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Abstract 

The evolution of influenza A virus is linked to a non-fixed evolutionary landscape driven by tight 

co-evolutionary interactions between hosts and influenza strains. Herd-immunity, cross-immunity and 

age-structure are among the factors shown to support the coexistence of multiple strain oscillations. 

In this study, we incorporate two influenza strains and allow for levels of cross-immunity supported 

by previous studies. Three specific pairs of strain interactions are considered. Some of the strain 

definitions can be extended to n interacting strains if strains are properly defined. This framework 

allows for a biologically interpretable approach since appropriate levels of cross-immunity as suggested 

by each strain definition can be applied. We show that strong cross-immunity along with reasonable 

periods of host isolation lead to periodic epidemic outbreaks (sustained oscillations). We establish the 

system's stability in the absence of infection via the basic reproductive number (Ro). The presence of 

two boundary endemic equilibria is found analytically. For isolation periods and cross-immunity levels 

pertaining to the influenza virus, our system supports the existence of sustained oscillations. These 

predictions are established via Hopf-bifurcation theory, and results are illustrated with numerical 

simulations. 
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1 Introduction 

About two-three decades ago several epidemiological studies were carried out to measure the ability 

(at the population level) of the immune's system history of prior exposure to influenza type A in the 

fight against invasions by new, possibly, related strains [1, 2]. The results of these studies support the 

view that partial cross-immunity is an important mechanism in the study of influenza dynamics and 

evolution [3, 4]. 

1.1 Epidemiology and immunology of cross-immunity in influenza 

A 

Recent documentation of the dynamics of coexistence of multiple strains also seems to be affected 

by partial cross-immunity effects [5]. The phenomenon of 'original antigenic sin' [6], that is, the 

virus capacity to evade the immune response, is supported by strain evolution. Moreover, asymmetric 

patterns of protective antibody cross reactivity determined by exposure to previously existing strains 

make full cross-immunity impossible. Original antigenic sin by antibodies or CTL leads to impaired 

clearance of variant viruses infecting the same individual and so may enhance the immune escape of 

mutant viruses evolving in an individual host [4]. 

On epidemiological level the antigenic variability of influenza type A viruses has caused major 

outbreaks in the past. It is believed that pandemics result from the appearance of new subtypes or 

distinctly new strains. The generation of new subtypes is assumed to be the result of major genetic 

changes. New subtypes are connected to the process of antigenic shift, new proteins hemagglutinin 

and/or neuraminidase are born immunologically different from that of previous circulating subtypes. 

The generation of highly distinct strains may be connected to key point mutations. Regardless of 

the mechanism, a population is seriously impacted by a new strain or subtype only when its previous 

immunological history is "useless" in the prevention of new invasions. 

Three different influenza A subtypes have been isolated in the past century each of them generating 

a major pandemic. In 1918, the most severe pandemic (Spanish flu) took place. It is estimated that 

approximately 20 million individuals worldwide died from the HlNl subtype [3, 4]. In 1957, the Asian 

viruses of the H2N2 subtype were responsible for the second pandemic. The H3N2 subtype is referred 

to as the Hong Kong subtype and is responsible for the most recent pandemic in 1968. 

Antigenic drift involves relatively minor, but frequent changes (variants) that take place yearly [5]. 

They result from the accumulation of protein altering nucleotide substitutions in the genes encoding the 

HA and NA proteins [8]. Only the surface antigens, hemagglutinin and neuraminidase, are responsible 

for the virus variability. HA is the major surface glycoprotein of the influenza virus that interacts 

with infectivity-neutralizing antibodies. Alterations in the HA and/or NA molecule enable the virus 

to escape immune surveillance and cause epidemics of the disease. Although antigenic neuraminidase 

(NA) antibodies are not as effective as HA antibodies, they neutralize viral infectivity at high levels 
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of concentrations [8, 4]. Furthermore, they modify the disease in favor of the host by reducing both 

the levels of the virus in lungs and the extent of lung lesions [4]. 

Type A influenza virus has been isolated and classified according to HA and NA composition into 

three subtypes: H1N1, H2N2, and H3N2 and a number of strains (see Table 1, [9]). Although we 

ignore factors that give origin to the complexity of influenza A viruses, studies indicate that influenza 

strains crossbreed (re assortment) more strongly than other viruses. 

1.2 Prior relevant modeling frameworks 

Due to the long-lasting cross-immunity between related strains, serious considerations have been made 

to study partial cross-immunity [11, 9, 10, 14, 15]. Interaction of multiple strains for influenza virus 

have been analyzed under various frameworks [16, 8]. Infection with a specific influenza strain pro­

vides permanent immunity to that strain. Typically an epidemic of influenza in a 'virgin' population, 

that is, a population with no previous exposure to any strain of the associated subtype, may result 

in about 30% levels of permanent immunity [2]. This level of herd-immunity makes it difficult for 

the same strain tore-invade. However, the population dynamics guarantees the introduction of new 

susceptibles, a reduction of the levels of herd-immunity, and the likelihood of a new invasion by the 

same strain. Cross-immunity enhances the concept of herd-immunity. In other words, high cross­

immunity reduces the likelihood,of invasion also by related strains while enhancing the capacity of 

'highly' different strains to invade. Partial cross-immunity enhances the likelihood of coexistence of 

diverse strains. In this paper, we explore the relevance and impact of this evolutionary paradigm. 

There have been several stud~~s that focus on the identification of mechanisms capable of support­

ing the coexistence of multiple strains for diseases that provide permanent or temporary immunity 

[17, 20]. Earlier work [11, 9, 10, 14] focuses on the identification of coexistence mechanisms that are 

capable of generating sustained oscillations. It was found that cross-immunity in SIR models was 

only capable of generating damped oscillations in non-structured populations facing two competing 

strains. Age-structure alone seemed incapable of generating sustained oscillations on SIR populations 

in one-strain influenza models [11, 9] albeit they can support sustained oscillations in a general SIR 

model [18]. Although, damped oscillations have been observed for one-strain influenza models, this 

has not been established rigorously. Our believe is that if this is so, then it is due to the difference 

of time scales between the life of an influenza infection (3-7 days), and the life of a host (25550 days) 

[19]. In [11, 9] it was suggested that the interactions between the natural demographic age-structured 

dynamics of a population facing two strains of influenza and cross-immunity was enough to generate 

sustained oscillations. Recently Feng and Thieme [13, 12] showed that the addition of a quarantine 

class was sufficient to support sustained oscillations albeit not necessarily in the appropriate parameter 

regime for influenza. Hethcote etal. [21] showed that a variant of Feng and Thieme's model was also 

capable of generating sustained oscillations. Although, there have been additional frameworks that 

are capable of generating sustained oscillations [10, 14], here we focus on the expansion of the results 
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of Feng and Thieme [13] and Hethcote et al. [21] to the two-strain framework as developed in [11, 9]. 

1.3 Overview of our modeling framework 

The main focus of this paper is the study of competitive outcomes that result from the interactions 

between two related strains of influenza, capable of generating sustained oscillations independently. 

Single strain SIQR models have shown that the addition of a quarantine class which directly impacts 

the force of infection, coupled with the natural addition of new susceptibles via the demographic 

process, are enough to generate sustained oscillations (periodic dynamics) [21]. The introduction 

of a second competing strain in this framework implies that competition for susceptibles (a process 

mediated by cross-immunity) may be such that the possibility of sustained oscillations is no longer 

feasible. We show that this is not the case, that is, there is a significant region of parameter space 

that supports the coexistence of both strains in the oscillatory regime. Using the data available [2, 5] 

we illustrate that oscillatory dynamics are indeed possible for reasonable influenza parameters (Figure 

4). 

In this paper we introduce a two-strain model. We assume the strains are chosen according to 

3 distinct possibilities classified with regard to the cross-immunity between them. First, we consider 
; ' 

type A virus as strain 1 and type B virus as strain 2. Since surface proteins hemagglutinin (HA) 

and neuraminidase (NA) for type A and B are genetically distinct, no cross-immunity is shared and 

the strains are strongly coupled (0' ::::::: 1). According to this definition, the strains can also be two 

of the influenza A subtypes H1, H2, and H3 (e.g. A/Puerto Rico/8/34 (H1N1), A/Japan/305/57 

(H2N2)). Studies suggest no cross-immunity between H2 and H3 [3]. In addition, sutypes H1 and H3 

are shown to have no cross-reactive protection [3]. Again, no cross-immunity is shared and 0' ::::::: 1. 

The second definition of the two strains refers to subtype variants (genetic drifts) of HA proteins 

of either H1, H2 or H3 subtypes· (e.g. A/Hong Kong/9/68, A/England/42/72 strains of the H3N2 

subtype). In this case the cross-immunity is non-trivial and depends on the specific strains chosen. 

In most of this paper we will assume that the strains are chosen according to this strain definition. 

Nonetheless, we introduce and consider briefly a third definition, namely when the two strains are 

both of type B virus. That is, we take strain 1 to be the Yamagata and strain 2 to be the Victoria 

strain. As suggested in [24], cross"-immunity to a Victoria strain exists only if previously exposed to 

a Yamagata strain, but not vice~versa. Consequently, the cross-immunity parameters will differ for 

each strain (0'1 =f. O'z). We consider this case only numerically. Despite the numerous attempts to 

elucidate the dynamics of co-circulating strains [10, 11, 13, 14, 25], precise strain definitions have been 

neglected. In particular, models in [10, 11, 14] concern influenza multiple-strain interactions without 

specifics on how the strains are chosen. However, host-strain interactions and corresponding levels of 

cross-immunity depend strongly on the definition of the strains. 

Our aim is to combine strain definitions via cross-immunity and isolation to address whether 

coexistence of sustained oscillations can be expected. Since isolation of children from school in the 
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1968 pandemic appeared to play a role in decreasing the attack rate, we suspect that pertinent periods 

of isolation may assist in the control of disease progression. On the other hand, it is highly likely that 

host isolation and untimely release (during outbreak peak) may lead to further propagation of infection. 

In this paper we explore the role of isolation in a system of two co-circulating influenza strains 

that share host immunity depending on the proposed definitions of the strains. Using Hopf-bifurcation 

theory, we characterize the stability of the disease-free and endemic state equilibria. Via numerical 

simulations, we demonstrate that sustained oscillations may persist under strong cross-immunity for 

reasonable periods of isolation. That is, as protection between strains decreases, the probability of 

a secondary infection increases. We begin our analysis of stability with a simplified version of our 

model for which the parameter values for the two strains are equal (symmetric case). The strains are 

coupled by a single parameter of cross-immunity, a. This version of the model is similar to a one 

strain model with a~ 0 [13]. In contrast to [13], we consider two co-circulating strains and include 

the quarantine period as an additional state to recovery. That is, instead of assuming that all infected 

are quarantined as in [13], we allow recovery as well as quarantine. 

Our results for the symmetric model· are consistent with the single strain case under complete 

cross-immunity (a= 0). That is·,' with complete cross-immunity strains become uncoupled. Moreover, 

periodic oscillations can be observed by the persisting strain [13]. Considering strong cross-immunity 

(0 =/= a << 1), interacting strains compete for susceptibles. If the quarantine state is not included, 

cross-immunity alone is not sufficient to drive sustained oscillations [11]. In this work we demonstrate 

that strong cross-immunity along with pertinent isolation periods may be a driving source for periodic 

behavior. 

Our paper is structured as follows. Section 2 introduces the general two-strain model that is used 

throughout; Section 3 carries out the stability analysis of the model in Section 2; Section 4 uses Hopf­

bifurcation to establish the necessary conditions for the existence of periodic solutions while computing 

useful formulae; Section 5 illustrates the results of the prior analysis using a variety of values for the 

cross-immunity including those derived from the literature [2, 5]. In Section 6 we summarize our 

findings and give our conclusions. 
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2 Two-strain model 

The population is divided into ten different classes: susceptibles (S), infected with strain i (Ii, primary 

infection), quarantined with strain i (Qi), recovered from strain i (~, as result of primary infection), 

infected with strain i (Ii, secondary infection), and recovered from both strains (W). 

pS 

l 
A-S 

Figure 1. Schematic diagram of the dynamics in host exposed to two co-circulating influenza 

strains. A is the rate at which individuals are born into the population, f3i denotes the transmission 

coefficient for strain i, J.L is the per-capita mortality rate, Oi is the per-capita quarantine rate for strain 

i, /i denotes the per-capita recovery rate from strain i, ai is the per-capita rate at which individuals 

leave the isolated class as a result of infection with strain i, and a is the relative susceptibility to strain 

j for an individual that has been infected with and recovered from strain i (i =I j). Strains share total 

cross-immunity if a= 0. Conversely, a= 1 indicates no cross-immunity between strains. We assume 

strong protection if 0 ~ u < < 1, and weak for 0 < < a ~ 1. 

Using Figure 1 we formulate the'following model 

dS A- tf3iS(Ii: It)- J.LB, = 
dt 

. i=l 
dii (Ii +It) ( 

dfji 
f3i8 A - J.L + /i + oi)Ii, 

= oiii - (J.L + ai)Qi, 
!! (Ii + Ii) 

j =I i (1) = /iii + aiQi - f3ia Ri A - J.L~, 
11'! (3 R (Ii +It) ( )I* . =I . -~ = ia i A - J.L + /i i ' 1 ~ 
Jar 

= E~=l Iii; - J.L w, dt 

A 8 + w + L~=l (Ii + Ii + ~). 
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where A is the active (non-isolated) individuals and {3;S(~+Ii) gives the rate at which the susceptibles 

get infected with strain i. Note that this incidence rate is proportional to the number of susceptibles 

as well as the probability (I;~Ii) that a contact will be with a non-isolated host infected with strain i. 

It is easy to show that the model is well-posed in the sense that there exists a unique nonnegative 

solution to (1) for all t 2: 0 when non-negative initial data are specified. 

3 Disease free equilibrium and stability 

System (1) has several equilibria. The two kinds of equilibria of interest are those in which the disease 

is absent (a disease-free equilibrium), and those in which the disease is present (endemic). Analysis 

of equilibria in the absence of disease typically gives conditions under which an epidemic will be 

established or eradicated in the population. In addition, exploring stability conditions for endemic 

equilibria allows us to determine when a new strain will evade the population in which disease is already 

endemic. As in the age-independent model in [11], we suspect that strong partial cross-immunity may 

lead to the exclusion of one of the strains. That is, prevalence of either strain is reduced by the 

presence of the other strain. As we introduce isolation, we observe sustained oscillations as in the 

age-structured model studied in [11]. 
Adding the differential equations in ( 1), we find for the population size N = S + W + ~;=l (Ii + 

Ii* + Qi + R;) that 
d 
dtN =A- p,N. 

Hence N(t) ---+ ~ as t ---+ oo. We'assume that the total size of the population has reached its limit 

value, that is, 
A 2 

N = - = S + W + L)Ii +I!+ Qi + R;) =A+ Q, 
11- i=l 

where Q = Q1 + Q2. Note that A= N- Q. 
The basic reproductive number associated with strain i is 

R·- f3i 
' - 11- + 'Yi + Ji 

Ri gives the number of secondary infective cases of strain i produced by an individual infected with 

strain i during his or her effective infective period when introduced in a population of susceptibles. Let 

The disease (both strains) will die out if Ro < 1 while the disease (at lease one stain) may become 

endemic if Ro > 1. The disease-free equilibrium is Eo= (So, 0, 0, 0, 0, 0, 0, 0, 0, 0), So= A/ J.l-· 

Theorem 1. The disease-free equilibrium is locally asymptotically stable {l.a.s.). ifRi < 1 fori= 1,2 

and unstable if either R1 > 1 or R2 > 1. 
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Proof. By (1) at disease-free state we partition the 10 x 10 Jacobian matrix into the following block 

form: 

-J.L * * 0 

J= 
0 G1 0 0 

0 0 G2 0 

0 * * -J.L 

where 

!31 - (J.L + /1 + 61) 0 0 !31 

G1= 
61 -(J.L +a!) 0 0 

/1 a1 -J.L 0 

0 0 0 -(J.L + 'Yd 
and 

!32 - (J.L + /2 + 62) 0 0 !32 

G2 = 
62 -(J.L + a2) 0 0 

/2 a2 -J.L 0 

0 0 0 - (J.L + /2) 

"*" represents a nonzero block matrix. 

If Ri < 1 fori= 1, 2 the eigenvalues of the Jacobian Ai < 0 Vi= 1, 2, ... , 10. 

Therefore, solutions decay exponentially and disease dies-out. 

Hence, Eo is locally asymptotically stable. 

If Ri > 1 for i = 1 or i = 2 at least one Ai > 0 for some i. 

Hence, Eo is an unstable saddle. 

4 Nontrivial equilibria and sustained oscillations 

0 

In this section we establish the existence of two boundary equilibria and examine their stability. We 

find explicit conditions for stability and show via Hopf-bifurcation that boundary equilibria can lose 

stability which leads to the presence of oscillatory solutions. 

When the disease is endemic, there is a possibility that it is represented by strain 1 only, by 

strain 2 only or both strains. Since the two strains are mathematically symmetric ( a1 = a2), we 

consider the case when only strain 1 is present and strain 2 dies out. The other case when strain 2 

is present and strain 1 dies out is similar. For convenience we arrange the variables in the order U = 
(S,h,Q1,R1,Ii,h,Q2,R2,I2,W) and rewrite system (1) as dUjdt = F(U). To find the boundary 

equilibrium for strain 1 
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we set F(U) = 0 and let Ii = h = Q2 = R2 = 12 = W = 0. 

We obtain 

~ = J.L(J.L + a1)¢, 

fj- = ('Yl(J.L + a1) + a1<h) ¢, 

where 

(2) 

(3) 

We can see that E 1 exists and it is unique if and only if R 1 > 1. For simplicity using A = N- Q and 

S =A- 2::7=1 (Ii + Ii + ~)- W we eliminate the S equation and rewrite the Ii equation as 

dii = (3· (I- W + 2::7=1(/i + ~ + Ii)) (I-+ I*)_ ( + ·)I-dt t A t t f.L It t· 

The Jacobian at E1, J, is then a 9 x,: 9 (without S) matrix and it can be partitioned into the following 

block form: 

G1 * 0 * 
]:d. 

0 -(J.L + 'Yl) * 0 

0 0 G2 0 

0 * * -J.L 

where 

and 

f32 ~ - (J.L + /2 + c52) 0 0 f32§. 
A 

02 -(J.L + a2) 0 0 
G2= 

-J.L- fJ1aL. 0 /2 a2 

f32aih 
A 

fJ2a ~ - (J.L + 12) 0 0 
A 

"*" represents a nonzero block matrix. 

We establish stability conditions for endemic steady state by first analyzing matrix G2. Note that G2 

has two negative eigenvalues -(J.L+a2) and -(J.L+ ~),and two other eigenvalues given by the equation 

(4) 
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where 

c1 = (p, + 12 +<h) ( n)i1n1) + fJ20"4 - (p, + 12), 

c2 = -(p, + 'Y2 +(h) [{320"4 + (p, + 'Y2) ( n2;_lnl) ] . 
(5) 

The roots of (4) will have negative real part if and only if the trace is negative and the determinant 

is positive. That is, ( c1 < 0 and c2 > 0). We remark that R;_ varies with the transmission parameter 

f3i· Rewriting expression for R;_ and plugging in for f3i in system (5), it can be shown that 

C1 < 0 {==:} 

F1(R1, R2) := (p, + 12 + 62) ( ~- 1 + O"R2~) - (p, + 12) < 0, 

(6) 

C2 > 0 {==:} 

F2(R1, R2) := O"(J.L + 12 + 62)R24 + (p, + 12) ( ~- 1) < 0. 
where RI/ A is given in (2). It is obvious that in the case of full immunity (O" = 0), conditions in (6) 

hold if and only if R2 < R1. As immunity diminishes between strains (0" > 0), additional conditions 

need to be considered to ensure,,that (6) holds. To ensure condition F2 < 0, it is sufficient that 

R2 < R1 holds. To find necessary conditions pertaining to F1, we rewrite F1 in terms of F2 and 

obtain the following. 

We have that F1 ::::; (p, + 12)F2 when R2 < R1. Since we previously concluded that R2 < R1 implies 

that F2 < 0, then conditions (c1) and (c2) for O" > 0 hold if and only if R2 < R1 and F2 < 0. Note 

that 4 and¢ are given in 2. Let 

f(Rl) = nl 
1 + O"(R1 - 1) ( 1 + J.t!21'2 ) ( 1 - .,--,-~~.:::..!.f-:---..--

(7) 

Then F2 < 0 if and only if R2 < j(R1). It is easy to see that 0 < f(Rl) < R1. Hence, if R2 < j(R1), 
then F 1 ::::; (p, + 12)F2 < 0. It follows that all eigenvalues of G2 have negative real part if and only if 

(8) 

For G1 we have used the equality 
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Remark. As R1 does not depend on a:1, the dependence of f on a:1 is in the order of 1-"· We 

continue our analysis of endemic state by finding conditions of stability pertaining to matrix G1. The 

characteristic equation of G1 is given by 

(9) 

where 

2f.L + 0:1 + f.L(f.L + 0:1)(1-" + /'1 + 01)¢, 

f.L(f.L + 0:1)(1 + (f.L +/'1 + 01)(2f.L + /'1 + O:I)cf>), (10) 

Clearly a1, a2, and a3 are all positive. Hence (8) has either three negative roots or one negative root 

and two complex conjugate roots. Note that the mean life expectation 1/ f.L is in the order of decades, 

whereas the infective period 1/oi or;1/'Yi and the isolation period 1/a:i are in terms of days. Hence f.L 

is much smaller than oi, 'Yi and a:: · 
. ,j, ! 

From (9) we know that ai are analytic functions of f.L > -E for some E > 0 and 
I- I' 

a:l+ ( 3 - ~J f.L + 0(1-"2), 

a2 = (a:1+(1-~i)('Y1+a:I))f.L+0(f.L2 ), 

a3 = 0:1 (1'1 + 01) (1 - ~* )1-" + 0(1-"2), 
1 

(11) 

(12) 

(13) 

where Ri denotes R 1 evaluated at f.L = 0. Let wi = wi(f.L), i = 1, 2, 3, be the roots of (8). These are 

analytic functions of f.L > -E. In the limiting case, f.L = 0, (8) is 

w3 + 0:1w2 = 0. 

It has a double root 0 and the simple root w = -0:1. From the continuity we have w1(0) = -a:1, 

w2(0) = w3(0) = 0. Thus, w1(f.L) = -0:1 + O(f.L) is a negative real root of (9) for small f.L > 0. Using a 

similar argument as in [23, 12, 13] ·and Kato [ 23, II, §1, Section 2] the roots w2(f.L) and w3(f.L) have 

an expression 
00 

w(f.L) = L~ivi, 
j=1 

Fitting this expression into (10) yields 

[ a:1d + a:1 b1 + o!) (1- ~i) J v2 

+ [ d + 266a:1 + ( a:1 + b1 + a:1) (1 - ~i)) 6] v3 = O(v4). 
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Hence, 

Note that as 'R.i > 1, we have 

6,2 = ±i b1 + ch)(1- ~*), 
1 

(15) 

Hence the three roots are 

(16) 

and 

w2,3(v) 

(17) 

Choose a1 to be a bifurcation parameter (1/al is the isolation period for strain 1) and consider 

a1 = a1(v) to be a function of v satisfying ~2(a1 (0)) = 0, i.e., 

Let w2,3 = w2,3 ( a1, v) and let 

1 
H(a1, v) = v2 ~w2,3(a1, v). 

Then H(a1(0), 0) = 6(a1(0)) = 0. Using the implicit function theorem we know that for small v > 0, 

there exits a critical value 

such that H(ale(v), v) = 0. Clearly ale> 0 as 'R.i > 1. As 

we know that non resonance holds. That is, as the frequency of strain 1 approaches that of strain 2, or 

vice-versa, corresponding amplitude is finite. It follows that there is a Hopf bifurcation at a 1 = a 1e. 

Moreover, w2,3 cross the imaginary axis from left to right when a1 crosses a 1e from left to right. We 

have established the following result: 
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Theorem 2. There are two functions, f(R1), defined in 7, and a1c(.U) defined for small ,u > 0 as 

with the following properties: 

{i) The boundary endemic equilibrium E1 is locally asymptotically stable if R 2 < f(RI) and 

a1 < a1c(,u), and unstable ifR2 > f(R1) or a1 > a1c(,u). 

{ii) When R2 < f(RI), there is a Hopf bifurcation of periodic solutions at a1 = a1c(.U) for small 

enough ,u > 0. The periods are approximately 

Remarks. (i) From (2) the period T can also be written as 

T ~ 27r 
. •· ( . ) 1/2 , 

b1 + 61) 1 ,u112 

where i I A denotes iiI A evaluated at ,u = 0. This expression for T allows one to compare the formula 

of the period from this model with the formula of the quasi-period from other models which do not 

include a quarantine class and prqduce no periodic solutions. 

(ii) Since the two strains are mathematically symmetric, we can state a result for the boundary endemic 

equilibrium E2 at which only strain 2 is present. The result will read the same as Theorem 2 with 

indeces 1 and 2 switched. 

The expression of j(R1) also allows us to explore the effect of the cross immunity, cr, on the behavior 

of the model. For example, from (7) we can find a critical value 

such that for R1 > 1 

j'(R1) > 0, 

j'(R1) < 0, 

j'(R1) = 0, 

j(R1) > 1 

j(R1) < 1 

J(RI) = 1 

if cr < cr*, 

if cr > cr*, 

if cr = cr*. 

Here we have used the fact that f(1) = 1. Note that R2 < f(RI) is a necessary condition for the 

stability of strain 1 (either a stable boundary endemic equilibrium E 1 or a sustained oscillation of 

strain 1 only). Also note that the boundary equilibrium for strain 2, E2, is unstable when R2 < f(R1) 

(recall that f(R1 ) < R 1). Noticing that f(1) = 1, we can draw a diagram showing the stability region 

for strain 1 in the (R1, R2) plane (see Fig.2, region I). Using the symmetry we can find another curve 

given by a function g(RI) which determines the stability region for strain 2 (see Fig 2, Region II). We 
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see from Fig 2 that the stability region for a single strain increase when rJ decreases. Consequently, it 

follows that stronger cross-immunity promotes competitive exclusion. 

When (R1 , R2) is in the region III, there is no stability of a single strain, i.e., neither one of the 

two strains will die out while the other strain remains endemic. In this case we expect the coexistence 

of both strains, either in the form of a stable interior equilibrium or in the form of sustained oscillations 

of both strains. We do not have an analytic proof for this due to the complexity of the model. Some 

numerical results will be presented in the next section. 
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Figure 2. Describes the stability and coexistence regions as we vary cross-immunity. Note that for 

a < a* the region of interaction among both strains is relative smaller than for a > a*. This suggests 

that for larger values of a (no cross-immunity) strains are antigenically distinct and therefore both 

will coexist. 
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5 Simulations 

In this section we explore the model equations numerically for parameter values that pertain to the 

strain definitions proposed (see Section 1). We assume that individuals infected with strain i, go to 

isolation at a rate 8i as a result of ineffective recovery and have a life expectation of 70 years. 

We calculate the eigenvalues for different isolation periods and transinission coefficients. In all cases 

eigenvalues have zero real part and the corresponding imaginary parts are of order 10-3. Calculations 

presented in Table 1 indicate that as the transinission coefficient /3i increases, Ro increases and the 

period of the oscillations decreases. That is, as the number of secondary infections generated by a 

single infected individual increase from one, population epideinic outbreaks persist and peak more 

often. The higher the Ro, the more frequent and endemic are the epideinics. 

Table 1. Parameters chosen for the calculations below pertain to symmetric contacts. The first 

column gives transinission coefficient, the second gives the isolation periods; the third and fourth 

columns give the imaginary eigenvalues ~1 and 6 (see (15)); and the remaining columns give the 

bifurcating parameter and corresponding periods of oscillation ('y = 0.33, 8 = 0.7, J.L = 0.00004, 
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0" = 0.01). 

(3 ~(days) Im(6) Im(6) cf-(days) T (days) no 
1.7 1 1.2639 X 10-3 -1.3403 X 10-3 4.89 4.24 1.7 

1.7 3 1.2959 X 10-3 -1.3083 X 10-3 4.89 4.24 1.7 

1.7 7 1.3051 X 10-3 -1.2992 X 10-3 4.89 4.24 1.7 

1.7 14 1.3085 X 10-3 -1.2957 X 10-3 4.89 4.24 1.7 

1.7 30 1.3103 X 10-3 -1.2939 X 10-3 4.89 4.24 1.7 

1.7 50 1.3110 X 10-3 -1.2933 X 10-3 4.89 4.24 1.7 

3 1 2.0362 X 10-3 -2.1802 X 10-3 3.57 3.33 2.91 

3 3 2.1029 X 10-3 -2.1135 X 10-3 3.57 3.33 2.91 

3 7 2.1219 X 10-3 -2.0945 X 10-3 3.57 3.33 2.91 

3 14 2.1290 X 10-3 -2.0873 X 10-3 3.57 3.33 2.91 

3 30 2.1328 X 10-3 -2.0835 X 10-3 3.57 3.33 2.91 

3 50 2.1342 X 10-3 -2.0822 X 10-3 3.57 3.33 2.91 

4.7 1 2.3733 X 10-3 -2.6057 X 10-3 3.24 3.06 4.7 

4.7 3 2.4853 X 10-3 -2.4937 X 10-3 3.24 3.06 4.7 

4.7 7 2.5173 X 10-3 -2.4617 X 10-3 3.24 3.06 4.7 

4.7 14 2.5293 x 1o-3 -2.4497 X 10-3 3.24 3.06 4.7 

4.7 30 2.5357 X 10-3 -2.4433 X 10-3 3.24 3.06 4.7 

4.7 50 2.5379 X 10-3 -2.4410 X 10-3 3.24 3.06 4.7 
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The simulations in Figure 3 illustrate that for the symmetric contact case ([3 = [31 = !32, a= a 1 = a2) 
the system goes through cycles where the period and amplitude are determined by the quarantine 

and cross-immunity correspondingly. For very strong cross-immunity (a = 0.01) as in the second 

strain definition (see Section 1), strains are strongly coupled and the amplitudes of the oscillations 

increase with the quarantine periods (see Figure 3). Although the strong coupling between the strains 

suggests that strain with the highest infectivity remains in the population, reappearance of previously 

circulating strains may cause the future epidemics as shown in Figure 3. 
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Figure 3. Numerical integration of the model equations according to Matlab. Proportion fl, of 

the population infected (non-isolated) with strain 1 with <I= 0.01 and transmission rate f3 = 1.7 is 

plotted against time. Cross-immunity chosen according to strain definition 2. 
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We further decrease cross-immunity corresponding to the second strain definition. Simulations 

indicate similar yearly oscillations as supported by the antigenic drifts (see Figure 4). For the in­

termediate cross-immunity (0.3 ::; a ::; 0. 7), the system exhibits complicated dynamics with multiple 

outbreaks during some years as we increase the periods of quarantine (see Figure 4). In contrast to the 

simulations for strong cross-immunity (a= 0.01), sustained oscillations dampen only in the presence 

of extremely large periods of quarantine ( i = 3000 days). We notice that the form of the persistence 

of the epidemic in the case of strong cross-immunity (a = 0.01) and the case of intermediate cross­

immunity (a= 0.5) is very different. While in the case of intermediate cross-immunity the proportion 

of infected exhibits sustained oscillations of close peaks (approximately 5 in a 10 year period) in the 

case of strong cross-immunity the epidemic seemingly disappears from the population for long intervals 

of time (up to 20 years) and is present for intervals of time of about 10 years when it exhibits one or 

multiple peaks. We believe that at strong cross-immunity levels the two strains "work together" for 

depleting the susceptible pool since infection with one of the strains protects against infection with 

the other and the disease. When no more susceptibles are available to be infected, this leads to a 

temporary fading out (vanishing) of the epidemic. Simulations pertaining to cases of weak to non 

cross-immunity (0. 7 ::; a ::; 1) are not included, nevertheless it can be observe that strains continue to 

become uncoupled. 
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Figure 4. Proportion -h, of the population infected (non-isolated) with strain 1 with a= 0.5 and 

transmission rate {3 = 1. 7 is plotted against time. 
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Finally, we explore the effects of strain coexistence and competition for susceptible population 

as in the asymmetric cross-immunity case (u1 f. a2). In Figure 5 parameters are chosen according 

to influenza B strains (strain definition 3). In this asymmetric case, cross-immunity against strain 

2 (Victoria) exists only after a previous exposure to strain 1 (Yamagata), but not vice-versa. We 

assume that strain 1 has strong cross-immunity (0.1 S 0"1 S 0.3) and strain 2 has weak cross-immunity 

(0.7 s 0"2 s 0.9). 
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Figure 5. Proportion -17, of the population infected (non-isolated) with strain 1 and strain 2 is 

plotted against time. Transmission rates fJ1 = 4.6, fJ2 = 4.7, a1 = 0.1, u2 = 0.7 are chosen according 

to influenza B strains (strain definition 3). To understand the mechanisms behind the observed 

sustained oscillations we have explored simulations that pertain to the symmetric as well as the non­

symmetric case. It can be observed that isolation drives sustained oscillations independently of the 

assumptions made on cross-immunity and the given strain definitions. In agreement with the results 
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by Feng and Thieme [13], for the symmetric case oscillations dampened for large periods of isolation 

(600 days). Furthermore, the system's steady state is sensitive to initial conditions. In the case 

R 1 =R2 , the number of initial infecteds with either strain determines the steady state reached by the 

corresponding strain. This fact suggests the presence of multiple stable equilibria. 

In contrast to Feng and Thieme's results, our model supports sustained oscillations for realistic 

transmission rates and isolation periods that agree with influenza A virus dynamics, Ro E (1.3, 2). In 

particular, sustained oscillations are observed for strong to intermediate cross-immunity (u= 0.01, 0.5), 

transmission coefficient ((3 =1.7 ), and quarantine periods(~ E (3, 30) days), (see Figures 3 and 4. For 

the simulations of asymmetric cross-immunity , we observe that transmission rates (31 , (32 for strain 1 

and 2 must be higher to ensure strain coexistence (see Figure 5). Cross-immunity levels are pertinent 

to influenza B strains (u1 # u2). When the two strains have equal transmission rates ((31 = (32 ) and 

different cross-immunity coefficients (u1 = 0.1, 0"2 = 0.7), simulations show that the amplitude and 

period of the oscillations increases with the period of isolation. Similarly, for equal cross-immunity but 

different transmission rates the changes in cycles and amplitude are less pronounced for short periods 

of isolation. Although simulations of asymmetric cases included here are not extensive, it is clear 

that for 0"1 different than u2, as lu1 - 0"2 I increases strains become coupled and persistence depends 

heavily on their transmission rate.· That is, as the levels of cross-immunity between the strains is 

simultaneously shared (bigger I 0"1 - 0"2 1), a single strain prevails. In all simulations explored it is 

clear that isolation has a destabilizing effect (see Table 1). The magnitude of the periodic outbreaks 

and frequency is characteristic of cross-immunity and quarantine period. 

6 Discussion 

Mechanisms responsible for influenza outbreaks have been explored in the last decades. Models incor­

porating factors such as age-structure, seasonal effects, cross-immunity and interactions among viral 

strains have been analyzed [10, 11, 9, 14]. In this study we incorporate two influenza strains and 

emphasize the importance of a precise strain definition. In most studies that reveal the existence 

of cross-immunity, u is approximated by considering relative frequencies of infection or the levels of 

antibody-positive sera present in a population once a new subtype or strain has been established [3]. 

The impact of cross-immunity on the dynamics of models with co-circulating strains depends 

strongly in the modeling approach. In the two-strain model proposed by the authors in [11], it is 

assumed that cross-immunity reduces the pool of susceptibles for co-circulating strains and influences 

the survival of the strains. It is shown that age-structure leads to sustained oscillations with peri­

ods of 10 to 20 years for the case of strong cross-immunity (u = 0.01) and periods of 3 to 4 years 

for intermediate cross-immunity (u = 0.50). Although our model does not consider age-structure, 

sustained oscillations are also observed as we include quarantine periods. Our results are similar to 

those in [11] in the fact that variation of transmission coefficients (31, (32 has a significant effect on the 
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amplitude of the observed oscillations. Moreover, the periods of oscillations pertaining to the strong 

and intermediate cross-immunity obtained in our model are similar to those obtained in [11, 3]. 

In later models, cross-immunity acts by reducing the probability of future infections when the 

immune system is challenged with a related strain as specified by our strain definition 2 [10]. In fact, 

it has been shown that for a fixed host life span, cross-immunity destabilizes the system by introduc­

ing a delay and sustained oscillations can be observed [10]. Furthermore, it is shown that removing 

the delay posed by the cross-immunity and introducing n interacting strains continues to support the 

sustained oscillations. In the later models sustained oscillations appear to be supported by the delay 

introduced due to cross-immunity and multiple co-circulating strains correspondingly regardless of a 

strain definition. 

In our model, we allow strain interactions that are realistic to the shared levels of cross-immunity. 

Some of our strain definitions can be extended for n-interacting strains. However, for choices of mul­

tiple strain interactions as in [10] an n-strain model may be inappropriate if strains interact as in 

definitions 1 and 3. The observed sustained oscillations as a result of strong cross-immunity may only 

be realistic if the strains satisfy definition 2. 

The aim of this paper is to explore the role of cross-immunity and quarantine periods accord­

ing to the proposed influenza strain definitions. Previous approaches have modeled the effects on 

cross-immunity and mechanisms such as age-structure, multiple strain interactions and seasonal ef­

fects attempting to understand the origin of the frequently observed sustained oscillations, but have 

not provided precise strain definitions. In our approach, clear assumptions on strain definitions are 

given to elucidate the role of cross-immunity. We trust that realistic conclusions can be made if pre­

cise strain assumptions are set forward. In particular, appropiate levels of cross-immunity should be 

explored based merely on the empirical evidence as proposed in the studies [3, 22]. 

In our two-strain model we explore stability conditions for the disease-free state as well as the en­

demic states. To gain intuition about the stability of our system in the absence of strains, we compute 

the two reproductive numbers R 1 , R2 of the strains. For stability in the presence of both strains, we 

find that there are two boundary equilibria E1 and E2 such that E1 has only strain 1 and in E2 has 

only strain 2. Due to the complexity of our system, we do not establish analytically the presence of 

coexistence equilibria but from the simulations it appears that there are such. In agreement with the 

results in [11], we suspect that there might be up to four coexistence equilibria. If R1 and R2 are 

below one then the disease-free equilibrium is locally stable. We have not been able to establish global 

stability of the disease-free equilibrium. We suspect that might be due to the presence of subthreshold 

coexistence equilibria and backward bifurcation. We establish that E1 (respectively E2) is locally sta­

ble under additional conditions and may loose stability which leads to oscillations. We give an explicit 

formula for the period of these oscillations and the threshold value of the bifurcation parameter ac. 

The model developed in this paper explores quarantine as a possible mechanism leading to the sus­

tained oscillations. We extend the approach of previous studies by proposing three strain definitions 
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and therefore realistic levels of cross-immunity for analyzing the system of equations. Our numerical 

simulations suggest that oscillations occur for strong (cr = 0.01) and intermediate (cr = 0.4) cross­

immunity for realistic periods of quarantine (3, 15 days). For strong cross-immunity the epidemics 

disappears from the population for long intervals of time (up to 20 years) and is present for inter­

vals of time of about 10 years as shown in [9]. In the case of intermediate cross-immunity, sustained 

oscillations exhibit close peaks of periods between 5 and 10 years; this mechanism is similar to the "ex­

ploitation competition" dynamics observed in previous studies where the presence of cross-immunity 

influences the potential of survival of the strains introduced into the population [3]. We also observe 

that the amplitude of the oscillations increase as the period of isolation increase for moderate isolation 

periods (~ E (3, 15) days), and moderate cross-immunity(cr = 0.01). 
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