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Due to the advent of “big data” technologies, mixed data that consist of both

categorical and continuous variables are encountered in many application areas.

We present a framework to estimate the correlation among variables of mixed data

types via a rank-based approach under a latent Gaussian copula model. Theo-

retical properties of the correlation matrix estimator are also established. With

the correlation matrix estimate Σ̂, we are able to further extend the topic to other

problems, such as graphical models, regression, and classification. In particular, we

propose a family of methods for prediction with high dimensional mixed data that

involves a shrunken estimate of the inverse matrix of Σ̂. By maximizing the log

likelihood of the data subject to a penalty on the elements of Σ̂−1, we demonstrate

that higher prediction accuracy can be achieved, compared to other popular exist-

ing methods. We also show that several existing methods are special cases of the

family. In addition, we consider the classification problem via a covariance-based

approach analogous to linear discriminant analysis.
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CHAPTER 1

INTRODUCTION

Due to the advent of “big data” technologies, mixed data that consist of both

categorical and continuous variables are often encountered in many application

areas. For example, in questionnaires and surveys, we commonly see categorical

data such as rating scales to measure attitudes, as well as continuous data such

as income and age that might be possibly related to the categorical variables.

Another example is the data collected from genetics studies that consist of SNP

(single nucleotide polymorphism) data of categorical values and gene expression

levels of continuous values.

Estimating the associations between mixed data types is of great importance to

gain insights about dependence between the variables, particularly for conditional

dependencies and potential causal pathways. With this motivation, we propose

a novel method to estimate associations between multilevel ordinal and continu-

ous data using a latent Gaussian copula model approach. We assume that the

multilevel ordinal variable is obtained by discretizing a latent variable, and esti-

mate the correlation/covariance matrix underlying the Gaussian copula model via

a rank-based approach. The detailed framework is described in Chapter 2, where

theoretical properties are also established.

With a good estimator of covariance/correlation matrix, it is possible to expand

the topic to other contexts. One natural extension is the regression problem where

one would like to predict a continuous response variable using a set of predictors

that consists of both categorical and continuous data types. High-dimenisonal

regression has been intensively studied in the past, and popular methods often

perform some regularization, such as the famous ridge regression that estimates
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the linear coefficients by shrinking the inverse sample covariance matrix (XTX)−1,

and the remarkably successful lasso method that gives a shrunken linear coefficient

estimate subject to an `1 penalty, and the elastic net that imposes both penalties

in the ridge and the lasso weighted by a certain ratio. But they all rest upon

two assumptions: 1) the existence of explicit linear relationship between observ-

able predictors and the response and 2) the observable predictors and response

variables jointly follow multivariate Gaussian distribution. These two assumptions

are often violated for high-dimensional mixed data. On the other hand, several

approaches have been proposed that do not require the unrealistic assumptions,

such as the nonparametric sparse additive models [50], the semi-parametric single

index model [48], and more recently the latent Gaussian copula regression model

by [10]. However, these approaches are only tailored for continuous data but not

mixed data.

To bridge the gap, a latent Gaussian copula model with an `1 penalty (GC-

Lasso) is proposed in Chapter 3. Under latent Gaussian copula model, the observ-

able data are not required to be Gaussian but rather Gaussian after transforma-

tion, and this gives rise to a linear relationship between the (latent) marginally

transformed data. Recall that one can rewrite the least squares solution as

β̂ = (XTX)−1XTY = Σ̂−1
XXΣ̂XY , this opens the door to estimating the latent lin-

ear coefficients using the covariance matrix estimator Σ. We will see in Chapter

3 that under latent Gaussian copula model, one could obtain a shrunken coeffi-

cients estimator β̂ for the latent linear relationship without knowing the marginal

transformation. Another advantage of the GC-Lasso method is that the widely

applied data transformation such as log transformation is readily adapted by the

GC-Lasso model with no need to prespecify the transformation.
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We then further generalize the GC-Lasso to a family of methods in Chapter

4, where we impose two layers of regularization on the inverse of the covariance

matrix estimator. The shrunken inverse covariance matrix is obtained such that it

maximizes the log likelihood of the latent data, under marginal normality, subject

to a penalty. This shrunken inverse covariance matrix estimator is then used to to

compute the regularized regression coefficients. We will see that besides GC-Lasso,

this family of methods also includes several other existing methods, including the

lasso and the ridge.

In each following Chapter, numerical studies are conducted to investigate the

performance of the proposed methods. Case studies on real data are also demon-

strated to accompany the numerical studies.

All of the research described in this dissertation was primarily performed by

the author, and Chapters 2, 3 and 4 are reproductions of papers coauthored by

James G. Booth and Martin T. Wells.
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CHAPTER 2

RANK-BASED APPROACH FOR ESTIMATING CORRELATIONS

IN MIXED ORDINAL DATA

2.1 Introduction

High-dimensional multilevel ordinal and continuous mixed data are now routinely

collected in many research areas. For example, in questionnaires and surveys, we

commonly see categorical data such as rating scales to measure attitudes, as well as

continuous data such as income and age that might be possibly related to the cate-

gorical variables. Another example is the data collected from genetics studies that

consist of SNP (single nucleotide polymorphism) data of categorical values and

gene expression levels of continuous values. Estimating the associations between

mixed data types is of great importance to gain insights about dependence be-

tween the variables, particularly for conditional dependencies and potential causal

pathways. There are several classical rank-based methods for analyzing associ-

ation among ordinal variables [3]. Specifically, those measures are all based on

the numbers of concordant and discordant pairs of observations. A pair of obser-

vations, say (Xi, Yi) and (Xi′ , Yi′), is concordant if the subject that has a higher

ranking on X also has a higher ranking on Y , and on the other hand this pair is

called discordant if the subject ranking higher on X ranks lower on Y . Kendall’s

tau-a (τa) was first proposed by [29] as a measure that quantifies the difference

between proportions of concordant and discordant pairs among all pairs, which is

essentially a correlation coefficient for sign scores. Later in 1945, a revised version

called tau-b (τ b) was introduced [30] that took tied pairs into consideration. [20]

proposed the gamma measure as the difference between proportions of concordant
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and discordant pairs among all concordant and discordant pairs. Other similar

measures such as Somers’ d [53] also considers the difference between proportions

of concordant and discordant pairs, just with a different base as its denominator.

More contemporarily, multilevel ordinal variables are often seen as a result of dis-

cretizing latent continuous variables [47]. [14] propose a generative latent Gaussian

copula model for binary and mixed data, assuming the binary data are obtained

by dichotomizing a continuous latent variable. Yet it remains an open question to

measure the association between multilevel ordinal and continuous data.

Driven by this motivation, we propose a general framework to estimate as-

sociations between multilevel ordinal and continuous data via a latent Gaussian

copula model approach. We assume that the multilevel ordinal variable is obtained

by discretizing a latent variable, and estimate the correlation/covariance matrix

underlying the Gaussian copula model via a rank-based approach. These results

extend those for the latent Gaussian copula model for binary and continuous data

proposed by [14].

In the next section we first review the concept of Gaussian copula model and

define a new latent Gaussian copula model for ordinal-continuous mixed data, and

then review the motivations for Kendall’s rank correlation coefficient. In Section

2.3, we propose the rank-based correlation estimation for ternary-continuous mixed

data and then generalize it to the estimation for ordinal-continuous mixed data.

We derive explicit formulas for the bridge functions that connect the Kendall’s τa

of observed data to the latent correlation matrix for different combinations of data

types. This requires derivation of new bridge functions, and those derivations are

somewhat involved and more complex than in continuous/binary case. We then

use these formulas to construct a rank-based estimator of the latent correlation
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matrix for the mixed data. The significant advantage of bridge function technique

is that it allows us to estimate the latent correlation structure of Gaussian copula

without estimating marginal transformation functions. We also establish theoret-

ical concentration bound results for the new rank-based estimators. In Section

2.4 we consider the case of tied data. Simulation results are presented in Section

2.5. In Section 2.6 we give two real data analysis that highlight the our proposed

techniques applies them to the construction graphical models for mixed (binary,

continuous, and ordinal) data. The first is a well example in the algorithmic fair-

ness literature about ProPublica’s journalistic investigation on the apparent biases

of machine learning based predictive analytics tool, COMPAS, in recidivism risk

assessment [5]. The second example is another well know example first analyzed by

[9] and subsequently by [25] consisting of 12 mixed type measurements for prostate

cancer patients who were diagnosed as having either stage III or IV prostate can-

cer. We conclude with some discussion in Section 2.7. The proofs of the main

results are given in Appendix A.

2.2 Background

2.2.1 Variations of the Gaussian copula model

In recent years, the Gaussian copula model has received a lot of attention due to

the ability to relax the normality assumptions of a fully Gaussian model. Formally

the Gaussian copula model is defined as follows [64, 37, 36]:

Definition 1 (Gaussian copula model). A random vector X = (X1, . . . , Xd)T

follows Gaussian copula model if there exists a set of monotonically increasing
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transformation functions f = (fj)dj=1, such that f(X) = (f1(X1), . . . , fd(Xd))T ∼

Nd(0,Σ) with diag(Σ) = 1.

A random vector X with these properties is said to follow a nonparanormal

distribution denoted by NPN(0,Σ, f). The distribution is much more flexible that

a Gaussian model. In particular, individual components of X can have skewed or

even multimodal distributions.

Note that the Gaussian copula model only applies to continuous data. We

now extend the latent Gaussian copula model to ordinal-continuous mixed data.

Following the notation in the binary-continuous mixed case we consider a mixed-

data random vector as X = (X1,X2), where X1 is d1-dimensional vector of p-level

discrete variables (with each component of X1 taking values in {0, 1, . . . , p − 1})

and X2 is a d2-dimensional vector of continuous variables.

Definition 2 (Latent Gaussian copula models for ordinal-continuous data). The

random vector X follows the extended latent Gaussian copula model if there exists

a d1-dimensional random vector of latent variables Z1 = (Z1, . . . , Zd1) such that

Xj = l if Zj ∈ (C l
j, C

l+1
j ) for l = 0, 1, . . . , p− 1 and j = 1, . . . , d1, where the cutoff

vector is given by C = (C1, . . . ,Cd1) and Cj = (C0
j = −∞, C1

j , . . . , C
p−1
j , Cp

j =∞)

is an increasing sequence of (p− 1) constants, and Z = (Z1,X2) ∼ NPN(0,Σ, f).

The latent Gaussian copula model for binary-continuous data is just a special

case of the above latent Gaussian copula model with p = 2. Alternatively, the

binary case is retrieved if C2
j = ∞ for j = 1, . . . , d1. In fact, by setting Ckj

j = ∞,

where 2 ≤ kj ≤ p for j = 1, . . . , d1, we can handle situations with ordinal variables

with differing numbers of levels. [14] proposed the following latent Gaussian copula

model as an extension to binary and mixed binary-continuous data:
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Definition 3 (Latent Gaussian copula model for binary-continuous mixed data).

Consider a mixed-data random vector X = (X1,X2) where X1 is a d1-dimensional

vector of binary variables and X2 is a d2-dimensional vector of continuous vari-

ables. Then X follows a latent Gaussian copula model if there exists a d1-

dimensional random vector of latent variables Z1 = (Z1, . . . , Zd1) such that

Xj = I(Zj > Cj) for j = 1, . . . , d1 where C = (C1, . . . , Cd1) is a d1-dimensional

vector of constants, with Z = (Z1,X2) ∼ NPN(0,Σ, f).

Our interest is in estimating the correlation matrix Σ or the precision matrix

Ω = Σ−1 with for latent Gaussian copula models for ordinal-continuous data.

Furthermore, under the Gaussian copula model, the sparsity pattern of the preci-

sion matrix Ω reveals the conditional dependencies between X ′js for j = 1, 2, ..., d.

Hence the graph structure could also be recovered by estimating Σ−1 as in the

prostate cancer diagnostic example in Section 2.6.2.

2.2.2 Kendall’s rank correlation coefficients

Kendall’s τa (Kendall’s rank correlation coefficient) is a nonparametric measure of

nonlinear dependence between two random variables. It is similar to Spearman’s ρ

and Pearson’s r, in that is measures the relationship between two variables. Even

though Kendall’s τa is a similar to Spearman’s ρ in that it is a nonparametric

measure of relationship it differs in the interpretation of the correlation value.

Spearman’s ρ and Pearson’s r magnitude are similar, however, Kendall’s τa is the

difference between the probability that the observed data are in the same order

versus the probability that the observed data are not in the same order.

Suppose the data consists of n independent d-dimensional random vectors,
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X1, . . . ,Xn, from a latent Gaussian copula model. The rank-based estimation

framework for Σ, depending on the data type. Specifically, estimation is based on

the “bridge function” that relates Kendall’s τa parameter, τajk, for each variable

pair (j, k), 1 < j < k < d, with the correlation, σjk, between them. Here, the

parameter τajk is given by

τajk = E
[
sign{(Xij −Xi′j)(Xik −Xi′k)}

]
, (2.1)

which can be estimated unbiasedly by the corresponding τa statistic

τ̂ajk =
(
n

2

)−1 ∑
1≤i<i′≤n

sign(Xij −Xi′j)(Xik −Xi′k) , (2.2)

or equivalently by

τ̂ajk = C −D(
n
2

) (2.3)

where C and D are the number of concordant and discordant pairs among

(X1j, X1k), . . . , (Xnj, Xnk).

A variation of Kendall’s τa that accounts for the important case of ties is τ b.

Binary and ordinal data are very likely to have a large number of ties in ranking

and, as a result, Kendall’s τa is likely to under-estimate the sample correlation.

Therefore we consider a modified version, known as Kendall’s τ b.

τ̂ bjk = τ̂ajk

(
n
2

)
√[(

n
2

)
− tXj

][(
n
2

)
− tXk

] (2.4)

where tXj = ∑
1≤i<i′≤n

I(Xij = Xi′j) is the number of pairs of tied values of the jth

response, and similarly tXk = ∑
1≤i<i′≤n

I(Xik = Xi′k).

Since Kendall’s τ b is a ratio of random terms (and the denominator involves

a square root), the population bridge function linking it to σjk is intractable. We

therefor consider 1st-order and 2nd order Taylor series approximation instead of

9



directly computing its expectation. However, we find there is almost no difference

between the 1st- and 2nd-order Taylor series approximations, or between them and

a Monte-Carlo approximation of the exact expectation..

2.3 Methodology

Suppose the data consists of n independent d-dimensional random vectors,

X1, . . . ,Xn, from a latent Gaussian copula model. In this section, we propose a

rank-based estimation framework for Σ, depending on the data type. Specifically,

estimation is based on the “bridge function” that relates Kendall’s τa parameter,

τajk, for each variable pair (j, k), 1 ≤ j < k ≤ d, with the correlation, σjk, between

them. The main idea behind our alternative procedure is to exploit Kendall’s τa

statistics to directly estimate the unknown correlation matrix, without explicitly

calculating the marginal transformation functions fj. Recall that the Kendall τa

statistics are invariant under monotonic transformations. For Gaussian random

variables there is a one-to-one mapping between these two statistics. For Gaus-

sian copula distributions Kendall’s τa is connected to the covariance matrix in

Definition 1 by σjk = sin(π2 τ
a
ij).

2.3.1 Estimate correlation between ternary and ternary

data

We begin by considering ternary (3-level) data, and then extend to the general

p-level case in Section 2.3.3. Now suppose Xj, j = 1, . . . , d1 are discrete data with

3 categories, taking values {0, 1, 2}. Then under latent Gaussian copula model, we

10



have p = 3, and the data are obtained by trichotomizing the latent variable Zj at

cutoffs (C1
j , C

2
j ), C1

j < C2
j , such that

Xij =



0 if f(Zij) ≤ ∆1
j

1 if ∆1
j < f(Zij) ≤ ∆2

j

2 if f(Zij) > ∆2
j

where ∆l
j = f(C l

j), for l = 1, 2.

To estimate Σ, we divide this into 3 cases where: (i) for 1 ≤ j, k ≤ d1, σjk is

the correlation between ternary variables; (ii) for 1 ≤ j ≤ d1 < k ≤ d, σjk is the

correlation between ternary and continuous variables; and (iii) for d1 < j, k ≤ d,

σjk is the correlation between continuous variables. In case (iii) it has been shown

by [31] that rjk = sin
(
π
2 τ̂

a
jk

)
. In the remainder of this section, we confine our

attention to cases (i) and (ii) respectively.

We first consider Kendall’s τa for two tenary variables. There are only four cases

that need to be considered in order to determine concordance and discordance:

(Xij ≤ 1, Xik ≤ 1); (Xij ≥ 1, Xik ≥ 1); (Xij ≤ 1, Xik ≥ 1); (Xij ≥ 1, Xik ≤ 1) .

Combining the first two will give a concordant pair and combining the last two will

give a discordant pair. So using equations (2.1) and (2.3) we can directly calculate

11



the “bridge function” between τajk and σjk as

τajk = P(C)− P(D)

= P(Xij ≤ 1;Xik ≤ 1)P(Xi′j ≥ 1;Xi′k ≥ 1)

+ P(Xij ≥ 1;Xik ≥ 1)P(Xi′j ≤ 1;Xi′k ≤ 1)

− P(Xij ≤ 1;Xik ≥ 1)P(Xi′j ≥ 1;Xi′k ≤ 1)

− P(Xij ≥ 1;Xik ≤ 1)P(Xi′j ≤ 1;Xi′k ≥ 1)

(all the tied pairs cases in the first line will cancel out from those in the last two lines)

= 2Φ2(∆2
j ,∆2

k, σjk)Φ2(−∆1
j ,−∆1

k, σjk)

− 2
[
Φ(∆2

j)− Φ2(∆2
j ,∆1

k, σjk)
][

Φ(∆2
k)− Φ2(∆1

j ,∆2
k, σjk)

]
, (2.5)

where the last step follows from

P(Xij ≤ 1, Xik ≤ 1) = P(fj(Zij) ≤ ∆2
j , fk(Zik) ≤ ∆2

k) = Φ2(∆2
j ,∆2

k, σjk);

P(Xij ≤ 1, Xik ≥ 1) = P(Xij ≤ 1)− P(Xij ≤ 1, Xik ≤ 1) = Φ(∆2
j)− Φ2(∆2

j ,∆2
k, σjk).

The notation Φ2(u, v, r) denotes the CDF of standard bivariate normal distribu-

tion with correlation r, namely Φ2(u, v, r) =
∫
x1<u

∫
x2<v

φ2(x1, x2; r)dx1dx2 where

φ2(x1, x2; r) is the probability density function of the standard bivariate normal

distribution with correlation r.

It follows that the bridge function for the population Kendall’s τa for variable

pair (j, k), is given by τajk = F (σjk; ∆1
j ,∆2

j ,∆1
k,∆2

k) where

Fa(σjk; ∆1
j ,∆2

j ,∆1
k,∆2

k) = 2Φ2(∆2
j ,∆2

k, σjk)Φ2(−∆1
j ,−∆1

k, σjk)

− 2
[
Φ(∆2

j)− Φ2(∆2
j ,∆1

k, σjk)
][

Φ(∆2
k)− Φ2(∆1

j ,∆2
k, σjk)

]
.

(2.6)

It will be shown in Lemma 1 that, for fixed ∆1
j ,∆2

j ,∆1
k,∆2

k, the function

Fa(σjk; ∆1
j ,∆2

j ,∆1
k,∆2

k) is an invertible function of σjk.

12



Simple moment estimators can be derived for the cutoffs using the relations

E(1{Xij = 0}) = Φ(∆1
j) and E(1{Xij = 2}) = 1− Φ(∆2

j) .

Specifically, these motivate the estimators

∆̂1
j = Φ−1

(∑
i 1{Xij = 0}

n

)
and ∆̂2

j = Φ−1
(

1−
∑
i 1{Xij = 2}

n

)
.

Thus a rank-based estimator of σjk is given by

R̂jk = F−1
a (τ̂ajk; ∆̂1

j , ∆̂2
j , ∆̂1

k, ∆̂2
k). (2.7)

As will be seen from the following lemma, the bridge function

Fa(σjk; ∆̂1
j , ∆̂2

j , ∆̂1
k, ∆̂2

k) is strictly increasing in σjk, thus there exists a unique root

for the equation Fa(σjk; ∆̂1
j , ∆̂2

j , ∆̂1
k, ∆̂2

k) = τ̂ajk which can be efficiently solved by

Newton’s method.

Lemma 1. For any fixed ∆1
j ,∆2

j ,∆1
k,∆2

k, Fa(r; ∆1
j ,∆2

j ,∆1
k,∆2

k) in equation (2.6)

is a strictly increasing function on r ∈ (−1, 1). Thus, the inverse function

F−1
a (τa; ∆1

j ,∆2
j ,∆1

k,∆2
k) exists.

The proof of Lemma 1 is given in Appendix A.

We note here that the bridge functions for the binary-ternary and binary-binary

cases can be derived directly from (2.6), by setting ∆2
j =∞ and both ∆2

j =∞ and

∆2
k =∞ respectively. Using the identities Φ2(∞, v, r) = Φ(v), Φ2(u,∞, r) = Φ(u),

and Φ2(−u,−v, r) = 1− Φ(u)− Φ(v) + Φ2(u, v, r), we find

Fa(σjk; ∆1
j ,∞,∆1

k,∆2
k) = 2Φ2(∆1

j ,∆2
k, σjk)

(
1− Φ(∆1

k)
)

− 2Φ(∆2
k)
(
Φ(∆1

j)− Φ2(∆1
j ,∆1

k, σjk)
)
, (2.8)
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and

Fa(σjk; ∆1
j ,∞,∆1

k,∞) = 2
(
Φ2(∆1

j ,∆1
k, σjk)− Φ(∆1

j)Φ(∆2
j)
)
, (2.9)

the latter agreeing with equation (3) of [14].

2.3.2 Estimate correlation between ternary and continuous

data

We now consider the random vector pairs (Xij, Xik) where variable j is ternary

and variable k continuous. The latent Gaussian copula model assumptions imply

that the corresponding latent vector pairs, (Zij, Xik), satisfy

(Uij, Vik) ≡ (fj(Zij), fk(Xik)) ∼ N


0

0

 ,
 1 σjk

σjk 1




independently, for i = 1, . . . , n, where σjk is the correlation between Uij and Vik.

It follows that

(Uij, Ui′j,
Vik − Vi′k√

2
)T ∼ N3

(


0

0

0

 ,


1 0 σjk/
√

2

0 1 −σjk/
√

2

σjk/
√

2 −σjk/
√

2 1


)
.

Let Φ3 denote the CDF for (Uij, Ui′j, Vik−Vi′k√
2 ),

Φ3(a, b, c) = P(Uij < a,Ui′j < b,
Vik − Vi′k√

2
< c). (2.10)

Now we are ready to build the bridge function of the population Kendall’s τa

for ternary and continuous variables as follows.
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Lemma 2. When Xij is ternary and Xik is continuous, τajk = E(τ̂ajk) is given by

τajk = Fa(σjk; ∆1
j ,∆2

j) where

Fa(σjk; ∆1
j ,∆2

j) = 4Φ2(∆2
j , 0, σjk/

√
2)− 2Φ(∆2

j) + 4Φ3(∆1
j ,∆2

j , 0)− 2Φ(∆1
j)Φ(∆2

j) .

(2.11)

The next lemma shows that, for fixed ∆1
j ,∆2

j , F (r; ∆1
j ,∆2

j) is an invertible func-

tion of r, which implies that the equation has unique solution r̂ = F−1
a (τ̂ajk; ∆̂1

j , ∆̂2
j)

where the unknown cut-offs ∆1
j ,∆2

j can be estimated with no bias by considering

their expectations: ∆̂1
j = Φ−1

(∑
i
1{Xij=0}
n

)
and ∆̂2

j = Φ−1
(

1−
∑

i
1{Xij=2}
n

)
.

Lemma 3. For any fixed ∆1
j ,∆2

j , Fa(r; ∆1
j ,∆2

j) in equation (2.11) is a strictly

increasing function on r ∈ (−1, 1) . Thus, the inverse function F−1
a (τa; ∆1

j ,∆2
j)

exists.

The proof of Lemma 3 can be found in Appendix A.3.

Combining all three lemmas, we have constructed the rank-based estimate of

Σ as follows:

rjk =



F−1
a (τ̂ajk; ∆̂1

j , ∆̂2
j , ∆̂1

k, ∆̂2
k) for1 ≤ j, k ≤ d1

F−1
a (τ̂ajk; ∆̂1

j , ∆̂2
j) for 1 ≤ j ≤ d1 < k ≤ d

sin
(
π
2 τ̂

a
jk

)
for d1 < j, k ≤ d
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2.3.3 Generalized rank-based estimate for p-level discrete-

continuous mixed data

We now generalize the rank-based estimate to p-level discrete-continuous mixed

data. Suppose that Xj is a p-level ordinal variable and Xk continuous, then the

bridge function for p-level discrete-continuous mixed data is established in the

following lemma:

Lemma 4. When Xij is p-level discrete taking value in {0, 1, . . . , p− 1}, and Xik

is continuous, the population version of Kendall’s τa is given by τajk = Fa(σjk; ∆j),

where

Fa(σjk; ∆j) =
p−1∑
l=1

4Φ3(∆l
j,∆l+1

j , 0)− 2Φ(∆l
j)Φ(∆l+1

j ). (2.12)

Moreover, if we consider the entire Z+ space, we can extend the estimates ∆̂j

as

∆̂l
j = Φ−1(

∑n
i=1 I(Xij ≤ l − 1)

n
) for l ∈ Z+

so that for p-level mixed data ranging from 0, . . . , p− 1 for l ≥ p we have ∆̂l
j =∞.

Then for l ≥ p, 4Φ3(∆l
j,∆l+1

j , 0)−2Φ(∆l
j)Φ(∆l+1

j ) = 4× 1
2−2×1×1 = 0. Therefore

we can write the ∞-form bridge function as:

Fa(r; ∆j) =
∞∑
l=1

4Φ3(∆l
j,∆l+1

j , 0)− 2Φ(∆l
j)Φ(∆l+1

j ).

2.3.4 Theoretical results

We now are ready to establish a theoretical result concerning the convergence rate

of the correlation estimate. As mentioned in [14], these two assumptions impose

little restrictions in practice.
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Assumption 1: (bounded correlations) There is a constant δ ≥ 0 such that

|σjk| ≤ 1− δ for 1 ≤ j < k ≤ d.

Assumption 2: (bounded cut-offs) There is a constant M such that |∆1
j | ≤ M

and |∆2
j | ≤M for any j = 1, . . . , d.

In the case of the estimate of correlation between p-level ordinal and continuous

data we have the following concentration result.

Theorem 1. Under Assumptions 1 and 2, at fixed p, for any t > 0 we have the

following property

P
(∣∣∣rjk−σjk| > t

)
≤ 2d2p exp

(
−2M2n

L2
1

)
+2d2 exp

(
− nt

2

2L2
2

)
+2d2p exp(− 4nt2π

242L2
1L

2
2p

2 )

implying that with probability greater than 1− d−1

sup
1≤j<k≤d

|Σ−R| < C

√
log d
n

where L1 and L2 are positive constants defined in Appendix A5. Essentially, Theo-

rem 3.1 implies that for some constant ω independent of n and d, sup
1≤j<k≤d

||R−Σ|| ≤

ω
√

(log d)/n with probability 1− d−1.

We have a similar concentration rate for the correlation estimator of ternary-

continuous mixed data.

Corollary 1. Under assumptions 1 and 2, for any t > 0 we have

P
(∣∣∣rjk − σjk∣∣∣ > t

)
≤ 4 exp

(
− 2M2n

L2
1

)
+ 2 exp

(
− nt2

2L2
2

)
+ 2 exp(− nt2π

482L2
1L

2
2
) + 2 exp(− nt2π

242L2
1L

2
2
).
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2.4 Kendall’s τ b for tied data

Here we propose another correlation estimate for binary data as a variant to the

one proposed by [14], with the bridge function given by (2.9).

2.4.1 Kendall’s τ b estimate for binary and binary variables

Lemma 5. When Xij and Xik are both binary discrete random variables, the 1st-

order Taylor series approximation of the population version of Kendall’s τ b, given

by τ bjk = E(τ̂ bjk), is

Fb(σjk; ∆j,∆k) = Φk(∆j,∆k, σjk)− Φ(∆j)Φ(∆k)√
(Φ(∆j)− Φ(∆j)2)(Φ(∆k)− Φ(∆k)2)

.

We can easily see that Fb(σjk; ∆j,∆k) is strictly increasing in σjk since the

denominator is independent of σjk and the numerator is the bridge function for

Kendall’s τa. Therefore the equation rjk = F−1
b (τ̂ bjk; ∆̂j, ∆̂k) has a unique solution.

2.4.2 Kendall’s τ b estimate for binary and continuous vari-

ables

Lemma 6. When Xij is binary and Xik is continuous, the 1st-order Taylor series

approximation of the population version of Kendall’s τ b, given by τ bjk = E(τ̂ bjk), is

Fb(σjk; ∆j) = 4Φ2(∆j, 0, σjk/
√

2)− 2Φ(∆j)√
2(Φ(∆j))− 2(Φ(∆j))2

.

This bridge function is also strictly increasing in σjk ∈ (−1, 1) because the denom-

inator does not involve σjk and the numerator has been shown to be monotonically
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increasing by [14].

We also derived the 2nd-order Taylor approximation of the bridge function in

this case.

Lemma 7. Let Tj =
√(

n
2

)
− tXj . Then, the 2nd-order Taylor approximation of

E(τ̂ bjk) is given by

E(τ̂ bjk) ≈

√(
n
2

)
E(τ̂ajk)

E(Tj)
+ [E(Tj)]−2

[(
n

2

)
var(Tj)

√(
n
2

)
E[τ̂ajk]

E(Tj)
− cov

(√√√√(n
2

)
τ̂ajk, Tj

)]

where

E[τ̂ajk] = 4Φ2(∆j, 0, r/
√

2)− 2Φ(∆j);

E(Tj) =
n∑

n0=0

[√√√√(n
2

)
−
(
n0

2

)
−
(
n− n0

2

)](
n

n0

)(
Φ(∆j)

)n0(1− Φ(∆j)
)n−n0 ;

var(Tj) =
(
n

2

)(
2Φ(∆j)− 2[Φ(∆j)]2

)
− E(Tj)2;

cov
(√√√√(n

2

)
τajk, Tj

)
=

∑
(C,D)∈S

{
(C −D)

√
(C +D)

√(
n
2

)
C!D!

((
n
2

)
− C −D

)
!
·

pCCp
D
D(1− pC − pD)(

n
2)−C−D

}
−

√√√√(n
2

)
E(τ̂ajk)E(Tj)

with the sample space of (C,D) being S = {(C,D) : C ∈ Z+, D ∈

Z+, C + D ≤ n}, the probability of concordance and discordance respectively as

pC = 2(Φ2(∆j, 0, σjk/
√

2) − Φ3(∆j,∆j, 0)) and pD = 2(Φ2(∆j, 0,−σjk/
√

2) −

Φ3(∆j,∆j, 0)).

The 1st-order and 2nd-order Taylor and Monte Carlo approximations to τ b are
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plotted in Figure 2.1 (right panel) for n = 84, and ∆j = 0. The difference between

the two Taylor approximations is shown in the right panel.
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Figure 2.1: Left: 1st-order and 2nd-order Taylor approximations visually overlap
with Monte-carlo simulated averages. Right: the difference between 1st-order and
2nd-order Taylor approximations are negligible.

2.5 Simulation results for generalized p-level mixed data

In this section, we show some simulation results for p-level mixed data where

p = 2, 3, . . . , 16. We conducted two scenarios here:

Scenario 1: Starting with p = 2, we dichotomize the data equally by setting

the cutoff ∆j = 0. With p increasing, we discretize the data by setting the cutoff

∆p
j = Φ−1(1/p) so that we will have equal counts of each level.

Scenario 2: Starting with p = 16, we discretize the continuous Gaussian cop-

ula data equally so that each level has about the same number of counts. As p

decreases, we combine the highest level with one level lower: e.g. when p = 15,

we collapse “16”s into “15”s. The motivation is that in Genetics research, when
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encountering ternary data, people sometimes combine “1”s and “2”s to make the

data binary. As we can see in the following plot, this will lead to an increased

estimation error (see leftmost plots in Figure 2.2).

For each scenario, we first simulate bivariate Gaussian copula data of size n =

100, d = 2 and f(x) = x, with the correlation/covariance r = {0, 0.01, . . . , 1}, and

we estimate the correlations using the continuous data. Then we discretize the

first dimension of the data into p level in the way described by each Scenario, and

estimate the correlation following the bridge function in equation (2.12). For each

r, the same process is repeated by 80 times and we take their mean of the squares

as the error measure. We further smooth the curve by averaging the errors over

r ∈ [0, 0.1), r ∈ [0.1, 0.2), etc.

We can see from the following plot that as p increases, the estimation error

approaches to the one in raw continuous data. However, notice that how much

estimation error will be introduced by combining levels as we can see in Figure 2.2.

2.6 Real data analysis

In this section, we present two studies of real data analysis. We start with applying

our correlation estimation method to two sets of real data that have been studied

intensively in the past, and then pass the correlation estimator to graph estimation

procedures in next step. In the graph estimation procedure, we adopt the modified

graphical lasso estimation method as in [14], which essentially consists of two steps:

first we project the correlation estimator R̂ into the cone of positive semidefinite

matrices to facilitate the optimization algorithms in [17], denoted as R̂p; second we

pass R̂p to the graphical lasso estimation to replace the sample covariance matrix,
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Figure 2.2: Top: Simulation results for Scenario 1. For every p, each level of data
has about the same size. As p increase, the estimation error gets close to the one
without discretizing the data. Bottom:Simulation results for Scenario 2. For every
p, each level of data has about the same size. As p increase, the estimation error
gets close to the one without discretizing the data.
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to obtain the following precision matrix estimator:

Ω̂ = arg min
Ω�0

{tr(R̂pΩ)− log |Ω|+ λ
∑
j,k

|Ωjk|}.

We set the path of tuning parameter to be the vector of length 10 starting from
max |R̂p|

10 to max |R̂p|, as suggested by [17]. Furthermore, we did not penalize the

diagonal of inverse covariance matrix. We used high-dimensional BIC score (HBIC)

as selection criterion, defined in [14]. The estimated graphs are then presented to

reveal conditional independence relationships.

2.6.1 COMPAS Data

ProPublica [5] carried out a journalistic investigation on possible biases of machine

learning based predictive analytic tools used in criminal justice. The ProPub-

lica article examined whether black-box risk assessment tools disproportionately

recommend nonrelease of African-American defendants. COMPAS (Correctional

Offender Management Profiling for Alternative Sanctions) is a proprietary software

tool developed by Northpointe, Inc. that gives a prediction score for a defendant’s

likelihood of failing to appear in court or reoffending. [5] compiled criminal records

from the criminal justice system in Broward County, Florida, combining detailed

individual level criminal histories with predictions from the COMPAS risk assess-

ment tool. This data set has served as a key example in the algorithmic fairness

literature (e.g. [2, 7, 11, 28, 32, 55, 67]).

The COMPAS score is computed by a black-box algorithm and produces a

decile score (deciles of the predicted probability of rearrest) as well as a (ordi-

nal) categorical score consisting of three levels of risk (low, medium, and high).

[13] suggest that a medium and high COMPAS scores garner more interest from
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supervision agencies than low scores. In order to assess the accuracy of the re-

cidivism predictions, [33] compared individual COMPAS score based predictions

to a ground truth indicator of whether that particular individual had indeed been

rearrested within two years of release. [33] developed a binary logistic regression

model (low versus medium or high) that considered race, age, criminal history,

future recidivism, and charge degree, they analyzed both the COMPAS scores for

risk of overall and violent recidivism and used their model to assess the odds of

getting a higher COMPAS score for certain subgroups.

The ProPublica article [5] mentions three African-Americans that had a

medium risk COMPAS score and no subsequent offenses whereas non-African

Americans had low risk score but had subsequent serious offenses. So it is of

interest to examine the three level COMPAS score (low, medium, and high) rather

than the binary classification in [33]. We use our proposed graphical model ap-

proach to examine the conditional independence relationship between two-year

recidivism (binary) and the three level (both overall and violent) COMPAS score

(low, medium, and high) with gender (binary), recorded misdemeanor (binary),

age category (¡25, 25-45, and ¿45), number of priors, and juvenile criminal history

(felony, misdemeanor, and other – all binary). To better understand the underly-

ing relationships, we separate the data into three race groups: we estimated the

underlying correlation matrices for African-American, Caucasian and Hispanic re-

spectively, and also repeat the same procedure for the three races pooled together.

Also, these analysis are done for overall COMPAS score categories and violent

COMPAS score categories separately. Our estimated conditional independence

graphs are in Figures 2.3 and 2.4. A first interesting finding is that we notice the

graphical structures vary across African-American, Caucasian and Hispanic groups.

In Figure 2.3 for the overall COMPAS score, note that the overall COMPAS score
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has a direct effect on two-year recidivism for African-Americans but is condition-

ally independent for Caucasians and Hispanics, however has a quite indirect effect

in the pooled model. Conversely, in Figure 2.4, the violent COMPAS score is

conditionally independent of two-year recidivism for African-Americans but has

a direct effect for Caucasians and an indirect effect for Hispanics and the pooled

groups. It is also interesting how the various juvenile criminal history measures

have different associations across the race groups and two COMPAS scores. There

is common structure seen across all three races too, misdemeanor and number of

priors are consistently connected to two-year recidivism for all races. In contrast,

this in not the case for misdemeanor and number of priors and the two COMPAS

scores. Also, the graphical models for pooled group are the same for both sets of

variables involving score category and violent score category respectively.

2.6.2 Prostate cancer data analysis

This data set was first analyzed by [9] and subsequently by [25]. It consists of

12 mixed type measurements for 475 prostate cancer patients who were diagnosed

as having either stage 3 or 4 prostate cancer. Among the 12 variables, 8 are

continuous, 3 are ordinal and 1 is nominal (list of variables and corresponding

abbreviations can be found in Table 2.1). More details of the data can be found at

[4]. We are interested in how the ‘Survival Status’ is correlated with the other 11

variables after removing the nominal variable ‘Electrocardiogram code’ since it is

not appropriate to infer latent variable for nominal variable. The ’Survival Status’

is transformed into binary variable as either survived or died, regardless of causes of

death. Also, we combined performance rating’s level 2 and level 3 as one level since

these patients are in bed more than 50% of daytime. The correlation/covariance
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Figure 2.3: Mixed data graphical model for the three level ordinal overall COMPAS
score data set by African-American, Caucasian, Hispanic and pooled groups.
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matrices are given in Table 2.2 and 2.3 for Stage 3 and 4 patients respectively.

Figure 2.5 illustrates the recovered graph for the 12 variables for Stage 3 and

Stage 4 patients respectively. It is interesting that the set of nodes connected to

’Survival Status’ are different among Stage 3 and 4 patients. For Stage 3 patients,

the ’Survival Status’ node is of degree 3, with neighbors including ’Cardiovascular

disease history’ (HX), ’Bone metastases’ (BM), and ’Performance Rating’ (PF).

Whilst for Stage 4 patients, ’Survival Status’ node is of degree 2 instead, with its

neighbors being ’Performance rating’ and ’Serum prostatic acid phosphatase’. It

is interesting that ’Performance rating’ (PF) is adjacent to ’Survival Status’ in

both networks, which is reasonable since an active patient (Performance rating

= 0 or 1) was probably able to move around hence survived. However, PF was

not included in the best model found by [25], which we speculate as a result of

mistreating the categorical variable PF. Also, we notice that some variables are

highly correlated with Surv but not a neighbor of Surv on the network graph, such

as the ’Age’ variable for Stage 3 patients, and Bone Metastases (BM) variable for

Stage 4. It’s easy to see the reason after a closer look at the correlation tables

in Table 2.2 and 2.3: for Stage 3, the ’Age’ variable has a higher correlation with

’PF’ than with ’Surv’, implying that the high correlation between ’Age’ and ’Surv’

might be a result of the high correlation between it and ’PF’. It is similar for Stage

4: ’BM’ variable sees a higher correlation with ’PF’ and ’AP’, ’HG’ has a higher

correlation with ’PF’ than with ’Surv’, and ’SZ’ finds itself highly correlated with

’AP’ and ’PF’, namely the high correlations between those variables and ’Surv’ can

be due to their high correlations with ’AP’ and/or ’PF’, thus they are indirectly

connected to ’Surv’ node in the network graph (Figure 2.5) but rather directly

connected to the neighbors of ’Surv’. Another interesting structure can also be

discovered from the network graph (Figure 2.5) that agrees with [25]: they found
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that the cluster consisting of variables ’BM’, ’Wt’, ’HG’, ’SBP’ and ’DBP’ gave

the second best likelihood; on the other hand, we found that those 5 variables

are consistently clustered for both Stage 3 and 4 patients, which agrees with the

finding by [25]. One might also notice that ’Size of primary tumor’ node is isolated

for only Stage 3 patients’ network. This in fact agrees with the definition of Stage:

stage 3 represents local extension of the disease whilst stage 4 represents distant

metastasis as evidenced by elevated acid phosphatase and/or X-ray evidence [25].

In other words, for Stage 3 patients, ’SZ’ (node 10) is not necessarily a good

indicator of ’Index of tumor stage, histolic grade’ (node 11) or ’Serum prostatic acid

phosphatase’ (node 12), but it might be a good one for stage 4 patients as we can

see in the graph that node 10 is connected to node 11 and 12. Another interesting

finding is that ’Size of primary tumor’ and ’Serum prostatic acid phosphatase’ are

adjacent in the networks for Stage 4 patients, which agrees with the results in

[41] that Stage 4 patients on average saw larger tumors and higher levels of serum

prostatic acid phosphatase.

Table 2.1: List of variables and their abbreviations

Covariate Abbreviation Number of levels
(if categorical)

Cardiovascular.disease.history HX 2
Bone.metastases BM 2
SurvStat Surv 2
Performance.rating PF 3
Age Age
Weight Wt
Systolic.Blood.pressure SBP
Diastolic.blood.pressure DBP
Serum.haemoglobin HG
Size.of.primary.tumour SZ
Index.of.tumour.stage.and.histolic.grade SG
Serum.prostatic.acid.phosphatase AP
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Figure 2.5: Prostate cancer data analysis, Plot of the connected components of
the estimated graph for the prostate cancer data. Number 3 represents the ‘Per-
formance rating’ variable. Left: Stage 3 patients, the ’Survival Status’ node is of
degree 4, with neighbors including ’Cardiovascular disease history’, ’ Bone metas-
tases’, ’Performance Rating’ and ’Age’; Right: Stage 4 patients, ’Survival Status’
node is of degree 2 instead, with its neighbors being ’Performance rating’ and
’Serum prostatic acid phosphatase’.
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2.7 Conclusion and Discussion

To sum up, we proposed a generalized rank-based method to estimate correlations

for any p-level discrete-continuous mixed data. The method is under latent Gaus-

sian copula model, assuming there is some latent variable that discretize the con-

tinuous data into categorical. There exists unique solution to the bridge function,

which can be obtained easily by Newton’s method. The theoretical properties of

the estimates are well established. In our simulation studies, we see as p increases,

the estimation becomes as accurate as the one using raw continuous data. This

agrees with the intuition that as we obtain more information, the estimation will

do a better job.

Correlation estimates for ternary-ternary data and binary-ternary data are also

given, to help social science researches find associations among different types of

data.

Also, we proposed a modified estimate based on Kendall’s τ b compared to the

one based on Kendall’s τa in [14], to account for occurrences of tied pairs. Since the

Kendall’s τ b involves a square root term in its denominator, we did not compute

its population version directly but rather obtained its 1st-order and 2nd-order

Taylor approximations, which showed no visible difference from the Monte-Carlo

simulated average.

Our method can further be applied to graph recovery by inverting the corre-

lation matrix estimate (into the so-called Precision matrix). Conditional indepen-

dence can also be inferred from the precision matrix. One practical advantage of

our method is that it can estimate the correlations regardless of dimensions. For

high-dimensional data, estimation can be done in parallel to reduce time expense.
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In the next chapter, we will see how to apply the covariance matrix estimator

to regression problem.

34



CHAPTER 3

HIGH DIMENSIONAL SEMIPARAMETRIC REGRESSION

MODEL FOR MIXED DATA

3.1 Introduction

Regression analysis that investigates the relationship between a response variable of

interest and a large set of predictors with mixed data is a common problem. Inten-

sive statistical studies on mixed data have been conducted for the past decades,

covering topics including clustering analysis [24, 23], covariance estimation and

network analysis [14], and canonical correlation analysis [65]. However, high di-

mensional regression that investigates the relationship between a response variable

and a large set of predictors with mixed data is a common problem but much

less explored. Both conventional and modern regression methods do not fit well

into this mixed data regression problem due to high-dimensionality and/or non-

normality of the data. Ordinary least squares regression is not applicable for high

dimensional data where the number of predictors is greater than the number of

observations. The more advanced regularization methods for high-dimensional re-

gression such as the lasso estimator [56] has been remarkably successful under the

assumption of a linear relationship between the response and explanatory variables

that jointly follow Gaussian distribution, but this assumption might not be real-

istic for real-world data, especially for mixed data. Several approaches have been

proposed to address this issue, such as the nonparametric sparse additive models

[50], the semi-parametric single index model [48], and more recently the latent

Gaussian copula regression model by [10]. However, these approaches are tailored

for continuous data but not mixed data.
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To bridge the gap, we propose a general approach in this paper for high di-

mensional regression on mixed data that does not require the observed data to be

normally distributed or linearly related. Our main contribution is the use of latent

Gaussian copula model to uncover the latent linear relationship, which allows us

to estimate the latent linear regression coefficients using a rank-based covariance

matrix estimator without knowing the marginal transformation functions. In fact,

the widely applied data transformations, such as log transformation are readily

adapted by this model with no need to prespecify the transformation. Moreover,

the estimator is `1 regularized, so variable selection is done automatically. Lastly,

the estimator can then be used to predict a new response for a given value of the

covariates.

The rest of this chapter is organized as follows: in Section 3.2, we formulate the

problem in detail and review definitions related to latent Gaussian copula model.

Section 3 presents our rank-based method for estimating the `1-penalized linear

coefficient vector, βGC
Lasso, and illustrates how to make prediction of the response

variable for a given value of covariates using the linear model coefficient estimate.

Theoretical results are also established. In Section 4 we demonstrate numerical

performance of the methodology on simulated data. In addition, Section 5 illus-

trates our approach on a real-world dataset from breast cancer patients.
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3.2 Background

3.2.1 Notation

For the rest of this dissertation, we keep the following notations. For a d-

dimensional vector v ∈ Rd, we denote vj to be its j-th entry. In addition, its

`q-norm is defined as ‖v‖q = (∑d
j=1|vj|q)1/q. For a matrix A = (Ajk) ∈ Rd×d, we

denote its j-th column as Aj. Let A[1 : a, 1 : b] be the submatrix of A with rows

between 1 and a and columns between 1 and b. We define ‖A‖1 = ∑
1≤j,k≤d|Ajk|,

and ‖A‖2 = ∑
1≤j,k≤d(Ajk)2. And Φ(·) denotes the cumulative distribution function

of a standard normal distribution.

3.2.2 Latent Gaussian copula model

Suppose we observe the n×p data matrix denoted as X = (X1, . . . , Xp)T , where n

is the number of observations and p the number of predictors (each predictor can

be ordinal or continuous). Let Y ∈ Rn denote the responses for each observation.

Under latent Gaussian copula model, the observed data (X,Y) is assumed to result

from monotonically transforming some latent multivariate Gaussian data (X̃, Ỹ)

(and one extra step of discretization for ordinal predictors). In particular, the

marginal transformations are assumed to be monotonically increasing functions,

and the latent variables satisfy (X̃, Ỹ) ∼ Np+1(0,Σ) with diag(Σ) = 1 for identi-

fiability. Then the latent multivariate Gaussian distribution of (X̃, Ỹ) implies the

linear model

Ỹ = X̃β + ε,
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where ε ∼ N(0, σ2I). Recall the least square solution is β = (X̃T X̃)−1X̃T Ỹ.

Denoting cov(X̃, X̃) = ΣX̃X̃ and cov(X̃, Ỹ) = ΣX̃Ỹ, the solution can be rewritten

as β = Σ−1
X̃X̃ΣX̃Ỹ. Another consequence is σ2 = 1−ΣT

X̃ỸΣ−1
X̃X̃ΣX̃Ỹ.

Therefore, instead of assuming linear relationship between the observed Y and

X, we only assume that between some latent variables Ỹ and X̃. We aim to es-

timate the latent linear coefficients β for high-dimensional setting, and use that

estimate to make prediction of the observable response given a value of the covari-

ates.

Our approach to estimation rests upon a rank-based covariance estimator un-

der latent Gaussian copula model. We first introduce some notations and basic

definitions to facilitate the approach development.

Formally, we say the observed random vector Z = (X,Y) follows latent Gaus-

sian copula model if there exist latent random vector Z̃ = (X̃, Ỹ) ∼ Np+1(0,Σ)

with diag(Σ) = 1 and monotonically increasing functions f = (fj)p+1
j=1 such that

(i) if Zj is continuous, Zj = fj(Z̃j);

(ii) if Zj is categorical taking values in {0, 1, . . . ,m}, we have a cut-off vec-

tor ∆j = (−∞,∆(1)
j , . . . ,∆(m)

j ,∞) that discretizes the transformed variable:

Zj = l if fj(Z̃j) ∈ (∆(l)
j ,∆

(l+1)
j ].

For the rest of the Chapter, we suppose the first p1 dimensions of X, that is,

Xi for i = 1, . . . , p1, are categorical variables taking values {0, 1, 2} for simplicity.

Also, to avoid confusion with Chapter 2, by τ we refer to the general version of

Kendall’s tau, namely τa, for the following sections and next chapter as well.
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3.2.3 Rank-based Correlation Matrix Estimator

We now review the rank-based estimator of covariance/correlation matrix Σ as in

Chapter 2. Our estimation method is based on a “bridge function” that relates

Kendall’s tau, τjk, for each observed variable pair (Zj, Zk), 1 ≤ j, k ≤ p + 1, with

the correlation, Σjk, between the corresponding latent Gaussian pair (Z̃j, Z̃k). The

population version of τjk is given by

τjk = E
[
sign{(Zij − Zi′j)(Zik − Zi′k)}

]
, (3.1)

an unbiased estimate of which is given by the corresponding τ statistic

τ̂jk = 1(
n
2

) ∑
1≤i<i′≤n

sign[(Zij − Zi′j)(Zik − Zi′k)]. (3.2)

Depending on the data type, different bridge functions are involved [46]:

(i) if both Zj and Zk are continuous, the bridge function is given by

τjk = F (Σjk) = π

2 sin−1(Σjk) ; (3.3)

(ii) if both Zj and Zk are ternary, associated with cutoff vectors ∆j and ∆k, the

bridge function is given by

τjk = F (Σjk; ∆(1)
j ,∆(2)

j ,∆(1)
k ,∆(2)

k )

= 2Φ2(∆(2)
j ,∆(2)

k ,Σjk)Φ2(−∆(1)
j ,−∆(1)

k ,Σjk)

− 2
[
Φ(∆(2)

j )− Φ2(∆(2)
j ,∆(1)

k ; Σjk)
][

Φ(∆(2)
k )− Φ2(∆(1)

j ,∆(2)
k ; Σjk)

]
;

(3.4)
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(iii) if Zj is ternary associated with cutoff vector Cj, and Zk is continuous, then

the bridge function is given by

τjk = F (Σjk; ∆(1)
j ,∆(2)

j )

= 4Φ2(∆(2)
j , 0; Σjk/

√
2)− 2Φ(∆(2)

j )

+ 2[Φ3(∆(1)
j ,∆(2)

j , 0; Σjk)− Φ3(∆(2)
j ,∆(1)

j , 0; Σjk)], (3.5)

where Φ(t) denotes P (z ≤ t) for z ∼ N(0, 1), and Φ2(t1, t2; r) = P (z1 ≤ t1, z2 ≤ t2)

for (z1, z2) ∼ N2

(0

0

 ,
1 r

r 1


)

, and Φ3(t1, t2, t3; r) = P (z1 ≤ t1, z2 ≤ t2, z3 ≤ t3)

for (z1, z2, z3) ∼ N3

(


0

0

0

 ,


1 0 r/
√

2

0 1 −r/
√

2

r/
√

2 −r/
√

2 1


)
.

Note that for case (ii) and (iii) the cut-offs are involved, but they can be easily

estimated by their moment estimators

∆̂1
j = Φ−1

(∑
i 1{Zij = 0}

n

)
and ∆̂2

j = Φ−1
(

1−
∑
i 1{Zij = 2}

n

)
.

It has been shown that all the bridge functions above are monotonic [46], there-

fore Σjk can be estimated as the unique solution to the equation of sample Kendall’s

tau and the bridge function: τ̂jk = F (Σjk; ...) for bridge function F (·) as in (3.3),

(3.4) or (3.5) corresponding to the data types. Therefore we have the rank-based

estimator of covariance/correlation matrix as

Σ̂ = (Σ̂jk)(p+1)×(p+1) with Σ̂jk = F−1(τ̂jk; . . .) for j , k, (3.6)

which has the block structure

Σ̂ =

Σ̂X̃X̃ Σ̂X̃Ỹ

Σ̂T
X̃Ỹ

Σ̂Ỹ Ỹ

 (3.7)

40



and diag(Σ̂) = 1.

This semiparametric rank-based estimator has three advantages: since the esti-

mation is done pairwisely for the (p+1) variables, it can handle high dimensionality

well; also the estimator can be obtained without knowing the marginal transforma-

tions; moreover, due to the rank-based nature, the estimator is robust to extreme

values that are not rarely seen in practice.

3.3 Methodology

3.3.1 Estimation of β

We now introduce the approach to estimate β under latent Gaussian copula model.

Recalling from Section 2 that we observe i.i.d. pairs (XT
i , Yi), i = 1, . . . , n, that

follows latent Gaussian copula model, where Yi ∈ R and Xi ∈ Rp with its first

p1 dimensions being categorical ordinal and the rest continuous. Then there exist

some latent variables (X̃T
i , Ỹi) ∼ Np+1(0,Σ) for i = 1, . . . , n that satisfy the linear

relationship

Ỹ = X̃β + ε,

where ε ∼ N(0, σ2I), σ2 = 1−ΣT
X̃ỸΣ−1

X̃X̃ΣX̃Ỹ.

The least square solution gives β̂ = Σ−1
X̃X̃

ΣX̃Ỹ . In high-dimensional context

where we have n < p, we solve the problem under `1-penalization with the objective

function defined as:

β̂Lasso = arg min
β∈Rd

{ 1
2n ||Ỹ − X̃β||

2
2 + λ||β||1}.
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Notice that

||Ỹ − X̃β||22 = βT X̃T X̃β − 2ỸT X̃β,

and it is natural to substitute X̃T X̃ with nΣX̃X̃ and ỸT X̃ with nΣX̃Ỹ . We then

can rewrite the objective function as

β̂ = arg min
β∈Rd

{1
2
(
βTΣX̃X̃β − 2ΣX̃Ỹ β

)
+ λ||β||1} (3.8)

Therefore, even though (X̃, Ỹ) is not directly accessible, we are still be able to

estimate β in (3.8) by replacing ΣX̃X̃ with Σ̂X̃X̃ and ΣX̃Ỹ with Σ̂X̃Ỹ , which can be

obtained following (3.6). We summarize this process in Algorithm 1 as follows.

Algorithm 1: Compute rank-based estimator of Σ and β̂GC
Lasso

Data: Observed data matrix X ∈ Rn×p and response Y ∈ Rn, parameter

λ > 0.

Result: Regularized estimator β̂GC
Lasso.

1 for j = 1 to p+ 1 do

2 for k = j + 1 to p+ 1 do

3 Find sample Kendall’s tau τ̂jk according to equation (2.2);

4 Compute the rank-based estimator of correlation Σ̂jk as described

in (3.6);

5 Σ̂jk is then the (j, k)-th and (k, j)-th entries in Σ̂;

6 end

7 end

8 Extract the block components Σ̂X̃X̃ and Σ̂X̃Ỹ from Σ̂p×p as in (3.7);

9 Compute

β̂
GC
Lasso = arg min

β∈Rp
{1

2
(
βT Σ̂X̃X̃β − 2Σ̂X̃Ỹβ

)
+ λ||β||1} (3.9)

[10] established the concentration rate of β̂GC
Lasso based on the Restricted Strong
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Convexity (RSC) condition which was first introduced by [44], for its relation to

restricted eigenvalue condition [8] under high-dimensional linear regression context.

Inspired by [10], we also establish the theoretical properties of β̂GC
Lasso based on RSC

with definition as follows:

Definition 4 (Restricted Strong Convexity (RSC)). For a given sparsity level

s ≤ p and constant α ≥ 1, a matrix Σ ∈ Rp×p satisfies the restricted strong

convexity (RSC) condition with constants (γ1, s, α) if

θTΣθ ≥ γ1||θ||22 for all θ ∈ {θ ∈ Rp : ||θSc||1 ≤ α||θS||1, S ⊂ {1, . . . , p}, |S| ≤ s}

The following theorem establishes concentration rate of β̂ under the assumption

on Σ’s RSC condition.

Theorem 2. Assuming β has sparsity of s. Suppose that the condition number of

Σ is bounded by M for some M > 0, namely κ(Σ) ≤ M , and ΣX̃X̃ satisfies the

RSC with constants (γ1, s, 3). Let β̂(λ) be defined as (3.9). If s = o( n
log p), and

λ = C1

√
log p
n

for some C1 > 2M , then with probability at least 1− 2p−1,

||β̂(λ)− β||2 ≤ c2

√
s log p
n

and ||β̂(λ)− β||1 ≤ c3s

√
log p
n

(3.10)

for some c2, c3 independent of n.

The above theorem implies the minimax rate optimality of β̂(λ) under latent

Gaussian copula regression model. Moreover, under further regularity conditions,

β̂(λ) is also shown to be sign consistent by [10].
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3.3.2 Prediction

With β well estimated by β̂GC
Lasso, we are able to predict y given x? = (x?1, . . . , x?p).

Under latent Gaussian copula model as described in Section 2.1, we have

Ỹ ? = x̃?β =
d∑
i=1

fi(x?i )βi and Ỹ ? = fY (Y ?)

so the optimal prediction of the response is

µ? = f−1
Y (

d∑
i=1

fi(x?i )βi).

Notice that µ? is a function involving f = {fY , f1, . . . , fp}. Therefore, in order

to estimate µ? based on the observed data (Yi,XT
i ), i = 1, . . . , n, we will need to

approximate f . We consider the following procedure that approximate f involving

empirical Cumulative Distribution Functions (CDF) based on the observations.

Let FY be the CDF of Y , and F̂Y be the empirical CDF of Y based on the

observed Y1, . . . , Yn. Likewise, let Fi denote the CDF of i-th dimension of X,and

F̂j be the empirical CDF of the observed {X1,j, . . . , Xn,j}, for j = 1, . . . , p. Since

fj(xi,j) ∼ N(0, 1) and Fj(xi,j) = Φ(fj(xi,j)), [10] proposed to approximate fj by

f̂j(t) = Φ−1(F̂j(t)),

for j = 1, . . . , p, which works well with continuous data. However, for mixed

data, infinite values might arise leading to extreme predictions. As an alternative,

we consider the Winsorized empirical CDF F̃j(·)

F̃j(t) = δn · I{F̂i(t)<δn} + F̂i(t) · I{δn≤F̂i(t)≤1−δn} + (1− δn) · I{F̂i(t)>1−δn} (3.11)

where the Winsorization parameter δn helps not only avoid infinite values but also

achieve a better bias-variance tradeoff [15]. It is suggested by [38] to set δn = 1/n2
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for good practical performance. Therefore, we approximate fj by

f̂j(t) = Φ−1(F̃j(t)),

for j = 1, . . . , p; and likewise

f̂Y (t) = Φ−1(F̃Y (t)).

And subsequently, we estimate µ? by

µ̂? = f̂−1
Y (

d∑
j=1

f̂j(x?j)β̂j) (3.12)

where f̂−1
Y (t) = inf{x ∈ R : f̂Y (x) ≥ t}.

Algorithm 2: Prediction for y given a new set of predictors x? using

β̂
GC
Lasso

Data: Observed data matrix X ∈ Rn×p and response Y ∈ Rn, a new

observed set of covariates x?, coefficients estimate β̂GC
Lasso,

parameter λ > 0.

Result: µ̂?.

1 for j = 1 to p do

2 Compute the approximated functions f̂j(·) = Φ−1(F̃j(·)), where Fj(·) is

the Winsorized empirical CDF of Xj as in Equation (3.11);

3 Approximate x̃?j by x̃?j = f̂j(x?j);

4 end

5 Compute ̂̃y? = x̃?β̂
GC
Lasso;

6 Approximate fY by f̂Y (·) = Φ−1(F̃Y (·));

7 Obtain the prediction

µ̂? = f̂−1
Y (

d∑
j=1

f̂j(x?j)β̂j) (3.13)

The theoretical result of µ̂? is established as follows:
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Theorem 3. Suppose the conditions in Theorem 2 still hold. Also suppose that fY

is Lipschitz-continuous with some positive constant c0, also suppose Ỹ ? = fY (µ?) <

M for some M > 0 and Fi(x?i ) is bounded by some positive constant δ? ∈ (0, 1)

such that Fi(x?i ) ∈ (δ?, 1−δ?) for i ∈ {1, . . . , p}. If s = o(
√

n
log d), then the predictor

µ̂? in (3.12) satisfies, with probability at least 1− p−1 − n−1,

|µ̂? − µ?| <∼ s

√
log d
n

.

3.4 Numerical studies

In this section, we demonstrate the numerical performance of the proposed esti-

mator in (3.9) in six simulation scenarios. For comparison, we also consider the

performance of the regular Lasso [56] and the elastic net [68] methods. All the

simulations are based on the latent model that Ỹ = X̃β + ε where ε ∼ N(0, σ2
ε I).

Since the covariance matrix Σ for latent Gaussian copula model is a corre-

lation matrix with all the diagonal entries 1’s, we start with some correlation

matrix ΣX̃X̃ , coefficient vector β, and σε of our own design choice, then obtain

the full covariance/correlation matrix as Σ =

 ΣX̃X̃ ΣX̃X̃β/σỸ

βTΣX̃X̃/σỸ 1

 where

σ2
Ỹ

= βTΣX̃X̃β + σ2
ε . By doing so, we have a full matrix Σ with all 1’s on its

diagonal. In the following six simulation scenarios, we repeat the same procedure

to construct such Σ for a latent Gaussian copula model, so that the latent vari-

ables (X̃, Ỹ ) ∼ N(0,Σ), which will then be marginally transformed to observable

values (X,Y ) by functions of our choice. For each scenario, we simulate a training

set for estimating β and a test set for prediction, and repeat this for 100 replicates.
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The tuning parameters are all chosen by 5-folds cross-validation on the training

data.

1. Inspired by the original lasso paper [56], we set ΣX̃X̃(i, j) = 0.5|i−j|, β =

(3, 1.5, 0, 0, 2, 0, 0, 0)T and σε = 3. Let y = ỹ, x = x̃5, then discretize the first

4 dimensions of x: namely trichotomize xj by ∆(1)
j = (Φ−1(0.5))5,∆(2)

j =

(Φ−1(0.75))5 for j ≤ 4. The rest 4 dimensions of x remain continuous. The

training set is of size 20, and the test set consists of 180 observations.

2. Same as Simulation 1 except that y = exp(ỹ).

3. Each training set contains 40 observations and 11 predictors, and the test

set is of size 40. Set ΣX̃X̃ to be a toeplitz matrix such that ΣX̃X̃(i, j) = 1−

0.1× |i− j|. Let β = (2, 1, 0, 0, 0, 0, 0, 0, 0,−1,−2)T , and σε = 3. Let y = ỹ,

x = x̃5, then trichotomize xj by ∆(1)
j = (Φ−1(0.5))5,∆(2)

j = (Φ−1(0.75))5 for

j ≤ 6.

4. Each training set contains 50 observations and 50 predictors, and the test

set is of size 50. βi = 2 for i = 21, . . . , 25, 46, . . . , 50 and βi = 0 for all

other i. ΣX̃X̃(i, j) = 0.5|i−j| and σε = 2. Let y = exp(ỹ), and x = 2x̃5 + 1

followed by trichotomization using cut-offs ∆(1)
j = 2(Φ−1(0.5))5 + 1,∆(2)

j =

2(Φ−1(0.75))5 + 1 for j = 1, . . . , 5.

5. Same as Simulation 4, except applying trichotomization to the first 15 di-

mensions of x (using the same cut-offs).

6. Each training set contains 100 observations and 100 predictors, and test set

is of size 100. ΣX̃X̃(i, j) = 0.5|i−j|, βi = 1 for i = 1, . . . , 5 and βi = −1 for

i = 51, . . . , 55, and βi = 0 for all other i. Set σε = 2. Let y = exp(ỹ), and

x = 2x̃5 + 1 followed by trichotomization using cut-off ∆(1)
j = 2(Φ−1(0.5))5 +

1,∆(2)
j = 2(Φ−1(0.75))5 + 1 for j = 1, . . . , 50.
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We compared the simulation results for the different methods using the metrics:

(i) the mean squared prediction error given by 1
k

∑k
i=1(yi− ŷi)2 where k denotes

the size of test set;

(ii) the model selection accuracy measured by the following three metrics:

Model Selection Error = 1
d

d∑
j=1

I(I(βj = 0) , I(β̂j = 0)),

True Positve Rate (TPR) = 1
d

d∑
j=1

I(βj , 0) · I(β̂j , 0),

False Positve Rate (FPR) = 1
d

d∑
j=1

I(βj , 0) · I(β̂j = 0),

where I(·) is indicator function.

Here we don’t consider the β̂’s estimation error by the three methods because

the latent Gaussian copula method estimates the coefficients in linear model be-

tween latent variables whilst regular Lasso and Elastic Net methods focus on that

between observed variables. The performance of each method is summarized in

Table 3.1,3.2, 3.3, 3.4 and 3.5. It can be clearly seen that compared to the other

two methods, the latent Gaussian copula method exhibits smaller Mean Squared

Error and model selection error across the suite of simulation scenarios. It also has

at least similar or much better combinations of FPR and TPR.

We further investigate the performance of the estimators at different levels of

discretization. Specifically, we vary the number of discrete dimensions in Simu-

lation 6 for comparison. Each time, the first p1 = 10, . . . , 50 dimensions of X

are discretized following the same procedure as described in Simulation 6. Figure

3.1 illustrates the performance of the three methods. It can be seen that as the

number of discrete variables increases, the latent Gaussian copula Lasso estimator

consistently outperforms regular Lasso and Elastic Net methods.
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Figure 3.1: Mean squared error plot for different levels of discretization in Sim-
ulation 6. As number of discrete variables increases, the latent Gaussian copula
Lasso estimator (yellow line) consistently outperforms regular Lasso (blue line)
and elastic net (gray line) estimators.
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Table 3.1: Mean squared error of predictions over 100 replicates for each simulation
scenario. Standard errors are given in parentheses. Tuning parameters were chosen
by cross-validation.

Simulation Lasso Elastic Net GC-Lasso
1 4.69 (18.40) 4.07 (16.40) 0.85 (0.25)
2 16.30 (39.22) 9.37 (19.60) 4.51 (3.78)
3 5.22 (20.21) 3.73 (16.50) 0.55 (0.18)
4 10.10 (10.74) 5.59 (5.72) 2.09 (3.02)
5 17.40 (41.11) 5.32 (4.82) 1.71 (1.68)
6 4.92 (7.51) 4.70 (6.12) 2.47 (1.61)

Table 3.2: Model selection error summary over 100 replicates for each simulation
scenario. Standard errors are given in parentheses.

Simulation Lasso Elastic Net GC-Lasso
1 0.31 (0.17) 0.35 (0.17) 0.29 (0.15)
2 0.34 (0.18) 0.36 (0.18) 0.31 (0.17)
3 0.27 (0.19) 0.59 (0.09) 0.15 (0.08)
4 0.21 (0.10) 0.20 (0.07) 0.07 (0.04)
5 0.22 (0.13) 0.21 (0.12) 0.07 (0.04)
6 0.09 (0.04) 0.12 (0.08) 0.04 (0.02)

3.5 Case study

In this section, we illustrate our approach on a dataset collected from breast

cancer patients. The data are publicly available at The Cancer Genome Atlas

(TCGA) project database, a collection of genetic and clinical data from different

high-throughput platforms.

The gene expression data are measures of RNAseq profiling which are of con-

tinuous values, whilst the clinical data contains both categorical variables such as

”Pathologic stage”, as well as continuous variables such as ”Age”. In this analysis,

our goal is to study the relationship between survival time and genetic and clinical

variables.

Specifically, we consider the set of gene expression data and clinical traits for
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Table 3.3: True positive rates (TPR) summary over 100 replicates for each simu-
lation scenario. Standard errors are given in parentheses.

Simulation Lasso Elastic Net GC-Lasso
1 0.73 (0.23) 0.69 (0.27) 0.57 (0.33)
2 0.69 (0.26) 0.60 (0.31) 0.54 (0.31)
3 0.66 (0.23) 0.59 (0.27) 0.64 (0.16)
4 0.22 (0.13) 0.09 (0.13) 0.93 (0.08)
5 0.25 (0.15) 0.10 (0.13) 0.92 (0.08)
6 0.33 (0.20) 0.39 (0.17) 0.88 (0.10)

Table 3.4: False positive rates (FPR) summary over 100 replicates for each simu-
lation scenario. Standard errors are given in parentheses.

Simulation Lasso Elastic Net GC-Lasso
1 0.27 (0.18) 0.27 (0.22) 0.20 (0.24)
2 0.32 (0.27) 0.28 (0.25) 0.22 (0.26)
3 0.25 (0.29) 0.21 (0.21) 0.02 (0.06)
4 0.04 (0.04) 0.02 (0.03) 0.06 (0.04)
5 0.09 (0.12) 0.05 (0.09) 0.06 (0.04)
6 0.02 (0.02) 0.03 (0.04) 0.02 (0.02)

n = 111 deceased subjects. For computing stability and efficiency, we pre-screened

592 genes using the marginal screening method as suggested by [26]. We also

excluded three single-valued variables from the study: ”Vital status” (all deceased),

”Gender” (all female), and ”Ethnicity” (all ’not Hispanic or Latino’). In addition,

the ordinal variables ”Pathologic stage”, ”Tumor stage”, ”Lymph nodes status”,

and ”Metastasis status” categorize each subject into a cancer stage indicating

the extent of the cancer following the TNM staging system, and they are further

divided to as many as 16 different sub-stages to provide more details to medical

researchers. Here it might be necessary to group them into fewer categories for

regression analysis given that we only have 111 subjects in the dataset. A common

practice according to the National Cancer Institute is to group the stages into 3

categories representing ’carcinoma in situ’ (abnormal cells are present but have

not spread to nearby tissue), ’cancer is present’, and ’cancer has spread to distant
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Table 3.5: True positive rates (TPR) and False positive rates (FPR) summary over
100 replicates for each simulation scenario. FPR is in parentheses.

Simulation Lasso Elastic Net GC-Lasso
1 0.73 (0.27) 0.69 (0.27) 0.57 (0.20)
2 0.69 (0.32) 0.60 (0.28) 0.54 (0.22)
3 0.66 (0.25) 0.59 (0.21) 0.64 (0.02)
4 0.22 (0.04) 0.09 (0.02) 0.93 (0.06)
5 0.25 (0.09) 0.10 (0.05) 0.92 (0.06)
6 0.33 (0.02) 0.39 (0.03) 0.88 (0.02)

parts of the body’ respectively.

After the above data preprocessing steps, the data has 111 observations with

complete data for 598 covariates of mixed data types, which contains 5 categorical

variables: ”Pathologic stage”, ”Tumor stage”, ”Lymph nodes status”, ”Metastasis

status”, and ”Race”; and 593 continuous variables: ”Age” and genes.

To investigate the performance of the proposed method, we randomly split the

data 100 times: each time a training set of 100 observations is used for estimating

β̂, then we make predictions on a test set of 11 observations in order to evaluate

the estimate’s performance. In particular, we calculate the following metrics for

prediction results: Mean Absolute Percentage Error (MAPE), Root Mean Squared

Error (RMSE), and the median of `2 errors between predicted and observed survival

time (in years).

For comparison, we consider the regular Lasso estimator β̂Lasso in addition to

the proposed `1-regularized latent Gaussian copula estimator β̂GC
Lasso. For both

methods, we chose the tuning parameter values via 5-folds cross-validation during

training. The results are summarized in Table 3.6. It can be seen from Table 3.6

that in all three metrics, the latent Gaussian copula method outperforms regular

Lasso, which is as expected due to the violation of normality and lack of linear
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relationship.

Table 3.6: Cross-validation results for the survival time predictions on TCGA data

Metric Lasso GC-Lasso
RMSE 3.69 (1.22) 3.58 (1.17)

Median L2 loss 6.60 (4.12) 5.51 (3.71)
MAPE 1.31 (0.601) 1.22 (0.577)

Number of variables selected 23 (18.4) 11 (3.1)

Applying the methods to the entire dataset, we obtained the results shown

in Table 3.7. In particular, 15 variables are selected by the latent Gaussian cop-

ula method, including ”Tumor stage”, ”Metastasis status”, and genes including

”CCL24”, ”ECHDC1”, ”EGR1”, ”FMO2”, ”FOSB”, ”GOLGA6L10”, ”GPR97”,

”GULP1”, ”MAPK10”, ”NR4A1”, ”SCN3A”, ”SFRS5” and ”SH3BP2” that are

all found to be related to breast cancer in biomedical literature, see [27], [19], [52],

[54], [42], [34], [16], [45], [63], [66], [62], [1], [43]. It is noteworthy that all of the

genes have highly skewed distributions, indicating a violation of normality assump-

tion (see Figure 3.2). Existing models might require extra manual work such as

a log transformation to assure the normality assumption, but the latent Gaussian

copula model in this situation could handle it automatically.

Table 3.7: Summary of fitted survival time results in TCGA data

Metric Lasso GC-Lasso
RMSE 4.630 3.323

Median L2 loss 7.106 3.553
MAPE 1.427 0.957

Number of variables selected 34 15
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Figure 3.2: Histograms of selected genes by latent Gaussian copula model
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3.6 Discussion

This chapter presents an approach for simultaneously estimating the latent linear

model and performing variable selection without the unrealistic normality assump-

tion on high-dimensional mixed data. Prediction for the response given a new set

of covariates can also be made using the latent linear coefficients estimate. The

proposed estimator and the corresponding predictions are found to outperform

other existing methods in a simulation study and analysis of real data. Unlike

other methods assuming normality, the proposed latent Gaussian copula regres-

sion model handles non-normal data very well with no need of data transformation,

and it can be readily applied to high dimensional setting of mixed data because of

pairwise covariance/correlation estimation plus regularized regression. One pos-

sible extension would be to allow the response to be categorical as well, namely

a classification problem. It would be interesting to see if the covariance-based

regression model can achieve satisfactory results in classfication tasks.
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CHAPTER 4

COVARIANCE-REGULARIZED REGRESSION FOR

HIGH-DIMENSIONAL MIXED DATA

4.1 Introduction

We now further extend the GC-Lasso method to a family of methods where the

inverse covariance/correlation matrix is regularized, rather than the coefficients.

Recall the least squares solution β̂ = (ΣX̃X̃)−1ΣX̃Ỹ , and a zero entry in (ΣX̃X̃)−1

indicates conditional independence between the pair of variables, given all of the

other covariates. In high-dimensional settings, the entries of (ΣX̃X̃)−1 can be noisy

so some regularization is desired. One can impose a penalty on the matrix (ΣX̃X̃)−1

directly, for example the Ridge regression. More interestingly, [61] proposed the

Scout Procedure that regularizes the inverse covariance matrix by maximizing the

log likelihood of the data assuming normality. In many practices, sets of variables

that truly are conditionally dependent will also be related to the response. One

advantage of the Scout Procedure is its ability to distinguish between variables

that truly are partially correlated with each other and those that in fact have

zero partial correlation. This is particularly important, for example in the context

of genetics research, that all the features/genes along the pathways related to

the response can be found. However, the Scout Procedure also rests upon the two

unrealistic assumptions discussed in the previous chapter. Therefore, we generalize

the Scout Procedure to the GC-Scout under latent Gaussian copula model, where

the benefit of distinguishing features is preserved while the assumptions are relaxed

to a latent linear relationship and normality only after marginal transformations.

The subsequent sections of this chapter is organized as follows: Section 2 presents
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the GC-Scout framework for regression and classification, we also discuss some

properties of certain members of the GC-Scout class; Section 3 investigates the

performance of the GC-Scout methods on simulated data; followed by a case study

on real data in Section 4; and we conclude with some discussion in Section 5.

4.2 Methodology

4.2.1 GC-Scout Procedure For Regression

Suppose we observe the n×p data matrix denoted as X = (X1, . . . ,Xp)T , where n

is the number of observations and p the number of predictors (each predictor can

be ordinal or continuous). Let Y ∈ Rn denote the responses for each observation.

Under latent Gaussian copula model, the observed data (X,Y) is related to

some multivariate Gaussian variables (X̃, Ỹ) ∼ Np+1(0,Σ) with diag(Σ) = 1 via

marginal transformations (and discretization for ordinal predictors). Consequently,

the log likelihood of the data is given by

log(det Σ−1)− tr(SΣ−1) (4.1)

where S is the sample covariance matrix of (X̃, Ỹ). But since we do not have

direct access to the latent variables (X̃, Ỹ), we can replace S with the rank-based

estimator Σ̂ as in (3.7) and (3.6), which has well established properties [46]. The

linear regression

Ỹ = X̃β + ε,

can be estimated via Σ−1 due to the fact that β = −ΘX̃Ỹ
ΘỸỸ

where Θ denotes a
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symmetric estimate of Σ−1 with the block structure Θ =

ΘX̃X̃ ΘX̃Ỹ

ΘT
X̃Ỹ

ΘỸ Ỹ

, see [39].

Despite that Σ̂ can readily handle high-dimensional data, in practice, some level

of regularization has consistently been seen to be helpful for prediction [56] not

only in high-dimensional setting but also in low-dimensions. Therefore, inspired

by [61], one can consider the estimator of the inverse covariance/correlation matrix

Σ−1 with `p penalty, denoted as Θ, such that

Θ̂ = arg max
Θ=ΘT�0;

{
log(det Θ)− tr(Σ̂Θ)− ‖Θ‖q

}
where Σ̂ is the rank-based estimator as in (3.7) and (3.6). It is further suggested

to solve the above problem via a two-stage maximization procedure where ΘX̃X̃

and ΘX̃Ỹ are regularized one-by-one, so that we will be able to first distinguish

pairs of variables that truly are conditionally dependent given the other predictors

(namely Xj,Xk such that (Σ−1)X̃X̃(j, k) , 0) from those that are conditionally

dependent due only to chance [61], and then distinguish the predictors that are

conditionally dependent on the response given all other predictors from those that

are not. Specifically, we propose the following Algorithm 3, the Scout procedure

adapted for latent Gaussian Copula Model (GC-Scout Procedure).

The fundamental difference between GC-Scout and Scout Procedures is the

choice of covarinace matrix estimator: unlike the Scout Procedure utlizing the

empirical sample covariance matrix, the GC-Scout Procedure involves the rank-

based estimator Σ̂ which brings two benefits: the restrictive normality assumption

on observed variables is relaxed to latent normality, and the unrealistic assumption

about a linear relationship between the response and observed covariates is no

longer required. In fact, GC-Scout is a general extension of the Scout Procedure,

since multivariate Gaussian is just a special case of latent Gaussian copula by

simply setting fj(x) = x for all j.
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Algorithm 3: The GC-Scout Procedure with `q penalties
Data: Observed data matrix X ∈ Rn×p and response Y ∈ Rn, penalties

q1, q2 and corresponding parameters λ1, λ2 ≥ 0.
Result: Coefficients estimator β̂ for covariance-regularized regression.

1 Compute the rank-based correlation matrix estimator Σ̂ as in (3.7) and
(3.6) ;

2 Compute Θ̂X̃X̃ that maximizes

log(det ΘX̃X̃)− tr(Σ̂X̃X̃ΘX̃X̃)− λ1‖ΘX̃X̃‖q1 ; (4.2)

3 Compute Θ̂ that maximizes

log(det Θ)− tr(Σ̂Θ)− λ2‖Θ‖q2 (4.3)

subject to Θ̂[1 : p, 1 : p] = Θ̂X̃X̃ . Essentially the penalty is imposed upon
Θ̂X̃Ỹ and Θ̂Ỹ Ỹ only;

4 Compute β̂, defined by

β̂ = −Θ̂X̃Ỹ

Θ̂ỸỸ
. (4.4)

Another minor difference is that the extra step of scaling in the Scout Procedure

in which the solution is scaled by a factor of c obtained from fitting the simple

linear regression Ỹ = c(X̃β̂) is no longer necessary. This is because the scaling

factor is readily absorbed by the monotonic increasing marginal transformations f

(more technical explanations can be found in proof to Claim 4).

Following the original Scout work in [61], we refer to the penalized log likeli-

hoods in (4.2) and (4.3) as the first and second Scout criteria. For the rest of the

chapter, we denote the solution to the above GC-Scout Procedure in Algorithm 3

as GC-Scout(q1, q2). If λ1 = 0, then this will be indicated by GC-Scout(·, q2), and

if λ2 = 0 then GC-Scout(q1, ·).
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4.2.2 Maximization and Properties of GC-Scout

If λ1 = 0 and q2 = 1, then the solution to GC-Scout(·, 1) is just equivalent to the

proposed estimator in Chapter 3:

β̂
GC
Lasso = arg min

β∈Rp
{1

2
(
βT Σ̂X̃X̃β − 2Σ̂X̃Ỹβ

)
+ λ‖β‖1}.

However, one interesting fact is that GC-Scout(·, 1) has no variable grouping

effect. In other words, since GC-Scout(·, 1) only has penalty on Σ̂X̃Ỹ , it will only

select those variables that are partially independent given the response and other

predictors. Therefore the solution β̂GC
Lasso is often much more sparse than the solu-

tion to GC-Scout(p1, 1) (see more numerical evidence in Section 4).

If λ1 > 0 and q1 = 1, then the maximization of the first GC-Scout criterion can

be implemented via the famous Graphical Lasso algorithm [6, 18]. Improvments

to the Graphical Lasso algorithm have also been recently studied, see for example

[60], [40].

In the case that λ1 > 0 and q1 = 2, it turns out there exists a closed-form

solution to GC-Scout(2, q2) as shown in the following Theorem 4, which is adopted

from [61] for GC-Scout procedure.

Theorem 4. For q1 = 2, λ1 > 0, the solution to GC-Scout Procedure Step 2 in

Equation (4.2) is given by

Θ̂X̃X̃ = V(D̄)VT (4.5)

and the associated inverse of Θ̂X̃X̃ is

Θ̂−1
X̃X̃

= V(D + D̃)VT , (4.6)

where V,D are matrices of eigen-vectors and eigen-values of Σ̂X̃X̃ respec-

tively, and D̄ is a p × p diagonal matrix with i-th diagonal entry equal to
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2
(
Dii +

√
D2
ii + 8λ1

)−1
,and D̃ is a p× p diagonal matrix with i-th diagonal entry

equal to 1
2(−Dii +

√
D2
ii + 8λ1).

The proof can be found in Appendix. With this property, one can compute the

solution to Step2 in GC-Scout(2, q2) with time complexity as an eigen-value prob-

lem. This is remarkably computationally efficient compared to GC-Scout(1, q2),

which is typically solved by popular methods such as Graphical Lasso.

It is trivial that if λ2 = 0, then the solution to GC-Scout(q1, ·) is given by

β̂ = Θ̂X̃X̃Σ̂X̃Ỹ where Θ̂X̃X̃ is given in (4.5). In the case that λ2 > 0 and q2 = 1

or q2 = 2, then we could maximize the second GC-Scout criterion via an Lp2

regression, due to the following result:

Theorem 5. For q2 ∈ {1, 2}, λ2 > 0, the solution to GC-Scout Procedure Step 4

in Equation (4.4) is equal to the solution to the following:

β̂ = arg min
β∈Rp

{1
2
(
βT Θ̂−1

X̃X̃
β − 2Σ̂X̃Ỹ β

)
+ λ2‖β‖p2} (4.7)

where Θ̂−1
X̃X̃

is the inverse of the solution to maximizing (4.3), Step 3 of the GC-

Scout Procedure.

The proof can be readily adopted from the Proof to Claim 2 in [61] by replacing

S with Σ̂ and everything else remains the same.

Therefore, combining Theorem 4 and 5, one can easily see the following result:

Corollary 2. If λ1 > 0 and q1 = 2, λ2 > 0 and q2 ∈ {1, 2}, then the solution to

GC-Scout(q1, q2) is equal to the solution to the following:

β̂ = arg min
β∈Rp

{1
2
(
βT Θ̂−1

X̃X̃
β − 2Σ̂X̃Ỹ β

)
+ λ2‖β‖p2} (4.8)

where Θ̂−1
X̃X̃

is the solution to maximizing (4.3), Step 3 of the GC-Scout Procedure,

as given in (4.6).
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It is also noteworthy that if λ1 = 0, then the case q2 = 2 is the latent Gaussian

Copula analogous to the ridge regression.

4.2.3 Prediction

In this section, we present the framework to predict the (observable) response

for a given new set of covariates using the coefficients estimator obtained from

GC-Scout(q1, q2) Procedure.

Let β̂ denote the coefficients estimator from the GC-Scout(q1, q2) Procedure

with data matrix X ∈ Rn×p and response Y ∈ Rn. Now suppose we observe a

new set of predictors x∗ and want to predict y∗. If we do have direct access to the

marginal transformations f , then this is easy: ŷ∗ = f−1
y (∑p

j=1 fj(Xj)β̂j). Therefore,

in order to make the prediction, we could approximate f . One reasonable approxi-

mation proposed by [15] and [10] is f̂j(t) = Φ−1(F̂j(t)) where F̂j(t) is the empirical

Cumulative Distribution Function of Xj. Recall that fj(xj) ∼ N(0, 1) for all j,

then the Cumulative Distribution Function of Xj follows that Fj(xj) = Φ(fj(xj)),

hence the estimate f̂j(t) = Φ−1(F̂j(t)). For stability reason, we consider the Win-

sorized empirical CDF:

F̃j(t) = δn · I{F̂i(t)<δn} + F̂i(t) · I{δn≤F̂i(t)≤1−δn} + (1− δn) · I{F̂i(t)>1−δn}. (4.9)

Following [38] and [14], we set δn = 1/n2. Therefore, we have the following Algo-

rithm 4 for prediction.

[10] established the tight error bound of ŷ? to be s
√

log p
n

under certain condi-

tions, where s is the sparsity level of the true β (number of zero entries).
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Algorithm 4: Prediction for y given a new set of predictors x? using
β̂

GC
Scout

Data: Prediction for y given a new set of predictors x? using β̂GC
Scout

Result: µ̂?.
1 for j = 1 to p do
2 Compute the approximated functions f̂j(·) = Φ−1(F̃j(·)), where Fj(·) is

the Winsorized empirical CDF of Xj as in Equation (4.9);
3 Approximate x̃?j by x̃?j = f̂j(x?j)
4 end
5 Compute ̂̃y? = x̃?β̂

GC
Scout;

6 Approximate fY by f̂Y (·) = Φ−1(F̃Y (·));
7 Obtain the prediction

ŷ? = f̂−1
Y (

d∑
j=1

f̂j(x?j)β̂j) (4.10)

4.2.4 GC-Scout Procedure for Classification

We further extend the GC-Scout(q1, q2) Procedure to classification problems. In

the case of n > p, one can consider linear discriminant analysis (LDA) for classifi-

cation problem. When it comes to high dimensional setting, we need to regularize

the within-class covariance matrix. [21] proposed a method to shrink the within-

class covariance matrix by adding a multiple of the identity matrix to the empirical

covariance matrix. On the other hand, [61] proposed to shrunk the within-class

inverse covariance matrix with an `q penalty instead, by maximizing the log like-

lihood of the observed data assuming normality. Here, we are interested in the

classification problem where the normality assumption on the observed data does

not hold.

Suppose the response variable Y has K distinct classes, and we observe a

sample of size n where each observation X(i) ∈ Rp belongs to some class k ∈
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{1, . . . , K}. Given the training set, we want to accurately classify observations in

an independent test set.

For each class k, let µ̂k denote the mean vector of those observations in class k.

We define the within-class correlation matrix as Σwc = 1
K

∑K
k=1 Σ̂({X(i) : Y (i) =

k}), where Σ̂({X(i) : Y (i) = k}) denotes the correlation matrix estimate for the

subset of data belonging to class k. Then the GC-Scout(q1, ·) Procedure for clas-

sification is as follows:

Algorithm 5: GC-Scout Procedure for classification
Data: Observed training data X ∈ Rn×p and associated classes Y ∈ Rn,

penalty norm q and corresponding parameters λ ≥ 0. Independent
test data Xtest ∈ Rp.

Result: ŷtest.
1 Compute the winthin-class correlation matrix estimator

Σ̂wc = 1
K

∑K
k=1 Σ̂({X(i) : Y (i) = k}) where Σ̂({X(i) : Y (i) = k}) denotes

the correlation matrix estimate for the subset of data belonging to class k;
2 Compute the regularized within-class inverse covariance matrix Σ̂−1

wc such
that

Σ̂−1
wc = arg max

Σ−1

{
log det Σ−1 − tr(Σ̂wcΣ−1)− λ‖Σ−1‖q

}
(4.11)

3 Classify test set observation Xtest to class k′ if k′ satisfies

k′ = arg max
k

{
XT

testΣ̂−1
wc µ̂k −

1
2 µ̂

T
k Σ̂−1

wc µ̂k + log πk
}

(4.12)

where πk is the count of class k in the training set.

4.3 Simulation studies

To examine the performance of the proposed estimators in the GC-Scout(q1, q2)

family, we study the results from eight simulation scenarios in this section. Besides

the GC-Scout estimators, we also consider the regular Lasso [56] and the elastic
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net [68] methods for comparison. All the simulations follows the latent model that

Ỹ = X̃β + ε where (X̃, Ỹ ) ∼ N(0,Σ), and ε ∼ N(0, σ2
ε I).

For each of the eight simulation scenarios, we construct the Correlation matrix

Σ based upon ΣX̃X̃ ∈ Rp×p, β ∈ Rp, and σε ∈ R via the following formula

Σ =

 ΣX̃X̃ ΣX̃X̃β/σỸ

βTΣX̃X̃/σỸ 1


where σ2

Ỹ
= βTΣX̃X̃β + σ2

ε . Using the correlation matrix, we generate n i.i.d.

samples, (X̃, Ỹ ) ∈ Rn×(p+1), from N(0,Σ), and marginally transform (X̃, Ỹ ) to

obtain the ’observable’ samples (X,Y ) = (f1(X̃1), . . . , fp(X̃p), fy(Ỹ)). For each

scenario, we repeatedly simulate a training set to estimate β and a test set for

prediction for 100 replicates. The tuning parameters are all chosen by 5-folds

cross-validation on the training set. The simulations scenarios are described in

details as follows, where the first two are inspired by the original Lasso paper [56],

the third, fourth, and sixth are of the same design as in Chapter 3, and the fifth

is based on the original Scout paper [61]:

1. Set ΣX̃X̃(i, j) = 0.5|i−j|, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σε = 3. Let Y = Ỹ,

X = X̃5, then discretize the first 4 dimensions of x: namely trichotomize

xj by ∆(1)
j = (Φ−1(0.5))5,∆(2)

j = (Φ−1(0.75))5 for j ≤ 4, the rest 4 dimen-

sions of x remain continuous. Training set is of size 20, and test set of 180

observations.

2. Same as Simulation 1 except that Y = exp(Ỹ).

3. Training set contains n = 40 observations and p = 11 predictors, and test set

is of size 40. Set ΣX̃X̃ to be a toeplitz matrix such that ΣX̃X̃(i, j) = 1−0.1×

|i− j|. Let β = (2, 1, 0, 0, 0, 0, 0, 0, 0,−1,−2)T , and σε = 3. Let Y = Ỹ,
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X = X̃5, then trichotomize Xj by ∆(1)
j = (Φ−1(0.5))5,∆(2)

j = (Φ−1(0.75))5

for j ≤ 6.

4. Each training set contains n = 50 observations and p = 50 predictors, and

test set is of size 50. βj = 2 for j = 21, . . . , 25, 46, . . . , 50 and βj = 0 for all

other j. ΣX̃X̃(i, j) = 0.5|i−j| and σε = 2. Let Y = exp(Ỹ), and X = 2X̃5 + 1

followed by trichotomization using cut-off ∆(1)
j = 2(Φ−1(0.5))5 + 1,∆(2)

j =

2(Φ−1(0.75))5 + 1 for j = 1, . . . , 5.

5. As in Simulation 1, except β = (3, 1.5, 0, 0, 0,−1,−1)T .

6. Each training set contains 100 observations and 100 predictors, and test set

is of size 100. ΣX̃X̃(i, j) = 0.5|i−j|, βj = 1 for j = 1, . . . , 5 and βj = −1 for

j = 51, . . . , 55, and βj = 0 for all other j. Set σε = 2. Let Y = exp(Ỹ), and

X = 2X̃5+1 followed by trichotomization using cut-off ∆(1)
j = 2(Φ−1(0.5))5+

1,∆(2)
j = 2(Φ−1(0.75))5 + 1 for j = 1, . . . , 30.

These scenarios are designed to cover a variety of situations: Simulations 1,2,3,

and 5 are in low dimensional settings with sparse β. Simulations 4 and 6 are in

high dimensional setting. Simulations 1,2,4,5 and 6 have a sparse inverse covariance

matrix, and Simulations 5 and 6 have β’s non-zero entries with alternating signs.

Also notice that in Simulations 1,3, and 5, Y is still Gaussian but the performance

of Scout methods turns out to be much worse than the GC-Scout estimators, as

can be seen in Table 3.1.

To compare the performance of various methods, we consider the following

metrics:

(i) the mean squared prediction error given by 1
k

∑k
i=1(yi− ŷi)2 where k denotes

the size of test set;
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(ii) the model selection accuracy measured by the following three metrics:

model selection error = 1
d

d∑
j=1

I(I(βj = 0) , I(β̂j = 0)),

True Positve Rate (TPR) = 1
d

d∑
j=1

I(βj , 0) · I(β̂j , 0),

False Positve Rate (FPR) = 1
d

d∑
j=1

I(βj , 0) · I(β̂j = 0),

where I(·) is indicator function.

Here we don’t consider the β̂’s estimation error by the three methods because

the latent Gaussian copula method estimates the coefficients in linear model be-

tween latent variables whilst regular Lasso and Elastic Net methods focus on that

between observed variables. The performance of each method is summarized in

Table 4.1,4.2, 4.3, 4.4 and 4.5. It can be clearly seen that compared to the other

two methods, the latent Gaussian copula method shows smaller Mean Squared

Error and model selection error across the suite of simulation scenarios, and has

at least similar or much better combinations of FPR and TPR. From Table 4.5,

it is interesting to notice that in the low dimensional settings (Simulation 1,2,3,

and 5). Scout methods are doing similar to or even better than GC-Scout(·, 1),

but worse than it in high-dimensional setting (Simulation 4 and 6). However, both

GC-Scout(1, 1) and GC-Scout(2, 1) outperform other methods consistently in all

simulation settings.

We further investigate the performance of the estimators at different levels of

discretization. Specifically, keeping everything else the same as in Simulation sce-

nario 6, we vary the number of discrete dimensions for comparison. We experiment

with five different discretization levels: 10, 20, 30, 40 and 50 dimensions of X are

discretized following the same procedure as described in Simulation 6. We obtain

Figure 4.1 to visualize the performance for comparison.
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Figure 4.1: Mean squared error plot for different levels of discretization in Sim-
ulation 6. As number of discrete variables increases, the latent Gaussian copula
estimators (three lines on the bottom: GC-Lasso (yellow), GC-Scout(1,1) (light
blue), and GC-Scout(2,1) (dark blue)) consistently outperforms regular normality-
assumed methods (three lines on top: Scout(2,1) (red), Scout(1,1) (gray) and
regular lasso (blue)) .
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Table 4.1: Mean squared error of predictions over 100 replicates for each simulation
scenario. Standard errors are given in parentheses. Tuning parameters were chosen
by cross-validation.

Simulation GC-Lasso Scout(1,1) Scout(2,1) GC-Scout(1, 1) GC-Scout(2, 1)
1 0.85 (0.25) 1.04 (1.62) 1.04 (1.37) 0.60 (0.01) 0.57 (0.08)
2 4.51 (3.78) 5.00 (4.73) 4.71 (3.76) 4.10 (2.84) 3.50 (2.12)
3 0.55 (0.18) 11.30 (30.40) 10.70 (30.90) 4.06 (9.86) 2.30 (2.09)
4 2.09 (3.02) 10.37 (11.27) 8.83 (9.73) 3.20 (5.65) 2.21 (4.88)
5 7.92 (12.52) 10.56 (46.83) 10.73 (47.33) 3.77 (2.49) 3.93 (2.57)
6 2.47 (1.61) 4.94 (5.49) 5.39 (6.72) 2 (1.21) 1.97 (1.32)

Table 4.2: Variable Selection Error over 100 replicates for each simulation scenario.
Standard errors are given in parentheses. Tuning parameters were chosen by cross-
validation.

Simulation GC-Lasso Scout(1,1) Scout(2,1) GC-Scout(1, 1) GC-Scout(2, 1)
1 0.29 (0.15) 0.32 (0.19) 0.30 (0.20) 0.31 (0.14) 0.32 (0.14)
2 0.31 ( 0.17) 0.34 (0.18) 0.33 (0.18) 0.3 0 (0.13) 0.26 (0.13)
3 0.15 (0.08) 0.36 (0.19) 0.36 (0.20) 0.29 (0.10) 0.27 (0.11)
4 0.07 (0.04) 0.28 (0.21) 0.25 (0.18) 0.32 (0.06) 0.25 (0.14)
5 0.27 (0.11) 0.34 (0.12) 0.35 (0.12) 0.26 (0.16) 0.21 (0.14)
6 0.04 (0.02) 0.22 (0.25) 0.16 (0.18) 0.12 (0.11) 0.11 (0.07)

4.4 Case study

In this section, we demonstrate two applications to real world data: one for regres-

sion and the other for classification.

4.4.1 Case study with TCGA data

For comparison reason, we study the same dataset as in Chapter 3 which consists

of genetic and clinical data from 111 breast cancer patients. The data is publicly

available at The Cancer Genome Atlas (TCGA) database.

The gene expression data are measures of RNAseq profiling which are continu-
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Table 4.3: True positive rates (TPR) summary over 100 replicates for each simu-
lation scenario. Standard errors are given in parentheses.

Simulation GC-Lasso Scout(1,1) Scout(2,1) GC-Scout(1, 1) GC-Scout(2, 1)
1 0.57 (0.33) 0.81 (0.19) 0.79 (0.20) 0.97 (0.10) 1.00 (0.03)
2 0.54 (0.31) 0.79 (0.18) 0.77 (0.18) 0.95 (0.12) 0.97 (0.09)
3 0.64 (0.16) 0.69 (0.24) 0.69 (0.23) 0.98 (0.06) 1.00 (0.02)
4 0.93 (0.0817) 0.21 (0.13) 0.22 (0.13) 0.98 (0.05) 0.99 (0.03)
5 0.49 (0.18) 0.62 (0.18) 0.59 (0.20) 0.75 (0.20) 0.74 (0.19)
6 0.88 (0.10) 0.42 (0.18) 0.41 (0.18) 0.74 (0.37) 0.94 (0.2)

Table 4.4: False positive rates (FPR) summary over 100 replicates for each simu-
lation scenario. Standard errors are given in parentheses.

Simulation GC-Lasso Scout(1,1) Scout(2,1) GC-Scout(1, 1) GC-Scout(2, 1)
1 0.20 (0.24) 0.3 (0.22) 0.26 (0.21) 0.45 (0.23) 0.45 (0.22)
2 0.22 (0.26) 0.34 (0.27) 0.32 (0.27) 0.43 (0.22) 0.37 (0.20)
3 0.023 (0.06) 0.35 (0.30) 0.36 (0.31) 0.41 (0.17) 0.38 (0.17)
4 0.06 (0.04) 0.06 (0.07) 0.06 (0.07) 0.35 (0.08) 0.24 (0.15)
5 0.04 (0.09) 0.3 (0.27) 0.27 (0.28) 0.27 (0.22) 0.16 (0.17)
6 0.02 (0.02) 0.06 (0.08) 0.07 (0.11) 0.09 (0.08) 0.08 (0.05)

ous values, whilst clinical data contains both categorical variables such as ”Patho-

logic stage”, as well as continuous variables such as ”Age”. In this analysis, our

goal is to study the relationship between survival time and genetic and clinical

variables.

Upon completion of data preprocessing steps such as missing data removal, the

data has 111 observations with complete data for 598 covariates of mixed data

types, which contains 5 categorical variables: ”Pathologic stage”, ”Tumor stage”,

”Lymph nodes status”, ”Metastasis status”, and ”Race”; and 593 continuous vari-

ables: ”Age” and genes. Note that for computing stability and efficiency, we

pre-screened 592 genes using marginal screening method as suggested by [26].

To study the performance of the proposed method and compare it to GC-Lasso

(equivalently GC-Scout(·, 1)) as proposed in Chapter 3, we conduct cross-validation
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Table 4.5: True positive rates (TPR) and False positive rates (FPR) summary over
100 replicates for each simulation scenario. FPR is in parentheses. In low dimen-
sional setting, (Simulation 1,2,3, and 5) Scout methods are doing similar to or even
better than GC-Scout(·, 1), but worse than it in high-dimensional setting (Simula-
tion 4 and 6). However, both GC-Scout(1, 1) and GC-Scout(2, 1) outperform other
methods consistently in all simulation settings.

Simulation GC-Lasso Scout(1,1) Scout(2,1) GC-Scout(1, 1) GC-Scout(2, 1)
1 0.57 (0.20) 0.81 (0.30) 0.79 (0.26) 0.97 (0.45) 1.00 (0.45)
2 0.54 (0.22) 0.79 (0.34) 0.77 ( 0.32) 0.95 (0.43) 0.97 (0.37)
3 0.64 (0.02) 0.69 (0.35) 0.69 (0.36) 0.98 (0.41) 1.00 (0.38)
4 0.93 (0.06) 0.21 (0.06) 0.22 (0.06) 0.98 (0.35) 0.99 (0.24)
5 0.49 (0.04) 0.62 (0.30) 0.59 (0.27) 0.75 (0.27) 0.74 (0.16)
6 0.88 (0.02) 0.42 (0.06) 0.41 (0.07) 0.74 (0.09) 0.94 (0.08)

analysis by randomly splitting the entire data 100 times: we put 11 observations in

the test set, and leave the rest 100 observations as the training set. After obtaining

the coefficients estimator using the training set, we then use it to make predictions

for test set. To evaluate the estimators’ performances, we consider the following

metrics for prediction results: Mean Absolute Percentage Error (MAPE), Root

Mean Squared Error(RMSE), and the median of `2 errors between predicted and

observed survival time (in years). The results are summarized in Table 4.6. For

both methods, we chose the tuning parameter values via 5-folds cross-validation

during training.

Table 4.6: Cross-validation results for the survival time predictions on TCGA data

Metric GC-Lasso GC-Scout(2, 1)
RMSE 3.58 (1.17) 1.60 (1.25)

Median L2 loss 5.51 (3.71) 0.68 (1.24)
MAPE 1.22 (0.58) 0.58 (0.22)

Number of variables selected 11 (3.1) 40 (65.9)

Applying the methods to the entire dataset, we obtained the results shown in

Table 4.7. It can be seen that GC-Scout(2, 1) achieves much superior prediction re-

sults than GC-Scout(·, 1). Recall the GC-Scout(2, 1) method has variable grouping
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effects, it turns out to select a much larger set of variables, as a result of seeking

all possible genes/variables that are part of the pathway related to the disease.

Table 4.7: Summary of fitted survival time results in TCGA data. The GC-Lasso
results are excerpted from Chapter 3.

Metric GC-Lasso GC-Scout(2, 1)
RMSE 3.323 1.851

Median L2 loss 3.553 0.383
MAPE 0.957 0.354

Number of variables selected 15 296

4.4.2 Classification case study on Ramaswamy data

This case study is to evaluate the performance of the GC-Scout Procedure for clas-

sification. In the original Scout paper, [61] studied the Ramaswamy microarray

data set, which was initially described in detail by [49], and is publicly available at

https://www.jstatsoft.org/article/view/v033i01. For comparison reason,

we apply the GC-Scout method to the same data set. The Ramaswamy data con-

sists of a training set of 144 tumor samples and a test set of 54 tumor samples,

both contain 16,063 features (measurements for tumor genes expressions, in con-

tinuous values). The data span 14 different common tumor types. Our goal is

to use the within-class covariance/correlation matrix estimator obtained from the

training set to predict/classify the labels in test set. The GC-Scout Procedure for

classification is described in Algorithm 5.

The results are summarized in Table 4.8. Three methods are compared here:

the support vector machine (SVM) with one-versus-all classification from the orig-

inal Ramaswamy paper [49], the Scout(2, ·) from the original Scout paper [61], and

the proposed GC-Scout(2, ·). It can be seen from Table 4.8 that using as little as
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20 % of the genes that were involved in training SVM and Scout(2, ·), the pro-

posed GC-Scout(2, ·) can achieve the same results on the test set. We also want to

point out that the training data for SVM and Scout(2, ·) methods have been cube-

rooted [61], but the proposed GC-Scout(2, ·) is run on the original data, because

the GC-Scout Procedure does not require the normality assumption. The genes

are selected in increasing order of their F-statistics [58].

Table 4.8: Classification results for the cancer types in Ramaswamy data. The
results in the first two columns are excerpted from [61] where the data has been
cube-rooted. But the results for GC-Scout(2, ·) in the last column are obtained
from original data, using only 750 genes.

SVM Scout(2, ·) GC-Scout(2, ·)
Test Error 11 7 7

Number of Genes Used 4000 4000 750

4.5 Discussion

In this chapter, we consider the regression problem with high-dimensional mixed

data. The main contribution is that we extend the existing method GC-Lasso

to an entire family of covariance-regularized methods, GC-Scout. The shrunken

covariance matrix estimate dramatically improves the prediction accuracy, in terms

of Mean Squared Error (MSE) and variable selection errors. This improvement is

particularly obvious when the normality among observed data is violated, which

is often the case for real world data. We also want to emphasize another benefit of

the GC-Scout procedure that data transformation will be automatically done by

the model with no need to prespecify the transformation function.

One thing to notice is members of the GC-Scout family, for example GC-

Scout(2, 1), might suffer from relatively higher False Positive Rates, namely it
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might wrongly identify those zero coefficients to be non-zero. This is a result due

to the variable grouping effect. Recall that GC-Scout(2, 1) aims to seek all features

that are on the pathways that are related to the response. In other words, the

superior prediction might come at the cost of noisy variable selection. Therefore,

depending on the needs of different studies, we recommend researchers to select

the most appropriate regression method.
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APPENDIX A

CHAPTER 2 OF APEENDIX

A.1 Proof of Lemma 1

Proof. It is equivalent to show ∂Fa(r;∆1
j ,∆

2
j ,∆

1
k,∆

2
k)

∂r
> 0.

Note that

∂F (r; ∆1
j ,∆2

j ,∆1
k,∆2

k)
∂r

=
∂[2Φ2(∆2

j ,∆2
k, r)Φ2(−∆1

j ,−∆1
k, r)]

∂r

+
∂{2[Φ(∆2

j)− Φ2(∆2
j ,∆1

k, r)][Φ2(∆1
j ,∆2

k, r)− Φ(∆2
k)]}

∂r

We look at these two parts individually. Let ∂11 denote ∂Φ2(∆1
j ,∆

1
k,r)

∂r
, ∂12 denote

∂Φ2(∆1
j ,∆

2
k,r)

∂r
, and similar notations defined for ∂21, ∂22. Recall that ∂Φ2(·,·,r)

∂r
> 0 [14],
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then we have

∂[Φ2(∆2
j ,∆2

k, r)Φ2(−∆1
j ,−∆1

k, r)]
∂r

=
∂

[
Φ2(∆2

j ,∆2
k, r)− Φ2(∆2

j ,∆2
k, r)

(
Φ(∆1

k) + Φ(∆1
j)
)

+ Φ2(∆1
j ,∆1

k, r)Φ2(∆2
j ,∆2

k, r)
]

∂r

= ∂22 − Φ(∆1
k)∂22 − Φ(∆1

j)∂22 + ∂11Φ2(∆2
j ,∆2

k, r) + ∂22Φ2(∆1
j ,∆1

k, r)

= [1− Φ(∆1
j)− Φ(∆1

k) + Φ2(∆1
j ,∆1

k, r)
]
∂22 + ∂11Φ2(∆2

j ,∆2
k, r)

= Φ2(−∆1
j ,−∆1

k, r)∂22 + ∂11Φ2(∆2
j ,∆2

k, r)

> 0

∂[
(
Φ(∆2

j)− Φ2(∆2
j ,∆1

k, r)
)(

Φ2(∆1
j ,∆2

k, r)− Φ(∆2
k)
)
]

∂r

=
[
Φ(∆2

k)− Φ2(∆1
j ,∆2

k, r)
]
∂21 −

[
Φ2(∆2

j ,∆1
k, r)− Φ(∆2

j)
]
∂12

= P(Xij ≥ 1;Xik ≤ 1)∂21 + P(Xij ≤ 1;Xik ≥ 1)∂12

> 0.

�

A.2 Proof of Lemma 2

Proof. We know that

sign(Xij −Xi′j) = 1{Xij = 2} − 1{Xi′j = 2}

+ 1{Xij = 1, Xi′j = 0} − 1{Xij = 0, Xi′j = 1}

thus it is true that
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E[sign(Xij −Xi′j)(Xik −Xi′k)]

= E
[
1{Xij = 2}sign(Xik −Xi′k)

]
− E

[
1{Xi′j = 2}sign(Xik −Xi′k)

]
+ E

[
1{Xij = 1, Xi′j = 0}sign(Xik −Xi′k)

]
− E

[
1{Xij = 0, Xi′j = 1}sign(Xik −Xi′k)

]
.

We consider the four terms as two parts separately. The first two terms can be

further computed as

E
[
1{Xij = 2}sign(Xik −Xi′k)

]
− E

[
1{Xi′j = 2}sign(Xik −Xi′k)

]
= E

[
1{Uij > ∆2

j}sign(Xik −Xi′k)
]
− E

[
1{Ui′j > ∆2

j}sign(Xik −Xi′k)
]

= 2E
[
1{Uij > ∆2

j , Vik − Vi′k > 0}
]
− 2E

[
1{Ui′j > ∆2

j , Vik − Vi′k > 0}
]

= 2Φ2(∆2
j , 0, σjk/

√
2)− 2Φ2(∆2

j , 0,−σjk/
√

2)

= 4Φ2(∆2
j , 0, σjk/

√
2)− 2Φ(∆2

j).

The last two terms hold the following equivalence:

E
[
1{Xij = 1, Xi′j = 0}sign(Xik −Xi′k)

]
− E

[
1{Xij = 0, Xi′j = 1}sign(Xik −Xi′k)

]
= 2E

[
1{Uij ∈ [∆1

j ,∆2
j ], Ui′j < ∆1

j , Vik − Vi′k > 0}
]

− 2E
[
1{Uij < ∆1

j , Ui′j ∈ [∆1
j ,∆2

j ], Vik − Vi′k > 0}
]

= 2[Φ3(∆1
j ,∆2

j , 0)− Φ3(∆2
j ,∆1

j , 0)].

Then we further have

2E
[
1{Uij ∈ [∆1

j ,∆2
j ], Ui′j < ∆1

j , Vik − Vi′k > 0}
]

= 2
(

Φ3(∆2
j ,∆1

j ,∞)− Φ3(∆1
j ,∆1

j ,∞)− Φ3(∆2
j ,∆1

j , 0) + Φ3(∆1
j ,∆1

j , 0)
)

= 2
(

Φ(∆1
j)
(
Φ(∆2

j)− Φ(∆1
j)
)
− Φ3(∆2

j ,∆1
j , 0) + Φ3(∆1

j ,∆1
j , 0)

)
,
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and likewise

2E
[
1{Uij < ∆1

j , Ui′j ∈ [∆1
j ,∆2

j ], Vik − Vi′k > 0}
]

= 2
(

Φ3(∆1
j ,∆2

j ,∞)− Φ3(∆1
j ,∆1

j ,∞)− Φ3(∆1
j ,∆2

j , 0) + Φ3(∆1
j ,∆1

j , 0)
)

= 2
(

Φ(∆1
j)
(
Φ(∆2

j)− Φ(∆1
j)
)
− Φ3(∆1

j ,∆2
j , 0) + Φ3(∆1

j ,∆1
j , 0)

)
.

Hence the bridge function is given by

E[sign(Xij −Xi′j)(Xik −Xi′k)]

= 4Φ2(∆2
j , 0, σjk/

√
2)− 2Φ(∆2

j) + 2[Φ3(∆1
j ,∆2

j , 0)− Φ3(∆2
j ,∆1

j , 0)].

However, we know the fact that (Uij, Ui′j, Vik−Vi′k√
2 )T d= (Ui′j, Uij,−Vik−Vi′k√

2 )T ,

therefore

Φ3(∆2
j ,∆1

j , 0) = P(Uij < ∆1
j , Ui′j < ∆2

j ,
Vik − Vi′k√

2
> 0)

hence Φ3(∆1
j ,∆2

j , 0) − Φ3(∆2
j ,∆1

j , 0) = P(Uij < ∆1
j , Ui′j < ∆2

j) = Φ(∆1
j)Φ(∆2

j).

And the bridge function for ternary-continuous mixed data is found to be

Fa(σjk; ∆1
j ,∆2

j) = 4Φ2(∆2
j , 0, σjk/

√
2)− 2Φ(∆2

j) + 4Φ3(∆1
j ,∆2

j , 0)− 2Φ(∆1
j)Φ(∆2

j).

�

A.3 Proof of Lemma 3

Proof. We need to theoretically show the monotonicity of the bridge function for

ternary-continuous data which boils down to show the following it monotonically

increasing in r:

4Φ3(∆l
j,∆l+1

j , 0)− 2Φ(∆l
j)Φ(∆l+1

j )
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hence it suffices to show that for all l,
∂Φ3(∆l−1

j ,∆l
j, 0)

∂r
> 0. Re-

call that the Φ3 is the cumulative distribution function for random vari-

ables (Uij, Ui′j, Vik−Vi′k√
2 )T as defined in Section 3.2, where (Uij, Ui′j, Vik−Vi′k√

2 )T ∼

N3

(


0

0

0

 ,


1 0 r/
√

2

0 1 −r/
√

2

r/
√

2 −r/
√

2 1


)
.

For easy notation, we denote (Uij, Ui′j, Vik−Vi′k√
2 )T as x = (x1, x2, x3)T , and

Σ =


1 0 r/

√
2

0 1 −r/
√

2

r/
√

2 −r/
√

2 1


for the rest of this proof.

Note that we can rewrite the normal density function φ3(x,Σ) as the transform

of its characteristic function [12]:

φ3(x,Σ) = (2π)−3
$

exp(−itTx− 1
2tTΣt)dt (A.1)

A result of this is

∂φ3(x)
∂r

=
( ∂2φ3

∂x1∂x3
− ∂2φ3

∂x2∂x3

)
· (1/

√
2)

which can be seen after interchanging the order of differentiation and integration

in equation A.1.
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So we now have
∂Φ3(∆l

j,∆l+1
j , 0)

∂r/
√

2

=
∫ ∆l

j

−∞

∫ ∆l−1
j

−∞

∫ 0

−∞

[
∂2φ3(x1, x2, x3)

∂x1∂x3
− ∂2φ3(x1, x2, x3)

∂x2∂x3

]
dx1dx2dx3

=
∫ ∆l

j

−∞

∫ ∆l−1
j

−∞

[
∂2φ3(x1, x2, 0)

∂x1
− ∂2φ3(x1, x2, 0)

∂x2

]
dx1dx2

=
∫ ∆l

j

−∞
φ3(∆l−1

j , x2, 0)dx2 −
∫ ∆l−1

j

−∞
φ3(x1,∆l

j, 0)dx1.

Recall that (x1, x2, x3) d= (x2, x1,−x3), we then have

=
∫ ∆l

j

−∞
φ3(∆l−1

j , x, 0)dx−
∫ ∆l−1

j

−∞
φ3(∆l

j, x, 0)dx

= Φ(∆l
j)φ2(∆l−1

j , 0, r/
√

2)− Φ(∆l−1
j )φ2(∆l

j, 0, r/
√

2)

where the last step arises from the fact that X2|X1 = ∆l−1
j , X3 = 0 ∼ N(0, 1).

Since Φ(·) > 0, φ2(·, ·, r/
√

2) > 0, so in order to show ∂Φ3(∆l
j,∆l+1

j , 0)/∂r > 0,

we only need to show

Φ(∆l
j)

φ2(∆l
j, 0, r/

√
2)
>

Φ(∆l−1
j )

φ2(∆l−1
j , 0, r/

√
2)
,

which is equivalent to show Φ(y)/φ2(y, 0, r/
√

2) is increasing in y. Now we also

notice that

φ2(y, 0, r/
√

2) = φ
( y√

1− r2

2

)
φ(0)

due to the conditional distribution property of bivariate normal variables. Let c =√
(1− r2/2), then it is equivalent to show Φ(y)/φ(y/c) increasing in x. However,

we know that Φ(y)/φ(y/c) = Φ(−y)/φ(−y/c). Let λ(y) = Φ(y)/φ(y/c), then since

φ′(x) = φ(x) · (−x) we have

λ′(y) = φ(y)φ(y/c)− Φ(y)φ(y/c)(−y/c2)
φ2(y/c)

= φ(y)
φ(y/c) −

Φ(y)
φ(y/c) · (−

y

c2 )

= λ(y)
[
φ(y)
Φ(y) + y

c2

]
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We know that λ(y) > 0 for all y, so it reduces to show φ(y)/Φ(y)+y/c2 > 0. When

y ≥ 0, it is true that φ(y)/Φ(y) + y/c2 ≥ 0. It remains to show φ(−y)/Φ(−y) +

(−y/c2) > 0 for y > 0. However, this is a well-known property of Mill’s ratio (see

Fact 7.5.6 in [57]), which states that the lower bound of φ(−y)
Φ(−y) is y/c2 (recall that

y ∼ N(0, c2)). We thus complete the proof.

�

A.4 Proof of Lemma 3.4

Proof. Suppose Xij is ternary and Xik is continuous, then the sign expectation can

break down as follows:

E[sign(Xij −Xi′j)(Xik −Xi′k)]

= 2
(
E[I(Xij = p− 1, Xik −Xi′k > 0)]− E[I(Xi′j = p− 1, Xik −Xi′k > 0)]

)

+ 2
(
E
[
I(Xij = p− 2, Xi′j ≤ p− 3, Xik −Xi′k > 0)

]
− E

[
I(Xij ≤ p− 3, Xi′j = p− 2, Xik −Xi′k > 0)

])

+ 2
(
E
[
I(Xij = p− 3, Xi′j ≤ p− 4, Xik −Xi′k > 0)

]
− E

[
I(Xij ≤ p− 4, Xi′j = p− 3, Xik −Xi′k > 0)

])

...

+ 2
(
E
[
I(Xij ≤ 1, Xi′j = 0, Xik −Xi′k > 0)

]
− E

[
I(Xij = 0, Xi′j ≤ 1, Xik −Xi′k > 0)

])
.

However, it is a fact that
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E[I(Xij = p− 1, Xik −Xi′k > 0)]− E[I(Xi′j = p− 1, Xik −Xi′k > 0)]

= P(Xi′j = p− 1, Xik −Xi′k < 0)− P(Xij = p− 1, Xik −Xi′k < 0)

=
[
1− P(Xi′j ≤ p− 2, Xik −Xi′k < 0)

]
−
[
1− P(Xij ≤ p− 2, Xik −Xi′k < 0)

]
= P(Xij ≤ p− 2, Xik −Xi′k < 0)− P(Xi′j ≤ p− 2, Xik −Xi′k < 0)

= Φ2(∆p−1
j , 0, σjk/

√
2)− Φ2(∆p−1

j , 0,−σjk/
√

2)

= 2Φ2(∆p−1
j , 0, σjk/

√
2)− Φ(∆p−1

j )

and

E
[
I(Xij = p− 2, Xi′j ≤ p− 3, Xik −Xi′k > 0)

]
− E

[
I(Xij ≤ p− 3, Xi′j = p− 2, Xik −Xi′k > 0)

]
= P

(
Xij ≤ p− 3, Xi′j = p− 2, Xik −Xi′k < 0

)
− P

(
Xij = p− 2, Xi′j ≤ p− 3, Xik −Xi′k < 0

)
=
[
P
(
Xij ≤ p− 3, Xi′j ≤ p− 2, Xik −Xi′k < 0

)
− P

(
Xij ≤ p− 3, Xi′j ≤ p− 3, Xik −Xi′k < 0

)]

−
[
P
(
Xij ≤ p− 2, Xi′j ≤ p− 3, Xik −Xi′k < 0

)
− P

(
Xij ≤ p− 3, Xi′j ≤ p− 3, Xik −Xi′k < 0

)]

= P
(
Xij ≤ p− 3, Xi′j ≤ p− 2, Xik −Xi′k < 0

)
− P

(
Xij ≤ p− 2, Xi′j ≤ p− 3, Xik −Xi′k < 0

)
= Φ3(∆p−2

j ,∆p−1
j , 0)− Φ3(∆p−1

j ,∆p−2
j , 0)

and the other pairs of terms will follow the similar fashion.
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Also notice that (U1, U2,
V1−V2√

2 ) d= (U2, U1,−V1−V2√
2 ), so

Φ3(∆p−2
j ,∆p−1

j , 0) + Φ3(∆p−1
j ,∆p−2

j , 0)

= P(U1 < ∆p−2
j , U2 < ∆p−1

j ,
V1 − V2√

2
< 0) + P(U2 < ∆p−1

j , U1 < ∆p−2
j ,

V1 − V2√
2

> 0)

= P(U1 < ∆p−2
j , U2 < ∆p−1

j )

= Φ(∆p−2
j )Φ(∆p−1

j ).

Therefore

Φ3(∆p−2
j ,∆p−1

j , 0)− Φ3(∆p−1
j ,∆p−2

j , 0) = 2Φ3(∆p−2
j ,∆p−1

j , 0)− Φ(∆p−2
j )Φ(∆p−1

j ).

In addition, recall that ∆̂p
j = Φ−1( I(Xij≤p−1)

n
) = Φ−1(1) =∞, so it holds that

Φ2(∆̂p
j , 0, σjk/

√
2) = Φ3(∆̂p−1

j , ∆̂p
j , 0),

so now we can alternatively express the bridge function as

F (σjk; ∆j) =
p−1∑
l=1

4Φ3(∆l
j,∆l+1

j , 0)− 2Φ(∆l
j)Φ(∆l+1

j ).

�

A.4.1 Proof of Theorem 3.1

Proof. We begin the proof by showing the Lipschitz continuity of the bridge func-

tion. Recall that

Fa(σjk; ∆j) =
p−1∑
l=1

4Φ3(∆l
j,∆l+1

j , 0)− 2Φ(∆l
j)Φ(∆l+1

j )

= 4Φ2(∆p−1
j , 0, σjk/

√
2)− 2Φ(∆p−1

j ) +
p−2∑
l=1

4Φ3(∆l
j,∆l+1

j , 0)− 2Φ(∆l
j)Φ(∆l+1

j )
.
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Also it holds that
Φ2(∆p−1

j , 0, σjk/
√

2)
σjk

>
1
L2

[14], and from Lemma 3.3 we have

Φ3(∆l
j,∆l+1

j , 0)
σjk

≥ 0

for all l, then Fa(σjk; ∆j) is Lipschitz continuous with constant L2.

Consequently, for ∆̂j ∈ Aj, the Lipschitz continuity of F−1(τa; ∆j) gives rise

to

|F−1
a (τ̂a; ∆̂1

j , ∆̂2
j)− F−1(Fa(σjk; ∆̂1

j , ∆̂2
j); ∆̂j)| ≤ L2|τ̂a − F (r; ∆̂j)|.

Now recall that Φ−1(·) is Lipschitz continuous in [Φ(−2M),Φ(2M)], we have a

Lipschitz constant L1 such that

|∆̂1
j −∆1

j | =
∣∣∣∣∣Φ−1

(∑n
i=1 I(Xij = 0)

n

)
− Φ−1(Φ(∆1

j))
∣∣∣∣∣

≤ L1

∣∣∣∣∣
∑n
i=1 I(Xij = 0)

n
− Φ(∆1

j)
∣∣∣∣∣.

The exception probability is controlled by

P (Acj,1) = P (|∆̂1
j | > 2M)

≤ P (|∆̂1
j | − |∆1

j | > M)

≤ P (|∆̂1
j −∆1

j | > M)

≤ P

(∣∣∣∣∣
∑n
i=1 I(Xij = 0)

n
− Φ(∆1

j)
∣∣∣∣∣ > M

L1

)

≤ 2 exp
(
− 2M2n

L2
1

)
(by Hoeffding’s inequality).

Likewise, under Aj,l = {|∆̂l
j| ≤ 2M}, we have

|∆̂l
j −∆l

j| ≤ L1

∣∣∣∣∣
∑n
i=1 I(Xij ≤ l − 1)

n
− Φ(∆l

j)
∣∣∣∣∣;
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and

P (Acj,l) ≤ 2 exp
(
− 2M2n

L2
1

)
.

Now we define the event Aj =
2⋂
l=1

Aj,l, as a result we have

P (Acj) = P (
p−1⋃
l=1

Acj,l)

≤
p−1∑
l=1

P (Acj,l)

≤ 2(p− 1) exp
(
− 2M2n

L2
1

)
.

For any t > 0, we have

P (|F−1
a (τ̂a; ∆̂j)− σjk| ≥ t)

= P (
{
|F−1
a (τ̂a; ∆̂j)− σjk| ≥ t

}
∩ Aj) + P (

{
|F−1
a (τ̂a; ∆̂j)− σjk| ≥ t

}
∩ Acj)

≤ P (
{
|F−1
a (τ̂a; ∆̂j)− σjk| ≥ t

}
∩ Aj) + P (Acj).

Recall that F−1(τa; ∆) is Lipschitz continuous on [−1, 1] with Lipschitz con-

stant L, we then have

P (
{
|F−1
a (τ̂a; ∆̂j)− σjk| ≥ t

}
∩ Aj)

= P (
{
|F−1
a (τ̂a; ∆̂j)− F−1(Fa(σjk; ∆̂j); ∆̂j)| ≥ t

}
∩ Aj)

≤ P ({L|τ̂a − F (r; ∆̂j)| > t} ∩ Aj)

≤ P ({L|τ̂a − Fa(σjk; ∆j)|+ L|Fa(σjk; ∆j))− F (r; ∆̂j)| > t} ∩ Aj)

≤ P ({L|τ̂a − Fa(σjk; ∆j)| >
t

2} ∩ Aj) + P ({L|Fa(σjk; ∆j))− F (r; ∆̂j)| >
t

2} ∩ Aj)

≤ P (L|τ̂a − Fa(σjk; ∆j)| >
t

2) + P ({L|Fa(σjk; ∆j))− F (r; ∆̂j)| >
t

2} ∩ Aj)

≡ I1 + I2.

Since τ̂a is a U-statistic with bounded kernel, it is immediate by Hoeffding’s

inequality that

I1 = P (L2|τ̂a − Fa(σjk; ∆j)| >
t

2) ≤ 2 exp
(
− nt2

2L2
2

)
.
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Let Φ21(x, y, t) = ∂Φ2(x,y,t)
∂x

, Φ31(x, y, z) = ∂Φ3(x,y,t)
∂x

, and Φ32(x, y, z) = ∂Φ3(x,y,t)
∂y

.

For I2, we have

|F (σjk; ∆j)− F (σjk; ∆̂j)|

=
∣∣∣∣∣
p−1∑
l=1

4Φ3(∆l
j,∆l+1

j , 0)− 2Φ(∆l
j)Φ(∆l+1

j )− 4Φ3(∆̂l
j, ∆̂l+1

j , 0) + 2Φ(∆̂l
j)Φ(∆̂l+1

j )
∣∣∣∣∣

≤
p−1∑
l=1

4
∣∣∣∣∣Φ3(∆l

j,∆l+1
j , 0)− Φ3(∆̂l

j, ∆̂l+1
j , 0)

∣∣∣∣∣+ 2
∣∣∣∣∣Φ(∆l

j)Φ(∆l+1
j )− Φ(∆̂l

j)Φ(∆̂l+1
j )

∣∣∣∣∣
≤ 4

p−1∑
l=1

(
Φ31(ζ1,l)|∆l

j − ∆̂l
j|+ Φ32(ζ2,l)|∆l+1

j − ∆̂l+1
j |

)

+ 2
p−1∑
l=1

(
Φ(∆̂l

j)φ(η1,l)|∆l+1
j − ∆̂l+1

j |+ Φ(∆̂l+1
j )φ(η2,l)|∆l

j − ∆̂l
j|
)

≤ 4
p−1∑
l=1

1√
2π
|∆l

j − ∆̂l
j|+

1√
2π
|∆l+1

j − ∆̂l+1
j |

+ 2
p−1∑
l=1

1√
2π
|∆l

j − ∆̂l
j|+

1√
2π
|∆l+1

j − ∆̂l+1
j |

= 6
p−2∑
l=2

√
2√
π
|∆l

j − ∆̂l
j|+

6√
2π
|∆1

j − ∆̂1
j |+

6√
2π
|∆p−1

j − ∆̂p−1
j |.

We now can establish the bound for I2:

I2 ≤ P ({6
p−2∑
l=2

√
2√
π
|∆l

j − ∆̂l
j|+

6√
2π
|∆1

j − ∆̂1
j |+

6√
2π
|∆p−1

j − ∆̂p−1
j | >

t

2L2
} ∩ Aj)

≤ P (
∣∣∣∣∣
∑n
i=1 I(Xij = 0)

n
− Φ(∆1

j)
∣∣∣∣∣ > t

√
2π

12L1L2(p− 1))

+ P (
∣∣∣∣∣
∑n
i=1 I(Xij ≤ p− 1)

n
− Φ(∆p−1

j )
∣∣∣∣∣ > t

√
2π

12L1L2p
)

+
p−1∑
l=2

P (
∣∣∣∣∣
∑n
i=1 I(Xij ≤ l − 1)

n
− Φ(∆l

j)
∣∣∣∣∣ > t

√
2π

24L1L2p
)

≤ 2 exp(− 4nt2π
122L2

1L
2
2p

2 ) + 2 exp(− 4nt2π
122L2

1L
2
2p

2 ) + 2(p− 2) exp(− 4nt2π
242L2

1L
2
2p

2 )

≤ 2(p− 1) exp(− 4nt2π
242L2

1L
2
2p

2 ).
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So putting everything together we have

P (||F−1
a (τ̂a; ∆j)− σjk|| > t) ≤ 2(p− 1) exp

(
− 2M2n

L2
1

)
+ 2 exp

(
− nt2

2L2
2

)
+ 2(p− 1) exp(− 4nt2π

242L2
1L

2
2p

2 )

implying that

P (sup ||Σ−R|| > t) ≤
∑
j,k

P (||F−1
a (τ̂a; ∆j)− σjk|| > t)

≤ 2d2p exp
(
− 2M2n

L2
1

)
+ 2d2 exp

(
− nt2

2L2
2

)
+ 2d2p exp(− 4nt2π

242L2
1L

2
2p

2 ).

Therefore at fixed p, taking t = C
√

log d
n

we have

P (sup ||Σ−R|| < C

√
log d
n

) > 1− d−1.

�

A.5 Proof of Corollary 3.1

Proof. By Lipschitz continuity of Φ−1(·) in [Φ(−2M),Φ(2M)], we know that under

the event Aj,1 = {|∆̂1
j | ≤ 2M}, there exists a Lipschitz constant L1 such that

|∆̂1
j −∆1

j | =
∣∣∣∣∣Φ−1

(∑n
i=1 I(Xij = 0)

n

)
− Φ−1(Φ(∆1

j))
∣∣∣∣∣

≤ L1

∣∣∣∣∣
∑n
i=1 I(Xij = 0)

n
− Φ(∆1

j)
∣∣∣∣∣.
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The exception probability is controlled by

P (Acj,1) = P (|∆̂1
j | > 2M)

≤ P (|∆̂1
j | − |∆1

j | > M)

≤ P (|∆̂1
j −∆1

j | > M)

≤ P

(∣∣∣∣∣
∑n
i=1 I(Xij = 0)

n
− Φ(∆1

j)
∣∣∣∣∣ > M

L1

)

≤ 2 exp
(
− 2M2n

L2
1

)
(by Hoeffding’s inequality).

Likewise, under Aj,2 = {|∆̂2
j | ≤ 2M}, we have

|∆̂2
j −∆2

j | ≤ L1

∣∣∣∣∣
∑n
i=1 I(Xij ≤ 1)

n
− Φ(∆2

j)
∣∣∣∣∣;

and

P (Acj,2) ≤ 2 exp
(
− 2M2n

L2
1

)
.

Now we define the event Aj =
2⋂
l=1

Aj,l, as a result we have

P (Acj) = P (
2⋃
l=1

Acj,l)

≤
2∑
l=1

P (Acj,l)

≤ 4 exp
(
− 2M2n

L2
1

)
.

For any t > 0, we have

P (|F−1
a (τ̂a; ∆̂1

j , ∆̂2
j)− σjk| ≥ t)

= P (
{
|F−1
a (τ̂a; ∆̂1

j , ∆̂2
j)− σjk| ≥ t

}
∩ Aj) + P (

{
|F−1
a (τ̂a; ∆̂1

j , ∆̂2
j)− σjk| ≥ t

}
∩ Acj)

≤ P (
{
|F−1
a (τ̂a; ∆̂1

j , ∆̂2
j)− σjk| ≥ t

}
∩ Aj) + P (Acj).

Recall that Fa(σjk; ∆1
j ,∆2

j) = 4Φ2(∆2
j , 0, σjk/

√
2)− 2Φ(∆2

j) + 4Φ3(∆1
j ,∆2

j , 0)−

2Φ(∆1
j)Φ(∆2

j) and

∂

∂r
4Φ2(∆2

j , 0, r/
√

2)− 2Φ(∆2
j) >

1
L2
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from [14], also we have ∂
∂r

Φ3(∆l−1
j ,∆l

j, 0) ≥ 0 from Lemma 3.3, so

∂

∂r
Fa(σjk; ∆1

j ,∆2
j) >

1
L2
,

implying Fa(σjk; ·) is Lipschitz-continuous in [−1, 1] with Lipschitz constant L2.

Then by Lipschitz continuity we have

P (
{
|F−1
a (τ̂a; ∆̂1

j , ∆̂2
j)− σjk| ≥ t

}
∩ Aj)

= P (
{
|F−1
a (τ̂a; ∆̂1

j , ∆̂2
j)− F−1

a (Fa(σjk; ∆̂1
j , ∆̂2

j); ∆̂1
j , ∆̂2

j)| ≥ t
}
∩ Aj)

≤ P ({L2|τ̂a − F (r; ∆̂1
j , ∆̂2

j)| > t} ∩ Aj)

≤ P ({L2|τ̂a − Fa(σjk; ∆1
j ,∆2

j)|+ L2|Fa(σjk; ∆1
j ,∆2

j))− Fa(σjk; ∆̂1
j , ∆̂2

j)| > t} ∩ Aj)

≤ P ({L2|τ̂a − Fa(σjk; ∆1
j ,∆2

j)| >
t

2} ∩ Aj)

+ P ({L2|Fa(σjk; ∆1
j ,∆2

j))− Fa(σjk; ∆̂1
j , ∆̂2

j)| >
t

2} ∩ Aj)

≤ P (L2|τ̂a − Fa(σjk; ∆1
j ,∆2

j)| >
t

2)

+ P ({L2|Fa(σjk; ∆1
j ,∆2

j))− Fa(σjk; ∆̂1
j , ∆̂2

j)| >
t

2} ∩ Aj)

≡ I1 + I2.

Since τ̂a is a U-statistic with bounded kernel, it is immediate by Hoeffding’s

inequality that

I1 = P (L2|τ̂a − Fa(σjk; ∆1
j ,∆2

j)| >
t

2) ≤ 2 exp
(
− nt2

2L2
2

)
.

Let Φ21(x, y, t) = ∂Φ2(x,y,t)
∂x

, Φ31(x, y, z) = ∂Φ3(x,y,t)
∂x

, and Φ32(x, y, z) = ∂Φ3(x,y,t)
∂y

.

For I2, we have
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|Fa(σjk; ∆1
j ,∆2

j))− Fa(σjk; ∆̂1
j , ∆̂2

j)|

≤ 4|Φ2(∆2
j , 0, σjk/

√
2)− Φ2(∆̂2

j , 0, σjk/
√

2)|+ 2|Φ(∆2
j)− Φ(∆̂2

j)|

+ 4|Φ3(∆1
j ,∆2

j , 0)− Φ3(∆̂1
j , ∆̂2

j , 0)|+ 2|Φ(∆1
j)Φ(∆2

j)− Φ(∆̂1
j)Φ(∆̂2

j)|

≤ 4Φ21(ζ1)|∆2
j − ∆̂2

j |+ 2φ(ζ2)|∆2
j − ∆̂2

j |+ 4Φ31(ζ3)|∆1
j − ∆̂1

j |+ 4Φ32(ζ4)|∆2
j − ∆̂2

j |

2Φ(∆̂1
j)φ(ζ5)|∆2

j − ∆̂2
j |+ 2Φ(∆̂2

j)φ(ζ6)|∆1
j − ∆̂1

j |.

It has been shown that Φ21(x, y, t) ≤ 1√
2π from [14] . For the upper bound of

Φ31(x, y, z), we know that the conditional distribution of (Y, Z) given X is bivariate

normal:

Y, Z|X = x ∼ N

( 0
xσjk√

2

 ,
 1 −σjk/

√
2

−σjk/
√

2 1


)
.

Let φ2(y, z|x) denote the density function for the conditional distribution, and

Φ2(y, z|x) denote the distribution function. Therefore

Φ3(∆1
j ,∆2

j , 0) =
∫ ∆1

j

−∞

∫ ∆2
j

−∞

∫ 0

−∞
φ2(y, z|x)φ(x)dzdydx =

∫ ∆1
j

−∞
Φ2(∆2

j , 0|x)φ(x)dx

hence

Φ31 =
∂Φ3(∆1

j ,∆2
j , 0)

∂∆1
j

= ∂

∂∆1
j

∫ ∆1
j

−∞
Φ2(∆2

j , 0|x)φ(x)dx = Φ2(∆2
j , 0|∆1

j)φ(∆1
j) ≤

1√
2π

and

|Fa(σjk; ∆1
j ,∆2

j))− Fa(σjk; ∆̂1
j , ∆̂2

j)| ≤
12√
2π
|∆2

j − ∆̂2
j |+

6√
2π
|∆1

j − ∆̂1
j |.

As a result, the upper bound for I2 is established:

I2 ≤ P ({ 12√
2π
L2|∆2

j − ∆̂2
j |+

6√
2π
L2|∆1

j − ∆̂1
j | >

t

2} ∩ Aj)

≤ P (
∣∣∣∣∣
∑n
i=1 I(Xij ≤ 1)

n
− Φ(∆2

j)
∣∣∣∣∣ > t

√
2π

48L1L2
) + P (

∣∣∣∣∣
∑n
i=1 I(Xij = 0)

n
− Φ(∆1

j)
∣∣∣∣∣ > t

√
2π

24L1L2
)

≤ 2 exp(− nt2π

482L2
1L

2
2
) + 2 exp(− nt2π

242L2
1L

2
2
).
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So putting together we have

P
(∣∣∣F−1

a (τ̂a; ∆̂1
j , ∆̂2

j)− σjk
∣∣∣ > t

)
≤ 4 exp

(
− 2M2n

L2
1

)
+ 2 exp

(
− nt2

2L2
2

)
+ 2 exp(− nt2π

482L2
1L

2
2
) + 2 exp(− nt2π

242L2
1L

2
2
).

�

A.6 Proof of Lemma 4.1

Proof. The 1st-order Taylor expansion gives rise to

E(τ̂ bjk) = E
[

C −D√[(
n
2

)
− tXj

][(
n
2

)
− tXk

]
]

≈ E(C −D)

E
(√[(

n
2

)
− tXj

][(
n
2

)
− tXk

])
=

2
[
Φ2(∆j,∆k, σjk)− Φ(∆j)Φ(∆k)

]
√1− pj

√
1− pk

where pj is the probability of getting a tied pair at Xj, and likewise for pk.

We know that

1− pj = P ([(1, xik)(0, xi′k)]) + P ([(0, xik)(1, xi′k)])

= 2P ([(1, xik)(0, xi′k)])

= 2
[
Φ(∆j)

(
1− Φ(∆j)

)]
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and likewise 1− pk = 2
[
Φ(∆k)

(
1−Φ(∆k)

)]
. Combining these results, we have

Fb(σjk; ∆j,∆k) = Φ2(∆j,∆k, σjk)− Φ(∆j)Φ(∆k)√
(Φ(∆j)− Φ(∆j)2)(Φ(∆k)− Φ(∆k)2)

.

�

A.7 Proof of Lemma 4.2

Proof. Since Xk is continuous, we do not need to consider tieing at Xk. Therefore,

the bridge function is easily derived as

E(τ̂ bjk) = E
[

C −D√[(
n
2

)
− tXj

][(
n
2

)]
]

≈ E(C −D)

E
(√[(

n
2

)
− tXj

][(
n
2

)])
= 4Φ2(∆j, 0, σjk/

√
2)− 2Φ(∆j)√1− pj

= 4Φ2(∆j, 0, σjk/
√

2)− 2Φ(∆j)√
2(Φ(∆j))− 2(Φ(∆j))2

where in the second last step we adopt the result from Kendall’s τa version bridge

function in [14] and the last step uses the result derived in A7.

�

92



A.8 Proof of Lemma 4.3

Proof. 2nd order Taylor expansion gives:

E(Y/X) ≈ µY
µX

+ σ2
X

µY
µ3
X

− σXY
µ2
X

= µY
µX

+ 1
µ2
X

(
σ2
X

µY
µX
− ρσXσY

)
.

Therefore we have

E(τ̂ bjk) = E(

∑
1≤i<i′≤n

(Xij −Xi′j)sign(Xik −Xi′k)√(
n
2

)
−∑i

(
ni+

2

)√(
n
2

) )

= E(

√(
n
2

)
τ̂ajk√(

n
2

)
− T

)

≈

√(
n
2

)
E[τ̂ajk]

E[
√(

n
2

)
− T ]

+ 1[
E[
√(

n
2

)
− T ]

]2

[(
n

2

)
var

(√√√√(n
2

)
− T

) √(
n
2

)
E[τ̂ajk]

E[
√(

n
2

)
− T ]

− cov
(√√√√(n

2

)
τ̂ajk,

√√√√(n
2

)
− T

)]
.

We compute each part separately. First, note that E[τ̂ajk] can be directly

adopted from [14], namely

E[τ̂ajk] = E
[ ∑

1≤i<i′≤n
(Xij −Xi′j)sign(Xik −Xi′k)

]

= 4Φ2(∆j, 0, σjk/
√

2)− 2Φ(∆j).

For E
[√(

n
2

)
− tXj

]
, we know that the number of ties are

(
n0
2

)
+
(
n1
2

)
where
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n0 is the number of Xij = 0 for i = 1, . . . , n and n1 is the number of Xij = 1 for

i = 1, . . . , n. Also recall that P(Xij = 0) = Φ(∆j), therefore we have

E

[√√√√(n
2

)
− T

]
= E

[√√√√(n
2

)
−
(
n0

2

)
−
(
n1

2

)]

=
n∑

n0=0

[√√√√(n
2

)
−
(
n0

2

)
−
(
n− n0

2

)](
n

n0

)(
Φ(∆j)

)n0(1− Φ(∆j)
)n−n0

and consequently

var
[√√√√(n

2

)
− T

]
= E

[(
n

2

)
− T

]
− (E

[√√√√(n
2

)
− T

]
)2

=
(
n

2

)(
2Φ(∆j)− 2[Φ(∆j)]2

)
− (E

[√√√√(n
2

)
− T

]
)2.

As for cov
(√(

n
2

)
τajk,

√(
n
2

)
− T

)
, we know that τajk = C−D

(n2)
, and

(
n
2

)
− T =

C +D, so we can instead compute

cov
(

(C −D),
√
C +D

)
= E[(C −D)

√
C +D]− E(C −D)E[

√
C +D]

= E[(C −D)
√
C +D]− E(C −D)E[

√
C +D]

where we can compute E(
√

(C −D)(C2 −D2)) from the fact that (C,D) fol-

lows a multinomial distribution with parameters

pC = 2P[(Xij = 0, Xi′j = 1, (Xik −Xi′k)/
√

2 < 0)]

= 2[Φ2(∆j, 0, σjk/
√

2)− Φ3(∆j,∆j, 0)]

and

pD = 2P[(Xij = 1, Xi′j = 0, (Xik −Xi′k)/
√

2 < 0)]

= 2[Φ2(∆j, 0,−σjk/
√

2)− Φ3(∆j,∆j, 0)]
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so

E[(C−D)
√
C +D] =

∑
(C,D)∈S

(C−D)
√
C +D

(
n
2

)
C!D!

((
n
2

)
− C −D

)
!
pCCp

D
D(1−pC−pD)(

n
2)−C−D

with the sample space of (C,D) being S = {(C,D) : C ∈ Z+, D ∈ Z+, C+D ≤

n}.

Putting these together, we have

cov
(√√√√(n

2

)
τajk,

√√√√(n
2

)
− tXj

)

=
∑

(C,D)∈S

{
(C −D)

√
(C +D)

√(
n
2

)
C!D!

((
n
2

)
− C −D

)
!
·

pCCp
D
D(1− pC − pD)(

n
2)−C−D

}
−

√√√√(n
2

)
E(τ̂ajk)E

[√√√√(n
2

)
− tXj

]
.

�
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APPENDIX B

CHAPTER 3 OF APPENDIX

B.1 Proof of Theorem 2

Proof. Before we prove the theorem, we adapted the following lemmas from [10]

regarding the theoretical properties of the Kendall’s tau based estimator, Σ̂, of the

correlation/covariance matrix.

Lemma 8 (Adapted results from [22], [59],[46]). The Kendall’s tau based corre-

lation/covariance matrix estimator Σ̂ in Equation (3.6) has the following concen-

tration rates under different norms:

1.

P ( sup
1≤j<k≤d

|Σ̂jk − Σjk| <∼

√
log d
n

) ≥ 1− p−1;

2. If the covariance matrix has a bounded condition number, namely κ(Σ) < M

for some M > 0, then

P (||Σ̂− Σ||2 <∼ max{
√
d+ t

n
,
d+ t

n
}) ≥ 1− e−t;

3. If certain sub-matrices of Σ has a bounded condition number that κ(ΣS) ≤Ms

where S ⊂ {1, . . . , n} such that S has cardinality s (the sparsity level of β),

then

P (||Σ̂− Σ||2,s <∼

√
s log d
n

) ≥ 1− p−s

In addition, we consider the following lemma ([35], [10]) about the convergence

of optimal solution to convex programs:

96



Lemma 9. If the loss function

L(β) = βT Σ̂X̃X̃β − 2Σ̂T
X̃Ỹ β + 1

satisfies RSC,

δL(∆,β) : = L(β + ∆)− L(β)−∆T (5(β) ≥ κL||∆||22 (B.1)

for some κL > 0 and ∆ ∈ {∆ ∈ Rp : ||∆Sc ||1 ≤ α||∆S||1, |S| ≤ s}, then for

λ ≥ ||5L(β)||∞, any optimal solution β̂(λ) to the convex program in (3.9) satisfies

||β̂ − β||2 <∼
√
sλ, ||β̂ − β||1 <∼ sλ.

Therefore, to prove Theorem 2, it is sufficient to verify (B.1). However, by

definition of δL(∆,β),

δL(∆,β) = L(β + ∆)− L(β)−∆T (5L(β))

= (β + ∆)T Σ̂X̃X̃(β + ∆)− 2Σ̂T
X̃Ỹ (β + ∆)− βT Σ̂X̃X̃β + 2Σ̂T

X̃Ỹ β

−∆T (2Σ̂X̃X̃β − 2Σ̂T
X̃Ỹ )

= ∆T Σ̂X̃X̃∆

hence it boils down to prove ∆T Σ̂X̃X̃∆ ≥ κL||∆||22 for some λ ≥ || 5 L(β)||∞. We

first consider another lemma that further simplifies the proof, followed by providing

a satisfactory lower bound of λ.

Lemma 10 ([51], [10]). Let δ ∈ (0, 1
5) and k0 = 3. Then there exists a constant

C0 independent with n, p, s such that s̃ = C0s and let E(s̃) = {ω ∈ Rp : ||ω||0 = s̃}

for s̃ < d and E = Rp otherwise. If Σ̂X̃X̃ satisfies

(1− δ)||ω||22 ≤ ωT Σ̂X̃X̃ω ≤ (1 + δ)||ω||22

for all ω ∈ E(s̃), then for any ω ∈ {θ ∈ Rp : ||θSc||1 ≤ α||θS||1, |S| ≤ s},

(1− 5δ)||ω||22 ≤ ωT Σ̂X̃X̃ω ≤ (1 + δ)||ω||22.
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Therefore it is sufficient to show ∆T Σ̂X̃X̃∆ ≥ (1 − δ)||∆||22 for ∆ ∈ E(s̃) and

some δ ∈ (0, 1
5). Now recall lemma 8 about the convergence rate of Σ̂ under s-

restricted spectral norm under the assumption that κ(ΣS) ≤ M , with probability

at least 1− p−2, we have

∆T Σ̂X̃X̃∆ = |∆TΣX̃X̃∆ + ∆T (Σ̂X̃X̃ − ΣX̃X̃)∆|

≥ |∆TΣX̃X̃∆| − |∆T (Σ̂X̃X̃ − ΣX̃X̃)∆|

≥ |∆TΣX̃X̃∆| − ||Σ̂X̃X̃ − ΣX̃X̃ ||2,s̃||∆||22

≥ |∆TΣX̃X̃∆| −
√
C0s log d

n
||∆||22lemma 8

≥ γ1||∆||22 −
√
C0s log d

n
||∆||22.

where the second inequality arises from the fact that the spectral norm of a sub-

matrix is bounded by the spectral norm of the whole matrix, and the last inequality

is obtained under RSC assumption on Σ (Definition 4). Therefore, as s log d/n→

0, (B.1) holds. We now give the lower bound of λ such that λ ≥ || 5 L(β)||∞.

Note that
1
2 || 5 L(β)||∞ = ||Σ̂X̃X̃β − Σ̂X̃Ỹ ||∞ = ||Σ̂X̃X̃Σ−1

X̃X̃
ΣX̃Ỹ − Σ̂X̃Ỹ ||∞

= ||(Σ̂X̃X̃ − ΣX̃X̃)Σ−1
X̃X̃

ΣX̃Ỹ + ΣX̃Ỹ − Σ̂X̃Ỹ ||∞

= ||(Σ̂X̃X̃ − ΣX̃X̃)β + ΣX̃Ỹ − Σ̂X̃Ỹ ||∞

≤ ||(Σ̂− Σ)(1,−βT )T ||∞

≤ sup |Σ̂− Σ|||(1,−βT )T ||1

≤
√

log p
n

(1 + ||β||1) ≤
√

log p
n

(1 +
√
s||β||2)

=
√

log p
n

(1 +
√
s||Σ−1

X̃X̃
ΣX̃Ỹ ||2)

≤
√

log p
n

(1 +
√
s||Σ−1

X̃X̃
||2||ΣX̃Ỹ ||2)

≤
√
s log p
n

M.
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Therefore, with λ ≥ 2M
√

s log p
n

, we have with probability at least 1− p−1 that

||β̂(λ)− β||2 <∼
√
sλ <∼

√
s log p
n

and ||β̂(λ)− β||1 <∼ sλ <∼ s

√
log p
n

as s log p/n→ 0. �

B.2 Proof of Theorem 3

Proof. We start with adapting the following lemma from [38] that establishes the

concentration rate of f̂Y .

Lemma 11 (Adapted results from [38]). For any γ ∈ (0, 1), t ∈ In where

In := [f−1
Y (−

√
2γ log n), f−1

Y (
√

2γ log n)],

it holds for f̂Y that

P (sup
t∈In
|f̂i(t)− fi(t)| ≥ ε) ≤ 2 exp(− n1−γ

32π2γ log nε
2) + exp(− n1−γ

16πγ log n).

By Lemma 11 and Boole’s inequality, we have

P ( max
i∈{0,...,d}

|f̂i(t)−fi(t)| ≥ ε) ≤ 2 exp(log p− n1−γ

32π2γ log nε
2)+exp(log p− n1−γ

16πγ log n)

for t ∈ In, for any γ ∈ (0, 1).

By taking ε =
√

64π2γ logn log p
n1−γ , then with probability at least 1− p−1,

max
i∈{0,...,p}

|f̂i(t)− fi(t)| <∼

√
γ log n log p

n1−γ

Recall that maxi∈{1,...,p} Fi(x∗i ) ∈ (δ?, 1 − δ?), therefore there exists some con-

stant M? > 0 such that maxi∈{0,...,p} fi(x?i ) = maxi∈{0,...,d}Φ−1(Fi(x?i )) < M?. Since
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fY (µ?) < M , by letting γ = M2
?

logn , we have with probability at least 1− p−1,

|f̂Y (f−1
Y (

d∑
i=1

f̂i(x?i )β̂(λ)i))− fY (f−1
Y (

d∑
i=1

f̂i(x?i )β̂(λ)i))| <∼

√
log p
n

(B.2)

Furthermore, we have the following holds

|µ? − µ̂?|

= |f̂Y
−1(

d∑
i=1

f̂i(x?i )β̂(λ)i)− f−1
Y (

d∑
i=1

fi(x?i )β(λ)i)|

≤ |f̂Y
−1(

d∑
i=1

f̂i(x?i )β̂(λ)i)− fY −1(
d∑
i=1

f̂i(x?i )β̂(λ)i)|+ |fY −1(
d∑
i=1

f̂i(x?i )β̂(λ)i)− f−1
Y (

d∑
i=1

fi(x?i )β(λ)i)|

≤ |f̂Y
−1(

d∑
i=1

f̂i(x?i )β̂(λ)i)− fY −1(
d∑
i=1

f̂i(x?i )β̂(λ)i)|+
1
c
|
d∑
i=1

f̂i(x?i )β̂(λ)i −
d∑
i=1

fi(x?i )β(λ)i|

:= L1 + L2

where the last inequality is due to Lipschitz continuity of fY with constant c.

We next look at the two parts L1 and L2 respectively.

L2 = |
d∑
i=1

f̂i(x?i )β̂(λ)i −
d∑
i=1

fi(x?i )β(λ)i|

≤ |
d∑
i=1

f̂i(x?i )β̂(λ)i −
d∑
i=1

fi(x?i )β̂(λ)i|+ |
d∑
i=1

fi(x?i )β̂(λ)i −
d∑
i=1

fi(x?i )β(λ)i|

≤
d∑
i=1
|β̂(λ)i(f̂i(x∗i )− fi(x∗i ))|+

d∑
i=1
|fi(x?i )| · |β̂(λ)i − β(λ)i|

≤
d∑
i=1
|β̂(λ)i| · max

i∈{0,...,p}
|f̂i(t)− fi(t)|+

d∑
i=1
|fi(x?i )| · ||β̂(λ)− β||1

= ||β̂(λ)||1 max
i∈{0,...,p}

|f̂i(t)− fi(t)|+
d∑
i=1
|fi(x?i )| · ||β̂(λ)− β||1

(by results of Theorem 2 and the assumption that max
i∈{0,...,p}

fi(x?i ) < M?)

<∼ (||β||1 + s

√
log p
n

) max
i∈{1,...,p}

|f̂i(t)− fi(t)|+ ||β̂(λ)− β||1

≤ (s||β||2 + s

√
log p
n

) max
i∈{1,...,p}

|f̂i(t)− fi(t)|+ ||β̂(λ)− β||1

<∼ s

√
log p
n
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Before looking at L1, we make the following claim to help with analyzing L1.

Claim 1 (Adapted from [10]). For two monotonically increasing functions g1 and

g2, if |g1(g−1
1 (t))−g2(g−1

1 (t))| < c1 for some t ∈ R and c1 > 0, and if g2 is Lipschitz

continuous with constant c2 > 0, namely |g2(v1)− g2(v2)| ≥ c2|v1 − v2|, then

|g−1
1 (t)− g−1

2 (t)| ≤ c1

c2
.

This can be proved by contradiction: if |g−1
1 (t)− g−1

2 (t)| > c1
c2

then

|g1(g−1
1 (t))− g2(g−1

1 (t))| = |g1(g−1
1 (t))− g2(g−1

2 (t)) + g2(g−1
2 (t))− g2(g−1

1 (t))|

≥ |g1(g−1
1 (t))− g2(g−1

2 (t))|+ |g2(g−1
2 (t))− g2(g−1

1 (t))|

> c2 ·
c1

c2
+ 0

= c1

where contradiction arises.

Using the claim, we can see that

L1 = |f̂Y
−1(

d∑
i=1

f̂i(x?i )β̂(λ)i)− fY −1(
d∑
i=1

f̂i(x?i )β̂(λ)i)|

≤ |f̂Y (f−1
Y (

d∑
i=1

f̂i(x?i )β̂(λ)i))− fY (f−1
Y (

d∑
i=1

f̂i(x?i )β̂(λ)i))|

<∼

√
log d
n

Combining the results, we have

L1 + L2 <∼ s

√
log d
n

,

hence we complete the proof. �
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APPENDIX C

CHAPTER 4 OF APPENDIX

The following proof is largely inspired by the original Scout paper [61].

C.1 Proof to Theorem 4

Proof. Since q1 = 2 and λ1 > 0, we want to find Θ̂X̃X̃ that maximizes

log(det ΘX̃X̃)− tr(Σ̂X̃X̃ΘX̃X̃)− ‖ΘX̃X̃‖2. (C.1)

Recall that d log det A
dA = A−1 for A � 0 and d tr AB

dB = A, then assuming Σ̂X̃X̃ � 0

the derivative of the objective function (C.1) is given by

Θ−1
X̃X̃
− Σ̂X̃X̃ − 2λ1ΘX̃X̃ . (C.2)

Therefore the solution to (C.1) solves

Θ−1
X̃X̃
− 2λ1ΘX̃X̃ = Σ̂X̃X̃ . (C.3)

It implies that ΘX̃X̃Σ̂X̃X̃ = Σ̂X̃X̃ΘX̃X̃ hence Σ̂X̃X̃ and ΘX̃X̃ share the same eigen-

vectors. Then we could write ΘX̃X̃ = VDΘVT and Σ̂X̃X̃ = VDΣVT where

V ∈ Rp is the matrix of eigen-vectors and DΘ,DΣ are p × p diagonal matrices

of the corresponding eigen-values of ΘX̃X̃ and Σ̂X̃X̃ , respectively. Hence (C.3) is

equivalent to
1

(DΘ)ii
− 2λ1(DΘ)ii = (DΣ)ii (C.4)

which can be exactly solved by (DΘ)ii =
(
− (DΣ)ii +

√
(DΣ)2

ii + 8λ1
)
/4λ1 which

can be rearranged to

(DΘ)ii = 2
(DΣ)ii +

√
(DΣ)2

ii + 8λ1
. (C.5)
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And the inverse of ΘX̃X̃ can then be obtained after simply taking the inverse

of (DΘ)ii:

Θ−1
X̃X̃

= VD−1
Θ VT

,

where D−1
Θ is a p× p diagonal matrix with the i-th diagonal entry as 1

2

(
(DΣ)ii +

√
(DΣ)2

ii + 8λ1

)
, hence we complete the proof.

�
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