A CONSTRUCTIVE ALTERNATIVE TO

AXIOMATIC DATA TYPE DEFINITIONS
Robert Cartwright

TR 80-427

June 1980

Department of Computer Science
Cornell University
Ithaca, New York 14853

A Constructive Alternative to
Axiomatic Data Type Definitions

Robert Cartwright

Department of Computer Science
Cornell University

Ithaca, N.Y.

ABSTRACT

Many computer scientists advocate using axiomatic
methods (such as algebraic specification) to specify
a program data domain -- the universe of abstract

data objects and operations manipulated by a pro-

gram. Unfortunately, correct axiomatizations are
difficult to write and to understand. Furthermore,
their non-constructive nature precludes automatic

implementation by a language processor.

In this paper, we present a more disciplined,
purely constructive alternative to axiomatic data
domain specification. Instead of axiomatizing the
program data domain, the programmer explicitly con-
structs it by using four type construction mechan-
isms: constructor generation, union generation, sub-

These
of the

abstract data objects that programmers commonly use:

and quotient generation.

enough to define all

set generation,
mechanisms are rich
integers, sequences, trees, sets, arrays, functions,
In contrast to axiomatic definitions, con-
and to

etc.

structive definitions are to write

An unexpected advantage of the con-

easy
understand.
structive approach is a limited capacity to support
non-deterministic operations. As an illustration,
we define a non-deterministic "choose™ operation on

sets.

1. Introduction

One of the most difficult and poorly understood
tasks in programming is defining the program data
domain -- the universe of abstract data objects and

operations manipulated by the program. In tradi-

tional programming practice, the data domain is
never precisely defined., Instead, the program mani-
pulates concrete machine data objects (such as
pointers and records) and operations (such as

pointer dercferencing and record field extraction)
representing abstract data objects and operations.
the data domain
Oth-

If the program is well-documented,
is informally spccified in the documentation.

{Rescarch supported by NSF grant MCS78-05850,

14853

erwise, it is left to the imagination of the reader.

The main defect in the traditional approach is
that it makes reasoning about programs (both fcr-
mally and informally) extremely difficult. Anyone
who attempts to -understand the program (includicg
the programmer) must continually decipher machine
repregentations for abstract data objects and opera-
tions that are never precisely described.

In an attempt to solve this problem, a number of
computer scientists have proposed using axiomatic
methods to define the abstract data domain for =z
program. Some ([Hoare 72], [von Henke and Luckhao
74]) advocate expressing data domainl axiomatiza-
tions in standard first order predicate calcuius
(with equality). Others,
the ADJ group [Guttag and Horning 78, ADJ 76, ADJ
77] advocate restricting data domain axiomatizations

particularly Guttag and

to finite sets of equations they call "algebraic
specifications.”
axiomatic

Despite their popularity,

for defining program data domains

apparent
methods suffer

from three serious weaknesses.

¢ First, correct axiomatic definitions are hard to

write. An axiomatic definition must specify the
Meritical' properties of the data domain. Hew-
ever, it is very difficult to identify which pro-
perties are critical and correctly state then in
formal terms. Moreover, there 1is mno viable
methodology for detecting mistakes in axioz=atic

definitions.,

¢ Second, axiomatic definitions are hard to under-
Instead
objccts composing the domain, they merely speciiy

stand. of explicitly describing the

some properties of the data domain and leave it

consciously avoiding the term data
since it has radically different meanings in
fercnt prograuming languages. We will give cur cwa
definition for the term later in the paper.

lye are

Ol

-2 -

to the recader to infer its structure. Since
attempted data domain axiomatizations are often
inconsistent, the reader has no assurance that

the axioms describe any data domain at all.

¢ Third, the axiomatic approach forces the program-

mer to implement the data domain that he defines.

Data domain implementations are complex, time-
consuming programming tasks which should ideally
be performed by a language processor (interpreter
or compiler) supporting abstract data domain
definitions. Axiomatic definitions preclude this

possibility.

With the objective of developing better methods

reasoning about program data

for defining and
domains, this paper presents a disciplined, purely
constructive to data domain definitions
that builds on the concept of recursive data domain
definitions developed by [McCarthy 63] and [Hoare
73]. Instead of axiomatizing the data domain, the
programmer explicitly constructs it by using four
domain construction operations: constructor defini-
tion, union definition, subset definition, and quo-

approach

tient definition.

With these four mechanisms, a
clearly and concisely define all of the abstract
types that integers,
sequences, trees,
Despite the constructive character of the defini-
tions, they are no less Mabstract™ than first order

programmer can
commonly occur in programs:

sets, arrays, functions, etc.

axiomatizations or algebraic specifications. In
fact, it is easy to generate either a simple first
order axiomatic definition (similar in character to
Peano's first order axiomatization of the natural
numbers) or an algebraic specification (assuming all
the operations are computable) for the defined data
domain. Hence, constructive data domain definitions
constitute a highly disciplined approach to data
domain axiomatization; the method guarantees that an

axiomatization has a simple symbolic model. -

The constructive character of the method makes it
feasible for a language processor to assume the bur-
the defined data

A very high level rccursive language simi-

den of actually implementing
domain.
lar to LISP could support constructive data domain
definitions PASCAL level,
machine-oriented data domain definitions. In this

language, LISP S-expressions would merely be one of

just as supports low

many definable domains.,

A surprising consequence of our counstructive

vicwpoint is a limited, but useful capacity to han-
dle pon-deterministic
example it is possible to define an abstract opera=

abstract operations. For

tion to choose an Marbitrary™ element of a finite

set. To our knowledge, no other data domain defini-

tion method yet proposed has this capability. The
key idea in our approach is to provide the illusion
of an extensional treatment? of types (such as fin-
ite sets) that are defined as equivalence classes
over other types (such as sequences), while retain-
ing a strictly intensional viewpoint in the formal
a result, the programmer
non-deterministic

semantic definition. As
can informally define abstract,
operations on equivalence classes (such as choosing
an arbitrary element of a set) by defining deter-
ministic operations on the corresponding intensional

objects.
2. A Critique of Algebraic Specification

An algebraic specification is a first order axiomat-
ization consisting of a finite set of equations,
i.e. quantifier-free formulas of the form tl=t2
where tl and t2 are terms (expressions) constructed
from free variables and domain operations., The
domain defined by an algebraic specification is a
particular term (syntactic) model selected from the
lattice of term models satisfying the axiomatization
(although Guttag and the ADJ group disagree on the
Each element of the term model is an
(variable-free

exact choice).,

equivalence class of ground terms
expressions) in the language of the data domain, In
any interesting dcmain, every equivalence class con-
tains an infinite number of terms. For example,
consider the abstract data domain consisting of the
integers with primitive operations {0, suc, pred}.
In a correct algebraic specification of this domain,

the number 1 is the infinite set of terms

{suc(0), suc(pred(suc(0)), pred(suc(suc(0), ...} .

Although algebraic specifications are syntacti-
cally simpler than conventional first order axiomat-
they the weaknesses of axiomatic

enumerated

izations, share

methods above. Moreover, algebraic
specification suffers from a peculiar problem of its
Although the method is supposed to provide a
simple formal framework for reasoning about abstract
data domains, it actually imposes an awkward deduc-

The source of the

own.

tive system on the programmer.
problem is the blatant incompleteness of algebraic
specifications as conventional first order axiomati-
zations. It 1is to verify that the trivial
model containing a single object (in a sorted sys-

tem, a single object of each sort) satisfies any

easy

2Let E be a equivalence relation cn the set S. For
any s S, let <s> denote the equivalence class
(under E) containing s. An extensional treatment of
an equivalence class <s> ignores the particular ele-
ment s used to denote the class. If (sj,s2) ~ E
then <sy> and <sp> have the sane meaning. In con-
trast, an intensionral treatment of equivalence
classes distinpuishes between different descriptions
for the same class.

-3 -

axiomatization consisting solcly of equations. Con-

sequently, it is impossible to prove anything
interesting about an abstract data domain defined by
an algebraic specification by using ordinary first
order deduction (since any such deduction must hold
for the trivial model). Similarly, it is impossible
to express mathematical induction within an alge-
braic specification (because neither quantification

nor axiom schemes are allowed).

As a result, reasoning about data domains defined
by algebraic specification is a more complex process
that siwmply applying first order deduction to the
equations comprising the specification. The most
attractive solution to the problem is to augment all
algebraic specifications with mechanically generated
implicit axioms. The axioms must include some
statement that excludes the trivial model (such an
inequation asserting that the 0-ary operations true
and false are distinct)? and a special form of
jnduction schema commonly called data type or gen-
erator induction [Spitzen and Wegbreit 75]. The
most interesting (and annoying) characteristic of
the resulting formal system is the awkward style of
induction proof that it forces. In contrast to
ordinary structural induction, generator induction
jnducts on the syntactic structure of object
descriptions (ground terms) rather than the struc-
ture of abstract data objects As a

result, the generator induction schemes for defined

themselves.

domains invariably include unnecessary premises
(corresponding to the multitude of ways to describe
the same object). For example, the generatoxr induc-
tion axiom schema for the natural numbers with prim-

itive operations {0, pred, suc} has the unusual form

{P(0) & Vx[P(x)=P(suc(x))] & Vx[P(x)=>P(pred(x))]}
= Vx P(x)

-instead of the conventional
P(0) & Vx[P(x)=>P(suc(x))] = Vx P(x)

with one While the two axioms

schemes are formally equivalent (if the algebraic

{fewer premise.

specification correctly defines the natural
numbers), proofs utilizing the generator induction
axiom schema are much longer and morc tedious to

construct.

3without this inequation, an algebraic spocification:

is guarantced to be consistent since the trivial
model satis{ies any algebraic specification, On the
other hand, it is useless as a first ovder axiomati-
zation of the data domain for the same reason.

3. A Constructive Alternative

The constructive approach to defining data domains
is based on the premise that a data domain is a set
of of and associated operations
satisfying the following three constraints:

symbolic objects

[11(Finite constructibility). ' Every data object is
constructible in a finite number of steps by com-
posing a finite collection of primitive opera-=
tions called constructors.
accepts a fixed number ng of objects OpseeesOy

Each constructor ¢

i

as arguments and creates the object

ci(ol.....on). O-ary constructors function as
i
constants. .

[2](Unique constructibility). Every data object is

constructible in exactly one way. Hence, two
objects ci(olf""' oni) and Cj(pl' cees p“j) are
equal if and only if i = j and o =p for k
1.....ni. .

[3)(Explicit definability) Every operation --
excluding a small set of primitive functions and
predicates serving as building blocks -- is

explicitly defined by either a recursive function
definition or an explicit predicate definition
(in the usual sense in first order logic [Ender-
ton 72]).
which may be contradictory, explicit definitions

Unlike arbitrary axiomatic extensions

always create well-defined opcrations.

A simple example of a comstructive data domain

definition is the construction of the natural
numbers from the O-ary conmstructor 0 and the unary

constructor suc:
0, suc(0), suc(suc(0))s oo

A constructive definition of the natural numbers may
also include other operations such as predecessor,
addition, multiplication. However, none of these
operations can be designated as constructors, since
that would violate the property of unique <onstruc-
tibility. For example, if pred (the unary predeces-
sor“operation) were included in the set of comnstruc-
tors, then therc would be infinitely many different

ways to construct 0:
0, pred(suc(0)), pred(pred(suc(suc(0)))), ...

In contrast, algebraic specification does not dis-
tinguish constructors from other operations in the
data
required for

domain; the more complicated induction rule

algebraically specified domains

reflects this fact.

The threce constraints have some desirable conse-

-4 -

quences. First, they ensure that the data domain
has a simple, relatively complete (in the sense
described in [Cartwright and McCarthy 79]1) first

order axiomatization comparable to Peano's first
order axioms for the natural numbers.4 As a result,
simple verification methods relying on structural
jinduction (such as those employed in the Boyer-Moore
LISP Verifier [Boyer and Moore 75, 79] and the Stan-
ford TYPED LISP Verifier [Cartwright 761) are appli-
cable to the data domain.? Second, they guarantee
the existence of a tangible

simple, symbolic

representation for the data domain, because each
data object is uniquely denoted by the ground term
that constructs it. Third, they assure that every
ground term composed from functions in the domain

can be evaluated.

4. Primitive Operations Defined by Comnstruc-—
tive Data Domain Definitions

For a constructively defined data domain to support
the recursive definition . of arbitrary computable
functions over the domain, they must include a small
set of basic operations for manipulating the con-
Without additional

it is impossible to recursively define

structed objects. primitive
operations,
arbitrary computable functions on the data domain.
Consequently, we adopt the convention that construc~
tive data domain definitions implicitly define a
small collection of operations that form a basis for

computing arbitrary partial recursive functions.

The following set of primitive operations forms a
universal basis set of operations (in the terminol-
ogy of [McCarthy 63)) for the constructive data
domain D formed using the constructors C:. i=l,...m

with arities P;* i=lseeesns
a) The constructor functions e i=lyeessne

b) The implicitly declared 0-ary Boolean constructor
functions true and false.

c) The set of selector functions si, j=heeenrpys
i=l,...,n. The selector function sg extracts the

jth component u. from an object of the form

ci(ul. oo up.). 1f a selector is applied to

i
the wrong form of object (i.e. an object whose
outermost constructor does not correspond to the

selector), then the result is unspecified.

statement of this thcorem and a

4por a precise
see [Cartwright and McCarthy

sketch of ~its proof,

9].
g[Cartwright 76] contains formal proofs of several
interesting thcorems about constructively defined
data domaiuns.

function equal.

d) The
equal(x,y) returns true if x and y are identi-
cal objects (are constructed in the same way) and
false otherwise.

standard Boolean

e) The standard conditional function if-them-
else. if-then-else(x,y,z) returns y if x is
the object true and z if x is the object false.

Othervise, the result is unspecified.

Since recursive definitions over a constructive
domain can diverge on particular inputs, comnstruc-
tive data domain definitions must accomodate diver-
gence. Following the approach developed in [Cart-
wright and McCarthy 19791,
domain with the special object 1 denoting divergence

we augment the defined

(any non-terminating evaluation). Unlike every
other object in the domain, the divergent object 1
is npot a constructible object. The nom-

constructibility of 1 is consistent with its intui-
tive meaning: there is no way to compute divergence
Unlike
other constants, L is not considered a 0-ary comn-

by composing a finite number of operations.

structor.

To complete our description of the basic opera-
tions .created by a constructive data domain defini-
tion, we must specify how each primitive operation
behaves on the input L. For each of the primitive
operations except if-then-clse, we naturally extend
(in the terminology of [Manna 74]) the operation to
D by defining the result to be L if any argument
has the value L. Natural extensions correspond to a
cail-by-value computation rule for evaluating opera-

tion arguments. However, to support arbitrary
recursive definitions, we must extend if-then-
else in a less trivial way (naturally extending

jf-then-else would force every recursive defini-

tion to diverge everywhere); we define

if x is L
if-then-else(x,ysz) =¥ if x is true

z if x is false

This definition corresponds to the standard protocol

for evaluating conditional expressions.

Augmenting the data domain by L also allows us to
define the meaning of error producing computations.
Hence, we can
to the

Any erroncous term evaluates to L.
extend the
entire domain by adopting the convention that apply-
ing a selector to the wrong kind of object produces
applying triple
(x.y.z) where x is not a Boolean value yiclds 1.

meaning of seclector functions

1. Similarly, if-then-else to a

Given a constructive data domain definition, it
is possible to mechanically generate a Peano-like

first orderx axiomatization for the defined domain

augmented by 1. The construction is described in

detail in the Appendix.

technical obstacle in crecating the
formalizing Boolean
operations. (e.g.
forms of Hoare's logic) attempt to formalize Boolean
operations as This
approach works only if primitive program operations
never diverged and the logic bans the recursive
definition of non-total (sometimes divergent) opera-
tions.® Otherwise, it is possible to write contrad-

The major
first order axiomatization is
Many programming logics naive

predicates within the logic.

ictory recursive definitions (because no least fixed
corresponding non-monotonic
function

point exists for the
functional). The

definition, for example,

following recursive

loop(x) = if loop(x) equal 1 then 0
else 1

is contradictory if equal is treated as a predi-
cate.?”

A related technical obstacle to formalizing
equal as a predicate is the fact that the equality
predicate is not computable on a data domain that
includes divergent operations. It is impossible to
decide whether two possibly divergent terms denote

the same object.

The solution that we advocate is to treat comput-
able Boolean operations in the data domain as func-
tions in the logic. Boolean operations in the data
domain are distinct from the standard connectives
(e.g. A, V) and predicate symbols (e.g. =) of first
Consequently, Boolean expressions are
in the logic. As a

order logic.
terms rather than formulas
result, the meaning of a divergent Boolean expres-
sion is 1, just like any other divergent expression,
preventing contradictory definitions like the equa-
inter-

tion defining loop above. When equal is

preted as the natural extension of the equality
function on the natural numbers, the function loop
simply diverges everywhere; no contradiction arises.
connectives

0f course, logical predicates and

still must appear in the first order axiomatization

of the data domain. Furthermore, if programs are
annotated with assertions expressed in the first
order language of the data domain, then logical

predicates will naturally appear in program documen-

tation as well.

For the sake of notational cenvenience, we let

any Boolean ecxpression <expr> abbreviate the

6pr/cv [Constable aund 0'Donnell 78] rigorously
develops this approach.
In this context, we must interpret if-then-else

as a logical councctive. Sce [Mauna 74].

corresponding logical formula <expr> = true, Since
expressions and atomic formulas appear in distinct
contexts within logical formulas, this abbreviation

does not introduce any ambiguity.

An intercsting data domain normally includes
primitive operations besides constructors and basis
operations -- although their does not
enlarge the class of computable functions or defin-

the domain. The additional

presence

able predicates over
operations are standard functions or predicates that
the programmer expects to use repeatedly in programs
or program documentation.
point, the expanded set of ogerations constitutes a
natural rather than minimal set of building blocks
for des¢ribing computations on the data domain. For
example, most definitions of the data domain con-
standard

From a practical stand-

sisting of the natural numbers include
operations like addition, subtraction, multiplica-
tion, division, and <.
In the constructive approach to defining data
domains, these additional operations are explicitly
defined rather than axiomatized. Explicitly defined

operations fall into two categories:
1) recursively definable partial functions; and
2) first order definable predicates.

Partial function operations are explicitly defined
by recursive definitions expressed in terms of the

primitive functions. Kleene's first recursion

thecorem guarantees the existence of functions
defined in this fashion.
primitive functions are all manifestly computable,

all defined partial functions are also computable.

Furthermore, since the

defined
according to the standard practice in first order

In contrast, predicate operations are
logic: a n-ary predicate P(xl,....xn) is introduced
as an abbreviation for a formula with no free vari-
ables other than Xy ceesX o and no predicate symo-
bols other than = and previously defined predicates.
sredicate definitions may npot be recursive; other-
wise, contradictory definitions would be possible.
Since predicate definitions are merely abbrevistions
for formulas, they are well-defined.

Predicate operations are included in data dcmains

obviously

solcly for the purpose of expressing properties of
the data domain (such as the equality of two -- pos-
sibly undefincd -- terms). Since they are not com-
putable, they cannot be cmployed as primitive opera-
tions in a program manipulating the data domain.

In contrast to the architccts of algebraic
specification, we believe that a data domain defini-
tion may legitimately include non-computable opera-
computable oncs. While non-

tions as well as

-6 -

computable operations obviously cannot appear in
actual programs, they are useful in writing program

specifications.

As an illustration, assume that we are defining
the data recursive
functions over the natural numbers.
would like for the data domain to include an (exten-
sional) equality operation even though the operation
is not computable. As we demonstrate in the last
section of the paper, we can easily accomplish this
objective within the framework of constructive data

of partial
We certainly

domain consisting

domain definitions.

5. Dividing the Data Domain into Types

A typical program data domain includes several dif-
ferent kinds of objects, e.g. integers, Booleans,
strings of characters. If no constraints are placed

accepted by constructors, the

on the arguments
resulting "type-less" data domain will inevitably
contain a multitude of irrelevant objects which have
no intuitive meaning to the programmer. For exam-
ple, a data domain including constructors both for
the natural numbers and for LISP S-expressions would
include objects like suc(cons(A,B)).

We can solve this problem by imposing a type
structure on the data domain and constraining the
arguments of each constructor to belong to a partic-
In our view, a type is simply a "mean-

ular type.
the data domain.8 To exclude

ingful"™ subset of
irrelevant objects, we let each constructor desig-
nate a distinct elementary type and assign every
object with outermost constructor c to the elemen-
tary type c. For example, every natural number
except 0 (i.e. suc(0), suc(suc(0)), ...) belongs to
the elementary type suc since the outermost comn-
structor is suc; the natural number 0, on the other
hand, belongs to the elementary type 0. Given this
primitive type facility, we can obviously eliminate
objects like suc(cons(A,B)) from the data domain by
constraining the argument to suc to be of type suc

or type 0.

Besides eliminating irrelevant objects, a data
type definition facility gives the programmer a for-
mal way to identify intuitively meaningful subsets
of the data domain. Even in typeless languages like
PURE LISP,
appearing

are "small" subsets of the entire data domain (e.g.

virtually all functions and variables

in programs have intended dowmains which
lists of atoms, lists of dotted pairs, non-repeating
If a programming language includes
then the
and variable

lists of atoms).

type
virtually

a rich data definition facility,

domain of every function

Schtt develops a similar point of viev in his for-
malization of data types as lattices [Scott 76].

appcaring in a program will be definable as a data
type. As a result, much of the information tradi-
tionally stated informally in the program documenta-
tion can be formally expressed by type declaratioms,

To achieve this objective, we need a richer col-
lection of types than the elementary .comstructor
types (all objects formed using a particular con-

structor) described above.

6. Data Type Definitions

In addition to the constructor type definitions
described in the previous section, we propose three
other schemes for defining types: union definition,
subset definition, and quotient definition. Unlike
most programming languages, we do not force types to
be disjoint, because that convention forces the data

include multiple versions of the same

domain to
abstract object in cases where the object naturally
belongs to different types (e.g. uniom
types, subrange types). Abstract data type defini-
tion facilities are supposed to avoid introducing

semantic complications of this form.

several

6.1 Constructor Definitjon

A constructor type definition has syntax
constructor <id> (<selector-list>)

where <id> is the name of the constructor and
<selector-list> is a (possibly empty)

commas .

sequence of

selector declarations separated by Each

selector declaration has the form
<selector-id> : <type-id>

where <selector-id> denotes the name of the selector
function (which must unique within the <selector-
list>) and name of any type
(including forward references). If the <selector-
list> is empty the parentheses may be omitted. For

<type-id> 1is the

example the type definitions

constructor 0;
constructor suc(pred: natnum)

define the 0 and suc counstructors for the natural

numbers (assuming we subsequently define natnum as
the union of 0 and suc).

6.2 Union Definition

A union type definition has the form
union <id> = <type-list>

where <id> is the name assigned to the defined union

-7 -

type and <type-list> is a sequence (containing at
least two elements) of previously defined type names
separated by the U The defined type 1is
literally the set union of the types appearing in
For example, the type definition

symbol.
<type-list>.
union natnum = 0 U suc

defines natnum as the union of the types 0 and suc.
Observe that the data object suc(0) belongs to both
the constructor type suc and the union type natnum.

For more readable notation, we allow constructor
definitions to appear within the <type-list> defin-
ing a union. For example, the types natnum, 0, and

suc are defined in the single line:
union natnum = 0() U suc(pred: natnum)

The union type Bool and the 0O-ary constructor types
true and false defined by

union Bool = true() u false()
are pre-defined in every data domain.

6.3 Subset Dcfinition

The data types definable by constructor and uniom
definitions are nearly identical to the recursive
types described in [McCarthy 63] and [Hoare 73],
The only difference is that our scheme accomodates
types and divergent
significant linitaticn of
that they
define types -- types

object belonging to the declared type of a particu-

lar constructor argument is a valid argument to the

overlapping (non-disjoint)

operations. The most
recursive type definitions is can only

Yeontext-free™ vhere any

constructor regardless of the constructor's context.
Consequently, data like height-balanced
trees or non-repeating sequences of integers are not

domains

definable as recursive types.

To accommodate data type definitions that are not
context frece, we allow arbitrary first order defin-
able defined
defined as types. type definition,
called subset definition, has the following syntax:

subsets of previously types to be

This form of

subset <id> = { <var-id> ~ <type-id> | <formula> }

where <id> is the name of the new type, <var-id> is
type
<type-id> is the name of a previously defined type,

a variable name local to the
. . . Q .
and <formula> is a logical formula”? (with no free

variables other than <var-id>) composed from primi-

9Recall that we allow an expression <expr> to abbre-

viate the logical formula <expr> = true

definition, .

tive and programmer-defined functions and predi-
cates. The defined type <id>
objects in the the parent type <typc-id> satisfying

the predicate denoted by <formula>.

consists of all

While it is clearly impossible for a language

processor to enforce subset. type declarations by
performing run-time checks, a sophisticated proces-
sor could easily generate at parse time a collection
of lemmas asserting that no run-time type errors
occur. Since these lemmas are simple statements in
a first order programming logic, it is feasible to
actually try to prove them using an interactive pro-
gram verifier similar in spirit to that described in

[Cartwright 76].

We define the type non-repcating sequence of

natural numbers (nonrep) as follows:

union nat_seq = nil() v

cons(first: natnum, rest: nat_seq);
subset nonrep = {x ~ nat_seq | nodup(x)}
where the function nodup is defined by the recursive

definitions:

furnction nodup(x: nat_seq): Bool = R
if x equal nil then true
clse if member(first(x), rest(x)) them false

else nodup(rest(x))

function member(e: natnum, s: nat_seq): Bool =
if s equal nil then false
else if e equal first(s) them true
else member(e, rest(s))

6.4 . Definiti

While the ability to designate an arbitrary
recursive subset of a recursive data type as a type
greatly expands the collection of definable types,
it still does not give us the power to define types
containing objects that are not uniquely comstructi-
computable functions

ble -- such as {inite sets,

(viewed extensionally) and finite maps. In the case
of finite sets, for example, it is possible to con-
accumulating it elements in any

struct a set by

order. Although we can obviously represent {inite
scts by the constructive type consisting of non-
repcating sequcnces, the inability to define a bona
fide set type is a serious deficiency in our data

dowain definition facility.

At first glance, we appear to be in a gquandary.
Our constructive approach to data domain definition
relics on the principle of unigque constyuctibility,
yet some important abstract types -- such as finite

gcts -- contain objects that violate this principle.

-8 -

The solution to the problem is to add a type con-
that types
members are equivalence classes of conventional con-
structible objects. An abstract object that is not
uniquely constructible is treated as the equivalence
class of different constructions corresponding to
the object. For example, each distinct way to con-
struct a finite set is naturally represented by a
elements. The finite set
{xl,XZ""'xn } is defined as the
equivalence class of sequences containing precisely

struction mechanism generates whose

distinct sequence of

formally

the elements xl,xz,...,xn.

To avoid violating the principle of unique con-
structibility, we treat equivalence classes inten-
sionally in the formal logic and symbolic model for

data domain. The model assigns distinct interpreta-

tions to distinct descriptions of the same
equivalence class.
From the programmer's viewpoint, equivalence

class data objects behave extensionally -- unless he

specifically chooses to exploit the underlying

intensional semantics.

The syntax for a quotient type definition is:
quotient <id> = <type-id> under <equiv-1id>

where <id> is the name of the defined quotient type,
<type-id> is the type on which the equivalence rela-
tion is being defined, and <equiv-id> is either the
name of a binary function (mapping <type-id> X
<type-id> into Bool) or a binary predicate (over
<type-id> X <type-id>5

relation on <type-id>.

defining the equivalence

In the formal semantic definition, the quotient
type name <id> is a unary constructor with domain
<type-id>. Applying the constructor <id> to an
object x of type <type-id>
denoting the equivalence class containing x under

The reserved

constructs an object

the equivalence relation <equiv-id>.
jdentifier intension is the name of the selector

corresponding to all quotient constructors. Given
an equivalence class object <id>(y), imtensiom
extracts the particular element y denoting the

class.,

In order to support equivalence classes as legi-

timate objects, we -modify the definition of the
primitive equality predicate = and function equal
as follows. If t and ty
<id>, then the atomic formula t) Tty

<equiv-id> t2.10 Further-

are both objects of type
is interpreted
as an abbreviation for tl

more, if <equiv-id> is a function name, then

10Recall that we allow an expession <expr> to abbre-

viate the logical formula <expr> = true .

t cqual ty is interpreted as an abbreviation for

tl <equiv-id> tye 1f
equal diverges

<equiv-id> is a predicate

name, then when applied to two

objects of type <id>.

integrity of the informal
type definitions, the

<equiv-id> defines an

To guarantee the
of quotient
programmer must that
equivalence relation on the parent type <type-id>.
As in the case of subset type definitions, a sophis-
ticated language implementation could automatically
generate the first
interactively help the programmer prove it.

interpretation
prove

necessary order lemma and

As an illustration of quotient definition, let us
define the quotient type conmsisting of finite sets
of natural numbers.

quotient nat_set = nonrep under set_equal;

where the function set_equal is defined by the

recursive definitions:

function set_equal(x:nat_set, y:nat_set):Bool
seq_cqual(intension(x), intension(y))

"

function seq_equal(u:nat_seq, vinat_seq):Bool
if u equal nil then v equal nil
else if member(first(u), v) then
seq_equal(rest(u), delete(first(u), v))
else false

function delete(e: natnum, s: nat_seq): Bool =
if s equal nil then nil
else if e equal first(s) then rest(s)
else cons(first(s), delete(e, rest(s)))

The function set_equal is formally defined as a
function on the constructor type nat_set. However,
since the answer docs not depend on which intension
(sequence) is used to denote a set, it is also a
function on the extensional set objects denoted by
the intensional sequence descriptions. In the next
section, we explore how to interpret operations on
quotient types that depend on the particular inten-

sion used to describe the quotiént object.

7. Explicitly Defined Operations

As we have already illustrated in preceding exam-
ples, explicit function definitions have the follow=-
ing form:

function <id> (<parameters>):<type-id> = <expr>

where <id> is the name of the explicitly defined
function, <paramcters> is a (possibly empty) list of

parameter declarations scparated by commas, <type-

-9 -

id> is is the range (output) type of the function,
and <expr> is an expression containing no free vari-
than

ables others

declaration has the form

paramcters. Each parameter

<parm-id>: <type-id>
where <parm-id> is the name of the parameter and
<type-id> is the declared type for the parameter.

Explicitly defined predicates have the following
analogous format:

predicate <id> (<parameters>) <> <formula>

where <id> is the name of the defined predicate,

<parameters> is a list of parameter declarations
separated by commas, and <formula> is a first order
formula with no free variables other than parame-

ters.

Explicit predicate definitions are much less com-
mon in data domain definitions than explicit func-
tion definitions because they denote non-computable
operations. They are useful in type definitions and
program documentation. For example, assume that we
have already defined the type func consisting of
abstract syntax representations of functions defined
by lambda expressions over the integers. In addi-
tion, assume that we have explicitly defined the
function

function apply(f:func, x:integer):int-or-func = ...

Then the fol-
extensional

that applies functions to integers.

lowing predicate definition captures

equality between function representations.

predicate func-equal(f: func, g:iunc) <>
V x isinteger(x) = apply(f,x) = apply(f,y)

In order for the programmer to define interesting

basic operations om a quotient type q, he must

explicitly access the intensional descriptions

embedded in the objects belonging to type q. Conse-
quently, if the programmer defines a function on a

quotient type and uses the primitive operation

intension within the function body, he must prove

that the function is well-defined on the quotient
type. '

If he makes a mistake and defines a function
well-defined

function has a

which 1is not from an extensional

viewpoint, the clear intensional

meaning which the language implementation will cowm-

pute.

In many cases, an operation which is not exten-

sionally well-defined has an intuitively clear

a non-deterministic

extensional interprctation as

operation. For example, the primitive operation

intension selects an arbitrary element of the
equivalence class dcnoted by the input object. A
more useful example occurs in the context of the

quotient type nat_set. In this case, the operation

A q . first(intension(q))
selects an arbitrary element from the nat_set q -~

the first element of the
describing q.

particular sequence

To accommodate non-deterministic operations, we
allow programmers to define non-deterministic opera-
tions on quotient types as well as functions. For
the sake of clarity, however, we force programmers
syntactically to distinguish non-deterministic func-
tion definitions from standard deterministic ones.
Non-deterministic function definitions must use the
keyword multifunction instead of function. For
example, the definition of the
described above has the following form:

choose operation

nultifunction choose(s:nat_set):natnum =

first(intension(s))

In the formal semantic definition, there is abso-
lutely no distinction between functions and multi-
functions, since they are both ordinary functions at
Consequently, an interpreter
type
and functions

the intensional level.

or compiler supporting quotient definitions

would treat multifunctions identi-
cally. The

operations and functions lies solely in what they

difference between non-deterministic

implicitly assert. In contrast to a convention

interpreter or compiler, a sophisticated language
processor/verifier would treat functions and nulti-
functions quite differently. A function definition

would automatically generate a well-definedness

lemma; a mnultifunction would mnot. Similarly, a
verifier could apply special derived rules (concern-
ing extensional equality) to terms containing no

non-deterministic functions.ll

8. An Interesting Example

In this section, we present a non-trivial data type

definition -- priority queues -- that illustrates
the constructive approach to data type defirition.
In the following definition, a priority queue is a
data object containing entries that are pairs con-
sisting of an intcger item and an integer priority.

Duplicate items and entrics may appear in the queue.

1lpor example, given the statement u = v for objccts
u and v of the same quotient type, the verifier
could deduce that s(u) = s(t) for any term s(x) free
of non-deterministic functions,

- 10 -

We assume that the type integer has already been
defined including the usual Boolean function <.

constructor
entry(item: integer, priority: integer)
tl: seq)

union Seq = nil v cons(hd: entry;

subset pri-queue = {s ~ seq | ordered(s)}

Bool =

if s equal nil then true

else if tl(s) equal nil then true

else if priority(hd(p)) 2 priority(hd(tl(p)))
then ordered(tl(p))

else false

function ordered(s: seq):

function
insert(e: entry; p: pri-queue):
if p equal nil then cons(e,nil)
else if priority(e) > priority(hd(p))
then cons(e,p)
else cons(hd(p), insert(e,tl(p)))

pri-queue =

function remove(p: pri-queue): pri-queve = tl(p)

function front (p: pri-queue): entry = hd(p)
The definition formalizes a priority queue as a
sequence of entries sorted in order of descending

Other formalizations are obviously possi-
we could formalize a priority

priority.
ble.
queue as an unordered sequence of entries and force
front to search the queue for the highest priority
Still another formalization would treat a

For example,

item.
priority queue as a multi-set of entries.

9. Ambiguity in Data Domain Definitionmns

At first glance, the existence of several fundamen-
tally different formalizations for an abstract data
type like disconcerting.
Abstract data type definitions are supposed to avoid
introducing unnecessary detail; yet the constructive
type clearly
involves arbitrary design choices.
that axiomatic methods are superior to the construc-

priority queues is

definition of the priority queue

Is it possible

tive approach in this regard?

The answer to this question is surprisingly sub-
tle. as defined by
both the ADJ group and Guttag,
methods,

For algebraic specifications,
the answer 1is no.
For more gencral axiomatic however, the

answer 1is yes.

different formalizations of priority

different

The three

queues described above correspond to

cquality relations on ground terms denoting priority

queues. Any axiomatic method =-- such as algebraic

specification -- that implicitly defines a specific¢
term modell? unambiguously specifies an equality
relation on ground terms. - Consequently, the same

arbitrary design decisions that arise in devising a
constructive definition also arise in developing a
comparable algebraic specification.,

On the other hand, axiomatic methods -- such as
ordinary first order axiomatizations -- that do not
identify a unique term model can define an ambiguous
equality relation on terms denoting objects of the
defined type. Different models for the axiomatiza-
tion may incorporate different equality relations.
However, writing axiomatic definitions with exactly
the right degree of ambiguity is a very subtle prob-
lem.* The interested reader 1is encouraged to try
axiomatizing priority queues as

believe that the advantages of constructive defini-

an example. We

tions far outweigh their ipability to accomodate

this form of ambiguity.
10. Directions for Further Work

A major weakness in the constructive’ data domain
definition facility described in this paper is the
absence of parameterized types. For example, to
define several distinct sequence types (with dif-
ferent element types) a data domain definition must

either
1) separately define each sequence type; or

2) define a general sequence type that places no
restrictions on the element type (by defining a
universal type that is the union of all construc-
tor types in the domain) and define each particu-

lar sequence type as a subset type.

In either case, the definition is less convenient
and perspicuous than the corresponding parameterized
data.

types 1is a

definition. Extending comnstructive domain

definitions to support parameterized

major focus of our current research.

Another promising extension to constructive data
domain definitions is accommodating lazy (evalua-

tion) constructors. Lazy constructors have radi-
semantics than their call-by-value
With

sequences and

cally different
evaluation, recursively

treated as

counterparts. lazy

enumerable sets can be

genuine data objects. Partial recursive functions,

for example, can be represented by recursively enu-

merable instead of program text (abstract
12y¢ algobralc specifications are interpreted as
specifying any model in the lattice of term models
satisfying the specification instead of one particu-
lar model (e.g the initial algebra designated by ADJ
group), then algebraic SpOblilCﬂtlons accomodate am-
biguity like general first order axiomatizations,

graphs

- 11 -

obstacle to this
extension is developing a simple programming logic

syntax)., The major including

to handle infinite objects.

References

ADJ (J. Goguen, J. Thatcher, E. Wagner) (1976) An
Initial Algebra Approach to the Specification,
Correctness, and Implementation of Abstract Data
Types, IBM Research Report RC 6487.

ADJ (J. Goguen, J. Thatcher, E. Wagner, J. Wright)

(1977) 1Initial Algebra Semantics and Continuous
Algebras, JACM 24, 68-95.
Boyer, R. and J Moore. (1975): Proving Theorems

about LISP Functions, J. ACM 22(1), 129-144.

Cartvright, R. (1976): User-Defined Data Types as
Aid to Verifying LISP Programs, in S. Michzelson and
R. Milner (eds.), Automata Languages, and Program-
ming, pp. 228-256, Edinburgh Press, Edinburgh.

Cartwright, R. and J. McCarthy (1979): First Order
Programming Logic, Proc. Sixth Annual Symposium on
Principles of Programming Languages, January 1979,

pp. 68-80.

Constable, R. and M. O'Donmnell (1978): A Progr§m~

Winthrop Publishers, Cambridge, Mas-

ming Logic,
sachusetts.

Enderton, H. B. (1972): A Mathematical Introduction

to Logic, Academic Press, New York.

Guttag, J. V. et. al. (1976): Abstract Data Types
and Software Validation, USC Information Sciences
Institute Technical Report ISI/RR-76-48.

Cuttag, J. V. (1977): Abstract Data Types and the
Development of of Data Types, Acta Informatica 10,
27-52.

Guttag, J. V. and J. J. Horning (1978): The Alge-
braic Specification of Data Structures, Conm. ACM
20, 396-404.

von Henke, F. and D. C. Luckham (1974): Automatic
Program Verification IIIL: A Methodology for Verify-
ing Programs, Stanford Artificial Intelligence Pro-
ject Memo AIM-256.

Hoare, C. A. R. (1972): Proofs of Correctness of

Data Representation, Acta Informatica 1, 271-2681.

Hoare, C. A. R. (1973): Recursive Data Types, Stan=
ford Artificial Intelligence Project Memo AIM-223,

McCarthy, J. (1963): A Basis for a Mathematical

Theory of Comwputation, in P. Braffort and D. Hirsch-
berg (eds.), Computer Programming and Formal Sys-

tems), pp. 33-70. North-Holland Publishing Companys,

Ansterdam,

Musser, D. R. (1980):
ties of Abstract Data Types:

On Proving Inductive Proper-
Proc. Seventh Annual
Symposium on Principles of Programming Languages,

January 1980, pp. 154-162.

Scott, D. (1976): Data Types as Lattices, SIAM J.

Comput. 5, 522-586.

Spitzen, J. and B. Wegbreit (1975): The Verification
and Synthesis of Data Structures, Acta Informatica
4, 127-144.

APPERDIX

Constructive Data Domain Definitions
as First Order Axiomatizations

Let D be an arbitrary data domain definition. We
will construct a first order axiomatization for D.
For the sake of simplicity, we will not present a
relatively complete axiomatization. The weakness in
our . axiomatization concerns divergent computations,
from a practical

so it 1is not important

In general, we have omitted axioms that

very
viewpoint.
specify how functions and predicates behave on 1.

A. Pripitive Functions and Predicates

Every data domain includes the constants L, true,

and false; the unary functions isBool, istrue,

isfalse; the binary
and <; the ternary function if-then-else; and the

infix functions eg, ecqual,

binary predicate operations = and =.

The function eq is the computable intensional

objects are intensionally

equality function; two
equal if and only if they are constructed in exactly

the same way. The function equal, on the other

hand, is the computable extensional equality func-
tion. 1In comparisons between objects that do not
contain quotients, the two functions e¢q and cqual
behave identically. On quotient objects, however,
the definition of equal depends on the equivalence

relation defining the quotient.

The function € is the Boolean structural containment
function; x © y if and only if x is a proper struc=

tural component of y. MNore precisely, for any con-

structed object y of the form c(xl,....xn). X, €Y.

Furthermore, € is closed under transitivity. The

function < is included as a primitive function,

because it is used in the fcrmal statement of

course-of-values structural induction,

The predicate symbol = denotes the standard cquality

predicate from first order logic. Since our data

_12-

domain model is intensional, = corresponds to inten-

sional equality. 1In contrast, the predicate symbol

= denotes extensional equality.

The following axioms specify the primitive opera-
tions:

1. Intensional equality.13 For any formula 6(x),
x =y = [8(x) < 8(y)]

2. Distinctness of Primitive Objects
true # false, L1 £ true, 1 ¢ false

3. Definition of eq in terms of =.
x=yAx£EL=xeqy?= true

xtyAxELAyEL=xeqy= false

legy=41, xeql =1

4, Definition of if-then-else.

if true then y else z = y
if false then y else z = 2z

5. Definition of characteristic functions.

isBool(x) = if x equal true then true
else x equal false
istrue(x) = x equal true
isfalse(x) = x equal false
6. Partial definition of equal in terms of egq.
isBool(x) V isBool(y) => x equal y = x eq y

7. Partial definition of = in terms of =.

isBool(x) Vv isBool(y) Vv x=1L V y=L =
X=y <> XZy

8. Partial definition of <.

x £ L A isBool(y) = x ¢ y = false
nyAyCznsz

9, Structural induction. For any formula 6(x)

vx [Vy (y « x = 6(y)) => 8(x)] = Vx 6(x)

131y first order predicate calculus with cquality,
this axiom scheme is a built-in "logical" scheme.

B. Domain Dependent Objects and Operations

Every definition in D extends the domain by adding

new data objects or operations. For definitions
that create ncw objects, we must describe how primi-
operations bechave on the new objects., For
definitions that

specify the new operations in terms of rimitive
P y P P

tive

create new operations, we must

ones.,
The axioms generated by a constructor definition
constructor c(syit]seess sn:tn)

(excluding quotients) appear below:

10. Definition of selectors. For i=l,...,n:

isty(x) A...A istn(x) = si(c(xl,....xn)) = x;

11. Definition of characteristic function.

isti(x) A ... A ist (x) = isc(c(xysenesx_))
isc(L) =1, isc(x) = c(sl(x),...,sn(x)) = x

12. Disjointness. For any other constructor q:
isq(x) = isc(x) = false

13. Extension of primitive operations.
isc(x) Vv isc(y) = [x =y < x = y]
isc(x) Vv isc(y) = x equal y = x eq y

isc(y) = [x c y = (x eq sl(y) vV xcs, (y))
Vo oee. v

(x eq s (y) Vv xc s, (y))]
Each union definition
union t = t, U ... U t
1 n
generates the following axiom:
14. Definition of characteristic functiom.
ist(x) = if istl(x) then true

else 1f ...
else istn(x)

Each quotient definition
quotient q = t underx r

generates the same axioms (10-13) as the definition

- 13 -

constructor q(intcnSion:t)
except for the axioms extending the operations = and
equal, For a quotient under a function r, the fol-
lowing axiom extends the definition of equal:

15. Definition of equal on gquotient type q.

isq(x) A isq(y) = x equal y = r(x,y)

For any quotient, the following axiom extends =
16. Definition of = on quotient type q.

isq(x) A isq(y) = [x =y < r(x,y)]

Explicit definitions of operations are inter-
preted directly as axioms. A (multi)function defin-
ition

(multi)fucction f(xlztl. cens xn:tn)= t
generates the following axiom:

17. Axiom for a (multi)function definition.

istl(xl) Acaoh istn(xn) = f(xl,....xn) =t

Similarly a predicate definition
i <, coe : <
predicate p(xl t)» s Xg tn) e
translates into the following axiom:
18. Axiom for a predicate definition.

istl(xl) Aceoh istn(xn) = [p(xl.....xn) <> 8]

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif

