
Concurrent Zero Knowledge: Simplifications and Generalizations

Rafael Pass∗ Wei-Lung Dustin Tseng† Muthuramakrishnan Venkitasubramaniam‡

May 7, 2008

Abstract

Few techniques for obtaining concurrent zero-knowledge exist; all require a complex and
subtle analysis. We provide an arguably simpler and more general analysis of the oblivious
simulation technique of Kilian and Petrank (STOC’01) while achieving the same bounds as
Prabhakaran, Rosen and Sahai (FOCS’02). Using this analysis, and relying on tools recently
developed by Ong and Vadhan (Eurocrypt’07, TCC’08) we are able to establish the following
unconditional results:

• every language inNP which has a ZK proof (resp. ZK argument, statistical ZK argument)
also has a black-box concurrent ZK proof (resp. ZK argument, statistical ZK argument).

• every languge which has a statistical ZK proof also has an ω(log n)-round black-box con-
current statistical ZK proof.

Keywords: zero-knowledge, concurrency, oblivious simulation.

∗Cornell University, E-Mail: rafael@cs.cornell.edu
†Cornell University, E-Mail: wdtseng@cs.cornell.edu
‡Cornell University, E-Mail: vmuthu@cs.cornell.edu

1 Introduction

Following the seminal works of [DDN, FS] from the early 90’s, concurrent security of cryptographic
protocols has been an active area of research. Yet, it is still not well-understood under what
circumstances concurrent security can be achieved. One potential reason for this might be the
complexity of traditional analyses. In this work we focus on simplifying (and generalizing) the
analysis of concurrent security in one of the most basic settings, namely that of zero-knowledge
proofs.

Zero-knowledge (ZK) interactive proofs [GMR] are paradoxical constructs that allow one player
(called the Prover) to convince another player (called the Verifier) of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Verifier. Beyond being fasci-
nating in their own right, ZK proof have numerous cryptographic applications and are one of the
most fundamental cryptographic building blocks. As such, techniques developed in the context of
ZK often extend to more general types of interactions.

The notion of concurrent ZK-knowledge, first introduced and achieved in the paper by Dwork,
Naor and Sahai [DNS], considers the execution of zero-knowledge proofs in an asynchronous and
concurrent setting. More precisely, we consider a single adversary mounting a coordinated attack by
acting as a verifier in many concurrent executions (called sessions). Since the original protocols by
Dwork, Naor and Sahai (which relied on so called “timing assumptions”), various other concurrent
ZK have been obtained based on different set-up assumptions (e.g., [DS] [D00] [CGGM]). On
the other hand, in the standard model without set-up assumptions, Canetti, Kilian, Petrank and
Rosen [CKPR] (building on earlier works by [KPR] [R00]) show that concurrent ZK proofs for
non-trivial languages, with so called “black-box” simulators, require at least Ω(logn

log logn) number of
communication rounds. Richardson and Kilian [RK] constructed the first concurrent ZK argument
in the standard model without any extra set-up assumptions. Their protocol, which uses a black-
box simulator, requires O(nε) number of rounds. Kilian and Petrank [KP] then introduced a
new oblivious simulator. Using this technique they obtained a simpler and cleaner analysis, and
additionally improved the round complexity to Õ(log2 n). Finally, the work of Prabhakaran, Rosen
and Sahai [PRS] further simplifies and improves the analysis of the oblivious simulator, obtaining
an essentially optimal round complexity of Õ(log n).

However, despite these simplifications and improvements, the analysis remains complex, making
it hard to employ more broadly.1

Simplifications and generalizations. In this paper we provide a new analysis of the KP oblivious
simulator. Although on the outset our analysis follows the same high-level structure as that of
[PRS], our techniques simplify the proof (while at the same time providing a more general analysis).
Our first result is a new proof of the following theorems originally shown in [PRS]:

Theorem 1. Assuming the existence of one-way functions, every language in NP has a ω(log n)
round black-box concurrent ZK argument.

Theorem 2. Assuming the existence of 2-round statistically hiding commitments, every language
in NP has a ω(log n) round black-box concurrent ZK proof.

1For instance, several subsequent results rely on the “inner-workings” of the PRS analysis and in particular rely
on claims implicit in [PRS] (see e.g., [MOSV, BPS, GMOS, HKKL].)

1

Our analysis also permits us to easier analyze more protocols.2 In particular, whereas previous
analyses typically required the use non-interactive commitments in the zero-knowledge protocol,
our analysis handles zero-knowldge protocols which use also multi-round commitments. First, our
protocol for ZK arguments directly yields the following theorem recently shown by [GMOS]:3

Theorem 3. Assuming the existence of one-way functions and the existence of a t(n)-round statis-
tical ZK argument for NP, every language in NP has a t(n) +ω(log n) round statistical black-box
concurrent ZK argument.

Combined with the recent result of [NOV], the above theorem shows that statistical concurrent ZK
arguments can be based only on one-way functions.

New results. Turning to new results, our analysis for ZK proofs also establishes the following
generalization of Theorem 2:

Theorem 4. Assuming t(n)-round statistically hiding commitments, every language in NP has a
O(t(n)) + ω(log n) round black-box concurrent ZK proof.

Combined with the recent results by [NOV, HR] this establishes that concurrent ZK knowledge
proofs (as opposed to arguments) can be based on only one-way functions. Additionally, following
a suggestion by Ong and Vadhan [OV08] and relying on their “instance-based” commitments, we
can complete the characterization (initiated in [MOSV]) of languages having concurrent statistical
ZK proofs.4

Theorem 5. Every language that has a statistical ZK proof also has a ω(log n)-round black-box
statistical concurrent ZK proof.

Finally, by extending the results of [OV07, OV08], we also obtain unconditional characterizations
of computational ZK and statistical ZK arguments.

Theorem 6. Every language in NP that has a computational ZK proof (resp. statistical ZK
argument, computational ZK argument) also has a black-box concurrent computational ZK proof
(resp. statistical ZK argument, computational ZK argument).

For the case of statistical ZK arguments our protocol has essentially optimal round-complexity,
namely ω(log n) rounds. For the other results we obtain O(t(n))ω(log n) rounds, where t(n) is the
round-complexity of any construction of statistically-hiding commitments from one-way functions
[NOV, HR].

Our Techniques. Kilian and Petrank’s (KP) ingenious concurrent simulation technique relies on a
static—and oblivious—rewinding schedule; namely, the simulator rewinds the verifier after some
fixed number of messages, independent of the content and the scheduling of the messages (and
in particular what session these messages belong too). The crux of their proof is then to show

2The analysis of [PRS] considers only so called “committed-verifier” protocols which are implemented using non-
interactive commitments. See [MOSV] for more detail.

3In contrast, [GMOS] were required to consider a quite different protocol to establish this result.
4In [OV07], Ong and Vadhan suggested that their instance-based commitments could prove useful in establishing

this results. However, as they point out in [OV07], their work did not directly extend to yield this result because the
analysis of [MOSV] and [PRS] only considered non-interactive commitments, whereas the instance-based commitments
constructed in [OV07] require multiple rounds.

2

that in this schedule, every session is “successfully rewound” at least once with high probability;
in a successful rewind, the simulator can extract a “trapdoor” that will allow it to complete the
simulation. To bound the failure probability, they rely on a subtle computation of conditional
probabilities. Prabhakaran, Rosen and Sahai (PRS) [PRS, R04, PS], on the other hand, directly
analyze the probability space, i.e. the random tapes of the simulator; this makes the analysis
both simpler and sharper. The elegant high level idea is to show that each “bad” random tape
(that produces a failed simulation) can be mapped into super-polynomially many distinct “good”
tapes. This is done by identifying random tape segments, called rewinding intervals, that can
be “swapped” in order to turn a bad tape into a good one5. The crux of their proof is then to
count how many such “swappings” actually generate new and distinct random tapes. However,
the analysis is complicated by the fact that swappings performed on different rewinding intervals
may overlap and even remove other possible rewinding intervals.6 In the end, the PRS proof relies
on a complex global analysis to first count the number of swappings available to each rewinding
interval, and subsequently lower-bound the overall number of available swappings; see Appendix A
for a slightly more detailed overview of the PRS analysis.

Our main contribution is a new way of mapping good tapes to bad tapes (and just like in
[KP, PRS] thus bounding the failure probability of the simulator). Towards this goal, we identify
a stronger notion of rewinding intervals called composable blocks. Just like rewinding intervals,
properties of composable blocks guarantee that a “swap” will generate a new good random tape;
moreover, these same properties are closed under composition—namely the swapping of one such
block leaves other composable blocks intact. By this new composition property, it is enough to
identify K composable blocks to conclude that the simulation fails with probability less than 2−K .
In essence, our proof will consist of two simple steps: First, we establish “local” properties of a
composable block (namely that a swap generates one new good random tape, and that swappings
are composable); then, we count the number of composable blocks on a bad random tape. As we
shall see, each round in the protocol gives rise to a new composable block; as such, our analysis
conveys a strong intuition of how “each additional round of the protocol halves the simulator’s
failing probability”.

To employ this new notion of composable blocks, we additionaly consider and analyze a “lazy”
variant of the KP simulator. Intuitively, the “lazy KP simulator” is identical to the KP simulator
but only makes use of information gathered in its rewindings after some delay. The lazy KP
simulator can only fail more often than the original KP simulator (and thus our analysis indirectly
also applies to the KP simulator); yet, considering this “weaker” simulator enables our way of
analyzing the failure probability of the simulation. In a sense, much like making a stronger inductive
hypothesis can enable the inductive step, our stronger notion of composable blocks and our weaker
simulator enable the analysis.

On a technical level, our approach also differs from the one in [PRS] in that we directly analyze
the failure probability of the original simulator, whereas PRS instead analyze a “hybrid” simulator.
This feature facilitates analysis for a more general class of protocols (which will be required to
reach our results).

Overview. After some definitions in Section 2, we introduce our protocol for concurrent ZK argu-
5Here we use the terminologies from Rosen’s thesis [R04].
6We mention that the proceedings version of [PRS] gives only a sample illustration of multiple swappings on

a rewinding interval. See page 84 and page 90 in [R04] for examples of how overlapping invervals complicate the
analysis.

3

ments in Section 3, and prove Theorem 1 and 3 in Section 3.2. We follow up with the construction
of concurrent ZK proofs in Section 4. Finally, we give our unconditional characterizations of con-
current zero-knowledge. We provide a brief overview of the PRS analysis in Appendix A. Appendix
B contains formal definitions and results related to instance-based commitments.

2 Definitions

We assume familiarity with indistinguishability and interactive proofs.

2.1 Black-box Concurrent Zero-Knowledge

Let 〈P, V 〉 be an interactive proof for a language L. Consider a concurrent adversarial verifier V ∗

that on common input x and auxiliary input z, interacts with m(|x|) independent copies of P con-
currently, without any restrictions over the scheduling of the messages in the different interactions
with P . Let V iewPV ∗(x, z) denote the random variable describing the view of the adversary V ∗ in
an interaction with P .

Definition 1. Let 〈P, V 〉 be an interactive proof system for a language L. We say that 〈P, V 〉
is black-box concurrent zero-knowledge if for every polynomials q and m, there exists a probabilis-
tic polynomial time algorithm Sq,m, such that for every concurrent adversary V ∗ that on com-
mon input x and auxiliary input z opens up m(|x|) executions and has a running-time bounded
by q(|x|), Sq,m(x, z) runs in time polynomial in |x|. Furthermore, it holds that the ensembles
{V iewPV ∗(x, z)}x∈L,z∈{0,1}∗ and {Sq,m(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over
x ∈ L.

2.2 Other Primitives

We informally define the other primitives we use in the construction of our protocol.

Witness-Indistinguishable Proofs [FS]: An interactive proof is said to be witness indistin-
guishable (WI) if the verifier’s view is “computationally independent” of the witness used by
the prover for proving the statement—i.e. the views of the verifier in interactions with provers
using two different witnesses are indistinguishable. Zero-knowledge proofs are automatically
WI.

Statistical Special-Sound Proofs [CDS]: A k-round interactive proof for language L ∈ NP
with witness relation RL and security parameter n is statistical special-sound (SS) with
respect to RL if the following holds: There exists a deterministic polynomial time procedure
that can extract a witness with overwhelming probability in n given an randomly sampled
(k − 2)-message prefix of the protocol (~α) (of an interaction between an (unbounded) prover
and an honest verifier) and two independent accepting completions of this prefix ((~α, β, γ)
and (~α, β′, γ′)). 3-round SS-WI proofs for NP can be based on one-way permutation (by
relying on Blum’s HC protocol [Blum] implemented using non-interactive commitment) and
4-round SS-WI proof can be based on only one-way functions (by instead using two-rounds
commitments [Naor]).

4

Proofs of Knowledge [FS, BG]: An interactive proof is a proof of knowledge if the prover con-
vinces the verifier not only of the validity of a statement, but also that it possesses a witness
for the statement.

3 Concurrent Zero-Knowledge Arguments

3.1 Protocol for Concurrent Zero-Knowledge Arguments

Our concurrent ZK protocol ConcZKArg (also used in [PV]) is a slight variant of the precise ZK
protocol of [MP], which in turn is a modification of the Feige-Shamir protocol [FS]. The protocol
proceeds in the following three stages, given the common input statement x ∈ {0, 1}∗, the security
parameter n, and a “round-parameter” k:

1. In Stage Init, the Verifier picks two random strings s1, s2 ∈ {0, 1}n, and sends their images
c1 = f(s1), c2 = f(s2) through a one-way function f to the Prover. The Prover and the
Verifier also exchange all but the last two messages ~α1, . . . , ~αk of k invocations of a WI
statistical special-sound proof of knowledge of the fact that either c1 or c2 is in the image set
of f . The end of Stage Init is called the start of the protocol.

2. Stage 1 consists of k iterations of message exchange where in the jth iteration, the Prover
sends βj ← {0, 1}∗, a random second last message for the jth proof of knowledge, and the
Verifier replies with the last message γj of the proof. These k iterations are called slots. A
slot is convincing if the Verifier succeeds producing an accepting proof. If there is ever an
unconvincing slot, the Prover aborts the whole session. The end of Stage 1 (after k convincing
slots) is called the end of the protocol.

3. In Stage 2, the Prover provides a (statistical) WI proof of knowledge of the fact that either
x is in the language, or at least one of c1 and c2 are in the image set of f .

The completeness and the soundness of the protocol follows directly from the proof of Feige and
Shamir [FS]; in fact, the protocol is an instantiation of theirs. Intuitively, to cheat in the protocol
a prover must “know” an inverse to either c1 or c2 (since Stage 2 is an argument of knowledge),
which requires inverting the one-way function f .

3.2 The ZK simulator

We show that whenever k is super logarithmic (i.e. k = ω(log n)), our protocol is concurrent ZK.
On a very high-level the simulation follows that of Feige and Shamir [FS]: the simulator will attempt
to rewind one of the slots (i.e. the special-sound proofs). If the simulator receives two accepting
proof transcripts, the special-soundness property allows the simulator to extract a “fake” witness
si such that ci = f(si). This witness can later be used in the second phase of the protocol.

Towards this goal, we provide an oblivious black-box simulator similar to [KP]. We describe
a procedure Sim(x, z) = SimV ∗(x, z) that given input instance x, auxiliary input z, and black-box
access to V ∗, outputs a view that is indistinguishable from the real view of V ∗(x, z).

Description of Sim. Let n be the security parameter, m be a bound on the number of concurrent
sessions invoked by V ∗ and T be the total number of messages exchanged, bounded by O(mk), a

5

Protocol ConcZKArg

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).

Stage Init:

V uniformly chooses s1, s2 ∈ {0, 1}n.

V → P: c1 = f(s1), c2 = f(s2).

V ↔ P: Exchange (interactively) all but the last two messages ~α1, . . . , ~αk of k statistical WI
special-sound proofs of knowledge (SS-POK) of the statement:

either there exists a value s s.t. c1 = f(s)
or there exists a value s s.t. c2 = f(s)

The proof of knowledge is with respect to the witness relation R′L =
{((x1, x2), (y1, y2)) : f(x1) = y1 or f(x2) = y2}

We say the protocol has reached start (of Stage 1) if all messages in Stage Init are exchanged.

Stage 1:

For j = 1 to k do

P → V: The second last message βj of the jth WI SS-POK.
V → P: The last message γj of the jth WI SS-POK.

We say the protocol has reached end (of Stage 1) if all k SS-POKs are accepted.

Stage 2:

P ↔ V: a (statistical) WI argument of knowledge from P to V of the statement

either there exists values s′1, s
′
2 s.t. either c1 = f(s′1) or c2 = f(s′2).

or x ∈ L
The argument of knowledge is with respect to the witness relation RL∨L′(c1, c2, x) =
{(s′1, s′2, w) : (s′1, s

′
2) ∈ RL′(c1, c2) ∨ w ∈ RL(x)}.

Figure 1: Concurrent ZK argument for NP with parameter k

6

polynomial. In order to extract the “fake witness” (s1 or s2) from V ∗, Sim will follow an oblivious
rewinding schedule based on the number of messages exchanged so far, just like in [KP] and [PRS].

More precisely, Sim will use the helper-procedure recursive-rewind, formally described in Figure 2.
recursive-rewind(t, s, h) simulates V ∗(x, z) for t messages starting from state s of V ∗ as follows:

1. From state s recursively simulate V ∗ for t/2 messages; let s1 be the resulting state of V ∗.

2. Rewind V ∗ back to state s and recursively simulate V ∗ for t/2 messages.

3. From s1 (the state at the end of step 1), recursively simulate V ∗ for t/2 messages.

4. Rewind V ∗ back to state s1 and recursively simulate V ∗ again for t/2 messages.

At the base case of the recursion (t = 1), recursive-rewind acts like an honest prover during Stage 1
of the protocol. Meanwhile, recursive-rewind remembers the messages sent by V ∗ during the entire
simulation in the “history” variable h. When the simulation reaches end, recursive-rewind will
attempt to extract the “fake witness” (s1 or s2) from V ∗ using messages stored in h, and use it for
the WI-POK in stage 2. If the extraction is unsuccessful, recursive-rewind will output ⊥, and we
say Sim is stuck (Sim will output ⊥ and stop the simulation as well). Otherwise, Sim will output
the view of V ∗ on the output thread of recursive-rewind(T, s0, ∅), where s0 is the initial state of V ∗.

We now introduce a few terminologies regarding the recursive structure of recursive-rewind.
We refer to each call of recursive-rewind as a block, and call a sequence of blocks that simulate
consecutive parts of the protocol a thread (motivated by Figure 3). Because recursive-rewind makes
four recursive calls, each block would contain four smaller blocks of half the size. Of these four
blocks, we call the first pair (respectively the last pair) siblings, since these two blocks share the
same “parent” start state. In addition, sibling blocks also share the same “history” of recorded
messages. That is, during the simulation of a block, we do not use the information obtained during
the simulation of its sibling block, so that the two blocks are totally symmetric. Since our simulator
does not update h until the simulation in both siblings are finished, we call it “lazy”.

In addition to this lazy modification, we have changed how blocks are threaded together from
[KP] and [PRS]. In recursive-rewind, the recursive calls for the second half of messages are continued
from the first recursive execution of the first half of messages. That is, the second set of recursive
calls are continued from state s1, similar to the precise simulation of [MP] and [PPSTV]. [KP] and
[PRS], in contrast, continues the recursive calls from state s2. Due to the new symmetry introduced
by lazy simulation, either choice will work with our analysis. In the end, recursive-rewind outputs the
thread connecting the first recursive call to each half of the messages; this thread is called the output
thread. See Figure 3 for an illustration of blocks and threads in an execution of recursive-rewind.

3.3 Proof Overview

In order to prove the correctness of the simulation, we need to show that for every adversarial verifier
V ∗, the simulator runs in polynomial time and the output distribution is “correct”. To analyze the
running time of the simulator, it suffices to compute the number of messages exchanged, since we
can assume that a maximum of poly(n) time is spent on processing each message. It follows from
the recursive structure of the simulator that the number of messages exchanged is doubled for each
level of the recursion; since we have a recursive depth of log2 T , the running time of the simulator
is poly(n) · T · 2log2 T = poly(n) · T 2 = poly(n).

7

recursive-rewind(t, s, h):

1. Base Case: t = 1

(a) If the next scheduled message is from an aborted session (i.e. there has been an unconvincing
slot) return (s, h) (i.e. do nothing).

(b) If the next scheduled message is a Stage 1 prover message for session i, pick a random message
β ← {0, 1}n

2

just like an honest prover. Send β to V ∗. Suppose V ∗ produces the response v
intended for session j. Update state s to be the new state of V ∗, and update the history h with
the messages β and v. If v is an unconvincing last message of a proof of knowledge a SS-POK
in Stage 1, abort session j.

(c) If we reach the end of a session, attempt to extract (and remember) a fake witness of the session
using previous messages stored in h. If the extraction is unsuccessful, output ⊥.

(d) If the next scheduled message is a Stage 2 prover message for session i, use the extracted fake
witness to complete the witness-indistinguishable proof of knowledge.

2. Recursive step

Rewind first half twice

(a) (s1, h1)← recursive-rewind(t/2, s, h)

(b) (s2, h2)← recursive-rewind(t/2, s, h)

Rewind second half twice from state s1
(c) (s3, h3)← recursive-rewind(t/2, s1, h1 ∪ h2)

(d) (s4, h4)← recursive-rewind(t/2, s1, h1 ∪ h2)

(e) output (s3, h3 ∪ h4) /* s→ s1 → s3 is called the output thread */

Figure 2: The recursive procedure used by Sim—the “lazy” KP simulator.

The correctness of the output view follows from the fact that Stage 1 messages are chosen
uniformly at random, and that the protocol used in Stage 2 is witness indistinguishable. Therefore,
as long as Sim gets stuck with negligible probability, taken over the random tapes of Sim (the random
tape of V ∗ is fixed during black box simulation), the output distribution is correct. Towards this
goal we will show that the probability of getting stuck at any point in the simulation is negligible.

Recall that Sim can only get stuck on a particular thread when the simulation reaches the
end of some session for which the “fake” witness has not yet been extracted. We will show that
the probability of getting stuck on any session and any thread is negligible. Since there are only
polynomially many sessions and threads, the main theorem follows by the union bound.

Fix any thread h and session i; we call them the “main” thread and the “main” session, and call
all other threads and sessions “auxiliary”. We say a random tape of Sim is bad if Sim gets stuck on
thread h and session i (if at all); all other random tapes are called good (including those that got
stuck on an auxiliary session or thread). The high-level idea, just like in [PRS], is to show that for
every bad random tape, there exists super-polynomially many good random tapes. Furthermore,
the good tapes corresponding to any two bad tapes are disjoint. Hence the probability of a tape
being bad is negligible. From here on, start and end refer to those on the main session and thread
unless otherwise noted.

8

siblings
s s1 s3

output thread

Figure 3: A pictorial representation of the rewind schedule. The boxes represent recursive blocks,
and the lines represent threads of a executions. The output thread is highlighted, and is the thread
finally output by Sim.

Given a bad random tape we show how to generate super-polynomially many good random
tapes. Recall that on a bad tape, the simulator reaches end without extracting a “fake witness”.
Hence, it has convincing runs of all slots in the main thread (to reach end), but no convincing runs
of any slot in an auxiliary thread prior to end (so that Sim cannot extract a witness). Intuitively,
to generate a good tape from a bad one we just need to “swap” a convincing slot from the main
thread into an auxiliary thread. After the swapping, should the simulation reaches end of the
main session on the main thread, the convincing slot on the auxiliary thread, together with the
corresponding convincing slot on the main thread, will allow Sim to extract “fake witness”. Hence
the simulation may continue on without getting stuck.

To actually “swap” convincing slots, we modify the random tape of Sim. The basic operation
that we perform on the random tape is to exchange the randomness used by sibling blocks (i.e.
exchange the portions of the random tape used to simulate these blocks). Since V ∗ is deterministic
and sibling blocks share the same start state, the messages produced by V ∗ in sibling blocks
are uniquely determined by the messages produced by Sim. But the actions of Sim are uniquely
determined by its random tape and the history repository, and (due to the lazy property of Sim)
siblings share the same history h. Thus, swapping the random tape between siblings swaps the
simulation result in the two blocks exactly.

Intuitively, we call a block on the main thread composable if it satisfies the following properties:

Goodness. Swapping a composable block with its sibling produces a good random tape.

Composability. The above swap leaves other composable blocks on the main thread composable.

Reversibility (signature). From the random tape obtained after swapping the blocks, we must
be able to undo the swap operation and retrieve the original tape. More precisely, given the
tape, we should be able to identify the block that has been swapped. The undo operation
ensures that good tapes obtained from different bad tapes are different.

Consider K composable blocks with an ordering such that each swap will leave the successive
composable blocks still composable. Then, we can generate 2K − 1 good random tapes by choosing
to swap each block or not in the ordering. By a simple counting argument, we will show that for
any bad tape, there are k−2 log2 T composable blocks with an ordering. Thus, from every bad tape
we can generate 2k−2 log2 T distinct good tapes. The undo procedure also shows that different bad

9

tapes generate different good tapes. Thus, if k ∈ ω(log2 T) = ω(log n), the probability of having a
bad tape is negligible.

3.4 The Actual Proof

Formally, Sim may output ⊥ for two reasons. Firstly, it may reach end without encountering two
convincing slots after the start of the session; we call this a rewinding failure. Secondly, Sim
may not be able to extract a fake witness even though it has access to matching special-sound
transcripts; we call this a special-sound failure. We first focus on bounding the probability of
special-sound failures.

3.4.1 Composable Blocks

We first define the notion of composable blocks and show that they satisfy the three properties
of goodness, composability and reversibility. Recall that a block is the scope of an execution of
recursive-rewind, and therefore contains many branching threads. We say “the block contains the
thread” or “the block is on the thread” interchangeably. Let us fix a particular main session and
main thread, and formally define a random tape to be bad if Sim encounters a rewinding failure
during the main session on the main thread; otherwise a random tape is good. From here on start
and end refers to those of the main session and main thread, unless otherwise noted.

Definition 2 (Composable Block). Consider an execution of recursive-rewind with a fixed random
tape (not necessarily bad) and main thread h. A block B with sibling B′ in the simulation is called a
composable block, with respect to the main thread and session, if it satisfies the following conditions:

Main block condition: B contains the main thread h, a convincing slot of the main session (not
necessarily on the main thread) and does not contain start.

Sibling condition: B′ does not contain any end of the main session.

Signature condition: The simulation after start but before B contains only convincing slots on the
main thread h, and contains no convincing slots on the auxiliary threads.

As we will soon see, the Main block condition and the Sibling condition implies goodness and
composability, while the Signature condition implies reversibility.

We also define an ordering relation > on composable blocks.

Definition 3. Let C and B be two blocks on a common thread. We write C > B iff

• C and B are disjoint, and C occurs before B (Case 1 in Figure 4), or

• C and B are not disjoint, and C is a larger block that contains B (Case 2 in Figure 4)

Note that given two blocks on the same thread, if they are not disjoint, then one must contain
another. Thus definition 3 defines a total order on any set of blocks that share a common thread.

Finally, we define an undo function on random tapes using the following deterministic procedure:

• Given a random tape τ ′, execute recursive-rewind with the tape τ ′. Call a block special if it
contains a convincing slot of the main session on an auxiliary thread.

10

• Look for the first special block, D, after start; that is, any other special block E after
start satisfies D > E.

• Swap the parts of τ ′ used by D and its sibling, and output the new random tape.

Claim 1. Let τ be a random tape (not necessarily bad). Let B be a composable block with sibling
B′ when recursive-rewind is executed with random tape τ , and let s be the common start state of B
and B′. Further, let τ ′ be the random tape obtained after swapping the blocks B and B′. Then:

1. [Goodness]: τ ′ is a good random tape.

2. [Composability]: Any composable block C on τ with C > B is still composable on τ ′.

3. [Reversibility]: undo(τ ′) = τ .

Proof. Recall that the simulation inside blocks B and B′ are exchanged exactly after the swapping.

Goodness Let s be the common start state ofB andB′. As shown in Figure 4, when recursive-rewind
is executed with τ ′, B′ will now be on the main thread. Recall that B′ does not contain any
end of the main session (sibling condition). Thus, if the end of the main session ever occurs
on the main thread, it will occur after both B and B′ are executed. In that case, both the
convincing slot in B and the corresponding convincing slot on the main thread occur before
end and after the same start (see Figure 4). Thus, τ ′ is a good tape.

Composability Given a composable block C > B with sibling C ′ on τ , we have two cases as
shown in Figure 4. In case 1, when C is disjoint from B, the swapping of B and B′ does not
change the simulation inside C, C ′ (not shown), and between start and C. Respectively,
this leaves the main block condition, sibling condition, and signature condition of C intact on τ ′.
On the other hand, in case 2 where C contains B, the swapping of B and B′ again leaves the
simulation inside C ′ (not shown) and between start and C unchanged, keeping the sibling
condition and signature condition intact. In addition, since C still contains B under τ ′, and B
in turn contains a convincing slot, the main block condition still holds as well (other parts of
C may have changed). In both cases, C continues to be a composable block on τ ′.

Case 1: C occurs before B

B′

B

start
sC

Case 2: C contains B

B′

B

start
s

C

Figure 4: The before-and-after block diagram of the swapping procedure in Claim 1. The main
thread is shown in a thick line, and a typical composable block C > B is shown in a dashed box.

11

Reversibility Finally, we need to show that undo(τ ′) = τ . Clearly, after the swapping, block B is
no longer on the main thread and contains a convincing slot. On the other hand, any block C
earlier than B and B′ either is simulated before s or contains B and B′ (as shown in figure 4).
In Case 1, C is not special on τ because of the signature condition of the composable block B,
and thus is not special on τ ′ either. In Case 2, since C contains B′, it is on the main thread
and is not special. Thus, undo will always choose D = B′, and perform the inverse swapping
on τ ′ to obtain τ7.

The next claim demonstrates how to compose multiple composable blocks.

Claim 2. Let τ be a bad random tape, B = {B1, . . . , Bp} be a set of composable blocks for τ . Then,
we can generate a set of good random tapes, S(τ,B), by swapping the various composable blocks in
B, so that the following holds:

1. |S(τ,B)| ≥ 2p − 1.

2. For any bad tape τ ′ 6= τ and any set of composable blocks B′ for τ ′, S(τ,B) ∩ S(τ ′,B′) = ∅.

Proof. Since all composable blocks lie on a common thread (i.e. the main thread), there is a total
ordering of the blocks. Without loss of generality, let B1 > B2 · · · > Bp. Consider any non-empty
subsequence of 1, . . . , p, say u1, . . . , uq. There are 2p− 1 such sequences. Let τu1...uq be the random
tapes obtained from τ by swapping the blocks Bui with its sibling, in the order of i = q, q−1, . . . , 1.

From Claim 1, it follows that τu1...uq is a good random tape. We further note that given τu1...uq ,
we can recover the blocks Bu1 , . . . Buq by repeatedly applying undo until we reach a bad tape (it
will always be τ). Since undo is deterministic, we must have τ~u 6= τ~v whenever ~u 6= ~v in order for
undo to recover a different set of blocks on input τ~u and τ~v. Thus, we obtain 2p − 1 distinct good
random tapes.

Similarly, take any α ∈ S(τ,B) and β ∈ S(τ ′,B′). Applying undo repeatedly on α until the
result is a bad tape will result in τ , while applying the same procedure on β will give τ ′. Again,
since undo is deterministic, we have α 6= β.

Corollary 1. Suppose every bad random tape had p composable blocks. Then, the probability of a
random tape being bad is at most 1

2p .

3.4.2 Number of Composable Blocks

We now proceed to count the number of composable blocks. First we introduce the notion of
minimal containing blocks. For each slot, its minimal containing block is the minimal block on the
main thread that contains the slot. Claims 3 and 4 below together show that there are at least
k − 2 log T composable blocks when we run Sim with a bad tape.

7 Note that we here rely on the lazy property of Sim, and in particular the “exact” swapping of sibling blocks.
Without this exact swapping, if the end of an auxiliary session occurs before the convincing slot in B, that end may
cause Sim to output ⊥ after the swapping, and erase the convincing slot in B. Then, undo will not be able to locate
D = B anymore.

12

Claim 3. In an execution of Sim with a bad random tape, there are k minimal containing blocks.

Proof. As observed earlier, on a bad tape there will be k convincing slots of the main session on
the main thread (in order to reach end). We merely need to show that for each slot, its respective
minimal containing block is distinct. Suppose that two slots share the same minimal containing
block of length t. Since slots on the same thread are disjoint, we reach a contradiction as one of
the slots must be properly contained in one of the two smaller blocks of size t/2.

Claim 4. Consider an execution of Sim with a bad random tape τ . If there are k′ minimal rewinding
block, then there are k′ − 2 log T composable blocks.

Proof. Let B be a minimal rewinding block that does not contain start or end. Since start (or
end) can only be in at most log T different blocks on the main thread (since that is the recursion
depth), we conclude that there are at least k − 2 log T such blocks. It remains to show that B is a
composable block. Let B′ be the sibling of B.

The main block condition of composable blocks follows directly, while the signature condition
on the main thread actually holds for the whole simulation from start to end, since τ is a bad
random tape. Thus, we only need to show that the sibling condition is satisfied, i.e. B′ does not
contain end. Assume the contrary that B′ does contain end. Since B and B′ are siblings with a
common starting point and B contains a slot of the main session, B′ must contain that same slot in
a convincing manner in order to reach end. On the other hand, B does not contain end. Thus B′

will be executed before the main thread reaches end (if at all), and this convincing slot will allow
Sim to extract the witness of the main session by the same argument in Claim 1. This contradicts
the fact that τ is a bad tape.

3.4.3 Concluding the Proof

We first show that Sim gets stuck with negligible probability, and then use it in Claim 7 to conclude
that the output distribution of SV

∗
is computationally (respectively statistically) indistinguishable

from the real view of V ∗.

Claim 5. Sim encounters rewinding failures with negligible probability.

Proof. As mentioned before, since there are only polynomially many sessions and threads, it suffices
to show that the probability of the simulator getting stuck on any fixed thread and session is
negligible. The union bound then shows that Sim overall gets stuck with negligible probability

For any fixed thread and session, combining Claim 2, 3 and 4 shows that a random tape is bad
with probability at most

1
2k−2 log T

This is negligible in n since T is polynomial in n and k = ω(log n).

Claim 6. Sim encounters special-sound failures with negligible probability.

Proof. Suppose for the sake of contradiction that Sim encounters special-sound failures with non-
negligible probability. Consider an unbounded adversary that forwards a random pair of special-
sound transcripts in an execution of Sim to an outside honest verifier of the special sound proof.

13

Although Sim may decide to rewind itself while the adversary is forwarding a partial transcript to
the outside honest verifier, the adversary can continue the partial transcript by itself in exponential
time8. This contradicts the statistical special-soundness property.

Claim 7. If the argument of knowledge in Stage 2 is WI (resp. statistical WI), then the ensem-
bles {V iewPV ∗(x, z)}x∈L,z∈{0,1}∗ and {Sim(x, z)}x∈L,z∈{0,1}∗ are computationally (resp. statistically)
indistinguishable over x ∈ L.

Proof. We consider polynomially many intermediate hybrids Simi, 0 ≤ i ≤ m, that receive the
real witnesses to the statements x1, . . . , xm. Simi proceeds as Sim until the ith Stage 2 proof on
the output thread, after which Simi continues in a straight line simulation with V ∗ using the real
witnesses for Stage 2 proofs. Simi will output ⊥, however, should Sim encounter a rewinding
or special-sound failure during the ith proof. Clearly, Sim0 generates V iewPV ∗(x, z) and Simm

generates Sim(x, z). Thus it is enough to show that for all i, the output of Simi and Simi+1, are
computationally (resp. statistically) indistinguishable.

We introduce yet another hybrid Sim′i that proceeds as Simi except it utilizes the extracted fake
witness for the ith proof. By Claim 5 and 6, Sim′i is statistically close to Simi+1 (since Simi+1 may
output ⊥ with at most a negligibly increase probability between the ith and i+ 1st proofs). On the
other hand, Simi and Simi+1 differ only in the ith proof, and is therefore computationally (resp.
statistically) indistinguishable by the WI property of the Stage 2 proof. Thus, the output of Simi

and Simi+1 are indeed computationally (resp. statistically) indistinguishable.

Claim 7 completes the proof of Theorem 1 and 3.

Remark. Since we have shown that our lazy simulator is a concurrent zero-knowledge simulator, it
follows directly that the KP simulator is also a concurrent zero-knowledge simulator: because the
KP simulator receives more information than the lazy simulator at any point during the simulation
(i.e. a bigger history repository h), the probability that the KP simulator outputs ⊥ is no more
than the probability that the lazy simulator outputs ⊥. Thus, the same argument presented in
Claim 7 can be applied also to the KP simulator.

4 Concurrent Zero-Knowledge Proofs

4.1 Protocol for Concurrent Zero-Knowledge Proofs

Our protocol for concurrent ZK proofs, ConcZKProof (depicted in Figure 5), is based on the
protocol of Goldreich and Kahan [GK] with modifications introduced by [MP, PRS, MOSV]. The
following primitives are used in ConcZKProof:

Computational Special-Sound Proofs [CDS]: A k-round interactive proof for language L ∈
NP with witness relation RL and security parameter n is computational special-sound (SS)
with respect to RL if the following holds: There exists a deterministic polynomial time
procedure that can extract a witness with overwhelming probability in n, given a k-2-message
prefix of the protocol (~α) and two independent accepting completions of this prefix ((~α, β, γ)
and (~α, β′, γ′)) that are generated by a computationally bounded prover and an honest verifier.

8In Section 4.2, a more involved proof is needed since only computational special-soundness is guaranteed

14

4-round statistical WI and computational special-sound proofs of knowledge for NP can be
based on 2-round statistically hiding commitments.

Commitments (see e.g. [G]): An (interactive) commitment scheme consists of a sender S, a
receiver R, and a verification algorithm Ver. A message m is given as private input to S,
and after the interaction R outputs a commitment string c and S outputs a decommitment
pair (m, d). Given (c,m, d), Ver accepts if (m, d) is a valid decommitment of c, and rejects
otherwise. The commitment scheme is correct if Ver accepts all (c,m, d) triples generated by
the scheme.

The commitment scheme is binding (resp. statistically binding) if for all efficient (resp. un-
bounded) senders S∗ interacting with the honest receiver R, the probability of generating a
commitment c and two valid decommitments of c to two distinct messages is negligible.

The commitment scheme is hiding (resp. statistically hiding) if for all efficient (resp. un-
bounded) receivers R∗ interacting with the honest sender S, the probability that the R∗ can
distinguish between the commitment of two messages is negligible.

Public-coin Committed Verifier ZK Proofs (CVZK) [CDS, MOSV]: A committed-verifier
Vm, where m = (m1, . . . ,mk), is a deterministic verifier that always sends mi as its ith mes-
sage. A public-coin interactive proof is computational (resp. statistical) committed-verifier
zero knowledge (CVZK) if there exists a probabilistic polynomial-time simulator S such that
for all committed verifier Vm, the output of S(m) is computationally (resp. statistically) in-
distinguishable from the view of Vm in a real execution of th protocol. The GMW graph
3-coloring [GMW] and the Blum Hamiltonicity [Blum] protocols are examples of 4-round
public-coin computational CVZK proofs for NP with efficient provers that can be based on
one-way functions. As noted by [MOSV], any language that has a public-coin honest verifier
zero-knowledge proof also has a CVZK proof with one additional round.

The completeness and the soundness of the protocol follows directly from the proof of Goldreich
and Kahan [GK]; in fact, the protocol is an instantiation of theirs. Intuitively, the prover cannot
cheat since the initial commitment is statistically hiding. Note that ConcZKArg and ConcZKProof
share a very similar structure. In both cases, Stage Init is used to fix the “fake witnesses” of the
session. This is followed by k slots of special sound proofs in Stage 1 that gives the simulator a
chance to extract a “fake witness”. The final proof or argument in Stage 2 can be completed by
using either a real witness of the language or a “fake witness” extracted in Stage 1.

4.2 Proof of Theorem 4

In this section we describe a concurrent zero-knowledge simulator for ConcZKProof. Actually, we
will continue to use Sim as our simulator with a small modification: During Stage 2, assuming that
Sim has been able to extract r̄ from the commitment in Stage Init, it will generate the Stage 2
proof using the CVZK property. Sim may now output ⊥ for three different reasons:

1. Sim is did not obtain two matching special sound proof transcripts in Stage 1. Call this a
rewinding failure.

2. Sim could not extract a witness even after obtaining two matching special sound proofs in
Stage 1. Call this a special-sound failure.

15

Protocol ConcZKProof

Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).

Stage Init:

V uniformly chooses r = r1, . . . , r` ∈ {0, 1}n, s1, . . . , s` ∈ {0, 1}poly(n), where ` = `(n) is deter-
mined in Stage 2.

V ↔ P: Compute ci = Com(ri, si) in parallel for 1 ≤ i ≤ `, where Com is a statistically hiding
commitment that may be interactive.

V ↔ P: Interactively exchange in parallel all but the last two messages of k` copies (k copies for
each ci) of a statistically WI and computationally special-sound proof of knowledge (CSS-
POK) of the statement:

there exists values r′, s′ s.t. ci = Com(r′; s′)

The proof of knowledge is with respect to the witness relation R′L(c) =
{(v, s) : c = Com(v; s)}.

We say the protocol has reached start (of Stage 1) if all messages in Stage Init are exchanged.

Stage 1:

For 1 ≤ j ≤ k do

P→ V: The second last messages of the jth batch ofWI CSS-POKs (one for each 1 ≤ i ≤ `).
V → P: The last messages of the jth batch of WI CSS-POKs (one for each 1 ≤ i ≤ `).

We say the protocol has reached end (of Stage 1) if all k CSS-POKs are accepted.

Stage 2:

P ↔ V: P proves to V that x ∈ L using a `(n)-round public-coin computational CVZK proof
with efficient provers. During the proof, the verifier decommits to ri as its ith message.

Figure 5: Concurrent ZK Proof for NP with parameter k.

16

3. During Stage 2, V ∗ decommits the initial commitment Com to a value r different from the
value extracted by Sim. Call this a binding failure (since V ∗ has successfully opened the
initial commitment to two values).

Intuitively, special-sound failures and binding failures should occur with negligible probabilities as
well since V ∗ is computationally bounded. We give the formal proofs below:

Claim 8. Sim encounters rewinding failures with negligible probability.

Proof. This can be shown in the same manner as Claim 5 using the analysis in Section 3.4.

Claim 9. Sim encounters special-sound failures with negligible probability.

Proof. Suppose for the sake of contradiction that Sim does encounter special-sound failures with
non-negligible probability. Then for some polynomial p and infinitely many n, there exist initial
transcripts τ = τn such that immediately after τ , Sim will produce a prefix of the computational
special-sound proof and two independent completions of the transcript that prevents witness ex-
traction with probability at least 1/p(n).

We may consider the following experiment instead: First, choose a random thread of Sim, and
execute Sim continuing from transcript τ until a prefix τ1 of a Stage 1 special-sound proof appears
on the chosen thread; next, pick two random threads of the simulation to obtain a pair of special-
sound transcripts following τ1. Let PrSS(Sim) = PrSS(Sim, n) denote the probability that the pair
of special-sound transcripts generated in the experiment prevents witness extraction. Since there
are only polynomially many threads, there exists a polynomial q such that PrSS(Sim) > 1/q(n)

This does not directly contradict the computational special-sound property, however, since Sim,
acting as an adversarial prover for the special-sound proof and interacting with an honest verifier,
may need to rewind the honest verifier during its execution. Instead, we consider a modified
simulator Sim′ that receives the real witnesses to the statements x1, . . . , xm ∈ L; Sim′ will continue
from the prefix τ in a straight-line simulation (on the chosen threads) using the real witnesses for
any Stage 2 proofs. If PrSS(Sim′) (defined similarly) is also non-negligible, then Sim′ can be used
to contradict the computational special-sound property.

To prove it, we consider hybrids Simi, 0 ≤ i ≤ m, defined as follows. Simi proceeds as Sim
until the ith Stage 2 proof (on the chosen thread), after which Simi continues as Sim′ (i.e. does a
straight-line simulation of the chosen thread), but will output ⊥ should a rewinding, special-sound
or binding failure occur during the ith proof. Clearly, Sim = Simm, and Sim′ = Sim0. Suppose for
the sake of contradiction that PrSS(Sim′) is negligible. Since m is polynomial in n, there exists
some i such that PrSS(Simi+1)− PrSS(Simi) ≥ 1/(2p(n)m(n)). Let us introduce one more hybrid
simulator, Sim′i, that proceed as Simi but uses the extracted witness from Stage 1 proofs to provide
the ith Stage 2 proof. PrSS(Sim′i) ≥ PrSS(Simi+1) since Simi+1 and Sim′i are identical except that
Simi+1 may abort more often during rewinds between the ith and i+ 1st Stage 2 proof. This gives
us

PrSS(Sim′i)− PrSS(Simi) ≥
1

2p(n)m(n)

But Simi and Sim′i differ only in the ith proof. This contradicts the computational-CVZK property
of the Stage 2 proof.

17

Remark: In the proof of Claim 9 we required that L ∈ NP and that the Stage 2 CVZK proof has
an efficient prover to construct the hybrids Simi; these two properties are not used elsewhere in the
analysis of ConcZKProof. Looking forward, we will be able to relax these assumptions in Section 5
when the verifier uses statistically binding commitments.

Claim 10. Sim encounters binding failures with negligible probability.

Proof. This claim can be shown in the same manner as Claim 9. On a high level, should Sim en-
counter binding failures with non-negligible probability, we can use Sim to produce two openings of
the initial commitment with non-negligible probability, and therefore contradict the computational
binding property of Com.

Claim 11. Let (P, V) be defined as in ConcZKProof. Then {V iewPV ∗(x, z)}x∈L,z∈{0,1}∗ and
{Sim(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over x ∈ L.

Proof. Claim 8, 9 and 10 show that Sim outputs ⊥ with negligible probability. Thus, we can follow
the same proof as in 7 (using the CVZK property instead of the WI property) to conclude that
the output of Sim is indistinguishable from the view of a verifier in a real execution.

5 Unconditional Characterizations of Concurrent Zero Knowledge

Let SZKP (resp. SZKA) denote the set of languages that have a statistical ZK proofs (resp.
arguments) and CZKP (resp. CZKA) denote the set of languages having computational ZK
proofs (resp. arguments). We will utilize unconditional constructions of instance-based commit-
ments [BMO, OV07, OV08] to unconditionally characterize the languages that have concurrent
ZK protocols.

Informally, an instance-based commitment scheme for a language L is a family of efficient stan-
dard commitment schemes {Comx}x where both the sender and the receiver receives the instance
x in protocol Comx. The commitment satisfies the following two properties:

1. If x ∈ L, the commitment is hiding

2. If x 6∈ L, the commitment is binding.

As usual, the binding and hiding properties can be statistical or computational. From now on, when
we describe the binding (resp. hiding) property of an instance-based commitment, we implicitly
require the property to hold only for the instances of the language (resp. the complement of the lan-
guage). For an immediate reference, we provide formal definitions of instance-based commitments
in Appendix B.

On a high-level, we implement the primitives in ConcZKProof with instance-based commitments
to achieve unconditional results. For the ZK property, we need a commitment scheme that is hiding
whenever x ∈ L (e.g. to implement GMW in Stage 2). For the soundness property, however, we
need a commitment scheme that is hiding whenever x 6∈ L for the Stage Init of the protocol (this is
opposite from the definition of instance-based commitments). Therefore, to construct a concurrent
ZK protocol, we require instance-based commitment schemes for both L and L̄.

For the remainder of this section, let t(n) be an upper bound on the round complexity of any
statistically hiding commitment based on one-way functions. [HR, NOV] showed that t(n) is a

18

polynomial. The following theorem shows that languages with zero-knowledge protocols do have
the necessary instance-based commitments:

Theorem 7. If L ∈ SZKP, then we have an O(1)-round, statistically hiding and statistically
binding instance-based commitment for L and L̄. Similar statements also hold for the classes
CZKP, SZKA and CZKA as shown in the table below:

Instance-based commitment for L Instance-based commitment for L̄
rounds hiding binding rounds hiding binding

L ∈ SZKP O(1) stat. stat.∗ O(1) stat. stat.∗

L ∈ CZKP O(1) comp. stat.∗ O(t(n)) stat. comp.
L ∈ SZKA ∩NP O(t(n)) stat. comp.∗ O(1) comp. stat.
L ∈ CZKA ∩NP O(t(n)) comp. comp.∗ O(t(n)) comp. comp.

The proof of Theorem 7 combines results from [OV07, OV08, Oka] and is found in Appendix
C. Theorem 7 intuitively says the following: Let A and B be the descriptions “statistical” or
“computational”. Let us write (A,B)-ZK to denote zero-knowledge with A-indistinguishability
and B-soundness, and (A,B)-Com to denote A-hiding and B-binding instance-based commitments.
The theorem states that

L ∈ (A,B)-ZK ⇒ L has an (A,B)-Com and L̄ has a (B,A)-Com

We now proceed with our unconditional characterizations of languages with concurrent zero-
knowledge proofs:

Theorem 8. Every language L ∈ SZKP has a ω(log n)-round statistical black-box concurrent ZK
proof.

Proof. We begin with the protocol ConcZKProof and make some modifications. First, we use
instance-based commitments (from Theorem 7) for L̄ to implement the initial commitment and
the proofs of knowledge in Stage Init and Stage 1. We also replace Stage 2 with a constant-
round public-coin statistical CVZK protocol for L; such a protocol exists for all L ∈ SZKP as
shown in [OV07, MOSV]. Since the instance-based commitments are constant-round, the modified
ConcZKProof continues to have round-complexity ω(log n).

Completeness of the modified ConcZKProof holds trivially, and soundness holds since the
instance-based commitment used in Stage Init is statistically hiding when x /∈ L (i.e. when x ∈ L̄).
To establish the zero-knowledge property, we use the same simulator Sim as before. We start by
bounding the failure probability of Sim:

Rewinding failures: Sim encounters rewinding failures with negligible probability using the same
analysis as in Claim 5.

Special-sound and binding failures: Since the proofs of knowledge are statistically special-
sound and the initial commitment is statistically binding, both failures must occur with
negligible probability using an analysis similar to that of Claim 6. Note that unlike the
analysis of Claim 9, we do not require the language L ∈ NP.

∗These results were stated already in [OV07, OV08].

19

Having established that Sim fails with negligible probability, we can now apply the analysis of Claim
7 (using the CVZK property instead of theWI property) to establish the statistical zero-knowledge
property.

Next, we turn to the class of computational zero-knowledge proofs:

Theorem 9. Every language L ∈ CZKP ∩NP has a ω(t(n) log n)-round computational black-box
concurrent ZK proof.

Proof. Again, we begin with the protocol ConcZKProof and use instance-based commitments (from
Theorem 7) for L̄ to implement the initial commitment and the proofs of knowledge in Stage Init
and Stage 1. We also use the instance-based commitments for L to implement the CVZK proof
in Stage 2; this is possible for languages in NP, using the GMW 3-coloring protocol [GMW] for
example. Since the instance-based commitment for L̄ has round complexity O(t(n)), the modified
ConcZKProof now has round-complexity ω(t(n) log n). Completeness and soundness holds similarly
as in the previous theorem. The computational zero-knowledge property is more involved though.
Since L ∈ CZKP, the instance-based commitment for L̄ is only computationally binding. Therefore,
the analysis of Sim will follow that of Claims 8, 9, 10, and 11. In particular, because the analysis
of Claim 9 requires the construction of a hybrid simulator that receives a witness to each instance
of x ∈ L, this theorem only holds of languages L ∈ NP.

We also consider the case of zero-knowledge arguments:

Theorem 10. Every language L ∈ SZKA∩NP has a O(t(n))+ω(log n)-round statistical black-box
concurrent ZK argument. Similarly, every language L ∈ CZKA ∩ NP has a ω(t(n) log n)-round
computational black-box concurrent ZK argument.

Proof. We will actually continue to use the protocol ConcZKProof instead of ConcZKArg, since we
do not assume the existence of one-way functions. As before, we use instance-based commitments
for L̄ to implement Stage Init and Stage 1 of ConcZKProof, and use instance-based commitments
for L to implement Stage 2.

In order for the protocol to remain sound even though the verifier’s commitments are only
computationally hiding, the verifier no longer reveals its commitments in Stage 2. Instead, the
verifier gives a zero-knowledge proof of knowledge in Stage 2 to show that its Stage 2 messages are
valid openings of its Stage Init commitments (and does so using instance-based commitments for
L̄). See [G] for details on this technique.

Completeness and zero-knowledge again follows from the analysis of ConcZKProof (appropri-
ately modified depending on whether statistical or computational zero-knowledge is required).

Remark: Theorem 10 can be extended to give a compiler from s(n)-round, public-coin, statistical
HVZK arguments into s(n) + ω(log n)-round statistical black-box concurrent ZK arguments for
languages in NP. Since NP languages with statistical HVZK arguments are in SZKA [OV07,
Theorem 3.4], we can apply Theorem 7 to obtain instance-based commitments for L̄. Meanwhile,
we can transform the HVZK protocol into a CVZK protocol (with a constant round increase,
[MOSV]) for use in Stage 2 (similar to Theorem 8). Additionally, the compiler gives stand-alone
SZKA protocols without the ω(log n) overhead by setting k = 1 in ConcZKProof (so that Stage 1
is constant round).

20

6 Acknowledgements

We are grateful to Manoj Prabhakaran, Alon Rosen, Amit Sahai and Salil Vadhan for helpful
discussions.

References

[Blum] M. Blum. How to prove a theorem so no one else can claim it. In Proc. of the International
Congress of Mathematicians, Berkeley, California, USA, pages 1444–1451, 1986.

[BG] M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO92, Springer LNCS
740, pages 390–420.

[BGGHKMR] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali, P. Rogaway.
Everything provable is provable in zero-knowledge. In Proc. CRYPTO ’88, pages 37–56, 1988.

[BMO] M. Bellare, S. Micali and R. Ostrovsky. Perfect zero-knowledge in constant rounds. In
Proceedings of th 22nd Annual ACM Symposium on Theory of Computing (STOC), pages 482–
493, 1990.

[BPS] B. Barak, M. Prabhakaran and A. Sahai. Concurrent non-malleable zero knowledge. In 47th
FOCS, pages 345–354, 2006.

[CDS] R. Cramer, I. Damg̊ard and B. Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Crypto94, Springer LNCS 839, pages 174–187, 1994.

[CGGM] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable zero-knowledge. In
32nd STOC, pages 235–244, 2000.

[CKPR] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-box concurrent zero-knowledge
requires (almost) logarithmically many rounds. In SIAM Jour. on Computing, Vol. 32(1), pages
1–47, 2002.

[D00] I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In Euro-
Crypt2000, LNCS 1807, pages 418–430, 2000.

[DDN] D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. In SIAM Journal on Com-
puting, Vol. 30(2), pages 391–437, 2000.

[DNS] C. Dwork, M. Naor and A. Sahai. Concurrent zero-knowledge. In 30th STOC, pages 409–418,
1998.

[DS] C. Dwork and A. Sahai. Concurrent zero-knowledge: reducing the need for timing constraints.
In Crypto98, Springer LNCS 1462 , pages 442–457, 1998.

[ESY] S. Even, A. L. Selman and Y. Yacobi. The complexity of promise problems with applications
to public-key cryptography. Information and Control, 61(2):159–173, May 1984.

[G] O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

21

[FS] U. Feige and A. Shamir. Witness indistinguishable and witness hiding proofs. In 22nd FOCS,
pages 416–426, 1990.

[GK] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems
for NP. In Journal of Cryptology, Vol. 9(3), pages 167–189, 1996.

[GMOS] V. Goyal, R. Moriarty, R. Ostrovsky, A. Sahai. Concurrent statistical zero-knowledge
arguments for NP from one way functions. In ASIACRYPT, pages 444-459, 2007.

[GMR] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive proof
systems. In SIAM Jour. on Computing, Vol. 18(1), pages 186–208, 1989.

[GMW] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(1):691–729,
1991.

[HKKL] C. Hazay, J. Katz, C.Y. Koo, and Y. Lindell. Concurrently-secure blind signatures without
random oracles or setup assumptions. In Theory of Cryptography, Springer LNCS 4392, pages
323–341, 2007.

[HR] I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way function. In
39th STOC, pages 1–10.

[KP] J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in poly-logarithmic
rounds. In 33rd STOC, pages 560–569, 2001.

[KPR] J. Kilian, E. Petrank and C. Rackoff. Lower bounds for zero-knowledge on the internet. In
39th FOCS, pages 484–492, 1998.

[MP] S. Micali and R. Pass. Local zero knowledge. In STOC’06.

[MOSV] D. Micciancio, S.J. Ong, A. Sahai, S. Vadhan. Concurrent zero knowledge without com-
plexity assumptions. In Theory of Cryptography, Springer LNCS 3876, pages 1–20, 2006.

[Naor] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158,
1991.

[NOV] M. Nguyen, S.J. Ong, S. Vadhan. Statistical zero-knowledge arguments for NP from any
one-way function. In 47th FOCS, pages 3–14, 2006.

[Oka] T. Okamoto. On relationships between statistical zero-knowledge proofs. Journal of Com-
puter and System Sciences, 60(1):47–108, 2000.

[OV07] S.J. Ong, S. Vadhan. Zero knowledge and soundness are symmetric. In Proc. EUROCRYPT
2007, pages 187–209, 2007.

[OV08] S.J. Ong, S. Vadhan. An equivalence between zero knowledge and commitments. To appear
in Theory of Cryptography, 2008.

[P06] R. Pass. A precise computational approach to knowledge. PhD thesis, MIT, 2006.

22

[PPSTV] O. Pandey, R. Pass, A. Sahai, W.D. Tseng and M. Venkitasubramaniam. Concurrent
precise zero knowledge. To appear in EuroCrypt2008.

[PRS] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent zero-Knowledge with logarithmic round
complexity. In 43rd FOCS, pages 366–375, 2002.

[PS] M. Prabhakaran and A. Sahai. Concurrent zero knowledge proofs with logarithmic round-
complexity. In Cryptology ePrint Archive, report 2002/055.

[PV] R. Pass, M. Venkitasubramaniam. On constant-round concurrent zero-knowledge. To appear
in Theory of Cryptography, 2008.

[R00] A. Rosen. A note on the round-complexity of concurrent zero-knowledge. In Crypto2000,
Springer LNCS 1880, pages 451–468, 2000.

[RK] R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge proofs. In
EuroCrypt99, Springer LNCS 1592, pages 415–431, 1999.

[R04] A. Rosen. The round-complexity of black-box concurrent zero-knowledge. PhD thesis, Weiz-
mann Institute of Science, Israel (2003).

23

A The PRS Analysis [PRS]

The PRS approach of mapping bad random tapes to good random tapes is quite different from the
approach taken in this paper. In this section, we briefly describe the tools used in the PRS analysis
and discuss some subtleties in their analysis.

Given a bad random tape, the PRS analysis deals with minimal rewinding intervals, defined to
be minimal blocks that contain a slot, without containing start or end.9 Since minimal rewinding
intervals are not “composable” when they overlap, the PRS analysis focuses on a (maximal) set of
disjoint minimal rewinding intervals. To make up for lost intervals due to overlapping, the PRS
analysis swaps each minimal rewinding interval not only with its sibling (as we do), but also with
its “cousins”. See Figure 6 for an illustration of cousins blocks. Note that a block may have many
cousins (but only one sibling). Moreover, swapping a block with its sibling may require an exchange
of random tape segments outside the two blocks, and therefore produce changes in the simulation
outside of the cousins

B′′′

B′′

B′

B

C

s

cousins

Figure 6: A pictorial representation of the original KP rewind schedule, extended from Figure 5 of
[PRS]. We show how a rewinding interval B is related to its sibling (B′), its parent (C), and its
cousins (B′, B′′, B′′′). To swap block B with its cousin B′′, one needs to exchange the randomness
used on the two highlighted thread.

Next, the analysis needs to determine for each rewinding interval, how many cousins swaps
will result in a new distinct random tape; this step is complicated because a large portion of
the random tape maybe shuffled to perform a cousin swap, destroying other potential rewinding
intervals. Each rewinding interval is thus assigned a weight corresponding to the number of available
cousins. Finally, a rather elaborate analysis is used to lower-bound the sum of weights over the
chosen (maximal) subset of disjoint rewinding intervals. (Recall that, in contrast, our analysis is
local—we are only required to show that a single swap of a block with its sibling results in one new
random tape.)

9Here we adopt some of our terminologies to explain the PRS analysis.

24

B Instance-based Commitments

We recall the definitions of instance based commitments from [OV07].

Definition 4 ([OV07, Definition 2.7]). An instance-dependent commitment scheme is a family
{Com}x∈{0,1}∗ with the following properties:

1. Comx = 〈Cx, Rx〉 consists of a commit and a reveal stage. In both stages, the committer C
and the receiver R receive instance x as common input.

2. At the beginning of the commit stage, sender C receives a private input b ∈ {0, 1}. At the end
of the commit stage, both the sender and receiver output a commitment c.

3. In the reveal stage, C sends a pair (b, d), where d is interpreted as the decommitment string
for bit b. R accepts or rejects based on x, b, d, c.

4. C and R are computable in polynomial time (in |x|).

5. For every x ∈ {0, 1}∗, R always accepts with probability 1 if both C and R follow their strategy
honestly.

Definition 5 ([OV07, Definition 2.8]). Instance-based commitment scheme Comx = 〈Cx, Rx〉 is
statistically (resp. computationally) hiding on I ⊆ {0, 1}∗ if for every (resp. nonuniform PPT) R∗,
the ensembles {V iewR∗(Cx(0), R∗)}x∈I and {V iewR∗(Cx(1), R∗)}x∈I are statistically (resp. compu-
tationally) indistinguishable, where {V iewR∗(Cx(b), R∗)}x∈I denotes the view of R∗ in the commit
stage interacting with Cx.

Definition 6 ([OV07, Definition 2.9]). Instance-based commitment scheme Comx = 〈Cx, Rx〉 is
statistically (resp. computationally) binding on I ⊆ {0, 1}∗ if for every (resp. nonuniform PPT)
S∗, there exists a negligible function ε(·) such that for all x ∈ I, the adversarial sender S∗ succeeds
in the following game with probability at most ε(|x|).

S∗ interacts with Rx in the commit stage obtaining commitment c. Then S∗ outputs
pairs (0, d0) and (1, d1), and succeeds if in the reveal stage, Rx(0, d0, c) = Rx(1, d1, c) =
accept.

Finally, for a language L, we say that instance-based commitment Comx for Π is hiding and
binding if Comx is hiding on L and binding on L̄.

C Proof of Theorem 7

We first recall the characterization of ZK languages and instance-based commitments by Ong and
Vadhan in [OV07]. We start with two definitions:

Definition 7 (Promise Problems [ESY]). A promise problem is specified by two disjoint sets of
strings Π = (ΠY ,ΠN), where ΠY is the set of YES instances and ΠN is the set of NO instances.
The complement of a promise problem is the promise problem Π̄ = (ΠN ,ΠY).

25

Definition 8 ([OV07, Definition 1.3]). A problem Π = (ΠY ,ΠN) satisfies the SZKP-OWF CON-
DITION if there exists a set of instances I ⊆ ΠY ∪ ΠN such that the following two conditions
hold.

• The promise problem (ΠY \I,ΠN\I) is in SZKP.

• There exists a polynomial-time computable function fx : {0, 1}n(|x|) → {0, 1}m(|x|), with n(·)
and m(·) being polynomials and instance x given as an auxiliary input such that for any
instance x ∈ I, fx is a one-way function.

[OV07] shows the following characterization of ZK languages:

Claim 12 ([OV07, Theorem 1.4]). Let Π = (ΠY ,ΠN) be a promise problem in IP that satisfies
the SZKP-OWF CONDITION. Let I ⊆ (ΠY ,ΠN) be the set with the required properties stated in
the SZKP-OWF CONDITION condition.

1. (SZKP) Π has a statistical zero-knowledge proof system if and only if Π satisfies the SZKP-
OWF CONDITION without OWF instances, i.e. I = ∅

2. (CZKP) Π has a computational zero-knowledge proof system if and only if Π satisfies the
SZKP-OWF CONDITION without OWF NO instance, i.e. I ∩ΠN = ∅

3. (SZKA) If Π ∈ NP, Π has a statistical zero-knowledge argument system if and only if Π
satisfies the SZKP-OWF CONDITION without OWF YES instance, i.e. I ∩ΠY = ∅

4. (CZKA) If Π ∈ NP, Π has a computational zero-knowledge argument system if and only if
Π satisfies the SZKP-OWF CONDITION.

[OV07, OV08] also shows that languages that satisfy the SZKP-OWF CONDITION condition
have unconditional constructions of instance-based commitments. Recall that t(n) is an upper
bound on the round complexity of any statistically hiding commitment based on one-way functions.

Claim 13 ([OV07, Lemma 3.13]). Let Π = (ΠY ,ΠN) be in IP.

• If Π satisfies the SZKP-OWF CONDITION without OWF NO instances (resp. without OWF
instances), then it has an instance-based commitment scheme that is computationally (resp.
statistically) hiding and statistically binding. Moreover, this scheme is public-coin and con-
stant round.

• If Π satisfies the SZKP-OWF CONDITION (resp. without OWF YES instance), then it has
an instance-based commitment scheme that is computationally (resp. statistically) hiding and
computationally binding. Moreover, this scheme is public-coin and has O(t(n))-rounds10.

We restate Theorem 7:

Theorem 11 (Theorem 7 restated). If L ∈ SZKP, then we have an O(1)-round, statistically
hiding and statistically binding instance-based commitment for L and L̄. Similar statements also
hold for the classes CZKP, SZKA and CZKA as shown in the table below:

10This is not explicitly stated in in [OV07], but it is easy to see that it follows from their analysis

26

Instance-based commitment for L Instance-based commitment for L̄
rounds hiding binding rounds hiding binding

L ∈ SZKP O(1) stat. stat. O(1) stat. stat.
L ∈ CZKP O(1) comp. stat. O(t(n)) stat. comp.

L ∈ SZKA ∩NP O(t(n)) stat. comp. O(1) comp. stat.
L ∈ CZKA ∩NP O(t(n)) comp. comp. O(t(n)) comp. comp.

Proof of Theorem 7. We will only show the theorem for the case L ∈ CZKP; the other cases can
be established in a very similar manner.

Let Π = L (i.e. ΠY = L,ΠN = L̄). Since Π ∈ CZKP, by Claim 12, Π satisfies the SZKP-OWF
CONDITION with I ∩ ΠN = ∅. Claim 13 then immediately gives us the desired instance-based
commitment for Π = L.

Next, consider Π̄ = (Π̄Y = ΠN , Π̄N = ΠY). Since (ΠY \ I,ΠN \ I) ∈ SZKP (Π satisfies
the SZKP-OWF CONDITION), and since SZKP is closed under complement [Oka], we have
(ΠN \ I,ΠY \ I) ∈ SZKP as well. Hence, Π̄ also satisfies the SZKP-OWF CONDITION with
I ∩ Π̄Y = I ∩ ΠN = ∅. Applying Claim 13 again gives us the desired instance-based commitment
for Π̄ = L̄.

27

