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The study of binary neutron star coalescence, one the most energetic classes of events in

the universe, requires calculating the complicated interactions of strong gravity, relativistic

�uids, andmagnetic �elds. The Spectral Einstein Code provides a framework for simulating

the inspiral andmerger of black holes and neutron stars, but its ability tomodel the behavior

of binary neutron stars andmagnetic �elds is a recent development. This work describes the

implementation of an initial data solver for neutron star binaries, a magnetohydrodynamics

module for neutron star and accretion disk evolutions, a pair of basis functions well-

suited to spectral representations of neutron star spacetimes, and a selection of other

improvements to this research code. It also presents the results of early investigations

using these new capabilities, including the e�ects of magnetic �elds on shear instabilities

in di�erentially rotating neutron stars. Such stars may be formed from core-collapse

supernovae or low-mass binary neutron star mergers, and �uid instabilities in galactic

sources can produce gravitational waves observable by detectors in the near future. We

�nd that strong magnetic �elds are capable of suppressing a shear instability, but they also

trigger magnetic instabilities whose e�ects may be just as observable as the original signal.
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PREFACE

Previously published work

Signi�cant portions of this thesis have been submitted for publication in Physical Review D

under the title Magnetic e�ects on the low-T/|W | instability in di�erentially rotating neutron

stars. That work was co-authored with Fatemeh Hossein Nouri, Matthew D. Duez, Francois

Foucart, Lawrence E. Kidder, Christian D. Ott, Mark A. Scheel, Béla Szilágyi, and Saul A.

Teukolsky. A preprint was submitted to the arXiv.org e-print archive on May 9, 2014, and

is available under the identi�er arXiv:1405.2144 [1].

Notation

Physical equations in this work are written in geometrized units where the speed of light c

and the gravitational constant G are set equal to 1. Residual dimensions can be expressed

as powers of mass, for which we often choose the mass of the Sun, M�, as the unit. When

discussing electromagnetic �elds in the context of simulation formalism and stability

analysis, we adopt the Lorentz-Heaviside convention, absorbing a factor of 1/
√
4π into the

de�nition of the magnetic �eld B. However, when presenting physical results, we express

all quantities in CGS–Gaussian units. In particular, BLH � BG/
√
4π.

We denote the Cartesian coordinates of space by x, y, z. The coordinate distance

from the origin is denoted by r ≡
√

x2 + y2 + z2. When cylindrical coordinates are used,

$ ≡
√

x2 + y2 represents the coordinate distance to the z-axis, and φ ≡ tan−1(y/x) de�nes

a point’s azimuthal angle. In spherical coordinates, the polar angle is represented by

θ ≡ cos−1(z/r).

Tensor indices from the beginning of the Latin alphabet (a, b, . . . ) represent spacetime

components without reference to any particular coordinate system, while indices from

xi



the Greek alphabet (µ, ν, . . . ) range from 0 to 3 and correspond to components in our

Cartesian coordinate system of (t , x , y , z). Indices from the middle of the Latin alphabet (i,

j, . . . ) range from 1 to 3 and represent spatial Cartesian components. Spatial vectors may

alternately be typeset in boldface when referred to as a whole.
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1 INTRODUCTION

The study of high-energy astrophysical systems is entering an exciting era. We already

observe events like supernovae, gamma-ray bursts, and binary neutron star inspirals across

the electromagnetic spectrum, from radio waves to X-rays, and even in neutrinos. But the

gravitational wave interferometers coming online in the near future, such as Advanced

LIGO and Advanced Virgo, should provide a brand new way of looking at these events

and others through their gravitational wave emission. Pulsar timing arrays are also poised

to usher in the era of gravitational wave astronomy, though for a di�erent selection of

sources. With both varieties of experiment expecting a �rst detection around 2016, there is

a present need for better theoretical modeling of expected sources to aid in both detection

and subsequent data analysis.

Gravitational waves are a prediction of Einstein’s 1916 theory of general relativity. In

Newton’s classical theory of gravity, two objects may orbit each other inde�nitely, resulting

in completely stable binary systems. General relativity, however, requires that such systems

radiate away their gravitational potential energy in the form of propagating ripples in

spacetime: gravitational waves. We have strong indirect evidence of this emission, most

famously from the decaying orbit of the Hulse–Taylor binary pulsar [2]. Other predictions

of general relativity have been con�rmed as well in the weak �eld regime, where gravity is

weak and velocities are small compared to the speed of light. However, gravitational waves

have yet to be directly detected, and such detections could give us valuable insight into the

behavior of gravity in strong �eld regimes near black holes or during the early universe.

As ripples in spacetime, one of the observational consequences of gravitational waves

is a strain—a relative shortening or lengthening of the distance between two points when

a wave passes through. Laser interferometer observatories like LIGO and Virgo look for

such a strain by monitoring the distance between a pair of mirrors relative to that between

another pair in an orthogonal direction. If one arm of this arrangement contracts while
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the other expands, in an oscillatory fashion, then the resulting signal is consistent with

a gravitational wave. Unfortunately, the expected strain from astrophysical sources is

incredibly small, on the order of 10−22. For LIGO, this means that the change in arm length

is less than 1/1000 the size of a proton. Signals at that level are overwhelmed by noise,

requiring matched �ltering to pull out a detection. In other words, to �nd such a signal,

one has to know exactly what one is looking for to begin with.

Theoretical modeling seeks to remedy this situation by providing templates of expected

signals to search for. While some portions of these templates can be constructed analyti-

cally, the portions sensitive to strong gravity and high velocities can only be provided by

numerical simulations, as Einstein’s equations are highly nonlinear in that regime. When

matter is present, these simulations must also incorporate the complexities of nuclear

physics, magnetic �elds, radiation transport, etc. This additional microphysics signi�cantly

complicates simulations and vastly widens the parameter space of potential systems that

must be studied. On the other hand, when observables are sensitive to these e�ects, there

is that much more we can infer about the astrophysical processes taking place. Determin-

ing the equation of state at nuclear densities is one exciting possibility, as it is currently

an unknown facet of fundamental physics that cannot be probed directly in terrestrial

laboratories.

The Spectral Einstein Code

The Simulating eXtreme Spacetimes1 collaboration focuses on accurate simulations of compact

binary coalescence, supernova collapse, rotating neutron stars, and accretion disks. For

many of these systems, our primary tool is the Spectral Einstein Code (SpEC). Simulations

generally consist of four phases:

1. Choose the parameters of the system.
1http://www.black-holes.org/
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2. Construct the initial data.

3. Evolve the system through the period of interest.

4. Analyze the results.

Constructing initial data consistent with Einstein’s equations requires solving a system

of elliptic partial di�erential equations (PDEs), while its evolution is the solution to a system

of hyperbolic PDEs. Away from the singularity of black holes, functions representing

the curvature of spacetime are expected in general to be smooth. This makes spectral

methods an appealing choice for solving the equations. While �nite di�erence approaches

have been used successfully by a number of groups, spectral methods converge to the

true solution exponentially with resolution, making them more accurate and e�cient for

vacuum spacetimes. Unfortunately, adding matter to the system introduces the possibility

of dynamic surfaces and shocks. These discontinuities are a poor match to high-order

spectral methods, but they can be handled robustly in a �nite volume framework. SpEC

takes a hybrid approach, using spectral methods to evolve the spacetime while employing

a �nite volume grid, limited to non-vacuum regions, to evolve the matter in the system.

When solving a PDE,we divide the spatial domain of the problem into subdomains. The

solution in each subdomain is then represented by a sum of basis functions adapted to the

local geometry. When black holes are present, we choose to excise a causally-disconnected

region of the domain enclosed by the event horizon, thus avoiding the need to solve the

equations in the vicinity of the singularity (this is in contrast to “puncture” methods, which

leave the singularity on the simulation grid). The regions surrounding these excision zones

are covered with subdomains in the shape of spherical shells. A neutron star, on the other

hand, requires a subdomain covering its center. A similar need exists for regions of space

covered by cylindrical shells. Zernike polynomials (and their 3D generalizations) form a

basis well-suited to these subdomain topologies, but their limited exposure in the literature
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makes correct and e�cient implementations non-trivial to construct. As an aid to future

users, our implementation of these basis functions is discussed in Appendix A.

Scope of this work

One class of system of particular interest to gravitational wave observatories is binary

neutron stars. Unlike binaries containing black holes, these systems have already been

observed, in the form of binary pulsars, giving us tighter estimates for their abundance. The

Advanced LIGO–Virgo network expects to observe between 0.4 and 400 such mergers per

year [3], making them potentially the most likely source of gravitational wave detections.

The inspiral phase of these systems can be modeled quite well by post-Newtonian meth-

ods, making expensive simulations unnecessary for detection. However, the late inspiral,

disruption, and merger phases cannot be accurately modeled without simulations, and

the details of the signal from these phases contain interesting information on the equation

of state. It is also unclear how late into the inspiral the post-Newtonian predictions can

be trusted. SpEC is well-suited to study these systems, but �rst requires accurate and

physically-relevant initial data. The construction of this data is discussed in Chapter 2,

along with preliminary results from its subsequent evolution.

While the gravitational waves from the late inspiral and plunge of neutron stars in

binaries are well-predicted by just a few (albeit complicated) physical ingredients, their

disruption, merger, and accretion disk behavior depend strongly on a number of additional

microphysical e�ects. These include magnetic �elds, neutrino emission, and nuclear

reactions. Modeling these e�ects is essential for multi-messenger astronomy—correlating

gravitational and electromagnetic signals from the same events. The e�ects of magnetic

�elds are particularly relevant to the hypothesis that short gamma-ray bursts may be

driven by black hole–neutron star mergers. We therefore created a magnetohydrodynamics

(MHD) module for SpEC capable of simulating the evolution of a magnetic �eld in a

conducting �uid and its e�ects on that �uid’s motion. Combining techniques from several
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existing codes, this module prevents the formation of spurious magnetic monopoles during

evolution and limits the unphysical impact of interpolation artifacts. Code improvements

made during the development of this module also bene�ted our simulations of systems

with neutrinos [4]. We discuss the details of our MHD module in Chapter 3.

Magnetic �elds are responsible for a number of important phenomena in astrophysical

systems, from powering accretion to forming jets. They can also modify or suppress

interesting behavior present in unmagnetized systems. One example we studied is their

e�ect on a shear instability in di�erentially-rotating neutron stars, such as those formed

after supernova collapse or low-mass binary neutron star coalescence. The shear instability

is a potential source of gravitational radiation, but strong magnetic �elds can interfere with

the mechanism of the instability, suppressing the signal. As discussed in Chapter 4, we

�nd that �elds strong enough to have this e�ect are also susceptible to a range of magnetic

instabilities, resulting in potentially accelerated signal growth and magnetized out�ows of

matter. We also �nd that the behavior of these systems depends strongly on the speci�c

numerical methods used to simulate them, suggesting that some previous studies may

have been under-resolved. This strong dependence is an interesting result in its own right,

especially if it proves to be more general, and will likely be the topic of future investigation.

Other future projects involving the MHD module include a collaboration with the

University of Illinois on simulating magnetized high-spin black hole–neutron star mergers.

Code comparison tests such as this will help us understand the uncertainties in our simu-

lations’ results and identify errors that may exist in the implementation of our solution

methods. As we gain con�dence in our current methods and models, we are better able to

extend them to the larger computers and more complete microphysics needed to faithfully

represent and ultimately understand the rich astrophysical phenomena we observe in the

high-energy universe and the potential new sources we may discover through gravitational

waves.
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2 BINARY NEUTRON STAR COALESCENCE

One of the most promising sources of detectable gravitational waves is the merger of binary

neutron stars. With an expected detection rate of about 40 per year for the Advanced

LIGO–Virgo network [3], signals from these events should be observed in the near future.

Additionally, most of the in-band signal will come from the inspiral phase, which is well-

approximated by post-Newtonian theory; this facilitates template generation and thus

detection. But while there is much to be learned from simply determining the rates of these

events, signals from the late inspiral and merger hold the key to answering questions about

the equation of state of dense nuclear matter, and modeling these signals requires full

numerical relativity simulations. Additionally, these simulations can be used to calibrate

and improve e�ective one-body models, which promise a cheaper way of generating

signals more accurate than post-Newtonian theory provides. Finally, with the inclusion of

additional microphysics, simulations of binary neutron stars can help determine whether

they are the source of short gamma-ray bursts [5].

Performing simulations of binary neutron stars �rst requires appropriate and accu-

rate initial data. There are two sides to this problem: �rst, the data must represent an

astrophysically-relevant system, containing stars with the rightmasses, orbits with the right

shape, etc.; and second, the data must satisfy the Hamiltonian and momentum constraint

equations of general relativity. The latter are elliptic PDEs that can be solved numerically

with established methods, but �rst their “free data” must be speci�ed. This freedom is

what allows the properties of the system to be speci�ed, but the correspondence between

the data and these properties is far from straightforward. We thus take an iterative ap-

proach: we start with a guess possessing the properties we want, then repeatedly solve the

constraint equations and tweak the result to drive it back towards our desired speci�cations.

The �rst step, then, is to specify the properties of the constituent neutron stars as they

would appear in isolation.
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2.1 Generally relativistic stars

The structure of relativistic stars in equilibrium is determined by the Tolman–Oppenheimer–

Volko� (TOV) equations. At a given coordinate distance r from the center of the star, let P

denote the pressure, ρE the mass–energy density, and m the enclosed ADMmass1. Then,

∂rP �
(ρE + P)(m + 4πPr3)

r(2m − r)
(2.1)

∂r m � 4πρEr2 . (2.2)

To close this system of equations, we need an equation of state relating P to ρE.

We might additionally be interested in M0, the total rest mass, a.k.a. baryon mass, of

the star. It can be found by integrating

M0 �

∫ R

0

4πρr2
√
1 − 2m/r

dr , (2.3)

where ρ is the rest mass density, related to P and ρE through the equation of state, and R is

the �nal radius of the star. For numerical convenience, this can be cast as a third ordinary

di�erential equation (ODE) to be integrated along with the TOV equations, yielding

∂r m0 �
4πρr2
√
1 − 2m/r

. (2.4)

While this system of ODEs is straightforward to integrate numerically, we do not know

a priori how far to integrate; i.e. what the �nal radius of the star will be. But we do know

that at the surface of the star (if it exists), the pressure will be zero. Therefore, if we could

integrate the equations in terms of P instead of r, we could integrate to the �nal condition

P � 0. In this form, the above equations become

∂P r �
r(2m − r)

(ρE + p)(m + 4πPr3)
(2.5)

∂P m � 4πρEr2∂P r (2.6)

∂P m0 �
4πρr2
√
1 − 2m/r

∂P r . (2.7)

1The subscript “ADM” denotes quantities in the Arnowitt–Deser–Misner formalism; see, e.g., Baumgarte
and Shapiro [6].
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With these two forms of the equations, we can integrate in terms of r until some cuto�

criterion (such as when the pressure reaches half its initial value), then integrate in terms

of P starting from that state2. Thus, we can specify initial conditions at r � 0 and terminate

the solution when P � 0. If required, the metric inside the star can also be found with an

additional integration; outside the star, it is equivalent to the Schwarzschild metric with

energy M ≡ m(R).

Given these equations and an ODE solver, we can solve for the structure and properties

of neutron stars given two inputs: the central density and an equation of state. Often we

are looking for speci�c �nal properties and need to determine which initial conditions

will give rise to them. For example, we might want to know which central density and

which member of a parameterized family of equations of state will give rise to a neutron

star with a given mass and radius. By wrapping the solver in a nonlinear root�nder, we

can answer these questions, thus determining the �elds of a neutron star spacetime for any

desired neutron star properties, assuming a stable solution exists. This becomes the main

ingredient in the initial guesses for binary solutions—once the properties of the constituent

neutron stars are speci�ed in isolation, their isolated solutions can be found and blended

together in a corotating frame.

Polytropes

Polytropic equations of state are featured prominently in the study of classical stars, and

they have useful properties when studying relativistic ones as well (though ultimately

more realistic equations of state will be used when making comparisons to observations).

A polytropic equation of state is one in which the pressure is related to the density via

P � κρΓ (2.8)
2Equations 2.5–2.7 evaluate to an indeterminate 0/0 at the center of the star, requiring Eqs. 2.1–2.2 & 2.4

to initialize the solution process.
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for some constants κ and Γ. The mass–energy density is ρE � ρ(1 + ε), with the speci�c

intenal energy ε given by

ε �
P

ρ(Γ − 1)
. (2.9)

A polytropic equation of state yields a natural lengthscale Rpoly:

Rpoly ≡ κ
1

2(Γ−1) . (2.10)

When combined with geometrized quantities (where c � G � 1), this means that simula-

tions of polytropes can be performed in a dimensionless fashion and the results scaled to

match a choice of physical units. In practice, this allows one to construct a neutron star

of a given compactness: the ratio of its mass to its circumferential (a.k.a. areal) radius in

geometrized units. Then, after simulating, the results can be scaled to correspond to a

neutron star of any given physical mass.

Towards realistic equations of state

While the rescalability of polytropes is convenient, and while the simplicity of the equation

of state makes simulations e�cient (and while its smoothness improves the performance

of spectral methods), ultimately they are an inaccurate representation of physical reality.

More realistic initial data will use equations of state inspired by models of physics at

nuclear densities. For simplicity, we assume the stars are uniformly cold (temperature

T � 0) initially. Equations of state that depend on composition also require an assumption

regarding the initial composition (such as β equilibrium) in order to be expressed in

barotropic form (P as a function of ρ alone). Results are no longer rescalable with these

equations of state, as they are tied to physical units. One consequence of this loss of scaling

is that a star’s mass and compactness may no longer be independently speci�ed.

Uryū et al. have constructed binary neutron star (NS–NS) initial data using piecewise

polytropic equations of state based on �ts made by Read et al. [8] (but with a simpler

treatment of the low-density crust)—these are e�cient to compute and only need to be
9



implemented once to model a wide variety of nuclear physics models [7]. One might

worry that the C0 smoothness of such �ts might interfere with the convergence of spectral

methods. Quadratic Bézier curves can be used in the exponent to smooth these transitions

to C1 with only a minor impact on performance. This has additional bene�ts in evolutions,

where quantities requiring thermodynamic derivatives, such as the sound speed, are now

C0 instead of discontinuous. Our implementation of quadratic Bézier smoothing is outlined

in Appendix B.

Our TOV and NS–NS initial data solvers are compatible with any barotropic equation

of state. Convergence is slower and �nal accuracy reduced for non-polytropic ones (in

particular, the equations behave best at the surface when P ∝ ρ2), but for stars with

compactness . 0.17, we can reliably produce initial data with su�cient accuracy for our

current evolutions.

2.2 Binary neutron star initial data

To produce initial data for binary neutron star systems, I wrote an initial data solver based

on the work of Foucart et al. for black hole–neutron star (BH–NS) systems [9]. As in that

work, we start by considering systems in quasiequilibrium, where time derivatives vanish

in a corotating frame (this neglect of the small radial velocity will be addressed later). We

take the metric to be conformally �at,

ds2 � −α2dt2 + φ4δi j (dx i + βi dt)(dx j + β j dt) , (2.11)

and solve for the lapse α, shift βi , and conformal factor φ using the extended conformal

thin sandwich equations [10]. The matter in the stars is modeled as a cold (T � 0) perfect

�uid with an irrotational velocity pro�le. The irrotational limit allows a straightforward

solution for the velocity and is a more realistic approximation than the corotating limit, as

the e�ective viscosity of neutron star matter is insu�cient to synchronize the stars’ spins

with their orbital frequency [11, 12].
10



A particular binary neutron star system is speci�ed in terms of the equation of state

of neutron star matter, the baryon masses of both stars, and their coordinate separation.

The solver then uses the above assumptions of quasiequilibrium and cold irrotational �ow

to determine the metric and matter content of the corresponding spacetime. Since the

initial data problem consists of several coupled equations, the solver takes an iterative

approach, with each iteration composed of a number of substeps (this procedure closely

follows Sec. III.C of Foucart et al., which should be consulted for additional details).

First, given a trial matter distribution, we �nd an approximate solution to the elliptic

thin sandwich equations by taking a single step of a nonlinear solver. By imposing force

balance at the centers of the stars, we then adjust the orbital frequency of the binary. We

also modify the enthalpy of the matter to drive the locations of its maxima to the speci�ed

stellar centers, thus controlling the stars’ separation. Finally, we approximately solve the

elliptic equations imposing irrotational �ow (constrained to preserve the baryon masses

of the stars) and feed the output to the next step of the iterative procedure. All of these

updates are made using a relaxation scheme to aid convergence. The convergence of our

solver, compared with that of Gourgoulhon et al.’s LORENE code [13], is illustrated in

Fig. 2.1.

Throughout the solution process, data is represented on a spectral grid composed of

hexahedra, cylindrical shells, and spherical shells (see Fig. 2.2), and approximate solutions

to the elliptic equations are provided by the spells framework [14]. We periodically evaluate

the grid and adjust it to better conform to the stars’ surfaces. By placing subdomain bound-

aries at these surfaces, the discontinuities there will not a�ect the spectral convergence

of the method. Additionally, we occasionally perturb the centers of the stars to control

the ADM linear momentum of the system. During this procedure, the centers are not

constrained to be collinear with the center of revolution, and the separation of the stars

may deviate slightly from the initially speci�ed value. Separations reported are therefore

measured from the �nal solution.
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Figure 2.1: Convergence of NS–NS initial data compared to Gourgoulhon et al. [13] (black
curve). Following that work, we monitor the sum of the absolute value of the di�erence
in the speci�c enthalpy at each point between two successive iterations of the solver,
normalized by the sum of the speci�c enthalpy over all points. The stars obey a polytropic
equation of state with Γ � 2 and have a compactness of 0.12. They are separated by a
coordinate distance of 3.5 in polytropic units.
The details of the two solvers are quite di�erent—our solver employs a sequence of grids
with increasing resolution (“Res 0”–“Res 3”), while Gourgoulhon et al. use a single res-
olution. Additionally, they do not attempt to �x the baryon mass until around iteration
70, while we �x the baryon mass at all times. Initial convergence rates are similar, but
ultimately our solver achieves a more precise solution in fewer iterations. The periodic
spikes in our “Res 0” (red) curve correspond to steps when we change our grid’s map to
adapt to the neutron stars’ new surfaces.
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Figure 2.2: Domain decomposition for NS–NS initial data problem. Subdomain types
include rectangular prisms, spherical shells, and cylindrical shells and are allowed to
overlap. The boundaries between the blue and green spheres are mapped to match the
surfaces of the neutron stars. This portion of the domain is itself surrounded by a large
spherical shell whose outer radius is mapped to a very large (e�ectively in�nite) value.

When constructing strictly quasiequilibrium data, the solver chooses the orbital angular

velocity Ω by requiring force balance at the centers of the stars. Later, when subsequently

re�ning the initial data, Ω is �xed. By adding an initial radial velocity, we relax the

quasiequilibrium assumption in order to more accurately model inspiral conditions and

reduce the initial eccentricity of the orbits. Primordial compact object binaries are expected

to have very low eccentricity by the time they enter LIGO’s band [15], as gravitational

wave emission will circularize their orbits over the course of their very long inspiral. The

magnitude of the radial velocity is chosen by evolving each trial set of initial data for a

short time in order to measure the eccentricity, then adjusting the (�xed) orbital frequency
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and radial velocity according to a heuristic procedure based on the work of Pfei�er et al.

[16] and repeating until that eccentricity is below 10−3.

Quasiequilibrium sequences

Results from our code closely match those of Gourgoulhon et al.. In particular, we can

accurately reproduce the quasiequilibrium sequences of Taniguchi and Gourgoulhon

[17, 18], achieving agreement to within 0.05% for the total ADMmass and orbital frequency

over a range of mass ratios and EOSs (for additional comparisons, see Fig. 2.3). Using

our implementation of piecewise polytropic equations of state, we can also reproduce the

results of Taniguchi and Shibata [19]. Quasiequilibrium sequences were once a useful way

to study the late inspiral of binary compact objects without the complications of evolving

the full Einstein equations. However, now that such evolutions are reliable, we can study

this and later phases of mergers with much higher �delity.

2.3 Evolutions and future work

Initial data generated by this solver has been evolved by Haas et al. (in preparation) for

more than 22 orbits. For this study, we considered a gamma-law equation of state of the

form

P � κρΓ + ρT (2.12)

ε �
1
Γ − 1

P
ρ

(2.13)

with Γ � 2 and κ � 123.6M�2. Both neutron stars have a baryon mass of M0 � 1.779M�,

corresponding to an isolated TOV star with an ADMmass of M � 1.64M�, circumferential

radius of Rareal � 15.1 km, and a compactness of M/Rareal � 0.16. Because of the large

separation, the binding energy is small, Eb � 6.7 × 10−3M�, and the total ADM mass of

the system is approximately twice the ADMmass of an isolated constituent star. In their
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Figure 2.3: Comparison of quasiequilibrium sequence with Taniguchi et al. for a polytropic
equation of state with Γ � 2 and two equal-mass neutron stars with a compactness of 0.14.
Plotted is the ADM angular momentum JADM at various separation distances, parame-
terized by the angular frequency of the orbit Ω at each separation; both are expressed in
units where Rpoly � 1. We have made similar comparisons for non-equal-mass neutron
stars (compactnesses of 0.14 vs. 0.16) and for Γ � 2.5 equations of state.

binary con�guration (and in our initial gauge), they each extend to an average coordinate

radius of 12 km, and their centers are separated by a coordinate distance of 81 km. This

system has an orbital frequency ofΩ/2π � 133Hz and an eccentricity of less than 9 × 10−4.

Results from evolving this data will be used to estimate the minimum number of

numerical wave cycles required before hybridization with post-Newtonian waveforms

is su�ciently accurate for LIGO. The waveforms will also be compared with those of

binary black holes, highlighting the e�ects of neutron star deformability on the resulting

gravitational wave signal.
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3 AN UPWIND CONSTRAINED TRANSPORT

SCHEME FORMAGNETOHYDRODYNAMICS

While spectral methods work well for evolving smooth spacetime �elds or constructing

initial data with sharp features at known locations, they are less well-suited for evolving

dynamic matter �elds, which can form discontinuous shocks. For this reason, SpEC

has traditionally evolved matter on a separate �nite volume grid, using interpolation to

communicate between the spacetime and matter solutions. However, it was limited to

evolving unmagnetized �uids, and magnetic �elds are extremely important in high energy

astrophysics. Therefore, I embarked on the development of a magnetohydrodynamics

(MHD) module for SpEC.

Like the Einstein equations, the equations of electromagnetism both provide a rule

for evolution and impose a set of constraints on the solution. Magnetic �elds must form

a divergence-free vector �eld; in other words, there may be no magnetic monopoles in

the solution. While the analytic evolution equations will preserve this constraint if it

is satis�ed by the initial data, a numerical scheme may generate constraint violations,

resulting in unphysical solutions. There are several approaches to preserving this constraint

numerically; we concentrated our e�orts on an upwind constrained transport scheme,

though we have also experimented with other techniques. Here we describe the context in

which we evolve magnetized �uids and outline the speci�c approach we take to model the

magnetic �elds.
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3.1 Background on �nite volume methods

Many laws of nature are conservation laws—some quantity is never created or destroyed,

but merely moves from place to place. Written as a PDE, this would be represented as

∂tψ + ∂iF i
� 0 , (3.1)

where ψ is a conserved �eld and F is its �ux. More generally, the right-hand side may

consist of a non-zero source term and still be regarded as being expressed in “conservative

form.”

In the �nite volume framework, consider the original integral form of such an equation

over a small volume V (i.e. a grid cell):

∂t

∫
V
ψdx +

∫
∂V

F · dΣ � 0 . (3.2)

That is, the amount by which ψ changes in the volume of the cell is equal to the net �ux

of ψ �owing through the cell’s boundaries. Dividing this by the volume of the cell yields

an evolution equation for the cell average of ψ that depends on the divided di�erences of

surface averages of the �ux.

Evaluating the �ux on cell faces requires interpolation of data from cell centers. The

details here distinguish �nite volume and �nite di�erence schemes, but to second order they

are mostly equivalent. Solutions to nonlinear conservation laws, such as the relativistic

Euler equations, often contain discontinuities, or shocks, which interact poorly with simple

polynomial interpolation, especially at high order. Instead, we use a procedure called

reconstruction, which performs two interpolations for each face: one biased by data from

the left, the other biased by data from the right (this enables upwind schemes where the

�nal value of the �ux takes into consideration the direction of information �ow). These

interpolations also incorporate some variety of slope limiting, reducing their order of

accuracy in certain conditions to avoid creating unphysical results (a negative density, for

instance). With two values for the �ux on every face, we then compute a single numerical
17



�ux F∗ based on the values of the �uxes, solution, and characteristic speeds. The procedure

for computing this numerical �ux basically considers every face to be a potential shock

front and produces some approximate solution to the corresponding Riemann problem.

For most of our simulations, we choose the HLL �ux [20]:

F∗i �
c i
+F iL + c i

−F iR
− c i

+c i
−(ψR

− ψL)

c i
+ + c i

−

, (3.3)

where the superscripts L and R indicate values reconstructed on the left and right sides of

the face, respectively, and c i
± represent the two fastest characteristic speeds at that face in

the i direction.

Our favored reconstruction algorithm is the �fth-order weighted essentially nonoscilla-

tory (WENO) scheme [21, 22]. It considers a �ve-point 1D stencil containing the face in

question and constructs three second-degree polynomials through each of its three-point

substencils. It then estimates the smoothness of each polynomial and weights their con-

tributions to the desired face according to their smoothness. The weighting procedure

is designed so that �fth-order accuracy is recovered when the solution is smooth. How-

ever, when smoothness is lacking, the e�ective order drops and severe oscillations are

largely avoided. Shifting the stencil by one point provides a value biased from the opposite

direction.

The choice of smoothness indicator and the construction of weights from its output

allows for a family of �fth-order WENO reconstructors. To avoid division by zero when

the solution is very smooth, a small o�set is often added to the smoothness indicator when

forming the weights1. Shu recommends an o�set of 10−6 [23]; however, this o�set is not

dimensionless and can negatively impact the quality of the reconstruction when the values

being reconstructed are� 1. We instead add 10−17(1+
∑

i yi), where yi are the values being

interpolated in the corresponding substencil. The resulting nonlinear weights perform

much better in low-density regions.
1This o�set must be added after the rest of the smoothness indicator has been computed to avoid being

lost in �oating-point roundo�. Optimizing compilers that assume commutativity of �oating-point addition
can otherwise nullify the e�ect of this step.
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We also occasionally use a second-order monotized centered (MC2) reconstructor [24].

This algorithm is generally more robust, but it is less accurate in smooth regions and

especially at local extrema, where it always drops to �rst order. In addition to its use as

a diagnostic tool, we also switch to MC2 in the vicinity of black hole horizons, which

helps avoid horizon-crossing stencils. For a more complete discussion of this problem, see

Hawke et al. [25].

Reconstruction and interpolation algorithms in SpEC are now all implemented as 1D

kernels acting on continuous stripes of data. Higher-level logic can then apply any kernel

to a variety of situations, including 3D domains, axisymmetric domains, domains with

excision masks, and even staggered grids. Ghost zones—extra gridpoints at the boundary

of a subdomain whose evolution is controlled by a neighboring subdomain or a boundary

condition—ensure that full-accuracy results are available where they are needed and that

parallel and serial executions produce identical results.

3.2 Generally relativistic magnetohydrodynamics in SpEC

Here we outline the full evolution scheme for a single magnetized neutron star. Our

generally relativistic magnetohydrodynamics (GRMHD) code builds on top of the work of

Duez et al. [26]; additional non-magnetic details are provided by Foucart et al. [27].

Metric evolution

As in previous studies using SpEC, the spacetime is evolved according to Einstein’s equa-

tions in generalized harmonic form [28], and the coordinates xa are assumed to obey

gab∇
c
∇c xb

� Ha (3.4)

for some gauge source function Ha (where∇a is the covariant derivative operator associated

with gab). To reduce the equations to �rst-order form, we evolve the derivatives of the
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spacetime metric gab , de�ned as

Φiab ≡ ∂i gab (3.5)

Πab ≡ −nc∂c gab , (3.6)

where na is the normal to a spacelike slice. This slicing de�nes a 3 + 1 decomposition of

the metric into a 3-metric γi j , lapse α, and shift vector βi (see, e.g., Baumgarte and Shapiro

[6]), with line element given by:

ds2 � −α2dt2 + γi j (dx i + βidt)(dx j + β j dt) . (3.7)

The spacetime variables gab , Φiab , and Πab are evolved according to the principal parts

and constraint damping terms in Appendix A of Foucart et al. [27] (augmented with the

matter and magnetic source terms described below), and the gauge source Ha is evolved

according to the “frozen” condition in that work. The damping parameters for a system

containing a single neutron star are distributed according to:

γ0(r) �
0.1
M

f (r) + 0.1
M

, (3.8)

γ1(r) � −1 , (3.9)

γ2(r) �
1.5
M

f (r) + 0.1
M

, (3.10)

where f (r) is given by:

f (r) � e−r/(6M) (3.11)

and M is the ADMmass of the star.

The presence of matter and magnetic �elds results in a non-zero stress-energy tensor

Tab , and this shows up in additional source terms when evolving the spacetime �elds. In

particular, the vacuum evolution equation for Πab is modi�ed as follows:

∂tΠab � · · · − 2α
(
Tab −

1
2 gabTcd gcd

)
. (3.12)

The stress-energy tensor for our treatment of MHD is given in Eq. (3.14). Note that we

expect the magnetic contributions to Tab to be small (even for the strongest �eld strengths

considered in Chapter 4, magnetic pressure is at most 1% of �uid pressure at t � 0).
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Magnetohydrodynamics

The matter in the system is modeled as a perfect �uid with rest-mass density ρ, speci�c

internal energy ε, and 4-velocity ua . An equation of state relates ρ and ε to the �uid’s

pressure P, and from these, the relativistic speci�c enthalpy is h � 1 + ε + P/ρ. We denote

the Lorentz factor corresponding to the �uid’s velocity by WL ≡ αut .

To this we add an electromagnetic �eld with Faraday tensor Fab , from which we de�ne

the magnetic �eld in a spatial slice to be B i � α(?F0i) (where ?Fµν is the Hodge dual of

the Faraday tensor). Several quantities of interest are naturally expressed in terms of ba ,

the magnetic �eld in a frame co-moving with the �uid:

ba
� (?Fab)ub . (3.13)

We adopt the assumptions of ideal MHD; namely, that the �uid is perfectly conducting.

The stress-energy tensor of a magnetized perfect �uid is given by

Tab � ρhua ub + P gab + FacFb
c
−
1
4FcdFcd gab . (3.14)

Additionally, we adopt the assumption of ideal MHD that the �uid is perfectly conduct-

ing:

Fab ub � 0 (3.15)

(that is, the electric �eld vanishes in a frame co-moving with the �uid). This eliminates the

electric �eld as an independent quantity and leaves eight degrees of freedom: �ve for the

�uid and three for the magnetic �eld.

The state of the �uid at each gridpoint is represented in the code by the “primitive

variables” ρ, T, ui , and B i , where T is a variable, related to the temperature, parameterizing

the thermal pressure2. Given ρ and T, the equation of state speci�es the pressure P(ρ, T)

and speci�c internal energy ε(ρ, T) 3.
2The precise relationship of T to the temperature and thermal pressure is allowed to vary with the

equation of state.
3More generally, we also allow these to depend on the composition of the �uid through the electron

fraction Ye , but the evolution of composition is not considered in this work.
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In order to express the equations of their evolution in conservative form, we recompose

them into the following set of “conservative” variables:

ρ∗ �
√
γWLρ (3.16)

τ̃ �
√
γ *

,
WLρ(WLh − 1) − P + B2

−
1
2

B2 + (B iui)2

W2
L

+
-

(3.17)

S̃i �
√
γ

(
WLρhui +

1
WL

(
B2ui − B ju jBkγik

))
(3.18)

B
i
�
√
γB i (3.19)

(see also, e.g., Refs. [6, 29]). Here, γ is the determinant of the 3-metric, WL ≡ αut is the

Lorentz factor corresponding to the �uid’s velocity, and B2
≡ B iB jγi j . These “conservative”

evolved variables map to the set of “primitive” variables through an inversion procedure

described later.

The conservative variables are evolved according to:

∂tρ∗ + ∂i (ρ∗v j) � 0 , (3.20)

∂t τ̃ + ∂i (α2
√
γT0i − ρ∗v i) � −α

√
γTµν∇νnµ , (3.21)

∂t S̃i + ∂i (α
√
γT j

i) �
1
2α
√
γTµν∂i gµν , (3.22)

where v i � u i/ut is the “transport velocity” of the �uid.

To compute the behavior of the magnetic �eld in the ideal MHD limit, we de�ne an

analog to the electric �eld,

Ei ≡ −[i jk]v j
B

k , (3.23)

and then evolve the magnetic �eld according to

∂tB
i
� −[i jk]∂jEk , (3.24)

where [i jk] is +1 for an even permutation of the indices and −1 for an odd permutation.

This evolution is constrained by the zero-monopole criterion,

∇
(3)
· B � ∂iB

i
� 0 (3.25)
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(where ∇(3) is the covariant derivative operator corresponding to the 3-metric γi j). In gen-

eral, a numerical evolution scheme for the magnetic �eld will not preserve this constraint,

so we adopt a constrained transport framework (�rst used by Yee [30] and later for GRMHD

by Evans & Hawley [31]) to do so.

Our constrained transport implementation follows the prescription for upwind con-

strained transport proposed by Londrillo & Del Zanna [32] and described in detail by Del

Zanna et al. as implemented in the ECHO code [33]. In particular, the longitudinal com-

ponents of B i are evolved at cell faces. This presents a convenient de�nition of magnetic

divergence at cell centers as the second-order divided di�erence of B i . The constrained

transport algorithm guarantees that the time derivative of this quantity will be zero to

machine precision. When the B-�eld itself is needed at cell centers, fourth-order polyno-

mial interpolation is used, since discontinuities in the longitudinal direction are forbidden.

Such interpolation is also used when metric quantities are needed at cell faces, as these

�elds are expected to be smooth.

In order to compute the �uxes of the evolution variables, non-smooth matter quantities

must be reconstructed at cell faces and edges. Our code allows a choice of reconstructors,

including a second-order monotonized centered (MC2) limiter and a �fth-order weighted

essentially non-oscillatory (WENO5) scheme. The HLL approximate Riemann solver

determines a single value for the �ux on each interface. Flux derivatives are computed

as second-order divided di�erences, making our scheme formally second-order accurate

(that is, we do not perform the DER operation employed by the ECHO code). However,

higher-order reconstructors, while not a�ecting the convergence rate, can greatly improve

the accuracy of the code (see Sec. 4.4) at the expense of parallelization e�ciency (their

larger stencils require additional ghost zones).

In commonwith other high-resolution shock-capturing codes, SpEC requires procedures

for inverting the relationship between primitive and conservative variables, along with

a prescription for maintaining a tenuous atmosphere around the star. The addition of a
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magnetic �eld necessitates changes to these algorithms, the details of which we describe

below.

Primitive variable recovery in MHD

We generally follow the prescription of Noble et al. [34] for recovering primitive vari-

ables from the evolved conservative variables; i.e., the task of numerically inverting equa-

tions 3.16–3.19. We de�ne

S̃2
� γi j S̃i S̃ j , (3.26)

H � h(ρ, T)ρW2
L , (3.27)

so that the relations between primitive and conservative variables can be written as

S̃2W2
L � γ(W2

L − 1)(B2 + H)2 −W2
L

(S̃iB i)2(B2 + 2H)
H2 , (3.28)

−
ρ∗W2

L + τ̃W2
L

√
γ

�
B2

2 + W2
L

(
(S̃iB i)2

2γH2 − B2
− H + P(ρ, T)

)
(3.29)

(our formulation of this inversion procedure was originally described by Foucart [35]).

We solve these equations for (T,W2
L) using the gnewtonmethod as implemented by the

GNU Scienti�c Library [36], subject to the constraint W2
L ≥ 1. These equations are more

challenging for the root-�nding algorithm than the B � 0 case, especially in cases where

the magnetic and/or kinetic energy of the �uid is large compared to its rest mass energy.

When the 2D root-�nder for (T,W2
L) fails, we switch to a simple 1D bracketing algorithm

solving for H (WL is then considered as a known function of H). Once T and WL are found,

ρ and ui can be computed analytically. The trivial computation of B i from B i completes

the primitive variable recovery.

Low density force-free primitive variable recovery4

Recovery of the full set of primitive variables can be di�cult or impossible at low-density,

magnetically-dominated gridpoints. Fortunately, it is also unnecessary when those points
4This section is primarily the work of Fatemeh Hossein Nouri.
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are in the force-free regime. Our treatment of such points is similar to that of Etienne

et al. [37]. For each gridpoint, the code �rst attempts to solve the full 2D system for

(T,W2
L) as described above. If a root cannot be found via either root�nding procedure,

we determine whether the failing gridpoint is in the force-free regime by checking the

following conditions:

1. ρWL/B2 < 0.001;

2. B2 >
√

S̃2/γ, which is necessary to have B2 > E2;

3. (S̃ jB j)2/(B2ρ2∗ ) < 10 to prevent very large velocities along �eld lines.

If the point satis�es these conditions, then we attempt a simpler 1D primitive variable

recovery that ignores the internal energy of the gas (and if the point is not in the force-free

regime, the code halts). First, we solve for the 4-velocity:

ui �
WL

B2
*
,
−
εi jk (ε jlm S̃lBm)Bk

√
γB2 + ρ∗hWL

+
(S̃ jB j)Bi

WLρ∗h
+
-
. (3.30)

Assuming T � 0, h � 1, and using the normalization condition W2
L � 1 + γi jui u j , we �nd

W2
L � 1 +

W2
L

B4
*
,

εi jk (ε jlm S̃lBm)Bk

√
γB2 + ρ∗WL

+
-

2

+
(S̃ jB j)2

B2ρ2∗
. (3.31)

The velocity u is composed of a parallel (to the magnetic �eld) part and a perpendicular

part W2
L � 1 + u2

‖
+ u2
⊥
, so we have

u2
⊥ �

W2
L

B4
*
,

εi jk (ε jlm S̃lBm)Bk

√
γB2 + ρ∗WL

+
-

2

, (3.32)

u2
‖
�

(S̃ jB j)2

B2ρ2∗
. (3.33)

Equation (3.31) is solved for W2
L with a 1DNewton–Raphson root solver; the other variables

can be inferred from the solved WL and the assumed T � 0. For force-free points with

very low densities, or force-free points where we fail to solve Eq. (3.31), we remove the

density-dependent terms in Eq. (3.31) and set ui to the drift velocity (u⊥)i . We note that the
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h � 1 approximation used above would have to be adjusted when using a nuclear equation

of state in which h(ρ → 0, T → 0) is slightly less than one (i.e. when the binding energy

of nucleons is taken into account and the speci�c internal energy of the �uid becomes

negative as ρ approaches zero).

Special treatment of low-density matter

The methods we use to evolve relativistic �uids assume that the �uid density is strictly

positive everywhere. To meet this requirement, we surround our stars with a low-density

“atmosphere” (rather than vacuum) and require that the density always remain above this

value. Additionally, numerical errors in low-density regions can take the solution into

a regime where there exists no set of primitive variables corresponding to the evolved

conservative variables. A robust code must employ techniques to handle these situations

while minimizing unphysical e�ects. Our treatment of low-density regions when magnetic

�elds are present is described by Foucart [35] and Muhlberger et al. [1].

Because we evolve the spacetime metric on a separate grid, the �uid grid need not

extend to the outer boundaries of our evolution domain. At the boundary of our �uid

grid, a half-stencil’s worth of points are frozen at atmosphere levels. This “boundary

condition” avoids the complexities of one-sided di�erencing and has no e�ect on the bulk

evolution of the matter provided that the grid is large enough. When magnetic �elds are

present, they are initially con�ned to high-density regions far from grid boundaries, so

this freezing procedure does not con�ict with our constrained transport scheme. However,

as the simulation progresses, out�ows may develop. If left unchecked, these can ruin the

accuracy of the simulation, as matter will permanently leave the �uid grid and magnetic

divergences can be created at the boundaries. In these situations, we either extend the grid

in the direction of the out�ow or halt the simulation before these boundary e�ects have a

chance to a�ect the behavior we are studying.

When the magnetic �eld is evolved via a vector potential rather than the �eld itself (see
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Sec. 3.3), this boundary condition is no longer valid, even without magnetized out�ows,

unless one drives the potential to zero at the boundary of the grid. Robust solutions to this

problem, including spectral evolution of the potential, are currently being considered. In

practice, however, we �nd that potentials corresponding to initial poloidal �elds in stars

tend to remain zero away from the star for long enough to evolve several orbits of inspiral

or to witness growth and suppression of dynamical instabilities such as those considered

in Chapter 4.

3.3 Electromagnetic gauges

Instead of evolving the B-�eld directly, the scheme can be re-written in terms of the vector

potential A (where B � ∇×A). The result is numerically equivalent, but requires the initial

data to be expressed in terms of A instead of B. The advantage is that the B-�eldwill remain

divergence-free even if errors are introduced to A from outside of the evolution kernel.

The most common source of such errors is interpolation—if the location of gridpoints

changes during the evolution, e.g. during grid re�nement, then the evolved �elds will need

to be interpolated to the new locations, introducing errors. Any divergence introduced

to B will be preserved by the upwind constrained transport scheme. It guarantees that

∂t (∇ ·B) � 0, but does not drive ∇ ·B itself to 0. Divergence cleaning techniques [38] can be

used to provide such a driving force and to propagate the constraint violations o� the grid,

but we found that they act too slowly relative to the frequency of our grid re�nement to

adequately remove the divergence created by interpolation. If instead we interpolate A, the

interpolation error does not manifest itself in the form of unphysical B-�eld divergence.

Evolving the vector potential requires a choice of gauge, encapsulated in the relationship

between the vector potential A and a scalar potentialΦ, which can bemerged into a 4-vector

potentialAµ ≡ Φnµ + Aµ. In general, the evolution of A is governed by

∂tAi � εi jk v jBk
− ∂i (αΦ − β jA j) . (3.34)
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The straightforward generalization of our upwind constrained transport scheme implies

an “algebraic gauge” of

αΦ � βiAi . (3.35)

Unfortunately, as shown by Etienne et al. [39], this gauge has a zero-speed characteristic

mode. One e�ect of this that we observed is that the initial structure of the vector potential

leaves an imprint at late times. While this has no e�ect within the evolution kernel (which

is numerically identical to a direct evolution of B), once interpolated it results in large

errors, as shown in Fig. 3.1. By adopting Lorenz gauge (∇aA
a � 0) and evolving the scalar

potential Φ explicitly, the characteristic speeds are non-zero and the initial con�guration

does not leave an imprint. Farris et al. [40] also generalize the Lorenz gauge to damp the

gauge modes, further reducing their negative e�ects on interpolation (though this is less

essential for our code, which interpolates relatively rarely compared to the Illinois AMR

code). Their generalized Lorenz gauge evolves Φ according to

∂t (
√
γΦ) + ∂i (α

√
γγi jA j −

√
γβiΦ) � −ξα

√
γΦ , (3.36)

or, more compactly,

∇µA
µ
� ξnµAµ . (3.37)

Here, ξ is the damping parameter; choices for ξ in BH–NS systems are discussed by Etienne

et al. [41] and Paschalidis et al. [42].

When evolving the vector potential instead of the B-�eld directly, the natural location

of A is for transverse components to be stored on cell edges. Given this, it is convenient to

represent Φ at cell vertices; divided di�erences then represent the gradient operator on

cell edges, which is required to evolve A according to Eq. 3.34. When evolving Φ in Lorenz

gauge according to Eq. 3.36, Φ is reconstructed onto cell edges while A is �rst interpolated

to cell centers (so that all three components are cosituated), then contracted with the metric

and interpolated back to cell edges. The use of data at cell vertices requires an additional
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Figure 3.1: Interpolation artifacts caused by gauge imprint of initial data in the vector
potential, as exhibited in the (physically-relevent) B-�eld. These images depict results from
a BN–NS merger when the disrupted neutron star �rst starts accreting onto the black hole.
The interpolation was performed as the result of a “regrid” operation, which expanded
the grid to the left of the star. The circular ringing in the B-�eld corresponds to the original
location of the neutron star in the corotating frame, prior to disruption. The boundary
of the excised region, roughly corresponding to an apparent horizon of the black hole, is
visible in the blocky buildup of magnetic �eld above the star.

level of staggered grid routines built around the same 1D interpolation and reconstruction

kernels as the rest of our �nite volume code.

3.4 Test problems

As with any new simulation code, we �rst con�rm its ability to reproduce results fromwell-

understood test problems before applying it to new astrophysical systems. The spacetime

and hydrodynamics components of SpEC have been tested previously [26, 43]. Here, we

check the performance of our new MHD module, using a similar test suite as Duez et

al. [44]. In particular, we study its accuracy and convergence by comparing results to

known analytical solutions exhibiting a range of non-trivial behaviors, including shocks

and strong gravity.
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One-dimensional relativistic tests5

To test the shock-capturing methods used in SpEC, we evolve a set of one-dimensional

problems �rst proposed by Komissarov [45]. The initial data consist of two homogeneous

states separated by a discontinuity at x � 0. The initial conditions for each test are listed in

Table 3.1. We integrate the relativistic MHD equations from t � 0 to t � t�nal (also given in

Table 3.1). The �uid follows a Γ-law equation of state with Γ � 4/3:

P � ρ4/3 + ρT , (3.38)

ε � 3P
ρ
, (3.39)

where we have now de�ned the code’s internal temperature variable T for the Γ-law case

such that ρT is the thermal pressure of the �uid. To facilitate comparisons with previously

published results, we use the same resolution as in Duez et al. [44], where the same tests

were performed (see Figs. 7–8 and Table II of that work): our numerical domain covers the

region x � [−2, 2], and uses 400 grid points (higher resolution results are also provided to

test the convergence of our code). The tests are performed with both the MC2 reconstructor

used by Duez et al. and theWENO5 reconstructor that we prefer in most of our simulations.

We use fourth-order Runge-Kutta time stepping, with a Courant factor of 0.5 (dt � 0.005

for dx � 0.01), except for the fast shock problem using WENO5 reconstruction, for which

we use a Courant factor of 0.25 (the evolution is unstable for a Courant factor of 0.5, an

issue which was also noted by Duez et al. when using the third-order piecewise parabolic

method for reconstruction).

Fast and slow shocks

For these two tests, the shock front satis�es the relativistic Rankine-Hugoniot jump con-

ditions [46]. The exact solution to the evolution of the �uid equation is known, with the

shock propagating at constant speed while the �uid variables on each side of the shock
5The execution and analysis of these 1D tests was largely the work of Francois Foucart.
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Figure 3.2: Rest-mass density at t � t�nal for the shock tests described in Table 3.1, shown
for two resolutions (N � 400 and N � 4000 points).
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Figure 3.3: Velocity at t � t�nal for the shock tests described in Table 3.1, shown for two
resolutions (N � 400 and N � 4000 points).
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Figure 3.4: Error in the �nal value of u y for the “wave” test at 3 resolutions (N � 50,
N � 100, N � 200), rescaled for the expected second-order convergence.

remain constant [45, 47]. The fast shock test is the hardest test for our code: it evolves a

strong shock, with the shock front moving relatively slowly on the grid (0.2c) but the �uid

being highly relativistic (Lorentz factor WL � 25.02). As already noted, it is the only test

that is unstable when using a Courant factor of 0.5 (for WENO5 reconstruction). It is also

fairly sensitive to the choice of variables that are interpolated from cell centers to cell faces

when computing the �uxes entering the conservative hydrodynamics equations: if we

interpolate the transport velocity v i , the shock evolves as expected, while if we interpolate

the spatial components of the 4-velocity ui the shock immediately stalls. Considering that

in practice, in 3-dimensional evolutions of neutron stars or binary mergers, we do not

reliably evolve �uid elements with WL ∼ 25 (the occurrence of such high Lorentz factors is
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prevented by the corrections applied to the velocity and temperature of low-density points

in the atmosphere), this di�erence is unimportant in practice. The fast shock test is mostly

evolved in order to verify that our implementation of the MHD equations is correct in

the limit of ultra-relativistic �uids. In fact, because of the practical advantages of using ui

instead of v i , we usually reconstruct the former (WL �

√
1 + g i j uiu j is always well-de�ned

while WL � 1/
√
1 − gi jv iv j is not if numerical errors in the low-density regions cause v i

to satisfy gi j v iv j > 1). In Figs. 3.2 and 3.3, we show the result of that test when using the

MC2 reconstruction method (and reconstructing v i), for 400 and 4000 grid points. The

results converge towards the solution at the expected �rst-order rate. The slow shock test is

generally less extreme. As in previous studies [44, 45, 48], we observe that the evolution

is very accurate on the left side of the shock, while oscillations are visible on the right

side of the shock (see Fig. 3.2). Although these oscillations converge away as we increase

the resolution, they do so more slowly than expected past 200-400 points in the evolution

domain (convergence order of ∼ 0.6). This is the only test for which we do not observe at

least �rst-order convergence.

Other shock tests

The �ve other one-dimensional shock tests, for which results are presented in Figs. 3.2

and 3.3, are comparable to previously published results in accuracy (for the simulations

using 400 points), and convergent when the resolution is increased to 4000 points. As

expected, the convergence is fairly slow (�rst order), which explains why sharp features

remain visible even at high resolution. These tests cover a wide range of potential behaviors

(shock waves, rarefaction waves, contact discontinuities), and indicate that the shock

capturing methods implemented in SpEC are capable of handling the discontinuities which

are likely to arise in our simulations.
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Wave

The last one-dimensional test to which we submit our code is the propagation of a wave on

a periodic grid. In this case, all variables are continuous, and the error in the simulations

should be second-order convergent. In the exact solution, the initial pro�le (given in

Table 3.1) simply propagates with velocity v � 0.3820. The error in the density ρ at the

end of the simulation for 3 di�erent resolutions (50,100 and 200 points per wavelength) is

shown in Fig. 3.4, rescaled for the assumed second-order convergence. Our results also

appear in good agreement with the theoretical predictions for this smooth con�guration.

Bondi accretion

We also test the ability of our code to evolve a magnetized �uid in full 3D in the presence

of strong gravitational �elds. We check its ability to maintain stationary and spherically

symmetric accretion onto a Schwarzschild black hole according to the relativistic Bondi

accretion solution, but with the addition of a radial B-�eld. This provides a nontrivial test

of the GR terms in our MHD evolution scheme while still possessing an exact solution to

which we can compare our numerical results.

We write the metric in the Kerr–Schild coordinates; as a result, all of the variables are

well-behaved at the horizon (horizon penetrating). For this test, we �x the metric and

evolve the �uid equations only (this is often referred to as the Cowling approximation).

We evolve the same con�guration used by Duez et al. [44]. The accretion rate is Ṁ � 1,

the sonic radius is at r � 8M (where M is the mass of the black hole), and the equation

of state obeys a Γ � 4/3 power law [see Eqs. (3.38)–(3.39)]. We freeze the hydro evolution

variables at the inner and outer boundaries. We set the inner boundary radius outside of

the horizon at r � 2.8M (the horizon is at r � 2M), and the outer boundary is placed at

r � 9M; the Cartesian grid extends ±10M along each axis.

We simulate this accretion �ow at three di�erent resolutions, with grid extents of 643,
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963 and 1283. The initial magnetic �eld is radial, with strength b2/ρ � 1, resulting in

a stationary solution (while the black hole is e�ectively a large magnetic monopole, the

divergence of the B-�eld is zero everywhere on the grid). Reconstruction is performed using

a �fth-order WENO kernel. We also add Kreiss-Oliger dissipation [49] to the evolution

of all conservative variables. This removes short-wavelength noise that would otherwise

interfere with clean convergence for this system.

To measure the convergence of our code, we compute the volume L2 norm of the

deviation of the conservative variables from their exact Bondi solutions:

δu � *
,

∫
|u − uexact |

2√γd3x∫ √
γd3x

+
-

1/2

. (3.40)

In Fig. 3.5 we plot the error norm measured by Eq. (3.40) for all conservative variables

after 100M of evolution for three di�erent resolutions. These show that our results are

converging at second order, as expected (and also as observed in previous studies of this

problem, e.g. Refs. [50, 51]).
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4 SHEAR INSTABILITIES IN DIFFERENTIALLY

ROTATING NEUTRON STARS

4.1 Motivation

Stellar core collapse, accretion-induced white dwarf collapse, and binary neutron star

merger all naturally produce rapidly spinning neutron starswith strong di�erential rotation.

The resulting neutron stars could be subject to well-known dynamical instabilities, and the

resulting stellar deformations could produce a strong gravitational wave signal which, if

detected, would provide invaluable information on these violent phenomena.

Global m � 2 instabilities (perturbations with an azimuthal dependence of e imφ) are

particularly relevant for gravitational wave production. One source of such modes is the

dynamical bar mode instability. However, this instability only sets in for extremely high

values of the ratio of the rotational kinetic energy T to the gravitational potential energy W :

T/|W | ≥ 0.27 (with small variations depending on the equation of state and ratio of mass to

radius [52–55]). Simulations have revealed another dynamical nonaxisymmetric instability

that can appear at much lower T/|W | if su�cient di�erential rotation is present [56–67].

Watts, Andersson, and Jones [68] have given compelling arguments for identifying this

“low-T/|W | instability,” as it was called, as a form of corotation shear instability, similar

in basic principle to the better-known Papaloizou-Pringle instability in thick accretion

disks [69]. Namely, nonaxisymmetric modes trapped in a resonant cavity make multiple

passes across a corotation radius (the radius where the mode pattern speed matches

the local �uid angular speed) and are ampli�ed on each pass. A local minimum of the

radial vortensity pro�le has been suggested as the mechanism for mode trapping [61].

Simulations of protoneutron stars indicate that realistic core collapse scenarios can produce

stars subject to this instability [70]. Indeed, the gravitational waves from this instability
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have been proposed as a distinctive signal from hypothesized magnetorotationally-driven

galactic supernovae with rapidly rotating cores [71].

Magnetohydrodynamic simulations have shown that the dynamical barmode instability

can be suppressed by magnetic forces, although only for unrealistically high magnetic

�eld strengths [72, 73]. Fu & Lai have investigated the e�ect of a toroidal magnetic �eld on

the low-T/|W | instability using an analytic model, treating the star as an in�nite cylinder

with no vertical structure [74]. Because of the strong di�erential rotation, a more modest

poloidal seed �eld (∼ 1014G) could wind up to a su�ciently strong toroidal �eld (∼ 1016G)

within the growth time of the instability (around 30ms). The protoneutron stars most

likely subject to the low-T/|W | instability have strong di�erential rotation and potential for

magnetorotational dynamo action, and in such stars magnetic �elds of this magnitude are

plausible [75]. Magnetic suppression could therefore eliminate the potential gravitational

wave signal of core-collapse supernovae. However, Fu & Lai’s model makes a number of

strong simplifying assumptions: cylindrical stars, a polytropic equation of state, and purely

toroidal �elds. These could lead to the neglect of other important magnetohydrodynamical

e�ects and instabilities. Thus, simulations of more realistic con�gurations in full 3D are

needed to evaluate the robustness of the suppression mechanism.

Here we simulate the e�ects of magnetic �elds on di�erentially-rotating neutron stars

susceptible to the low-T/|W | instability using our new magnetohydrodynamics module

for SpEC. The instability is indeed suppressed for a narrow range of strong seed magnetic

�elds, but the more commonly observed behavior is for either magnetic �elds to be too

weak to a�ect the global quadrupole mode or for them to be su�ciently strong for magnetic

instabilities to set in and actually amplify the mode. In general, we �nd gravitational waves

comparable in magnitude to the unmagnetized case.
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4.2 Setup

Physical system

Since our purpose is to study the e�ect of magnetic �eld strength and con�guration on

the low-T/|W | instability, we focus here on one system that, in the unmagnetized case,

is subject to this instability. We choose one of the di�erentially rotating neutron star

models studied by Corvino et al. [66], namely their con�guration M.1.200, which they

indeed �nd to be unstable. The star has a baryon mass of Mb � 2.44M�, a central density of

ρc � 1.16 × 10−3M�−2, and a ratio of kinetic to gravitational potential energy of T/|W | � 0.2

(low enough to avoid the high-T/|W | dynamical bar mode instability, which becomes

accessible for T/|W | & 0.24 [54, 76]). The degenerate component of the equation of state is

given by the SLy model [77], which we implement via the �tting formula introduced by

Shibata et al. [78]. Thermal contributions to the pressure and internal energy are included

by a simple Γ-law addition to the equation of state (see Shibata et al., Duez et al. [26]),

where we have chosen Γth � 2. At the start of simulations, the temperature of the star is set

to zero. Thus, we ignore for the purposes of this study the signi�cant thermal energy that

would be found in a realistic protoneutron star or binary post-merger remnant scenario,

but we do model the dominant cold nuclear physics component of the equation of state.

For the initial state of the star, we create an axisymmetric nonmagnetized equilibrium

solution of the Einstein equations. The spacetime metric, set in quasi-isotropic coordinates,

takes the form

ds2 � −eµ+νdt2 + eµ−νr2 sin2(θ)(dφ − ωdt)2 + e2ξ (dr2 + r2dθ2) , (4.1)

where µ, ν, ω, and ξ are arbitrary functions of axisymmetric space. Di�erential rotation

is a key requirement for the instability and is incorporated by setting the initial angular

velocity, Ω ≡ vφ, according to

Ωc −Ω � Â−2ut uφ �
1

Â2R2
e

[
(Ω − ω)r2 sin2(θ)e−2ν

1 − (Ω − ω)2r2 sin2(θ)e−2ν

]
, (4.2)
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where Re is the coordinate equatorial radius, Ωc is the central angular velocity, and Â

is a dimensionless parameter characterizing the strength of di�erential rotation. For the

initial state of the system under study, Re � 7.8M�, Ωc � 2π × 3.0 kHz, and Â � 1. The

ratio of polar to equatorial coordinate radii is Rp/Re � 0.414. We compute the equilibrium

con�guration using the code of Cook, Shapiro, and Teukolsky [79].

Since the equilibrium data are axisymmetric to numerical precision, we seed the star

with a small m � 2 perturbation in order to make the initial perturbation resolution-

independent and its subsequent growth numerically convergent. This perturbation is

applied to the rest-mass density and takes the form

ρ → ρ

(
1 + δ2

x2
− y2

R2
e

)
. (4.3)

The size of the initial perturbation is δ2 � 2 × 10−5. This yields an initial distortion [see

Eq. (4.11)] of η+ � 4.08 × 10−6.

The properties of the star in its initial state are summarized in Table 4.1. While the

mass is considerably higher than would be expected for a protoneutron star (though not

implausible for a binary neutron starmerger remnant), we expect our conclusions regarding

the interaction of magnetic �elds and the low-T/|W | instability to apply qualitatively to

lower-mass systems. Several properties di�er slightly from those of Corvino et al.’s M.1.200,

so while we expect the overall evolution to be quite similar, we should not expect perfect

correspondence in quantitative measurements.

Finally, we introduce a seed poloidal magnetic �eld. Following a standard practice

in the numerical literature (e.g., [80–82]), we introduce a toroidal vector potential with

strength

Aφ � Ab$
2max(P − Pcut, 0)ns , (4.4)

where Ab sets the overall strength of the resulting B-�eld, ns controls the smoothness

of the �eld, and the cuto� pressure Pcut (set to 4% of the central pressure) con�nes the

initial �eld to regions of high-density matter. The vector potential is evaluated at cell
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Table 4.1: Basic properties of the neutron star. Re is the equatorial coordinate radius, and Rp
is the polar coordinate radius. ∆Ω is the angular frequency range—the di�erence between
the central and equatorial rotation frequencies.

G, c ,M� � 1 cgs

M0 2.44 4.85 × 1033 g
MADM 2.19 4.35 × 1033 g
Rp/Re 0.414 0.414
ρc 0.00116 0.717 × 1015 g cm−3
Ωc 0.0922 2.98 × 2π kHz
∆Ω 0.0650 2.10 × 2π kHz

edges, with a fourth-order curl operator producing the initial B-�eld at cell faces. This

�eld is then superimposed on top of the unmagnetized equilibrium solution. While not

formally self-consistent, at the �eld strengths we consider we expect both the deviation

from equilibrium and the constraint violations in the equations of general relativity to have

negligible e�ects on our conclusions. Speci�cally, the norm of the generalized harmonic

constraint energy increased by < 1% with the addition of the magnetic �eld. Selected �eld

lines for the initial and evolved states of the star are illustrated in Fig. 4.1.

We explored a region of the two-parameter space Ab × ns . However, it is more intuitive

to talk about magnetic �eld strengths measured in Gauss than the poloidal coe�cient Ab .

The magnetic con�gurations studied are summarized in Table 4.2, which reports both the

maximum strength of the B-�eld at t � 0 as well as a representative initial �eld strength B0

that more closely re�ects the average �eld in the star. We assign this representative strength

to each magnetic �eld con�guration by measuring the early growth of the magnetic energy

within the star, hereafter labeled HB [see Eq. (4.9)], and �tting to it the formula

HB ≈ B2
0

(
∆Ω2R3

6

)
t2 (4.5)

to solve for B0. Here we take ∆Ω � 2.1 × 2π kHz and R � 15.3 km (the proper equatorial

radius, as opposed to the isotropic coordinate radius reported earlier). This formula was

also used by Fu & Lai in their analysis [74], easing comparisons with that work.

The dynamical importance of the magnetic �eld can be inferred from the ratio of the
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Figure 4.1: Illustrations of magnetic �eld lines at early (t � 0, above) and intermediate
(t � 2160, below) times. Contours represent regions of similar rest-mass density. Magnetic
�eld lines are seeded at coordinate radii of 2M� (yellow) and 4M� (pink).
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Table 4.2: Summary of the magnetic con�gurations studied. Bmax is the maximum strength
of the initial poloidal magnetic �eld, B0 is its “representative” strength as de�ned in the
text, and βmin is the minimum ratio of �uid pressure to magnetic pressure found initially
in the interior of the star.

Ab [G, c ,M� � 1] ns Bmax/G B0/G βmin

0 n/a 0 0 ∞

0.00768 1 2.5 × 1014 4 × 1013 1.1 × 106
0.0379 1 1.3 × 1015 2 × 1014 5.2 × 104
0.0892 1 2.9 × 1015 5 × 1014 9.5 × 103
0.444 1 1.5 × 1016 2 × 1015 3.8 × 102
424 2 1.8 × 1015 2 × 1014 5.9 × 105
1000 2 4.1 × 1015 5 × 1014 1.1 × 105

gas to magnetic pressure β � 2P/b2. For our strongest initial �eld, β starts no lower than

3.8 × 102.

Simulation parameters

We used several evolution grids over the course of this investigation, but our �nal results

were achieved on a “reference” �nite volume grid with ∆x � ∆y � 0.17M� � 250m and

∆z � 0.10M� � 150m. Grids employed during the exploratory phase (discussed in Sec. 4.4)

used uniform resolution and are detailed where mentioned.

Our spectral grid (for evolving the spacetime; see Fig. 4.2) consists of a �lled sphere

(using a basis of three-dimensional generalizations of Zernike polynomials; see Sec. A.2)

surrounded by layers of “cubed spheres”—products of Chebyshev polynomials distorted

to conform to 1/6 of a spherical shell. These encompass the entire �nite volume grid and

are in turn surrounded by true spherical shells (a product of Chebyshev polynomials and

spherical harmonics) extending to 300 stellar equatorial radii. The spectral resolution of

our reference grid corresponds to spherical harmonics out to l � 21 for the central sphere

and l � 17 for the outer spheres. The radial dimensions of these spheres are resolved by 12

and 11 collocation points, respectively. The cubed spheres contain 12 radial points and 20

transverse points.
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Figure 4.2: Illustration of x–z slice of domain decomposition. The shaded region with a
bold outline represents the initial star. The dashed rectangle represents the �nite-di�erence
domain, which has a coordinate width of 25M� and a coordinate height of 14.5M�. For
spectral subdomains, the actual reference grid has twice as many collocation points in each
direction as are shown in the �gure.

4.3 Analysis

To study the low-T/|W | instability in our simulations and the e�ects that magnetic �elds

have on it, we consider several global measures of the simulation results as functions of

time. These include various energy integrals, de�ned as follows:

Rest mass:

Mb �

∫
ρWL
√
γd3x . (4.6)
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Kinetic energy:

T �
1
2

∫
ρhWLui v i√γd3x , (4.7)

where v i
≡ u i/u0.

Internal energy:

U �

∫
ρWLε

√
γd3x . (4.8)

Magnetic energy:

HB �
1
2

∫
b2WL

√
γd3x . (4.9)

Since total energy is conserved (and our hydrodynamic evolution is conservative),

we can infer the change in gravitational energy from the sum of the changes in these

non-vacuum energies. Some of this is lost in the form of gravitational waves, which emit

2.1 × 10−4M� of energy over the duration of the simulation in the unmagnetized case. Any

remaining di�erence must therefore be a change in the gravitational binding energy of the

star.

Following previous studies, we consider the quadrupole moment of the rest mass

density about the origin (which is the initial center-of-mass):

I i j
�

∫
ρWLx i x j√γd3x . (4.10)

To reduce this to a scalar measure, we consider two polarizations of the x and y components

of the quadrupole tensor,

η+(t) ≡
Ixx (t) − I y y (t)
Ixx (0) + I y y (0)

(4.11)

η×(t) ≡
2Ix y (t)

Ixx (0) + I y y (0)
, (4.12)

and, following Corvino et al. [66], take their magnitude to de�ne the “distortion parameter”

η:

|η(t) | �
√
η2+(t) + η2×(t) . (4.13)

Note that the numerical atmosphere surrounding the star (see Sec. 3.2) has the potential

to bias integral measurements like those above. A common solution is to impose density
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or radius thresholds when summing the integrand. However, because our �uid grid only

covers the region immediately around the star and does not extend into the wave zone, the

e�ect of the atmosphere on these measurements is negligible.

The invariant strength of themagnetic �eld is simply themagnitude of ba , whose square

is equal to

b2 �
B2

W2
L

+
[
B i

(
u j

WL
+
β j

α

)
γi j

]2
. (4.14)

To report physical results, we convert this strength to CGS-Gaussian units via

|BCGS | �

√

4πb2

1M�

(
c2

GM�

) (
c

√
4πε0G

)
× 104G

�

√

b2 × 8.352 × 1019G .
(4.15)

We also consider the evolution of some quantities in a Lagrangian frame of reference.

To do this, we seed “tracer” particles in the �uid and evolve their positions according to

the �uid velocity in our Eulerian evolution frame. The resulting trajectories provide useful

information in their own right, and observing quantities along those trajectories allows for

their Lagrangian analysis.

Finally, in order to accurately monitor the growth of instabilities of arbitrary m in a

robust manner, we consider an additional measure of non-axisymmetry that di�ers from

diagnostics used in previous investigations. Our approach is discussed below.

Azimuthal modes

Previous studies have analyzed the “Fourier power” of m-modes of a �eld ψ by integrating

the quantity ψe imφ. Some have performed this integral over a ring, capturing the power at

a single radius and height within the system [61, 70]. Others, including Corvino et al., have

performed a volume integral. While the latter approach incorporates contributions from

the entire system, it has several disadvantages. The integrand is in general discontinuous at

the origin for m > 0, and thus naive numerical computations of |Pm | can produce spurious

results (for example, computing a �nite volume integral with a gridpoint at the origin
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will result in non-zero m > 0 power for axisymmetric data). Additionally, m-modes of ψ

whose phase changes with radius or height will be biased (for instance, a tightly wound

spiral structure will produce canceling contributions to the integral for each in�nitesimal

annulus). Diagnostics de�ned in terms of multipole moments, like η, do not su�er the

discontinuity problem, but radial cancellations still cause, for instance, the quadrupole

moment to be a potentially poor representation for what one would intuitively call “m � 2

power.”

A hybrid approach is to sum the power of ψ in several rings, thus sampling the �eld

at multiple heights and radii. More generally, ψ can be multiplied by a set of orthogonal

window functions isolating particular subsets of the domain, with volume integrals used

to compute the power of each product. These functions would approach the origin as $m ,

ensuring smoothness there, and would be localized at various radii, avoiding cancellation

from spiral structure. A natural choice for such a set of functions are the radial and vertical

cardinal functions associated with a basis for functions over a cylinder (for example, the

product of Zernike polynomials over a disk with Legendre polynomials in z). These

functions are smooth, orthogonal, and generally localized around their corresponding

node.

In fact, this approach is equivalent to a spectral measure of m-power, de�ned in Eq. A.29,

where the Fourier components of ψ are decomposed into a set of basis functions, and the

squared magnitude of the spectral coe�cients are summed (see Sec. A.5 for proof). It is

this de�nition of m-power, which we denote with Pm[ψ], that we employ in our analysis.

To account for possible center-of-mass motion, the origin is chosen to follow the measured

center-of-mass (
∫

xρWL
√
γd3x/

∫
ρWL
√
γd3x) of the system.
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4.4 Results

Having established the accuracy and convergence of our code on standard test problems

(see Sec. 3.4), we can now compare our �ndings regarding the unmagnetized low-T/|W |

instability with previous simulations of the same system, con�rming the baseline against

which magnetized results will be compared.

Unmagnetized instability

When simulating the unmagnetized system, we �nd the behavior of the low-T/|W | insta-

bility to depend sensitively on the reconstruction algorithm employed by the code (see

Sec. 3.2 for the role and implementation of reconstruction in our evolution scheme). In

particular, the growth of the distortion parameter |η| was not convergent with resolution

for the majority of reconstructors considered (a more thorough investigation is the sub-

ject of ongoing work). We are, however, able to obtain consistent results using WENO5

reconstruction, as shown in Fig. 4.3.

Even when using WENO5 reconstruction, insu�cient resolution, particularly in the

vertical direction, can introduce spurious features in the distortion parameter’s evolution

at intermediate times and otherwise increase the simulation’s sensitivity to other choices in

numerical methods. We see long-term consistency in the growth of η when ∆z . 0.1M�.

We follow the unmagnetized system through the saturation and initial decay of the

instability, as shown in Fig. 4.4. The growth exhibits a single exponential mode with a time

constant of τ ≈ 3.6ms, and the amplitude of the instability saturates when the distortion

parameter reaches |η|max ≈ 0.035. This is the reference against which our magnetized

results will be measured. As noted by Cerdá-Durán et al., this is less than the O(1) (fully

nonlinear) magnitude usually achieved by the classical bar-mode instability [63]. They

attribute this lower saturation value to the accumulation of angular momentum in the

outer layers of the star, beyond the corotation radius, which excites Kelvin–Helmholtz-like
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Figure 4.3: Consistency of the net growth rate of the low-T/|W | instability when using
WENO5 reconstruction at various resolutions (no magnetic �eld is present). The black
dashed line represents our approximation to the growth rate found by Corvino et al. for
M.1.200. Results from resolutions of ∆x . 0.2M�, while not formally convergent, are in
good agreement and are clearly distinct from those of Corvino et al. “SLev” indicates
the spectral resolution level, with higher levels corresponding to �ner resolution (the
“reference” grid uses SLev 4), and grid spacings are measured in solar masses.

instabilities that prevent further angular momentum extraction. Our data is consistent

with their observations, with late-time m � 2 density perturbations most pronounced at

large radii.

Comparing to the results of Corvino et al. [66], who used the piecewise parabolic

method (PPM) for reconstruction, we �nd a large disagreement in the growth rate of η.

Our simulations exhibited clean exponential growth for over 30ms with a characteristic

time of τ ≈ 3.6ms. For comparison, from Fig. 3 in Corvino et al.’s work we estimate a
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Figure 4.4: Growth and saturation of the unmagnetized low-T/|W | instability as expressed
in the “plus” polarization of the distortion parameter η. The “cross” polarization exhibits
the same behavior with a phase shift. Compare to Corvino et al. Fig. 3.

growth time of τ ≈ 0.88ms1. This rate is illustrated by the dashed line in Fig. 4.3 and results

in saturation of the instability considerably sooner than in our simulations. Saturation

amplitudes, however, agree to within a factor of two (0.035 vs. 0.055). Overall, the growth

pro�le we observe for η is much more similar to those Corvino et al. report for stars with

even lower values of T/|W | (0.15 and 0.16), showing smooth exponential growth followed

by decay, than what they report for T/|W | � 0.2, where the growth is comprised of multiple

unstable modes growing at di�erent rates. Figure 4.5 shows the spectrum of the distortion
1This value encapsulates the speed with which the distortion of the star grows to saturation, but it does

not necessarily represent the growth rate of the same unstable mode we see in our simulations. In particular,
Corvino et al. see a spectrum of unstable modes with di�erent growth rates.
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parameter for their case compared to ours, highlighting the fact that our codes disagree on

the stability and/or excitation of these modes.

While the reason for the disagreement is currently unknown (and will be the subject

of future investigation), it appears to be linked to the reconstruction algorithm employed

by the simulation. We have preliminary results from evolving this same system with

the Zelmani code [83]2, some of which are shown in Fig. 4.6. While the growth pro�le

found by Zelmani when using PPM roughly matches that of Corvino et al., additional tests

suggest it may not be convergent with resolution, and the Zelmani results using di�erent

reconstructors yield di�erent growth pro�les still.

Returning to the reference results of this work, the relative power of the density per-

turbation in the lowest few Fourier modes is shown in Fig. 4.7. Unlike Ott et al. [70], but

consistent with Scheidegger et al. [65] and Corvino et al., we �nd m � 2 to be the dominant

mode. This is also the mode whose interaction with magnetic �elds was analyzed in detail

by Fu & Lai [74].

Magnetic e�ects

We �nd that the presence of a magnetic �eld could have two competing e�ects on the

growth of the m � 2 �uid instability. Simulations with �elds of 4 × 1013G and greater

demonstrate suppression of the instability, with the distortion parameter saturating at a

signi�cantly smaller value (3–50× lower) than in an unmagnetized star. Even stronger �elds

(starting at 5 × 1014G), however, made the star susceptible to a small-scale (few gridpoints

per wavelength) magnetic instability that rapidly ampli�ed the m � 2 distortion of the star

(in addition to other modes). This instability may operate at lower �eld strengths as well,

but there its e�ects would not be resolvable at our current resolution. The net behavior

for all simulated cases is plotted in Figs. 4.8 and 4.9 and is qualitatively independent of

the seed �eld geometry (parameterized by ns ; in particular, the threshold for instability
2These partial simulations were performed by Christian D. Ott and Philipp Mösta.
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Figure 4.5: Comparison of the normalized power spectral densities (PSDs) of η× as
simulated by Corvino et al. (top) and by SpEC (bottom). In Corvino et al.’s PPM simulation,
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Figure 4.7: Relative power of ρ in azimuthal modes for m � 1–4. Note that measurements
of m � 4 power have a noise �oor of 10−3 due to the Cartesian nature of the grid.

appears to be the same).

Simulations of these magnetically unstable cases were halted prior to the original satu-

ration time, as magnetized out�ows of matter began to leave the grid. Both magnetically-

dominated and pressure-dominated matter leave the star relatively isotropically with

mildly relativistic velocities (WL . 0.15). The stronger the magnetic �eld, the sooner these

out�ows develop. Similar out�ows have been noted in previous investigations [84, 85],

though due to the small size of our grid, we cannot make quantitative comparisons.

Suppression of the low-T/|W | instability

When we observe suppression, we would like to determine whether the mechanism is

consistent with that proposed by Fu & Lai. Unfortunately, the correspondence is far from
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Figure 4.8: Range of behavior of distortion parameter η at di�erent magnetic �eld strengths
for ns � 1. Curves that terminate at early times developed signi�cant out�ows, making
further evolution impractical on our grid.

clear. In particular, while magnetic winding produces peak toroidal �eld strengths compa-

rable to those considered in their work (and surpassing their threshold for suppression

of 2 × 1016G), the total magnetic energy saturates at much lower values than they deem

necessary for suppression to take place. Our runs with initial poloidal �eld strengths on

the order of B0 ≈ 2 × 1014G wind up toroidal �elds as strong as 1017G but with magnetic

energies of only half a percent of the star’s kinetic energy. For comparison, their model

implies that such �elds would possess magnetic energy equivalent to 20% of T, which they

�nd is the minimum energy ratio for suppression to occur.

We see thatmagnetic winding increases themagnetic energy in the star at the expense of
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Figure 4.9: Range of behavior of distortion parameter η at di�erent magnetic �eld strengths
for ns � 2, showing same classes of behavior as when ns � 1 (see Fig. 4.8).

gravitational potential energy, as shown in Fig. 4.10, but saturates within 30ms in the cases

we considered (prior to the saturation of the low-T/|W | instability). Matter near the core

of the star is compacted, increasing the central density. The internal energy of the matter

also increases in magnetized scenarios, but the kinetic energy is barely a�ected in most

cases. For the magnetically-unstable systems, however, kinetic energy from non-azimuthal

�uid velocities grows exponentially at late times as the rotational kinetic energy begins

to decrease at an ampli�ed rate (the separation of rotational and non-rotational kinetic

energy is not shown in the �gure). This likely corresponds to small-scale �uid oscillations

associated with the magnetic turbulence described below.

Other comparisons are di�cult as well. In Fig. 5 of their paper, Fu & Lai show that the
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Figure 4.10: Energy exchange for three magnetic �eld strengths (ns � 1 for each case).
The change in gravitational energy is inferred from the sum of the changes in the other
energies.
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Figure 4.11: Lagrangian displacement of tracer particles seeded at various cylindrical radii
for an unmagnetized star. For each initial radius, 12 tracers were distributed uniformly in
azimuth. The corotation radius for this system is at $ ≈ 4.25M�.

Lagrangian displacement of �uid elements should diverge at the corotation radius during

the low-T/|W | instability, but that this resonance should split in the presence of a strong

toroidal magnetic �eld. Using tracers, we do see an ampli�cation in radial displacement

in the vicinity of the corotation radius in the unmagnetized case (see Fig. 4.11), but the

response is so broad that we cannot resolve any splitting when magnetic �elds are added.

Nevertheless, there are clues pointing to a resonance splitting. In particular, spec-

trograms of the distortion parameter show a split peak when magnetic suppression is
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Figure 4.12: Spectrograms of the quadrupole moment Ix y for six cases. The power spectral
density (PSD) is estimated via an FFT periodogram using Welch’s method with a Hann
window. The PSD is normalized by the total power (in arbitrary units) at each time to
highlight relative changes in the frequency spectrum.

observed (see Fig. 4.12). The magnitude of splitting for B0 � 2 × 1014G, ns � 2 is about

∆ω ≈ 2π × 0.1 kHz. De�ning the angular Alfvén speed,

ωA ≡ Bφ/($
√
ρ) , (4.16)

and the slow magnetosonic wave frequency,

ωs ≡

√
c2s

c2s + (Bφ)2/ρ
mωA , (4.17)

(where cs is the adiabatic sound speed), resonances are expected at ∆ω � ωs and (in the full

3D case) ∆ω � mωA. In the strongly magnetized regions of the star, the observed splitting

agrees with the values of ωs and 2ωA to within a factor of four. Given the di�erences in

the particular systems under study, this is reasonably consistent with Fu & Lai’s proposed

mechanism.
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Figure 4.13: Magnitude of radial component of B-�eld in the y–z plane at t � 3760M� for
B0 � 5 × 1014G, ns � 2.

Magnetic instability

When the initial magnetic �eld exceeds B0 � 5 × 1014G, our simulations start to exhibit

strong magnetic instability. This instability results both in the ampli�cation of low-m

global modes in the star and in turbulence at the smallest scales we can resolve on our

grid. The marginally-resolved nature of this instability complicates its identi�cation and

interpretation.

The growth of small-scale features is most visible in poloidal �eld components, as

illustrated in Figs. 4.13 & 4.14, while large-scale nonaxisymmetric structure is easily seen in

the much stronger toroidal �eld (see Fig. 4.15). The crest-to-crest separation of the poloidal

perturbations is measured to be approximately λ ∼ 1M�, which is resolved by roughly

�ve gridpoints. This suggests that the unstable modes are only marginally resolved, so we
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for three con�gurations (ns � 1 in all cases), illustrating the onset of turbulence. Colorbars
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cannot expect their subsequent evolution to be more than qualitatively correct (at best).

In fact, magnetically-driven instabilities in the �uid are not unexpected. Magnetic

winding generates a strong toroidal �eld in the interior of the star, and toroidal �eld

gradients are potentially unstable to kink (Tayler) and buoyancy (Parker) instabilities [86–

90]. For a toroidal �eld centered on the rotation axis, the Tayler instability can occur at

cylindrical radii $ less than the radial pressure scale height HP (de�ned as in [88, 91] as

2c2s/g$, with g$ denoting the radial acceleration) for positive dBφ/d$. Kink instabilities

have in fact recently been identi�ed in 3D magnetized core-collapse simulations [85]. The

Parker instability can be triggered by radial or vertical �eld gradients (negative dBφ/d$ for

$ > HP or negative dBφ/dz). The growth rate of the Tayler instability is of order the angular

Alfvén speed ωA for weak rotation and ω2
A/Ω for strong rotation, where Ω � ωA is the

condition for strong rotation [92]. Growth timescales for the Parker instability are similar.

Although much analytic work on �eld-gradient instabilities assumes weak di�erential

rotation, the Parker instability has been found to be operable even in some �ows with

strong shear [93]. In our magnetically-unstable cases, ωA/Ω is O(1/2) at the corotation

radius, suggesting an intermediate regime between weak and strong rotation.

In addition to the above-mentioned �eld gradient-driven instabilities, di�erential rota-

tion will also trigger shear-driven instabilities. The most famous is the classic magnetorota-

tional instability (MRI), an axisymmetric instability triggered by a nonzero (but arbitrarily

small) poloidal �eld and an outward-decreasing rotation rate [94]. More generally, the MRI

can also be found in nonaxisymmetric con�gurations [95, 96], in which case the background

toroidal �eld can also contribute to seeding the instability [88, 95]. The fastest-growing

unstable mode grows on a timescale of ∼ Ω−1 and has a wavenumber given by

Ω/
√
−g00 ∼ k · vA ≈

k$B$ + kzBz + mBφ/$√
ρh + b2

(4.18)

(on the relativistic factor, see Siegel et al. [97]). The main challenge for numerical MHD

simulations is to resolve the MRI wavelength λMRI � 2π |k |−1. Since the �eld is usually

azimuthally-dominated, we see that m , 0 modes are potentially easier to resolve, a
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Figure 4.15: Power of b2 in azimuthal modes for m � 1–4. Except in the most strongly mag-
netized systems, the m � 4 power does not rise above that of the ambient grid mode. The
growing strength of the magnetic �eld is factored out by normalizing by the m � 0 power;
thus, trends shown here represent growth of the proportional power of nonaxisymmetric
modes.
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fact also recently noted by Franci et al. [73], who resolve MRI-like �eld growth only in

nonaxisymmetrically-unstable stars. On the other hand, the growth of a given nonaxisym-

metric mode will be expected to terminate when the mode becomes too tightly wound [95].

In fact, it has long been known that even a purely toroidal �eld can seed a shear instabil-

ity [88, 95, 96], although the growth timescales tend to be longer than those associated

with poloidal seed �elds, except for the case of very high m, and in that case even a small

poloidal �eld would be expected to radically alter the �ow [96].

Given the presence of di�erential rotation and a poloidal magnetic �eld, our system

is certainly susceptible to the MRI; what is less clear is our ability to resolve it. Siegel et

al. [97] state that a minimum of �ve gridpoints per wavelength was required to resolve

the MRI in their simulations. Using Eq. (4.18), we can estimate what the wavelength of

the fastest-growing unstable mode would be at any point in our simulation, optimizing

over propagation directions. Comparing this to our e�ective grid resolution in those

directions, we �nd that when turbulence starts to develop in our systems, there are O(few)

gridpoints per wavelength in the unstable regions of the star even for m � 0 modes, and

when considering higher m, these unstable regions begin to meet the criterion of �ve

gridpoints per wavelength. Therefore, resolving the MRI, if only marginally, is conceivable

given our resolution and magnetic �eld strengths.

One approach to diagnosing the source of turbulence is to measure the growth rates

of observed instabilities and match them to linear predictions. As mentioned above, the

Tayler and Parker instabilities should grow at a rate between ωA and ω2
A/Ω, while the

MRI’s growth rate isΩ, independent of the B-�eld magnitude. The rotational frequency of

the star in the region of magnetic instability (which occurs in the vicinity of the corotation

radius) is about Ω ≈ 1.45 × 2π kHz.

Looking at the growth of the most magnetized point on the grid (see Fig. 4.16) reveals

exponential behavior at rates that increase with the magnetic �eld strength. This scaling,

in addition to the magnitude of the rates, is incompatible with the MRI (while the expected
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Figure 4.16: Growth of the maximum of the cylindrical components of the B-�eld for three
cases: B0 � 5 × 1014G, ns � 1, B0 � 5 × 1014G, ns � 2, and B0 � 2 × 1015G, ns � 1. The
temporal resolution during the period of rapid growth for the last case is 10× �ner than
our default.

rate of Ω is an approximation derived from accretion disks, the numerical prefactor for

our system is expected to be O(3/4), insu�cient to explain the discrepancy).

Considering the �eld gradient-driven instabilities, the “weak rotation” rate of ωA is

too large as well and also does not match the observed scaling with B-�eld strength. The

“strong rotation” prediction, however, while still larger than observed, is only o� by a factor

of a few and is the closest match to the data in terms of scaling. This suggests that, while

the MRI is potentially resolvable with our techniques, the observed local maximum B-�eld

growth is most attributable to �eld gradient instabilities. Shear instabilities are almost

certainly still present and impacting the dynamics, however, and likely play a large role

67



in less-magnetized cases where we currently cannot resolve them. In fact, their expected

growth rates suggest that they would dominate the dynamics on relevant timescales were

they resolved.

Detectability

To help put these results in an astrophysical context, we consider the detectability of gravi-

tational waves produced by the (unmagnetized) low-T/|W | instability for this system. We

follow the procedure outlined by Sutton [98]. Given both polarizations of the gravitational

wave strain, h+ and h×, at some distance from the source, de�ne the root-sum-square

amplitude hrss to be

hrss �

√∫ (
h2
+(t) + h2

×(t)
)

dt . (4.19)

For a narrow-band signal from a rotating system like ours, we expect the emitted gravita-

tional wave energy EGW to be well-approximated by

EGW ≈
2
5
π2c3

G
f 20 r2h2

rss , (4.20)

where f0 is the central frequency of the signal. The e�ective detection range Re� for a

narrow-band burst signal is given by

Re� � β

√
G
π2c3

EGW

S( f0) f 20 ρ
2
det
, (4.21)

where S( f ) is the one-sided noise power spectrum for the target detector, ρdet is the

threshold signal-to-noise ratio for detection, and β is a geometrical factor related to the

polarization of the waves. Specializing to rotating sources, this becomes

Re� � 0.698 rhrss
ρdet

√
2
5

1
S( f0)

. (4.22)

We extract gravitational waves from our simulations at a radius of 400M� using Regge-

Wheeler-Zerilli techniques [99] and consider the strains h+ and h× for an observer above the

axis of rotation. For the unmagnetized star considered in this work, the gravitational wave
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frequency is sharply peaked at 2.9 kHz (this is slightly lower than the 3.2 kHz primary peak

observed by Corvino et al. [66]). If we consider only the instability’s initial growth through

saturation, the total emitted gravitational wave energy is 3.68 × 1050 erg (2.06 × 10−4M�).

Using the ZERO_DET_high_P noise curve for Advanced LIGO [100] and a signal-to-noise

threshold of ρdet � 20, this instability would be detectable out to 92 kpc.

The emitted gravitational wave energy is signi�cantly larger than what was found in

core-collapse supernovae simulations [64, 65] (EGW ∼ 1046–1047 erg for a similar simulation

length). However, the di�erence can easily be understood by noting that the neutron star

considered in this work rotates signi�cantly more rapidly (with the wave signal peaking at

2.9 kHz vs. ∼ 0.9 kHz in the core-collapse results) and is also more massive than protoneu-

tron stars are expected to be. Since EGW ∝ M2Ω6, this accounts for most of the di�erence

in the emitted gravitational wave energy. On the other hand, the more slowly rotating

neutron stars emit waves at a more favorable frequency, improving their detectability.

The e�ect of magnetic �elds on detectability is di�cult to discern from our data, as

out�ows prevented us from evolving the most highly magnetized systems long enough

to see the instability saturate. For B0 � 5 × 1014G, ns � 2, the distortion parameter peaks

nearly as high as the saturation value in the unmagnetized case while the frequency

spectrum at that time peaks at a slightly lower (and more favorable) value, suggesting that

a gravitational wave signal from magnetic instabilities could be just as detectable as that

of the unmagnetized low-T/|W | instability. On the other hand, mildly magnetized cases

exhibit a suppressed distortion parameter with an unchanged frequency spectrum. Using

the quadrupole approximation, and the fact that Re� is linear in hrss, this means that the

e�ective detection range is decreased by factor of ∼ 2.4 for B0 � 4 × 1013G, ns � 1, and by a

factor of ∼ 34 for B0 � 2 × 1014G, ns � 1, for an observer above the axis of rotation.
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4.5 Summary

In writing an MHDmodule for SpEC, we have expanded the range and �delity of astro-

physical systems that can be simulated while still taking advantage of its highly accurate

spacetime evolution. The future scope of this code includes many systems of contemporary

interest, including magnetized compact binary coalescence, but here we focus our attention

on instabilities in di�erentially rotating neutron stars.

Of signi�cant relevance to existing literature regarding these stars is the variability in

simulated instability spectra and their corresponding growth rates when using di�erent

resolutions and reconstruction methods. It appears that the choice of reconstructor can

have a signi�cant e�ect on the stability and excitement of potentially unstable modes.

We �nd qualitative convergence when using high resolution and high-order reconstruc-

tion, but these results di�er signi�cantly from those of lower-accuracy techniques and of

some previous studies. Further investigation of such instabilities’ delicate dependence on

simulation methods is warranted.

Regarding the low-T/|W | instability, it is clear that poloidal magnetic �elds on the order

of 1014Gcanhave a strong e�ect on the distribution ofmass in di�erentially rotating neutron

stars and therefore on their gravitational wave signatures. However, while suppression of

the instability is feasible, it occurs in a small region of parameter space. B-�elds strong

enough to enable the suppression mechanism are likely also strong enough to trigger

magnetic instabilities, accelerating the growth of a mass quadrupole moment rather than

suppressing it.

In our simulations, with clean poloidal initial �elds, the window between the onsets of

magnetic suppression and magnetic instability – roughly 4 × 1013G–5 × 1014G – is rather

small, and future runs with increased resolution may lower the upper bound still further.

Therefore, ampli�cation of matter perturbations seems to be the more likely magnetic e�ect,

with peak amplitudes comparable to those in the unmagnetized case. The spectrum of the

gravitational waves, while perhaps possessing more structure, will also remain peaked
70



near the same frequency. As a result, even with such extreme �eld strengths, the net e�ect

on burst detectability is likely minor.

Regarding Fu& Lai’s conclusions, we �nd some disagreement between their predictions

for cylindrical stars and our simulations of realistic ones. In particular, they concluded that

suppression would occur once the magnetic energy HB reached about 20% of the kinetic

energy T. However, the magnetic energy in our simulations peaks at 0.56% of T, yet we

still �nd suppression in some cases. Despite this, we agree on the minimum strength of the

poloidal seed �eld, roughly 1014G. Additionally, the frequency spectrum of the instability

is consistent with their proposed mechanism for suppression.

Uncertainties in our investigation include the details of the formation of the star and its

seed �eld, as nature will not be nearly as clean as the system we considered. Additionally,

we expect that if the MRI were fully resolved, it would grow on such a short timescale that

it would dominate the e�ects observed here.

Future work to understand the details of the suppression mechanism could investigate

the e�ects of purely toroidal �elds, removing the complications of magnetic winding

and the MRI. On the other hand, the impact of the magnetic instabilities could be better

understood by increasing resolution and by extending the simulations to observe their

saturation behavior. Additionally, the systematic e�ects of reconstruction order and grid

resolution on the growth rate of this particular instability warrant further investigation.

Lastly, while this chapter has limited itself to studying the growth of instabilities, the later

evolution of such stars, after the commencement of magnetically-driven driven winds,

would be a very astrophysically interesting subject for future numerical modeling.
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5 CONCLUSION

With its new capabilities to simulate binary neutron stars and magnetic �elds, along with

numerous e�ciency improvements, SpEC is poised to contribute a wealth of new infor-

mation about the behavior of gravitational wave sources and high-energy astrophysical

events. Our NS–NS initial data solver allows NS–NS systems to bene�t from the advan-

tages of SpEC’s spectral methods, in particular, the ability to simulate long, high-accuracy

inspirals, as has recently been done by Roland Haas and collaborators. It also opens the

door to comparisons with independent NS–NS codes, improving our understanding of the

accuracy of numerical relativity simulations. Additionally, it forms the basis of work by

Nick Tacik to construct neutron star initial data with arbitrary spins, lifting the irrotational

or corotational restriction of the current solver and similar solvers used by other groups..

This capability expands the parameter space we can simulate and improves the realism of

our models.

Our new ability so simulate magnetic �elds similarly extends the �eld of systems we

can simulate, both in terms of comparisons with other groups (such as the University of

Illinois) and in terms of more accurately modeling real systems. It also synergizes with

the other advantages of SpEC, including our ability, thanks largely to Geo�rey Lovelace

and Francois Foucart, to construct and evolve BH–NS systems containing rapidly-rotating

black holes.

There is also much still to explore in the context of magnetized di�erentially-rotating

neutron stars. The magnetized out�ows observed by us and other groups deserve fur-

ther study, and our understanding of the magnetic instabilities at work would be greatly

improved by simulations with additional resolution (though computational limits make

this impractical in the near-term). The strong dependence we observed of the growth

of �uid instabilities on the reconstruction algorithm used also serves as a warning sign

that simulations can easily lead us astray, especially when working at the limits of what
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can be resolved. Understanding the precise relationship between reconstructors and �uid

instabilities is a project that I think would be valuable to our community.

The age of gravitational wave astronomy is at our doorstep, and simulations have a

central role to play. While the need for additional computing power and more complete

microphysics may never be completely satis�ed, the incremental improvements described

in this thesis, along with many others, are paving the way for a greater understanding of

high-energy events in the universe.
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A BASIS FUNCTIONS FOR CYLINDERS AND

SPHERES

The Spectral Einstein Code solves elliptic and hyperbolic PDEs using multidomain pseu-

dospectral methods. The spatial domain of the problem is decomposed into multiple

subdomains of various shapes, including cubes, cylinders, and spheres. Through coor-

dinate maps, these shapes can be distorted into more general shapes, such as wedges,

allowing them to �ll the domain with minimal overlap. Within each subdomain, the solu-

tion is represented using a local basis of functions tailored to the topology of the shape,

and the solution is not required to be continuous across subdomain boundaries. This mul-

tidomain approach has several advantages over using a single global domain, including

improved parallelism, the ability to re�ne resolution locally, and the ability to accommodate

discontinuities in the solution (provided they occur at subdomain boundaries).

For reasons of e�ciency, it is desirable to minimize the distortion introduced by coordi-

nate maps, for the basis is in e�ect responsible for resolving the product of the solution

and the map. Furthermore, it is best to choose shapes well-adapted to any symmetries

expected in the solution (for example, the density in a spherical star is more e�ciently

represented by the basis functions within spheres and spherical shells than by those of a

collection of cubes). Having a variety of subdomain shapes available is therefore bene�cial.

Unfortunately, the centers of spheres and cylinders require special treatment to handle the

coordinate singularities there, making implementing a well-suited basis for these shapes

non-trivial. While the requisite mathematics are well-described in the literature, names

and notation are inconsistent, and there is considerable room for errors when putting all

the pieces together.

Because of instabilities encountered with a previous implementation, SpEC for a time

“plugged the holes” in cylindrical and spherical shells using cubes. However, given the
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symmetries often encountered in astrophysical systems, having a reliable implementation

of basis functions for cylinders and spheres is valuable for both evolutions and subsequent

analysis. Here I describe the theory and practice of these functions in full detail.

A.1 Background on spectral methods

Consider a function space spanned by a set of N basis functions φn (x) that are orthonormal

with respect to a weight function w(x); that is,∫
φm (x)φn (x)w(x)dx � δmn . (A.1)

Further, assume the existence of a quadrature rule on a set of N collocation points xi that

is exact for all products of two functions in this space weighted by w(x). In other words,

N−1∑
i�0

φm (xi)φn (xi)wi � δmn , (A.2)

where wi are the quadrature weights. Note that Gaussian quadrature meets this criterion

for polynomial bases: it integrates exactly for polynomials of order up to 2N − 1, while the

order of the integrand is at most 2N − 2.

Let f (x) be a member of this space, which we write as a linear combination of the basis

functions:

f (x) �
N−1∑
n�0

fnφn (x) , (A.3)

where the spectral coe�cients fn can be computed via

fn �

∫
f (x)φn (x)w(x)dx �

N−1∑
i�0

f (xi)φn (xi)wi . (A.4)

Cardinal functions

There exists a unique set of cardinal function Ci (x) in this space with the property that

f (x) �
N−1∑
i�0

f (xi)Ci (x) , (A.5)
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which we can solve for as follows: First, expand each Ci (x) into its spectral coe�cients cn ,i .

Then,

f (x) �
N−1∑
i�0

f (xi)Ci (x) �
N−1∑
i�0

f (xi)
N−1∑
n�0

cn ,iφn (x) ,

which implies that
N−1∑
n�0

fnφn (x) �
N−1∑
n�0

*
,

N−1∑
i�0

f (xi)cn ,i+
-
φn (x) ,

and thus that

fn �

N−1∑
i�0

f (xi)φn (xi)wi �

N−1∑
i�0

f (xi)cn ,i .

This means that

cn ,i � φn (xi)wi ,

and therefore

Ci (x) � wi

N−1∑
n�0

φn (xi)φn (x) . (A.6)

Observe that the cardinal functions obey the property

Ci (x j) � δi j (A.7)

and are orthogonal to one another with norm
√

wi :∫
Ci (x)C j (x)w(x)dx � wiδi j . (A.8)

Thus, the functions C̃i (x) ≡ Ci (x)/
√

wi form another orthonormal basis for the space.

(Note that this also provides a convenient way of computing the quadrature weights via

1/wi �
∑

n φ
2
n (xi).) For polynomial bases of degree less than the number of collocation

points, the terms of the Lagrange interpolating polynomial,

Pi (x) �
N−1∏
j�1
j,i

x − x j

xi − x j
, (A.9)

provide a set of cardinal functions.
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Lower quadrature orders

Key to the above analysis is the fact that the quadrature rule was of su�ciently high order

to perfectly project any function in the space onto the basis functions. While Fourier and

Gaussian quadratures satisfy this requirement, it is often convenient to employ a lower-

order quadrature rule when implementing a spectral method. Gauss–Lobatto quadrature,

for example, places a collocation point at each endpoint of the interval, while Gauss–Radau

quadrature places a node at a single endpoint. Having collocation points at the edges of the

interval is convenient for imposing boundary conditions. Unfortunately, Gauss–Lobatto

quadrature on N collocation points is only exact for polynomials of order 2N −3, and while

Gauss–Radau is exact up to order 2N − 2, there are situations (such as with the Zernike

polynomials discussed below) where this is insu�cient. Thus, when using the procedure

above, the highest-order modes will be analyzed incorrectly.

There are two ways to work around this problem. One is to reduce the rank of the basis

without reducing the number of collocation points. The other is to normalize the basis

functions with respect to the quadrature rule, rather than analytically. Failure to adopt

one of these approaches will result in an incorrect and often unstable implementation, as

transforming a sampled function from “physical” space to spectral space and back again

will not correspond to the identity operation.

A.2 Zernike polynomials

When evolving the spacetime metric on a spectral grid, we try to adapt the domain de-

composition to the geometry of the evolved �elds. This often means using sections of a

sphere, in the form of spherical shells or “cubed spheres.” In black hole spacetimes, this is

su�cient to cover the area surrounding the excised region within the apparent horizon.

However, for neutron star spacetimes, a di�erent approach is taken to cover the center of

the star.
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Polar and spherical coordinates are singular at the origin, creating di�culties if one

tries to use tensor products of one-dimensional function bases. This same problem ex-

ists at the poles of a spherical surface. Spherical harmonics, Ym
l (θ, φ), provide a clean

solution in that case, able to represent smooth functions without arti�cial boundaries

and without severely restricting the timestep allowed by the Courant–Friedrichs–Lewy

stability limit [101]. For the radial “pole problem,” Zernike polynomials and their higher

dimensional generalizations provide a similar solution.

The use of Zernike polynomials in spectral methods over the unit disk, B2, was explored

independently by Matsushima and Marcus [102] and by Verkley [103]. Notation varies

throughout the literature, so we summarize ours here:

Denote an orthonormal azimuthal (Fourier) basis as

Fm (φ) ≡




1
√
2π

m � 0

1
√
π

e imφ m > 0
. (A.10)

Then an arbitrary smooth function f ($, φ) over B2 can be decomposed into its Fourier

coe�cients fm ($):

f ($, φ) �<
mmax∑
m�0

fm ($)Fm (φ) , (A.11)

where mmax � bNφ/2c, Nφ being the number of azimuthal collocation points. (Note that if

Nφ is odd, the highest mode will lack a sine component.)

These Fourier coe�cients can be further decomposed into a radial sub-basis Rm
n ($),

composed of one-sided Jacobi polynomials multiplied by $m :

Rm
n ($) ≡

√

2n + 2$mP (0,m)
(n−m)/2(2$2

− 1) , (A.12)

where P (α,β)
k (x) represents the Jacobi polynomial of degree k. In this notation, the radial

functions are only de�ned for n ≥ m, 2 �� (n − m). For smooth functions, the fm ($) must

satisfy the pole condition: fm ($) → $m as $ → 0. This basis manifestly respects that

condition.
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The Zernike polynomials are then de�ned as

Zn
m ($, φ) ≡ Rm

n ($)Fm (φ) . (A.13)

They form an orthonormal basis for smooth functions over the unit disk:

f ($, φ) �
mmax∑
m�0

nmax∑
n�m
n+�2

fnmZn
m ($, φ) , (A.14)

where nmax � 2N$ − 1, N$ being the number of radial collocation points. Note that if

Gauss–Radau quadrature is used (placing collocation points on the outer boundary of the

disk), then the highest-order radial basis functions should be normalized with respect to

the quadrature rule (rather than analytically) or else omitted entirely. Speci�cations for the

quadrature nodes and weights can be found in the references.

As mentioned by Livermore et al. [104], this basis can be generalized to �lled spheres

(B3). In that case, a function f (r, θ, φ) is decomposed into fnlm such that

f (r, θ, φ) �
mmax∑

m�−mmax

lmax∑
l�|m |

nmax∑
n�l

n+�2

fnlmRl
n (r)Ym

l (θ, φ) , (A.15)

where now Rl
n (r) is given by

Rl
n (r) �

√

2n + 3r lP (0,l+1/2)
(n−l)/2 (2r2 − 1) , (A.16)

which corresponds to an integration weight of r2 instead of $. Here, Ym
l (θ, φ) are the

spherical harmonics, and lmax � Nθ − 1 for Nθ latitudinal collocation points.

A.3 Spectral method

To use Zernike polynomials as the basis for a subdomain in SpEC, one needs to provide

e�cient routines for spectral transforms, interpolation, di�erentiation, integration, and

�ltering. As the coupling of the radial polynomials with the angular basis is not as simple

as an tensor product, and as the order of the radial polynomials exceeds the number of

radial collocation points, here I outline the implementation of these routines.
79



Quadrature

Because the radial polynomials have de�nite parity for a given m or l, Gaussian quadrature

can integrate products of them exactly up to a combined order of 4N$,r − 2 (twice the order

for arbitrary polynomials sampled at the same number of points). This is just su�cient to

project any polynomial of order ≤ nmax onto the basis. However, Gauss–Radau quadrature,

which would place a collocation point on the boundary of the disk or sphere, can only

integrate up to a combined order of 4N$,r − 4. This results in a normalization error when

integrating terms of order nmax. While this normalization could be corrected by modifying

the projection procedure for the highest mode, for simplicity we instead opt to add an

extra collocation point while only incrementing nmax by 1 instead of 2 (or equivalently,

reduce nmax by 1 for the same number of points). This is also the approach outlined by

Matsushima and Marcus [102].

For a Gauss–Radau grid, we therefore have the following requirements and relation-

ships:

Filled disks (B2):

• mmax � bNφ/2c , nmax � 2N$ − 2

• 2Nr ≥ bNφ/2c + 2

Filled spheres (B3):

• mmax � bNφ/2c , lmax � Nθ − 1 , nmax � 2N$ − 2

• Nθ ≥ bNφ/2c + 1 , 2Nr ≥ Nθ + 1

Failure to meet the resolution inequalities means that the order of accuracy implied by

the de�nitions above them will not be met—the high angular modes will not be resolved,

as there will be no radial (or polar) modes of su�cient order to resolve them while still

satisfying the pole condition.
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Spectral transforms

Transforming data from physical to spectral space is a two-step process. First, angular

transforms are performed on rings or shells of data at each collocation radius $i or ri . For

B2, this requires a set of N$ discrete Fourier transforms, each of which can be performed

in O(Nφ log(Nφ)) time using the fast Fourier transform (FFT). For B3, this involves Nr

spherical harmonic transforms. Once the angular modes are known at each radius, each

mode can be re-represented in terms of radial modes by projecting onto the radial basis

corresponding to that m or l. This projection is easily performed using a matrix multipli-

cation transform, an O(N2) operation. While not as asymptotically e�cient as the FFT,

this transform is often not a bottleneck in 3D multidomain spectral codes, as we rarely

encounter extremely high radial resolution in a single subdomain.

Note that this transformation is not invertible. By choosing a constant nmax, we have

adopted a triangular truncation of the radial spectrum, as opposed to a rhomboidal trun-

cation where the number of radial modes is independent of m. A triangular truncation is

commonly used for spherical harmonics as well, since this guarantees isotropic resolution

over the surface of a sphere [105]. A consequence of this is that there are fewer spectral

coe�cients than collocation points—roughly half as many for B2 and a quarter as many

for B3. Thus, more functions can be represented in physical space than in spectral space;

these extra functions contain power in high radial (or polar) modes for m , l > 0 which are

resolvable by the grid but not representable by our truncation.. Transforming to and from

the spectral domain e�ectively �lters these extra modes. This has implications for elliptic

problems—solving for collocation values yields an overdetermined system, while solving

for spectral coe�cients complicates preconditioning. See Pfei�er [106] for ways to proceed

in this situation.

Even in a pseudospectral code, where the physical space values are evolved directly,

transforms to and from the spectral domain can be useful. The spectral coe�cients are a

valuable diagnostic tool, and some operations, such as grid re�nement, are most easily
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performed in spectral space. Adaptive mesh re�nement and �ltering are both currently

implemented using spectral coe�cients in SpEC.

Interpolation and di�erentiation

Livermore et al. provide an appendix that may be useful when computing spectral deriva-

tives in the radial direction, but it is faster to compute them in “Fourier collocation space”

(where each Fourier mode is represented by its value at each of the radial quadrature

points).

Fornberg’s di�erentiation matrices can be used to interpolate and compute derivatives

in Fourier collocation space, but since we sample on only half as many collocation points as

the maximum degree of our radial polynomials, the method must be modi�ed to account

for the parity of the angular modes.1 The abscissa to use in Fornberg’s algorithm are not

{$i }, but rather {xi } � {$2
i }, and we will use the resulting matrices to act on a function

gm (x) instead of directly on fm ($). The de�nition of gm (x) depends on the parity of fm ($)

as follows:

gm (xi) � fm ($i) m even (A.17)

gm (xi) � fm ($i)/$i m odd . (A.18)

Using Fornbergmatrices, we can now compute g′m (x) and g′′m (x). To recover the desired

quantities f ′m ($) and f ′′m ($), we compute the following combinations:

f ′m ($i) � 2$g′m (xi) f ′′m ($i) � 2[g′m (xi) + 2$2g′′m (xi)] m even (A.19)

f ′m ($i) � gm (xi) + 2$2g′m (xi) f ′′m ($i) � 2$[3g′m (xi) + 2$2g′′m (xi)] m odd . (A.20)

One important subtlety when working with derivatives in these bases is that, if Zernike

polynomials or spherical harmonics are involved, coordinate derivatives of representable
1 Alternately, to achieve full-order accuracy using Fornberg’s method, we could provide additional points

on the re�ected interval [−1, 0). This is possible because each Fourier mode fm ($) is either an even or odd
function of $ (depending on whether m is even or odd).
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functions are not themselves representable in the basis. Other quantities related to coor-

dinate derivatives, such as Cartesian derivatives, are representable, and if the coordinate

derivatives are given in collocation space, these quantities can be computed from them

without trouble. However, coordinate derivatives should not be spectrally decomposed or

have further coordinate derivatives taken of them.

In the case of B2, the implications of this are that the second radial derivative must be

computed directly and not by taking a single radial derivative of the �rst radial derivative.

The problem is easy to spot: a function represented in this basis has Fourier modes whose

radial dependence matches the parity of the mode. But computing ∂$ changes the parity

of this radial dependence, and the result cannot be represented in the basis. In fact, the

radial derivative is not well-de�ned at the origin, since $ does not have a well-de�ned

direction there. One solution is to compute the quantity $∂$ f , which can be expressed in

the basis. Alternatively, we can promise to only use the collocation values of ∂$ f in the

process of computing Cartesian derivatives, which can also be expressed in the basis. This

latter approach is what we do in SpEC.

Integration

Because Zernike polynomials are orthogonal with respect to the weight function w($) � $

(for B2), computing the de�nite integral of a function over the unit disk is straightforward

and e�cient. One property of Fourier series is that only the zero-frequency DC coe�cient

is needed to compute the angular integral. Our procedure is then to compute f0($i) at

each radius, then to take the dot product of this with the vector of quadrature weights wi .

The integral is simply this dot product times a normalization factor. In summary,∫ 1

0

∫ 2π

0
f ($, φ)$dφd$ �

2π
Nφ

Nr−1∑
i�0

wi f0($i) . (A.21)

While the DC coe�cients f0 could be extracted from the �rst elements of the Fourier

transforms, it is more e�cient to compute them directly rather than allowing the FFT
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to unnecessarily compute all of the other coe�cients as well. The (unnormalized) DC

coe�cient is simply the sum of the function samples at that radius, so

f0($i) �
Nφ−1∑

j�0
f ($i , φ j) . (A.22)

We handle the case of B3 analogously.

Filtering

Spectral methods can be susceptible to aliasing instabilities when, for instance, non-linear

interactions allow the creation of higher spectral modes through the mixing of lower ones.

Appropriate �ltering of the solution is therefore required for stable evolutions [107]. When

using cylindrical and spherical domains in SpEC, we have found �ltering to be unnecessary

in the radial direction. Filtering in angular directions, meanwhile, is performed as for

spherical shells [108]. We found it su�cient to perform �ltering only once every full

timestep, rather than at every substep.

A.4 Scalar wave test

Two important properties of any method for solving PDEs are its stability and rate of

convergence. For a spectralmethod, we expect exponential convergence to smooth solutions.

To test my implementation of basis functions for spherical subdomains, I evolved the scalar

wave equations, using a Gaussian pulse as initial data. Since the properties of the spherical

harmonics used in the angular directions are already well-established, this initial data was

spherically symmetric, focusing the test on the radial direction.

The scalar wave equation is also a good analogy for how SpEC evolves Einstein’s

equations in generalized harmonic gauge. In both cases, a second-order wave equation

must be expressed in �rst-order form in both time and space (for work on maintaining
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second order in space, see Taylor [109]). The wave equation for a scalar �eld ψ(x , t) is

∂2tψ � ∇
2ψ . (A.23)

De�ne the auxiliary �elds π(x , t) and φ(x , t) as follows:

π ≡ −∂tψ (A.24)

φ ≡ ∇ψ . (A.25)

The original PDE is then equivalent to the following system of �rst-order equations:

∂tψ � −π (A.26)

∂tπ � −∇ · φ (A.27)

∂tφ � −∇π . (A.28)

In a semi-discrete view (where spatial derivatives are approximate, but time derivatives

are assumed to be continuous), this reduction to �rst-order form introduces a “constraint”

to the system; namely, that ∇ψ − φ � 0. While this is trivially true analytically by the

de�nition in Eq. (A.25), poor initial data or errors during evolution can cause this di�erence

to diverge from zero. In this case the constraint is marginally stable [110] and will not

be discussed further, but the constraints of GRMHD require special attention in order to

preserve them.

The wave equation is simple enough that analytic initial data and solutions in time are

easy to derive. For my stability and convergence test, I seeded a stationary Gaussian pulse

at the center of the domain and allowed it to expand. The results at several di�erent radial

resolutions are shown in Fig. A.1. The evenly-spaced lines on a logarithmic axis show that

the convergence is exponential, as expected. Additionally, the evolution is stable.

85



t

1e-05

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30 35 40

║
ψ
-ψ

ex
║

2

Nr=15

Nr=20

Nr=25

Nr=30

Nr=35

Figure A.1: Convergence and stability of spherical scalar wave evolved using B3 basis
functions. Evolving a spherical scalar wave with a Gaussian pro�le is both stable and
exponentially convergent. Computational cost per timestep is less than that of I1×S2 in our
implementation.

A.5 Zernike analysis

Azimuthal power

Within the space of smooth functions de�ned in a cylindrical volume, consider the subspace

spanned by a �nite number of orthonormal basis functions of the form Pl (z)Zn
m ($, φ),

where Pl (z) is a basis for functions on a �nite interval (such as Legendre polynomials)

and Zn
m ($, φ) � Rm

n ($)Fm (φ) are the Zernike polynomials (see Sec. A.2 for notation). Any

86



function f in this subspace can be decomposed into spectral coe�cients flmn . The amount

of power in a given azimuthal mode m is de�ned to be

Pm[ f ] �
∑

l

∑
n

| flmn |
2 . (A.29)

One approach to computing this power for an arbitrary f is to compute each flmn by

integrating f (z , φ, r) against the corresponding product of basis functions. If f is band-

limited and the integration is of su�ciently high order, this will produce the exact result.

Alternatively, f can be integrated against the set of cardinal functions along z and r. Here

we show the equivalence of this nodal approach to the aforementioned modal one.

Let us denote our nodal power measurement by Qm[ f ]:

Qm[ f ] ≡
∑
i , j

�����

$
dzdφ$d$ f (z , φ, $)C̃i (z)C̃m

j ($)Fm (φ)
�����

2
; (A.30)

here, C̃i (z) are the normalized cardinal functions associated with Pl (z) and C̃m
j ($) are the

normalized cardinal functions associated with Rm
n ($). Expanding those cardinal functions

in terms of their associated basis functions yields

Qm[ f ] �
∑
i , j

������

$
dzdφ$d$ f (z , φ, $) *

,

√
wP

i

∑
l

Pl (zi)Pl (z)+
-
×

*
,

√
wR

j

∑
n

Rm
n ($ j)Rm

n ($)+
-

Fm (φ)
������

2

. (A.31)

The presence of the weights suggests that the outer sums can be interpreted as integrals

(note that the corresponding integrands are products of two basis functions and therefore

exactly integrable by quadrature). And since the basis functions are orthonormal, the

integral of a product of sums is equal to a sum of products. This simpli�es the above

expression to

Qm[ f ] �
∑
l ,n

�����

$
dzdφ$d$ f (z , φ, $)Pl (z)Rm

n ($)Fm (φ)
�����

2
. (A.32)
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But the integral above is merely the projection of f onto the basis function indexed by

l ,m , n; thus

Qm[ f ] �
∑
l ,n

| flmn |
2
� Pm[ f ] . (A.33)

This gives us two formally equivalent ways to measure the azimuthal power in f : one

involving projections onto the modal basis, the other projecting onto the nodal (cardi-

nal) basis. The latter matches an intuitive approach to avoiding the problem of power

cancellation due to phase changes at di�erent $ and z.

Error �oor

Unfortunately, when performing these integrations on a �nite volume domain, the Carte-

sian nature of the grid results in spurious power in m � 4, 8, . . . modes proportional to

the error of the integration scheme (these “ambient grid modes” are also noted in studies

where mode measurement is restricted to rings [65, 70]). If the function does not approach

zero at the boundary of the reference cylinder, then this spurious power will be signi�cant

because of the “Lego circle” approximation to the boundary.

This e�ect can be mitigated by windowing the data with a smooth function that transi-

tions between one at the center and zero at the boundary. We have achieved good results

using the window

W ($) �
1
2 {1 − tanh [tan (π ($ + 1/2))]} . (A.34)

The e�ect of the windowing on the power spectrum can then be undone via a deconvo-

lution (made robust by using a truncated singular value decomposition). Expressing the

convolution of the spectrum as

Ci jλ j � λ
′

i , (A.35)

the elements of C are given by

Ci j �

∫
W ($)Rm

i ($)Rm
j ($)$d$ . (A.36)
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However, if the function being analyzed is entirely contained within the reference

cylinder (bymaking its radius larger than that of the star, for instance), then this windowing

technique o�ers minimal improvement to the error �oor. Additionally, for our setup,

evolved data exhibits 100×more spurious power than initial data. The net result is that,

at our resolution, m � 4 perturbations can only be measured if they are larger than 10−5

relative to the background. The act of windowing does make this procedure more robust,

however, should the data expand beyond the chosen reference cylinder.
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B QUADRATIC BÉZIER SMOOTHING FOR

PIECEWISE POLYTROPES

Even for cold matter, polytropic equations of state are an inaccurate representation of

the true relationship between pressure and density. As the actual equation of state at

nuclear densities is unknown, a variety of theoretical candidates have been proposed

based on models of nuclear physics and constrained by both laboratory and astrophysical

observations [111]. To study the impact these models have on simulation results (with

the hope of then constraining them with future observations), one could implement each

candidate in the simulation code or, more practically, tabulate the pressure–density relation

in each case and interpolate between the samples at runtime. However, a more systematic

approach to constraining this relation is to use a parameterization of the equation-of-state

space where a small number of parameters can distinguish between the proposed models.

Along these lines, Lindblom suggests a thermodynamically consistent spectral repre-

sentation [112], while Read et al. show that a piecewise polytropic equation of state can

accurately approximate many models with a small number of parameters. To specify a

piecewise polytrope, one must provide a sequence of breakpoint densities ρi , a sequence

of polytropic exponents Γi for each density interval (ρi−1, ρi], and an initial coe�cient

κ0 applying to the interval (0, ρ0]. Then, in each density interval, the pressure–density

relation is given by

P(ρ) � κiρ
Γi , (B.1)

where, ensuring continuity, the remaining coe�cients are determined by

κi � κi−1ρ
Γi−1−Γi
i−1 . (B.2)

This relation is only C0 at the ρi , and this non-smoothness could potentially a�ect the

convergence of spectral methods. As a simple workaround, we propose that quadratic
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Bézier smoothing be used in the exponents near the breakpoints. This adds one degree of

smoothness to the quantities provided by the equation of state, and the only free parameter

in this construction is the width of the smoothed region.

To take advantage of smoothing, one chooses an interval around each ρi over which

the smoothing should take place. In our implementation, we smooth over intervals of the

form (exi− , exi+ ) ≡ (ρi/(1 + s), ρi (1 + s)), where s parameterizes the size of the smoothing

region. The pressure corresponding to a density ρ in a smoothed region is computed as

follows: First, de�ne the auxiliary variables

yi− ≡ Γi xi− + log(κi) (B.3)

yi+ ≡ Γi+1xi+ + log(κi+1) (B.4)

t ≡
log(ρ) − xi−

2 log(1 + s)
(B.5)

Pi ≡ κiρ
Γi
i . (B.6)

Then,

P(ρ) � exp
[
(1 − t)2yi− + 2t(1 − t) log(Pi) + t2yi+

]
. (B.7)

The speci�c internal energy ε is computed by integrating the relation

dε �
P
ρ2

dρ . (B.8)

The contribution from a polytropic region can be computed analytically, with antiderivative

P/[ρ(Γ − 1)], but contributions from smoothed regions must be integrated numerically.

These contributions can be pre-computed and scanned1 to speed up computations in

polytropic regions, meaning that runtime integration only needs to be performed when

querying points in smoothed regions (which generally represent a small fraction of total

EOS queries).

Finally, the speci�c enthalpy is computed straightforwardly as

h � 1 + ε + P
ρ
. (B.9)

1A scan is a cumulative sum of a sequence of numbers.
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