 

fructose media were slightly higher than in SFE medium during the period of 7 to 10 days.  This 

further confirms that preferred carbon sources, fructose and glucose were at low concentrations 

during this time.  BC yields in glucose and sucrose media have diagrams with consistent lower 

values during culture time.    

 

Figure 2.2 BC yields in SFE (♦), fructose (■), mannitol (▲), glucose (×) and sucrose (*) media 

as a function of culture time 

Figure 2.3 compares BC yields obtained using different carbon sources individually after 10 

days of culture.  BC yield of 255 mg in SFE medium was almost as high as those using fructose 

(270.3 mg) and mannitol (276.3 mg) media which have been regarded as two excellent carbon 

sources for BC production.  Based on these data it may be concluded that SFE could be used as 

an excellent but one of the least expensive carbon sources for BC production.  BC yield in SFE 

medium was also significantly higher than those obtained in raffinose (29.7 mg), sucrose (72.8 

mg) and glucose (128.2 mg) media, individually.  Glucose has also been reported as an excellent 

carbon source for BC production [34].  However, in our trial carried out with pure glucose 

medium, under same conditions, the yield was lower because the pH value of the medium was 
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not regulated and gluconic acid generated by glucose during the culture caused the pH value to 

change to less than 3.5 which was not suitable for BC production.  However, glucose in SFE 

medium still could be used as a good carbon source because pH value in SFE medium did not 

change significantly during the culture.  The reason might be that relatively low amount of 

gluconic acid formed during culture was not able to change the pH of the medium.  Also, other 

sugars present in SFE created a buffer effect in the SFE medium.  Since sucrose partially 

hydrolyzed into glucose and fructose during autoclaving as seen in our results as well as by 

others [30-32], BC yield obtained in sucrose medium was from the combined presence of 

sucrose, fructose and glucose. 
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Figure 2.3 BC yields obtained for different carbon sources 

The BC yield in SFE medium (255 mg) was also higher than previously reported BC yields 

obtained using konjac powder hydrolyzate (212 mg, Acetobacter xylinum-ATCC 23770, 8 days) 

and processed rice bark (242 mg, Acetobacter xylinum-ATCC 23769, 10 days) [11, 20]. 

In addition, the cost of carbon source, one of the major expenses for BC culture, is indeed 

reduced largely because the SFE is a by-product obtained from the soy protein production 

process.  The cost of SFE is almost nothing.  Therefore, based on rough calculation, the cost for 

BC production can be reduced by more than 30%.   
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2.4.4 Microstructure of BC-soy resin composite and its fabrication mechanism 

The photographs of BC-SF resin and BC-MSF resin composites are shown in Figure 2.4A (a) 

and 2.4A (b), respectively.   Both of these thin membrane-like composites had fairly smooth 

surfaces.  This indicates that both SF resin and MSF resin are fully embedded into BC to 

fabricate corresponding composites.  

Figure 2.4B shows SEM images of freeze dried BC pellicle and BC-MSF resin composite.  

Both specimens were not hot pressed prior to SEM observations.  In Figure 2.4B (a), the BC 

network and porous structure can be observed clearly at the surface of the membrane.  Since 

these specimens were freeze dried, the porous structure has been maintained.  The mean diameter 

BC-nanofibers is less than 100 nm and the pore diameters range from several dozens to several 

hundred nanometers.  Figure 2.4B (b) shows the structure of BC-MSF resin composite.  MSF 

resin penetrated into the BC network structure and filled in most of pores of BC.  Again, since 

the specimen was freeze dried, the porous structure was partially maintained.  The spread of the 

MSF resin in between the BC-nanofibers and their embedment in the resin can be clearly seen.  

If this resin containing membrane is hot pressed, the gaps are fully filled as a result of the resin 

flow and consolidation, forming a thin membrane-like composite.  The SEM of BC-SF resin 

composite and BC-MSF resin composite specimens shown in Figure 2.4B (a) and (b), 

respectively, look identical. 
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Figure 2.4 A: Images of (a) BC-SF resin composite and (b) BC-MSF resin composite;  

B: SEM images of (a) freeze dried BC and (b) freeze dried BC-MSF resin composite 

 

MSF resin infiltration into the BC pellicle is facilitated by the ultrasonication process.  When 

the wet pellicle is immersed into the resin solution, there exists a big concentration difference 

between water inside of BC network structure and MSF resin outside of BC.  The mass transfer 

was driven by the concentration gradient resulting in MSF resin penetrating into the BC network 

structure.  Since BC is hydrophilic and the resin is water based, the diffusion is easy, though 

assisted by the ultrasonication.  The equilibrium could be achieved until there is no concentration 

gradient between the resin inside of BC and outside of BC.  Once the MSF resin infiltrates the 

BC pellicle the wet BC-MSF resin composite is achieved.  It is then dried and hot pressed to 

form strong composite.  This composite fabrication procedure was also used for SF resin as well. 

2.4.5 Tensile properties of resins and green composites 

Table 2.2 presents the tensile test results for BC, SF resin, MSF resin as well as BC-SF resin 

composites and BC-MSF resin composites.  The soy resin content in both composites was 

around 50% by wt. 

(a) (b) 

(a) (b) A 

B 
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The Young’s modulus value for BC with randomly organized and entangled nanofibers (Fig. 

4B a) was 2493 MPa while the value for the MSF resin was 104.3 MPa.  The Young’s modulus 

values for BC-MSF resin composite was 1231 MPa which was between the modulus values of 

MSF resin and BC. 

The tensile strength at the break of BC was 78.9 MPa and for MSF resin it was 8.1 MPa.  

The tensile strength value for BC-MSF resin composite was around 47.7 MPa, which was 

between those of BC and MSF resin. 

Both the modulus and tensile strength values of BC-MSF resin composite are close or even 

higher than many traditional plastic materials, including polyethylene (modulus: 800 MPa; 

tensile strength: 15 MPa), polypropylene (modulus: 1900 MPa; tensile strength: 40 MPa), and 

Nylon 6 (modulus: 1800 MPa; tensile strength: 70 MPa ) [35].  The BC-MSF resin composites 

may be easily protected from water by applying varnish or other water-resistant coatings to 

increase their durability.  They have the potential to replace traditional non-biodegradable plastic 

materials in many applications, including racket frame, ski pole, circuit board, automobile inside 

etc.  

It should be noted that the BC nanofiber Young’s modulus has been estimated to be up to 78 

GPa or even to 114 GPa [36, 37].  However, the nanofibers in the pellicles are not 

unidirectionally oriented but instead are highly entangled as a result of the random path travelled 

by the Acetobacter xylinum (Figure 2.4B (a)).  Their strength, like the Young’s modulus, is 

reduced significantly.  This is reflected in the composite strength as well. 

The fracture strain value for MSF resin was 23.4%, which was much higher than the value of 

5.7% obtained for BC.  The fracture strain of BC-MSF resin composite, however, was only 3.1%.  

Although the fracture strain is controlled by the BC, both BC and resin being hydrophilic in 
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nature, the fiber/resin bonding is expected to be good.  Better bonding allows the resin to lock 

the fibers in place reducing the fracture strain of the composite. 

The SF resin and BC-SF resin composites were fabricated and used for comparison.  The 

results presented in Table 2.2 indicate that MSF resin and BC-MSF resin composites have higher 

Young’s modulus and tensile strength than those of SF resin and BC-SF composites, respectively.  

The higher MSF resin properties are due to high protein content in the MSF resin compared to 

SF [28].  Also, the SF resin contains low molecular weight sugars (up to 35% by wt.) which 

plasticize the resin.  As mentioned earlier these sugars were removed to obtain MSF.  This is 

evident in the higher fracture strain and lower Young’s modulus obtained for SF.  The higher 

properties of the MSF resin get reflected in the BC-MSF composite properties as can be expected, 

though the difference of tensile properties between BC-MSF resin composites and BC-SF resin 

composites in the manuscript is not significant, only 5-10%.  This is because the tensile values of 

MSF and SF resins are an order of magnitude lower than BC and both composites have 50 wt% 

BC content, the tensile values of the composites are dominated by BC properties.  However, both 

experimental and theoretical values shown in Table 2.2 indicate BC-MSF resin composites have 

better tensile properties than BC-SF resin composites.  This conclusion was further confirmed by 

composites with 10 wt% BC content for the two resins in our preliminary experiments.    

Table 2.2 also presents theoretically calculated values for Young’s modulus and tensile 

strength values calculated using the rule of mixture [38].  The densities of cellulose and soy 

resins were 1.52 g/cc and 1.30 g/cc, respectively [39], and the weight ratio of BC and resin is 1 

to 1 in the composites.  It is clear that the theoretical and experimental Young’s modulus values 

are very close but the experimental strength values are slightly lower which is controlled by the 

defects in the specimens. 
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Table 2.2 Tensile properties of BC, MSF resin and BC-soy resin composites 

 Young’s 

modulus 

(MPa) 

Theoretical 

Young’s 

modulus 

(MPa) 

Tensile strength 

(MPa) 

Theoretical 

tensile 

strength 

(MPa) 

Tensile strain 

(%) 

BC 2493 

(9.6)* 

 78.9 

(13.7) 

 5.7 

(17.5) 

SF resin 62.3 

(31.9) 

 7.5 

(4.0) 

 110.7 

(28.4) 

MSF resin 104.3 

(22.0) 

 8.1 

(11.1) 

 23.4 

(25.2) 

BC-SF resin composite 

(50 wt% BC) 

1178 

(2.4) 

1183 43.3 

(5.3) 

40.4 3.4 

(2.9) 

BC-MSF resin composite 

(50 wt% BC) 

1231 

(2.6) 

1206 47.7 

(9.3) 

40.8 3.1 

(41.9) 

*: values in the parentheses are % coefficient of variation values. 

2.4.6 Thermal stability of BC-SF and BC-MSF resin composites 

TGA studies were conducted to obtain information on the thermal decomposition behavior of 

BC-SF and BC-MSF resin composites.  Figure 2.5 shows typical TGA thermograms obtained for 

the two composites.  These curves confirm that the BC-MSF resin composite has better thermal 

stability than that of BC-SF resin composite as can be expected.  The degradation temperature, 

Td, for BC-SF resin composites was found to be around 205ºC compared the 220ºC obtained for 

BC-MSF composites.  This was, again, due to the higher protein content in the MSF resin than 

that in SF resin after removing sugars.  The sugars start to degrade at much earlier temperatures.  

Our preliminary experiments had shown that, fructose, glucose and sucrose start to degrade 

around 160ºC, 170ºC and 200ºC, respectively, much earlier than the degradation temperatures of 

proteins and cellulose.  These results confirm that BC-MSF resin composite is thermally slightly 

more stable than the BC-SF resin composite and hence may be used at slightly higher 

temperatures or would be more durable at the same temperature. 
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Figure 2.5 TGA of (a) BC-SF resin composite and (b) BC-MSF resin composite 

2.5 Conclusions 

The present study has shown for the first time that the SFE can be an excellent carbon source 

for BC production.  The BC yield obtained with the new carbon source (SFE) was high and close 

to or even better than those obtained with other expensive conventional carbon sources.  The cost 

of SFE carbon source can be very low because it is a by-product of soy flour processing and is 

produced in abundance throughout the world. 

The study also showed that SFE contains at least five sugars and three of them, fructose, 

glucose and sucrose, can be utilized as an excellent carbon source for BC production.  In addition, 

the study confirmed that autoclaving process can hydrolyze higher sugars in SFE. 

The results further indicated that Acetobacter xylinum prefers to consume fructose and 

glucose before sucrose and other higher sugars such as raffinose and stachyose during the culture.  

Importantly, the results show that the rate of BC production is much higher when the 

concentration of fructose and glucose is high. 

(a) (b) 
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The study successfully developed membrane-like ‘green’ composites using BC produced by 

SFE and MSF resin produced by residual protein product after SFE extraction.  BC-MSF resin 

composite showed better tensile and thermal properties than the BC-SF resin composite.  These 

composites could provide a ‘green’ choice to replace many traditional plastic materials. 
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3.1 Abstract  

Bacterial cellulose (BC) based membrane-like biodegradable composites were produced by 

immersing wet BC pellicles in polyvinyl alcohol (PVA) solution.  The BC content in the BC-PVA 

composites can be adjusted by varying the concentration of PVA solution.  Chemical cross-

linking of PVA was carried out using glutaraldehyde (GA) to increase the mechanical properties 

of the composites as well as to make the PVA partially to highly water-insoluble.  Examination 

by scanning electron microscopy (SEM) indicated that the PVA not only penetrated the BC 

network, but also filled the pores within the BC pellicle.  Attenuated total reflectance-Fourier 

transform infrared (ATR-FTIR) spectroscopy showed that acetal linkages could be formed in the 

BC-PVA composites by a cross-linking reaction.  Sol-gel results indicated that cross-linking 

reaction increasingly made PVA insoluble in water resulting in higher gel (cross-linked fraction) 

content in the PVA.  Wide-angle X-ray diffraction (WXRD) results showed decreased 

crystallinity in cross-linked BC and PVA, as was expected.  It was also found that crystal size 

was smaller in PVA after cross-linking.  The BC-PVA composites had excellent tensile properties 

and cross-linking increased these properties further.  Thermogravimetric analysis (TGA) showed 

higher thermal stability for BC-PVA composites compared to PVA.  The cross-linked specimens, 

especially the highly cross-linked ones, showed even higher thermal stability.  The methods 

developed in this study make it possible to control the PVA content in the composites as well as 

the cross-linking level of PVA.  These composites could be good candidates for replacing 
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traditional non-biodegradable plastics. 

 

Keywords: Bacterial cellulose (BC); BC-poly (vinyl alcohol) (PVA) composite; Biodegradable 

composite; Cross-linking; Tensile properties; Thermal stability 

 

3.2 Introduction  

The past several decades have seen rapid development of advanced composites with 

excellent mechanical properties that have replaced metals in many applications.  Most of these 

composites are made using petroleum-derived non-degradable fibers, such as carbon, aramid and 

polymers/resins such as polyetheretherketone (PEEK) and epoxy.  These composites are difficult 

to recycle or reuse and hence pose a serious solid waste disposal problem due to decreasing 

landfill space, widespread litter and pollution of land, air and marine environments [1-3].  As a 

result, significant interest has been generated in developing fully biodegradable bio-based 

composites in the past few years [4-10]. 

Bacterial cellulose (BC) is a promising biodegradable green material with excellent potential 

as reinforcement for composites.  BC is a specific cellulose primarily produced by Acetobacter 

xylinum, a Gram-negative, obligately aerobic bacterium, in a nutritional fermentation medium at 

30°C.  The medium requires carbon sources (mannitol, sucrose, fructose or others) and nitrogen 

sources (peptone, typtone, yeast extract, etc.), with optimum pH of 5.0.  BC has the same 

chemical structure as other plant-based cellulose and is produced as fibers with diameters in the 

range of 70-90 nanometers.  It displays many unique properties including higher purity, higher 

degree of polymerization, higher crystallinity, higher tensile strength and modulus and stronger 

biological adaptability [11-15].  The BC material is already being used in many applications 
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including artificial skin and blood vessels, binding agent for fibers and other materials, loud 

speaker diaphragms, high quality paper, foods, textiles, composite membranes, etc. [15-20].   

Polyvinyl alcohol (PVA) is a thermoplastic, biocompatible, and biodegradable polymer.  With 

hydroxyl groups in its structure, it is hydrophilic and expected to form hydrogen bonds and 

acetal linkages with other materials, such as cellulose and aldehydes [21, 22].  Therefore, BC-

PVA is an excellent reinforcement and resin combination for fabricating biodegradable 

composites.  BC-PVA based composites have been developed previously [21-25].  Hydrogen 

bonds formed between hydroxyl groups on BC and PVA have been shown to facilitate 

fabrication of homogenous composites [21].  However, BC content in those composites was low 

and as a result the properties were not ideal to replace most of the traditional plastic materials.  If 

the desired mechanical properties are achieved, such composites can have great potential for 

applications as articular cartilage [22] and aortic heart valve prosthesis [23, 24].     

Both cellulose and PVA have been studied in the past and shown to be fully biodegradable 

[26-28]. As a result, their composites made using the two are also biodegradable.  However, 

biodegradation investigation experiments involving BC-PVA composites, particularly those 

using cross-linked PVA are currently ongoing in our lab and will be the subject of our next paper.  

Research in chemical cross-linking of PVA and cellulose fabrics has been reported earlier 

[29-36].  PVA can be cross-linked using glutaraldehyde (GA) in the presence of a strong acid 

[29-34].  PVA contains hydroxyl groups that form acetal linkages with aldehyde groups in the 

GA [29-34].  Cotton fibers (cellulose) and cellulose nanofibers from softwood which are 

chemically identical have also been cross-linked using GA to modify their properties [35, 36].  

Recently, some research for crosslinking bacterial cellulose and bacterial cellulose/fibrin using 

glyoxal or GA has also been reported [37, 38].  However, effects of cross-linking of membrane-
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like BC-PVA composites have not been investigated yet. 

In the present study, three types of thin membrane-like BC based biodegradable composites; 

BC-PVA composites and partially and highly cross-linked BC-PVA composites were developed 

and characterized.  The BC content in these composites could be easily controlled as desired, by 

varying the concentration of PVA solution.  A simple immersion method was used to cross-link 

the BC-PVA composites.  Further, the extent of cross-linking could be controlled.  The 

membrane-like composites prepared had smooth surfaces, and their tensile and thermal 

properties were excellent, especially those that were highly cross-linked. 

3.3 Materials and methods 

3.3.1 Microorganism and culture media 

Acetobacter xylinum, ATCC 23769, obtained from the American Type Culture Collection 

(ATCC, Manassas, VA) was used as the model strain and maintained on agar plates containing 25 

g/L D-mannitol, 5 g/L yeast extract and 5 g/L tryptone and 20 g/L agar.  The mannitol culture 

medium used for BC production consisted of 25 g/L D-mannitol, 5 g/L yeast extract and 5 g/L 

tryptone.   

3.3.2 Preparation of BC pellicles 

The strain from the agar plate was inoculated into a conical flask containing mannitol culture 

medium as the seed culture.  The initial pH value of the medium was adjusted to 5.0 and was not 

regulated during the culture.  The seed culture was incubated at 30
o
C and 130 rpm on a rotary 

shaker for 2 days, and 9 mL of this seed culture was inoculated into a 150-mL culture medium in 

1000-mL conical flask for production of BC.  The cultivation was carried out at initial pH 5.0 

and 30
o
C in a static incubator for 10 days.  After incubation, the BC pellicles produced on the 

surface of mannitol culture medium were harvested and washed successively with water and 1% 
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(w/v), aqueous NaOH at 90
o
C for 15 min, and then washed with deionized water to remove all 

microbial product contaminants and obtain purified pellicles.   

3.3.3 Preparation of BC-PVA composites  

PVA powder (Mw 31,000-50,000, 98-99% hydrolyzed, Aldrich, St. Louis, MO) was added to 

deionized water in 3.2 w/v% concentration, and the mixture was then stirred at 80
o
C for 30 min 

to form the PVA solution.  The purified BC pellicles were immersed into the PVA solution and 

kept in a water bath at 80
o
C for 2 hr, and were then allowed to remain in the PVA solution at 

room temperature for 12 hr.  The PVA containing BC pellicles were then transferred into 

deionized water for 30 min to remove superfluous PVA on the surface of the BC pellicles to 

obtain BC-PVA prepregs.  The BC-PVA prepregs were dried on a Teflon
®
 plate in an oven at 

45
o
C for 12 hr until the weights of the BC-PVA composites remained constant.  The BC content 

in these composites was in the range of 50%.  The percentage BC content mentioned in the 

manuscript has been calculated on dry weight basis.  The BC-PVA composites with varying BC 

content could be obtained, if desired, by simply adjusting the concentration of the PVA solution.  

BC mass was weighed after removing PVA from the BC-PVA composites by hot water washing.  

BC content in the composites was calculated using PVA and BC dry weights.  BC and PVA were 

prepared by drying BC pellicles and casting PVA solution as control, for comparison.  All 

composites, BC and PVA specimens prepared in this study were thin, membrane-like.  The PVA 

solution concentrations used and the resulting BC content obtained in BC-PVA composites are 

presented in Table 3.1. 
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Table 3.1 BC content in BC-PVA composites 

Concentrations of PVA solution 

for BC pellicle treatment (w/v%) 

BC content in 

BC-PVA composites (wt%) 

1.5% 75 ± 4 

3.2% 50 ± 4 

6.0% 25 ± 3 

 

3.3.4 Preparation of cross-linked BC-PVA composites 

Partially cross-linked BC-PVA composites were prepared by immersion method using GA-

acetone solution.  The BC-PVA composites with 50% BC content were initially immersed into 

the GA-acetone solution which contained 10% by volume GA solution (Glutaraldehyde, 25% 

solution in water, Aldrich, St. Louis, MO) and 90% by volume acetone (Mallinckrodt Baker, 

Phillipsburg, NJ).  The pH of the GA-acetone solution was adjusted to around 1.0 by 

hydrochloric acid to trigger the cross-linking reaction.  The reason for using acetone as a solvent 

was to prevent the PVA from dissolving in water during the cross-linking reaction [30].  After 

carrying the cross-linking reaction for 12 hr at room temperature, the partially cross-linked 

specimens (prepregs) were taken out from the GA-acetone solution and rinsed with water to 

remove the residual GA and acetone.  The partially cross-linked BC-PVA composites were then 

dried in an oven at 45
o
C for 12 hr until their weights stabilized.  Same process was used to 

partially cross-link BC and PVA specimens individually, to compare their properties. 

Highly cross-linked BC-PVA composites were prepared in GA-water solution using similar 

method described above.  The BC-PVA prepregs initially were partially dried at room 

temperature for 8 hr before immersing into the GA-water solution and water content in the 

partially dried specimens was around 50%.  The partially dried BC-PVA prepregs were then 

immersed into the GA-water solution containing 10% by volume GA solution (Glutaraldehyde, 

25% solution in water, Aldrich, St. Louis, MO) and 90% by volume deionized water.  The pH 
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value of the GA-water solution was adjusted to around 1.0 using hydrochloric acid to trigger the 

cross-linking reaction.  The incomplete drying of BC-PVA prepregs was to make sure the GA-

water solution penetrated into the inner structures of BC-PVA prepregs and triggered the cross-

linking reaction to as complete as possible.  Our preliminary test results had indicated that the 

completely dried BC lost a majority of its porous structure as the individual nanofibers stuck to 

each other reducing the penetration of the GA-water solution.  After 12 hr of cross-linking 

reaction at room temperature, the highly cross-linked BC-PVA prepregs were taken out from the 

GA-water solution and rinsed with deionized water to remove the residual GA.  The highly 

cross-linked BC-PVA prepregs were then dried between two steel plates, to retain their flatness, 

in an oven at 45
o
C for 12 hr until the weights stabilized.  Highly cross-linked BC specimens and 

highly cross-linked PVA films were also prepared using the same method to compare their 

properties.   

3.3.5 Characterization  

3.3.5.1 SEM analysis 

Freeze dried BC and freeze dried BC-PVA composites (50% BC) were sputter coated with 

gold and their surface topographies were observed with scanning electron microscope (SEM, 

LEO 1550 FESEM, Oberkochen, Germany) at an accelerating voltage of 15 kV.   

3.3.5.2 ATR-FTIR spectroscopy 

The BC-PVA composites, the partially cross-linked BC-PVA composites and the highly 

cross-linked BC-PVA composites were characterized using an FTIR spectrophotometer (Nicolet 

Magna-IR 560, Thermo Scientific, Waltham, MA).  Attenuated total reflection (ATR) FTIR 

spectra were taken in the range of 4000-800 cm
-1

 wavenumbers using a split pea accessory.  

Each scan was an average of 64 scans obtained at a resolution of 4 cm
-1

.  BC content in all the 

http://en.wikipedia.org/wiki/Oberkochen
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composite specimens was in the range of 50% and the specimens were dried in an oven at 45
o
C 

for 12 hr prior to the spectroscopy.  Reproducibility was confirmed for each type of specimen by 

repeating the experiment 3 times. 

3.5.3. Sol-gel analysis  

The cross-linked PVA, either in the form of cross-linked PVA film or the cross-linked BC-

PVA composites (50% BC), was dried in a moisture-meter (CW Brabender Instruments, Inc., 

South Hackensack, NJ) at 105
o
C for 12 hr prior to conducting the sol-gel test.  The specimens 

were weighed to obtain their initial dry weights and then immersed in distilled water in 150 mL 

glass bottles.  The mixtures in the glass bottles were then placed on a shaker table (MAXQ 4450, 

Thermo Scientific, Waltham, MA) at 80
o
C and 175 rpm for 12 hr.  The solid contents for all 

specimens were then washed three times and filtered using a Whatman
®
 filter paper (Number 4, 

20-25 µm pore size, qualitative) to obtain final residues.  The water-soluble portion (sol) and 

particles smaller than the pore size of the filter paper were removed.  The final residues of the 

cross-linked PVA, either in the cross-linked PVA or the cross-linked BC-PVA composites, were 

kept in the moisture-meter at 105
o
C for 12 hr again to obtain their final dry weights (gel).  Ratios 

of the gel weights of the cross-linked PVA to their corresponding initial dry weights were used to 

determine the PVA gel (cross-linked) percentages.  The BC weights in the cross-linked BC-PVA 

composites were regarded as constant values before and after the test. 

3.3.5.4 X-ray diffraction studies 

Wide angle X-ray diffraction (WXRD) was used to evaluate the crystallinity and/or crystal 

sizes of the BC, the PVA, the highly cross-linked BC and the highly cross-linked PVA.  All 

specimens were dried in an oven at 45
o
C for 12 hr before WXRD studies.  The general area 

detection diffraction system (GADDS, Bruker-AXS, Inc., Madison, WI) was used at 45 KV and 
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40 mA.  The X-ray diffraction patterns of all the specimens were obtained using a Scintag theta-

theta powder diffractometer (PAD X, Scintag, Inc., Cupertino, CA) with a solid-state intrinsic 

germanium detector.  All specimens were scanned from 2
o
 to 30

o
 at 3

o
/min employing the Cu Kα 

X-ray radiation with a wavelength of 1.54 Å.  

3.3.5.5 Tensile property characterization 

Tensile tests of various specimens were performed using an Instron tensile testing machine 

(Instron, model 5566, Canton, MA).  The specimens for BC, PVA, BC-PVA composites and 

their corresponding cross-linked specimens at different levels of cross-linking were cut into 10 

mm wide and 60 mm long strips using a precise cutter.  Young’s moduli of all specimens were 

determined from the tensile test results conducted according to ASTM D-882-02.  Two ends of 

the specimens were placed between the upper and lower grips of the Instron, leaving a gauge 

length of 30 mm.  The strain rate of 0.02/min was maintained for all specimens.  All specimens 

were conditioned at 21°C and 65% RH for 3 days prior to tensile test.   

3.3.5.6 Thermogravimetric analysis  

Thermogravimetric analysis (TGA, TA instrument, Model No. 2050) was used to analyze 

the thermal properties of BC, PVA, BC-PVA composites (50% BC) and their corresponding 

cross-linked specimens at different levels of cross-linking.  All specimens were dried in an oven 

at 45
o
C for 12 hr prior to conducting the test.  All TGA analyses were performed between 25 and 

600
o
C, and at a ramp rate of 20

o
C/min under a nitrogen atmosphere by maintaining a flow rate of 

10 ml/min. 

3.4 Results and discussion 

3.4.1 SEM images of BC and BC-PVA composites  

Figure 3.1 (a and b) show the SEM images of freeze dried BC and freeze dried BC-PVA 
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composite (50% BC) specimens, respectively.  Both specimens were not hot pressed to preserve 

their structure.  In Figure 3.1 (a), the porous BC network structure is clearly visible.  Since these 

specimens were freeze dried, the porous structure has been maintained.  Based on the diameter 

measurements of 100 BC-nanofibers and 100 pores in the SEM image of the BC, the mean 

diameter of BC-nanofibers was found to be less than 100 nm and the pore diameters ranged from 

several dozens to several hundred nanometers.  It is clear from Figure 3.1 (b) that the PVA 

penetrated the BC network structure and filled many of the pores.  The diameters of the BC-

nanofibers became larger since they were covered by the PVA.  Many BC-nanofibers were 

embedded within the PVA layers, thus forming uniform composite structures with excellent 

properties.  Similar surface topography of BC-polyethylene glycol (PEG) composite reported 

previously showed that PEG not only coated the surface of BC pellicles but also penetrated into 

the BC fiber network [39].  It has also been reported that structural modification can occur as the 

water surrounding polyglucosan chains are displaced and hydrogen bonds are formed between 

the hydroxyl groups of BC and PEG and of BC and PVA [21, 40, 41].  

  

Figure 3.1 SEM images of freeze dried BC (a) and freeze dried BC-PVA composite (b) 

3.4.2 ATR-FTIR analysis of BC-PVA composites and cross-linked BC-PVA composites 

Figure 3.2 shows the ATR-FTIR spectra of the BC-PVA composites (50% BC) and BC-PVA 

composites cross-linked to different levels.  All spectra were normalized based on bands 

observed at 1058 cm
-1

 wavenumber associated with C-O stretching.  ATR-FTIR spectrum 3.2 (a) 

(a) (b) 
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is for the BC-PVA composite.  ATR-FTIR spectrum 3.2 (b) is for the partially cross-linked BC-

PVA composite, using the GA-acetone solution, while spectrum 3.2 (c) is for the highly cross-

linked BC-PVA composite, using the GA-water solution.  As mentioned earlier the BC content in 

all three specimens was around 50%.  A broad band at 3200-3550 cm
-1

, wavenumber seen in all 3 

spectra, is a result of the hydroxyl (O-H) stretching vibration resulting from the strong hydrogen 

bonds of intra-molecular and inter-molecular type [31, 32].  The absorption band observed 

between 2820 and 3000 cm
-1

 wavenumber is due to the stretching of aliphatic C-H bond [32].  

Compared to spectrum 3.2 (a), the absorbance intensity at 3200-3500 cm
-1 

band in the spectrum 

3.2 (b) is much lower.  The normalized absorbance intensity ratio of bands for O-H to C-H 

decreased from 1.60 for spectrum 3.2 (a) to 1.20 for spectrum 3.2 (b).  In the spectrum 3.2 (c), 

the absorbance intensity ratio of bands for O-H to C-H decreased even further, to 0.83.  This 

spectral change indicates reduction in the O-H groups on the specimens as a result of cross-

linking reaction with the GA [32].  Normalized absorbance of bands at 1700-1750 cm
-1

 in the 

spectra 3.2 (a) and 3.2 (b) were 0.13 and 0.20 respectively.  While they are not sharp, they still 

demonstrate the presence of carbonyl (C=O) group in the composites from the remaining non-

hydrolyzed vinyl acetate group of the PVA [31, 42].  In spectrum 3.2 (c), however, a significantly 

sharp absorption (normalized absorbance of 0.57) observed at 1700-1750 cm
-1

 wavenumber 

indicates stronger stretching vibration of C=O in the composites.  This means that in addition to 

the remaining non-hydrolyzed vinyl acetate groups, some residual aldehyde groups from the GA 

also existed in the highly cross-linked BC-PVA composites, both of them contributing to the 

stronger C=O absorption.  This confirms the earlier observation that the GA-water solution can 

penetrate into the inner cavities of the BC-PVA composites network and part of the residual GA 

may still be trapped in the highly cross-linked BC-PVA composites even after wash.  This is very 
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likely when only one aldehyde group from GA reacts and the other end remains unreacted.  The 

absorption at 1050-1150 cm
-1 

wavenumber seen in spectrum 3.2 (a) is due to the presence of C-O 

stretching vibration from the acetate group [31, 32, 42].  The same absorption band for C-O 

stretching vibration was much broader in spectrum 3.2 (b) than in spectrum 3.2 (a), resulting 

from the formation of the acetal linkages upon reaction of the PVA with the GA.  In the spectrum 

3.2 (c), the band of C-O stretching vibration became the broadest one in three spectra due to the 

high cross-linking level and the formation of more acetal linkages.   

 
Figure 3.2 ATR-FTIR spectra for BC-PVA composites (a), partially cross-linked BC-PVA 

composites (b) and highly cross-linked BC-PVA composites (c) 

Overall, the ATR-FTIR results indicate that the BC-PVA composites were partially or highly 

cross-linked based on the decreased intensity of bands for O-H stretching vibration combined 

with the increased intensity of bands for C-O stretching vibration.  Our preliminary ATR-FTIR 

study had shown that both BC and PVA are able to be cross-linked using either GA-acetone or 

GA-water solutions.  The cross-linking reactions can occur between hydroxyl groups of the BC, 

between hydroxyl groups of the PVA, or between BC and PVA.  These results also confirm that a 

higher cross-linking level can be achieved for BC-PVA composites with GA-water solution.  

 (a) 

 (b) 

 (c) 
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This is mainly because the GA-acetone solution can hardly penetrate into the fully dried BC-PVA 

composites, whereas the GA-water solution has the ability to penetrate the BC-PVA prepregs 

well and trigger a cross-linking reaction inside the BC-PVA prepregs and form highly cross-

linked BC-PVA composites.   

3.4.3 Sol-gel analysis of cross-linked PVA and BC-PVA composites  

Sol-gel analysis was performed for PVA as well as for the resin in BC-PVA composites that 

were cross-linked to different levels.  Table 3.2 presents the sol-gel test results for partially and 

highly cross-linked PVA (the resins from partially and highly cross-linked BC-PVA composites) 

as well as control PVA.  The results indicate that the gel (cross-linked) percentage of the 

partially cross-linked PVA was about 10%.  The values were close in both the partially cross-

linked PVA and the resin present in the partially cross-linked BC-PVA composites.  

Approximately 90% of the PVA was noncross-linked and thus could be dissolved in deionized 

water during the sol-gel test.  The results of this test confirm that the cross-linking reaction using 

the GA-acetone solution occurred mostly on the surfaces of the PVA and the BC-PVA 

composites.  This was mainly because the GA-acetone solution could not penetrate into the PVA 

with a sufficient quantity to trigger the cross-linking reaction inside the PVA.  The results also 

indicate that the gel (cross-linked) percentage of the highly cross-linked PVA could be over 90%.  

The levels of cross-linking were also close in both the highly cross-linked PVA and the resin in 

the highly cross-linked BC-PVA composites.  While both resin and composite specimens were 

swollen after being exposed to water, they remained intact.  The results of this test further 

demonstrate that the cross-linking reaction with the GA-water solution occurred on the surface as 

well as inside of the specimens as a result of easy penetration of the GA-water solution into the 

PVA. 



70 
 

Table 3.2 Sol-gel test results of PVA at different levels of cross-linking 

Specimens PVA  Partially  

cross-linked  

PVA 

PVA in  

partially cross- 

linked BC-PVA 

composites  

Highly 

cross-linked 

PVA 

PVA in highly 

cross-linked 

BC-PVA 

composites 

Gel percentage in 

specimens (%) 

0 10.8 9.6 90.2 88.9 

3.4.4 WXRD of BC, PVA and their highly cross-linked specimens 

WXRD was used to evaluate the crystallinity and the crystal sizes of the BC, the PVA and 

their corresponding highly cross-linked specimens.  The crystallinity (%) values for individual 

specimens were calculated using a ratio of crystalline area to the combined crystalline and 

amorphous areas in the WXRD patterns [43].  The crystal sizes (d-spacing) were calculated 

using the WXRD patterns using analysis software (Scintag, Inc., Cupertino, CA) based on 

Scherrer Equation. 

Figure 3.3A (a) and (b) illustrate WXRD patterns obtained for BC and highly cross-linked 

BC, respectively.  Both WXRD patterns showed distinct peaks at 2θ values of 5.5
o
, 14.5

o
 and 

22.5
o
.  Figure 3.3A also shows that the crystallinity of the BC decreased from 62.5% (Figure 

3.3A (a)) to 12.7% (Figure 3.3A (b)) after the cross-linking reaction.  The reduction in the 

crystallinity is mainly because the cross-linking within the BC that changes the morphology and 

destroys the crystallites. 

Figure 3.3B shows WXRD patterns of the control PVA (a) and highly cross-linked PVA (b).  

Both the WXRD patterns show a distinct peak at 2θ values of 20
o
.  Figure 3.3B indicates that the 

crystallinity of the PVA decreased from 61.7% (Figure 3.3B (a)) to 4.9% (Figure 3.3B (b)) after 

cross-linking and the average crystal size of the PVA at 20º decreased from 45 Å (Figure 3.3B 

(a)) to 14 Å (Figure 3.3B (b)).  It should be noted that the transparency of highly cross-linked 

PVA was slightly higher than the noncross-linked PVA further confirming the reduction in 
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crystallinity after cross-linking.  The lower crystallinity is largely because of the cross-links 

formed in the PVA that restrict crystallization.  The cross-links are also known to play the role of 

defect centers impeding the folding of the macromolecular chains and, thus, decrease the size of 

the crystals [44, 45].   
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Figure 3.3 WXRD patterns A:  BC (a) and highly cross-linked BC (b); B: PVA (a) and highly 

cross-linked PVA (b) 

3.4.5 Tensile properties of BC, PVA, BC-PVA composites and their corresponding cross-

linked specimens  

Table 3.3 presents the tensile test results for BC, PVA and BC-PVA composites with varying 

BC contents (25%, 50 % and 75%).  For comparison, theoretical values calculated, using the rule 

of mixture, for Young’s modulus and fracture stress are also presented in Table 3.3.  The Young’s 

modulus of the BC membrane was 3424 MPa while the Young’s modulus of the PVA was 12.8 

MPa.  The Young’s modulus values of the BC-PVA composites were between those obtained for 

BC and PVA as can be expected.  With the increase in BC content (or decrease in PVA content), 

the Young’s modulus of the BC-PVA composites increased as well.  For composites with BC 

content of 25%, the Young’s modulus was only around 731.6 MPa and when the BC content 

increased to 50% and 75% the Young’s modulus values increased to 1590 MPa and 2473 MPa, 

respectively.  The fracture stress values for BC and PVA were 63.7 MPa and 5.4 MPa, 

respectively.  It is clear that BC-PVA composite fracture stress values are between those of BC 

and PVA and increase as the BC content in the composites increases.  This is again as can be 

(a) 

(b) 

 (a) 

 (b) 
 

A B 
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expected.  While the fracture stress values for composites increased with the BC content, they 

did not show a direct correlation with BC content as the modulus values did.  This is due to the 

decreased fracture strain of the composites with increase in BC content.  The fracture stress 

values ranged from 22.9 MPa for composites with BC content of 25% to 44.6 MPa when the BC 

content was 75%.  For the fracture strain, the value of the PVA was 234.3%, which was much 

higher than BC’s fracture strain of 5.8%.  However, most fracture strain values of the BC-PVA 

composites were close to or even lower than that obtained for BC.  This is likely due to the two 

components in composites having extremely good bonding resulting in a brittle composite [46, 

47].  

Table 3.3 Tensile properties for BC, PVA and BC-PVA composites with varying BC content 

Specimens Young’s 

modulus 

(MPa) 

Rule of 

mixture 

(MPa) 

Fracture  

stress 

(MPa) 

Rule of 

mixture 

(MPa) 

Fracture 

strain 

(%) 

BC 3424  

(8.2)* 

  63.7  

(50.4) 

  5.8  

(44.7) 

PVA 

  

12.8 

(36.3) 

  5.4 

(3.4) 

  234.3 

(14.4) 

BC-PVA 

composites 

(25% BC) 

731.6 

(1.1) 

754.8 22.9 

 (6.5) 

18.1 

 

3.7 

(1.6) 

BC-PVA 

composites 

(50% BC) 

1590 

(12.0) 

1565 32.6 

(10.9) 

31.9 2.4 

(26.1) 

BC-PVA 

composites 

(75% BC) 

2473 

(5.2) 

2449 44.6 

(13.3) 

47.0 2.0 

(18.9) 

*: values in the parentheses are % coefficient of variation values  

Table 3.4 presents tensile test results for BC, PVA, BC-PVA composites (50% BC) and their 

corresponding cross-linked specimens at different cross-linking levels.  The Young’s modulus 

values of partially cross-linked BC and highly cross-linked BC increased to 4243 MPa and 5107 

MPa, respectively, from 3424 MPa obtained for BC.  The Young’s modulus values of partially 

cross-linked and highly cross-linked PVA increased to 54.1 MPa and 270.1 MPa, respectively, 
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from 12.8 MPa obtained for the control (noncross-linked) PVA.  The Young’s modulus values of 

the partially cross-linked and highly cross-linked BC-PVA composites increased to 1875 MPa 

and 2429 MPa, respectively, from 1590 MPa obtained for the BC-PVA composites.  While the 

increase in Young’s modulus values is due to the cross-linked structure and increased molecular 

weight in the case of PVA, the cross-linking of BC makes the structure rigid when cross-linked 

[48].  The reduction in moisture content from 9.1% of the PVA to a lower range of 3.8-6.0% for 

the cross-linked specimens may also partially contribute to the increased Young’s modulus.  As is 

expected, higher cross-linking level leads to higher modulus.  From data presented in Table 3.4, 

it is clear that with increased cross-linking, all three specimens, PVA, BC and the composites, 

become brittle with lower fracture strain values.  This affects their fracture stress values which 

do not show a correlation seen for Young’s modulus.  For example, cross-linking reduces the 

fracture stress of BC whereas cross-linking increases the fracture stress of PVA and for the BC-

PVA composites, there is almost no effect. 
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Table 3.4 Tensile properties for BC, PVA, BC-PVA composites at different levels of cross-

linking 

Specimens Young’s 

modulus 

(MPa) 

Rule of 

mixture 

(MPa) 

Fracture  

stress 

(MPa) 

Rule of 

mixture 

(MPa) 

Fracture 

strain  

(%) 

BC 3424 

(8.2)* 

  63.7 

(50.4) 

  5.8 

(44.7) 

Partially cross-linked BC 4243 

(14.6) 

  61.6 

(17.5) 

  1.9 

(27.9) 

Highly cross-linked BC 5107 

(11.2)  

   43.8 

(37.6) 

   1.0 

(41.1) 

PVA 

  

12.8 

(36.3) 

  5.4 

(3.4) 

  234.3 

(14.4) 

Partially cross-linked  

PVA 

54.1 

(15.8) 

  7.9 

(9.2) 

  59.6 

(11.1) 

Highly cross-linked  

PVA 

270.1 

(19.6) 

  19.2 

 (5.1) 

  19.9 

(22.9) 

BC-PVA composites 

(50% BC) 

1590 

(12.0) 

1565 32.6 

(10.9) 

31.9 2.4 

(26.1) 

Partially cross-linked BC-

PVA composites  

(50% BC) 

1875 

(15.2) 

1938 31.9 

(30.4) 

32.3 2.0 

(34.2) 

Highly cross-linked BC-

PVA composites 

(50% BC) 

2429 

(4.7) 

2471     31.6     

  (14.3) 

30.4 1.5           

(39.3) 

*: values in the parentheses are % coefficient of variation values 

Tables 3.3 and 3.4 also present theoretical values for Young’s modulus and fracture stress 

values calculated using the rule of mixtures [49].  The densities of cellulose and PVA used were 

1.52 g/cc and 1.27 g/cc, respectively [50], and the BC content in the BC-PVA composites varied 

from 25% to 75% by weight.  It is clear that the theoretical values and the experimentally 

obtained values for both Young’s modulus and fracture stress are very close to each other. 

Figure 3.4 shows typical stress vs strain plots of BC-PVA composites (a) and partially (b) 

and highly cross-linked (c) BC-PVA composites.  The BC content in all the three specimens is 

around 50% by weight.  Figure 3.4 (a) for BC-PVA composite shows an initial elastic behavior 

followed by a plastic yielding.  The yielding may be due to PVA’s high ductility and breaking of 

some BC nanofibers that are in the stress direction and possible alignment of the remaining 
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nanofibers.  Once that process was over, BC-PVA composites showed elastic behavior until the 

fracture point.  Figures 3.4 (b) and 3.4 (c) indicate no obvious yielding for partially or highly 

cross-linked BC-PVA composites.  Once the PVA becomes cross-linked it loses its ductility.  As 

can be expected, Figure 3.4 also indicates that higher cross-linking level leads to higher modulus 

and lower fracture strain values. 

 
Figure 3.4 Stress vs Strain plots for BC-PVA composites (a), partially cross-linked BC-PVA 

composites (b) and highly cross-linked BC-PVA composites (c) 

It is interesting to note that both Young’s modulus and fracture stress values for the BC-PVA 

composites and the cross-linked BC-PVA composites are close or higher than many traditional 

plastic materials, including polyethylene (Young’s modulus: 800 MPa; fracture stress: 15 MPa), 

polypropylene (Young’s modulus: 1900 MPa; fracture stress: 40 MPa), and nylon 6 (Young’s 

modulus: 1800 MPa; fracture stress: 70 MPa) [51].  As a result, the BC-PVA composites, both 

cross-linked and noncross-linked, have the potential to replace these traditional non-

biodegradable plastic materials in many applications, including racket frame, ski pole, circuit 

board, automobile inside etc.  These degradable composites may be easily protected from water 

by applying varnish or other water-resistant coatings to increase their durability. 

 

 

 (a)  (b)  (c) 
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3.4.6 TGA of BC, PVA, BC-PVA composites and their corresponding cross-linked 

specimens  

Figure 3.5A presents typical TGA thermograms of BC, partially cross-linked BC and highly 

cross-linked BC specimens.  Thermogram 3.5A (a), the TGA thermogram for BC, shows the 

onset decomposition temperature (Td) at 260
o
C.  Weight losses for BC were 30% at 284

o
C, 50% 

at 303
o
C and 80% at 600

o
C.  It has been reported that two competing reaction pathways, low-

temperature pathway and high-temperature pathway (>300
o
C), occur simultaneously during the 

thermal degradation of cellulose [52].  The low-temperature pathway is mainly responsible for 

the water loss.  The primary reaction in the high-temperature pathway is depolymerization, as the 

cellulose structure can absorb enough energy to activate the cleavage of the glycosidic linkages 

to produce glucose, which is dehydrated to levoglucosan and oligosaccharides.  The production 

of volatile compounds is complete when the temperature reaches around 450
o
C.  The continuing 

weight loss is due to degradation when all other elements are driven off and the char (carbon) 

remains [52].  The thermogram for the BC indicates that the weight loss of cellulose is the result 

of a combination of both low-temperature and high-temperature pathways.  Thermogram 3.5A 

(b), for partially cross-linked BC, showed a Td at 285
o
C.  Weight losses for the partially cross-

linked BC were 30% at 309
o
C, 50% at 334

o
C and about 83% at 600

o
C.  Thermogram 3.5A (c) 

for highly cross-linked BC showed a Td at 315°C with weight losses of 30% at 329
o
C, 50% at 

346
o
C and about 80% at 600

o
C.  These results indicate that the cross-linking makes the BC 

thermally more stable.  

Figure 3.5B presents typical TGA thermograms for PVA and partially and highly cross-

linked PVA.  Thermogram 3.5B (a) for the PVA shows two decomposition onset temperatures, 

Td1 and Td2, at 255
o
C and 400

o
C, respectively.  Weight loss for the PVA was 30% at 267

o
C, 50% 
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at 279
o
C and up to 93% at 600

o
C.  Two-step degradation of PVA has been reported earlier [50].  

A likely explanation for this is that PVA first degrades into small-molecular-weight polymer at 

approximately 250
o
C and then further degrades into carbon char at temperatures above 350

o
C.  

These results confirm the earlier findings of Peng and Kong [53].  Thermogram 3.5B (b) for 

partially cross-linked PVA shows a single Td at 325
o
C.  Weight losses observed were 30% at 

340
o
C, 50% at 364

o
C and about 97% at 600

o
C.  Thermogram 3.5B (c), for highly cross-linked 

PVA, shows Td at 330
o
C.  Weight losses observed for highly cross-linked PVA were 30% at 

348
o
C, 50% at 370

o
C and about 97% at 600

o
C.  The two-step degradation pattern was not so 

obvious in the thermograms for partially and highly cross-linked PVA.  

Figure 3.5C presents typical TGA thermograms for BC-PVA composites and partially cross-

linked and highly cross-linked BC-PVA composites.  As mentioned earlier BC content in all the 

BC-PVA composites was around 50%.  Thermogram 3.5C (a) for BC-PVA composites shows 

two decomposition temperatures, Td1 and Td2 at 257
o
C and 380

o
C, respectively.  Weight losses 

observed were 30% at 273
o
C, 50% at 283

o
C and about 90% at 600

o
C.  When thermograms for 

BC and BC-PVA composites are compared, it is clear that BC reinforcement is able to increase 

the thermal stability of the PVA.  Two distinct and well-separated degradation onsets can be seen 

in thermogram 3.5C (a) for BC-PVA composites.  As a result, this degradation can also be 

regarded as a two-step-degradation and could be a result of the PVA.  Thermogram for partially 

cross-linked BC-PVA composites presented in 3.5C (b) shows much better thermal stability than 

the BC-PVA composites.  The Td for the partially cross-linked BC-PVA composites was at 307
o
C 

and the weight losses were 30% at 331
o
C, 50% at 352

o
C and about 94% at 600

o
C.  Thermogram 

3.5C (c) obtained for highly cross-linked BC-PVA composites showed the highest thermal 

stability among the three BC-PVA composites, as can be expected.  The Td for the highly cross-
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linked BC-PVA composites was 313
o
C and weight losses were 30% at 337

o
C, 50% at 372

o
C and 

about 90% at 600
o
C.  The two-step-degradation pattern was not obvious in the thermograms for 

partially and highly cross-linked BC-PVA composites.    
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Figure 3.5 TGA thermograms A: BC (a), partially cross-linked BC (b) and highly cross-linked 

BC (c); B: PVA (a), partially cross-linked PVA (b) and highly cross-linked PVA (c); C: BC-PVA 

composite (a), partially cross-linked BC-PVA composite (b) and highly cross-linked BC-PVA 

composite (c)  

These results clearly indicate that cross-linking can increase the thermal stability of BC, PVA 

and BC-PVA composites.  Other researchers have obtained similar results for soy flour, collagen 

and chitosan after cross-linking [54-56].  These results also confirm that the BC-PVA composites 

and their cross-linked specimens, particularly the highly cross-linked ones, can exhibit excellent 

thermal stability in addition to their high tensile properties.  The final char weights of the cross-

linked specimens in TGA tests were slightly less than those of the specimens without cross-

linking treatments.  The lower char weight of the cross-linked specimens is probably due to 
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volatilization of the residual GA trapped in the cross-linked specimens during the TGA test. 

3.5 Conclusions  

The biodegradable membrane-like BC-PVA composites with differing BC contents were 

produced by simple immersion methods.  The SEM images indicated that the PVA not only 

penetrated into the BC network, but also filled in the pores present within the BC nanofiber 

membrane.  The ATR-FTIR results showed acetal linkages were formed in the BC-PVA 

composites after a cross-linking reaction.  The sol-gel results showed cross-linked PVA to be 

water-insoluble, and a good correlation between cross-linking level and insolubility was 

observed.  The WXRD results indicated a reduction in crystallinity as a result of cross-linking for 

BC and PVA as well as a reduction in the crystal size of the PVA.  The tensile test results showed 

good mechanical properties for BC-PVA composites indicating the ability of the BC to reinforce 

the PVA.  The TGA showed higher thermal stability for the BC-PVA composites than the PVA.  

This was because the BC itself is thermally more stable.  Cross-linking of PVA was shown to 

increase the Young’s modulus and thermal stability of the BC-PVA composites.  At the same 

time the fracture strain decreased significantly with cross-linking.  The methods developed in 

this study make it possible to control the PVA content in the composites as well as the cross-

linking level of PVA.   
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4.1 Abstract   

Microfibrillated cellulose (MFC) based thin membrane-like fully biodegradable composites 

were produced by blending MFC suspension with polyvinyl alcohol (PVA).  Desired MFC 

content in the composites could be easily obtained by varying the PVA solution concentration.  

Chemical crosslinking of PVA was carried out using glyoxal to increase the mechanical and 

thermal properties of the composites as well as to make the PVA partially water-insoluble.  

Examination of composite surfaces and fracture topographies indicated that the MFC fibrils were 

well bonded to PVA and uniformly distributed.  Infrared spectroscopy showed that acetal 

linkages could be formed in the MFC-PVA composites by a glyoxal crosslinking reaction.  Sol-

gel and swelling results indicated that crosslinking reaction made PVA partially insoluble and 

reduced its swelling ability.  The MFC-PVA composites had excellent tensile properties which 

were further enhanced by crosslinking.  Thermogravimetric analysis (TGA) showed higher 

thermal stability for MFC-PVA composites compared to PVA.  The crosslinked MFC-PVA 

composites showed even higher thermal stability.  Differential scanning calorimetry (DSC) 

indicated that crosslinking increased the glass transition temperature and reduced melting 

temperature and crystallinity of PVA in MFC-PVA composites.  Results also indicated that nano- 

and micro-fibrils in MFC inhibit the crystallization of PVA.  These composites could be good 

candidates for replacing today’s traditional non-biodegradable plastics. 
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4.2 Introduction 

Polymers with broad range of properties play a significant role in our everyday life [1].  

However, with increased use of polymeric products, there are increased concerns on the impact 

these polymers have on the environment [2].  Most traditional polymers are produced using 

fossil feed-stocks and are non-biodegradable.  Over 30 million and 15 million tons of plastic 

waste, in the US and western Europe, respectively, are generated each year [2].  At the end of 

their life majority of the conventional plastics and composites are disposed of in landfills where 

they may stay as is for several decades without degrading making that land unusable.  About 6-

7% of the petroleum produced today is used for making polymers, fibers and other chemicals.  It 

is estimated that we are currently consuming petroleum at an ‘unsustainable’ rate, 100,000 times 

faster than the nature can create it [3].  At the current rate of consumption, it is estimated that the 

current petroleum reserves will last for only 50-60 years [2].   

These concerns have forced the development of environmentally friendly, sustainable and 

biodegradable polymers and composites in recent years [2-4].  Biodegradable polymers are 

generally defined as those that decompose in natural aerobic (composting) and anaerobic 

(landfill) environments [2].  Biodegradation of biodegradable polymers can be achieved by 

enabling microorganisms in the environment to metabolize the polymer to produce an inert 

humus-like material that is less harmful to the environment and can get easily blended with the 

natural soil.  They may be composed of either biopolymers, whose components are derived from 

renewable raw materials, or biodegradable petroleum-based polymers [2-4]. 
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Microfibrillated cellulose (MFC) can be obtained by mechanical treatment, primarily 

shearing, of pulp cellulose fibers to small diameter fibrils through refining and high-pressure 

homogenization processes [5-8].  Since the widths of the fibrils in MFC are in submicron range, 

they are considered as nanofibers [5, 6, 9-11].  However, being cellulose, MFC is biodegradable.  

The MFC has high aspect ratio and high tensile properties as a result of high orientation and 

crystallinity.  Their modulus is estimated at 140 GPa and tensile strength between 2 and 6 GPa 

[12].  Most efforts until now have been focused on fabrication of MFC based composites using 

nonbiodegradable phenolic and other resins [5, 9-11].  Such composites, although greener, are 

not fully biodegradable and still need to be disposed of in landfills at the end of their life. 

Polyvinyl alcohol (PVA) is a thermoplastic and biocompatible petroleum based polymer.  It 

is also one of the rare polymers with a carbon-carbon single bond backbone that is fully 

biodegradable [2].  Because of the hydroxyl (-OH) groups on alternating carbon atoms PVA is 

strongly hydrophilic and soluble in water, which helps to promote its degradation through 

hydrolysis [2].  Besides, hydroxyl groups in PVA are expected to form hydrogen bonds and 

acetal linkages with other materials such as cellulose and aldehydes when put together [13, 14].   

MFC contains very short fibers while PVA has relatively lower stiffness and strength [5-14].  

Fabricating biodegradable MFC reinforced PVA composite may be a potential way to address 

the application limitations of MFC and PVA.  Such composites should have excellent 

mechanical properties because of strong hydrogen bonding between MFC and PVA.  MFC-PVA 

composites have been reported earlier but without any PVA modifications [15]. 

Crosslinking has been commonly used to improve the mechanical and thermal properties as 

well as solubility of polymers.  When used as resin, crosslinked polymers can also improve 

composite properties.  Crosslinking is the process of chemically joining two or more molecules 
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at different locations along the length by covalent bonds.  Crosslinkers are commonly selected on 

the basis of their chemical reactivities with the functionalities present on the polymers [16].  

Glyoxal is the smallest dialdehyde which has the ability to crosslink a wide range of polymer, 

including cellulose and PVA [17, 18].  Glyoxal and gluteraldehyde have been shown to crosslink 

both cellulose and PVA, separately [9, 18, 19].  However, glyoxal is also readily biodegradable 

and less toxic than glutaraldehyde [17-20]. 

Both PVA and MFC are fully biodegradable and as a result composites made using the two 

are also are expected to be biodegradable [2, 5-11].  However, biodegradation investigation 

experiments involving MFC-PVA composites and glyoxal crosslinked PVA are currently 

ongoing in our lab and will be reported when the study is complete. 

In the present study, two types of thin membrane-like MFC reinforced biodegradable 

composites: MFC-PVA composites and glyoxal crosslinked MFC-PVA composites have been 

fabricated and characterized.  The MFC content in these composites could be easily controlled as 

desired.  The membrane-like composites had smooth surfaces and their tensile and thermal 

properties were excellent.  The crosslinked composites had significantly better properties. 

4.3 Materials and methods 

4.3.1 Preparation of PVA and crosslinked PVA using glyoxal 

PVA powder (Mw 31,000-50,000, 98-99% hydrolyzed, Aldrich, St. Louis, MO) was added to 

the deionized water at a weight ratio of 1:9 to form PVA solution kept in a water bath at 80
o
C 

and stirred for 30 min.  Glyoxal solution (Glyoxal, 25 wt% solution in water, Aldrich, St. Louis, 

MO) was added to the PVA solution.  The glyoxal:PVA weight ratio was 3:100.  The pH of the 

mixture was adjusted to 3 using phosphoric acid (85 wt% solution in water, Mallinckrodt Baker, 

Phillipsburg, NJ).   The mixture was stirred at 80
o
C for 1 hr for precuring.  The precured mixture 
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was then cast on Teflon
®
 coated glass plates and dried at RT to form flat precured crosslinked 

PVA film.  The precured film was cured in an oven at 100
o
C for 1 hr and hot pressed at 80

o
C 

under a pressure of 4 MPa for 30 min to form cured crosslinked PVA film.  The PVA film was 

prepared by casting PVA solution without the addition of glyoxal as control, for comparison.  

Thicknesses of all specimens were about 0.2 mm.  

4.3.2 Preparation of MFC suspension 

MFC in water (KY-100G) was obtained from Daicel Chemical Industries, Japan.  The MFC 

was added into deionized water at a weight ratio of 1:199.  The mixture was stirred using 

mechanical stirrer at 80
o
C for 1 hr and followed by ultrasonication (Branson Ultrasonics, Model 

2510, Mumbai, India) at 65
o
C for 1 hr to form MFC suspension and to separate the fibrils.  

4.3.3 Fabrication of MFC-PVA composites 

The PVA powder was added to the MFC suspension at desired weight ratios.  The MFC 

suspension and PVA powder mixtures were stirred at 80
o
C for 1 hr and ultrasonicated at 65

o
C for 

1 hr.  The mixtures were cast on Teflon
®
 glass plate and slowly dried at RT to form MFC-PVA 

composites (5, 10, 15, 20, 30, 40 and 50% MFC contents (by wt) in the composites).  The MFC-

PVA composites were hot pressed at 80
o
C and 4 MPa for 30 min to form the final composites.  

As mentioned previously the specimen thicknesses were about 0.2 mm.  

4.3.4 Fabrication of crosslinked MFC-PVA composites using glyoxal 

The PVA powder was added to the MFC suspension at desired weight ratios.  The mixtures 

of MFC suspension and PVA powder, at desired ratios, were stirred at 65
o
C for 1 hr and 

ultrasonicated at 65
o
C for 1 hr.  Glyoxal solution (25 wt% solution) was then added to the MFC 

suspension and PVA mixture to obtain the wt ratio of glyoxal to PVA and MFC of 3:100.  The 

pH values of all the mixtures were adjusted to 3 using phosphoric acid.  The mixtures were 
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stirred at 80
o
C for 1 hr for precuring (partial crosslinking).  The precured mixtures were then cast 

on Teflon
®

 coated glass plates and dried at RT to form precured crossliked MFC-PVA 

composites.  The precured composites were cured in an oven at 100
o
C for 30 min and hot 

pressed at 80
o
C and 4 MPa for 30 min to form cured, crosslinked MFC-PVA composites.  The 

MFC content in crosslinked MFC-PVA composites was controlled at 10 (by wt) for comparison 

with corresponding noncrosslinked MFC-PVA composites.  The specimen thicknesses again 

were about 0.2 mm.  

4.3.5 Characterization 

4.3.5.1 SEM analysis  

MFC-PVA composites (10% MFC) were sputter coated with gold and their surface and 

fracture topographies were observed with scanning electron microscope (SEM Leica 440, Leica 

Microsystems, Cambridge, UK) at an accelerating voltage of 15 kV.   

4.3.5.2 ATR-FTIR spectroscopy 

Chemical analysis of MFC-PVA composites (10% MFC) and its glyoxal crosslinked 

specimens was carried out using an FTIR spectrophotometer (Nicolet Magna-IR 560, Thermo 

Scientific, Waltham, MA) in attenuated total reflection (ATR) mode using a split pea accessory.  

Spectra, averaged over 64 scans, were taken in the range of 4000-800 cm
-1

 wavenumber at a 

resolution of 4 cm
-1

.  All composite specimens were dried prior to conducting the spectroscopy.   

4.3.5.3 Sol-gel and swelling analyses  

PVA and glyoxal crosslinked PVA specimens (crosslinked PVA film and the crosslinked 

MFC-PVA composites, 10% MFC) were fully dried at 105
o
C for 12 hr prior to conducting the 

sol-gel test.  The specimens were weighed to obtain their initial dry weights and then immersed 

in distilled water in 150 mL glass bottles.  The mixtures in the glass bottles were then placed on a 
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shaker table (MAXQ 4450, Thermo Scientific, Waltham, MA) at 65
o
C and 150 rpm until the 

control (noncrosslinked) PVA was completely dissolved.  The solid contents for all crosslinked 

specimens were then washed three times and filtered using a Whatman
®
 filter paper (Number 4, 

20-25 µm pore size) to obtain final residues.  The water-soluble portion (sol) and particles 

smaller than the pore size of the filter paper were removed.  The final residues of the crosslinked 

PVA and the crosslinked MFC-PVA composites, were dried at 105
o
C for 12 hr to obtain their 

dry wt (gel).  Ratios of the gel wt of the crosslinked PVA to their corresponding initial dry wt 

were used to determine the PVA gel (crosslinked) percentages.  The MFC wt in the crosslinked 

MFC-PVA composites were regarded as constant before and after the test. 

PVA and glyoxal crosslinked PVA specimens (crosslinked PVA film or crosslinked MFC-

PVA composite, 10% MFC) were dried at 105
o
C for 12 hr prior to conducting the swelling test.  

The specimens were weighed to obtain their initial dry wt and then immersed in distilled water in 

150 mL glass bottles at RT for 24 hr.  The surface water from the swollen specimens was wiped 

using Kimwipe
®
 paper tissue to remove excess water weighed again to obtain the swollen wt.  

Ratios of the wt of absorbed water by the specimens to their corresponding initial dry wt were 

used to determine the swelling powers of the control and crosslinked PVA.  The MFC wt in the 

crosslinked MFC-PVA composites was regarded as constant, before and after the test. 

4.3.5.4 Tensile properties and moisture content 

The tensile tests were performed using an Instron universal testing machine (model 5566).  

The specimens for PVA, MFC-PVA composites (5, 10, 15, 20, 30, 40 and 50% MFC), glyoxal 

crosslinked PVA and glyoxal crosslinked MFC-PVA composites (10% MFC) were cut to 10 mm 

x 60 mm strips.  Tensile properties of all specimens were measured from the tests conducted as 

per ASTM D-882-02.  Specimen gauge length of 30 mm and strain rate of 0.02 were used for all 
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specimens.  Specimens were conditioned at 21°C and 65% RH for 3 days prior to testing.   

Percent moisture content (MC%) of all conditioned specimens were measured as per ASTM 

D 2654-89a.  To obtain the MC% values specimens were dried at 105
o
C until their wt stabilized.  

The MC% values were calculated using the dry wt and corresponding conditioned wt. 

4.3.5.5 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA Model Q500, TA Instrument, New Castle, DE) was used 

to analyze the thermal properties of all specimens.  Specimens were dried in an oven at 45
o
C for 

12 hr prior to conducting the tests.  All TGA tests were performed under a nitrogen atmosphere 

by keeping the flow rate of 60 ml/min, between 25 and 800
o
C and at a scanning rate of 10

o
C/min.  

4.3.5.6 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC, Model Q2000, TA Instrument, New Castle, DE) was 

used to analyze the glass transition temperature (Tg), melting temperature (Tm), enthalpy of 

fusion (ΔHf) and crystallinity of PVA, MFC-PVA composites (10% MFC) and their glyoxal 

crosslinked specimens.  All specimens were dried in an oven at 105
o
C for 12 hr prior to 

conducting the test.  All DSC analyses were performed under a nitrogen atmosphere by keeping 

the flow rate of 50 ml/min, between -20 and 250
o
C and at a scanning rate of 10

o
C/min. 

4.4 Results and discussions 

4.4.1 SEM images of MFC-PVA composite surface and fracture topographies   

Figure 4.1 shows typical SEM images of MFC-PVA composite (noncrosslinked, 10% MFC), 

surface topography (A) that shows the MFC distribution and facture surface (B) after tensile 

testing.  From Figure 4.1 (A), it can be clearly seen that the MFC fibrils are randomly organized 

but uniformly distributed within PVA and some of them are just at the surface of the composite.  

Figure 4.1 (B) clearly shows the MFC fibrils protruding out from the PVA at the facture surface.  
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However, the protruding fibril lengths are very short.  This indicates that the PVA-MFC bonding 

is strong.  The MFC fibrils also seem to be distributed uniformly within the PVA at the facture 

surface.  This is expected since both PVA and MFC have hydroxyl groups and can mix and 

disperse easily and also form hydrogen bonds at multiple locations.  In addition, the fibrils also 

look oriented in the direction of the stress.  This is due to the high fracture strain of the 

noncrosslinked composites which allows orientation during the tensile test. 

  

Figure 4.1 Typical SEM images A: Surface topography of the MFC-PVA composites; B: 

Fracture surface of the MFC-PVA composite. Both specimens contain 10% MFC 

4.4.2 ATR-FTIR analysis of crosslinked and noncrosslinked MFC-PVA composites  

Figure 4.2A shows typical crosslinking of glyoxal with PVA or MFC.  In the present case 

three possible crosslinking reactions can occur; between the PVA molecules, between the MFC 

fibrils and between PVA and MFC.   

Figure 4.2B shows the ATR-FTIR spectra for control MFC-PVA composites (a) and glyoxal 

crosslinked MFC-PVA composites (b).  A broad band at 3550-3200 cm
-1

, wavenumber seen in 

both spectra, is a result of the hydroxyl (O-H) stretching vibration resulting from the strong intra-

molecular and inter-molecular hydrogen bonds [21, 22].  The absorption band observed between 

3000 and 2820 cm
-1

 wavenumbers is due to the stretching of aliphatic C-H bond [22].  The 

absorbance intensity ratio of bands for O-H to C-H showed a decrease from 1.81 for spectrum (a) 

A B 
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to 1.28 for spectrum (b).  This lower absorption clearly indicates a reduction in the O-H groups 

due to crosslinking by glyoxal [22].  Absorption at 1750-1700 cm
-1

 (stretching of C=O) for 

noncrosslinked specimen (spectrum (a)) was weak (intensity ratio of C=O to C-H = 0.35) and 

indicates the presence of carbonyl (C=O) in the composites from the non-hydrolyzed acetate 

group remaining in the PVA,  confirming the results obtained by Gohil et al. [21] and Mansur et 

al. [22].  In spectrum (b), however, a sharp absorption (intensity ratio of C=O to C-H = 0.63) 

observed at 1750-1700 cm
-1

 wavenumber indicates strong presence of C=O in the crosslinked 

resin of the composites.  This shows that in addition to the non-hydrolyzed vinyl acetate groups, 

some residual unreacted aldehyde groups from glyoxal also exist in the crosslinked MFC-PVA 

composites, both contributing to the stronger C=O absorption.  Glyoxal may exist as half (one 

group) reacted or fully unreacted.  The absorption at 1150-1050 cm
-1

 wavenumber in spectrum (a) 

is due to C-O stretching vibration from the acetate group [21-23].  The intensity of absorption 

band for C-O stretching vibration was stronger in spectrum (b) (intensity ratio of C-O to C-H = 

3.38) than in spectrum (a) (intensity ratio of C-O to C-H = 2.72), resulting from the formation of 

the acetal linkages (shown in Figure 2A) upon reaction of the composites with the glyoxal. 

Overall, the ATR-FTIR results indicate that the MFC-PVA composites were crosslinked 

based on the decreased intensity of bands for O-H stretching vibration combined with the 

increased intensity of bands for C=O and C-O stretching vibrations.  As mentioned earlier, the 

crosslinking reactions can occur between the MFC fibrils or the PVA resin or between MFC and 

PVA. 

 

 

 



96 
 

 

 

Figure 4.2 A: Schematic of the acetal linkage in glyoxal crosslinked PVA or MFC structure; B: 

FTIR spectra of MFC-PVA composites (a: 10% MFC) and glyoxal crosslinked MFC-PVA 

composites (b: 10% MFC) 

 

4.4.3 Sol-gel and swelling analyses 

Sol-gel and swelling analyses were performed for noncrosslinked (control) and crosslinked 

PVA, as well as for the crosslinked MFC-PVA composites to evaluate the crosslinking levels.  

Table 4.1 presents the sol-gel and swelling results for crosslinked PVA as well as control PVA.  

The results show that the PVA gel (crosslinked) percentages of the crosslinked PVA and the resin 

in the crosslinked MFC-PVA composites were 7.0% and 6.6%, respectively, while the control 

PVA dissolved completely during the sol-gel test.  The low gel percentage suggests that the PVA 

was only partially crosslinked.  The results also show that the swelling powers of crosslinked 

A 

B 

(a)  

(b)  
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PVA and the resin in the crosslinked MFC-PVA composites were 78.3% and 75.1% respectively, 

much lower than control PVA (105.6%), confirming the crosslinking, though only partial.    

Table 4.1 Sol-gel and swelling power results of PVA and glyoxal crosslinked PVA 

Tests PVA  Crosslinked  

PVA  

PVA in crosslinked 

MFC-PVA composites 

Gel percentage (%) 0 7.0 (8.3)* 6.6 (10.3) 

Swelling power (%) 105.6 (5.5) 78.3 (2.7) 75.1 (8.8) 

*: values in the parentheses are % coefficient of variation values  

4.4.4 Tensile properties and moisture content 

Table 4.2 presents the tensile test and moisture content results for pure (control) PVA and 

noncrossllinked MFC-PVA composites with MFC contents from 5 to 50%.  The Young’s 

modulus of the control PVA was 248 MPa.  The Young’s modulus of the MFC-PVA composites 

were significantly higher than for PVA and increased with the MFC content, as can be expected.  

For composites with 5 and 10% MFC content, the Young’s moduli were 687 MPa and 1033 MPa, 

respectively.  When the MFC content increased to 50% the Young’s modulus increased to 3898 

MPa, about 16 times that of control PVA.  This is expected since the Young’s modulus for MFC 

is much higher [12].  The facture stress for the control PVA was 34.1 MPa.  The fracture stress 

values for MFC-PVA composites with 5 and 10%, MFC content were 43.3 MPa and 53.5 MPa, 

respectively, and increased to 89.9 and 84.9 MPa when the MFC content increased to 40 and 

50%, respectively.  This is again because the MFC has fracture stress is between 2 and 6 GPa 

[12].  The facture stress of MFC-PVA composites with 50% MFC, however, was lower than the 

composites with 40% MFC.  This is due to the lower fracture strain (5.1%) of the composites 

with 50% MFC content compared to 8% obtained for composites with 40% MFC.  Similar trend 

of increase in Young’s modulus and fracture stress with increase in MFC content have been 

reported earlier by Lu et al. [15].  The fracture strain for control PVA was 331%.  The facture 
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strains for the MFC-PVA composites were much lower than that obtained for PVA and decreased 

as the MFC content increased.  This is due to the lower facture strain value of MFC.  The 

moisture content for PVA was 9.1%, and the moisture content values for MFC-PVA composites 

were observed to be within a narrow range of 7.1% to 8.1%.  This is because moisture content 

values of MFC and PVA are very close.  

Table 4.2 Tensile properties for MFC-PVA composites with varying MFC content  

Weight percentage 

 of MFC content in 

MFC-PVA  

composites 

Young’s  

modulus 

(MPa) 

 Fracture  

stress 

 (MPa) 

Fracture  

strain 

(%) 

Moisture 

content 

(%) 

0 (PVA) 248 (22.9) 34.1 (13.3) 331 (15.4) 9.1 (4.2) 

5 687 (10.3) 43.3 (4.6) 34.7 (13.4) 7.7 (5.5) 

10 1033 (7.2) 53.5 (5.6) 25.2 (23.7) 7.4 (11.8) 

15 1399 (13.6) 65.0 (8.0) 18.3(12.1) 7.3 (25.1) 

20 1707 (8.0) 69.6 (8.3) 15.2 (12.4) 8.0 (1.0) 

30 2538 (10.7) 81.6 (7.7) 8.9 (18.8) 8.1 (2.9) 

40 3409 (9.4) 89.9 (13.5) 8.0 (26.2) 7.1 (12.6) 

50 3898 (21.3) 84.9 (11.9) 5.1 (31.7) 7.7 (20.3) 

*: values in the parentheses are % coefficient of variation values  

Table 4.3 presents tensile test and moisture content results for PVA, MFC-PVA composites 

(10% MFC) and their corresponding glyoxal crosslinked specimens.  The Young’s moduli of the 

crosslinked PVA and crosslinked MFC-PVA composites increased to 666 MPa and 1404 MPa, 

from 248 MPa for control PVA and 1033 MPa for MFC-PVA composites, respectively.  It is 

obvious that the increase in Young’s modulus for the PVA and MFC-PVA composites is due to 

the crosslinking of the PVA which makes the structure rigid [24].  In the case of the MFC-PVA 

composites, not only the PVA is crosslinked but the MFC fibrils can also get crosslinked between 



99 
 

themselves as well as with PVA.  The reduction in moisture content from 9.1% for the PVA to 

5.5% after crosslinking and from 7.4% for the MFC-PVA composites to 7.3% for the crosslinked 

MFC-PVA composites is also responsible, at least partially, for higher Young’s modulus.  From 

data in Table 4.3, it is also clear that after crosslinking, PVA fracture strain is significantly lower.  

However, MFC-PVA composites fracture strains did not change after crosslinking since this 

property is controlled by the MFC.  While crosslinking increased the PVA fracture stress from 

34.1 MPa to 47.7 MPa, MFC-PVA composites showed no significant change.  This is because the 

crosslinked composites showed sharp yielding. And after the yielding, the stress remained the 

same.  As a result, no change in the fracture stress was observed.  Similar effect has also been 

observed in the case of bacterial cellulose reinforced PVA composites [25]. 

Table 4.3 Tensile properties for PVA, MFC-PVA composites and their glyoxal crosslinked 

specimens 

 

Specimens Young’s  

modulus 

(MPa) 

 Fracture  

stress 

 (MPa) 

Fracture  

strain 

(%) 

Moisture  

content 

(%) 

PVA 248 (22.9) 34.1 (13.3) 331 (15.4) 9.1 (4.2) 

Crosslinked PVA  666 (9.5) 47.7 (7.5) 184(16.3) 5.5 (28.5) 

MFC-PVA  

(10 wt% MFC content) 

1033 (7.2) 53.2 (5.6) 25.2 (23.7) 7.4 (11.8) 

Crosslinked MFC-PVA  

(10 wt% MFC content)  

1404 (9.4) 53.7 (7.1) 29.6 (16.8) 7.3 (1.7) 

*: values in the parentheses are % coefficient of variation values  

It should be noted that tensile properties of MFC-PVA composites and crosslinked MFC-PVA 

composites are comparable or higher than many traditional polymers, including polyethylene 

(Young’s modulus: 800 MPa; fracture stress: 15 MPa), polypropylene (Young’s modulus: 1900 

MPa; fracture stress: 40 MPa), and nylon 6 (Young’s modulus: 1800 MPa; fracture stress: 70 

MPa) [26].  In addition, fabrication process for the biodegradable MFC-PVA composites is 
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convenient and simple and the cost for raw materials is low.  Therefore, both crosslinked and 

noncrosslinked MFC-PVA composites have the potential to replace traditional non-

biodegradable plastic materials in many applications, including racket frame, ski pole, circuit 

board, automobile inside etc.  These degradable composites may be easily protected from water 

by applying varnish or other water-resistant coatings to increase their durability.  Also, their 

moisture sensitivity is lower after crosslinking, making them more useful.  

4.4.5 Thermogravimetric analysis 

Figure 4.3A presents typical TGA thermograms of PVA, MFC-PVA composites (10% and 

40% MFC) and MFC.  Thermogram 4.3A (a) for control PVA shows two decomposition onset 

temperatures, (Td1) and (Td2), at 257
o
C and 400

o
C, respectively.  Weight losses for the PVA were 

30% at 272
o
C, 50% at 281

o
C and up to 94% at 800

o
C.  Two-step-degradation of PVA has been 

reported earlier by Peng and Kong [26].  A likely explanation for this is that PVA first degrades 

into smaller molecular weight polymer at around 250
o
C by chain scission and degrades further 

into carbon char at temperatures above 350
o
C.  Results of this study confirm the earlier findings 

[27].  Thermograms 4.3A (b) and 4.3A (c) for MFC-PVA composites with 10 and 40% MFC, 

respectively, also show two decomposition temperatures.  Their Td1 and Td2 are very close to 

those observed for PVA, at 255
o
C and 400

o
C, respectively.  Weight losses observed for the MFC-

PVA composites (10% MFC) were 30% at 272
o
C, 50% at 288

o
C and 92% at 800

o
C.  Weight 

losses observed for the MFC-PVA composites (40% MFC) were 30% at 285
o
C, 50% at 313

o
C 

(both temperatures higher than those obtained for MFC-PVA composites with 10% MFC) and 

92% at 800
o
C.  Thermogram 4.3A (d) for MFC showed a single decomposition onset 

temperature (Td) at 315
o
C.  Weight losses observed for pure MFC were 30% at 326

o
C, 50% at 

340
o
C and 85% at 800

o
C, indicating higher thermal stability than PVA and close to the values 
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obtained by Quiévy et al. [28].  Thus it is obvious that MFC reinforcement is responsible for the 

higher thermal stability of the MFC-PVA composites.  This conclusion is in agreement with the 

result in obtained in a previous study by Lu et al. [15]. 

Figure 4.3B presents typical TGA thermograms of PVA, MFC-PVA composites (10% MFC) 

and their corresponding glyoxal crosslinked specimens.  Thermograms 4.3B (a) and 4.3B (b) are 

for PVA and MFC-PVA composites, respectively, and have been described in the last paragraph.  

Thermogram 4.3B (c), for crosslinked PVA, also shows a two-step degradation pattern with Td1 

and Td2 observed at 370
o
C and 410

o
C, respectively.  However, the steps are not as distinct 

compared to the control PVA.  The weight losses observed were 30% at 303
o
C, 50% at 368

o
C 

and 91% at 800
o
C.  These temperatures are significantly higher than those obtained for control 

PVA indicating that the crosslinked PVA has significantly higher thermal stability as is the case 

for many polymers [29-31].  Similarly thermogram 4.3B (d) for crosslinked MFC-PVA 

composites also shows a two-step degradation pattern with Td1 and Td2 observed at 380
o
C and 

410
o
C, respectively.  Weight losses observed were 30% at 305

o
C, 50% at 358

o
C and 90% at 

800
o
C.  As is expected these values are close to those obtained for the crosslinked PVA, the 

major constituent.  These results clearly indicate that glyoxal crosslinking can increase the 

thermal stability of PVA and the MFC-PVA composites in addition to enhancing their tensile 

properties. 
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Figure 4.3 TGA thermograms A: PVA (a), MFC-PVA composites (b: 10% MFC), MFC-PVA 

composites (c: 40% MFC) and MFC (d); B: PVA (a), MFC-PVA composites (b: 10% MFC), 

glyoxal crosslinked PVA (c) and glyoxal crosslinked MFC-PVA composites (d: 10% MFC) 

 

4.4.6 Differential scanning calorimetry 

Typical DSC thermograms for PVA and glyoxal crosslinked PVA are presented in Figure 

4.4A.  Thermogram 4.4A (a) shows Tg and Tm of 92.1
o
C and 195.4

o
C, respectively, for PVA.  

The ΔHf of 86.9 J/g, compared to 138.6 J/g for 100% crystalline PVA resulted in a crystallinity 

of 62.7% for control PVA [32-35].  Thermogram 4.4A (b) for the crosslinked PVA shows Tg and 

Tm of 110
o
C and 175.4

o
C, respectively.  The ΔHf and the crystallinity of the crosslinked PVA 

were 55.3 J/g and 39.9%, respectively.  The lower ΔHf and higher Tg further confirm that the 

PVA was partially crosslinked by glyoxal.  The higher Tg and lower crystallinity after 

crosslinking due to restricted segmental motion, have been observed in most polymers [1, 32, 36, 

37]. 

Figure 4.4B presents typical DSC thermograms of (a) MFC-PVA composites and (b) glyoxal 

crosslinked MFC-PVA composites.  The Tg and Tm for the MFC-PVA composites were observed 

at 92.0
o
C and 197.5

o
C, respectively.  These values are close to those obtained for PVA.  While 

the Tg of cellulose is around 230
o
C, the MFC is highly crystalline and hence does not show any 

Tg.  Also, no Tm for cellulose can be observed since it degrades prior to melting [38, 39].  As a 

result, the DSC thermogram mainly represents the PVA behavior.  The conclusion here is in 

(a)  
(b)  

(c)  
(d)  (a)  

(b)  
(c)  
(d)  

A B 
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agreement with the phenomenon observed by Lu et al. [15].  The ΔHf and the crystallinity of the 

PVA in MFC-PVA composites were 61.4 J/g and 44.3%, respectively, which were much lower 

than 86.9 J/g and 62.7%, respectively, obtained for control PVA.  It is likely that the nano- and 

micro-fibrils in the MFC can inhibit the crystallization of PVA, as they are well dispersed.  The 

fibrils can suppress the free movement of polymeric chains restricting their ability to fold and 

thus lower the crystallinity [40].  Thermogram 4.4B (b) is for crosslinked MFC-PVA composites 

but mainly represents crosslinked PVA behavior.  The Tg and Tm observed were 110.2
o
C and 

178.8
o
C, respectively, and confirm that glyoxal crosslinking can increase Tg, decrease the Tm of 

PVA.  These changed characteristics are reflected in the crosslinked MFC-PVA composites.  The 

ΔHf and crystallinity of PVA in crosslinked MFC-PVA composites were 50.5 J/g and 36.4%, 

respectively.  These are lower than the PVA in MFC-PVA composites and slightly lower than 

those for the crosslinked PVA, showing the combined effect of crosslinking and the ability of the 

MFC to restrain the molecular motion needed for crystallization. 

 

Figure 4.4 DSC thermograms A: PVA (a) and glyoxal crosslinked PVA (b); B: MFC-PVA 

composites (a: 10% MFC) and glyoxal crosslinked MFC-PVA composites (b: 10% MFC) 

 

4.5 Conclusions   

The biodegradable membrane-like MFC-PVA composites with differing MFC contents were 

produced using simple blending and casting method.  The SEM images of surface and fracture 

(b)  

(a)  
(a)  

(b)  B A 
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topographies indicated that MFC was uniformly distributed in PVA and the MFC-PVA bonding 

was strong.  Crosslinks can be formed using glyoxal between PVA, MFC and MFC-PVA.  

Crosslinked PVA was partially water-insoluble with decreased swelling ability.  PVA and MFC-

PVA composites showed higher mechanical properties and thermal stability after crosslinking.  

MFC reinforcement also was responsible for higher thermal stability of the composites.  At the 

same time the fracture strain decreased significantly with crosslinking.  The DSC also showed 

higher Tg and lower Tm and lower crystallinity of the PVA in MFC-PVA composites as a result 

of glyoxal crosslinking.   
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5.1 Abstract 

Halloysite nanotubes (HNTs) based thin membrane-like fully biodegradable 

nanocomposites were produced by blending individualized HNT dispersion with polyvinyl 

alcohol (PVA).  Several separation techniques were applied, sequentially, to obtain stable 

individualized HNT dispersion.  In addition, PVA was crosslinking using malonic acid (MA) as 

crosslinker and phosphoric acid as catalyst, to increase the mechanical and thermal properties of 

HNT-PVA nanocomposites.  Crosslinking was also intended to make PVA water-insoluble, and 

hence more useful in commercial applications.  Examination of the composites indicated that 

HNTs were uniformly dispersed in both PVA as well as crosslinked PVA.  Excellent 

mechanical properties of the HNT-PVA nanocomposites were achieved.  These nanocomposites 

could be composted easily and hence would be good candidates to\ replace some of today’s 

traditional non-biodegradable plastics that end up in landfills. 

 

Keywords: A. Nano-structures; A. Polymer-matrix composites (PMCs); B: Mechanical properties; B: 

Thermal properties; Biodegradable nanocomposites 
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5.2 Introduction 

During the past decade or so polymer property modifications using nanoparticles and 

formation of nanocomposites has seen significantly increased interest.  There are several reasons 

why nanoparticles with dimensions on the nanometer scale (10
-9

 m) are of interest.  

Nanoparticles with such small dimensions have been shown to improve not only the mechanical 

properties of the polymers but, in many cases, their functionalities as well [1-3].  In addition, 

only small loading of nanoparticles is sufficient to obtain significant property changes. 

Halloysite nanotubes based on aluminosilicate clay nanosheets that are naturally rolled to form 

hollow tubular structures are mined from natural deposits [4, 5].  While the ideal unit formula for 

halloysite is Al2Si2O5(OH)4. n H2O (n=0 for halloysite-(7Å) and n=2 for hydrated halloysite-

(10Å)), the chemical composition is subject to variation due to the presence of impurities such as 

Fe oxides [5].  Halloysite has been found to occur widely throughout the world in weathered 

rocks as well as in soils and has been identified as having formed by the alternation of a wide 

variety of igneous and non-igneous rocks [4-6].  It is often intermixed with dickite, kaolin, 

montmorillonite and other clay minerals [6].  Since the dominant morphology of halloysite is 

tubular, it is commonly termed as halloysite nanotubes (HNTs) [5].  Unlike other nanostructured 

clays that must be exfoliated, HNTs naturally occur as cylinders with average diameters typically 

smaller than 100 nm and lengths ranging from 500 nm to over 1.2 µm [6].  HNTs have been used 

as bioreactor, time-release capsules, catalysts of polymer degradation, templates for depositing 

other nanoparticles, polymer filler or property modifier as well as in ceramic applications [4]. 

HNTs have been widely used during recent years to reinforcing the polymer matrices such as 

epoxy resin, polypropylene, polyamide, styrene rubber and ethylene propylene diene monomer 

rubber [7-16].  Such nanocomposites, although show good mechanical and thermal properties, 



112 
 

are not biodegradable and need to be disposed of in landfills at the end of their life [7-16].  In the 

case of biodegradable soy protein based nanocomposites the addition of HNTs was shown to 

improve their fire resistance [17].   

Polyvinyl alcohol (PVA) is a thermoplastic and biocompatible petroleum based polymer.  It 

is also one of the rare polymers with a carbon-carbon single bond backbone that is fully 

biodegradable [18].  Because of the hydroxyl (-OH) groups on alternating carbon atoms PVA is 

strongly hydrophilic and soluble in water, which helps to promote its degradation through 

hydrolysis [18].  However, PVA has relatively low strength and thermal stability for some 

applications.  Fabricating biodegradable HNT-PVA nanocomposites may be a potential way to 

address some limitations of the PVA.  Such nanocomposites can have excellent mechanical 

properties and thermal stability because the HNTs are stable even at very high temperatures.  

HNT-PVA nanocomposites have been reported earlier but without proper HNT individualization 

and any PVA modifications [19, 20].  The present research shows that HNT individualization 

together with crosslinking of PVA can achieve significantly better properties. 

Crosslinking has been commonly used to improve the mechanical and thermal properties as well 

as solubility of many polymers [21-25].  When used as resin, crosslinked polymers can also 

improve composite properties.  Crosslinking is the process of chemically joining two or more 

molecules at different locations along their length by covalent bonds.  Crosslinkers are 

commonly selected on the basis of their chemical reactivities with the functionalities present on 

the polymers [21].  Glutaraldehyde and glyoxal are two universally used crosslinkers for 

polymers that contain amine groups such as proteins [22-24].  Although both of them are 

effective in crosslinking polymers, they are relatively toxic [25].  Therefore, less toxic 
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crosslinkers are of interest in the crosslinking reaction, particularly to maintain the 

biodegradability of the polymers. 

Malonic acid (MA) is a dicarboxylic acid produced from chloroacetic acid and can be used as 

a crosslinker [26].  In terms of toxicity, it is a much better choice as a crosslinker than 

glutaraldehyde or glyoxal [25].  Some researchers have shown crosslinking of PVA using 

dicarboxylic acids, including MA, with sulphuric acid as catalyst to obtain esterification [27, 28].  

However, the effectiveness of crosslinking has not been as good as expected and, importantly, 

the mechanical and thermal properties of PVA after crosslinking were not investigated in these 

studies. 

In the present study, HNT clusters were individualized using several techniques and 

membrane-like biodegradable HNT-PVA nanocomposites were fabricated and their properties 

characterized.  PVA and HNT-PVA nanocomposites were crosslinked using MA, with 

phosphoric acid as catalyst.  High crosslinking levels of PVA and PVA in HNT-PVA 

nanocomposites were achieved making PVA water-insoluble.  In addition, HNT loading in 

nanocomposites could be easily controlled as desired.  These thin membrane-like 

nanocomposites had smooth surfaces and their tensile and thermal properties were excellent.  

The MA crosslinked HNT-PVA nanocomposites showed even better properties.   

5.3 Materials and methods 

5.3.1 Individualization of HNTs 

HNT powder was initially added into deionized water at a weight ratio of 1:49.  Tween
®
 80 

(Sigma-Aldrich, St. Louis, MO) (HNT:Tween
®

 80 (w/w)=10:1) was then added into the mixture, 

as non-ionic surfactant, to help individualize the HNTs.  The pH value of the mixture was 

adjusted to 10 to further avoid clustering of HNTs [6].  The mixture (at pH=10) was stirred using 
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mechanical stirrer (Polymix
®
, PX-SR 90 D, Kinematica Inc., Bohemia, NY) at 90

o
C and 1000 

rpm for 1 hr and followed by ultrasonication (Branson Ultrasonics, Model 2510, Mumbai, India) 

at 65
o
C for 1 hr to form original HNT dispersion.  The original HNT dispersion was kept 

standing for 2 days until it was stabilized.  The supernatant of the HNT dispersion was used as 

final individualized HNT dispersion while the solution at the bottom with HNT deposition was 

removed.  The HNT content in the final individualized HNT dispersion was 0.5% by wt. 

5.3.2 Preparation of PVA and crosslinked PVA using MA 

PVA powder (Mw 31,000-50,000, 98-99% hydrolyzed, Aldrich, St. Louis, MO) was added to 

the deionized water at a weight ratio of 1:9 to form PVA solution which was maintained in a 

water bath at 80
o
C and stirred for 30 min.  MA powder (ReagentPlus

®
, 99%, Sigma-Aldrich, St. 

Louis, MO) was then added to the PVA solution.  The weight ratio of MA and PVA was 1:10.  

The pH value of the mixture was adjusted to 1 by adding phosphoric acid (85 wt% solution in 

water, Mallinckrodt Baker, Phillipsburg, NJ).   The mixture was stirred at 90
o
C for 1 hr for 

precuring.  The precured mixture was then cast on Teflon
®
 coated glass plates and slowly dried 

in an oven at 40
o
C to form flat precured crosslinked PVA film.  The precured film was further 

hot pressed at 100
o
C under a pressure of 0.2 MPa for 60 min to form cured crosslinked PVA film.  

Carboxylic ester linkages are expected to form between hydroxyl group of PVA and carboxylic 

groups of MA at high temperature during the hotpressing [27, 28].  The cured (crosslinked) PVA 

film was then immersed into deionized water at RT for 12 hr until the system got stabilized in 

order to partially remove phosphoric acid, remaining MA and noncrosslinked PVA.  The water-

immersed and cured crosslinked PVA film was then dried at 40
o
C to form final crosslinked PVA 

film.  The PVA film was prepared by casting PVA solution without the addition of MA as 

control, for comparison. 
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5.3.3 Fabrication of HNT-PVA nanocomposites  

The PVA solution (10% by wt) was added to the final individualized HNT dispersion at 

desired PVA and HNT weight ratios.  The HNT dispersion and PVA solution mixtures were 

stirred at 90
o
C for 1 hr.  The mixtures were cast on Teflon

®
 coated glass plate and slowly dried in 

an oven at 40
o
C to form HNT-PVA composite sheets (5, 10 and 20 HNT loading, by wt, in the 

composites).  The HNT-PVA nanocomposite sheets were hot pressed at 100
o
C and 0.2 MPa for 

60 min to form the final nanocomposites. 

5.3.4 Preparation of cross-linked HNT-PVA nanocomposites using MA 

The 10% (by wt) PVA solution was added to the final individualized HNT dispersion at 

desired PVA and HNT weight ratios.  The HNT dispersion and PVA solution mixtures were 

stirred at 90
o
C for 1 hr and ultrasonicated at 65

o
C for 1 hr.  MA powder (ReagentPlus

®
, 99%, 

Sigma-Aldrich, St. Louis, MO) was then added to the mixtures.  The weight ratio of MA to PVA 

was 1:10.  The pH values of the mixtures were adjusted to 1 by adding crosslinking catalyst 

phosphoric acid (85 wt% solution in water, Mallinckrodt Baker, Phillipsburg, NJ).  The mixtures 

were stirred at 90
o
C for 1 hr for precuring.  The precured mixtures were then cast on Teflon

®
 

coated glass plates and slowly dried in an oven at 40
o
C to form flat precured crosslinked HNT-

PVA nanocomposites (5, 10 and 20% HNT loading, by wt, in the nanocomposites).  The 

precured composites were further hot pressed at 100
o
C under a pressure of 0.2 MPa for 60 min to 

form crosslinked HNT-PVA nanocomposites as stated earlier.  The crosslinked HNT-PVA 

nanocomposites were then immersed into deionized water at RT for 12 hr until the system got 

stabilized in order to partially remove phosphoric acid, remaining MA and noncrosslinked PVA.  

The water-immersed and cured crosslinked HNT-PVA nanocomposites then dried at 40
o
C to 

form final crosslinked HNT-PVA nanocomposites with average thickness of 0.5 mm. 
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5.3.5 Characterization 

5.3.5.1 TEM analysis 

HNT-PVA nanocomposites (10% HNT loading) and MA crosslinked HNT-PVA 

nanocomposites (10% HNT loading) were initially frozen by liquid nitrogen and then cut into 

extremely thin sections (40-100 nm in thickness) using microtome (Leica EM UC7/FC7 

Cryoultramicrotome, Leica Microsystems, Cambridge, UK) with diamond cutter.  The slices of 

HNT-PVA nanocomposites were observed with transmission electron microscopy (FEI Tecnai
TM

 

F20 TEM, FEI Company, Hillsboro, OR).  Copper grids with 300 mesh size were used to hold 

the specimens for TEM.  

5.3.5.2 Sol-gel and swelling analyses  

PVA and MA crosslinked PVA specimens (crosslinked PVA film and the crosslinked resin 

in HNT-PVA nanocomposites, 10% HNT loading) were fully dried at 105
o
C for 12 hr prior to 

conducting the sol-gel test.  The specimens were weighed to obtain their initial dry weights and 

then immersed in distilled water in 150 mL glass bottles.  The glass bottles with the specimens 

were then placed on a shaker table (MAXQ 4450, Thermo Scientific, Waltham, MA) maintained 

at 80
o
C and 150 rpm for 2 hr until the control (noncrosslinked) PVA was completely dissolved.  

The remaining solid contents for the crosslinked specimens were then washed three times with 

distilled water and filtered using a Whatman
®
 filter paper (Number 4, 20-25 µm pore size) to 

obtain final residues.  The water soluble portion (sol) and particles smaller than the pore size of 

the filter paper were removed.  The final residues of the crosslinked PVA and the crosslinked 

HNT-PVA nanocomposites were dried at 105
o
C for 12 hr to obtain their dry wt (gel).  Ratios of 

the dry gel wt of the crosslinked PVA to their corresponding initial dry wt were used to 

determine the PVA gel (crosslinked) percentages.  The HNT wt in the crosslinked HNT-PVA 

http://www.ccmr.cornell.edu/facilities/index2.php?id=25
http://www.ccmr.cornell.edu/facilities/index2.php?id=25
http://en.wikipedia.org/wiki/Hillsboro,_Oregon
http://en.wikipedia.org/wiki/Oregon
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nanocomposites were regarded as constant before and after the test. 

PVA and MA crosslinked PVA specimens (crosslinked PVA film or the crosslinked resin in 

HNT-PVA nanocomposites, 10% HNT loading) were dried at 105
o
C for 12 hr prior to 

conducting the swelling test.  The specimens were weighed to obtain their initial dry wt and then 

immersed in distilled water in 150 mL glass bottles at RT for 24 hr.  The surface water from the 

swollen specimens was wiped using Kimwipe
®
 paper tissue to remove excess water weighed 

again to obtain the swollen wt.  Ratios of the wt of absorbed water by the specimens to their 

corresponding initial dry wt were used to determine the swelling power of the control and 

crosslinked PVA.  The HNT wt in the crosslinked HNT-PVA nanocomposites was regarded as 

constant, before and after the test. 

5.3.5.3 ATR-FTIR spectroscopy 

Chemical analysis of HNT-PVA nanocomposites (10% HNT loading) and its MA 

crosslinked specimens was carried out using FTIR spectrophotometer (Nicolet Magna-IR 560, 

Thermo Scientific, Waltham, MA) in attenuated total reflection (ATR) mode using a split pea 

accessory.  Spectra, averaged over 64 scans, were taken in the range of 4000-800 cm
-1

 

wavenumber at a resolution of 4 cm
-1

.  All nanocomposite specimens were dried in an air 

circulating oven at 40
o
C for 12 hr prior to conducting the spectroscopy. 

5.3.5.4 Tensile properties and moisture content 

The specimens for PVA, HNT-PVA nanocomposites (5, 10 and 20% HNT loading) and their 

corresponding crosslinked specimens were cut to 10 mm x 60 mm strips and were tensile tested 

using an Instron universal testing machine (model 5566).  These tests were conducted as per 

ASTM D-882-02.  Specimen gauge length of 30 mm and strain rate of 0.02 were used for all 

specimens.  Specimens were conditioned at 21°C and 65% RH for 3 days prior to testing.   
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Percent moisture content (MC%) for all conditioned specimens were measured as per ASTM D 

2654-89a.  To obtain the MC% values specimens were dried in an oven at 105
o
C until their wt 

stabilized.  The MC% values were calculated on the dry wt basis. 

5.3.5.5 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA Model Q500, TA Instrument, New Castle, DE) was used 

to characterize the thermal properties of all specimens.  Specimens were dried in an air 

circulating oven at 45
o
C for 12 hr prior to conducting the tests.  All TGA tests were performed 

between 25 and 800
o
C under a nitrogen atmosphere (gas flow rate of 60 ml/min) and at a 

scanning rate of 10
o
C/min.  

5.3.5.6 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC, Model Q2000, TA Instrument, New Castle, DE) was 

used to analyze the glass transition temperature (Tg), melting temperature (Tm), enthalpy of 

fusion (ΔHf) and crystallinity of PVA, HNT-PVA nanocomposites (10% HNT loading) and their 

corresponding MA crosslinked specimens.  All specimens were dried in an oven at 105
o
C for 12 

hr prior to conducting the test.  All DSC analyses were performed under an inert atmosphere by 

flowing nitrogen at the rate of 50 ml/min, between -20 and 250
o
C and at a scanning rate of 

10
o
C/min. 

5.4 Results and discussions 

5.4.1 HNTs individualization 

Unlike other nanolayered clays that must be exfoliated, HNTs naturally occur as small 

cylinders which average 30 nm in diameter. The HNT specimen used in this research was 

unprocessed and hence the nanotubes within were clustered.  This was confirmed from the SEM 

photomicrographs in a previously published report [6].  Therefore, many separation techniques 
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were employed in the present study to individualize HNT clusters.  These techniques include: 

high speed mechanical stirring, ultrasonication, addition of non-ionic surfactant and changing the 

solution pH. 

Shear force from high speed mechanical stirring was used to effectively break down the HNT 

clusters.  Ultrasonication generates intense and high frequency sound.  The sound itself consists 

of regions of high and low pressure that move through a material as waves.  As these waves pass 

through the liquid in the bath, each tiny portion of liquid vibrates back and forth in response to 

these pressure fluctuations which results in breaking of the clusters of HNTs [6]. 

Non-ionic surfactant Tween
®

 80 was used as a dispersant to improve the separation of HNTs 

[29].   

The change of pH value is one of the key factors to separate HNTs.  HNTs carry a negative 

charge on the basal or 'face' surface of their crystals but the charge on crystal edges varies with 

the pH of the ambient environment.  The amphoteric nature of the edge surface may be ascribed 

to the protonation and deprotonation of hydroxyl groups coordinated with exposed Al ions under 

acid and alkaline pH conditions, respectively [5].  It has been reported that at pH 7.5 and above, 

the HNTs tend to repel each other since the charge on both the edge and face surface is negative 

[30].  As a result, the system deflocculates, and loses cohesion.  In the present study, uniform and 

stable HNT dispersion was obtained after using these separation techniques sequentially.  This 

stable HNT dispersion was used for fabricating HNT-PVA nanocomposites. 

5.4.2 Mechanism of uniform HNT dispersion in acidic crosslinking condition 

The individualized HNTs in dispersion can aggregate (recluster) and deposit when pH value 

is changed to acidic values.  However, after HNT dispersion was mixed with PVA solution, the 

reclustering did not occur for many days, even in acidic condition, during PVA crosslinking.  



120 
 

This is possibly because the high viscosity of the PVA solution prevents them from coming 

closer due to the change of charges on edge surfaces of the HNTs in acidic environment.  Figure 

5.1 shows a schematic of this mechanism.  It shows individualized HNTs can recluster with each 

other in acidic situation during opposite charge attracting.  However, as mentioned earlier, high 

viscosity of PVA solution can help individualized HNTs to retard or even prevent clustering by 

immobilizing them. 

 

 

 

 

 

 

Figure 5.1 HNT clustering (a) and PVA surrounded HNTs without clustering (b) in acidic 

environment 

 

5.4.3 TEM analysis of HNT dispersion in PVA and crosslinked PVA 

Figure 5.2 shows typical TEM images of (a) HNT-PVA nanocomposite and (b) MA 

crosslinked HNT-PVA nanocomposite.  Both nanocomposites had 10% HNT loading.  Both TEM 

images clearly show that the HNTs were individualized and the uniformly dispersed within the 

PVA or crosslinked PVA.  As mentioned earlier high viscosity of the PVA solution can help 

individualized HNTs to retard or even prevent clustering by immobilizing them.  The degree or 

uniformity of dispersion of the HNTs within the polymer plays an important role on its 

mechanical properties [31].  Also, since the HNTs are uniformly dispersed, both mechanical and 

thermal properties of the nanocomposites would also be expected to be uniform [6]. 

 

HNT 
Charge 

HNT Charge 

PVA 

(a) (b) 
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Figure 5.2 TEM images of HNT-PVA nanocomposite (a) and crosslinked HNT-PVA 

nanocomposite (b).  Both contain 10% HNT loading 

 

5.4.4 Sol-gel and swelling analyses 

A study of crosslinking PVA with dicarboxylic acids, including MA, with sulfuric acid as a 

catalyst has been described earlier [27].  However, our preliminary study showed no difference 

in the extent of crosslinking between MA crosslinked PVA catalyzed by sulfuric acid and 

phosphoric acid.  As a result, in all subsequent experiments phosphoric acid was used as a 

catalyst to crosslink PVA and HNT-PVA nanocomposites because of its lower toxicity compared 

to sulfuric acid [25].  

Sol-gel and swelling analyses were performed for noncrosslinked (control) and crosslinked 

PVA, as well as for the resin in the crosslinked HNT-PVA nanocomposites to evaluate the level 

of crosslinking.  Table 5.1 presents the sol-gel and swelling results for MA crosslinked PVA as 

well as control PVA.  The results show that the PVA gel (crosslinked component) percentages of 

the crosslinked PVA and the resin in the crosslinked HNT-PVA nanocomposites were 93.1% and 

94.8%, respectively, while the control PVA dissolved completely during the sol-gel test.  The 

high gel percentage suggests that the PVA was crosslinked by MA in the presence of catalyst 

phosphoric acid.  The results also show that the swelling powers of crosslinked PVA and the 

resin in the crosslinked HNT-PVA nanocomposites were 52.3% and 51.0%, respectively, much 

lower than control (noncrosslinked) PVA (107.3%), confirming the crosslinking. 

(a) (b) 
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Table 5.1 Sol-gel and swelling power results of PVA and MA crosslinked PVA 

Tests Control 

PVA 

Crosslinked 

PVA 

PVA in crosslinked 

HNT-PVA 

nanocomposites 

Gel percentage (%) 0 93.1 (8.3)* 94.8 (7.2) 

Swelling power (%) 107.3 (5.2) 52.3 (9.2) 51.0 (8.0) 

*: values in the parentheses are % coefficient of variation 

5.4.5 ATR-FTIR analysis 

When MA is made to react with PVA, the carboxylic groups (COOH) in MA react with the 

hydroxyl groups (OH) in the PVA forming ester linkages.  Figure 5.3A shows typical carboxylic 

ester linkages in MA crosslinked PVA.  Figure 5.3B shows the ATR-FTIR spectra for control 

HNT-PVA nanocomposite (a) and MA crosslinked HNT-PVA nanocomposite (b).  Since HNTs 

cannot crosslink with MA, ATR-FTIR spectra only indicate the chemical structure change of 

PVA in HNT-PVA nanocomposites before and after crosslinking.  A broad band at 3500-3200 cm
-

1
 wavenumber seen in both spectra is a result of the O-H stretching vibration resulting from the 

strong intra-molecular and inter-molecular hydrogen bonding [32-34].  The absorption band 

observed between 3000 and 2820 cm
-1

 wavenumbers is due to the stretching of aliphatic C-H 

bonds [33].  The absorbance intensity ratio for O-H to C-H bands showed a decrease from 1.82 

in spectrum (a) for control PVA compared to 1.23 for spectrum (b) for crosslinked PVA.  This 

lower absorption clearly indicates a reduction in the O-H groups and confirms the crosslinking of 

PVA by MA [33].  Absorption at 1750-1650 cm
-1

 (stretching of C=O) for noncrosslinked 

specimen (spectrum (a)) was weak (intensity ratio of C=O to C-H = 0.36) and indicates the 

presence of carbonyl (C=O) in the nanocomposites from the nonhydrolyzed acetate group 

remaining in the PVA (98-99% hydrolyzed), confirming the earlier results obtained by Gohil et al. 

[32] and Mansur et al. [33].  In the ATR-FTIR spectrum (b), however, a sharp absorption 
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(intensity ratio of C=O to C-H = 0.61) observed at 1750-1650 cm
-1

 wavenumber indicates 

presence of C=O in the crosslinked PVA of the nanocomposites as expected.  This shows that in 

addition to the nonhydrolyzed vinyl acetate groups, some residual unreacted carboxylic groups 

from MA and carboxylic ester groups (shown in Figure 5.3A) from crosslinked PVA also exist in 

the crosslinked HNT-PVA nanocomposites, both contributing to the stronger C=O absorption.   

PVA

OO

C CH2 C

OH

O

OH

  

  

OH

O

OH

  

  

Carboxylic ester linkages

 

 

Figure 5.3 A: Schematic of the carboxylic ester linkage in MA crosslinked PVA structure; B: 

ATR-FTIR spectra of HNT-PVA nanocomposite (a) and MA crosslinked HNT-PVA 

nanocomposite (b).  Both contain 10% HNT loading 

 

Overall, the ATR-FTIR results indicate that the PVA in HNT-PVA nanocomposites were 

crosslinked based on the decreased intensity of bands for O-H stretching vibration combined 

with the increased intensity of bands for C=O stretching vibrations.   

(a)  

(b)  

A 

B 
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5.4.6 Tensile properties and moisture content 

Table 5.2 presents tensile test results and moisture content values for pure (control) PVA and 

noncrosslinked HNT-PVA nanocomposites with HNT loading from 5 to 20% and their MA 

crosslinked specimens.  The Young’s modulus value for the control PVA was 245 MPa.  The 

Young’s modulus value for the HNT-PVA nanocomposites were higher than that obtained for 

PVA and increased with the HNT loading, as was expected.  For nanocomposites with 5 and 10% 

HNT loading, the Young’s moduli were 286 MPa and 388 MPa, respectively, and when the HNT 

loading increased to 20% the Young’s modulus increased to 466 MPa, about 2 times that of 

control PVA.  This phenomenon is commonly observed for most polymers loaded with inorganic 

nanoparticles due to the increased tortuosity of the polymer molecules, significantly harder 

nanoparticles and increased nanoparticle-polymer interface [1, 35, 36, 37, 38].  The facture stress 

for the control PVA was 34.3 MPa.  The fracture stress values for HNT-PVA nanocomposites 

with 5 and 10% HNT loading were 29.1 MPa and 27.7 MPa, respectively, and decreased to 22.0 

MPa when the HNT loading increased to 20%, respectively.  This is attributed to the 

significantly reduced fracture strain values brought about by HNT agglomeration in some areas 

of the nanocomposites, particularly at 20% loading, again, a phenomenon seen in most polymers.  

However, lower fracture strain may also be a result of the weaker bonds between the 

nanoparticles (HNTs) and PVA as noted by others [39].  The fracture strain for control PVA was 

336%.  As seen from data in Table 5.2, facture strains for the HNT-PVA nanocomposites are 

much lower than that obtained for control PVA and decreased as the HNT loading increased.  

The reduced fracture strain as a function of nanoparticle loading has been observed by many [37].  

The moisture content for control PVA was 9.2%, whereas for HNT-PVA nanocomposites with 5, 

10 and 20% HNT loading the moisture content values were 8.0, 7.4 and 6.6%, respectively.  This 
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is because moisture content of HNTs is around 1.6%, lower than PVA. 

The Young’s moduli of the MA crosslinked PVA and MA crosslinked HNT-PVA 

nanocomposites with 5, 10 and 20% HNT loading increased to 1023 MPa, 1105 MPa, 1185 MPa 

and 1244 MPa, respectively, from 245 MPa for control PVA and from 286 MPa, 388 MPa and 

466 MPa for noncrosslinked HNT-PVA nanocomposites with the corresponding HNT loading.  It 

is obvious that the increase in Young’s modulus for the crosslinked PVA and HNT-PVA 

nanocomposites is solely due to the crosslinking of the PVA which makes the structure rigid [40].  

The reduction in moisture content from 9.2% for the noncrosslinked PVA to 6.3% after 

crosslinking and from 8.0%, 7.4% and 6.6% for the HNT-PVA nanocomposites with 5, 10 and 

20% HNT loading, respectively, to 6.2%, 6.0% and 6.0% for the crosslinked HNT-PVA 

nanocomposites with the corresponding HNT loading is also responsible, at least partially, for 

higher Young’s modulus.  With lower moisture content, i.e., less plasticization, the structure 

maintains its higher rigidity or stiffness [41].  Crosslinking also increased fracture stress values 

of PVA from 34.3 MPa to 46.4 MPa and HNT-PVA nanocomposites with 5, 10 and 20% HNT 

loading from 29.1 MPa, 27.7 MPa and 22.0 MPa to 42.1 MPa, 38.8 MPa and 36.1 MPa, 

respectively.  From data presented in Table 5.2, it is also clear that after crosslinking, fracture 

strain values of PVA and HNT-PVA nanocomposites are significantly lower as expected [35, 36].  

The fracture strains, particularly in the case of crosslinked nanocomposites decreased 

significantly with HNT loading.  The decrease in fracture stress is closely related to the 

decreased fracture strains. 
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Table 5.2 Tensile properties and moisture content for PVA, HNT-PVA nanocomposites and their 

corresponding MA crosslinked specimens 

 

Specimens Young’s 

modulus  

(MPa) 

Fracture  

stress  

(MPa) 

Fracture 

 strain 

(%) 

Moisture 

content  

(%) 

PVA 245 (20.6)* 34.3 (13.6) 336 (10.1) 9.2 (5.3) 

Crosslinked PVA  1023 (19.1) 46.4 (8.5) 186 (30.2) 6.3 (7.6) 

HNT-PVA 

(5% HNTs) 

286 (16.2) 29.1 (8.7) 297 (32.1) 8.0 (5.6) 

HNT-PVA 

(10% HNTs) 

388 (17.0) 27.7 (9.8) 268 (22.9) 7.4 (1.0) 

HNT-PVA 

(20% HNTs) 

 

466 (11.3) 22.0 (10.7) 159 (34.8) 6.6 (1.0) 

Crosslinked HNT-PVA 

(5% HNTs) 

1105  (10.4) 42.1(9.5) 110.0 (22.3) 6.2 (4.2) 

Crosslinked HNT-PVA 

(10% HNTs) 

1185 (24.7) 38.8 (9.6) 74.9 (17.6) 6.0 (8.8) 

Crosslinked HNT-PVA 

(20% HNTs) 

1244 (0.4) 36.1 (0.6) 8.8 (22.9) 6.0 (6.1) 

*: values in the parentheses are % coefficient of variation values  

It should be noted that tensile properties of HNT-PVA nanocomposites and crosslinked HNT-

PVA nanocomposites are comparable or higher than many traditional polymers, including 

polyethylene (Young’s modulus: 800 MPa; fracture stress: 15 MPa), polypropylene (Young’s 

modulus: 1900 MPa; fracture stress: 40 MPa), and nylon 6 (Young’s modulus: 1800 MPa; 

fracture stress: 70 MPa) [42].  As a result, these PVA based biodegradable nanocomposites can 

easily replace many of these traditional plastic materials.  Also, after crosslinking their moisture 

sensitivity is lower, making them more useful.  Biodegradable plastics based on PVA can reduce 

the current landfilling load significantly. 

Figure 5.4 shows typical stress vs strain plots of HNT-PVA nanocomposite (a) and MA 

crosslinked HNT-PVA nanocomposite (b).  The HNT loading in both specimens is around 10% 

by wt.  Figure 5.4 (a) shows HNT-PVA nanocomposite initially showed elastic behavior but then 
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showed a plastic plateau (yielding) until reaching its fracture point.  This plateau is due to PVA’s 

high ductility.  While stress vs strain plot for the crosslinked HNT-PVA nanocomposite shown in 

Figure 5.4 (b) also shows yielding, it shows no obvious plateau for plastic deformation because 

of the crosslinking. 

 

Figure 5.4 Typical stress vs strain plots for HNT-PVA nanocomposite (a) and MA cross-linked 

HNT-PVA nanocomposite (b). Both contain 10% HNT loading 

 

5.4.7 Thermogravimetric analysis 

Figure 5.5A presents typical TGA thermograms of PVA, HNT-PVA nanocomposites (10% 

and 20% HNT loading) and HNTs.  Thermogram 5.5A (a) for control PVA shows two 

decomposition onset temperatures, (Td1) and (Td2), at 255
o
C and 390

o
C, respectively.  Weight 

losses for the PVA were 30% at 266
o
C, 50% at 276

o
C and up to 94% at 800

o
C.  Two-step 

degradation of PVA has been reported earlier by Peng and Kong [41].  A likely explanation for 

this is that PVA first degrades into smaller molecular weight polymer at around 250
o
C by chain 

scission and degrades further into carbon char at temperatures above 350
o
C.  Results of this 

study confirm the earlier findings [43].  Thermograms 5.5A (b) and (c) for HNT-PVA 

nanocomposites, with 10 and 20% HNT loading, respectively, also show two decomposition 

(a)  

(b)  
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onset temperatures.  However, their Td1 and Td2, 260
o
C and 393

o
C, respectively, are 3 to 5

o
C 

higher than those observed for PVA.  This is again due to the addition of HNTs which makes it 

thermally more stable.  Weight losses observed for the HNT-PVA nanocomposites (10% HNT 

loading) were 30% at 286
o
C, 50% at 305

o
C and 88% at 800

o
C.  Weight losses observed for the 

HNT-PVA nanocomposites (20% HNT loading) were 30% at 295
o
C, 50% at 343

o
C (both 

temperatures are higher than those obtained for HNT-PVA nanocomposites with 10% HNT 

loading) and 74% at 800
o
C.  These data confirm the higher thermal stability of the HNT-PVA 

nanocomposites.  Thermogram 5.5A (d) for HNTs showed no sharp thermal degradation.  Weight 

losses observed for pure HNTs were 10% at 471
o
C, 20% at 700

o
C, and 24% at 800

o
C, 

confirming higher thermal stability of HNTs [11].  Thus it is obvious that HNT loading is 

responsible for the higher thermal stability of the HNT-PVA nanocomposites. 

Figure 5.5B presents typical TGA thermograms of PVA, HNT-PVA nanocomposite (10% 

HNT loading) and their corresponding MA crosslinked specimens.  Thermograms 5.5B (a) and 

5.5B (b) are for PVA and HNT-PVA nanocomposites, respectively, and have been described in 

the last paragraph.  Thermogram 5.5B (c), for crosslinked PVA, also shows a two-step 

degradation pattern with Td1 and Td2 (no so obvious) observed at 305
o
C and 417

o
C, respectively.  

However, the steps are not as distinct compared to the control PVA.  The weight losses observed 

were 30% at 329
o
C, 50% at 362

o
C and almost 100% at 800

o
C.  These results indicate that the 

crosslinked PVA has significantly higher thermal stability compared to control PVA in the range 

of 240-430
o
C.  Increased thermal stability after crosslinking has been observed earlier for many 

polymers [44-46].  Thermogram 5.5B (d) for crosslinked HNT-PVA nanocomposites also shows 

a single degradation pattern with Td observed at 380
o
C.  Weight losses observed were 30% at 

329
o
C, 50% at 372

o
C and 86% at 800

o
C.  As is expected these values are close to those obtained 
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for the crosslinked PVA, the major constituent in the nanocomposite.  These results clearly 

indicate that crosslinking of PVA using MA can increase its thermal stability as well as that of 

HNT-PVA nanocomposites, in addition to enhancing their tensile properties. 

 

  

Figure 5.5 Typical TGA thermograms A: PVA (a), HNT-PVA nanocomposite (b: 10% HNT 

loading), HNT-PVA nanocomposite (c: 20% HNT loading) and HNTs (d); B: PVA (a), HNT-PVA 

nanocomposite (b: 10% HNT loading), MA crosslinked PVA (c) and MA crosslinked HNT-PVA 

nanocomposite (d: 10% HNT loading) 

 

5.4.8 Differential scanning calorimetry 

Typical DSC thermograms for PVA and MA crosslinked PVA are presented in Figure 5.6A.  

Thermogram 5.6A (a) for control PVA shows Tg and Tm of 92.0
o
C and 196.1

o
C, respectively.  

The ΔHf of 81.1 J/g, compared to 138.6 J/g for 100% crystalline PVA resulted in a crystallinity 

(b)  

(d)  

(c)  (a)  

A 

(c)  

(b)  

(a)  

(d)  

B 
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of 58.5% for control (pure) PVA [47-50].  Thermogram 5.6A (b) for the crosslinked PVA shows 

Tg and Tm of 102.1
o
C and 189.7

o
C, respectively.  The ΔHf and the crystallinity of the crosslinked 

PVA were 36.8 J/g and 26.6%, respectively.  The lower ΔHf and higher Tg further confirm that 

the PVA was effectively crosslinked by MA.  The higher Tg and lower crystallinity after 

crosslinking are due to restricted segmental motion of the molecules, a phenomenon commonly 

observed in most polymers [1, 47, 51, 52]. 

Figure 5.6B presents typical DSC thermograms of (a) HNT-PVA nanocomposite and (b) MA 

crosslinked HNT-PVA nanocomposite.  The Tg and Tm for the HNT-PVA nanocomposites were 

observed at 90.5
o
C and 201.9

o
C, respectively.  The change in Tg for nanocomposite is 

insignificant.  While the Tm value is about 5
o
C higher than that of control PVA, the Tg is about 

1.5
o
C lower.  This suggests that HNTs have the ability to lead to decrease Tg and increase Tm of 

polymers [19, 53].    Nakamura et al. also [16] observed similar decrease in Tg as a result of 

HNT addition.  They argued that this was a result of free volume addition.  The ΔHf and the 

crystallinity of the PVA in HNT-PVA nanocomposites (10% loading) were 43.3 J/g and 31.2%, 

respectively, which were much lower than 85.9 J/g and 62.0%, respectively, obtained for control 

PVA.  It is likely that the HNTs can inhibit the crystallization of PVA, as they are well dispersed 

[54].  However, higher Tm suggested that the average crystal size in nanocomposites was larger.  

Thermogram 5.6B (b) is for MA crosslinked HNT-PVA composites but mainly represents 

crosslinked PVA behavior.  The Tg and Tm observed were 99.0
o
C and 191.9

o
C, respectively, and 

confirm earlier observation that MA crosslinking can increase Tg and decrease Tm of PVA.  

These changed characteristics are reflected in the crosslinked HNT-PVA nanocomposites.  The 

ΔHf and crystallinity of PVA in crosslinked HNT-PVA nanocomposites were 8.6 J/g and 6.2%, 

respectively.  These are significantly lower than those for the PVA in HNT-PVA nanocomposites 
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and the MA crosslinked PVA, showing the combined effect of crosslinking and the ability of the 

HNTs to restrain the molecular motion needed for crystallization. 

 

 

Figure 5.6 DSC thermograms A: PVA (a) and MA crosslinked PVA (b); B: HNT-PVA 

nanocomposite (a) and MA crosslinked HNT-PVA nanocomposite (b).  Both contain 10% HNT 

loading 

 

5.5 Conclusions 

The biodegradable membrane-like HNT-PVA nanocomposites with differing HNT loadings 

were produced using blending and casting methods.  Several separation techniques such as 

mechanical stirring, ultrasonication, non-ionic surfactant and desired solution pH, were used to 

individualize HNTs and obtain stable HNT dispersion.  The TEM images indicated that HNTs 

(b)  

(a)  

A 

(b)  

(a)  
B 
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were uniformly dispersed in both PVA and MA crosslinked PVA.   ATR-FTIR results confirmed 

that PVA can be crosslinked using MA as crosslinker and phosphoric acid as catalyst.  MA 

crosslinked PVA was highly water-insoluble with decreased swelling ability.  PVA and HNT-PVA 

nanocomposites showed higher mechanical properties and thermal stability after crosslinking.  

HNT loading also was responsible for higher thermal stability of the PVA based nanocomposites.  

Fracture strain was seen to decrease significantly with crosslinking.  Fracture strain also 

decreased with HNT loading for both crosslinked and noncrosslinked PVA.  The DSC results 

indicated that HNT loading decrease Tg as well as crystallinity while increasing the Tm of PVA.  

Crosslinking of PVA resulted in higher Tg, lower Tm and lower crystallinity as was expected. 
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6.1 Abstract 

This study presents the effect of biodegradation in a composting medium on membrane-

like polyvinyl alcohol (PVA) based resins and composites.  The materials studied include PVA, 

glyoxal crosslinked PVA (GX-PVA), malonic acid (MA) crosslinked PVA (MX-PVA), and 

microfibrillated cellulose (MFC)-PVA and halloysite nanotube (HNT)-PVA nanocomposites.  

The composting process was monitored for up to 120 days and the biodegradation of these 

materials was characterized by weight loss, attenuated total reflectance Fourier-transform 

infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), sol-gel analysis and 

energy dispersive X-ray (EDX) analysis.  The changes in the PVA based materials’ surface 

topography and microstructure during composting were also characterized using scanning 

electron microscopy (SEM).  The results from the analyses suggest biodegradation of PVA based 

materials in compost medium was mainly by enzymes secreted by fungi.  The results also 

indicate that the enzymes degraded the amorphous regions of the specimens first.  The surface 

roughness of the specimens significantly increased with the composting time which could 

facilitate microorganism to stay and propagate.  All specimens broke in to many pieces as a 

result of deep biodegradation between 90 and 120 days of composting.  The results also showed 

that crystallinity played an important role in PVA biodegradation.  Crosslinking decreased the 

PVA biodegradation rate slightly.  Highly crystalline MFC and naturally occurred HNTs also 
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were a factor as their presence decreased the biodegradation rate when present in PVA based 

composites. 

 

Keywords: Polyvinyl alcohol; Crosslinking; Composites; Biodegradation; Composting 

 

6.2 Introduction 

Most commercially available polymers at present are non-biodegradable.  Furthermore, most 

of them are made using petroleum as raw material, a non-renewable resource.  With increased 

use of plastics and polymers in every part of our life, their waste disposal has become a serious 

problem.  To resolve these issues there has been increased research on biobased and 

biodegradable polymers and their composites in the past decade.  The research, in recent years, 

has been accelerated both by environmental awareness among people as well as by governmental 

regulations and support [1-9].   

Biobased and biodegradable polymers are generally defined as those polymers that can 

decompose in natural aerobic (composting) and anaerobic (landfill) environments [8].  Most 

biobased polymers are those that are inherently biodegradable and have been derived from 

renewable raw materials [8, 10, 11].  They almost always have oxygen or nitrogen atoms in their 

polymer backbones which is the feature that is mainly responsible for their biodegradability [8].  

Biobased polymers can be further subdivided into two categories, natural biopolymers and 

synthetic biopolymers [8].   The term, ‘natural biopolymers’ is often used to refer to biobased 

polymers that are found directly in nature such as carbohydrates (starch, cellulose, chitin, agar, 

carrageenan, etc.), lignin, proteins and bacteria-produced polyesters, etc. [8, 10, 11].  Synthetic 

biopolymers are polymers that are not found in nature but are made commercially from 



141 
 

monomers that are found abundantly in nature [8].  Polylactic acid (PLA) and polyamino acids 

(PAA) are examples of synthetic biopolymes that are rapidly becoming mainstream [8].  

Biodegradable polymers normally refer to petroleum-based biodegradable synthetic polymers, 

such as polyvinyl alcohol (PVA), polyglycolic acid (PGA), polycaprolactone (PCL), 

polyethylene oxide (PEO), etc. [8-11].   

Biodegradation is regarded as a process in which the degradation results from the action of 

microorganisms such as bacteria, fungi or algae [12, 13].  Biodegradation can be generally 

divided into two steps [13].  The first step is depolymerization or chain cleavage where the 

polymer chain undergoes backbone scission and fractures into smaller oligomeric fragments with 

the help of enzymes generated by microorganisms.  The second step is mineralization which 

occurs inside the cell in which small oligomeric fragments are converted to biomass, minerals 

and salts, water and gaseous substances such as carbon dioxide under aerobic environments and 

methane under anaerobic environments [13].  Biobased and biodegradable polymers and their 

composites may be broken down by the enzymes secreted by microorganisms.  Once broken 

down to monomeric level, it is used as the carbon source and metabolized by the microorganisms.  

The biodegradation process is chemical in nature but the source of the attacking chemicals 

(enzymes) comes from microorganisms [14-18].  The susceptibility of polymers and their 

composites to microbial attack generally depends on enzyme availability, availability of a site in 

the polymers for enzyme attack, enzyme specificity for that polymer and the presence of 

coenzyme [19].  Biodegradation results in the changes in surface properties since it begins at the 

surface where the microorganisms are present.  Once progressed, it results in loss of strength, 

degradation by enzymes or breakage of backbone chains, subsequent reduction in the average 

molecular weight of polymers and assimilation by microorganisms [12, 13-21].  
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The biodegradation and its mechanism under the effect of microorganisms for different 

polymers and their composites, including poly (butylene succinate) (PBS) and its silicate 

reinforced nanocomposites, PLA and its silica and calcium carbonate reinforced nanocomposites, 

whey protein, soy protein isolate (SPI), PCL, poly (hydroxybutyrate-co-hydroxyvalerate) 

(PHBV), noncrosslinked PVA, etc., have already been extensively studied [1, 2, 3, 8, 12, 22-33].  

Many factors have been shown to influence the biodegradation process, including surface area, 

hydrophilic/hydrophobic properties, chemical structure, molecular weight, crystallinity and 

melting temperature.  Polyesters with side chains and higher melting temperature are less 

assimilated than those without side chains [22-33].  PCL with higher molecular weight degraded 

more slowly than that that with low molecular weight [22-33].  The rate of biodegradation of 

PLA was shown to decrease with an increase in crystallinity since the enzymes mainly attack the 

amorphous domains of polymers [1, 2, 3, 12, 23-26].  Addition of a dispersed phase also has an 

effect on the rate of biodegradation [30-33].  The relative rate of biodegradation for PBS-silica 

nanocomposites was faster than that of neat PBS which was attributed to the relatively low 

crystallinity of PBS in the PBS-silica nanocomposites [30, 31].  It was also observed that 

addition of layered silicate and calcium carbonate increased the rate of biodegradation of PLA 

[32, 33].  Besides, the degradation rate of PLA in compost was observed to decrease with the 

introduction of crosslinks [34].  

PVA is a widely used thermoplastic and biocompatible polymer.  However, unlike most 

petroleum based polymers, it is one of the rare polymers with a carbon-carbon single bond 

backbone that is fully biodegradable in the presence of suitably acclimated microorganisms [1, 2, 

8].  In addition, because of the hydroxyl (-OH) groups on alternating carbon atoms, PVA is 

strongly hydrophilic and soluble in water, which also helps to promote its degradation through 
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hydrolysis [1, 2, 8, 9, 35].  Therefore, both enzymatic and hydrolytic degradations can occur in 

PVA as it absorbs moisture [3].  Nevertheless, degradation of hydrophobic polymers, e.g. 

poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) in compost medium is enzymatic rather than 

hydrolytic and occurs from the surface [2]. 

The first microorganisms capable of assimilating PVA as their sole carbon source were 

isolated from soil samples and identified as Pseudomonas species [2, 9, 28, 29, 36].  Further 

studies confirmed that other aerobic bacteria, such as Alcaligenes and Bacillus, were also active 

in the PVA degradation [9, 27, 36-38].  Fungal strains, such as Aspergillus niger, Pycnoporus 

cinnabarinus, Fusarium and Phanerochaete chrysoporium, have been reported to have the 

ability to change not only the polymer (like PVA) surface from smooth to rough, but even to 

break down the polymer [9, 39, 40].  It was observed that specific microbial strains were able to 

induce a rapid decrease of the viscosity of aqueous culture media containing PVA [9, 27, 36-40].  

It was, therefore, assumed that at least the initial microbial attack should be consistent with a 

random cleavage of the polymer chains.  At the same time, the occurrence of oxidative reactions 

of the tertiary carbon atoms of PVA chains, leading to the formation of hydrolysable β-

hydroxylketone and 1, 3-diketone groups along the polymer backbone, was established.  These 

reactions were catalyzed by specific oxidases and dehydrogenases that were isolated mainly as 

extracellular proteins from different bacterial species [1, 2, 9, 27].  However, biodegradation of 

PVA can not be finished by a single kind of microorganism in a real biodegradative 

environment, instead, it is the combinative process by many microorganisms [36-40].  

PVA has been shown to degrade under different environmental conditions, including aerobic 

composting, soil burial, aqueous media and even anaerobic conditions [27, 41-44].  Among these 

ways of biodegradation, composting is an effective technique to characterize the biodegradation 
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of PVA and other biodegradable polymers and their composites [2].  Composting is defined as an 

exothermic bio-oxidative decomposition of organic materials by indigenous microorganisms in a 

controlled moist and warm aerobic environment leading to the production of ‘compost’, a 

mixture of carbon dioxide, water, minerals and a stabilized organic matter [28, 45].  As the 

compost pile becomes active, a succession of mesophilic and thermophilic microorganisms 

secrete depolymerase enzymes.  These enzymes attack the substrate as nutrient in the presence of 

optimal moisture, temperature and nutrients [28, 45].  This being an exothermic process causes 

the temperature to rise above the ambient temperature of 23
o
C.  If the temperature increases to 

40-45
o
C, the mesophilic bacteria, actinomycetes and fungi give way to thermophilic organisms 

and if it reaches 70-75
o
C, the microbial activity is drastically reduced resulting in cooling down 

of the material and eventual maturity [28, 45].  It has been reported that hydrolytic degradation 

can occur in some polymers with high moisture sensitivity under the slightly acidic pH 

conditions [2, 3, 28, 29].   

In this study, typical composting technique has been utilized to characterize the 

biodegradation of PVA based materials, including PVA, glyoxal crosslinked PVA (GX-PVA), 

malonic acid crosslinked PVA (MX-PVA), MFC-PVA composite and HNT-PVA composite.  

Various characterization methods, including scanning electron microscopy (SEM), attenuated 

total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), differential scanning 

calorimetry (DSC) and sol-gel analysis were used.  Weight loss was also monitored to 

characterize the extent of biodegradation.  
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6.3 Materials and methods 

6.3.1 Materials 

PVA powder (Mw 31,000-50,000, 98-99% hydrolyzed), glyoxal solution (25 wt% solution), 

MA powder and Tween
®
 80 (non-ionic surfactant) were purchased from Sigma-Aldrich, St. 

Louis, MO.  Phosphoric acid (85 wt% solution in water) was purchased from Mallinckrodt Baker, 

Phillipsburg, NJ.  MFC in water (KY-100G) was obtained from Daicel Chemical Industries, 

Japan.  HNTs in unprocessed raw form were obtained from Nanoclays and Technology Inc, Utah 

(Division of Atlas Mining).  Composting chicken manure was obtained from Poultry Research 

Farm, Cornell University, Ithaca, NY.  Composting sawdust (Fine Pine Shavings) was purchased 

from Tractor Supply Company, Ithaca, NY.  

6.3.2 Specimen preparation 

6.3.2.1 Preparation of PVA, GX-PVA and MX-PVA 

PVA powder was added to the deionized water at a weight ratio of 1:9 to form PVA solution 

which was kept in a water bath at 80
o
C and stirred for 30 min.  Glyoxal solution and MA powder 

were then added separately, to PVA solutions.  The glyoxal:PVA weight ratio was 3:100 and 

MA:PVA weight ratio was 10:100 [6, 7].  The pH of both mixtures was adjusted to 1 using 

phosphoric acid.  Both mixtures were stirred at 90
o
C for 1 hr to precure.  The precured mixtures 

were then cast on Teflon
®
 coated glass plates and slowly dried in an air circulating oven at 40

o
C 

to form precured crosslinked PVA sheets.  The precured crosslinked PVA sheets were further hot 

pressed in a Carver hot press (model 3891) at 100
o
C under a pressure of 0.2 MPa for 60 min to 

form cured crosslinked PVA sheets.  Acetal linkage are expected to from between hydroxyl 

groups of PVA and carbonyl groups of glyoxal at high temperature during the hot pressing, while 

the ester linkages are expected to form between hydroxyl group of PVA and carboxylic groups 
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of MA at high temperature during the hot pressing [6, 7, 46, 47].  The MA crosslinked (cured) 

PVA was then immersed into deionized water at RT for 12 hr in order to remove phosphoric acid 

and remaining unreacted MA.  Cured GX-PVA sheets were not treated by water.   The specimens 

were then dried at 40
o
C to form final glyoxal and MX-PVA sheets.  The PVA was prepared by 

casting PVA solution without the addition of glyoxal or MA as control, for comparison.  

Average thicknesses of the sheets were approximately 0.2 mm.  

6.3.2.2 Preparation of MFC-PVA and HNT-PVA composites 

MFC in water and HNT powder were initially prepared into MFC suspension and 

individualized HNT dispersion, respectively, for fabrication of composites, based on our 

previous reports [6, 7].  Briefly, the MFC was added into deionized water at a weight ratio of 

1:199.  The mixture was stirred using high speed mechanical stirrer (Polymix
®
, PX-SR 90 D, 

Kinematica Inc., Bohemia, NY) at 90
o
C and 1000 rpm for 1 hr and followed by ultrasonication 

(Branson Ultrasonics, Model 2510, Mumbai, India) at 65
o
C for 1 hr in order to individualize the 

fibrils as much as possible and form MFC suspension (0.5% MFC by wt).  HNT powder was 

initially added into deionized water at a weight ratio of 1:49.  Tween
®

 80 (HNT:Tween
®
 80 

(w/w)=10:1) was then added into the mixture, as non-ionic surfactant, to assist in individualizing 

the HNTs.  The pH value of the mixture was adjusted to 10 using NaOH solution, to further 

avoid clustering of HNTs [48].  The mixture (at pH=10) was stirred using a mechanical stirrer at 

90
o
C and 1000 rpm for 1 hr and followed by ultrasonication at 65

o
C for 1 hr to form original 

HNT dispersion.  The original HNT dispersion was kept standing for 2 days until it was 

stabilized.  The supernatant of the HNT dispersion was used as final individualized HNT 

dispersion while the solution at the bottom with HNT deposition was removed.  The HNT 

content loading in the final individualized HNT dispersion was 0.5% by wt. 
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The PVA solution (10% by wt) was then added to the MFC suspension and the final 

individualized HNT dispersion, separately, at desired weight ratios.  The MFC-PVA solution and 

HNT-PVA solution mixtures were stirred at 90
o
C for 1 hr and ultrasonicated at 65

o
C for 1 hr.  

Both mixtures were cast on Teflon
®
 glass plate and slowly dried in an oven at 40

o
C to form 

MFC-PVA (10% MFC content, by wt) and HNT-PVA composite sheets (10 HNT loading, by wt, 

in the composites).  The MFC-PVA and HNT-PVA composites were hot pressed at 100
o
C and 

0.2 MPa for 60 min to form the final composites with smooth surfaces and thicknesses of about 

0.2 mm. 

6.3.3 Composting set-up 

The composting medium was prepared by blending chicken manure (droppings) and sawdust 

in the ratio 1:1 (w/w) to obtain a C/N ratio of 50/50 [28].  Organic matter, sawdust, was added to 

increase the C/N ratio to achieve the optimum degradation of organic carbon and retention of 

nitrogen through microbial biomass formation.  One 94.5 L plastic container was concentrically 

placed inside another 121 L plastic container.  Wooden spacers were placed at the bottom of the 

outer cylinder to maintain uniform spacing of about 75 mm between the two containers.  The 

inside container had circular holes on its wall for improved air circulation.  The walls of the outer 

cylinder were covered with 50 mm thick insulating plastic foam to reduce the heat loss from the 

surface.  This helped in maintaining the necessary temperature inside the composting unit [2, 3, 

28].  

All types of composites were dried in an oven at 105
o
C for 12 hr and then placed in porous 

non-woven polypropylene (NPP) bags, which were then placed in the compost mix for microbial 

degradation.  The NPP bags facilitated easy retrieval of the buried sheet specimens and its open 

structure allowed moisture, air and microorganism to move in and out freely during composting.  
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The composting conditions such as moisture, temperature, pH were monitored periodically.  The 

moisture content of the compost mix was maintained at 50% by adding water initially and 

periodically.  The temperature of the compost mix was maintained at 32
o
C (in mesophilic phase) 

throughout the composting.  This assured that the degradation was primarily attributed to the 

activity of mesophilic microorganisms, actinomycetes and fungi.  The pH of the compost was 

measured to be acidic in the range of 5.5-6.0 during composting.  During 120 days of 

composting, the specimens were retrieved at different time intervals, including 30, 45, 60, 75, 90 

and 120 days of composting.  These specimens at different stages of composting were dried in an 

oven at 105
o
C for 12 hr again and then characterized for various properties [2, 3, 28].  

6.3.4 Characterization 

6.3.4.1 Surface characterization during composting  

The PVA, GX-PVA, MX-PVA and MFC-PVA and HNT-PVA composite specimens during 

the composting were sputter coated with gold to prevent charging and improve the image 

contrast.  Their surface topographies were observed with scanning electron microscope (SEM 

Leica 440, Leica Microsystems, Cambridge, UK) at an accelerating voltage of 15 kV.   

6.3.4.2. Weight loss 

All the specimens in the study were dried in an air-circulating oven at 105
o
C for 12 hr and 

then weighed using a microbalance.  The percent weight (wt) loss was calculated using the ratio 

of lost wt to original wt of the corresponding specimen. 

6.3.4.3 Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy 

Chemical analysis of all the above mentioned specimens was carried out using an FTIR 

spectrophotometer (Nicolet Magna-IR 560, Thermo Scientific, Waltham, MA) in attenuated total 

reflection (ATR) mode using a split pea accessory.  Spectra, averaged over 64 scans, were taken 
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in the range of 4000-800 cm
-1

 wavenumber at a resolution of 4 cm
-1

.  All the specimens were 

dried prior to conducting the ATR-FTIR spectroscopy.   

6.3.4.4 Differential scanning calorimetry 

Differential scanning calorimetry (DSC, Model Q2000, TA Instrument, New Castle, DE) was 

used to analyze the glass transition temperature (Tg), melting temperature (Tm), enthalpy of 

fusion (ΔHf) and crystallinity of all the above mentioned specimens.  All the specimens were 

dried in an oven at 105
o
C for 12 hr prior to conducting the test.  All DSC analyses were 

performed under a nitrogen atmosphere by keeping the flow rate of 50 ml/min, between -20 and 

250
o
C and at a scanning rate of 10

o
C/min. 

6.3.4.5 Sol-gel analysis of the resins 

PVA, GX-PVA and MX-PVA specimens taken out and after specific composting periods and 

fully dried at 105
o
C for 12 hr prior to conducting the sol-gel test.  The specimens were weighed 

to obtain their initial dry wt and then immersed in distilled water in 150 mL glass bottles.  The 

glass bottles with the specimens were then placed on a shaker table (MAXQ 4450, Thermo 

Scientific, Waltham, MA) maintained at 80
o
C and 150 rpm for about 2 hr until the control 

(noncrosslinked) PVA was completely dissolved.  The remaining solid contents for the 

crosslinked specimens were then washed three times with distilled water and filtered using a 

Whatman
®
 filter paper (Number 4, 20-25 µm pore size) to obtain final residues.  The water 

soluble part (sol) and particles smaller than 25 µm were removed during filtration.  The final 

residues of the GX-PVA and MX-PVA specimens were dried at 105
o
C for 12 hr to obtain their 

dry wt (gel).  Ratios of the dry gel wt of the crosslinked PVA to their corresponding initial dry wt 

were used to determine the PVA gel (crosslinked) percentages.   
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6.3.4.6 Engery dispersive X-ray analysis 

The elemental compostion of crystals observed on the surface of GX-PVA and MX-PVA 

specimens were analyzed by energy dispersive X-ray technique (EDX, Bruker AXS 

Microanalysis GmbH Berlin, Germany) with primary enegy of 9 KeV with 90-second scans.   

6.4 Results and discussion 

6.4.1 Surface characterization (SEM and EDX) during degradation 

Typical SEM photomicrographs showing the surface characteristics of PVA (control), GX-

PVA, MX-PVA and MFC-PVA (10 wt% MFC content) and HNT-PVA composites (10 wt% 

HNTs loading) as a function of composting days are presented in Figures 6.1, 6.2, 6.3, 6.4 and 

6.5, respectively. 

As seen in Figure 6.1 (A), the control PVA specimens showed a relatively clean and smooth 

surface before composting.  After 30 days of composting no significant difference was observed 

on its surface topography (Figure 6.1 (B)).  However, some traces were obvious on the surface of 

the resin after 45 days of composting (Figure 6.1 (C)).  These traces, branched filamentous 

structures, are known as fungal hyphae [49, 50].  In most fungi, hyphae are the main mode of 

vegetative growth.  In the present case these were thought to be generated when the composting 

was in the mesophilic phase confirming earlier studies [49, 50].  The number of fungal hyphae 

on the resin kept increasing after 60 days and 75 days of composting shown in (Figure 6.1 (D)) 

and (Figure 6.1 (E)), respectively, and even crisscrossed with each other.  Some obvious grooves 

along with more fungal hyphae were observed on the surfaces of control PVA specimens after 90 

days of composting indicating deeper biodegradation of the specimens (Figure 6.1 (F)).  Fungal 

hyphae and deeper cracks spread everywhere on the surface of PVA specimen that resulted in 

specimens breaking down into many pieces after 120 days of composting (Figure 6.1 (G)). 
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In the case of GX-PVA, a different sequence of biodegradation was observed.  As seen in 

Figure 6.2 (A), the GX-PVA specimens also showed a relatively smooth surface before 

composting.  After 30 days of composting, surface of the resin began to get rougher but had a 

layer with crystal-like elements (Figure 6.2 (B)).  This indicates that residual catalyst phosphoric 

acid had leached out and crystalized on the surface during composting [49].  The presence of 

residual phosphoric acid and possibly its salts on the surface were confirmed using energy-

dispersive X-ray (EDX) analysis which showed a strong peak for phosphrous.  After 45 days of 

composting, the surface roughness of the resin increased as the thickness of that crystal layer 

increased as well (Figure 6.2 (C)).  The crystalline structure of the layer became more obvious on 

the surface of the resin after 60 days of composting (Figure 6.2 (D)).  The crystal layer spread all 

over the surface of the specimen along with some grooves after 75 days of composting (Figure 

6.2 (E)).  After 90 days of composting, some grooves became more obvious and deeper 

indicating deep biodegradation of GX-PVA (Figure 6.2 (F)).  While the specimen broke down in 

to many pieces after 120 days of composting, some deep cracks were seen on the remaining 

surface (Figure 6.2 (G)).  Fungal hyphae were not seen in during composting.  However, it is 

possible that they were covered by thick crystalline phosphoric acid or salt layer. 

The MX-PVA specimens showed a relatively clean smooth surface before composting as 

seen in Figure 6.3 (A).  After 30 and 45 days of composting, no obvious changes except some 

small crystals were observed on surface of the resin (Figure 6.3 (B) and 6.3 (C)).  These crystals, 

as mentioned earlier, resulted from leached residual phosphoric acid and/or its salts.  This was 

confirmed through EDX analysis which showed a strong peak for phosphrous.  However, the 

amount was much less than GX-PVA [51].  After composting for 60 days or more, crystals were 

seen on specimen surfaces (Figure 6.3 (D)).  This again indicates the possibility of residual 
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catalyst phosphoric acid leaching out during composting [51].  The amount of residual 

phosphoric acid was less on the surface of MX-PVA than on the surface of GX-PVA.  One 

obvious reason for this is that less phosphoric acid was needed in fabrication of MX-PVA since 

MA also helped lowering the pH to 1 used for crosslinking.  Another reason is that the MA 

crosslinked specimens were treated by water to partially remove some phosphoric acid after 

crosslinking.  After 75 days of composting, many fungal hyphae appeared on the specimen 

surfaces (Figure 6.3 (E)) and after 90 days of composting a few grooves were seen along with 

more fungal hyphae (Figure 6.3 (F)).  Some deep cracks were also seen on the surface and the 

specimen broke down to many pieces after 120 days of composting which indicates deep 

biodegradation of MA-PVA (Figure 6.3 (G)).   

It can be clearly seen from Figure 6.4 (A) that the MFC fibrils are randomly organized but 

uniformly distributed on the specimen surface.  It may be assumed that the MFC fibrils are 

uniformly distributed within the MFC-PVA composite.  After 30 days of composting, no 

significant difference can be seen in the composite surface (Figure 6.4 (B)).  However, some 

fungal hyphae were observed on the surface of the composite after 45 days of composting 

(Figure 6.4 (C)).  The number of fungal hyphae increased significantly after 60 days of 

composting (Figure 6.4 (D)) and some non-obvious grooves were also observed on surfaces of 

the specimens after 75 days of composting (Figure 6.4 (E)).   After 90 days of composting, the 

grooves became bigger and deeper resulting in the specimen breaking apart in to smaller 

fragments (Figure 6.4 (F)).  Some deeper cracks were seen on the surface and the specimen 

finally broke down into many smaller pieces after 120 days of composting (Figure 6.4 (G)).   

The HNT-PVA composites (Figure 6.5 (A)) also had relatively clean and smooth surfaces 

prior to composting.  After 30 days of composting, no obvious change was observed on surface 
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of the specimens (Figure 6.5 (B)).  Few spots and even cracks were observed on the specimen 

surface after 45 days of composting (Figure 6.5 (C)).  However, as in most cases, some fungal 

hyphae were observed on the specimen surfaces after 60 days of composting (Figure 6.5 (D)).  

The number of fungal hyphae increased significantly and they were randomly distributed on 

surface of the composite after 75 days of composting (Figure 6.5 (E)).  After 90 days of 

composting deeper grooves were observed which lead the specimen to break up (Figure 6.5 (F)).  

Some deeper cracks were seen on the surface and the specimen finally broke down into many 

pieces after 120 days of composting (Figure 6.5 (G)).   

In summary, the SEM results indicated that the fungi played an important role during 

biodegradation of the PVA based materials.  The fungi hyphae were seen to spread over the 

surface of the PVA based materials initiating the degradation process during composting [39-40].    

In addition, surface roughness of specimens significantly increased with the composting time, 

especially after 75 days of composting.  While the roughness causes the specimens to break into 

pieces, it can also expedite the biodegradation rate of the specimens by providing additional 

surface for the fungi to attack. 
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Figure 6.1 SEM photomicrographs showing effect of composting on the microscopic surface 

characteristics on PVA as a function of composting time 
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Figure 6.2 SEM photomicrographs showing effect of composting on the microscopic surface 

characteristics on GX-PVA as a function of composting time 
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Figure 6.3 SEM photomicrographs showing effect of composting on the microscopic surface 

characteristics on MX-PVA as a function of composting time 
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                                                                       120 days 

Figure 6.4 SEM photomicrographs showing effect of composting on the microscopic surface 

characteristics on MFC-PVA composites (10 wt% MFC content) as a function of composting 

time 

 

B A 

D C 

E F 

G 



158 
 

     
                                        0 days                                                30 days 

     
                                        45 days                                               60 days 

    
                                        75 days                                                 90 days 

 
120 days 

Figure 6.5 SEM photomicrographs showing effect of composting on the microscopic surface 

characteristics on HNT-PVA composites (10 wt% HNTs loading) as a function of composting 

time 
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6.4.2 Weight loss during composting 

The effect of composting time on the weight loss of the PVA, GX-PVA, MX-PVA and 

MFC-PVA and HNT-PVA composite specimens is presented in Figure 6.6.  The data in Figure 

6.6 indicate, the weight loss for PVA specimen is 0.2, 2.1, 2.7, 3.2, 5.2 and 20.1% after 30, 45, 

60, 75, 90 and 120 days of composting, respectively.  The weight loss change was especially 

significant between 90 and 120 days of composting.  Such rapid weight loss after 90 days of 

composting has beed recorded by other researchers [8].  As mentioned earlier, the specimens 

break into many pieces providing larger and larger areas for the fungi to be active.  However, 

GX-PVA specimens showed a relatively higher weight loss at the beginning.  The weight loss for 

GX-PVA specimens was 3.2% after 30 days of composting.  This, however, was found to be due 

to the leaching of residual catalyst phosphoric acid present in the resin.  Once the phosphoric 

acid was leached out the rate of weight loss of gloxal crosslinked PVA specimens decreased and 

was slightly lower than control PVA specimens, although the total weight loss was higher.  After 

120 days of composting, the weight loss of GX-PVA specimens only reached to 15.1%, lower 

than control PVA specimens.  This is because gloxal crosslinking, though partial, decreased 

biodegradation rate as has been reported earlier [6, 34, 52].  The weight loss for MX-PVA 

specimens reached 0.8% after 30 days of composting.  While this was higher than that obtained 

for PVA specimens, it was lower than GX-PVA specimens.  This, again, is due to the leaching 

out of residual catalyst phosphoric acid present in the resin.  As mentioned earlier, much lower 

amount of phosphoric acid was used in the case of MX-PVA specimens since MA was able to 

reduce the pH.  Once the phosphoric acid had leached out, the biodegradation rate of MX-PVA 

specimens was found to decrease and was lower than both control PVA and GX-PVA specimens.  

The weight losses for MX-PVA specimens were 0.9, 1.0, 1.1, 2.1 and 10.1% respectively after 
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45, 60, 75, 90 and 120 days of composting.  This is because MA being a better crosslinking agent 

compared to glyoxal, results in higher crosslink percentage and hence shows even lower 

biodegradation rate [6, 7, 34].  This conclusion was further confirmed by sol-gel results which 

have been described later in section 6.4.5.  It indicates that gel percentage of MX-PVA 

specimens (90.3%) is much higher than GX-PVA specimens (7.0%).  For MFC-PVA composites 

and HNT-PVA composites, the initial weight losses were close to those of PVA specimens, both 

were 0.1% after 30 days of composting.  However, weight losses for MFC-PVA and HNT-PVA 

composites were lower than PVA after 45 days (1.1% and 0.9%), 60 days (1.4% and 1.3%), 75 

days (1.8% and 1.8%), 90 days (3.1% and 3.0%) and 120 days (11.8% and 11.5%) of 

composting, respectively.  These results contradict with some of the previous reports that 

addition of dispersed phase can increase the biodegradation rate of polymers [30-33].  However, 

in the present case, it is because MFC (10% by weight in the composite) is highly crystalline and 

does crack bridging that delays breaking apart of the PVA film.  In the case of HNTs (10% by 

weight in the composite) they themselves do not degrade and influence the process in 

composting.  From Figure 6.6, sharp increase in weight losses can be observed for all specimens 

from 75 to 120 days of composting.  This confirms the SEM results which indicated that most of 

the specimens started to break down after 75 days of composting.  The increased roughness of 

the surfaces of specimens may also be responsible for the sharp weight loss with composting 

time.  This is because the roughness provides additional surface for the fungi to act.  It can also 

facilitate the microorganisms to stay and propagate on the specimens and expedite the 

biodegradation. 
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Figure 6.6 Effect of composting time on the weight loss (%) of PVA based materials 

Symbols: ♦, PVA; ■, GX-PVA; ×, MX-PVA; ●, MFC-PVA composite; ▲, HNT-PVA 

composite 

 

6.4.3 ATR-FTIR spectroscopy 

The effect of composting time on the PVA specimen surface chemistry by ATR-FTIR is 

presented in Figure 6.7, where spectra (a), (b) and (c) represent PVA specimens after 0, 60 and 

120 days of composting, respectively.  A broad band at 3500-3200 cm
-1

 wavenumber seen in all 

three spectra is a result of the O-H stretching vibration resulting from the strong intra-molecular 

and inter-molecular hydrogen bonding in PVA [53-55].  The absorption band observed between 

3000 and 2820 cm
-1

 wavenumbers is due to the stretching of the aliphatic C-H bonds [54].  The 

absorbance intensity ratio of O-H to C-H bands showed a decrease from 1.81 in spectrum (a) for 

control PVA specimen compared to 1.32 for spectrum (b) (60 days of composting) and 1.11 for 

spectrum (c) (120 days of composting).  The lower ratio clearly indicates a reduction in the O-H 

groups and confirms degradation of PVA on surface of the specimen with composting time as 

explained by Chiellini et al. [9].  Absorption at 1750-1600 cm
-1

 (stretching of C=O) for PVA 

without composting (spectrum (a)) was weak (intensity ratio of C=O to C-H = 0.51) and 

indicates the presence of carbonyl (C=O) in the resin from the nonhydrolyzed acetate group 
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remaining in the PVA (98-99% hydrolyzed), confirming the earlier results obtained by Gohil et al. 

[53] and Mansur et al. [54].  In the ATR-FTIR spectrum (b), however, a slightly sharper 

absorption (intensity ratio of C=O to C-H = 0.55) observed at 1750-1600 cm
-1

 wavenumber 

indicates presence of more C=O in the PVA after 60 days composting.  This confirms PVA 

biodegradation that results in the formation of β-hydroxylketone and 1, 3-diketone groups by a 

random endocleavage of the polymer chains with the help of enzymes, as observed by others [9, 

36, 37].  In the ATR-FTIR spectrum (c), a much higher absorption (intensity ratio of C=O to C-H 

= 1.13) observed at 1750-1600 cm
-1

 wavenumber indicates presence of much more C=O in the 

PVA after 120 days of composting.  This is as expected due to continued biodegradation that 

proceeds with composting time.  These results also indicate formation of  ketone groups during 

composting based on the decreased absorption intensity for O-H stretching vibration combined 

with the increased intensity of bands for C=O stretching vibrations.   

 

Figure 6.7 ATR-FTIR spectra of PVA after 0 days (a), 60 days (b) and 120 days (c) of 

composting time 

 

The effect of composting time on the GX-PVA specimen surface chemistry by ATR-FTIR is 

presented in Figure 6.8, where spectra (a), (b) and (c) represent GX-PVA after 0, 60 and 120 

(b)  

(c)  

(a)  
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days of composting, respectively.  Two broad bands at 3500-3200 cm
-1

 and 3000-2820 cm
-1

 

wavenumber are the results of the O-H stretching vibration resulting from the strong intra-

molecular and inter-molecular hydrogen bonding and the stretching of aliphatic C-H bonds, 

respectively [53-55].  For spectrum (a), the two bands are separated well, and the absorbance 

intensity ratio of bands for O-H to C-H is 1.28, which is lower than that obtained for pure PVA, 

as can be expected, due to crosslinking through which the O-H groups are consumed.  However, 

for spectra (b) and (c), no obvious separation was observed between these two bands.  This is 

because of the residual phosphoric acid (catalyst) and crosslinker (glyoxal) leaching out during 

composting.  In addition, the absorbance intensity ratio of O-H to C-H bands decreased to 1.11 

and 0.87, respectively, for spectra (b) and (c).  The lower absorption indicating a reduction in the 

O-H groups confirms degradation of PVA with composting time.  Absorption at 1750-1600 cm
-1

 

(stretching of C=O) for non-composted GX-PVA (spectrum (a)) was weak (intensity ratio of 

C=O to C-H = 0.63) and indicates the presence of carbonyl (C=O) in the specimens from 

residual unreacted aldehyde groups from glyoxal and the nonhydrolyzed acetate groups in PVA 

(98-99% hydrolyzed).  In the ATR-FTIR spectra (b), however, a much sharper absorption 

(intensity ratio of C=O to C-H = 1.09) observed at 1750-1600 cm
-1

 wavenumber indicates 

presence of larger number of C=O groups in the GX-PVA after 60 days composting.  The 

increase of intensity is due to the ketone groups obtained from the biodegradation of GX-PVA [1, 

2, 9, 27].  In the ATR-FTIR spectrum (c), the intensity ratio of C=O to C-H observed at 1750-

1600 cm
-1

 wavenumber is 1.08, almost similar with that in spectrum (b).  As glyxoal has been 

reported as a readily biodegradable chemical and can be degraded during composting [52].  

Therefore, more ketone groups generated from degrading GX-PVA helped to maintain the 

intensity of C=O in spectrum (c).  Overall, the ATR-FTIR results confirm the biodegradation of 
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GX-PVA.   

 

Figure 6.8 ATR-FTIR spectra of GX-PVA after 0 days (a), 60 days (b) and 120 days (c) of 

composting time 

 

The effect of composting time on the MX-PVA specimen surface chemistry by ATR-FTIR is 

presented in Figure 6.9, where spectra (a), (b) and (c) are, respectively, representing 

corresponding MX-PVA after 0, 60 and 120 days of composting.  As seen in spectra (a), (b) and 

(c), during composting, the absorbance intensity ratio for O-H to C-H bands showed a decrease 

from 1.42 in spectrum (a) for control MX-PVA compared to 1.37 for spectrum (b) (60 days of 

composting) and 1.22 for spectrum (c) (120 days of composting).  The lower absorption indicates 

a reduction in the O-H groups and confirms degradation of MX-PVA on surface of the specimen 

with composting time.  Absorption at 1750-1600 cm
-1

 (stretching of C=O) for MX-PVA without 

composting (spectrum (a)) was relatively weak (intensity ratio of C=O to C-H = 0.46) and 

indicates the presence of carbonyl (C=O) in the resin from residual MA and the nonhydrolyzed 

acetate group remaining in the PVA (98-99% hydrolyzed) [53, 54].  In the ATR-FTIR spectrum 

(b), however, a slightly sharper absorption (intensity ratio of C=O to C-H = 0.50) observed at 

1750-1600 cm
-1

 wavenumber indicates presence of higher number of C=O groups in the MX-

(b)  
(c)  

(a) 
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PVA after 60 days composting.  It confirms the biodegradation of MX-PVA and formation of β-

hydroxylketone and 1, 3-diketone groups by a random cleavage of the polymer chains with the 

help of enzymes shown by others [9, 36, 37].  In the ATR-FTIR spectrum (c), a sharper 

absorption (intensity ratio of C=O to C-H = 0.62) observed at 1750-1600 cm
-1

 wavenumber 

indicates presence of much more C=O in the MX-PVA after 120 days of composting.  This 

indicates that with composting time as degradation proceeded, more ketone groups were 

generated.  Overall, the ATR-FTIR results confirm the biodegradation of MX-PVA, though the 

change is not as significant as pure PVA or GX-PVA, due to its high gel (crosslinked) percentage.    

 

Figure 6.9 ATR-FTIR spectra of MX-PVA after 0 days (a), 60 days (b) and 120 days (c) of 

composting time 

 

The effects of composting time on the MFC-PVA composite and HNT-PVA composite were 

identical to pure with PVA based on ATR-FTIR spectra where only PVA degraded leaving MFC 

and HNT intact, within the 120 days of composting. 

6.4.4 DSC study 

The melting temperatures (Tm), associated enthalpies (ΔHf) of fusion and corresponding 

crystallinity observed in the DSC scans for PVA based resins and composites after different 

(c)  
(b)  
(a)  
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composting times (up to 120 days) are presented in Table 6.1.  It is interesting to note that both 

Tm and ΔHf for all specimens, including PVA, GX-PVA, MX-PVA, MFC-PVA and HNT-PVA 

composite specimens increased quickly with the composting time the initial 45 days of 

composting.  The percent crystallinity for all the specimens were calculated based on 138.6 J/g 

for 100% crystalline PVA and are shown in Table 6.1 [56-59].  After 45 days of composting, Tm 

and crystallinity for PVA increased from 196.1
o
C and 44.8% to 210.1

o
C and 53.6%, for GX-

PVA increased from 175.6
o
C and 39.9% to 200.8

o
C and 49.5%, for MX-PVA increased from 

188.2
o
C and 33.8% to 193

o
C and 50.0%, for MFC-PVA composite increased from 198.6

o
C and 

37.2% to 208.3
o
C and 50.4%, for HNT-PVA composite increased from 199.7

o
C and 40.0 to 

210.1
o
C and 47.6%.  The increase of crystallinity is a result of two main factors.  The first, as 

mentioned earlier, is that the enzymes from microbes (fungi) attack the amorphous domain first 

and digest it away.  As the amorphous fraction decreases, the percentage of crystalline domains 

in the remaining resin increases with composting time [3].  In addition, hydrolytic degradation 

also occurs primarily in the amorphous region which again contributes to the increase in 

crystallinity [2, 3, 60, 61].  Similar increase in crystallinty has been shown to occur during the 

degradation of polyester fibers and soy protein isolate films [2, 3, 57, 58].  The second factor for 

the increase of crystallinity is that the PVA chain segments remaining in the amorphous regions 

acquire more chain mobility during composting, both because of moisture absorption as well as 

reduced molecular weight and thus enable them to be incorporated into the existing crystals [60-

62].  This process, involving an increase in the density due to higher crystallinity, is called 

chemicrystallization [60-62]. The increase in the Tm and ΔHf also indicates possible lamella 

thickening linked to the chemicrystallization process [60-62].  Changes in Tm and ΔHf values for 

all the specimens, however, were less significant from the results between 45 and 75 days of 
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composting.  Both Tm and ΔHf increased quickly again between the 75 days to 90 days of 

composting.  This indicates more amorphous PVA was biodegraded or incorporated into existing 

crystals during this period which has been confirmed the observations from SEM and weight loss 

and explained earlier.  However, both Tm and ΔHf for all the specimens remained constant or 

even slightly decresed between the 90 days to 120 days of composting, though all the specimens 

degraded significantly during this period.  This is very likely that enzymes and moisture 

affecting the crystalline regions of the specimens and starting to degrade it [63].  

Based on the results presented in Table 6.1 and results obtained in our previous research, 

following conclusions may be made [6, 7].  After glyoxal crosslinking, the Tm, ΔHf and 

crystallinity values decreased from 196.1
o
C, 62.1 J/g and 44.8% for control PVA to 175.6, 55.3 

J/g and 39.9% whereas after MA crosslinking, these values decreased to 188.2, 46.9 J/g and 

33.8%, respectively, prior to composting.  The lower ΔHf and crystallinity after crosslinking is 

quite common as the crosslinked polymer cannot crystallize and has been observed in most 

polymers [6, 7, 53, 64-66].  The Tm for the MFC-PVA composite was observed at 198.6
o
C which 

is close to that obtained for PVA.  No Tm for cellulose can be observed since it degrades prior to 

melting [67, 68].  As a result, the DSC thermogram mainly represented the PVA behavior.  The 

ΔHf and the crystallinity of the PVA in MFC-PVA composite were 51.6 J/g and 37.2%, 

respectively, which were much lower than 62.1 J/g and 44.8%, respectively, obtained for control 

PVA.  It is likely that the nano- and micro-fibrils in the MFC can inhibit the crystallization of 

PVA, as they are well dispersed.  The fibrils can suppress the free movement of polymeric chains 

restricting their ability to fold and thus lower the crystallinity [69].  The Tm for the HNT-PVA 

composite was observed at 199.7
o
C, about 3.6 

o
C higher than that of control PVA.  This suggests 

that HNTs have the ability to lead to slightly increase Tm of polymers [70].  The ΔHf and the 
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crystallinity of the PVA in HNT-PVA composite (10% loading) were 55.4 J/g and 40.0%, 

respectively, which were much lower than 62.1 J/g and 44.8%, respectively, obtained for control 

PVA.  It is likely that the HNTs can inhibit the crystallization of PVA, as they are well dispersed 

[71].   

Table 6.1 Effect of composting time on the melting temperature and melting enthalpy of PVA 

based resins and composites  

 

Composting 

time 

(Days)/Properties 

PVA GX-PVA MX-PVA MFC-PVA 

composite 

(10% MFC) 

HNT-PVA 

composite 

(10% HNTs) 

0 /  Tm (
o
C) 196.1 175.6 188.2 198.6 199.7 

    Enthalpy (J/g) 62.1 55.3 46.9 51.6 55.4 

   Crystalinity (%) 44.8 39.9 33.8 37.2 40.0 

      

30 / Tm (
o
C) 206.9 199.2 192.4 204.8 208.2 

     Enthalpy (J/g) 68.6 64.6 47.9 58.1 61.2 

   Crystalinity (%) 49.5 46.6 34.6 41.9 44.3 

      

45 / Tm (
o
C) 210.1 200.8 193.0 208.3 210.1 

     Enthalpy (J/g) 74.3 68.6 50.0 69.8 66.0 

  Crystallinity (%) 53.6 49.5 36.1 50.4 47.6 

      

60 / Tm (
o
C) 210.8 199.2 192.7 209.9 211.7 

     Enthalpy (J/g) 76.6 70.3 50.1 70.0 66.5 

  Crystallinity (%) 55.3 50.7 36.1 50.5 48.0 

      

75 / Tm (
o
C) 210.6 202.4 193.1 210.6 211.4 

    Enthalpy (J/g) 76.8 69.7 50.4 68.4 65.6 

 Crystallinity (%) 55.4 50.3 36.4 49.4 47.3 

      

90 / Tm (
o
C) 212.5 205.9 194.0 211.5 213.0 

    Enthalpy (J/g) 81.0 74.1 54.7 72.0 69.8 

 Crystallinity (%) 58.4 53.5 39.0 51.9 50.4 

      

120 / Tm (
o
C) 211.8 205.3 195.0 211.0 212.6 

Enthalpy (J/g) 81.4 72.8 54.3 71.1 69.4 

Crystallinity (%) 58.7 52.5 39.2 51.3 50.1 

      

 

 



169 
 

6.4.5 Sol-gel analysis of PVA based materials 

The gel (crosslinked) percentages for PVA, GX-PVA and MX-PVA specimens after different 

composting times (up to 120 days) are presented in Table 6.2.   

As seen in Table 6.2, the gel percentage before and during composting was 0%, for the 

control PVA specimens.  However, in the case of GX-PVA, the gel percentage slightly increased 

from 7.0% to 7.5% after 30 days of composting.  This initial increase in gel percentage is mostly 

due to preferential leaching out of the non-crosslinked part during the first 30 days of 

composting as can be expected.  Thereafter, gel percentages of the specimen decreased and 

reached 4.6% and 4.4% after 90 days and 120 days of composting respectively.  This indicates 

composting process can break crosslinks and reduce the gel percentage of the specimen, although, 

the process seems to be slow.  In the case of MX-PVA the reduction in gel percentage is similar 

as GX-PVA.  After 30 days of composting, the gel percentage increased to 90.5% from 90.3%.  

Thereafter, gel percentages of the specimen decreased only slightly to 87.9% after 120 days of 

composting.  Slow cleavage/breakage of crosslinks and hence slower degradation may be used 

advantageously to increase the life of the resin or the composite. 
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Table 6.2 Effect of composting time on the gel (%) of PVA, GX-PVA and MX-PVA 

Composting time 

(Days) 

PVA GX-PVA 

 

MX-PVA 

0 0 7.0 90.3 

30 0 7.5 90.5 

45 0 4.9 89.1 

60 0 4.9 88.6 

75 0 5.0 88.5 

90 0 4.6 88.5 

120 0 4.4 87.9 

6.5 Conclusions  

In this study the biodegradation of polyvinyl alcohol (PVA) based materials, crosslinked, 

non-crosslinked and nanocomposites, in a composting medium was characterized.  Chicken 

dropping-based compost medium was used.  The composting process was monitored for up to 

120 days and various techniques, including weight loss, SEM, EDX, ATR-FTIR, DSC, sol-gel 

analysis and EDX were used to characterize the biodegradation.  The results of these analyses 

suggest that biodegradation of PVA based materials in compost medium is mainly by fungal 

means and the enzymes from fungi degraded amorphous regions of the specimens first.  The 

surface roughness of the specimens signicantly increased with the composting time which could 

facilitate microorganism to stay and propagate, acceperating the degradation.  All specimens 

broke up into smaller pieces after 120 days of composting.  The results also showed that 

crosslinking and addition of specific fillers such as high crystalline MFC and nanoclay HNTs can 

decrease the biodegrdation rate.  These results suggest that both crosslinking and addition of 
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suitable fillers may be used to increase the service life of the PVA based biodegradable 

composites.  
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Chapter 7 Suggestions for future research 

 

Biobased and biodegradable polymer nanocomposites are considered part of ‘Clean’ and 

‘Green’ technologies.  They are developed mostly from sustainable resources, rather than 

petroleum, and do not end up in landfills at the end of their life unlike the conventional ones, as 

they can be easily composted.  While they have good mechanical and physical properties, the 

current research is towards to improving their properties further and broadening their 

applications.   

Several biobased and biodegradable polymer nanocomposites have been fabricated and 

characterized in this research [1-5].  Their mechanical, thermal, physical properties have been 

enhanced while at the same time the water resistance has been improved [1-5].  It is envisioned 

that these nanocomposites can replace the traditional non-biodegradable plastic materials in 

many applications, including sports racket frames, ski poles, circuit board, automobile inside 

panels, etc. [1-5].  The biodegradation process and its mechanism for some of these polymer 

nanocomposites have been investigated in this research as well.  The ‘Green Composite’ field is 

still in its infancy and is expected to grow exponentially in the future as the demand for the green 

products grows and petroleum reserves get depleted.  Based on the present research following 

recommendations may be made. 

First, besides soy protein based resin and polyvinyl alcohol (PVA), more biobased and 

biodegradable polymers can be used.  Biobased polymers include cellulose, chitin, agar agar, 

carrageenan, lignin, proteins, bacterial produced polyesters, polylactic acid (PLA) and polyamino 

acids (PAA).  Many of these are inexpensive and available in all parts of the world.  

Biodegradable polymers include polyvinyl alcohol (PVA), polyglycolic acid (PGA), 
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polycaprolactone (PCL), polyethylene oxide (PEO), etc. [6-8].  These biobased and 

biodegradable polymers provide greener choices with varied properties for fabrication of 

polymer nanocomposites.   

Second, as reinforcement and fillers, in addition to bacterial cellulose (BC), microfibrillated 

cellulose (MFC) and halloysite nanotubes (HNTs) used in this research other nanomaterials and 

natural fibers may also be used.  These nanomaterials can be nanoparticles and heteroepitaxial 

core-shell nanomaterials (zero-dimensional nanostructure), nanowhiskers, nanofibers or fibrils, 

nanowires, nanorods, nanotubes and nancables (one-dimensional nanostructure), and thin films 

or sheets such as exfoliated nanoclay (two-dimension nanostructure) [9].  These nanomaterials 

can offer more functionalities for the polymer nancomposites to fit special requirements for 

materials.  For example, polymer nancomposites with nanowires can be prepared with semi-

conductive properties.   

Third, in addition to solvent intercalation, other fabrication approaches may be used.  These 

approaches include in situ polymerization synthesis and melt intercalation, which have special 

advantages for fabricating polymer nancomposites [10-12].  For example, in situ intercalative 

polymerization in the presence of filler provides distinct advantages as compared with other 

nancomposite synthesis techniques and offers possibility to polymerize a large range of 

thermoplastic and thermosetting polymers, handling of gaseous or liquid monomers, handling of 

high-pressure polymerization, and easy control of heat of polymerization owing to dispersion 

medium present in the system [13].  

Fourth, besides glutaraldehyde (GA), glyoxal and malonic acid (MA) used in this research 

more benign crosslinkers can be used to make these nanocomposites truly green.  Sugar 

derivatives with aldehyde or carboxylic groups obtained from oxidation of sugars such as 
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sucrose and glucose are good candidates for ‘green’ crosslinking.  Many such benign 

crosslinkers have already been synthesized in our lab. 

Fifth, detailed interface properties between polymer and nanomaterials should be 

investigated to understand factors controlling the additive/reinforcement-resin interface.  For 

example, Föster resonance energy transfer (FRET) technique and laser scanning confocal 

microscopy (LSCM) are suggested to also jointly apply to reveal the interface between 

nanomaterial and polymer in polymeric nanocomposites [14].  The understanding about interface 

would allow manipulating desired mechanical properties of the nanocomposites. 

Sixth, deeper understanding of biodegradation mechanisms for different biobased and 

biodegradable nanocomposites need to be investigated.  This understanding will provide future 

methods to control the useful life of the products. 
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