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Abstract

Several balancing problems of the following general form are
considered. A family % of configurations P is specified along with a
function B: # > R_U {»} that indicates the "balance” of each P € $. A
specified perturbation operation induces an equivalence relation, or
neighborhood structure, on %. The central question is whether every
P € $ has a well-balanced neighbor. Typically % consists of sets of
points in a Euclidean space, possibly with some additional restrictions,
and the perturbation operation is reflection of a point through the origin.
The function S indicating balance might involve the disposition of P
with respect to hyperplanes, or the location of the centroid of P. This
work was motivated by an interpretation of the chrqmatic number problem in
graph theory as such a balancing problem, by means of Minty’s

characterization of the chromatic number.



1. Introduction

This paper examines several different problems concerned with
balancing arrangements of points. We begin with two examples. The first
example, though simple, conveys the spirit of the collection of balancing
problems examined here. The second example is more difficult; it is a main

focus of this work.

Example 1. Suppose that n couples, (fl'ml)""’(fn’mn) are seated at a
circular table with 2n seats. An arc 4 of the table is a contiguous
subset of the 2n seats. The discrepancy of the seating arrangement on
arc o 1is the absolute value of the difference between the number of
females (fi’s) and males (mi’s) seated on arc «. Say that the seating
arrangement is well-balanced along arc o if the discrepancy on arc o is

small. The seating arrangement is well-balanced if it is well-balanced

along every arc. There is no reason to expect that an arbitrary seating
arrangement is well-balanced. Suppose, however, that we permit certain
perturbations of the original arrangement in an effort to achieve balance.
In particular, suppose for each i = 1,...,n, we permit fi and m, to
swap seats. Can we then be certain that a well-balanced arrangement can be
achieved? In Section 8 we show that for every choice of n and an initial
arrangement, there is an arrangement that arises from such swaps with

discrepancy at most two on every arc. This is best possible.

Example 2. Let P be a finite (multi-) set of points in Rd. Given a

nonzero vector h € Rd, say that P 1is well-balanced relative to the

hyperplane H = {x € Rd: th = 0} if the ratio




(1.1) lPnH|/|IPNH|

is small; here H and H denote the open halfspaces determined by

H, H = {x € R% h'x > 0} and H = {x € R%: h'x < 0}. The set P is

well-balanced if it is well-balanced relative to every hyperplane H in

ﬂd’ the set of hyperplanes through the origin in Rd. There is no reason
to expect an arbitrary P to be well-balanced. Suppose, however, that we
permit certain perturbations of the original arrangement P in order to
achieve balance. Specifically, for each p € P permit the replacement of
p by -p, 1its reflection through the origin. Of course, reflection
cannot help if there is some H € ﬂd such that [H N PI = ]Pl - 1; call

P degenerate if there exists such a hyperplane H. We prove in Section 3
that if P C Rd is full-dimensional (it spans Rd) and nondegenerate, and
d 2 2, then there is a choice of reflections such that the ratio (1.1) is
at most 2d-1 for every hyperplane H € ﬂd. Furthermore, in Section 4 we

exhibit choices of nondegenerate P in Rd, for all d 2 1, such that

for every choice of reflections there is some H € ﬁd with (1.1) at least

d+ [Bd ] - 2.

Examples 1 and 2 are similar in spirit to several other examples of
balancing problems analyzed in this paper. In each case there is a family
% of configurations, a map fB: % - R, U {»} that associates with each
configuration P an indicator PB(P) of its balance (small B(P)
indicates balance, large pB(P) indicates imbalance), and a neighborhood
structure (equivalence relation) on % determined by some permissible

perturbation operations. For any P € #, its neighborhood (equivalence



class) N(P) 1is the subset of % reachable by iterating permissible

perturbations. In general our interest is in the value

+(P) = inf{B(P’'): P’ € N(P)}

associated with each P € ¥, and, especially in

v = sup{v(P): P € ¥}.

In Example 1 % 1is the set of pairs (&,e), where & is a
fixed-point-free involution on a set E of the form E = {1,2,...,2n},

and e: E » {-1,+1}, with

(1.2) e(j) + e(6(j)) =0 for all j € E.
The indicator of balance is B((5.€)) = max  {|3)_, e(®)]}. The
1¢i<j<on &

perturbation operation permits replacement of (6.e) € $ by (6,e’), with
e’ (i) = -e(i), €’(6(i)) = -e(6(i)) for some 1 i {(n, and e’(j) = e(j)
for all j # i, 86(i). So KN((8.e)) 1is the set of all (&,e) € # such
that e satisfies (1.2) with respect to &. Example 1 is discussed in
Section 8, along with some other examples.

In Example 2 there is a family %(d) for each choice of the
dimension d. %(d) is the set of all full dimensional, nondegenerate,
finite subsets of Rd, The balance indicator B 1is given by

B(P) = sup {IH+ N P|/|H N P|}. Since the perturbation operation is
He#
d



reflection of a point p € P € $(d) through the origin,
N(P) = {ePle: P » {-1,+1}}. Here €eP is shorthand for {e(p)p|p € P}.
Example 2 is discussed in Sections 2-5, where we prove that for each

d 22, ~(d) = sup inf B(P’) satisfies
PeP(d) P’eN(P)

d+ [v2d ] - 2 < ~(d) € 2d-1.

This example is related to the densest hemisphere problem, shown by Johnson
and Preparata [15] to be NP-complete.

Imre Bérény pointed out to us a similarity between this result and a
result of Larman [16] concerning the following problem of McMullen. For
each positive integer d, what is the greatest positive integer wv(d)
such that for any set S of v(d) points in general position in Rd
there is a permissible projective transformation T such that T(S) is
the vertex set of a convex polytope? Larman conjectured that p(d) = 2d+1
for all d > 1, which would imply 4 = 2d-1 for all d > 2. Our lower
bound of d+ [v2d ] -2 on 74 (also discovered by Las Vergnas [17])

improves Larman’s upper bound on wv(d); our upper bound, <2d -1,

Tq
gives vp(d) > 2d + 1, which coincides with Larman’s lower bound on wv(d).
The relationship of Example 2 with this and other problems is discussed in
Sections 2-4.

Some variations on Example 2 arise by restricting further the choice

of %, and by defining B to be the supremum of (1.1) over a special

subset of %d, the generated hyperplanes. The chromatic number problem



arises in this way (see Section 6). This reinterpretation of Minty’s paper
[20] motivated this work.

Other variations on Example 2 arise by: re-defining p(P) to be the
minimum distance over all P’ € N(P) from the centroid of P’ to the
origin (this problem can be regarded to be a multi-dimensional generali-
zation of the number partition problem [11,SP12]); or by re-defining %(d)
to be ordered subsets of Rd, permitting interchanges as well as
reflections, and taking B(P) to be the maximum of the distances from the
centroid of each initial sequence to the origin. These variations are
discussed in Section 7. They are related to [1,3,4,21,24-28].

Section 8 concerns several examples that either come from graphs, or,
as in Example 1, employ graph-theoretic tools in the determination of a
well~-balanced neighbor.

The balancing problems addressed here are related, in spirit, to work
in "discrepancy theory” (see [3,4,18,23-28] and their references), and, as
noted in the relevant passages, some of the results are variations on
earlier work.

It is assumed that the reader knows some elementary graph theory. The
notation is mostly standard. Given a vector x = (xl"°"Xn) € R® denote
by S+(x) the positive support of x, S+(x) = {j: X, > 0}, by S (x)
the negative support of x, S (x) = {j: Xj < 0}, and by S(x) the
support of x, S(x) = S+(x) US (x). Given S CR", conv(S) denotes the

convex hull of S.

. . . d .
2. Balancing points in R with respect to hyperplanes

This section elaborates on Example 2 of the introduction. There are

several equivalent formulations of this problem, and, at times, it will be



convenient to appeal to formulations other than that given in the
introduction. So we begin with a discussion of those formulations. Let

the dimension d be fixed.

. . d
Sets of points in R

Let ?l(d) be the set of all finite P C Rd satisfying the condition

(2.1) IPAH| < [P| -2 for every choice of O # h € R

and H = {x € Rd: th = 0}.

Note that (2.1) implies that P 1is full-dimensional and nondegenerate.
Let ﬁl be given by

(2.2) B, (P) = sup{(|[PNH|/|[PNH]): he R, h = 3} (V P €% (d)),

where H' = {x € R%|h'x > 0} and H = {x € R%: hlx < O}. We interpret
(2.2) to mean pB,(P) = += if for some h, H NP=¢. Although h
ranges over Rd\{O} in (2.2), it should be clear that the supremum is

attained. Finally for each P € @1(d) we define

(2.3) 1, (P) = inf{Bl(eP)lez P> {-1,+1}}, (VP € % (d))
and
(2.4) ~v(d) = sup{vl(P)lP €% (d)}.

It is clear that the infimum in (2.3) is attained. That the supremum in

(2.4) is attained will be established in Section 3.



Note that in our concern with Wl(P) and ~(d), we could restrict

@l(d) to finite (multi-) sets on the unit sphere Sd“1

in Rd satisfying
(2.1). Any p € P at the origin does not contribute to the numerator or
denominator of any of the ratios in (2.2). Furthermore, vl(P) is

invariant under nonzero scaling of each p € P.
(2.5) Theorem. For each d > 1, «(P) < [P| -1 for all P € % (d).
Proof. lLet P = (pl"'°’pn) € 91(d).

Think of P as a dxn matrix with no column of all zeros. For each
nonzero h € Rd, the ratio |H+ N P|/|H N P| 1is just the ratio of the
number of positive entries, |S+(y)|, to the number of negative entries
ST (y)| in the vector y = h'P in the row space R(A) of A.

Furthermore, every nonzero vector y in ®%(A) arises as y = hTA for some

hyperplane H = {x € E%: hlx = 0}, and |6 N P|/|H nP| =
[S+(y)[/|S“(y)|. The nondegeneracy assumption guarantees that there is
some z € R® such that Az = 8 and zj #0, j=1,...,n. Choosing
e(Pj) =+1 if z; >0 and e(Pj) = -1 if z; < O produces eP, which
has a dependence relation (eP); = 6, where ;j = e(pj)zj >0 for
j=1,...,n. Therefore the only nonnegative vector in ®*(eP) is the zero

vector. Hence 71(P) < |P] -1 for all Pe 91(d). o

The approach employed in the proof of Theorem 2.5 leads immediately to a
reformulation of the original problem involving yl(d) to a problem

involving d-dimensional subspaces of R™.



d-dimensional subspaces of Euclidean spaces

Let @2(d) be the set of d-dimensional vector subspaces AU of
Euclidean spaces R®, over all finite n, satisfying the nondegeneracy
condition
(2.6) [{3i: Xg # 0}| >2 for all x €A, x # O.

Let ﬁzi @2(d) - R_U {+»} be given by

62(P) = sup{|S+(x)|/|S“(x)|: X €U, x # 8}.

For % € ?2 denote by n(%) the number of coordinates on which A is

defined and, given e: {1,...,n(%)} - {-1,+1}, let €% denote
{(e(l)xl,...,e(n)xn)](xl,...,xn) € AU} € gz(d). Finally let
15 (%) = inf{ﬁ2(em)le: {1,....,n(%)} - {~1,+1}}.

The next reformulation essentially takes the balancing problem in
@1(d) and projects it into Rd—l.

Signed Subsets of Rd‘l

A signed subset Q of Rd can be regarded to be a map
Q: R* - {-1,0,+1}. We denote by Q+ and Q , respectively, the subsets
Q" = {x € R™ Q(x) = +1}, Q = {x € R*: Q(x) = -1}, and by Q the

underlying set Q = Q+ UQ . Sucha signed subset Q of R® is sometimes

regarded to be a two-colored subset of R™; the elements of Q+ are, say,
red, and the elements of Q are, say, blue. Say that Q is finite if Q

is finite.



Let @B(d—l), d 2 2, be the set of all finite signed subsets Q of

Rd_l satisfying

1 1 #0, reR and

K={x¢€ Rd_llth = r}.

(2.7) lank| <ol -2 v her?®

Each nonzero h € Rd_l

Let K" = (xeR¥: nx>r}, K ={xe¢

and r € R, define a hyperplane K as in (2.7).

L h'x <r}, and let #, be
the set of all signed sets K that arise in this way. For each

Q € @B(d—l) define

B3(Q) = sup{|(K" Q") U (K N Q) I/ K ne") U K na)|: K ey
Given e: Q = {-1,+1}, let eQ denote the signed subset of Rd having
€Q = Q and eQ(x) = e(x)*Q(x) for all x € Q. For each Q € 93(d-1)
define 7,(Q) = inf{ﬁB(eQ)Iet Q > {-1,+1}}. Note that while p,(Q)
depends on the partition (Q+.Q—) of Q, 73(Q) depends only on Q. It
will occasionally be convenient to write 73(Q) for Q € @B(d—l).

There are other natural reformulations, e.g., one that arises by
interchanging the roles of points and hyperplanes in @B(d). However, the

three above will be adequate for present purposes.

(2.9) Proposition. (a) ~(d)
(b) ~(d)

sup{vz(P): P e yz(d)}, for all d > 1;

sup{wB(P)= P € 93(d-1)}, for all d > 2.
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A proof of (2.9a) followsnfrom showing that: (1) there is a natural
map associating with each P1 € @1(d) some P2 € ﬂz(d) having
B2(P2) = Bl(Pl); (2) there is another natural map associating with each
P2 € @2(d) some P1 € @l(d) having Bl(Pl) = 52(P2); and
(3) neighborliness is preserved under the maps of (1) and (2). Part (b) is
established similarly. This time the maps take P1 € yl(d) to some
P, € @B(d—l), and Py € 93(d—1) to some P, € gl(d)'
(a). Map P1 = (pl,...,pn) € @l(d) to the vector subspace of R"
generated by the rows of the dxn matrix (pl....,pn). Given P2 € @2(d),
represent P2 as the row space of a dx|P2| matrix A; map P2 to P1
whose points are the columns of A.
(b). Given P1 € @l(d) the associated P3€ @B(d) arises by first
choosing a hyperplane W in Rd that does not contain the origin and is
not parallel to any line determined by a nonzero vector of Pl' Let WO
be the translation of W so that W

0

into W via the projection through the origin. That is, for each nonzero

contains the origin. Now map P1

vector p of Pl’ let g be the intersection point of W and the line

determined by p. Let Q be the set of those images. Partition Q = 23

into Pg and Pg as follows: q € P; if the corresponding p € P1 is on

the same side of W, as W, and q € P3 otherwise. Similarly, given

0

P3 € @B(d) we can, essentially, invert the procedure above to "lift" P3

3). Regard the linear space spanned
d

by P3 in Rd_l to be an affine subspace W in R~ that does not

to a P1 € @1(d) with Bl(Pl) = ﬁB(P

~

contain the origin. Let P, be the subset of Rd corresponding in this

3
way to P3 C Rd—l. Let WO be the linear subspace obtained by translating
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W so that it hits the origin. Now for each q € P3 there are two points
of intersection of Sd_1 with the line in Rd generated by q--take p
to be the intersection point in the slice of Rd between W and WO if

q €P otherwise take p to be the other intersection point. The set of

33
points p arising in this way from q € P3 constitutes Pl'
3. An upper bound on ~(d)

This section begins with a proof of

Proposition 3.1. For all d 2 1, ~(d) € 2d.

Later the upper bound on ~{(d) will be improved to 2d-1 for all d > 2.

As noted earlier, there is no loss of generality in restricting @l(d)
to subsets of Sdﬂl. The argument that we will give to establish an upper
bound of 2d on ~(d) 1is geometric in spirit, and is, perhaps, more
easily visualized if one considers P € Pl(d) to be on the unit sphere.

First some notation. lLet e: P - {-1,+1}. Recall that eP denotes

the set {e(p)p: P € P}. For SCP let €S = {e(p)p: p € S}; we may

employ this notation even when e is not determined off of S.

Proof of (3.1).

Each minimal linearly dependent set S in Rd—l can be regarded to

be a (|S|-1)-dimensional simplex. We use the term simplex S to mean the
convex hull of the set S. The reflection operation permits us to
rearrange S to €S so that the unique (up to nonzero scalar multiples)
linear dependence relation on €S 1is positive everywhere. Geometrically,

this means that the rearranged simplex, €S, contains the origin in its
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relative interior, implying that every hyperplane H € ﬂd either contains
eS, or has at least one vertex of €S in each of H and H . If S
satisfies (2.1), then H cannot contain it, and 11(S) < [s]-1.
Obviously, if P € Ql(d) is a disjoint union of simplexes Sl""'ss’
then we can independently reflect a subset of each Si so that the newly
arranged eSi contain the origin in their relative interiors, giving

1 (P) < B (eP) < max{[s;|-1: 1 <1 < s} < d.

Let P € 91(d). Even if the set P 1is not a disjoint union of
simplexes, (2.1) guarantees that P contains at least one simplex Sl'
Clearly we can partition P as P = S1 u...u SS UI, where s 2 1,
each Si is a simplex, and I 1is linearly independent. In each block
Si’ fix e(p) over p € Si so that eSi contains the origin in its

relative interior. Equivalently, find a nontrivial dependence relation

Zpes x(p)p = 0O and for each p € Si set e(p) = +1 if x(p) > 0O and
i

e(p) = -1 if x(p) < 0. This fixes e(p) for all p € S;uU ... U SS.

Let H be a hyperplane {x € Rd: th = 6}. It follows from the
discussion above that for i = 1,...,s either (a) T = S1 Uu...u SS CH
or (b) eTNH #¢. If (b) holds, |eTNH'|/|eTNH | (d., vhich implies
that for arbitrary choices of e(p). p€ I, |eP N H+|/leP NH | <2d. So
the determination of appropriate e(p). p € I. to guarantee ﬁl(eP) < 2d

depends only on consideration of those hyperplanes H containing every

S., i=1,...,s.

(3.2a) H={x€R:

(3.2b) H Nel# .
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Note that the hypothesis in (3.2a), H 2 T, implies |H+ NneP| ¢ |1] < d,
and (3.2b) then implies [H+ N eP|/|H N eP| ¢ d-1. By the same argument
employed in the proof of Theorem 2.5, (3.2) is achieved by fixing each

e(p). p € I, according to the sign of z(p) in some vector 2z such that

(3.3) Pz =0, and z(p) #0 V p €I,
so

(3.4) V pel, e(p) =+1 if z(p) >0 and e(p) = -1 if z(p) < O.

It is clear from (2.1) that a dependence relation z as in (3.3) can be

determined easily. O

An implication of choosing € on I as in (3.3) and (3.4) is that
for every p € I there is some Sp C eP such that simplex Sp contains
the origin in its relative interior and has e(p)p as one of its extreme
points. However, in determining e on I it is not necessary to attempt
to determine such simplexes Sp directly. For example, it suffices to fix
e on I iteratively by finding any simplex S& containing a q e I that
has not yet had e(q) fixed, determining €’ on Sé such that e’Sé
contains the origin, and then fixing e(p) = ¢/’(p) on those p with e(p)
not previously fixed. This iterative process continues until e(p) has
been fixed on all p € I.

For d =1 the upper bound of 2d is achieved by taking P to be any
three points on SO. For each of d > 2 we will prove, in a moment, that
v(d) < 2d-1. This upper bound is achieved for d = 2,3,4. The proof of

the improved bound exploits the following theorem of Paul Camion.
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(3.5) Theorem [7]. Let A be a dxn real matrix of rank d. There
exists a nonsingular dxd matrix D such that DA contains a dxd
nonsingular diagonal matrix and every column of DA 1is either nonnegative

or nonpositive.

Proof. Select some b € Rd in linearly general position with respect to

the columns of A. Consider the affine space ¥ = {x € R™: Ax = b}. The

hyperplanes Hl""’Hn given by Hj = {x € Rd: Xj =0} cut ¢ into
cells. Let % be the set of subsets B of {1,...,n} such that the
columns of A indexed by B are linearly independent and lBI =d. With

each B € 3 associate the vertex x(B) in the arrangement of hyperplanes
in ¥ determined uniquely by the conditions that xj = 0 for all j ¢ B.
Some of these vertices x(B*) are extreme points of the convex hull of
{x(B): B € &}; let % C 3 be the associated set of Camion bases. Now
for B € %  consider the dx(n+1) matrix (A,b) = Agl(A,b), where

AB = (AB ,...,AB ). Observe that since b is in general position, b is
1 d

3%
nonzero in every row. The extremality property B € & implies that for
every 1 < j {n either 5}5 agrees in sign with S; for i=1,...,d,
or E}j disagrees in sign with E; for i=1,...,d. Let D be the

matrix obtained from Agl by negating those rows i of Agl such that

E; < 0. Then DA has the desired property. o
T d . .
Let ¢ = (c,,...,c;)" have each ¢, =3_ . D.., where D is the matrix
1 d J i=1 7ij

described in the proof above. Suppose that A contains no column Aj = 0.
Then the projective transformation T: R a»Rd given by T(x) = Dx/ch is
permissible for {A1’°"’An} and takes every column of A to a

nonnegative vector. In particular, it takes the columns corresponding to
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B to the unit vectors el,...,ed in Rd. If A contains a column

Aj = 0, then the same effect as above can be achieved by the projective
transformation T’/(x) = (1+7)Dx/(ch+1), for any sufficiently small

positive scalar ~. Thus we get

(3.6) Proposition. If P 1is a finite set of vectors in Rd, and
rank(P) = d, then there is a projective transformation T permissible for
P such that T(p) € Ri for all p € P, and for some Pys---sPy € P,

T(pi) is the ith unit vector, i =1,....,d.
Camion’s Theorem (3.5) will be useful in proving.
(3.7) Theorem. For each d > 2, ~(d) < 2d-1.

Proof. It is sufficient to show that for each P € @l(d)
(3.8) there exists an e: P - {-1,+1} such that Bl(eP) < 2d~1.

Let n= |P|]. If n < 2d+1, then (3.8) is immediate from Theorem 2.5.

So, either (i) n = 2d+1, or (ii) n > 2d+1.

(i) Suppose n = 2d+1. If P contains a minimal linearly dependent
subset TCP, |T| <d, take S1 = T 1in the construction outlined in the
proof of (3.1); it follows that e, as determined by that construction,

has Bl(eP) € 2d-1. Therefore we may assume that

(3.9) P contains no linearly dependent subset of cardinality less

than d+1.
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Camion’s Theorem (3.5) implies the existence of an e: P -» {-1,+1} and a
nonsingular submatrix D of P (regarded to be a dxn matrix) such that

D(eP) can be put in the form

+ 0 O o + + - - -
0 + O 0 + + - - -
0O 0 + 0 + + - - -
0 00 + + + - - -

after permutation of its columns. Let A denote the permuted form of
D(eP) schematically depicted above. By (3.9) each of the d "nonbasic"”
entries in columns d+1 to n of A is nonzero. The signs of the €’s

in the nonbasic columns A .

,....,A are chosen so that
d+1 n

(3.10a) at least half of the (d+l) nonbasic columns are negative; and

-

) n —
(3.10b) there exist Xqe1° 0 %p > 0 such that zj=d+1 ijj = 0.

This can be achieved because (3.9) implies that the d+1 nonbasic columns
of DP form a minimal linearly dependent set in Rd.

It is enough to show that

(3.11a) [H neP| >2, V He *y.

which is equivalent to the condition that

(3.11b) hTK' has at least two strictly negative entries.

If h # O is nonnegative, then (3.11b) certainly holds, because then
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hTKS < 0, for each of the negative colunns of A, of which there are at

least [%{d+1)] > 2. So, suppose h has at least one negative entry, say
T

h,. This implies that h Xi < 0. Moreover, (3.10b) implies that at least
one of hTKE <0, d+1 ¢ j ¢ n. For suppose hTXS 20, j=d+1,...,n.

T= . n T
By (3.9) h Ak >0 for some j<{k<{n. So Ej=d+1 h ijj > 0,

PN

contradicting E?=d+1 ijj = 0.
(ii) Now suppose that n > 2d+1. Consider again the construction used to
prove Proposition 3.1. If all Si have lSil < d, or if III ¢ d-1,

then the resultant e gives Bl(eP) € 2d-1. So, assume that some Si,

]

say Sl’ has lSll

to fix e on P’/ = S1 UI, |P/] =2d+1, while fixing e on

S2 u...u Ss as before. Then, again, Bl(eP) < 2d-1. o

d+1, and |I]| = d. Now apply the approach (i) above

The upper bound 2d-1 is tight for d = 2,3,4. In d = 2 any subset
PC S1 of four points in general position has 71(P) =3. In d =3 the

set P of six column vectors of the matrix

has 71(P) = 5. The following configuration Q in RB is due to Larman

[16]. Take Q to be the set of eight points

0
]

(cos(2wi/3), sin(2wi/3),0), i=1,2,3;
q4 = (0’0'6);

(cos(n/6), sin(w/6),0) + Q4 1= 5,6,7;

£
i

= (0,0,1+68),

le]
00)
1
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where 0 < 6§ < 0.1 1is a fixed scalar. Let P € @3(3) be any signed
subset of RB having P = Q. Then 73(P) =7, implying ~(4) = 7.
Larman [16] reports that McMullen raised the following problem.
Determine the least integer u(d) such that for every set P of p(d)
points in linearly general position on Sd”1 there exists e: P - {~1,+1}

such that

[H neP| >2 V He#,.
It follows from the proof of Theorem 3.7 (in particular, the verification

of (3.11b) in the case n = 2d+1), that
(3.12) p(d) < 2d+1.

McMullen’s interest in the problem above was motivated by its
connection to another problem he raised. Determine the greatest integer
v(d) such that for every set P of v(d) points in affinely general
position in Rd there is a permissible projective transformation T with
T(P) the set of vertices of a convex polytope. Larman [16] reports that
McMullen showed that

p(k) = min{w: w < v(w-k-1)}

v(d)

max{w: w 2 p(w-d-1)}.

From (3.12) it follows that for all d > 2
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(3.13) p(d) > 2d+1,

which was also proved by Larman [16], who conjectured that v(d) = 2d+1.

Proposition 3.6 yields a direct proof of (3.13). Suppose P 1is a set

of 2d+1 points in affinely general position in Rd. Let

P = {(Bt,l)t: ; € ﬁ}, which is in linearly general position in Rd+1. Let
T be a projective transformation as in (3.6), with T(pi) = e,
i=1,....441, and T(p,) € RS for 1=d+2,...,2d+1; T(x) = Dx/c x,

for appropriate D and c¢. Note that the general position assumption
implies that every component of every T(pi), d+2 < i ¢ 2d+1, is
positive. Consider the (d+1)xd matrix R = (T(pd+2),...,T(p2d+1)).
There is a dependence relation on the rows of R that is nonzero
everywhere, otherwise, for some 1 ¢ i { d+l1, the (d+1)x(d+1) submatrix

(ei,R) of T(P) has rank d, contradicting the general position

= N

RI*! have RYy = 0, with yi# 0. §= 1.4,

assumption. Let y €

Consider a projective transformation taking x - T/(x) = x/ch, where

~

c; >> 0 if Vs > 0, and < < 0 with |cj| small if Y; <o,

j=1,...,d+1. The projective transformation T’/(T(<)) from Rd+1 to

Rd+1 induces a projective transformation T from Rd to Rd with the
desired property: T(P) is the vertex set of a convex polytope. The

transformation T 1is of the form

where A is the upper dxd submatrix of D, b is the upper dxl1
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subvector of the (d+1)st column of D, c consists of the first d
entries of gTD, and ~ is equal to the (d+l)st entry of gTD.

The balancing problem that we have been considering has a natural
generalization to oriented matroids (see [5]). The proof of (3.1) remains
valid in this setting. Camion’s Theorem has not been proved for general
oriented matroids, so the proof above of ~(d) ¢ 2d-1 does not extend.
However, Cordovil and Silva [10] have proved (3.13) for the natural
generalization of McMullen’s problem to oriented matroids. This can be
used in place of Camion’s theorem to dispose of case (i) in the proof of
Theorem 3.7. The remainder of the proof extends with no difficulty.

It seems likely that for all d 2 1 there isa P € 91(d) such that

¥(d) = ~(P) [P| - 1. For the moment we can only prove.

(3.14) Lemma. Suppose P € @1(d) has P=SUP', SNP =&, and S
is a nonempty minimal set of linearly dependent vectors. If P’ is

nondegenerate, then

either 71(P) £d, or 71(P) [ 71(P’).

Proof. Without loss of generality, suppose the origin is contained in the
relative interior of the convex hull of S, and P’ 1is optimally

arranged, i.e., BI(P’) = 71(P’). Let H € ﬂd and let

r = [H nP|/|H n Pl
If H contains S, then

H" nel/lg ne| = np |/l np.
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If H does not contain S, then

Hnep=n( us), [Hnp| < g ne |+ (|s] - 1),

and
[H  npP| > |H np’/| + 1.
In both cases,
r € max(d, '71(P’))°
So

B1(P) & max(d. 7,(P)).
This completes the proof since TI(P) < Bl(P). o
From the lemma above, the following is obvious.

(3.15) Corollary. For a real number a > d, let P € @1(d) be of
minimum cardinality such that «a ¢ 71(P). If P=SUP', SNP =¢, and

S 1is a minimal set of linearly dependent vectors, then P’ 1is degenerate.

(3.16) Theorem. For all d > 1, ~(d) is attained as ~(P) for some

P €% (d), |P| < a%/4 + 2d + 1.

To prove (3.16) we need some preliminaries.

It is easy to see that

(3.17) v(d) >d for all d 2 1.

For example, in d > 2 take P € @l(d) to be any d+2 points of Sd"1

in linearly general position; ~(P) = d+1.
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The approach in the proof of Proposition 3.1 suggests

(3.18) Lemma. Let a be a real number, a > d. Suppose P is a finite
nondegenerate configuration in Rd such that 71(P) >a and |P| is as

small as possible. Then

IP| < a®/4 + 2d + 1.

Proof. Consider any partition
P=S, US,U... U Sm UT

of P such that every Si is a minimal linearly dependent set and T is

linearly independent. Suppose for some 1 < i {( m,
(3.19) rank(S1 u...uU Si) = rank(S1 u...u Si U Si+1)'

Let P’/ = P\Si+1' Then, by Corollary 3.15, P’ must be degenerate. That
is, there is a hyperplane H € ﬂa such that either H contains P’ or H
misses only one point of P’. If H contains P’, then, because of
(3.19), H must contain P also. If H misses one point, say q, of
P’, then, since every Si is a minimal linearly dependent set, q cannot
be a member of any Si' So, g €T and the set S1 u...u Si is
contained in H. Then, again by (3.19) the set S1 u...uU Si U Si+1 is
contained in H, and hence H misses only one point q of P. In both

cases, P also must be degenerate which contradicts the nondegeneracy

assumption in the hypothesis. Therefore, for every 1 < i < m,
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rank(S1 u...u Si) < rank(S1 u...u Si U Si+1)'
By considering all i, we get

(3.20)  rank(S;) < rank(S; US,) < ... < rank(S; U ... US ) <d.

5)

Note that the inequality (3.20) does not depend on a particular order

of the Si’s. In particular, let o = ISll 2 ISiI for all i. Then

o-1 = rank(Sl) < rank(S1 U 82)

and hence m { d-o+2. Since the decomposition is pairwise disjoint,

[P| < mo + |T] < (d-0+2)0 + |T| = ~{o - (a+2)/2)2 + {(a+2)/2)2 + |T|

a%/4 + 2d + 1. o

[N

Proof of Theorem 3.16. Consider the set

Fl = {71(P)= 71(P) >d, Pe @l(d)}.

Then, by Lemma 3.15 above, Fl is equal to

Iy = {7, (P): 7 (P) >d, Pe%(a). [P|<a®a+2d+1).

Hence, every number in Fl can be represented as a quotient of integers

with both numerator and denominator bounded by d2/4 + 2d + 1. Therefore

Fl is finite and
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sup{wl(P)Ivl(P) € Tl} = max{71(P)|71(P) € Fz},
which equals ~(d) by (3.17). 0O

4. A lower bound on ~(d) from a graphic case

We have seen that ~(1) = 2; ~(d) = 2d-1 for d = 2,3,4;
v(d) ¢ 2d-1 for d 2> 2; and that ~(d) > d+1 for all d > 1. In this
section we will consider an example that arises from directed graphs and
yields a better lower bound, ~(d) 2 d + f vad | - 2.

First we show that <~ 1is monotone increasing.

(4.1) Lemma. Let P = (pl,...,pn) € 91(d). Extend P to
P={(py..--spsP ) € 91(d+1). where p. = (p;,0), i=1,....n-1,
S - d+1 i i

P, = (Pn+q,5) and Py = (Pn+q,-5). q €ER 7, P,*q4 is not in any

subspace of Rd generated by (d-1) points in P, ligll is small, and 6
is a small positive scalar. Then 11(P) > 71(P).

~

Proof. It is easy to see that P is nondegenerate and full-dimensional in

Rd+1. The argument below shows that for each e: P - {-1,+1} there

corresponds an €: P - {-1,+1} with Bl(eP) > Bl(eP).

~

Let e: P - {-1,+#1}. Fix e so that e(pi) = e(pi), i=1,...,n-1,

and e(pn) = e(pn). Let H= {x € Rd: th = 0} be a hyperplane in Rd

such that B (eP) = |[H' N eP|/|H N eP|. Let H and H, denote the
1

hyperplanes in Rd+ with normals h1 = (O,...,O,l)t and h2 = (h,O)t,

respectively. Note that there exists a hyperplane H3 in Rd+1 having
~ +
Pn € Hy: Ppyy € Hy

~

€ H, and pj € H3 for all 1 € j < n-1 such that pj € H.
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A A

We will consider several cases, depending on the sign of e(pn+1) and the

disposition of P, with respect to H. We will show in each case that

there exists a hyperplane H = {x € Rd+1: h'x = 0} such that

B N eP|/[H n eP| > B, (eP).
(a) Suppose that e(pn+1) = e(pn).
+ ~
(1) If e(pn)pn € H, then take H = H2'
(2) If e(pn)pn €H, let h= (h2 + Ahl), for A > O and large.

(3) If e(pn)pn € H, let h= h2 + khs, for A > O and small.

(b) Suppose that e(pn+1) = -e(pn).

(1) If e(p )p €H. take h= hy + Ah,, for A > O and large.

(2) If e(p)p_ € H, take h=h + b, for A> 0O and large.

2 1

(3) If e(pn)pn € H, take h = h2 + AhB, for A > O and small. o

Lemma 4.1 immediately implies
(4.2) Claim. For all d > 1, ~(d+1) > ~(d).

Now we will show that for d of the form (r-1)(r-2)/2, r > 3,
there exists P € @l(d) with 71(P) >d++v2d - 1. This uses an easy
graph theoretic construction.
First recall that the circuit space €(G) of a directed graph
G = (V,E) 1is the null space {x € REi Ax = 8} of its (0,+1)-vertex—-edge
incidence matrix, A, and if G is connecte&, dim(€(G)) = |E| - |v] + 1.
It is very well known that for any acyclic directed graph G = (V,E)
there is an ordering of the vertices, say V = {vl,,..,vm} such that every

edge is of the form (vi,vj), i < j. This is true, of course, also for

acyclic directed graphs with multiple edges. Suppose that G is an
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acyclic orientation of Km’ the complete graph on m > 3 vertices
(possibly with some multiple edges). Ordering the vertices as above, it is
easy to see that there is a vector x € €(G) such that x(1,m) < O and
x(i,j) > 0 for all (i,j) € E(G), (i.j) # (1.m). On the other hand, if
H is a strongly connected directed graph, then clearly <€(H) contains a
vector x that is positive on every edge of H. Combining these

observations yields:

(4.3) Lemma. For r 2 3 and for every orientation G of Kr’ there is

a vector x € €(G) such that |S'(x)| > (r(r-1)72) - 1 and |S (x)] ¢ 1.

Sketch of proof. If G has one strong component the result is immediate.

If G has strong components Gl""’Gm’ apply the first observation above

to the acyclic complete digraph 6 (with multiple edges) formed from G
by shrinking each V(Gi) to a single point ;i' The vector ; € e(é)
that arises in this way enables us to easily construct a vector x € €(G)
that is positive on all but one of the edges not having both ends in the
same strong component. (Note that for each pair of vertices in V(Gi)

there is a directed path in Gi between them.) Now add to x an

everywhere positive vector x' € %(Gi), i=1,....m 8]

(4.4) Corollary. Suppose A is a matrix such that the row vectors form a

basis of @(Kr), r 2 3. Let P be the set of column vectors of A. Then
P € (d), d=(r-1)(r-2)/2, |P| = r(r-1)/2, and, for every

e: P > {-1,+1}, there is a hyperplane H through the origin such that

" neP| = |P], or |  NeP| = |P| -1 and [H NeP| = 1.
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(4.5) Theorem. For every d > 1, there is a finite configuration

P € @1(d) such that
Pl >d+ @)% -1 and 4 (P) = |P| - 1.

Hence, for all d 2 1,

~@d) » d + [(20)?] - 2.

Furthermore, if d is of the form d = (r-1)(r-2)/2, r > 3 an integer,

then

[P] >4+ (2d)1/2.

so ~@d) > d + [(2)?] - 1.

Proof. Suppose d = (r-1)(r-2)/2, r > 3 an integer. Let P be as in

Corollary (4.4). Then
IP| = r(r-1)/2 = (r-1)(r-2)/2 + (r-1) > d + (2d)/2,

and clearly ﬂl(P) = |p| - 1.

For arbitrary d > 1, let r be the greatest integer such that

(r-1)(r-2)/2 < d,
and let

(r-1)(r-2)72 + h = d < r(r-1)/2.
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Then by applying Lemma 4.1 to P h times, we get Pe 91(d) such that
[?l = h#r(r-1)/2 =d+r -1>d+ +v2d - 1. Note that for r > 3,
(l§| -2)/2 < |P| -1, and by Lemma 4.1, 71(§) > 71(P). Hence

71(1\5) = l’i)ll - 1. ]

Lemma 4.3 provides an upper bound on wv(d), defined in Section 3.

Forany d > 1 let G be an orientation of Kd+2’ Let

d+2
n= %{d+1)(d+2) and let P1 = (p},...,pi) be a (d+1)xn matrix having

1

%(Gd+2) as its null space n.s.(Pl) = {x € R®: P'x = 0). By Lemma 4.3

this choice of P = P1 has the property:

(4.6) v €1s---0€y € {-1,+1} 3 x € n.s.(eP) such that

iS+(x)| =n, or |S+(x)| =n-1 and |[S (x)]| = 1.

Here €eP denotes the matrix (elpl,...,enpn).

Let P2 = (p?,...,pi) be obtained from P1 by a projective

transformation T1 of the form Tl(x) = Ax/ch, where

for any choice of ¢ not in the union of the n d-dimensional linear

subspaces of Rd+1 orthogonal to the p?’s. Note that the (d+1)st row

. TI(PI) has all its entries equal to one. Since the numerator of

T1 is linear, property (4.6) still holds for P2.

of P
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Now let P3 be obtained from P2 by small perturbations while

maintaining the (d+1)st row of ones, so that in

the n points of FB C Rd are in affinely general position. Note that
under sufficiently small perturbations property (4.6) will be satisfied by

P>

. . . . . d s
Suppose there is a projective transformation T in R~ permissible

for ?8 such that TI?B) is the vertex set of a convex polytope. Let
d+1 d+1

T(x) = (Ax+b)/(ch + 7). Then T: R s r* given by
=rpd
T(x) = [ AT b ] x/(cT,v)x has T(PB) = [ T(P™) ]. Hence T(P3) can
c | 1 ...1

have no vector in its null space with exactly one negative entry. However,
P3 has property (4.6), which is preserved under T, a contradiction.
Therefore wv(d) < %-(d+1)(d+2). Las Vergnas [17] also derived this upper
bound on wv(d) by, essentially, the same approach. This improves upon
Larman’s upper bound v{(d) £ (d+1)2.

The cocircuit space ﬂ*(G) of a directed graph G = (V,E) 1is the row
space of the (0,+l1)-vertex—edge incidence matrix of G. In contrast to
the results above concerning circuit spaces of orientations of complete

graphs we have the following results on cocircuit spaces, which are proved

in [9].

(4.8) Theorem. For r > 2 and G an orientation of Kr’ vz(ﬁ*(G)) {3

if r 1is odd and 12(%*(G)) {3+ r/2 if r 1is even.
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(4.9) Theorem. If the directed graph G is bridgeless, then

75(€(6) <3 V| - 1.

5. Asymptotic behavior

Suppose P € @1(2) consists of a large number of distinct points on
Sl. Then it is easy to see that ~(P) 1is close to 1. There is no loss of
generality in assuming that P 1is in the upper semicircle, since we can
achieve this with the choice of €. Now reflect every second point as the

semicircle is traversed from one end to the other. The resulting e has

|lH" neP| - [H neP|| ¢ 2

and
[HnP| ¢2
so |H" n eP|/|H N eP| 2 1
if P 1is large. In particular if Pi = {pl,..},pi} € 91(2),
i = 323,j+1,j+2,..., and the lPiI points of each Pi are distinct, then

11(Pi) - 1. If we allowed repeated points in the Pi’s, we could get
something like P3 = {pl,p2,p3} with 71(P3) =2, and py € P3, P; = Py

for all i 2> 4, with 7(Pi) =2 for all i =4,5,..., as in Figure 5.1.

Figure 5.1
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We can still get 7(Pi)4» 1 without requiring that the points are
distinct, or even that they are in general position. It is enough to

require that
(5.1) for every hyperplane H € ﬂz, |P\H| - .

This condition may be sufficient for general d, but at this time we are
only able to show that a condition that is intermediate in strength between

(5.1) and general position suffices.

(5.2) Theorem. Let {Pi} be a sequence of Pi € @1(d) such that
IPil - o If there is a positive constant B < 1 such that for every

H e ﬁd

[H N Pil < plpil for all i, then ,(P;) - 1.

The proof of (5.2) is probabilistic and follows an idea of Joel

Spencer [29]. Like the demonstration above for d = 2, it first

establishes an upper bound on inf sup {||H+ NeP| - [H NeP||} in terms
e Hex
d
of IPI. Some preliminaries are required.

First recall Buck’s result on the number of regions determined by n

hyperplanes in Rd.

(5.3) Lemma [6]. Suppose there are n hyperplanes in Rd in general
position. Let R(d,n) be the number of regions and let B(d,n) be the

number of bounded regions determined by those n hyperplanes. Then

R(d.n) = () + (D) + ... + (.
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and

-1
B(d.n) = (7).

Here we take (?) =0 if m < 1.

(5.4) Corollary. For the unit d-sphere Sd in Rd+1. let C(d,n) be

the number of regions determined by n hyperplanes through the center of

Sd in general position. Then
C(d,n) = R(d,n) + B(d,n),

where R(d,n) and B(d,n) are as in Lemma 5.3.

Proof. Consider a hyperplane H which does not meet with Sd and is not

parallel to any of the given hyperplanes. Now project the sphere onto H
through the center of Sd and count the number of regions to get the

result. o

For a given finite subset P of Sd, define an equivalence relation

on the set %d of all hyperplanes through the origin as follows:

(5.5) H and G are equivalent if and only if

HNP=c¢"NP and H NP =G NP

(5.6) Corollary. For d 2> 1, the number of equivalence classes is no

greater than (ed+6)nd.
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Proof. Let H be defined by htx = 0. Apoint p€ P is in H  if and
only if htp > 0. Hence if we define a hyperplane Hp for each p € P by

ptx = 0, then

p € H' if and only if h€ H;.

Therefore the hyperplanes Hp’ p € P, determine the equivalence classes.
In other words, if we consider H as a point h of the d-sphere, then the
cell containing h among those cells determined by Hp’s, corresponds to
the equivalence class of H. The cells are not necessarily full
dimensional. Let O { r < d. The r-dimensional cells arise by
intersecting Sd with d-r of the hyperplanes, to get an r-sphere, in

which the remaining n-d+r hyperplanes determine r-cells. The total

number of r-cells is no greater than
n
(d_r)C(r,n—d+r),

because the number of cells is greatest when the hyperplanes are in general

position. Therefore the total number of cells is bounded by

d
n— d+ -1 —d+
2 (drm 1. 3 GID):
i=0
d ' d r '
- n! + 3 S n!
r~0 (d-r)!(n-d+r)r!(n-d-1)! =0 i=0 (d-r)!i!(n-d+r-i)!
< n! g (d) 1 + g r n!
= d!(n-d-1)! =0 T n-d+r =0 1_0 (d-r)!(n-d)!
d

d !
(d)(“”d)z i (?;ié?; 120 (dir)!

AN

ond + e(a+1)n?

e

(ed + 6)nd° n|

A
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From the corollary above, we can see that if V is a d-dimensional
subspace of R" then the total number of signed supports of the vectors in
V is bounded by (ed+6)n°.

We need some probability. Let Yl’Y2""’Ym be
(5.7) independent random variables, each equal to +1

with probability 1/2, or -1 with probability 1/2.
Let

(5.8) U =Y, + ... +Y_.

Then the following is well known. A proof is given in the appendix of

[26].
(5.9) Lemma. For every positive real number «a,

Pr(IUml >a) £2 exp(—a2/2m).

Now we can prove

(5.10) Theorem. For every subset P of Rd, |P] = n, there exists an

e such that

[|H" neP| - |H N eP|| < (2n log(120871y)1/2

for all hyperplanes H € #d.

Proof. Let e(pj), j=1,...,n, be independent random variables as
in (5.7). Let r be the number of equivalence classes as in (5.5), and

let Hl"”"’Hr be their representatives. For any Hi' 1 <idr, let

m=n - IHi N P|. Then the variables



35

+ -—
[H; N e(p)p| - [H; Ne(p)p|. p € P\H,
are also independent random variables as in (5.7). Hence
i + -
Ut = ]Hi N eP| - |Hi N eP|
is a random variable as in (5.8). So by Lemma (5.9)
i 2 2
Pr(|U"| > @) € 2 exp(-a“/2m) < 2 exp(-a”/2n)
. 172
for all a > 0. In particular, let a = (2n log 2r) , then we have
i -1
Pr(|JU| >a) <
for all i. Note that this inequality is strict for those i with

[Hi N P| # 0. Therefore,

Pr(IUiI > a for some i) < r-r-l = 1.
Hence
Pr(|Ul]| < a for all i) > O.
Thus there exists some e so that
||6] neP| - |0, N eP|| < @

for all i. Note that @ = (2n log 2r)/2. So

|l 0 eP| - [H] N eP|| < (2n log or)l/2

78

-1,,1/2

(2n log(12nd

I

))

by the inequality r ¢ 6dnd_1, which follows from Corollary (5.6).
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Theorem 5.2 follows.

Spencer [29] gave a theorem of the same form as Theorem 5.10 based
upon a looser estimate than Corollary 5.6 of the number of equivalence
classes of hyperplanes.

Note that the hypothesis of (5.2) is satisfied if the points of each
Pi are in general position. So if P € @l(d) is in general position and
[P]| >> 0, then for some e: P - {-1,+1}, Bl(eP) X% 1. However, we know of

no efficient deterministic algorithm for finding such an e.

6. Two variations from graph theory

The balancing problem examined in the previous sections has a natural
variation that arises by replacing BI(P)’ P € Rd, by Bi(P), defined
like Bl(P), except that the supremum is taken over generated hyperplanes

only, i.e.

B{(P) = sup{[H" N P|/|0" N P|: H € #(P)},

where #(P) 1is the set of (d-1)-dimensional subspaces of Rd generated by

a subset of P.

Example. Let d =3 and P = {(1,-1.0),(0.1,-1),(0,0,1),(-1,0,0)} € @1(3).
Then #(P) has six hyperplanes H, each with lH+ NPl =|H nP| =1;
hence ﬁi(P) = 1. However BI(P) = 3; the hyperplane H with normal

vector h = (3,2,1) has |[H NP| =3 and | NP|=1.

In a vector space % a nonzero vector y € U is elementary if there

is no nonzero z € 4 with S(z) g S(y). The choice of Bé on 92(d)
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that corresponds to Bi on @1(d) is Bé(%) = sup{|S+(y)l/lS_(y)l: y an
elementary vector of A].

Other natural variations on the balancing problem arise by replacing
91(d) (or, equivalently, @2(d)) by some @i(d) c Ql(d) (or,
@é(d) c @2(d)) with special structure. For example, let @g(d) be the set

of €(G) € @2(d) that arise as the circuit space of a directed graph. For

a given directed graph G = (V,E), with E = {el,....em}, P = {pl,...,pm}
represents 9(G) if the matrix (pl,...,pm) is of full row rank and its

row space is €(G). Analogous to gg(d) above is @%(d), the set of all

P C Rd such that P represents some %(G) € ?l(d). The nondegeneracy

assumption (2.1) corresponds to G being loopless. Furthermore for any

e: P> {-1,+1}, eP represents the directed graph G’ arising from G by

reversing the orientation of those edges ej of G for which e(pj) = -1.
The more general balancing problem discussed in Sections 1-5 was

motivated by the following theorem.

(6.1) Theorem. Suppose G 1is a directed graph with no loops and P

represents G. Then

1+ [inf{Bé(eP)l e: P - {-1,+1}]
is the chromatic number of G.
This theorem is a reinterpretation of Minty’s

(6.2) Theorem [20]. A loopless graph G is k-colorable if and only if
for some orientation of G every circuit has at most (k-1) times as many

forward edges as reverse edges.
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Theorem 6.1 follows from Theorem 6.2 and the fact that the elementary
vectors in the circuit space €(G) of a directed graph G are just
nonzero scalar multiples of signed incidence vectors of circuits of G.
Related to the graphic spaces @g( ) are the cographic spaces @;( )-
Let 9§(d) be the set of %*(G) € gz(d) that arise as the cocircuit space
of a directed graph. Define @:(d) to be the set of sets P that
represent some %*(G) € @1(d). The nondegeneracy assumption here
corresponds to G being bridgeless, and, again, setting e(p) = -1
corresponds to reversing the orientation of the edge of G represented by

p. For P € 9§(d) and an integer k > 1,
(6.3) Bi(P) <k

corresponds to the condition that for every cocircuit of G the ratio of
forward to reverse edges is at most k. By Hoffman's Circulation Theorem
[13] and the integrality property of flows, (6.3) holds if and only if
there is an integer flow f: E » Z such that flow is conserved at every

v €V (flow in = flow out), and 1 € x(e) { k for all e € E. Therefore
(6.4) 1+ finf{Bi(c—.P)] e: P = {-1,+1}}]

is just x*(G), the least integer j such that there exists an integer
flow f: E »Z that is conserved at every vertex, and 1 ¢ |f(e)]| ¢ j-1
on every edge e € E. Tutte [30] studied x* and conjectured that

x*(G) { 5 for every bridgeless graph; Jaeger [14] proved x*(G) < 8 and

Seymour [227] improved this to x*(G) € 6. The Petersen graph G has

10
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x*(Glo) = 5, Note that x* is, in a sense, dual to the chromatic number.
% 3%
If G is planar and G* is dual to G, then x(G) = x (G) and

X (G) = x(€7).

7. Balancing with respect to centroids

Sections 1-6 concerned balancing problems in which the balance
indicators were defined in terms of hyperplanes. This section examines
some other indicators. Suppose P 1is a finite configuration of points of
the unit ball BY in RY. The distance of the centroid of P from the
origin is a natural indicator of balance. In some problems where an
ordering of the elements of the set P 1is important, the maximum of the
distances from the origin to the centroids of all initial sequences is
considered.

Suppose P 1is a finite subset of the unit ball Bd in Rd. We want
to find an e: P = {-1,+1} such that the centroid (1/|P|)3eP of eP is
close to the origin. Since the constant 1/|P| has no effect on measuring
the relative balance of eP for different e°s, the problem is equivalent
to choosing € to make the norm of the signed sum 2eP small.

Determining whether a specified value can be achieved is very hard, even
for d = 1, Dbecause for d = 1 this problem is equivalent to the
partition problem, which is known to be NP-complete. However, for any norm
in Rd there is an efficient algorithm that determines an € and an order
on P such that all the partial sums have norm no greater than d. For
the Euclidean norm this can be improved so that the norm of the entire sum
is at most +d, which is best possible.

In the following discussion, the norm will be Euclidean if it is not

specified otherwise.
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For a set {pl,pz,...,pd} of linearly independent vectors, the

polytope

K= {2 tipit -1 £ ti { +1 for all 1< i £ d}
is called a d-dimensional parallelepiped.

(7.1) Lemma. If HpiH {1 forall 1< i <d, then, for any point u
of the parallelepiped K, there is a vertex v of K within distance

1/2

d from u.

Proof. It is clear for d = 1. So suppose the lemma is true for all
dimensions lower than d. If the given point u is on the boundary of K,
then, by the induction hypothesis, we can find an appropriate vertex. If
u is an interior point of K, then find a point u’ on the boundary of
K such that llu-u’ll is minimized. Then the vector u-u’ 1is orthogonal
to the facet of K containing u’ and llu-u’ll { 1. This point u’ can
be considered to arise as follows: take a small sphere contained in the
interior of K with center at u and expand it until it touches the
boundary of K, then u’ 1is the contact point. Point u’ 1is on a facet
of K and hence, by the induction hypothesis, there is a vertex v of the
facet within distance (d—l)l/2 from u’. By Pythagoras’ Theorem, the

vertex v 1is within distance d1/2 from u. ]

Note that Lemma 7.1 is not true if the parallelpiped is degenerate,
i.e., the vectors P{:Pg.-...Py are linearly dependent. For example,
take, d =1, p; =Py = (1) and u =0, then K = [-2,+2]. There is no

1/2

vertex within distance 2 from u. But if we consider the point PPy

as a ‘vertex’ of K, then the assertion is true.
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The following theorem was proved by Spencer [24] probabilistically.

We will give a constructive proof.
(7.2) Theorem [24]. If P is a finite subset of the unit ball Bd in

Rd, then there is a map e: P - {-1,+1} such that lIZ3ePll £ d1/2.

Proof. Consider polytope Q = {szP e(p)ple: P=>R, -1 < e(p) <1 V

p € P} C Rd. Clearly O € Q. Hence there must be an &: P - R such that

2 e(p)p = 0;
pEP
(7.3) 1 -1 <e(p) <1 (Vp€P)

| {p € P: |e(p)]| # 1} 1is linearly independent.

It is convenient to order the elements of P as {pl,...,pn} so that we
can think of P as a dxn matrix with {pn-d+1""'pn} linearly
independent and ej = e(pj) satisfying ej =#+1, j=1,...,n-d. Let
n_d ~ . ~ A - A
Ej:l ejpj. Since €1P; + ...+ € P, = 0, u= 2?=n—d+1 ejpj, so u
is in the parallelepiped K = {2?=n—d+1 eipil -1 < €5 <1, n-d+1 £ i £ n}.
By Lemma 7.1 K has a vertex v with llu-vill ¢ dl/z. Write v as
?—n—d+1 e:pi, where e: = +1, n-d+l (i {n. Let e, = ej,
1<j<nd and e = e?, n-d+1 <'j < n. Note that all e, = #1 and
n n 1/2
3, ,ep.=v-u, so Iz, .  ep.ll {d . o
j=1 ©5P; i=1 P53 °

This proof is constructive in that it is easy to produce e as in

(7.3), which determines all but d of the ej’s, and the construction
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implicit in the proof of Lemma 7.1 fixes the rest. In fact one can prove a

stronger result.

(7.4) Theorem. If P is a finite subset of Bd in Rd, then there are

an e and an ordering on P such that

172

1ZePll < d , and lle + e + ...+ ekpkﬂ <d

1P1 9Py

for all k < |P]|.

First we will show how iterative construction of e, in the proof of

(7.2), leads to an ordering and an e: P - {-1,+1} such that
(7.5) Ilep1 + ...+ ekpkﬂ <d

for all k ¢ n-d. Then we will address the cases n-d < k { n. At each

stage of this iterative construction we will have an ordering {pl,...,pn},

an e: P - {-1,+1}, and an integer 1 { k { n, such that

(7.6a) eP; * tep = 0;

(7.6b) -1¢< €5 <+1 (j=1,...,n);

(7.6c) &y = +1 (j=1,...,k) and -1 < €5 <1 (j =k+1,....,n);
(7.64) F = {pjt 0« lejl < 1} 1is linearly independent.

Note that k is just the number of entries of magnitude one in e. At
each iteration k 1is increased strictly, until termination, which occurs

when



43

(7.7) L = {pj: Iejl < 1} 1is linearly independent

The ordering is fixed on 1SRRI S the only reordering during the
subsequent computation is restricted to {pji n2 j>k}. At each
iteration the linearly independent set F is extended to a set E by
adding elements of L\F one at a time, until E has rank IEI - 1. One
then determines a nontrivial linear dependence relation 2?21 yjpj = 6
with S(y) € E. The current iterate e is updated to e «é& + Ay, with
the scalar A chosen so that (7.6b) is maintained and at least one Iejl,
j > k, increases to one; k 1is incremented by the number of new entries
of magnitude one. The indices are then reordered so that (7.6c) remains
satisfied. Clearly (7.6a) and (7.6d) are maintained. The procedure halts

if (7.7) is satisfied, otherwise another iteration is performed. At

termination, the order {pl,,..,pn} and (el...u,en) satisfy (7.5) for
all 1<k {n-d. By Lemma 7.1 we can fix e R such that
n-d+1 n
1/2
Helpl + ...+ ekpk" < d+d

for all n-d+l1 {( k { n. The following lemma implies that there is a
reordering of (pn—d+1""’pn) and the associated €n-d+l’ " *En such

that (7.5) holds for all 1 <k < n.

(7.8) Lemma. In Rd, d >3, suppose 1 (j <d, and HSiH {1 for all
i, If q=p+b + ... +p. lpl<d and Nl d”2,  then there is
an i, 1< i < j. such that lip + Sin < d.
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Proof of (7.8). If ipll < d-1 or j £ 2, then it is obvious. So suppose

fipi > d-1 and j > 3. Consider the projection of Rd onto the line Rp.
7 . . o ~s ~o
Let q ,ul,uz,...,uj be the projections of q,pl,pz,...,pj. Then clearly

we have

/2

S p+u, +us+ ... +u., and Ng’ll < a2 Cd-1 < upl,
d i

1 2

and HuiH {1 for all i. Without loss of generality, suppose

p,q’,ul,uz,...,uj, are all real numbers and p > 0. Let

u = min{uit 1 <1< j}.

Without loss of generality again, suppose u, = u.

We will now prove that up+51u < d. To prove this consider the plane
determined by p and Sl' Let a be the angle between -p and 51.
Note that u ¢ -(p-q’)/j < 0, so a is an acute angle. By the second

cosine law,

lp + 51n2 = p? + u51u2 - 2pil, licos a = P2 + uSln2 - 2p|u|

2 ~ 2 .
P+ leu - 2p(p-q’)/J.

[ 78

Define a function f by

, 2 2 N\ /s
f(p.r.q’) = p4r—2p(p-q’)/j., d-1<p<d, 0<r<1, -d7°<gq
and consider the partial derivatives of f. Then

£ 2p/j >0, f_ =2r >0

ql T E4

and

/2/j

£ = 2p(1-2/§) + 20°/3 2 241/2(1-2/5) - 24! = 2a'/2(1-3/5) > o.
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So the maximum value of f 1is obtained when p =d, r =1, and

1/2

q’ =d’“. Therefore,
iprp 12 < &% + 1 - 2a(a-a?)/5 ¢ & + 1 - 24(a-a'?)a
a2+ 1 - 2(d-d?) ¢ & .

Proof of (7.4). For d > 3, Theorem 7.4 is clear from the proof of

Theorem 7.2 and Lemma 7.8. The cases when d =1 and 2, can be checked

easily. 0O

The upper bound dll2 for the total sum is tight. If P is the set

172 for every e. But the

of d standard unit vectors, then [IZePll = d
bound d for the partial sums might be improved. The following partial

result is due to P. Carvalho [8].

(7.9) Theorem. If n < 2d, then there exist an e and an ordering on P

such that

15{e(p,)p;: 1 < & < kI < al’?

for all 1 ¢k { n.

Proof. We know that there is an e such that [IZePll £ d1/2° Without loss
of generality, suppose € = 1. Then le +pyt ... + an < dI/2 and

° 2 2 2

2 Nz piH = (n-1) 2 Hpiﬂ + 2(n-2) 2 PP

j=1  i#j i=1 i#gj o

2 2 3 2
(n=2)1 3 p T+ 3 lp 1" £ (n-2)d + n.
i=1 ! i=1 :
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So at least one term must be less than or equal to (1-2/n)d + 1 < d
because n < 2d. Therefore, there is a vector in P, say P, such that
the sum of the other n-1 vectors has norm at most d1/2. By the same
reason there is a vector, say p,_,- among the n-1 remaining vectors
such that the sum of the other n-2 vectors has norm at most d1/2. And

so on. By continuing this procedure n-1 times, we find a satisfactory

order on P. 0

Until now we have considered the Euclidean norm only. For an

arbitrary norm «( ) in Rd, we can prove the following.

(7.10) Theorem. Let P be a finite set of points of Rd such that
v(p) <1 for all p € P. Then there exist an ordering and an e on P

such that

s(e(pdpy + ... +e(pdp) < d
for all k, 1<k <n=|P|.

Proof. Use the procedure following the proof of Theorem 7.4. We started
with e = 0 and gradually altered e to get the desired result. 1In

essence, for every k, 1 ( k { n-d, we had a vector ek satisfying:

L
[

for i=1.2,....k

1 for i k+1,....k+d

[7aN
]

=0 for i > k+d,
and

k k k k -
EP Lt o PP Y e Prer T F € dPraa = O
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Hence, if we set e(pi) to the terminal value of e, = e?_d, 1 <1i < n-d,
then
o(e(py)py + --- + e(p)py)
k k k k
= (e Pual 0 T CkrdPird) § [Erl T ¥ legal €d

for all k < n-d. The last d vectors may be ordered arbitrarily with e

defined by

e(pi) = +1 if €4 20, and e(pi) = -1 if €y < 0.

Without loss of generality, suppose € 20 for all i > n-d. Then, from

the equality

€P1 * - T € Pn-d T “n-a+1Pn-d+1 ¥ 00 T SpPn T 0.
we have
u(e(pl)pl + ...+ e(pk)pk) = m(elpl + ..o te Poat e 4i1Pndel T
.+ € P + (l—en-d+1)pn—d+1 + ... + (l-ek)pk ~ Epp1Prer T o T enpn)
= w((l-en-d+1)pn—d+1 Tt (1-ek)pk B T L 'S B enpn)
< (1—6nrd+1) + ...+ (1—ek) te e e <d
for all k > n-d. |

Theorem 3 of [2] implies a version of Theorem 7.10 with the looser

bound 2d, but without reordering. Note that the bound d 1is tight for

,€e of Rd has the L,-norm

the Ll—norm, because the standard basis e d 1

1;-.,

of its sum equal to d for every e.
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Back to the Euclidean norm. When d =2 and all HpiH =1, we can

prove a stronger result.

(7.11) Lemma. Suppose P 1is a finite subset of the unit circle S1 in
Rz, P 1is of odd size and the points of P are located in the following
way: 1if the points of -P = {-p: p € P} are inserted, then the points of

P and the points of -P alternate on the circle. Then I[ZPlI { 1.

Proof. Suppose IP] =2m + 1. By rotating and reflecting the coordinate
system, if necessary, we can assume that the sum is on the x—axis, and, for
an appropriate ordering of P as P{+Pg:---:Por 1" the x~coordinates X5

of P; satisfy

Then

-1 < X < X+ (x2+x3) + ... 0+ (x2m+x2m+1)

(xp#xp) + (xgxy) + oo+ (X 1 ¥Xop) + Xonpg S Xy €1 o

(7.12) Theorem. If P is a finite subset of S1 in Rz, then there

exists an ordering and an € on P such that

I3{e(p)py: 1 < i < K}

7Y
[

if k 1is odd,
I{e(p;)ps: 1 < i < kHI < v2 if k is even,
for all 1 < k < |P].

Proof. Suppose n = |P| is odd. First define el on P so that all of

the el(p)p’s are on an open semicircle, and order them along the
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. 1
semicircle. Now define e as: e(pi) el(pi) for odd i, and -e (pi)
for even i. Note that for any k, 1 {( k { n, the set of points
e(pl)pl, e(pz)p2,...,e(pk)pk, satisfies the hypothesis of Lemma (7.11).

Hence

I3{e(p)p;: 1 <1 < kM C 1

for all odd k, 1 {k {n. Now, for each i, 1 i < n/2, interchange

the pair Py;Poiyr’ if necessary, to get
IS{e(p)ps: 1 <1 < kM )

for all even numbers k, 1 ¢ k {n. The bound 1 remains valid for odd k.
If n 1is even, then choose any one vector p from P. Determine an
order and an e for P\{p} as before. Then insert p as 18 with

appropriate e(pn). W]

8. Further variations

This section concerns several additional examples of balancing
problems in which configurations are ordered. Each of the examples
involves graphs, either in the definition of the configuration, or in the
determination of an effective perturbation from the original configuration
to one that is well balanced.

Let G = (V,E) be a directed graph with (0,+1)-vertex—edge incidence
matrix A. For each i €V, let Ai be the i~th row of A. Then
P = {Aiz i € V} 1is a finite subset of points in RE and 2P = 0. Can we

make all the partial sums ‘small’ by reordering the vertices?



50

(8.1) Theorem. The following problem is NP-complete. For a given
directed graph G and a constant L, 1is there an ordering of the

vertices such that

+ A i, <L

"Aw(l) + ... w1 ¢

for all k, 1<k < |V]|?

Proof. For any ordering w(l),v(2),...,w(|V|) of the vertices and for

1 <k < |V|]. the partial sum

Sk =AY A

is equal to the (0,+1) incidence vector of the cutset Dk’ consisting of
edges having one end in Ik = {w(1),m(2),....,w(k)}, and one end in

Ik = V\Ik. Hence

IS il = |Dk|.

Therefore the problem is equivalent to the Minimum Cut Linear Arrangement

Problem which is known to be NP-complete ([GT44] of [11]). a

Now let P = {Ae= e € E}, where Ae is the column vector of A
corresponding to an edge e. Then P is a finite subset of RV and, for

each i €V, the i-th entry of the sum is
E{Aet e € E} = outd(i) - ind(i).

Here outd(i) and 1ind(i) are the number of edges ‘from’ and ‘to’ the
vertex i, respectively. Now if we change the directions of some edges,

then we get a different sum. Note that for every choice of e the
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terms in the sum corresponding to each vertex of odd degree in G will

have magnitude at least one, and the terms corresponding to each vertex of
even degree will be even. Hence the best we can expect for the Ll—norm of
the sum is that the sum is a (0,*l)-vector, i.e. its L mnorm is O or 1.
In fact, this can be achieved because of the following characterization of

totally unimodular matrices.

(8.2) Theorem [Ghouila-Houri, 12]. A (O0,#l1)-matrix A is totally
unimodular if and only if, for every subset T of the column vectors of
A, there are +1 multipliers for the columns in T such that the scaled

sum of the columns in T is a (0,%l1)-vector.

We can say more when A 1is the vertex—edge incidence matrix of a

graph.

(8.3) Theorem. For any graph G = (V,E), there exist an ordering of E
and an orientation of G such that all the partial sums of

P = {Ae: e € E} are (0,+1)-vectors.

The following procedure will give an appropriate orientation and an
appropriate ordering of the edges simultaneously. The order of the edges

will be recorded in the list list.

begin
F := E: list := ¢;
while F contains a circuit do
find a circuit C in F;
make C directed and add the edges of C to list along C;
F := F\C;

end
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while F # ¢ do
find a path Q from a vertex of degree 1 to another vertex
of degree 1 in F;
make Q directed and add the edges of Q to list along Q:
F := F\Q;
end

end 0o

Now another problem. Consider the fundamental system 9 = {De: e €T}
of cocircuits with respect to a spanning tree T. Here we consider De to
be the (0,+1)-incidence vector of the cocircuit determined by e and E\T
and we think of % as a matrix with rows De' Now the problem is to find
(+1)-multipliers and an ordering of the rows of 9 such that all the
partial sums have small norm. Since 9 can be obtained from the rows of a
totally unimodular matrix A, the vertex—edge incidence matrix, by a
sequence of pivot operations, @ is totally unimodular. Hence there are

multipliers such that the total sum is a (0,*1)-vector by Theorem 8.2.

(8.4) Theorem. For every graph G = (V,E) and for every spanning forest
T of G, there exist an orientation of G and an ordering of the edges

of T such that all the partial sums of 9 are (O,%l1)-vectors.

Proof. Without loss of generality assume G 1is connected. Since the rows
are indexed by the edges of the spanning tree T, all we have to do is to
find an appropriate ordering and directions for the edges of T. Order the

edges in such a way that, for each i, the edge set {el,e2,...,ei} is
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connected. Now determine the orientations of the edges of T so that, for
each path P of T, the directions of the edges of P are alternating.
Orientations on the edges of E\T are arbitrary. Then it is easy to check

that the condition is satisfied. n]

Let € = {Ce: e € E\T} be the fundamental system of circuits of G
with respect to a spanning tree T; for each e € E\T, Ce is the

(0,+1)-incidence vector of the circuit determined by e and T.

7
(8.5) Theorem [Lovasz, 19]. There exist an orientation and an ordering of

the edges of E\T such that each partial sum of € is a (0,%1,+2)-vector.

Proof [Lovész]. First note that if we add Ce’s ‘along’ a directed path P
in EN\T, then the tree part of the sum is the incidence vector of the path
from the head of P to the tail of P. Hence if we add Ce’s along a
directed cycle in E\T, then the tree part of the sum will be zero.

Suppose ENT is weakly Eulerian, i.e., every vertex has even degree in

ENT. If EN\T bhas components Gl""’Gk’ then by an Euler tour in E\T,
we mean a sequence Wl,,..,Wk, where each Wi is a Euler Tour in Gi'

Order the Ce’s along an Euler tour and choose directions of the nontree
edges so that the Euler tour becomes directed. Then the entries of the
total sum corresponding to the tree edges will be zero, and all the partial
sums will be (0,+1)-vectors. Therefore, the problem reduces to the case
when ENT 1is not weakly Eulerian.

Suppose ENT is not weakly Eulerian. Choose a minimal set F of
edges parallel to edges in T so that (E\T) UF is weakly Eulerian.
Then, for each e € T, there is at most one e’ € F parallel to e. Now

determine an order and directions along an Euler tour made of (E\T) U F,
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as above, and then delete the circuits corresponding to F. The resulting
order and orientations satisfy the condition. To see this consider the
sequence of the e-th entries for each edge e in T. If e has no
duplicate in F, then the sequence on e 1is not changed. If e has a
duplicate e’ in F, then the sequence loses one +1 or -1 by deleting the
circuit Ce,. Note that Ce’ consists of e and e’ only. Hence the
sequence of e-th entries of the partial sums will be changed by at most #1.

Therefore it must be a (0,+1,+2) sequence. o

It is not known if there is an example that attains the bound 2 in the
theorem above. Can we find an order and directions such that all the

partial sums are (0,+1)-vectors? A more general question would be:

(8.6) Problem. Is there a constant k such that, for every totally
unimodular matrix, there is an ordering and an e for the rows such that

all the partial sums have L -norm < k?

By Theorem (8.2) we know that, for any given totally unimodular matrix
A, there are (#1) multipliers for the rows such that the row sum is a
(0,+1)-vector. Hence if we multiply appropriate (+1)-scalars on the
columns too, and if we add all the entries of the matrix, then we would get
either O or +1. This is a special, and simple, case of an unsolved

variation on a problem of L. Moser.

(8.7) Problem. Is there a constant k such that, for every
(0,#1)-matrix, there exist (+1)-multipliers for the rows and columns such

that the sum of all entries of the scaled matrix is between O and k?

Moser conjectured that for every nxn (#1)-matrix there exist

(#1)-multipliers for the rows and columns such that the sum of the scaled
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entries is 1 if n is odd and either O or 2 if n 1is even; this was
proved probabilistically by Komlos and Sulyok and deterministically by Beck
and Spencer (see [4]).

The final two examples do not arise explicitly from graphs. However,
in each case the determination of an e that yields a well-balanced
neighbor is based on a simple graph-theoretic argument.

Consider again Example 1 from Section 1.

(8.8) Theorem. Suppose P = {fl,ml,f2,m2,...,fn,mn} is a set of 2n

distinct points on the circle Sl. The order is arbitrary. Then there is
amap e: P - {-1,+1} such that

(a) e(fi) + e(mi) =0

for all i, and

(b) [S{e(x): x € PNa}] <2

for every arc a of Sl. Furthermore, there is an e such that

I~
ey

(c) |3{e(x): x € P N a}]

for every arc o 1if and only if no pair (pi,qi) divides the rest of P

into two odd sets.

Proof. Note that the bound 2 is tight, because if any pair (pi,qi)
divides the rest of P 1into two odd sets, say S and T, then, for

every e,

either Ie(fi) + 3{e(x): x € S}| or Ie(mi) + 3{e(x): x € S}|

must be 2.
To prove the theorem, construct a 2-regular graph G = (V,E) as

follows. Let V = P. lLet E be of the form E = E1 U E2, where E1 is
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a set of n disjoint pairs of vertices adjacent on Sl, and E2 is the
set of n chords, flml’f2m2""’fnmn' So |E] = 2n. Then clearly G is
2-regular, E 1is a vertex-disjoint union of circuits, and each circuit is
of even length. Now define e: V - {-1,+1} by traversing the circuits so
that vertices adjacent in G have opposite values. Then, since

e(u) + e(v) = 0 for every edge {u,v} € El’ it is clear that this e

satisfies the condition (b) for every arc a of Sl. See Figure 8.1.

(a) (b) (c)

W

Figure 8.1 (a) An unbalanced arrangement;
(b) the graph G; (c) a balanced arrangement

In the language of Example 1 of Section 1, a balanced seating arrangement

results from e by having each couple (fi’mi) swap seats if and only if
e(fi) = ~1.

For the second part, note that
|S{e(x): x € PNa}| <1

for every arc a of S1 if and only if the +1’s and -1’s alternate along

the circle Sl. Now if no pair (fi'mi) divides the rest of P into two
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odd sets, then it is easy to see that the alternating assignment of +1’s
along the circle satisfies (a) and hence (c). Conversely if a pair
(fi’mi) divides the rest of P into two odd sets, then clearly an

alternating assignment of *1’'s along the circle violates (a). O

Note that in the graph G above, traversing the circuits
consistently, say clockwise, if possible, yields an optimal solution. If
we can move clockwise on each edge of El’ then there is no pair (p.q)
dividing the rest of P into two odd sets, and, conversely, if we cannot
move clockwise on every edge of El’ then there is a pair (p.q) dividing
the rest of P into two odd sets.

The requirement in the hypothesis of Theorem (8.8) that the 2n
points be distinct is merely a convenience to facilitate the description of
the graph G on the circle Sl.

s
The following related problem was introduced to us by Lovasz [19].

(8.9) Problem. For each positive integer d, let p(d) be the least

upper bound of

k
mn { max (13 e(m G
e:N->{-1,+1} 1<idd  j=1
1<ksn
over all positive integers n, where MW, o.My are permutations of
N ={1,2,...,n}. Determine p(d). In particular, is p(d) finite for

all d?

The solution for Problem (8.9) is not known except for the case

d ¢ 2. Clearly p(l) = 1. Vesztergombi proved that p(2) =1 [57]. The
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following proof of p(2) =1 1is similar to the proof of Theorem 8.8. For
given ™ and LOY construct a 2-regular graph G = (V,E) with

V = {wl(l),...,wl(n), wz(l),...,wz(n)}. We treat wl(i)’s and wg(i)’s
as distinct nodes. We assume that n is even. If n is odd, then add

two more nodes rl(n+1) and w2(n+1). Let the edge set E be

E = {{r (1).7(2)}. {7 (3).7 (4)}....}
U {{mg(1).75(2)}. {m(3).75(4)},---} U {{1.1}.{2.2},....{n.n}}.

Note that the graph G 1is 2-regular, and, therefore, is a
vertex—disjoint union of circuits. Moreover, the number of edges of each
circuit is an integer multiple of 4. Now define € on V as follows.
For each circuit C, traverse C and define e on V(C) in such a way
that e(i) = —e(j) if ({i,j} €E and i # j as members of N, and
e(i) = e(j) if {i.j} €E and i = j as members of N. Hence the
numbers +1 appear on the vertices of each circuit in sequences of two

+1’s, two -1’s, two +1’'s, and so on. Then clearly the map € on N

I\

obtained from € on V naturally satisfies |2{e(wi(j)): 1<j<k}] <1

forall 1 <{k<{n and for i =1 and 2. Therefore p(2) = 1. o
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