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We have used grazing incidence wide-angle x-ray scattering (GIWAXS) on oriented 

lipid multilayers to measure chain order and to examine liquid-liquid coexistence in 

the system DOPC/DPPC/cholesterol, a model for the outer leaflet of the cell plasma 

membrane.  Coexistence of liquid-disordered (Ld) and liquid-ordered (Lo) domains is 

thought to be related to "rafts" in the cell membrane, cholesterol-rich lipid 

heterogeneities which provide platforms for protein sorting.  Many of the methods 

used for measuring liquid-liquid coexistence in model membranes require a potentially 

perturbing probe, while x-ray scattering is probe-free.  In unoriented (powder) x-ray 

data, scattering from the Ld and Lo phases looks very similar, whereas in GIWAXS 

patterns from oriented samples, these phases are easily distinguishable because of the 

differences in their chain orientational order.  By using a simple analytical model to 

relate the GIWAXS data to the chain orientational distribution, we fit our data to 

obtain the average chain orientational order parameter, Smol. While this type of 

analysis has been well-used for liquid crystals, it is not commonly applied to model 

membrane systems.  For DOPC/cholesterol and DPPC/cholesterol mixtures, 

composition and temperature dependent trends in Smol determined by GIWAXS are 

consistent with earlier NMR data.  Addition of 40% cholesterol to liquid-phase DPPC 

or DOPC more than doubles Smol.  In addition to measuring chain orientational order 

parameters for binary mixtures of DOPC/cholesterol and DPPC/cholesterol, we have 

measured GIWAXS for ternary mixtures where fluorescence microscopy and NMR 



 

 

indicate the coexistence of Ld and Lo phases below the miscibility transition 

temperature, Tmix.  In order to fit to the GIWAXS data for these mixtures at low 

temperature, we required two values of Smol, which we interpret as evidence of 

coexisting Ld and Lo phases.  Our Tmix values based on x-ray work agree reasonably 

(to within the 5-10˚C temperature steps used) with the Tmix values based on the NMR 

and microscopy work of Veatch et al. (Veatch and Keller, 2003b; Veatch et al., 2004; 

Veatch et al., 2007b).  This approach provides a new method for examining phase 

coexistence in model membranes without the need to add a potentially perturbing 

probe.
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Chapter 1 - Introduction  

1.1 Overview 

 The study of liquid-liquid phase coexistence in model membranes has received 

much attention in the last decade because of possible connections to cell membrane 

lipid heterogeneities rich in cholesterol ("rafts").  Rafts, which provide platforms for 

sorting of certain proteins, have been implicated in numerous cellular processes such 

as signaling and transport.  The focus of this thesis is on the use of wide-angle x-ray 

scattering from oriented lipid multilayers as a tool for characterizing chain order in 

liquid phases (liquid-ordered and liquid-disordered) and for identifying liquid-liquid 

phase coexistence in the ternary mixture DOPC/DPPC/cholesterol, a model for the 

outer leaflet of the cell plasma membrane.  The first part of this chapter presents an 

overview of the raft hypothesis, the structure of different lamellar phases, 

characterization of chain order, and methods for identifying phase coexistence in 

model membranes.  The last part of the chapter is an introduction to x-ray scattering 

from model membranes, with an emphasis on the potential of wide-angle scattering 

from oriented multilayers for characterizing liquid phases.    

1.2 Cell membranes and the raft hypothesis 

 Lipids, surfactant molecules with a hydrophilic headgroup and hydrophobic 

chains, self-assemble into bilayer structures in the presence of water.  Cell membranes 

are complex structures, consisting of a lipid bilayer composed of a large number of 

different lipids with embedded proteins (Fig. 1.1).  In 1972 Singer and Nicholson 

proposed the "fluid mosaic model" for the membrane.  In this model, the cell 

membrane consists of a fluid matrix composed of an asymmetric lipid bilayer in the 

liquid-phase, which provides a semi-impermeable barrier between the interior and 

exterior of the cell.  The membrane proteins are either partially embedded in one of 
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the membrane leaflets or span the entire thickness of the membrane (trans-membrane 

proteins).  Within the lipid matrix, the proteins are free to diffuse laterally and rotate 

along axes normal to the plane of the membrane, but the proteins do not tumble at 

significant rates due to their hydrophilic anchors in the aqueous phase.  According to 

the fluid mosaic model, the lipids play the passive role of providing the structural glue 

holding the membrane together.    

 
Figure 1.1.  Cartoon of the cell plasma membrane (from Chiras, 1999). 

 In 1988 Simons and van Meer proposed a physiologically important role for 

lipid heterogeneities in cell membranes.  They postulated that lipid domains rich in 

sphingolipids and glycerolipids interact preferentially with certain proteins, helping 

with the process of protein sorting into epithelial cell precursors in the Golgi 

apparatus.  In 1997 Simons and Ikonen coined the term "rafts," small domains rich in 

sphingolipids and cholesterol into which certain proteins preferentially partition.  

These rafts form a platform for cellular processes which require close proximity of 

proteins, such as signaling and trafficking. 

 The evidence for these cellular lipid domains, which are too small to be 

observed with optical microscopy, relies on indirect methods such as detergent 
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extraction and cholesterol depletion (Munro, 2003).  In detergent resistance 

experiments, membrane fractions which are insoluble in non-ionic detergents have 

been found to be enriched in sphingolipids, cholesterol, and "raft-associated" proteins 

(Brown and London, 1997).  The affinity of certain proteins for the detergent-

insoluble fraction can be increased by clustering and crosslinking events (Holowka et 

al., 2005).  Cholesterol depletion is another commonly used method for studying rafts 

(Munro, 2003; London, 2005).  In cholesterol depletion experiments, methyl-beta-

cyclodextrin removes cholesterol from the cell.  If a cellular process slows or stops 

after cholesterol depletion, it is assumed that the process was raft-mediated.  

Cholesterol depletion and detergent resistance experiments are very complex and yet 

often interpreted simplistically.  For example, detergent fractionating is usually 

conducted at 4˚C, significantly below the typical mammalian body temperature of 

37˚C.  These low temperatures and the detergent itself may promote the formation of 

cholesterol-rich domains which would not exist under normal conditions (Heerklotz, 

2002).  Cholesterol depletion may disrupt the cytoskeleton network and may cause the 

formation of domains of solid-phase lipid in the membrane (London, 2005; Nishimura 

et al., 2006). 

 While lipid heterogeneities in the cell membrane are too small to be observed 

by optical microscopy, macroscopic liquid-liquid phase separation has been observed 

in models of the outer leaflet of the cell membrane, consisting of ternary mixtures of 

cholesterol, sphingomyelin or a saturated phospholipid, and an unsaturated 

phospholipid (see Veatch and Keller, 2005b for a review).  In these model membranes, 

liquid-ordered (Lo) domains, rich in saturated lipid and cholesterol, separate from 

liquid-disordered (Ld) domains, rich in the unsaturated lipid (phases discussed further 

in Section 1.3).  The Lo domains in model membranes have been linked to the 

detergent-resistant fractions in cell membranes, although the exact relationship 
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between liquid-liquid phase coexistence in model membranes and rafts in cell 

membranes is unclear.  Various proposals have been made to connect the macroscopic 

phase coexistence in model membranes and submicroscopic rafts in cells, including 

critical fluctuations and regions of limited diffusion, perhaps caused by corrals in the 

cytoskeleton network (Feigenson, 2006; Hancock, 2006; Kusumi and Suzuki, 2005; 

London, 2005; Silvius, 2003; Simons and Vaz, 2004; Veatch, 2007).  For models of 

the plasma membrane inner leaflet, which has a much higher percentage of 

unsaturated lipid, macroscopic phase coexistence has not been observed (Wang and 

Silvius, 2001); however, raft-mediated protein sorting on the inner leaflet has been 

implicated in cell signaling (Holowka et al., 2005).  Coupling mechanisms between 

the outer leaflet and inner leaflet have been suggested, but the connection between 

outer leaflet and inner leaflet heterogeneities in unclear (Edidin, 2003).  When 

interpreting experiments on model membranes, it is important to remember that model 

membranes are in equilibrium and are symmetric bilayers, while cell membranes are 

asymmetrical and nonequilibrium structures. 

 The word "raft" has no universal meaning.  Definitions of "raft" include the 

following: a detergent resistant complex of lipids and proteins; any lipid-based lateral 

heterogeneity in a plasma membrane; the stable thermodynamic Lo phase in model 

membranes; or a two-dimensional platform in a plasma membrane involved in 

immune signal transduction, synapse function, viral entry and exit, protein targeting, 

or membrane transport (Simons and Vaz, 2004).  In this thesis, we will limit the use of 

the word "raft" to lateral heterogeneities in the cell membrane, while we will use 

liquid-liquid (or Ld/Lo) phase coexistence to refer to macroscopic domains in model 

membranes.  

 Understanding the physical origin and behavior of membrane rafts in vivo will 

be aided by a better understanding of inhomogeneities in model lipid mixtures that 
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contain cholesterol.  In addition to observation of phase coexistence and phase 

boundaries, thorough structural characterization of different lamellar lipid phases will 

help in understanding the structure-function relationships in processes which occur in 

the cell membrane.  For example, matching of the hydrophobic length of proteins with 

the hydrophobic thickness of the bilayer is one of the mechanisms thought to play a 

role in protein sorting in cell membranes (see Dumas et al., 1999 and the references 

therein).  Membranes rich in cholesterol are known to have increased hydrophobic 

thickness (Yeagle, 1985).  X-ray scattering provides a tool for structural 

characterization of the phases.   

1.3 Lamellar lipid phases  

 Lipids can form many different structures (hexagonal, lamellar, and others) 

depending on their headgroup structure, chain length, degree of unsaturation, level of 

hydration, and temperature.  One of the most important principles in determining the 

lipid phase is the relative size of the hydrophilic headgroups and hydrophobic tails 

(Israelachvili, 1985).  Lipids with hydrophilic and hydrophobic regions roughly equal 

in size will tend to form bilayers.  This thesis focuses on bilayer lamellar lipid phases.  

Although the cell membrane is thought to be composed of fully-hydrated lamellar-

phase lipids, other lipid structures may play a role in certain cellular events such as 

membrane fusion (Yang and Huang, 2002).  Figure 1.2 shows cartoons of the four 

lamellar phases which we will focus on in this thesis: two gel phases (Lβ and Lβ') and 

two liquid phases (Ld and Lo).  

 Both Lβ and Lβ' are characterized by slow lateral diffusion (~10-11-10-10 cm2/s; 

Almeida et al., 1993; Rubenstein et al., 1979).  In the Lβ phase the highly ordered 

chains are all parallel to the membrane normal, while in the Lβ' phase, the chains are 

all tilted at an angle relative to the bilayer normal.  The Ld and Lo phases are both 
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characterized by fast lateral diffusion (~10-8-10-7 cm2/s; Almeida et al., 1992; 

Lindblom et al., 1981; Rubenstein et al., 1979).  In the Ld phase, the chains are 

orientationally disordered compared to the gel phases, while the Lo phase is 

characterized by a higher degree of orientational order than the Ld phase.  The Ld, Lβ, 

and Lβ' phases can all occur for pure lipids; the Lo phase, on the other hand, only 

forms in mixtures of lipid and cholesterol (or other sterols). 

 

 
Figure 1.2.  Structure of lamellar phases: Lβ', Lβ, Ld, and Lo.  Phospholipids are 
represented with a blue headgroup and two chains.  Cholesterol molecules are in red.  
The cylinders show the volume occupied by a single lipid.  In the Lo phase, the chains 
extend and the lipid area decreases in comparison with the Ld phase. 
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 The temperature at which a lipid transitions from a gel phase to a liquid phase 

is known as the main transition (or melting) temperature (Tm) and is commonly 

measured by differential scanning calorimetry (DSC) [see Finegold and Singer, 1993].  

The melting temperature is dependent on the length of the acyl chains and on the 

degree of unsaturation (see Gennis, 1989, p. 65-70).  Longer chains result in more van 

der Waals interactions and a higher melting temperature (Nagle and Wilkinson, 1978).  

Unsaturation causes kinks in the chain which disrupt packing and lower the melting 

temperature.  In discussing lipid phase behavior, it is convenient to divide lipids into 

three classes (see Fig. 1.3 for examples): (1) high-melting lipids (long-chain saturated 

phospholipids or sphingomyelins); (2) low melting lipids (unsaturated phospholipids, 

lipids with highly branched chains, and short chain lipids); (3) cholesterol and other 

sterols.   The low-Tm DOPC and the high-Tm DPPC are examples of 

phosphatidylcholines (PCs; refererred to as "lecithin" in the older literature).  

Although DOPC is often used in models for the outer leaflet of the cell membrane, this 

doubly unsaturated lipid is not naturally occurring in the cell membrane.  Mono-

unsaturated lipids, with one saturated chain and one unsaturated chain, such as POPC 

and SOPC, are common components in the cell membrane.  While the outer leaflet of 

the cell membrane is rich in saturated lipid (mostly sphingomyelins), the inner leaflet 

is thought to be composed mostly of lipid with one unsaturated and one saturated 

chain: PCs, phosphatidylethanolamines (PEs), and anionic lipid such as 

phosphatidylserines (PSs) [see Wang and Silvius, 2001].  The partitioning of 

cholesterol between the two leaflets is unknown, but there may be significantly more 

cholesterol on the inner leaflet (Edidin, 2003). 

 Because of its very small hydrophilic headgroup (a single hydroxyl), pure 

cholesterol crystallizes in water.  When cholesterol is adjacent to a lipid chain in the 

liquid phase, the rigid ring structure of cholesterol restricts the flexibility of the chain 
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and thus orders the chain (Stockton and Smith, 1976).  Increased chain order leads to 

increased hydrophobic thickness and a decrease in the area per lipid, the well-known 

cholesterol condensing effect (Yeagle, 1985).  In the gel phase, cholesterol can act as 

an impurity which inhibits highly ordered chain packing (Estep et al., 1978).  The role 

of cholesterol in phospholipid phase behavior is discussed further in Section 1.5.    

 

Figure 1.3.  Structure of lipids studied in this thesis: DOPC, a low Tm (-17˚C) lipid; 
DPPC, a high Tm (41.4˚C) lipid; and cholesterol.  At 25˚C, DOPC is in the Ld phase, 
while DPPC is in the Lβ' phase.  Compared with PCs, cholesterol has a very small 
hydrophilic headgroup (hydroxyl) and does not form bilayers by itself.  Structures are 
from the Avanti Polar Lipids website. 
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1.4 Chain order 

1.4.1 Definitions of orientational order, conformational order, 

and lateral positional order 

 Chain order is one of the main properties which distinguishes the different 

lipid phases.  The liquid-ordered phase is interesting because in some properties it is 

gel-like (chain orientational order) while in other properties it is fluid-like (lateral 

diffusion, lateral positional ordering).  One of the main goals of this thesis is to 

characterize the effect of temperature and sample composition, particularly the amount 

of cholesterol, on lipid chain ordering using wide-angle x-ray scattering.  Before 

describing in more detail what is known about the effect of cholesterol on lipid phase 

behavior, it is useful to define the different types of chain ordering and the relationship 

between order and the dynamical property of diffusion. 

 There are three types of chain order which will be referred to in this thesis: 

1. The chain conformational order refers to the ratio of trans/gauche isomers 

along the chain.  In a completely extended chain, all of the segments are in the 

trans conformation, and the chain conformational order is high.  

2. The chain orientational order refers to the orientation of the chain (or chain 

segment), usually taken with respect to the membrane normal.  This orientation 

is described by the angle between the direction of the chain (or chain segment) 

and the preferred director, the membrane normal (see Section 1.4.2).   

3. Lateral positional order refers to the arrangement of a chain with respect to its 

neighbors.  In the case of gel phases, the lateral positional order is high 

because the chains form a two-dimensional lattice with a well-defined distance 

between nearest neighbors, clear from the sharp x-ray chain-chain correlation 

band (see Section 1.7.4).  In the liquid phases (Ld or Lo), lateral positional 
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order is low: the chains form a fluid-like in-plane structure with a wide 

distribution of nearest-neighbor distances, as shown by the wide x-ray chain-

chain correlation band (see Section 1.7.4).   

These three types of chain order are not unrelated but also not synonymous or simply 

correlated.  Kodati and Lafleur (1993) have compared infrared (IR) methylene 

stretching frequencies, sensitive to chain conformational order, with 2H NMR 

quadrupolar splittings, sensitive to chain orientational order.  NMR orientational order 

parameters depend on the trans/gauche isomer ratio as well as changes in the 

orientation of the director caused by tilting of the chains (as in the Lβ' phase) and 

membrane surface undulations.  Because of the strong correlation observed between 

NMR order parameters and IR stretching frequencies as a function of temperature and 

membrane composition, Kodati and Lafleur (1993) concluded that both techniques 

were mostly sensitive to the ratio of trans/gauche isomers, in agreement with previous 

reports (Seelig and Seelig, 1974; Schindler and Seelig, 1975).  In the case of the gel-

Ld transition, the orientational order, which is more long range than the lateral 

positional order, changes spontaneously and the lateral positional order changes as a 

consequence (Jähnig, 1981).  However, orientational order and lateral positional order 

are not always coupled, as in the case of the Lo phase. 

 Chain order is a time-averaged structural property.  An orientational order 

parameter gives no information about the rate of angular motion of the chains.  

Although systems with high lateral positional order often have slow lateral diffusion 

(and systems with low positional order have fast diffusion), two counterexamples are 

glass and beta brass.  Glasses are disordered structures with slow diffusion, while beta 

brass has crystalline packing but fast diffusion of atoms.    
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1.4.2 Chain order parameters   

   Different methods for measuring chain orientational order parameters, 

including NMR, ESR, and fluorescence polarization, are reviewed in Gennis, 1989.  

Fluorescence polarization and ESR require potentially perturbing probe molecules, 

while in 2H NMR, the deuterium is thought to have a minimal effect on bilayer phase 

behavior.  Therefore, we focused on comparing our x-ray results for chain 

orientational order to NMR data (Ch. 4-6).  This section focuses on defining NMR 

order parameters and their relationship to x-ray order parameters.     

 For chain perdeuterated molecules, each methylene segment gives rise to a 

different quadrupolar splitting.  These quadrupolar splittings are proportional to the 

segmental order parameter SCD, defined as (Seelig and Niederberger, 1974): 

( )1cos3
2
1

CD
2 −= θCDS . (1.1) 

where θCD is the angle between the vector rC-D and the bilayer normal (see Fig. 1.4A).  

The brackets imply a time and ensemble average.  We are most interested in the 

molecular order parameter n
molS , which describes the orientation of each chain 

segment with respect to the bilayer normal (Seelig and Neiderberger, 1974): 

( ) CDmol
2n

mol 21cos3
2
1 SS −=−= θ . (1.2) 

where θmol is the angle between rmol and the bilayer normal (see Fig. 1.4A).  Note that 

the relationship between n
molS  and SCD in Eq. 1.2 requires assumptions and 

simplifications; for instance, this relationship is not valid in the case of a double bond 

(see Douliez et al., 1995 and Oldfield et al., 1978 for a more detailed discussion of 

NMR order parameters).    
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Figure 1.4.  (A) Illustration of the geometry for NMR order parameters, which are 
calculated for each chain segment.  SCD is defined in reference to the angle between n 
(the membrane normal) and rC-D.  Smol is defined in reference to the angle between n 
and rmol (modeled after a figure in Gennis, 1989).  (B) The x-ray method assumes the 
chains are rigid rods.  The single x-ray order parameter is defined in reference to the 
angle β between n and the rod axis. 

 The chains in the Ld phase are often modeled with two divisions, one closer to 

the headgroup region and one closer to the middle of the bilayer.  Orientational order 

of the chain segments closest to the headgroup region (from C-2 to C-8 or C-10) is 

relatively constant, while the methylene segments toward the middle of the bilayer 

have significantly more disorder than the segments closer to the surface (see Gennis, 

1989, p. 52-55 and the references therein).  This behavior is not sensitive to lipid 

structure as long as the lipid is in the Ld phase (Seelig and Browning, 1978).   In an 

order parameter profile (see Fig. 1.5), the relatively constant order parameter region 

for segments closer to the headgroups is often referred to as the "plateau region."  

With the addition of cholesterol to fluid-phase lipid to form the Lo phase, the 
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orientational order in the plateau region increases, while the segments closer to the 

middle of the bilayer remain disordered (Nezil and Bloom, 1992; Smondyrev and 

Berkowitz, 1999). 

 
Figure 1.5.  Normalized order parameter profile of different lipids, with the molecular 
order parameter ( n

molS ) as a function of the methylene segment position, with lower 
numbers closer to the headgroup.  Circles, DPPC; triangles, POPC; squares, DPPS; 
crosses, Acholeplasma laidlawii membranes.  Taken from Seelig and Browning, 1978. 

  

 Often, the NMR first moment, M1, is reported, which is proportional to the 

average of the quadrupolar splittings over all chain segments (Davis, 1979).  In Ch. 5-

6, we use an equation that relates M1 to the average molecular order parameter Smol, 

defined as: 

CD
n
molmol 2 SSS == . (1.3) 

We have been careful to distinguish between the order parameter for each segment, 
n
molS , and the average molecular order parameter, Smol.  In the literature, Smol is used 

for both quantities.  Assuming that the average orientation of the chains is directed 

along the membrane normal, Smol can take on values between 0 and 1, with 0 

corresponding to complete orientational disorder and 1 corresponding to perfect 

orientational order.   
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 The x-ray method (described in Ch. 3) assumes that the acyl chains are rigid 

rods.  In this case, the molecular order parameter is defined as: 

( )1cos3
2
1 2

mol −= βS . (1.4) 

where β is the angle between the rod axis and the membrane normal (see Fig. 1.4B) 

and the brackets denote a spatial average.  In the liquid crystal literature  S is often 

used in place of Smol.  Note that although we use the same name for the NMR Smol (Eq. 

1.3) and the x-ray Smol (Eq. 1.4), these quantities are not the same.  The major 

difference is that the NMR determination of Smol does not assume that the chains are 

rigid rods.  In comparing NMR and x-ray order parameters, we focus on trends instead 

of absolute values.    

1.5 Role of cholesterol in phospholipid phase behavior 

  Binary mixtures of phospholipids and cholesterol have been studied with a 

variety of techniques.  Cholesterol has interesting effects on phospholipid phase 

behavior.  Above and below the phospholipid's Tm, addition of cholesterol (~40%) 

leads to the formation of the Lo phase.  (Percentages refer to mole percent of a 

component.)  Although there is controversy about the phase diagrams of binary 

phospholipid/cholesterol mixtures (see Ch. 5), there is general agreement about the 

following experimental observations and interpretations, which provide a framework 

for the ternary phase diagrams discussed in Section 1.6.1 (Tm refers to the melting 

temperature of the lipid, e.g. DPPC): 

1. With cholesterol addition, the temperature range for the gel to fluid transition 

is broadened, as observed by differential scanning calorimetry (DSC).  The 

main gel to fluid transition disappears at high cholesterol concentrations 

(Ladbrooke et al., 1968; Mabrey et al., 1978; Yeagle, 1985). 
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2. Below Tm, the lateral diffusion coefficient increases with increasing cholesterol 

concentration, from gel-like (~10-11-10-10 cm2/s) to fluid-like (~10-8-10-7 

cm2/s).  Above Tm, the diffusion coefficient decreases as a function of 

cholesterol concentration, but not drastically as the system remains fluid-like 

(Almeida et al., 1992, 1993; Filippov et al., 2003; Lindblom et al., 1981; 

Rubenstein et al., 1979).   

3. The effect of cholesterol on lateral diffusion, a dynamic property, is mirrored 

by its effect on lateral chain organization, a static structural property.  Below 

Tm, the lateral chain packing changes from well-ordered (gel-like) to more 

disordered (fluid-like): cholesterol causes an increase in the distribution of 

nearest-neighbor distances shown by an increase in the width of the x-ray wide 

angle scattering.  Above Tm the chain packing remains disordered: wide-angle 

scattering remains broad (see Finean, 1990 and the references therein).      

4. In contrast to cholesterol's effect on diffusion (2) and lateral positional order 

(3), below Tm, the addition of cholesterol has only a small effect on  chain 

orientational order: the chains remain highly ordered (Huang et al., 1993).  

Above Tm, cholesterol causes a large increase in chain orientational order, as 

has been observed with a variety of techniques, including NMR (Haberkorn et 

al., 1977) and x-ray scattering (Levine and Wilkins, 1971). 

5.  DPPC (and other saturated PCs) are in the Lβ' phase below Tm for a wide 

temperature range.  With the addition of ~7.5% cholesterol, chain tilt is gone 

and the system is in the Lβ phase (Ladbrooke et al., 1968). 

Both below and above Tm, the addition of cholesterol (~40%) results in the formation 

of the Lo phase.  Ipsen et al. (1987) note that cholesterol effectively acts as to 

"decouple" chain orientational (or conformational) order and lateral positional order.  

Lindblom et al. (1981) note that there appears to be no connection between the chain 
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order parameter, a static quantity, and diffusion, a dynamic quantity.  The Lo phase is 

characterized by orientationally ordered chains (gel-like) but low lateral positional 

order and rapid diffusion (liquid-like).  We have spoken in very general terms about 

orientational order, lateral chain packing, and lateral diffusion.  For example, above Tm 

cholesterol increases the chain orientational order, but the increase in segmental NMR 

order parameters is much greater for the methylene groups closer to the headgroup 

region (Nezil and Bloom, 1992; Smondyrev and Berkowitz, 1999).  The methyl ends 

of the chains remain disordered in the Lo phase.  While gel phases are well-defined, 

liquid phases can have a broad range of properties.  Often, the liquid-ordered phase is 

mistakenly referred to as if it had a single set of values for the various properties.  

Reinl et al. (1992) and Clarke et al. (2006) have used a variety of techniques to 

examine how the Lo phase changes as a function of temperature and composition in 

DPPC/cholesterol mixtures. 

 The umbrella model provides a useful way of understanding the interaction of 

cholesterol and phospholipids (Huang and Feigenson, 1999).  By itself, cholesterol 

forms crystals and not bilayers because its very small hydrophilic hydroxyl group is 

not sufficiently large to shield its nonpolar region from water in a bilayer structure.  

When cholesterol is added to a pure phospholipid, the phospholipid headgroups 

(umbrellas) are large enough to cover the hydrophobic lipid chains as well as the 

cholesterol.  To accommodate even more cholesterol, the chains straighten (if T>Tm) 

or lose their chain tilt (if  T<Tm) to allow more space under the phospholipid 

headgroup.  Eventually, the bilayer cannot accommodate more cholesterol, and 

cholesterol precipitates out in crystals.  Note that there are many more models 

describing cholesterol-lipid interactions (see McConnell and Vrljic, 2003; 

Zuckermann et al., 1993). 
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1.6 Phase coexistence in model membrane systems 

1.6.1 The DOPC/DPPC/cholesterol phase diagram 

 Over the last ten years, there has been a great deal of interest in ternary phase 

diagrams consisting of a low-Tm lipid, a high-Tm lipid, and cholesterol.  Such phase 

diagrams are often referred to as "pseudo-ternary" with water, the fourth component, 

in excess.  Ternary model membrane phase diagrams are reviewed in Veatch and 

Keller, 2005b.  Figure 1.6 shows a schematic for DOPC/DPPC/cholesterol phase 

behavior, a model for the outer leaflet of the cell plasma membrane.  Figure 1.6 is 

based on fluorescence microscopy of giant unilamellar vesicles (GUVs) by Veatch and 

Keller (2003b).  Liquid-liquid coexistence in ternary mixtures was first reported using 

this technique in 2001 (Dietrich et al., 2001; Samsonov et al., 2001), while gel-fluid 

coexistence in phospholipid mixtures had been observed earlier (see Korlach et al., 

1999 and the references therein).  In the fluorescence microscopy technique, GUVs, 

typically 10-50 microns in diameter, are labeled with a fluorescent dye which 

partitions preferentially into a certain phase.  The type of phase coexistence (gel/liquid 

vs. liquid/liquid) can be determined by the shape of the domains: liquid/liquid 

coexistence is characterized by circular domains with smooth boundaries, while 

gel/liquid coexistence is characterized by angular domains with rough boundaries (see 

offset GUV images in Fig. 1.6).  Figure 1.6 summarizes the microscopy results for a 

single temperature, but the phase behavior has been studied over a range of 

temperatures.  The temperature above which phase coexistence disappears for a given 

composition is termed the miscibility transition temperature (Tmix).  Values for Tmix 

have been measured for many compositions (Veatch and Keller, 2003b).   
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Figure 1.6.  Schematic showing regions of liquid-liquid (Lo/Ld) and gel/liquid phase 
coexistence for DOPC/DPPC/cholesterol at 25˚C based on the fluorescence 
microscopy work of Veatch et al. (Veatch and Keller, 2003b; Veatch et al., 2004).  
The GUV images were reproduced from Veatch, 2004.  Numbers on the bottom refer 
to mole fraction of DPPC.  Numbers on the right side refer to the mole fraction of 
cholesterol.  The colored dots are samples studied in this thesis using x-ray scattering. 

  



 

19 

 We refer to Fig. 1.6 as a schematic and not a phase diagram because it simply 

summarizes the GUV results; the existence and type (gel/liquid vs. liquid/liquid) of 

phase coexistence.  In the phase diagram, the gel/Ld region is separated from the 

Ld/Lo region by a three-phase gel/Ld/Lo region (see Fig. 1.7).  

 
Figure 1.7.  Phase diagram of DOPC/DPPC-d62/cholesterol at various temperatures 
determined by 2H NMR (Veatch et al., 2007b).  Each symbol corresponds to a certain 
type of phase behavior: one liquid (small open circles); two liquids (small black 
circles); contains some gel (small gray squares).  The large open circles correspond to 
Ld/Lo tie-line endpoints.  The large open squares represent endpoints of the three 
phase region (the gray triangle).  
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 The phase boundaries for the three-phase region and compositions of the 

coexisting phases (the directions of the tie lines) in the two-phase Ld/Lo region and 

the three-phase Ld/Lo/Lβ region were determined by 2H NMR (Veatch et al., 2007b; 

see Veatch et al., 2004 and Veatch et al., 2006 for description of the method).  In the 
2H NMR experiments, chain-perdeuterated DPPC (DPPC-d62) was used in place of 

DPPC.  DPPC-d62 has a slightly lower melting temperature than DPPC (ΔTm=-2.5˚C), 

but is otherwise expected to exhibit very similar phase behavior to DPPC (Veatch et 

al., 2004).  The two-phase Ld/Lo region according to NMR (Fig. 1.7) is smaller when 

compared with the microscopy results (Fig. 1.6).  Also, the Tmix temperatures are 

lower according to 2H NMR, which cannot be explained by a 2.5˚C shift due to the 

lower Tm of DPPC-d62.  A possible explanation for these different results is the 

influence of perturbing probe on the microscopy data (Veatch et al., 2007a), discussed 

further in Section 1.6.2. 

 The DOPC/DPPC/cholesterol phase diagram forms the starting point for our x-

ray work.  The samples we studied are shown by colored dots in Fig. 1.6.  Because the 

method of analysis we apply to the wide-angle scattering data is not well-used for 

studying chain order in model membranes, we wanted to choose a well-characterized 

system.  The effect of cholesterol on chain orientational order has been investigated 

with NMR and other techniques for the binary mixtures DOPC/cholesterol and 

DPPC/cholesterol, allowing us to calibrate our x-ray measurements of chain 

orientational order.  We can also compare our x-ray results for Tmix temperatures in the 

Ld/Lo coexistence region with the NMR and microscopy data. 

 Although the DOPC/DPPC/cholesterol phase diagram is well-studied, some of 

the regions of the diagram are still controversial, particularly binary mixtures of 

DPPC/cholesterol.  Fluorescence images of GUVs are uniform for DPPC/cholesterol 

at all temperatures and compositions (Feigenson and Buboltz, 2001; Veatch, 2004; 
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Veatch and Keller, 2005b), but other evidence suggests that there is gel/Lo 

coexistence at low temperature and Ld/Lo phase coexistence at high temperature in 

this system (discussed in detail in Ch. 5).   

 In contrast to the DPPC/cholesterol system, there is general agreement that 

phase coexistence does not occur in binary mixtures of DOPC and cholesterol; 

however, as cholesterol is added the properties of the liquid phase change from Ld to 

more Lo-like (see Ch. 4 and the references therein).  Since liquid phases can have a 

large range of properties, the Ld and Lo phases are only clearly differentiated in the 

case of Ld/Lo phase coexistence.       

1.6.2 Comparison of methods for detecting phase coexistence 

 Commonly-used methods for detecting  phase coexistence in model 

membranes include fluorescence microscopy, spectroscopic methods (NMR and 

ESR), non-optical fluorescence methods such as FRET and fluorescence polarization, 

and DSC.  Table 1.1 summarizes important features of the various techniques, such as 

the time and distance scales associated with each technique.  The distance scale 

determines the lower limit of domain size which can be observed with a technique.  

For a domain to be detectable in fluorescence microscopy, it must be at least a micron 

in size, explaining why other shorter distance scale methods may suggest phase 

coexistence in regions where GUVs are uniform (see Feigenson and Buboltz, 2001 for 

an example). 

 Fluorescence microscopy has a major advantage over other techniques for 

detecting phase coexistence: domains are directly visualized.  Other methods are more 

indirect, often involving comparison to other data and models.  In addition to detecting 

phase coexistence and giving a rough measure of the fraction of each phase, 
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fluorescence microscopy of GUVs can be used to measure physical properties in the 

coexisting phases (see for example Baumgart et al., 2003).   

 

Table 1.1.  Comparison of common methods used for detecting phase coexistence in 
model membranes. 

Method Time/ Distance 
scale*  

Probe required? Comments/References 

Fluorescence 
microscopy 

>1 micron  Yes-fluorescent dye method reviewed in Veatch 
and Keller, 2005b 

FRET <5 nm (~Förster 
radius of dye) 
Can detect small 
domains (10's of nm) 

Yes-fluorescent dye 
(smaller quantities than 
microscopy) 

method reviewed in Heberle et 
al., 2005 

ESR <10-8 sec 
>1 nm 

Yes-spin probe Recktenwald and McConnell, 
1981 
Chiang et al., 2005 

2H NMR <10-5 sec 
>20 nm 

No-Deuterated lipid is a 
mixture component  

Vist and Davis, 1990 
Veatch et al., 2006 

DSC non-equilibrium 
measurement 

No Mabrey et al., 1978 

*Time and distance scale information come from Bloom and Thewalt, 1995 and Fung 
and Stryer, 1978. 
 

 Despite the advantages of microscopy, it requires using fluorescent probe, 

possibly perturbing the system.  Ayuyan and Cohen (2006) have shown that 

illumination of fluorescent dye can cause photooxidation of the unsaturated chains of 

DOPC, leading to photoinduced phase separation in mixtures of DOPC, egg 

sphingomyelin (ESM), and cholesterol.  Note that compositions just outside a phase 

boundary (with high cholesterol content) are particularly prone to photo-induced phase 

separation.  Using fluorescence microscopy Ayuyan and Cohen did observe large 

domains in the absence of photooxidation for some DOPC/ESM/cholesterol 

compositions, confirming that this system does indeed separate into coexisting fluid 

phases without the presence of contaminant.  Zhao et al. (2007b) have shown that 

photooxidation is particularly problematic for mixtures of POPC, cholesterol, and 

various sphingomyelins.  Their work suggests that in the absence of probe, 
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POPC/SM/cholesterol systems do not phase separate, in conflict with previous phase 

diagrams published for these mixtures using fluorescent probes (Veatch and Keller, 

2005a).  Veatch et al. (2007a) have used NMR to investigate the effect of fluorescent 

probe on lipid phase behavior; they showed that probe concentrations as low as 0.05 

mol%, well below the 0.5 mol% dye used in many GUV preparations, can strongly 

affect phase behavior.  Such reports may cause general skepticism about evidence of 

Ld/Lo phase coexistence that rely upon potentially perturbing fluorescent probes.    

 There are relatively few widely used probe-free methods for detecting phase 

coexistence in model membranes, particularly biologically relevant liquid-liquid 

coexistence in ternary mixtures.  Veatch et al. (2004, 2006, 2007b) extended the NMR 

method used by Vist and Davis (1990) to examine liquid-liquid coexistence in ternary 

mixtures of DOPC (or diphytanoyl PC), DPPC-d62, and cholesterol.  Pencer et al. 

(2005) have used small-angle neutron scattering (SANS) to observe phase coexistence 

in mixtures of DOPC, DPPC-d62, and cholesterol.  Potma and Xie (2005) have used 

coherent anti-stokes Raman spectroscopy (CARS) to visualize liquid-liquid domains 

in giant unilamellar vesicles composed of DOPC, deuterated DSPC, and cholesterol.  

Note that we consider 2H NMR, SANS, and CARS experiments to be probe-free 

because the deuterated lipid is one of the three components.  NMR and SANS provide 

indirect evidence of phase coexistence; domains are not directly visualized for these 

techniques.  Although CARS provides pictures of domains, at present this technique is 

highly specialized and not widespread.  Similarly, the availability of neutron scattering 

facilities is limited.  

 Another probe-independent method for detecting Ld/Lo phase coexistence 

would be of value considering the possible perturbative effects of probes.  In the next 

section, we discuss how x-ray scattering, a noninvasive, probe-free method, can be 

used to distinguish between the different lamellar lipid phases. 
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1.7 X-ray scattering from model membranes 

1.7.1 X-ray scattering basics 

  Figure 1.8 shows a general x-ray scattering geometry.  The following 

equations relate the incident wavevector (ki), outgoing wavevector (kf), and the 

scattering wavevector (q) to the x-ray wavelength (λ) and the scattering angle (2θ): 

θ
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where we have assumed elastic scattering. 

 

 
Figure 1.8.  Ewald sphere construction, showing the allowed q values for a given 
sample (at point O) orientation in respect to the direction of incoming x-rays, ki.  The 
area detector image is a flat projection of a slice through reciprocal space on the 
surface of the Ewald sphere.  For further discussion, see Guinier, 1963. 

  

 An image observed on a detector is often referred to as a "reciprocal space 

mapping", while coordinates for the sample are referred to as "real space".  Reciprocal 
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space mappings are useful for structure determination because the x-ray scattering 

intensity is related to the Fourier transform of the electron density distribution, 

according to the following basic equation (Guinier, 1963) : 

[ ] 2
3

1
3

1221
2 )(exp)()()()( rrrrqrrqq ddiAI −•−== ∫ ∫ ρρ . (1.6) 

where I(q) is the intensity for a given wavevector q, ρ(r) is the electron density at 

point r in real-space, and A(q) is the Fourier transform of the electron density.  Eq. 1.6 

represents the scattering over all atoms in the system, which is important to keep in 

mind as we try to separate out the various scattering components (such as 

phospholipid chain-chain scattering from cholesterol-chain scattering and headgroup-

headgroup scattering).    

 When there is a repeating structural unit in the sample (e.g. lipid chains 

organized on a hexagonal lattice or stacks of bilayers), we can apply Bragg's law (see 

Kittel, 1957 for a derivation): 

θλ sin2dn =  (1.7) 

where d is the distance between atomic planes in the real-space crystalline lattice and 

n is an integer and is referred to as the diffraction "order".  Bragg's law can also be 

written as: 

nq
nd π2
×=  (1.8) 

where qn is the scattering wavevector magnitude for order n.  For three-dimensional 

crystals, Bragg's law limits scattering to particular values of qx, qy, and qz.  That is, 

scattering is only observed at points in reciprocal space.  In a two-dimensional lattice, 

the restriction is only on two reciprocal space directions.  In the following section, we 

will use Bragg's law in relation to two types of structure in model membranes: the 

lamellar structure and the chain-chain ordering.      
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1.7.2 Structure in model membranes: lamellar and chain-chain 

ordering 

 In order for sharp peaks to occur, the sample must have a repeating structural 

unit.  Lipid multilayers have two such units: (1) the lamellar stacks normal to the 

bilayer and (2) the hexagonal ordering of chains in the plane of the bilayer (see Fig. 

1.9).  The lamellae result in scattering at q=2π/dL.  We refer to lamellar scattering as 

low-angle x-ray scattering (LAXS).  Note that much of the lipid literature refers to the 

lamellar scattering as small-angle x-ray scattering (SAXS).  The hexagonal packing 

(which can be distorted or disordered) of the chains results in scattering at qcc~2π/dcc, 

which is referred to as wide-angle x-ray scattering (WAXS) and has been compared to 

scattering from paraffin chains (see Levine and Wilkins, 1971; Luzzati, 1968; Warren, 

1933).  Note that dcc refers to the distance between rows in a perfect hexagonal lattice, 

while the distance to nearest neighbors is 2 dcc /√3.  

1.7.3 Types of samples: oriented vs. powder 

 Figure 1.10 compares x-ray scattering geometries for oriented lipid multilayers 

and for multilamellar lipid vesicles (unoriented or powder samples).  This thesis 

presents data from both of these types of samples.  Although preparation and 

hydration of oriented samples is more challenging, oriented lipid multilayers are 

advantageous because lateral structure in the plane of the membrane (e.g. lipid chain 

packing) can be easily distinguished from structure perpendicular to the plane of the 

membrane (e.g. the lamellae).  In the grazing incidence geometry (Fig. 1.10A) 

scattering in the qr direction (φ~0˚) results from lateral structure while scattering in the 

qz direction (φ~90˚) results from structure perpendicular to the bilayer.  In a grazing 

incidence wide angle x-ray scattering (GIWAXS) image, scattering from untilted 

chains in a perfect hexagonal lattice will be centered on the qr axis (φ=0˚).  If the 
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chains are tilted, the center of the wide angle scattering spot will have a qz and qr 

component (nonzero φ) [discussed in the next section].       

 

Figure 1.9.  (A) Hexagonal lattice of lipid chains.  The rows of chains are spaced a 
distance dcc apart.  Original drawing by G. E. S. Toombes.  (B) The lamellar repeat 
spacing (dL) consists of a single bilayer + water layer. 
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Figure 1.10.  Scattering geometry for oriented multilayers in the grazing incidence 
geometry (A) and multilamellar vesicles (B).  For the oriented multilayers in the 
grazing incidence geometry, scattering in the qz direction is from structure 
perpendicular to the plane of the membrane (e.g. lamellae), while scattering in the qr 
direction is from lateral structure in the plane of the membrane (e.g. chain lattice).  
For multilamellar vesicles, the scattering is isotropic.  (A) is revised from the original 
figure, which appears in Busch et al., 2007. 
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1.7.4 The different lipid lamellar phases: what do x-rays see? 

 One goal of this thesis is to be able to use x-ray scattering to identify regions of 

phase coexistence, in particular liquid-liquid coexistence.  This relies on using LAXS 

(lamellar scattering) and WAXS (chain scattering) data to distinguish between the 

different lamellar phases (Ld, Lo, Lβ, and Lβ') discussed in Section 1.3.  The 

observation of two lamellar repeat (dL) spacings or two chain correlation (dcc) spacings 

can give direct evidence of phase coexistence; however, the absence of two dL or dcc 

spacings does not imply the absence of phase coexistence (See Section 3.4 for a 

detailed discussion).  This section discusses how the angular distribution (along φ in 

Fig. 1.10A) of wide-angle scattering from oriented multilayer samples may be useful 

for identifying liquid-liquid phase coexistence.     

 One of the motivations for this work was the observation of only a single 

lamellar repeat spacing in 1:1:1 DOPC/brain sphingomyelin (BSM)/cholesterol by 

Gandhavadi et al. (2002); in this same system, Dietrich et al. (2001) had observed 

Ld/Lo phase coexistence using fluorescence microscopy.  In order to observe two 

lamellar repeat spacings in a phase-separated mixture, the two spacings must be 

different enough to be resolvable and the different phases must align on top of each 

other across different bilayers (see Section 3.4 for further discussion).  Looking for 

two lamellar repeat spacings can be an unreliable method for detecting the presence or 

absence of phase coexistence because a null result does not imply the absence of phase 

coexistence. 

 In order to observe two dcc spacings, there is no requirement of alignment of 

the phases between different bilayers; however, the two dcc spacings must be 

resolvable.  For MLV (powder) samples, the wide-angle x-ray scattering pattern from 

the gel phase is easily distinguished from the fluid phase.  Gel-phase WAXS consists 

of a narrow band near dcc~4.2 Å (two bands for a distorted hexagonal lattice), while 
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liquid-phase WAXS consists of a broad band near dcc~4.5 Å.  Although the position of 

the liquid-phase band changes as a function of temperature and cholesterol content 

(Clarke et al., 2006; Maulik and Shipley, 1996a, 1996b), the width is very similar in 

the Ld and Lo phases.  Given a powder sample with coexisting Ld and Lo phases, we 

expect the wide bands to overlap.  On the other hand, we would expect to be able to 

identify gel/fluid coexistence in powder WAXS data. 

 GIWAXS from oriented lipid multilayers can give additional information 

about chain ordering not available from powder samples.  Figure 1.11 compares 

GIWAXS data from examples of the four different phases discussed in Section 1.3.  

The figure shows the large changes in chain order resulting from temperature changes 

or compositional changes (e.g. the addition of cholesterol).  The simplest scattering 

comes from the Lβ phase (untilted chains in a hexagonal lattice): the Lβ phase is 

characterized by a single Bragg rod centered along the qr axis and with qz intensity 

dependence described by a sinc function (see Section 3.2.5 for further discussion).  

Pure DPPC forms the Lβ' phase, not the Lβ phase.  The example shown in Fig. 1.11B 

(DPPC + 10% cholesterol at 25˚C) is sometimes referred to as a disordered gel phase.  

Pure PEs, which have a smaller headgroup than PCs, do form the Lβ phase.  For the 

DPPC Lβ' phase (a distorted hexagonal lattice with tilting towards nearest neighbors), 

scattering consists of two Bragg rods: one at the equator and the other off the equator; 

such scattering is characteristic of tilted chains in a distorted hexagonal lattice (for 

more about GIWAXS from gel-phase oriented multilayers, see Smith et al., 1988; 

Tristram-Nagle et al., 1993).   

 Lateral positional disorder in fluid phases results in broadening of the peaks in 

the qr direction: the chains have a large distribution of nearest neighbor distances.  

While scattering from the Ld and Lo phases is similarly broad in the qr direction, the 

angular (φ) distribution of scattering is larger in the Ld phase than in the Lo phase.  
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The angular distribution of scattering is sensitive to chain orientational order: more 

orientationally ordered samples will have a narrower distribution of scattering.  Levine 

and Wilkins (1971) reported this effect for oriented multilayers of egg 

lecithin/cholesterol.  In this thesis we will refer to the lateral width of the GIWAXS 

peak as the q-width and the angular width as the φ-width.  

 
Figure 1.11.  GIWAXS images for: (A) DPPC (T=25˚C) in the Lβ' phase; (B) DPPC + 
10% cholesterol (T=25˚C) in the Lβ phase; (C) DPPC (T=45˚C) in the Ld phase; (D) 
DPPC + 40% cholesterol (T=45˚C) in the Lo phase.  (Data taken at CHESS D-1 
station, February 2006) 
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 Figure 1.12 compares wide-angle scattering data from an oriented liquid-phase 

DOPC sample with wide angle scattering data from a powder DOPC sample.  The 

scattering from the powder sample is characteristic of liquid-phase samples (Ld or 

Lo), while the oriented sample data are characteristic of the Ld phase.  In powder 

samples, we lose the information about the angular distribution of scattering.   

Figure 1.12.  (A) GIWAXS image for DOPC (T=25˚C), taken at CHESS G-1 station 
in October 2006.  (B) Powder WAXS image for MLVs of DOPC (T=25˚C), taken on 
the Gruner rotating anode.  The powder data was included in a radially integrated form 
in Zhao et al., 2007a; this paper also discusses sample preparation.  Unlike the rest of 
the powder MLV data presented in this thesis (see Ch. 2), the data presented in (B) 
was hydrated at a 1:1 (v/v) water: lipid ratio.  

 

1.7.5 Potential of GIWAXS on oriented lipid multilayers in the 

context of previous x-ray work on model membranes 

 Levine and Wilkins performed a seminal study of egg lecithin/cholesterol 

mixtures using lamellar and wide-angle x-ray scattering of oriented lipid multilayers 

(Levine, 1970; Levine and Wilkins, 1971).  The ordering of the egg lecithin chains by 

cholesterol was apparent in their wide-angle x-ray data: the angular distribution of 
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scattering was narrower for egg lecithin/cholesterol than for egg lecithin alone.  Their 

electron density profiles constructed from the lamellar repeat data showed that the 

bilayer thickness increased with cholesterol addition, consistent with an increase in 

chain order; more ordered chains have a longer effective chain length.    

 More recently, Spaar and Salditt (2003) have shown the value of comparing 

experimental GIWAXS data from Ld-phase oriented multilayers with molecular 

dynamics (MD) simulations.  In addition to single component Ld-phase membranes, 

the Salditt group has also studied phospholipid/peptide mixtures with a combination of 

GIWAXS and molecular dynamics simulations (Spaar et al., 2004).  

 For gel phases, WAXS from powder samples (Janiak et al., 1976; Tardieu et 

al., 1973; Sun et al., 1994) and oriented samples (Smith et al., 1988; Tristram-Nagle et 

al., 1993) give detailed structural information including chain tilt and lipid area.  

Reports of wide-angle x-ray scattering from liquid phases usually focus on changes in 

the position of the wide-angle band (for examples see Clarke et al., 2006; Finean, 

1990; Maulik and Shipley, 1996a, 1996b).  More in-depth analysis of liquid-phase 

WAXS data is less common.  Levine and Wilkins (1971) used a simple analytical 

model, commonly used in liquid crystal research, to analyze their GIWAXS data (see 

Ch. 3).  In addition to Spaar and Salditt's work comparing MD simulations with 

GIWAXS data, Sega et al. (2007) have compared Ld-phase powder WAXS data to 

MD simulations.  Note that we are focusing on work on bilayers, while much lipid x-

ray scattering work has also been done on monolayers (See Ege et al., 2006 for a 

recent example which uses grazing incidence wide angle scattering to examine the 

effect of cholesterol on the structure of fluid-phase monolayers).  The connection 

between monolayer and bilayer phase behavior is unclear (Stottrup et al., 2005).   

 In the context of recent literature on liquid-liquid coexistence in ternary 

mixtures, we felt it promising to more fully explore the GIWAXS technique as applied 
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to mixtures of phospholipid and cholesterol.  This thesis focuses on applying an 

analytical method, often used in liquid crystal research, for quantitatively analyzing 

the angular distribution of GIWAXS data to obtain the chain orientational order 

parameters for liquid-phase samples.  In order to develop a tool for identifying Ld/Lo 

phase coexistence, we extend this method to analyze cases where the angular 

distribution of scattering is a convolution of two distributions (i.e. from the Ld and Lo 

phases).  

1.8 Thesis Summary 

  GIWAXS from oriented multilayers can give information about lateral 

positional ordering and chain orientational ordering without the use of a perturbing 

probe.  The goal of this thesis is to answer the following questions by using the 

GIWAXS method: 

1. Can we quantitatively analyze the angular distribution of scattering to obtain 

chain orientational order parameters for liquid-phase lipid samples?  What are 

the effects of cholesterol on lipid chain order (both orientational and lateral 

positional order)?  How do the trends we observe in orientational order as a 

function of sample composition compare with NMR order parameter data? 

2. For samples known to have liquid-liquid phase coexistence, can we 

deconvolve the angular distribution of scattering to identify phase coexistence 

and determine miscibility transition temperatures (Tmix)?  If so, how do the Tmix 

values compare with those from the NMR and fluorescence microscopy work 

of Veatch et al.?  

We will answer the above questions for DOPC/DPPC/cholesterol mixtures.  This 

system is a good test system for calibrating the GIWAXS method because chain 

orientational order has been well studied in the binary mixture DPPC/cholesterol using 
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a variety of techniques (and to a lesser extent DOPC/cholesterol).  Also, liquid-liquid 

coexistence in this ternary mixture has been studied with both NMR and fluorescence 

microscopy. 

 In the following two chapters, we present the experimental techniques and 

theory.  Chapter 2 discusses the experimental procedure and challenges associated 

with obtaining high-quality GIWAXS data.  Chapter 3 presents the theory used to 

analyze the angular distribution of the GIWAXS data in order to calculate chain order 

parameters and identify phase coexistence.  The end of Ch. 3 discusses criteria for 

phase coexistence based on chain-correlation scattering (WAXS) and scattering from 

the lamellae (LAXS) data.   

 Chapters 4-6 present our GIWAXS data from oriented samples and LAXS data 

from powder samples.  Chapter 4 focuses on chain order in DOPC/cholesterol 

mixtures (green circles in Fig. 1.6) and discusses how lipid areas can be calculated for 

fluid phases from the GIWAXS data.  Chapter 5 evaluates our x-ray scattering data 

from both oriented and powder samples for DPPC/cholesterol mixtures (blue circles in 

Fig. 1.6) in the context of controversial and inconsistent reports of phase coexistence 

(gel/liquid at low temperature and liquid/liquid at high temperature) in this system.  

Chapter 6 presents evidence of phase coexistence in ternary DOPC/DPPC/cholesterol 

mixtures (red circles in Fig. 1.6) from both GIWAXS data and lamellar scattering 

from MLV samples.  These data are compared to NMR and microscopy results 

(Veatch et al.) for order parameters (found separately in each coexisting phase) and 

Tmix values.  
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Chapter 2 - Experimental 

2.1 Introduction 

 The quality of the GIWAXS data we obtained is shown in Fig. 2.1.  The width 

of the sharp features for gel-phase DPPC (Fig. 2.1A) is limited by instrumental 

resolution in our setup.  The focus of this thesis is analyzing the broader GIWAXS 

patterns of fluid phases (Fig. 2.1B and 2.1C).  The resolution for the gel phase data 

shows that the much broader features we observe in the fluid phase data are not 

affected by instrumental resolution. 

 Figure 2.1 is a good example of the drastic effects of changes in temperature 

and composition on the GIWAXS images.  At 25˚C, DPPC is in the Lβ' phase, with 

tilted chains packed regularly in a distorted hexagonal lattice (Fig. 2.1A).  At 45˚C, 

DPPC is in the Ld phase: the chains do not form a regular lattice with a well-defined 

spacing, as can be seen by the large width of the peak in the qr direction, characteristic 

of fluid-like lateral positional ordering (Fig. 2.1B).  Also, the chains are orientationally 

disordered, as can be seen by the wide angular distribution of scattering; this 

information about chain orientational order cannot be obtained from a powder WAXS 

pattern.  Adding 40 % cholesterol to DPPC at 45˚C orientationally orders the chains, 

as can be seen by the narrower angular distribution of scattering; however the 

disordered fluid-like positional ordering of the DPPC chains is maintained, 

characteristic of the Lo phase (Fig. 2.1C).  All of this information is contained in the 

GIWAXS data, but we must ensure that our data are free from artifacts in order to be 

confident in our interpretations. 

 This chapter describes our method for collecting high-quality GIWAXS data.  

The features labeled in Fig. 2.1C will be described in more detail in the sections which 

follow.       
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Figure 2.1.  2D GIWAXS images for: (A) gel phase DPPC at 25˚C; (B) fluid phase 
DPPC at 45˚C; (C) DPPC + 40% cholesterol at 45˚C. (D-1, February 2006) 
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2.2 X-ray sources 

 The x-ray scattering data presented in this thesis were obtained using two types 

of sources: a rotating anode and a synchrotron.  The grazing incidence diffraction 

experiments were performed at the Cornell High Energy Synchrotron Source 

(CHESS).  A rotating anode (maintained by Sol Gruner's group) was also used to help 

characterize samples.  Als-Nielsen and McMorrow (2001) provide a good introduction 

to x-ray sources and x-ray optics. 

 Some of the GIWAXS experiments used the D-1 station, a bending magnet 

beamline, and some used the G-1 station, a wiggler beamline. Wigglers and bending 

magnets both produce a wide beam with a broad range of energies, a so-called "white 

beam."  Monochromators, based on reflection of x-rays from multilayered materials 

with a definite periodic spacing, are used to select a particular wavelength from the 

"white beam."  Slits, usually metal blades, define the beam size.   

 In principle, the GIWAXS experiments on model membranes could be 

performed on a rotating anode: preliminary experiments show that reasonable signal 

can be collected under an hour using a rotating anode, with typical intensities on the 

order of 107 photons/mm2/sec, compared with intensities of 1011-1013 

photons/mm2/sec at CHESS.  Our exposures at CHESS were two minutes or less, but 

sample equilibration can take over an hour.  Thus, exposure time is not the time-

limiting factor in our experiments.  The short exposure times at CHESS may be 

beneficial in limiting radiation damage, which involves destruction of the lipid by free 

radicals produced by interaction of the x-rays with the water in the sample.  Since the 

free radicals take time to act, radiation damage is a function of the exposure time as 

well as the total exposure. 

 The higher x-ray energies available at CHESS provide two advantages: 
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(1)  With the current sample chamber (the Nagle group's NIH chamber), described 

later, a higher x-ray energy than the Cu Kα line is advantageous in order to collect 

larger q values. 

(2)  Radiation damage is less problematic at higher energies because absorption of 

radiation by the sample is minimized at higher x-ray energies (Arndt, 1984).            

 Availability of a sample chamber was a major factor in choosing to do 

experiments at CHESS.  The Nagle group's NIH sample chamber, capable of full 

hydration, was expensive and time-consuming to build.  In addition to their sample 

chamber, the Nagle lab's expertise in scattering from oriented lipid samples greatly 

benefited this work.  At CHESS, we were able to divide beamtime, and sometimes 

share samples, between the GIWAXS work and the Nagle group's low angle diffuse 

scattering work that focused on the scattering that is indicated in Fig. 2.1C as lamellar 

diffraction mostly blocked by the beamstop in our GIWAXS studies.       

2.3 GIWAXS on oriented lipid multilayers 

2.3.1 Preparation of oriented lipid multilayers 

 For the GIWAXS experiments, oriented samples with low mosaic spread are 

crucial.  Oriented samples were prepared using the rock-and-roll method (Tristram-

Nagle et al., 1993; Tristram-Nagle, 2007).  A total lipid amount of 4 mg dissolved in 

150-200 µL of organic solvent was deposited onto a 15 x 30 x 1 mm Si wafer, cleaned 

in methanol and chloroform.  By gently rocking the wafer by hand, shearing action 

helps to align the lipid multilayers during solvent evaporation.  To retard solvent 

evaporation and to allow for more even spreading, the procedure was performed in a 

glove box saturated with chloroform vapor.  The samples were left in the saturated 

atmosphere glove box overnight; then the samples were allowed to dry on the lab 

bench for one day.  The samples were trimmed to a 5 mm strip occupying only the 
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center of the 15 mm wide silicon wafer.  The final sample thickness is ~10 μm, or 

about 2000 bilayers.  The samples were stored for weeks in a glass dessicator with 

Drierite (W. A. Hammond DRIERITE Co., Xenia, OH) in a refrigerator with no 

degradation as judged by thin layer chromatography (TLC).   

 Chloroform mixtures of DOPC, DPPC, and cholesterol were prepared from 

stock mixtures in small (10 x 75 mm) borosilicate glass test tubes.  (See the first 

paragraph of Section 2.4.1 for details on lipid mixture preparation, including the 

chemical companies and lot numbers and phosphate assay of stocks).  After 

evaporation of the chloroform, the lipid was redissolved in a solvent mixture 

appropriate for the rock-and-roll procedure.  The choice of solvent for the rock-and-

roll method depends on the sample composition.  Slowly evaporating solvents, such as 

methanol and trifluoroethanol (TFE), help to lower the contact angle of lipid with the 

hydrophilic silicon surface.  However, pure methanol or pure TFE is not a good choice 

for mixtures of phospholipids and cholesterol because cholesterol and/or phospholipid 

may precipitate out of these solvents.  Usually, a mixture of chloroform and another 

solvent, determined by trial and error, gives even spreading without precipitation.  

Table 2.1 shows the solvent mixture used for each lipid composition. 

 All of the oriented samples were annealed at 50˚C in a water-saturated 

atmosphere for 4-8 hours before being x-rayed.  The annealing chamber was a plastic 

Nalgene container filled with sponges and water with a water-soaked sponge on the 

inside of the top cover.  The samples sat in 50 mL cut, glass beaker halves below the 

top sponge.  The annealing chamber was then placed in a small oven at 50˚C.  The 

samples were observed periodically during the annealing process to assure proper 

hydration levels (the lipid should appear slick but not flooded with water droplets).  

Annealing serves two purposes:  (1) Annealing can improve sample orientation;  (2) 

When dealing with mixtures of lipids which can phase-separate, annealing at a 
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temperature well above the miscibility transition temperature ensures proper mixing of 

the components due to lateral diffusion.  After at least 4 hours in the oven, the 

annealing chamber with the samples inside was placed in a styrofoam box to allow the 

samples to cool slowly.  In the case of lipid mixtures which phase-separate, slow 

cooling instead of quenching helps prevent kinetically-trapped states, particularly 

problematic for the gel phase.  When ready for data collection, the samples were 

transferred directly from the annealing chamber to the x-ray sample chamber. 

 

Table 2.1.  Solvent mixtures used for the rock-and-roll procedure. 

Mole Percents Sample 
% 

DOPC
% 

DPPC 
% 

Chol

Solvent mixture 

DOPC  100 0 0 1:1 CHCl3/TFE 
DOPC + 10% Chol 90 0 10 1:1 CHCl3/TFE 
DOPC + 40% Chol 60 0 40 1:1 CHCl3/TFE 

     
DPPC 0 100 0 3:1 CHCl3/MeOH 

DPPC + 10% Chol 0 90 10 5:1 CHCl3/MeOH 
DPPC + 15% Chol 0 85 15 10:1 CHCl3/MeOH 
DPPC + 25% Chol 0 75 25 20:1 CHCl3/MeOH 
DPPC + 40% Chol 0 60 40 20:1 CHCl3/MeOH 

     
1:1 DOPC/DPPC 50 50 0 2:1 CHCl3/TFE 

1:1 DOPC/DPPC + 15% Chol 42.5 42.5 15 2:1 CHCl3/TFE 
1:1 DOPC/DPPC + 20% Chol 40 40 20 2:1 CHCl3/TFE 
1:1 DOPC/DPPC + 25% Chol 37.5 37.5 25 2:1 CHCl3/TFE 
1:1 DOPC/DPPC + 30% Chol 35 35 30 2:1 CHCl3/TFE 

  

  An important question is whether annealing and exposure to x-rays causes 

breakdown of the sample (see Caffrey, 1984 for a study of x-ray radiation damage of 

lipid samples).  Figure 2.2 shows a TLC comparing fresh DOPC to two DOPC 

samples which were annealed and then x-rayed in the October 2006 CHESS run at the 

G-1 station, which had a flux of 1012-1013 photons/mm2/sec.  The TLC shows no 
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evidence of radiation damage for the bulk sample.  To assess radiation damage, 

Caffrey (1984) did a more careful experiment in which only the part of the lipid 

capillary sample exposed to the x-ray beam was analyzed.  If damage is limited to 

only a small amount of the sample, it may not be visible on our TLC plate.  To limit 

radiation damage during the course of an experiment, the sample was moved 

periodically during the experiment to expose a fresh part of the sample to the beam 

(we limited exposure time to under 5-10 minutes). 

 

 
Figure 2.2.  A TLC plate stained with (A) iodine vapor and (B) molybdic 
oxide/sulfuric acid.  The TLC was run with the solvent mixture: 46:18:3 (v/v/v) 
chlorofrom/methanol/NH4OH(7N).  The lanes marked TM-1 and TM-2 were oriented 
DOPC samples that were annealed and x-rayed during the October 2006 G-1 run and 
stored refrigerated in a dessicator with Drierite until April 24, 2007 (date of TLC).  
The lipid was scraped off the silicon substrate with a razor blade and dissolved in 
chloroform and then was spotted on the TLC plate.  



 

43 

2.3.2 Sample chamber 

 We want to compare our x-ray scattering results with other experiments such 

as fluorescence microscopy of GUVs and NMR, where the lipid samples are immersed 

in water, so it is important that our oriented samples are also well hydrated, which is 

the most biologically relevant condition.  For x-ray studies, oriented samples must be 

hydrated from water vapor because immersion in water disorients the sample unless a 

second substrate is used, and that attenuates the beam.  For many years, experimenters 

observed that oriented lipid samples hydrated with water vapor under conditions of 

100% relative humidity had a reduced level of hydration in comparison to vesicles in 

contact with bulk water; this phenomenon was called "the vapor pressure paradox."  

Katsaras (1997) showed that there was no vapor pressure paradox by achieving full 

hydration of oriented lipid samples in a neutron diffraction experiment; environmental 

chambers for neutrons can use thick aluminum and do not require windows, so 

humidity and temperature control is much easier.  With consultation with J. Nagle, an 

x-ray chamber was subsequently constructed that also achieved full hydration 

(Katsaras and Watson, 2000).  A Peltier element to cool the sample relative to the 

water vapor and a wet sponge near the sample to enhance evaporation were the design 

features that allowed for full hydration of oriented lipid samples. 

 The NIH sample chamber improved upon this original design (see Fig. 2.3 for 

a picture of the chamber).  This chamber was designed by Drs. Stephanie Tristram-

Nagle and John Nagle and built by Dr. Horia Petrache under the auspices of Dr. 

Adrian Parsegian at the NIH in Bethesda.  The design and operation of the chamber 

have been described in detail elsewhere (Liu, 2003; Kučerka et al., 2005a).  Essential 

design features of the chamber include: 

1. A temperature-controlled water bath (at CHESS a Neslab was supplied). 
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2. A Peltier stage which cools or heats the sample relative to the rest of the 

chamber in order to vary the rate of sample hydration and achieve different 

hydration levels. 

3. Wet filter paper above and close to the sample with one end in bulk water to 

wick water into the filter paper which has a large area for evaporation.   

4. Double mylar windows which can be heated to prevent water drop 

condensation. 

5. Helium ports which allow for the replacement of air by helium to reduce 

background scattering. 

6. A rotation motor which rotates the sample holder independently from the rest 

of the chamber.  

The size of the exit window determines the maximum scattering angle which can be 

obtained from the chamber, with a smaller angle allowed in the vertical direction than 

the horizontal direction (see Fig. 2.5A). 

 

 
Figure 2.3.  Top view of NIH sample chamber.  The sample sits on the sample holder 
(white rectangle in the center of the picture). 
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 We have found that our GIWAXS experiments are limited by the maximum 

scattering angle allowed by the NIH chamber.  To collect GIWAXS data with larger 

scattering angles, Dr. Stephanie Tristram-Nagle directed Antony Vydrin in the design 

and construction of a new sample chamber with larger windows (referred to as the AV 

chamber).  This cylindrical chamber also has double-walled construction with an inner 

chamber made from a stainless steel coffee thermos surrounded by PVC pipe.  The 

chamber is still in the prototype stage, as control of hydration was difficult.  This 

chamber was used to help diagnose the problem of water scattering which extends to 

higher angles (see Section 2.3.8.1).  All of the data shown in the results chapters (Ch. 

4-6) were taken with the NIH chamber.       

2.3.3 Beamline description  

2.3.3.1 Overall schematic 

 Figure 2.4 shows the grazing angle of incidence experimental geometry (also 

shown in Ch. 1).  The x-rays come in with an angle of incidence α and scatter through 

the scattering angle, 2θ.  The angle φ is the angle measured from the x-axis on the 

detector.  The angle φL is the angle between the scattering wavevector q and the 

sample plane, or more precisely the angle complementary to the angle between q and 

the membrane normal n.  Throughout this thesis, we make the following 

approximations: φ≈φL (see Ch. 3 for discussion) and xyxr qqqq ≈+= 22 .  The exact 

relations between the different angles and vectors shown in Fig. 2.4 are: 
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Figure 2.4.  Experimental geometry for the grazing incidence setup (Drawing modified 
from a sketch by G. E. S. Toombes which appears in Busch et al., 2007). 

  

 Figure 2.5A shows a sketch of the experimental setup which applies to both 

beamlines.  The sample chamber, detector, and beamstop were each mounted on 

separate motorized x-z translation stages (see also Fig. 2.6).  In order to collect a full 

quadrant of the scattering pattern, the detector was positioned so that the beam hit the 

bottom corner of the detector as indicated in Fig. 2.4.  The NIH chamber exit windows 

are wider than they are tall, and so the maximum scattering angle is most limited in the 

z direction (2θzmax ≈ 27˚).  Also, styrofoam used to insulate the resistive wire used to 

heat the windows partially blocks the exit windows, further decreasing 2θzmax.  

However, it was also important to position the chamber horizontally (x direction) so 

that the scattered x-rays were not blocked in this direction; this meant that only about 

2/3 of the 30mm sample could be used, but this was more than enough for all samples. 
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Shadows or complete cutoff of the WAXS pattern were obvious by simply collecting 

an image.   

 Figure 2.5B shows the beam in relation to the silicon substrate and lipid 

sample.  As described in Section 2.3.2, the sample may be rotated independently 

within the stationary NIH chamber to control the incident angle, α.  For the AV 

chamber, the CHESS supplied G-1 rotation stage was used to rotate the entire 

chamber.  As described in Section 2.3.4.3, the negative incidence angles are used to 

collect a "light background" which is subtracted from the GIWAXS data to eliminate 

scattering from the mylar windows.    

 

Figure 2.5.  (A) Sketch of the experimental setup with a focus on dimensions of the 
sample chamber windows (A,B,C, and D), which limit 2θmax (2θmax ≈27˚) and thus the 
maximum q range allowed.  (B)  A closeup of the sample and beam geometry at 
different angles of incidence, α.  
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2.3.3.2 X-ray optical setup  

 The grazing incidence experiments were carried out at the D-1 station (May 

2005 and February 2006) and the G-1 station (October 2006) at the Cornell High 

Energy Synchrotron Source (CHESS).  D-1 is a bending magnet beamline, while G-1 

is a wiggler beamline with 10-100 times or more intensity (depending on x-ray energy, 

optics such as the monochromator, etc.).  Figure 2.6 shows the optical schematic for 

the G-1 beamline.  The upstream slits S1 and S2 define the beam size, while the most 

downstream slits, SG, acts as guard slits to block parasitic scattering from slits, air, 

and other sources.  During the October 2006 G-1 run, our slit configuration was as 

follows: S1 (0.55 mm vertical gap x 10.00 mm horizontal gap), S2 (0.55 mm vertical 

gap x 0.20 mm horizontal gap), SG (0.70 mm vertical gap x 0.25 mm horizontal gap).  

Upstream from the sample, the x-ray flightpath is filled with helium to reduce air 

scattering.  The D-1 beamline has a similar 3-slit configuration with a helium-filled 

upstream flightpath.  

 
Figure 2.6.  Optical schematic for G-1 beamline at CHESS (drawing from Arthur 
Woll).   
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 At G-1, Mo:B4C multilayers (APS Optics Lab, Argonne, IL) ,with a 1.1 % full-

width at half-maximum energy dispersion, were used to select x-rays with wavelength 

λ = 1.274 Å (E=9.73 keV).  The flux was 3 x 1011 photons/sec for the slit settings 

given above.  At G-1, the beam was 0.25 mm x 0.6 mm.  At D-1, a multilayer 

monochromator (Osmic, Detroit, MI) ,with a 0.66 % full-width at half-maximum 

energy dispersion, was used to select x-rays with wavelength λ = 1.180 Å (E= 10.5 

keV).  At D-1, the beam was 0.3 x 0.3 mm square for most measurements presented (a 

0.28 mm x 1.2 mm beam was used for the DPPC results).  The beam heights and 

widths were selected to be compatible with the Nagle group's diffuse scattering LAXS 

measurements (tall beam required) and their LUV measurements (shorter, square 

beam required).  Since the sample is only 10 microns high, only a small fraction of the 

beam height hits the sample for our wide-angle measurements.  To reduce background 

scattering from sources such as mylar windows and air, a shorter beam would be 

advantageous for GIWAXS. 

2.3.3.3 Beamstop  

 A semitransparent molybdenum beamstop allowed for tracking of beam 

diagnostics (size, shape, intensity) throughout the experiment.  The Mo beamstop 

works best when the x-ray energy is greater than 10 keV because the second harmonic 

is suppressed by the absorption edge near 20 keV.  To minimize air scattering, the 

beamstop was placed as close as possible to the downstream end of the sample 

chamber.  To minimize shadows caused by the beamstop cutting off background and 

the diffraction pattern, the beam should hit as close as possible to the edge of the 

rectangular beamstop. 

 Since each sample may have slightly different positions when mounted on the 

sample holder, the semitransparent beamstop is crucial for placing the sample in the 
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center of the beam and for finding the true α=0.  Figure 2.7 shows a typical image of 

the beam as seen through the semitransparent beamstop in which the sample is 

removed from the beam; this will be referred to as a beam picture (BP).  The figure 

also shows slices through the image, which show how the plots in Fig. 2.8 and Fig. 2.9 

were produced.   

 
Figure 2.7.  Beam picture (G-1, October 2006).   

  

 Figure 2.8 shows the beam profile in the horizontal (pr or qr) direction.  Figure 

2.9 shows the beam profile in the vertical (pz or qz) direction.  Figure 2.9 also shows a 

vertical slice of the beam for an image in which the sample is cutting half of the beam 

(α=0) and for an image for which the sample was continuously rotating through angles 

of -3˚ to 7˚ (used for lamellar repeat measurements, see Section 0).  In TiffView, the 

program used for online analysis, these types of plots are termed qrplots and qzplots.   

 The qrplots and qzplots enable us to determine the beam center, which can 

change slightly from sample to sample.  An arrow in Fig. 2.9 indicates the pz=0 

position.  Note that the pz=0 position is not in the middle of the peak in the qzplot but 
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is on the leading edge, corresponding to the top of the Si substrate.  The pr=0 position 

is in the middle of the peak in a qrplot. 

 
Figure 2.8.  Beam profile in the qr direction (qrplot through BP shown in Fig. 2.7; G-1, 
October 2006).   

      

 

Figure 2.9.  Intensity vs. pz (qzplots) for a beam picture (BP), image where α=0, and 
image where the sample is continuously rotating through α=-3 to 7˚.  (G-1, October 
2006).   
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2.3.3.4 Detectors    

 For measurements at D-1, we used the "Medoptics" detector, a 1K (1024 X 

1024 pixel) CCD detector, built at Cornell, with a pixel size of 0.04719 mm (total 

detector size ~48 mm x 48 mm).  For measurements at the G-1 station, we used the 

"Flicam" detector, a 1K CCD detector, also built at Cornell, with a pixel size of 

0.06978 mm (for a total size of ~71 mm x 71 mm).  For most x-ray experiments, the 

following types of image corrections are standard and are provided by CHESS: 

dezingering, dark background subtraction, and distortion and intensity corrections 

(Barna et al., 1999).   

   Zingers.  Zingers are very bright spots, only a few pixels in size, caused by 

cosmic rays or other sources of stray hard radiation (such as radioactive thorium in the 

fiberoptics taper).  To remove zingers, two or more images taken back to back with the 

same exposure time are compared.  It is unlikely that two short exposures taken in 

sequence with the same sample will have zingers in the same location.  All bright 

spots in only one of the images are then removed.  This process is called dezingering.  

Since the number of zingers scales with the length of the exposure, it is advantageous 

to add together many short (less than 5 minutes) exposures as opposed to taking one 

long exposure.  Exposures were typically 120 seconds at D-1 (February 2006) and less 

than 20 sec at G-1 (October 2006).  

 Dark background.  Even when not exposed to radiation, CCD detectors 

accumulate counts.  In CCDs, there is thermally generated charge in the CCD chip, 

and so keeping the CCD chilled reduces this background intensity.  A dark 

background is an exposure in which the incoming x-ray beam is completely blocked 

by the shutter.  A dezingered dark background with the same exposure time as the 

image was subtracted from each image.  
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 Distortion and intensity corrections.  The CCD array is not a perfect grid, 

and so a geometrical distortion correction must be applied to produce the rectilinear 

diffraction image.  The CCD pixels have different sensitivity to x-ray radiation, and so 

an intensity correction must also be applied.  Saturating a CCD pixel (such as by 

exposing it to main beam) can change its sensitivity, and in some cases make it 

completely unresponsive.  The CHESS staff periodically update the intensity 

correction files (see Barna et al., 1999).   

2.3.3.5 Calibration of sample-to-detector distance  

 The sample-to-detector distance (S in Fig. 2.5A) was chosen in order to obtain 

scattering at the widest angles possible compatible with the size of the chamber exit 

windows and their distance from the sample.  The preferred q range would extend to at 

least q=2.5Å-1 in order to observe the water scattering peak (see Section 2.3.8.1 for a 

detailed discussion).  However, for the NIH chamber and for the x-ray energies used 

in the experiment (10.5 keV at D-1 and 9.7 keV at G-1), the upper part of the sample 

chamber exit window limits the q range to about 1.8 Å-1 in the qz direction .  Using 

higher x-ray energies to increase the q range is a possibility at the D-1 station but the 

preferred energy at the G-1 station is ~10 keV because the multilayer monochromator 

has tungsten which transmits less intensity above its absorption edge near 10.2 keV. 

 Given the window size and distance from the sample, a simple calculation 

gives the distance S of the CCD from the sample such that the CCD is just filled with 

the wide angle data permitted by the chamber exit window.  After positioning the 

CCD, the accurate sample to detector distance, S, was found by calibration with silver 

behenate (spacing=58.367 Å).  Like the lipid samples, the silver behenate is spread 

over a 5 mm strip in the middle of the 15 mm wide silicon piece.  The silver behenate 

was rotated during data collection to sample all of the Bragg angles which results in 
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more accurate d-spacing measurements.  For the AV chamber, fast rotations are not 

possible and so a fixed incident angle of 1.0˚ was used for calibration.  From the 

known d-spacing, the sample to detector distance can be calculated based on the 

position of the silver behenate peaks (simply use Bragg's law).  The TiffView program 

(written by Yufeng Liu; Liu, 2003)  provides a useful interface for calculating sample-

to-detector distances and d-spacings by minimizing errors in a linear, least-squares fit 

to the peak positions in pixels that are easily obtained in the TiffView quantitative plot 

window.   

 For the February 2006 D-1 experiment, the S distance was 115.7 mm.  For the 

October 2006 G-1 experiment, the S distance was 151.7 mm for the NIH chamber and 

121.2 mm for the AV chamber. 

2.3.4 GIWAXS data collection protocol 

 When a new sample is placed in the chamber, the first step was to run helium 

through the chamber for at least 5 minutes to reduce background scattering by 

replacing air by helium.  The sample was then aligned, hydrated and equilibrated at 

the desired temperature.  The samples were aligned during hydration and temperature 

equilibration, which typically were allowed 30 minutes-1 hour.  The following 

sections discuss the steps in the data collection process:  

 (1) Alignment 

 (2) Lamellar repeat (dL-spacing) measurements during hydration 

 (3) GIWAXS data collection from lipid and "light background" 

 (4) Temperature changes and equilibration. 

For analysis at the beamline, the program TiffView was used.  This program has a 

GUI interface particularly convenient for online analysis during the alignment process 

and dL-spacing measurements.  
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2.3.4.1 Alignment  

 When a new sample was placed in the chamber, it was leveled (find α=0) and 

properly aligned vertically (find samz=0).  Usually, the zero positions from the last 

sample were roughly correct, but sometimes major re-alignment was necessary (for 

instance, when the sample holder was coated with a new layer of heatsink compound).  

Correct alignment is crucial for being able to subtract background scattering from the 

lipid GIWAXS pattern (see Section 2.3.4.3 ), so the alignment step should be done 

carefully.  

 Proper alignment was diagnosed by plotting I vs. pz for a vertical slice through 

the center of the beam.  Refer to Fig. 2.10 for an example of qzplots for a properly 

aligned sample.  The following are the steps in the alignment process: 

1. A short exposure (typically 1 sec) was taken with the sample moved down 

fully out of the way of the beam (a "beam picture").   

2. The sample was moved into the beam.  (The zero positions for the last sample 

were good starting positions.)  Then samz was adjusted until the beam was cut 

in half (refer to Fig. 2.5B).  In the qzplot, the beam width at the zero position 

should be half as many pixels as in the beam picture.  If not, samz was 

adjusted.  We use "cutting of the beam" in reference to how much of the beam 

is blocked by the silicon substrate.    

3. The α=0 position was checked by taking exposures at positive and negative 

angles ( ± 0.6˚).  The beam should be cut further relative to the nominal α=0 

cutting by the same number of pixels at the positive and negative angles.  If 

not, the zero angle was adjusted according to the following geometric formula: 

360
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 where the pixel size was 0.04719 mm for the Medoptics detector (D-1) and 

 0.06978 mm for the Flicam detector (G-1), and p(-α) and p(+α) are the pixel 

 positions of the negative and positive angles.  

4. If needed, the vertical position of the sample was adjusted again to ensure that 

the sample cut the beam in half and this position was reset to samz=0.   

 

 
Figure 2.10.  Example of qzplots (I vs. pz) for a well aligned sample.  The height of the 
sample was adjusted so that the width of the α=0˚ plot was half that of the beam 
picture (BP). The α=-0.6˚ and α=+0.6˚ plots should have exactly the same width if the 
nominal α=0 were the true horizontal; the difference in widths in the figure 
corresponds to the α=0˚ position being incorrect by less than 0.03˚.  (G-1, October 
2006, beam is 0.6 mm tall). 
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2.3.4.2 Sample hydration and dL-spacing measurements 

 For GIWAXS data collection, the aim is to take data within 1 to 5 Å of full 

hydration as measured by the lamellar repeat spacing (dL-spacing) in comparison to 

fully hydrated powder MLV samples.  As discussed in detail later in the chapter, water 

scattering is a problem near full hydration.  Therefore, the dL-spacing should be 

carefully monitored while the sample is hydrating to ensure that it is not "flooded" 

(water droplets begin to collect on the sample).  Adjustment of the Peltier element in 

the sample chamber was used to speed up or slow down hydration.  Typically, the 

target rate was full hydration 30 minutes-1 hour after the sample was loaded.  

 As with the silver behenate calibration, the dL-spacing measurements were 

taken while cycling the sample angle α between -3˚ to 7˚ at 20˚/sec.  At this rotation 

rate, the exposure time must be a minimum of 1 sec to ensure at least one complete 

rotation cycle.  At the G-1 station, the lowest orders of lamellar repeat diffraction were 

so strong that two 25-micron molybdenum attenuators were placed before the sample 

in order to avoid detector saturation.  Note that the dL-spacing measurements were not 

taken from the same exposure as the WAXS collection for two reasons.  Most 

important was that the WAXS data were taken at fixed incident angle while the 

sample was rotated during the collection of the lamellar repeat data.  Also, the low 

order lamellar repeat scattering is much stronger and must be at least partially 

attenuated during WAXS collection.  In practice, various attenuators were attached to 

the beamstop or different thicknesses of beamstop were employed and the beamstop 

assembly was moved in the x-direction to the appropriate position for the dL-spacing 

measurements  to uncover the lamellar repeat orders.  

For the AV chamber, dL-spacing measurements were taken at a fixed incident 

angle of 1.0˚.  When taking lamellar repeat data at fixed angles, it is important to take 

data above the critical angle of silicon αSi = 0.17˚.  At angles of incidence below αSi, 
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the incoming x-ray beam is completely reflected because in most material the 

refractive index of x-rays is less than 1 and closer to 1 in air.  As shown in Fig. 2.11, 

the incoming and reflected beams have slightly different directions, ki1 and ki2.  X-

rays scattered by an angle of 2θ from the incoming beam (kf1) travel at a slightly 

different angle to x-rays scattered by an angle of 2θ from the reflected beam (kf2).  

Thus, for low incidence angles (α<αSi) each lamellar "peak" splits into two spots 

corresponding to x-rays scattered from the incoming and reflected beams.  This effect 

is important to keep in mind if future work is done in the AV chamber, for which dL-

spacing data must be taken at a fixed angle of incidence. 

 

Figure 2.11.  Illustration showing why the lamellar peaks are split when the incidence 
angle α is less than the critical angle of silicon, αSi=0.17˚.  There are two main incident 
beam directions (ki1 and ki2) and therefore two scattered x-ray directions (kf1 and kf2), 
resulting in splitting of the peaks.  For scattering at wide angles, the change in 
direction is very small in comparison with 2θ and so no splitting is observable.  In the 
picture, refraction of the beam at the air-lipid interface was ignored for simplicity.      

 

 Figure 2.12 shows examples of the scattering pattern from the lamellar repeat 

orders for a gel-phase lipid (DPPC at 25˚C), a fluid phase lipid (DOPC at  25˚C), and a 

ternary lipid mixture with two dL-spacings, all taken at the D-1 station (no 
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attenuators).  Note the spherical shape of the lamellar repeat lobes and the surrounding 

diffuse scatter for DOPC (Fig. 2.12B), in contrast to the sharp reflections for gel-phase 

DPPC (Fig. 2.12A).   

 

 
Figure 2.12.  Diffraction images zoomed in on the lamellar repeat scattering for: (A) 
DPPC at 25˚C (dL =63.4 Å), (B) DOPC at 25˚C (dL=60.9 Å), and (C) 1:1 
DOPC:DPPC + 20% cholesterol at 15˚C (dL=67.7 Å and 59.9 Å).  All images were 
collected without attenuators during the February 2006 run and the intense first order 
peak in (A) was blocked by raising the beamstop.  The numbers correspond to the 
lamellar repeat orders.  On the left side, the images are cut off by a frame which was 
placed in front of the detector.  The shadow at the bottom is from the beamstop.   

  

 Figure 2.13 shows the intensity vs. pz (qzplots) for DOPC and for a ternary 

mixture (see Fig. 2.13 caption).  The first order peak is often saturated, and so the 

second and third orders were used to obtain the dL-spacing with the utility "ds" 

subprogram in TiffView.  Input to "ds" is the sample-to detector distance in 
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millimeters, the x-ray wavelength in angstroms, the detector pixel size in millimeters, 

and the position of the lamellar repeat orders in pixels.  The program then uses Bragg's 

law to calculate an average dL-spacing from the assigned Bragg orders.  Correct 

assignment of the zeroth order (the beam position) is critical for obtaining an accurate 

dL-spacing value for the fluid phases whose higher orders are corrupted by diffuse 

scattering.  The inset in Fig. 2.13 shows an example of a correct pz=0 assignment.  

Note that the pz=0 position is the leading edge of the beam closest to the sample, not 

the middle of the peak in the qzplot (Fig. 2.9).  TiffView plots the residuals (the 

difference between the average and the value for a particular order); minimizing the 

residuals is a good way to estimate the proper pz=0 position.  A difference in one pixel 

can change the dL-spacing value by as much as 0.4 Å. 

 The example of two dL-spacings shown in Fig. 2.13B is for a sample known to 

be in a two-phase Ld/Lo region.  The dL-spacing data for oriented samples must be 

interpreted cautiously because less than fully hydrated samples such as DOPC 

sometimes have two dL-spacings at times during the approach to equilibrium.  

However, the behavior of the ternary mixtures in the Ld/Lo coexistence region was 

different.  Typically for DOPC or another sample known to be in a single phase, the 

two dL-spacings do not persist as full hydration conditions are approached.  However, 

for the ternary mixtures the double dL-spacings persisted at low temperatures even as 

the full hydration condition was approached but not at high temperatures, where these 

samples are known to be in a single Ld phase.  This behavior is interesting, but again 

should be interpreted cautiously because we tried to avoid full hydration conditions 

because of problems with flooding and water scattering (see Section 2.3.8.1). 
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Figure 2.13.  I vs. pz (qzplots) showing the lamellar repeat peaks for: (A) DOPC 
(dL=60.0 Å; G-1,October 2006) and (B) 1:1 DOPC:DPPC + 20% cholesterol at 15 ˚C 
(dL=67.7 Å and 59.9 Å; D-1,February 2006; 2D diffraction image shown in Fig. 
2.12C).  The inset in (A) is the same as the "Rotating" qzplot shown in Fig. 2.9.  The 
numbers on the peaks correspond to the lamellar repeat orders.  In plot (B), "a" 
corresponds to the 67.7 Å lamellar repeat and "b" corresponds to the 59.9 Å lamellar 
repeat.  Peak 4b is extinct.  
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2.3.4.3 GIWAXS data collection: "light background" 

subtraction 

 A crucial part of the GIWAXS data collection was measurement of a "light 

background," an image in which the beam is partially blocked by silicon and does not 

hit the lipid sample.  We use "cutting of the beam" in reference to how much of the 

beam is blocked by the silicon substrate.  For the light background and sample data, 

cutting of the beam must be identical because upstream mylar (and air/He) scattering 

is different from the downstream mylar scattering.   

 Identical cutting of the beam was obtained in the following two ways (refer to 

Fig. 2.5B for picture of positive and negative angles of incidence): 

1. The sample data were collected at α = +0.15˚, and the light background was 

obtained at α = -0.15˚.  

2. The sample data were taken at α<αcritical  (the critical angle of lipid~0.12˚).  

The light background was taken at a negative angle with larger magnitude (α = 

-0.5˚), and the sample chamber was lowered so that the beam cutting was still 

identical.  

Method 1 will only work for |α|≥0.15˚, as can be calculated from the dimensions of 

the lipid (5 mm wide and 10 μm high) on the substrate (1.5 mm wide).  Method 2 

allows smaller α, but in practice obtaining the correct samz position for the light 

background was problematic.  The samz position for the light background had to be 

adjusted by trial and error because the calculated position (based on the angle and 

dimensions of the substrate) often did not result in a good subtraction.  As long as the 

sample is properly leveled, method 1 worked consistently.  Method 2 (with α=0.10˚) 

was used during the February 2006 run at the D-1 station, while method 1 (with 

α=0.15˚)  was used during the October 2006 run at G-1. 
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 Figure 2.14 shows examples of GIWAXS images for the sample, light 

background, and subtracted image for data taken at the D-1 station in February 2006 

and the G-1 station in October 2006.  In Fig. 2.14B and 2.14E, the strongest mylar 

scattering ring is labeled according to the window causing the scattering (see Fig. 

2.5A).  There is more than one such mylar ring because each of the four mylar 

windows is a different distance from the detector.  For the mylar windows upstream 

(A and B) from the sample, the sample cuts off the scattering below the equator, while 

the sample does not cut off the scattering for the downstream windows (C and D).  

Scattering from window D is not visible in Fig. 2.14E because the beamstop was 

moved closer to the sample chamber in the October 2006 G-1 experiment.  

 There are some obvious differences in the images from the two different runs.  

The WAXS beamstop in the February 2006 D-1 run was a tall vertical strip (see left 

side of Fig. 2.14A-C), whereas the top edge of the shorter beamstop for the October 

G-1 run is visible (see bottom left in Fig. 2.14D-F).  The fuzzy shadows on the upper 

portions of the images are due to styrofoam and wires (used for heating the windows, 

see 2.3.4.4) around the sample chamber exit window.  These shadows subtract out, as 

can be seen by comparing Fig. 2.14A with Fig. 2.14C and Fig. 2.14D with Fig. 2.14F.  

Because the x-ray wavelength was larger in the October 2006 G-1 setup than the 

February 2006 D-1 setup, the exit windows allowed for a slightly smaller qz range in 

the October 2006 run (compare Fig. 2.14F to Fig. 2.14C). 

 A q range any smaller than that available in the October 2006 run would make 

data analysis challenging.  This means we would not want to use x-rays with 

wavelengths larger than 1.27 Å with the NIH chamber.  To use the rotating anode Cu 

Kα line (λ=1.54 Å), the experiment requires a chamber with bigger windows, such as 

the AV chamber.  
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Figure 2.14.  The left panel shows examples of 2D GIWAXS images for: (A) a DOPC 
sample before light background subtraction, (B) the light background, and (C) the 
sample after light background subtraction (NIH chamber, D-1 station, February 2006).  
The right panel (D-F) shows the corresponding images for a DOPC sample (NIH 
chamber, G-1 station, October 2006).  Light background (B) was taken using method 
2 (see text), while light background (E) was taken using method 1. 
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2.3.4.4 Changing temperature 

 For samples in which data at many temperatures was desired, data were first 

collected at the lowest temperature and then the temperature was raised.  This 

procedure was followed because for phase-separated mixtures, melting is easier than 

the phase separation process.  Therefore, the miscibility transition for the heating cycle 

is more reproducible than for the cooling cycle.  All of the samples underwent an 

annealing and slow cooling process before being loaded into the x-ray sample 

chamber (see Section 2.3.1). 

 Practically, heating tends to flood the sample, while cooling dehydrates the 

sample because the water vapor equilibrates to the new temperature faster than the 

sample.  To avoid flooding, the Peltier was turned to +2M (dehydrating current 

direction) and helium was flowed through the sample chamber during the entire 

heating process.  The temperature on the Neslab was increased in increments of no 

more than 3˚C; before increasing the temperature again, the sample chamber was 

allowed to reach the setpoint.  At temperatures higher than room temperature, 

condensation drops on the inner sample chamber windows (B and C in Fig. 2.5A) can 

occur and distort the scattered intensity; for temperatures above 35˚C, the window 

current was set at 200 mA. 

2.3.5 Instrumental resolution 

 The success of the experiment relies on being able to interpret the angular 

distribution and lateral width of the wide-angle scattering in terms of chain 

orientational order and lateral positional order.  We want to make sure that the 

differences we see in our GIWAXS data are due to differences in the sample 

composition or temperature and are not affected by the experimental resolution.  

Fortunately, the gel phase of DPPC provides a direct measure of our instrumental 
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resolution with the (2,0) peak that occurs in Fig. 2.1A near qr=1.49 Å-1 and qz=0.  This 

peak is due to chain-chain scattering.  It is elongated in the qz direction because the 

chains have finite length, but it is very narrow in the qr direction because of high 

lateral packing order.  Because the chain packing is distorted from the hexagonal, it is 

standard to use a face-centered orthorhombic lattice, with two chains per unit cell, for 

peak indexing. (See Ashcroft and Mermin, 1976 for an explanation of Miller indices 

and Tristram-Nagle et al., 1993 for an example of the use of this indexing for lipids.)  

This peak has been resolved using an Si monochromator and analyzer crystal to have 

an intrinsic width only 0.004 Å-1 (FWHM) (Sun et al., 1994).  Therefore, our 

measured width 0.04 Å-1 of this peak provides our qr instrumental resolution.    

The theoretical analysis of instrumental resolution given in the remainder of 

this 2.3.5 subsection is consistent with the experiment and it provides insight into 

different experimental contributions. 

2.3.5.1 Sample mosaicity and rocking curves 

 Figure 2.15 shows three types of samples: (A) a well oriented sample with 

highly ordered chains, (B) a well oriented sample with disordered chains, and (C) a 

poorly oriented sample with highly ordered chains.  In Fig. 2.15C, the angular 

distribution of bilayer normal vectors, termed mosaicity, is wide.  In Fig. 2.15B, the 

distribution of chain tilt angles is wide.  In both of these cases, the chain-chain 

correlation scattering will have a large angular spread in comparison with the case 

shown in Fig. 2.15A.  Since we want the angular spread in the GIWAXS pattern to 

indicate the distribution of tilt angles (not the mosaicity), it is important to use well 

oriented samples for the GIWAXS experiment.  In general, the sample orientation was 

monitored by observing the mosaic spread of the lamellar repeat peaks along the qz 

axis (see Fig. 2.12 for diffraction images of the lamellar peaks).  In well-oriented 
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samples, the Bragg orders are short arcs while in a poorly oriented sample these arcs 

elongate.  In the extreme example of a completely unoriented MLV powder sample, 

the Bragg peaks become isotropic rings.   

 

 
Figure 2.15.  Cartoon showing: (A) a well oriented sample with highly ordered chains, 
(B) a well oriented sample with disordered chains, and (C) a poorly oriented sample 
with highly ordered chains.  In (B) and (C), the chain-chain scattering will have a 
larger angular spread in comparison with (A).  
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 The mosaic spread is a convenient measure of sample misorientation.  Rocking 

curves provide a quantitative way to obtain mosaic spread.  The intensity of a lamellar 

repeat order is measured as a function of the incident beam angle, α, while holding the 

scattering angle 2θn, on the nth order peak, fixed.  The rocking curve reports the 

distribution g(τ) of domains misoriented by the angle τ=α-θn from perfect orientation 

τ=0.  Assuming proper alignment of the sample (see Section 2.3.4.1), maximum 

scattering will occur when α=θn: 

ndn θλ sin2 L= . (2.3) 

 For a rocking curve, the lamellar repeat spacing dL must be known and stable.  

Rocking curves should not be taken on hydrating samples or phase-separated samples.  

Figure 2.16 shows two examples of rocking curves for DOPC/DPPC/cholesterol 

mixtures taken at the D-1 station in February 2006 (plots B and C) compared with a 

rocking curve for DMPC from a previous Nagle lab experiment (plot A).  For Fig. 

2.16B and C, the second lamellar repeat order was used for the measurement.  For 

example, in Fig. 2.16C the predicted angle for the maximum intensity was calculated 

from Eq. 2.3 with n=2, λ=1.180 Å-1, and dL=65.1 Å-1, giving αmax=1.04˚.  Short 

exposures (less than 1 sec) were then taken for angles above and below αmax.  Because 

the minimum exposure length is 0.1 sec, a molybdenum attenuator was used to avoid 

detector saturation near αmax.  The intensity is integrated for a box surrounding the 

peak, with care to subtract the specular reflection from silicon, which moves through 

the peak as the incident angle is changed.  The rocking curves indicate that the 

samples shown in Fig. 2.16B and C are well oriented, with sample mosaicities below 

0.03˚ halfwidth at half maximum.  The changes in angular spread of the GIWAXS 

peak observed as a function of temperature and sample composition are large in 

comparison to small differences in mosaicity from sample to sample.  
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Figure 2.16.  Rocking curves showing the intensity of the second lamellar repeat peak 
vs. α for (A) DMPC at 30˚C , (B) DPPC + 10% cholesterol at 45˚C, and (C) 1:1 
DOPC:DPPC + 30% cholesterol at 45˚C.  Plot (A) is from a previous Nagle lab 
experiment (Tristram-Nagle, 2007).  In plot (A), the black line corresponds to a 
Gaussian fit, while in (B) and (C), the black lines connect the points as a guide to the 
eye.  For (A), the HWHM from the Gaussian fit is 0.08˚.  For (B), the intervals in the 
peaked region are 0.02˚ for α=0.98-1.1˚.  These intervals were too large for a good 
estimate of the HWHM, but we can say that the HWHM<0.03˚ for (B).  For (C), the 
intervals in the peaked region are 0.01˚ for α=1.0-1.05˚; the HWHM is ~0.01˚.    
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2.3.5.2 Geometric broadening 

 Geometric broadening is spreading of the scattering intensity over a range of q 

values due to the non-negligible size of the sample in comparison with the sample to 

detector distance.  Figure 2.17 diagrams the lipid sample and considers the scattering 

which arrives at the detector a distance Stanθ from the beam center.  Scattering from 

the upstream part of the sample will arrive at a different point on the detector than 

scattering from the downstream end of the sample, causing scattering peaks to 

broaden.  Figure 2.17 also takes into account the finite width of the x-ray beam, b. 

 On the detector, a peak that would be at Stan2θ  neglecting geometric 

broadening will be spread over a distance b + ftan2θ, where b (~0.3 mm) is the size of 

the beam and f is the sample footprint (always 5 mm in our experiments).  The 

following equation gives the geometric broadening, Δq, in terms of the fraction of the 

scattering wavevector magnitude, q: 
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 (2.4) 

Assuming q=1.4 Å-1 (a common value for the lipid WAXS peak), we obtain 

Δqgeom/q=0.053 =5.3% for February 2006 D-1 setup and Δqgeom/q=0.040=4.0% for the 

October 2006 G-1 setup.  Other experimental factors which can broaden the peak are 

the energy dispersion (~1.1% at G-1 in October 2006; 0.6% at D-1 in February 2006) 

and the beam divergence ( rad
divθΔ =10-4 radians).  The broadening due to the energy 

dispersion is: 
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The broadening due to the beam divergence is given by: 
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With q=1.4 Å-1, Δqdiv/q<0.001 (or Δqdiv/q<0.1%), which is negligible in comparison 

with the effects of geometric broadening and the energy dispersion.  The total 

resolution is given by: 
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For the G-1 setup, Δqtot/q=0.041=4.1%.  For the D-1 setup, Δqtot/q=0.054=5.4%.      

 Assuming the samples are well aligned, geometric broadening is the main 

artifact causing smearing of the chain-chain correlation peak (the energy dispersion 

was much less in both setups).  To reduce the effect of geometric broadening, the 

sample footprint could be shortened, although trimming the sample more would 

probably increase mosaic spread.  Also, with a larger detector, the sample-to-detector 

distance can be increased, as it was for the experiment at G-1 in October 2006.  Since 

the samples in this experiment for the most part have very wide chain-chain 

correlation peaks and we are most interested in trends in the data, the ~5% effect of 

geometric broadening does not pose a large problem in interpreting the GIWAXS data.  

We can compare our calculated value for the resolution to the full width at half 

maximum (FWHM) for the DPPC gel phase equatorial (2,0) peak, which should be a 

sharp peak (see Fig. 2.18B).  For this sample: FWHM/q=0.04 Å-1/1.48 Å-1=3%.  The 

5% resolution calculated for the February 2006 D-1 experiment is actually somewhat 

larger than the broadening we observed in the DPPC gel-phase peak.  This could be 

due to absorption of the x-rays by the sample that effectively reduces the sample 

footprint and the geometric broadening that is the major contributor to qr resolution. 
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Figure 2.17.  Schematic showing the effect of geometric broadening on the scattering 
which arrives at the detector. 
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2.3.6 Choice of incident angle 

 To determine an appropriate incident angle for the grazing incidence 

diffraction experiments, DPPC at 25˚C, in the Lβ' phase, was used as a control.  Figure 

2.18 shows GIWAXS data for DPPC at two angles below and two angles above the 

lipid critical angle of approximately 0.12˚.  In the Lβ' phase, the tilted DPPC chains 

form a distorted hexagonal lattice, giving rise to two diffraction spots with intensity 

maxima at different values of q and φ.  The equatorial (2,0) peak has q=1.48 Å-1 and 

the (1,1) peak, which has an intensity maximum near φ=32˚, has q=1.50 Å-1 (Tristram-

Nagle et al., 1993; Sun et al., 1994).  For α = 0.2˚ and 0.5˚, splitting of the (2,0) peak 

can be observed (Fig. 2.18 C and D) .  For α≤0.15˚, no splitting is observed and the q 

value for the (1,1) peak agrees with the literature (Fig. 2.18 A and B; data similar for 

α=0.15˚).  We cannot yet explain why the splitting occurs, but we attempted to avoid 

this artifact by collecting GIWAXS data at incident beam angles α≤0.15˚.  Collecting 

at smaller incident angles also minimizes the substrate's blockage of scattering at the 

smallest φ angles. 

 For fluid-phase lipids, the GIWAXS pattern appears to be independent of 

incident angle.  Figure 2.19 shows GIWAXS images for fluid-phase DOPC at α=0.1˚ 

and 0.5˚.  Figure 2.19C compares the corresponding I(q) plots (see Section 2.3.7.3) for 

radial slices (φ=5-10˚) for these data. When normalized to have the same peak 

intensity, the data are nearly identical.  The choice of incident angle is not crucial for 

fluid-phase lipids, but the data were taken at α≤0.15˚ to avoid any possible splitting 

effects as observed in the gel phase.   
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Figure 2.18.  The left panel shows GIWAXS data for DPPC at incidence angles of (A) 
α = 0˚; (B) α = 0.1˚; (C) α = 0.2˚; (D) α = 0.5˚.  The right panel shows the 
corresponding I(q) plots (see Section 2.3.7.3) for an integrated radial slice (φ=0-2˚) 
through the data.   For α = 0.2˚ and 0.5˚, splitting of the (2,0) peak is visible.   
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Figure 2.19.  The left panel shows GIWAXS data for DOPC (T=25˚C) at incident 
angles of (A) α = 0.1˚ and (B) α = 0.5˚.  The right panel shows the corresponding I(q) 
plots (see Section 2.3.7.3) for integrated radial slices: (C) φ=5-10˚ and (D) φ=0-2˚ 
through the data.  For plots (C) and (D), the blue (α = 0.1˚ ) and red (α = 0.5˚) traces 
are unnormalized.  The green trace in (C) is for α = 0.1˚, normalized to match the peak 
intensity in the red trace.  Note that the equator is higher for α = 0.5˚, causing cutoff of 
the data for small φ, as readily seen in plot (D) and in image (B). (G-1, October 2006) 

 

2.3.7 GIWAXS data analysis: from 2D diffraction images to 

one-dimensional plots 

 Although the 2D wide-angle diffraction images can provide qualitative 

information about chain ordering, our quantitative analysis requires the data to be in a 

different format.  For powder samples, most of the quantitative information can be 

extracted from I (scattering intensity) vs. q plots, in which the scattering is radially 

integrated across the entire detector.  For GIWAXS samples, such a plot hides the 
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information about intensity as a function of angle φ; a plot of I vs. φ is very useful for 

GIWAXS analysis.  The width of the I(φ) plot gives information about chain 

orientational order (Levine and Wilkins, 1971; Spaar and Salditt, 2003).  I(q) plots are 

still valuable because they tell us about the lateral chain-chain packing correlations.  

The width and position of the lipid WAXS peak in an I(q) plot gives information about 

the lateral positional ordering of the chains.  (Interpretation of the width and scattering 

maximum of the WAXS data is complicated for the fluid phase, and will be discussed 

in more detail in Ch. 4).  The GIWAXS data can tell us about chain orientational order 

(from I(φ) plots) as well as information about lateral positional order (from I(q) plots).   

The following sections describe how the 2D diffraction images were processed to 

obtain the I(φ) and I(q) plots. 

 The analysis package "MOA" (a set of MATLAB functions for x-ray data 

processing) by Gilman Toombes was used for data processing and analysis.  

MATLAB 7.1 (Mathworks, Natick, MA) was the program version used.  Additional 

MATLAB functions, suited for analysis of the GIWAXS data, were written (with 

much help from Gilman Toombes) to supplement the MOA package.  Both the MOA 

package and extra functions written specifically for the GIWAXS data have been 

archived on CD, with copies in the Feigenson lab (Cornell University, Dept. of 

Molecular Biology and Genetics) and the Nagle lab (Carnegie Mellon University, 

Dept. of Physics).  Note that MATLAB and TiffView label the axes differently.  For 

MATLAB, labeling the vertical axis in pixels starts from the top, as opposed to the 

bottom in TiffView.  To avoid confusion, the pixels are converted to q in Å-1 or left 

unlabeled for the data shown in the thesis which was processed in MATLAB. 
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2.3.7.1 Image processing 

 The GIWAXS data saved from the detector have been dark background 

subtracted, dezingered, and distortion and intensity corrected, as described in Section 

2.3.3.4.  Additional image processing which follows was done in MATLAB.  

Sometimes, the image was rotated because the substrate was slightly askew with 

respect to the horizontal.  For the data presented in the thesis, the images were never 

rotated more than 1˚. 

 The next step was finding the beam center by making "qrplots" and "qzplots", 

as described in Section 2.3.3.3.  With the beam center and sample-to-detector distance, 

S, known, distances from the beam center as measured on the detector in pixels, Δp, 

were converted to q in Å-1, using the following equation: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ

= −

S
pq 1tan

2
1sin4

λ
π . (2.8) 

 Once the beam center was found, the light background (see Section 2.3.4.3) 

was subtracted to remove the mylar scattering.  Note that the beam center must be 

found before light background subtraction because the beam is also subtracted from 

the image. 

2.3.7.2 Masking 

 Parts of the image, such as the part covered by the beamstop, are not of use and 

should be masked out before any intensity integrations are carried out.  The edges of 

the detector are often distorted and should also be masked.  When I(q) and I(φ) plots 

are produced as described in the following section, the masked out pixels are not 

counted in the integrated intensity.  Figure 2.20 shows examples of masks used for the 

February 2006 experiment at D-1 and the October 2006 experiment at G-1.  Note that 

for the October 2006 data, a larger section on the top of the detector was masked out.  
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We placed the CCD such that the October S distance was slightly smaller than the S 

distance calculated to match the February q range.  Although the range in the qz 

direction was cut off by the sample chamber, the greater range in the qr and diagonal 

directions for the October setup enabled us to image part of the water peak (see 

Section 2.3.8.1). 

 

Figure 2.20.  The left panel shows (A) an unmasked GIWAXS image and (B) a 
masked image for DOPC (T=25˚C, dL=60.9 Å) taken at the CHESS D-1 station in 
February 2006.  The right panel shows (C) an unmasked image and (D) a masked 
image for DOPC (T=25˚C, dL=60.0 Å) taken at the G-1 station in October 2006.  
Similar masks were used for making integrated plots for all of the data collected 
during these CHESS runs.  The rectangular shadows in the bottom lefthand corner in 
(C) are the molybdenum beamstop.  
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2.3.7.3 Sector I(q) plots and I(φ) plots 

 As discussed above, an I(q) plot in which the entire image is radially integrated 

hides information contained in a GIWAXS image.  However, plotting I(q) for radially 

integrated slices for selected φ ranges preserves the angular information and still 

shows the position and width of the I(q) peak, which informs us about the lateral 

positional correlation of the lipid chains.  This type of plot is referred to throughout 

the thesis as a "sector plot."  Figure 2.21A (right) shows an example of a sector plot, in 

which I(q) is plotted for sectors with different φ ranges: 5-15˚, 15-25˚,..., 75-85˚.  The 

data were smoothed using MATLAB's built-in "smooth" function with a smoothing 

span of 20 points.  Note that the peak intensity decreases as φ increases.  In the 

remainder of the thesis, sector plots are shown in black and white.  Unless otherwise 

stated in the figure legends, the sectors in a "sector plot" are always φ=5-15˚, 15-

25˚,..., 75-85˚, as in Figure 2.21A.  The lower traces always correspond to larger φ 

values.  Each sector has a different range of q values, with the largest q range for φ 

values near 45˚; the cutoff in the q range is seen by a sharp drop in intensity on the 

plot.     

 To produce I(φ) plots, a particular q range is selected, and then the scattering 

intensity is integrated within that q range for φ bins of 1˚.  For all of the I(φ) plots 

shown in this thesis, 1˚ increments in φ were chosen, found to be a good compromise 

between resolution and smooth plots.  Figure 2.21B shows an example of an I(φ) plot.  

Unless otherwise stated, the I(φ) plots shown in the remainder of the thesis are 

produced according to the above method and are not smoothed. 
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Figure 2.21.  The left panel shows GIWAXS images for DOPC (T=25˚C, dL=60.0 Å, 
G-1, October 2006, NIH chamber) with examples of: (A) radial slices for a fixed φ 
range and (B) slices with a fixed q range of 0.8-1.8 Å-1.  The right panel shows the 
corresponding sector plot (A) and I(φ) plot (B).  The legend in (A, right) gives the φ 
range for each sector.  The abrupt dip in the I(q) traces shows where the data for each 
φ range ends.  The q range is greatest for φ~45˚.  The q range for the I(φ) plots was 
chosen to be within the maximum range for all sectors.      
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2.3.7.4 I(φ) plots: Effect of absorption at low φ 

 In the I(φ) plot in Fig. 2.21B, there is a peak in intensity near φ=10˚.  The 

decrease in intensity observed for φ<10˚ is due to absorption of x-rays by the sample, 

which has a larger effect for smaller φ.  We can estimate the effect of absorption by 

assuming on average, the scattered x-rays must travel through half the thickness of the 

lipid sample (t=5 μm) in the direction of the membrane normal, n, before escaping the 

sample (see Fig. 2.22).  The distance the scattered x-rays travel in the direction of the 

membrane normal is given by ns ˆˆ •l , where zyxs ˆsin2sinˆ2cosˆcos2sinˆ φθθφθ ++=  

is unit vector in the direction of the scattered x-rays, kf, and zn ˆˆ ≈  is a unit vector in 

the direction of the membrane normal.  Setting ns ˆˆ •l  equal to t and solving for l gives 

the distance the scattered x-rays must travel before escaping the sample: 

φθ sin2sin
mm 0.005

ˆˆ
=

•
=

ns
tl . (2.9) 

The x-ray intensity after traveling through the sample is given by: 
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where IT is the total scattering intensity and μ=2 mm is the absorption length of the 

lipid for λ = 1.27 Å-1 . Table 2.2 lists l, the transmitted intensity (I/IT), and the 

absorbed intensity (1- I/IT) for some selected φ angles. 

 

Table 2.2.  Calculation of transmitted and absorbed intensities for 
various φ with θ=8˚ (sin2θ=0.28). 

φ 
(degrees) 

l (mm )  
from Eq. 2.9  

Ratio 
transmitted 

I/IT=exp(-L/2) 

Ratio  
Absorbed 

1- I/IT 
1 1.0232 0.600 0.400 
5 0.2049 0.903 0.097 
10 0.1028 0.950 0.050 
20 0.0522 0.974 0.026 
90 0.0179 0.991 0.009 



 

82 

 For fitting purposes (see Ch. 3), the data were not used below the φ value 

where the maximum in intensity occurred (~5-10˚).  This means that we only analyzed 

the data in a range where absorption was less than a 10% effect.  

 
Figure 2.22.  Schematic showing the distance l traveled by the scattered x-ray beam 
through the lipid assuming it scatters from a point midway through the total thickness 
(10 μm) of the sample. 

 

2.3.7.5 HWHM(φ) and qcc(φ) plots  

 In order to quantify the positional correlation information contained in the 

sector plots, the peak position (qcc) and q-width described by the half-width at half-

maximum (HWHM) can be plotted as a function of the angle φ.  For well-behaved 

peaks with relatively flat baselines, a simple MATLAB function can determine the 

peak position, and pick out where the peak starts and ends; the half-width can then be 

calculated automatically.  For our GIWAXS data, the baselines are not flat, and so it is 

difficult to determine where the peak starts and ends, particularly the high-q end of the 

peak where water scattering (see Section 2.3.8.1) and cutoff of the scattering data 
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make it difficult to determine the baseline.  Therefore, we determined the half-width 

from the low-q half of the peak.  The baseline intensity was always taken as  

I(q=0.8 Å-1).  The computer program finds the q values for the peak position and half-

maximum positions automatically.  Figure 2.23 points out the baseline, qcc, and 

HWHM for an I(q) plot integrated over a φ=5-10˚ sector.  Note that the baseline 

intensity position was somewhat arbitrary.  Although this method for finding half-

widths is not optimal, it is sufficient for comparing trends in peak intensity and 

HWHM as a function of φ for different sample compositions and temperatures.   

 

 

Figure 2.23.  I(q) for a φ=5-10˚ sector for DOPC (T=25˚C, dL=60.0 Å, October 2006 
G-1, NIH chamber).  The baseline, qcc, and HWHM are pointed out on the plot.  
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 Figure 2.24 shows examples of qcc(φ) and HWHM(φ) plots for GIWAXS data 

from DOPC.  The peak position and HWHM were plotted for sectors with φ=5-10˚, 

10-15˚,..., 75-80˚.  The peak position and HWHM data are plotted as a function of the 

first φ value in the 5˚ range.  Using a span smaller than 5˚ produces a very noisy plot. 

 

Figure 2.24.  (A) Plot of qcc vs. φ.  (B) Plot of HWHM vs. φ.  The sample is the same 
as shown in Fig. 2.23 (DOPC, T=25˚C, dL=60.0 Å, October 2006 G-1, NIH chamber). 

 

2.3.8 Background subtraction challenges 

 Subtracting the light background from the GIWAXS image subtracts out the 

mylar scattering, but other sources of scattering in addition to the lipid chains remain 

in the image.  We loosely refer to this non-chain scattering as "background."  A major 

source of this background is water.  
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2.3.8.1 Water: a big problem 

 The most obvious and problematic source of non-chain background scattering 

is water.  The maximum scattering from water occurs for q just over 2.0 Å-1 (Hura et 

al., 2000; see also Fig. 2.26).  The maximum lipid scattering (1.3-1.5 Å-1) occurs on 

top of the steeply rising left hand side of the water scattering.     

 For the February 2006 experiment at D-1, our q range did not allow for 

observation of the water scattering maximum, but an increase in the high-q scattering 

was evident for samples near full hydration.  The October 2006 setup allowed for 

observation of the water maximum in both sample chambers.  Figure 2.25 shows 2D 

diffraction images and sector plots for DOPC at various levels of hydration (data taken 

in the NIH chamber).  At conditions of full hydration (see Fig. 2.25D), part of the 

water maximum can be seen in the upper right hand corner of the image.  

 Figure 2.26 compares water scattering (Hura et al., 2000) with DOPC I(q) plots 

integrated over a 35-45˚ sector for various levels of hydration (images shown in Fig. 

2.25).  At conditions of full hydration (dL=63.3 Å), the water scattering begins to 

overwhelm the lipid chain scattering; we term this condition in which extra water is 

deposited on the lipid surface "flooding".  In principle, full hydration can be reached 

in the NIH chamber without flooding, but hydration must be done very slowly.  

Typically, we took GIWAXS data 2-5 Å below full hydration to avoid flooding. 

 As seen in Fig. 2.27, the AV chamber allows for full observation of the water 

peak for the sample near full hydration.  These data further confirm that the increase in 

high-q scattering as full hydration is approached is indeed due to water.  Note that in 

Fig. 2.27C (dL=61.2 Å, AV chamber) the water scattering is larger but with a smaller 

dL spacing compared with Fig. 2.25C (dL=62.1Å, NIH chamber).  Flooding can 

happen before full hydration if the hydration process is done too quickly.  In the NIH 

chamber, the Peltier current controls hydration.  In the AV chamber, we did not have 
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as much control over the speed of hydration.  To avoid flooding, it is important to 

carefully monitor the lamellar repeat spacing and to not hydrate too quickly: after 

sample loading hydration should take at least 30 minutes-hour (see Section 0).  Also, 

if increasing the temperature, special steps must be undertaken to avoid flooding (see 

Section 2.3.4.4).     

 In order to quantify the amount of lipid scattering and how it changes as a 

function of φ, clearly the water background must be subtracted.  For MLV samples, 

the amount of water is known because the samples are prepared at a certain water:lipid 

ratio.  Sources of background are scattering from water and scattering from the glass 

capillary.  The water background image can be obtained easily from a capillary filled 

with water; scattering from an empty capillary gives the capillary background.  The 

water background and capillary background are scaled according to the water:lipid 

ratio to produce a total background image.  For instance, if the water:lipid ratio is 3:1, 

the total background is 1 part empty capillary scatter and 3 parts water plus capillary 

scatter.  This total background can then be subtracted from the lipid + water + 

capillary scattering data to leave scattering from the lipid alone.  This procedure was 

followed by Sun et al. (1994) in order to quantitatively analyze powder WAXS data 

from gel phase DPPC.   

 In the case of oriented samples, an unknown amount of water collects on the 

surface of the multilayer stack.  Therefore, we cannot calculate the amount of water in 

the sample even though we can estimate the number of bilayers and the amount of 

water between them reasonably well.  Since we cannot measure an appropriate water 

background, we chose to leave the background as a fitting parameter for the analysis 

described in Ch. 3.    
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Figure 2.25.  The left panel shows GIWAXS data for DOPC (T=25˚C) at different 
levels of hydration as measured by the lamellar repeat: (A) 51.1 Å, (B) 60.0 Å, (C) 
62.1 Å, (D) 63.3 Å.  The right panel shows the corresponding sector plots (see Section 
2.3.7.3).  (NIH chamber, G-1, October 2006). 
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Figure 2.26.  Scattering from water (Table 1 in Hura et al., 2000) is compared with 
I(q) plots integrated over a φ=35-45˚ range for DOPC at various levels of hydration 
(2D images shown in Fig. 2.25).  All of the DOPC I(q) curves were normalized so that 
their maximum scattering intensity at q=1.39 Å-1 was the same.  The water scattering 
was normalized to match the dL=63.3 Å plot at q=2.0 Å-1.  The smoothing span for the 
DOPC I(q) plots was 50 (normally 20 for sector plots).  
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Figure 2.27.  The left panel shows GIWAXS data for DOPC (T=25 ˚C) at different 
levels of hydration as measured by the lamellar repeat: (A) 45.2 Å, (B) 50.7 Å, (C) 
61.2 Å.  The right panel shows the corresponding sector plots (see Section 2.3.7.3).  
(AV chamber, G-1, October 2006).   
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 Working at full hydration is problematic because of flooding, but we want to 

be able to compare our data to other experiments on fully-hydrated lipids.  We can 

estimate a permissible range of dL spacings based on the structural effects of hydration 

such as change in the area per molecule and change in tilt angle in the gel phase as a 

function of the hydration level.  Figure 2.28 shows a plot of the lamellar repeat 

spacing vs. relative humidity (RH) for DMPC at 30˚C, in the fluid phase (Chu et al., 

2005).  Note that the lamellar repeat changes steeply near 100% RH, helping to 

explain why the "vapor pressure paradox" was a problem for many years.  At 98% 

RH, the dL-spacing is approximately 10 Å below full hydration.  The change in the 

area per molecule at a particular osmotic pressure P compared with full hydration can 

be calculated using the following equation (Rand and Parsegian, 1989; see also 

Tristram-Nagle et al., 1998 and Nagle and Tristram-Nagle, 2000):    
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where AL0 is the fully-hydrated area (P=0), AL is the area under osmotic pressure P, 

DW is the water thickness (~10 x 10-8 cm), and KA is the area compressibility modulus 

(~250 dyne/cm).  The pressure can be calculated at a given relative humidity (RH): 
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W
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where VW is the volume of water (30 x 10-24 cm3).  At room temperature and 98% 

relative humidity, the pressure is given by: 
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Using the above result, we obtain for (AL0-AL)/AL0≈0.01, or a 1% decrease in the area 

per molecule at room temperature and 98% RH compared with 100% RH.   

 The area per molecule is an indirect measure of chain orientational order: the 

more disordered the chains, the larger the area per molecule.  A 1% change in the area 
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is acceptable, and so we would expect the wide-angle pattern to be very similar for 

samples 10 Å below full hydration in comparison with fully-hydrated samples (see 

Fig. 2.25 for examples of GIWAXS data for DOPC at various levels of hydration and 

see also Ch. 4 for a fuller discussion of the effect of hydration).  In addition, the effect 

of hydration on tilt angle in gel-phase lipids can help us estimate an acceptable dL-

spacing range.  The hydrocarbon chain tilt angle for gel-phase DMPC does not change 

if the lamellar repeat spacing is within 6 Å of full hydration (Tristram-Nagle et al., 

2002).  (Note that 6 Å below full hydration corresponds to an osmotic pressure of 45 

atm and higher osmotic pressure required to compress a gel phase than a fluid phase). 

 We have only considered the effect of hydration on pure lipids, not mixtures 

which could phase-separate.  In the case of phase-separated mixtures, working as close 

as possible to full hydration could be important to facilitate diffusion of molecules.  

Since we do not know the effect of hydration of phase-separated systems, we 

attempted to work as close as possible (within 5 Å) of full hydration while still 

avoiding flooding of the sample. 

 
Figure 2.28.  Lamellar repeat vs. RH for DMPC at 30˚C (Chu et al., 2005). 
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2.3.8.2 Attempted fits to a Lorentzian plus linear background 

 Spaar and Salditt (2003) subtracted out non-chain scattering by fitting their I(q) 

data for specified φ ranges (sector plots) to a Lorentzian plus linear background.  To 

produce I(φ) plots, the scattering under the Lorentzians was then integrated and plotted 

as a function of φ.  This method of extracting the lipid scattering provides a simple 

way of obtaining the peak position and the HWHM as a function of φ, since these 

values are simply fitting parameters for the Lorentzian. 

 Figure 2.29 shows a fit of our GIWAXS data for DOPC to a Lorentzian plus 

linear background, given by 
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where c0 is the y-intercept and c1 is the slope of the linear background, Imax is the peak 

height of the Lorentzian, qmax is the peak center, and qw is the peak half-width at half-

maximum (see Busch et al., 2007 for an example of fitting polymer wide-angle data 

using this equation).  This sample is a best case scenario, where the water background 

is very low.  Although the fit looks reasonable, this method does not work for images 

with large water backgrounds.  Samples with more highly ordered chains (samples in 

the Lo phase) have little scattering at the larger φ angles.  In some cases, the peak in 

the I(q) plot at large φ disappears, making a fit to a Lorentzian plus linear background 

unreasonable.  Another problem with the fits is that the slope and y-intercept for the 

linear backgrounds change substantially for the different φ ranges.  Spaar and Salditt 

(2003) only used their fitting procedure on samples in the Ld phase with dL-spacings 

~10 Å less than full hydration conditions.  Because of these problems, we chose to 

produce I(φ) plots according to the method outlined in Section 2.3.7.3.  Chapter 3 

discusses our method for subtracting the background from non-chain sources. 
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Figure 2.29.  I(q) for DOPC (T=25˚C, dL=60.0 Å, G-1,Oct. 2006) for the following 
sectors: (A) φ=9-11˚ and (B) φ=59-61˚.  Data are plotted in blue, and the results of a fit 
to Eq. 2.14 are plotted in red.  The black line corresponds to the linear background.  
The fitting parameters and the integrated area under the Lorentzian (fit-background) 
are shown.   
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2.4 Powder diffraction  

 Rotating anode measurements on multilamellar vesicles in capillaries were 

done to measure the lamellar repeat (dL-spacing) of the lipids in excess water.  The 

lamellar repeat spacings of the oriented samples were compared to those of the MLVs 

to determine the level of hydration of the oriented samples. 

2.4.1 Preparation of multilamellar vesicles (MLVs) 

 Mixtures of DOPC (Avanti Polar Lipids, Alabaster, AL; Lot # 181PC-211), 

DPPC (Avanti Polar Lipids; Lot # 160PC-270), and cholesterol (Nuchek Prep, 

Elysian, MN; Lot # CH-800-MA7-L and Lot # CH-800-AU25-Q) were prepared from 

HPLC-grade chloroform (Fisher Scientific, Pittsburgh, PA) stock solutions in 

disposable 6 x 50 mm borosilicate test tubes (Fisher Scientific).  The appropriate 

volumes of each stock were delivered with a 100 µL Hamilton syringe (Reno, NV).  

The molar concentration of the phospholipid stock solutions was determined by a 

phosphate assay (Kingsley and Feigenson, 1979); a Hamilton PB600 repeating 

dispenser is used to measure precise quantities for the phosphate assay.  As there is no 

accurate assay for cholesterol concentration, the cholesterol stock solution was 

prepared in a volumetric flask by carefully weighing the cholesterol powder on an 

analytical balance.  The DOPC and DPPC were each found to migrate as a single spot 

as tested by thin-layer chromatography, using 65/25/4 chloroform/methanol/water 

(v/v/v) as a solvent system.  The above procedure for preparing mixtures in 

chloroform was also used for the oriented samples (with the same lipid stocks).   

 After mixing of the lipids, the chloroform was evaporated using an 

Organomation (Berlin, MA) nitrogen evaporator.  To assure complete solvent 

removal, the samples were placed in high vacuum overnight, until the vacuum gauge 

read less than 30 mtorr.   
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 After solvent removal, MilliQ water was added to the lipid mixtures.  The final 

ratio of water:lipid was 5:1 to 10:1 (v/v), with a total lipid mass of 5 mg.  (To prepare 

a 10:1 water:lipid mixture, 50 μL of water was added to 5 mg of lipid.)  The amount of 

water needed for full hydration varies with the lipid, but the weight concentration of 

the lipid at full hydration (lipid/lipid+water) is typically near 50% (see Lecuyer and 

Dervichian, 1969; Gruner et al., 1988).  Since the densities of the phospholipids are 

close to 1 g/cm3, this translates to a ~1:1 (v/v) water/lipid ratio required for full 

hydration.  After adding water, the test tubes were covered with teflon tape and then 

with parafilm. 

 To speed hydration, the lipid/water mixtures in test tubes were then taken 

through three freeze-thaw cycles between -20˚C and 65˚C.  For each freeze cycle, the 

samples remained in the freezer until partially frozen (~30 minutes).  For each thaw 

cycle, the samples were placed on a 65˚C hotplate for 30 minutes.  During each freeze 

(or thaw) cycle, the samples were vortexed vigorously for 3 minutes while still cold 

(or warm).  The samples were then annealed from 65˚C to 25 ˚C at 2 ˚C/hour in a 

temperature-controlled Neslab water bath. 

 The samples were then loaded into the bell of 1mm glass capillaries (Charles 

Supper Company, Cambridge, MA) with a Drummond  pipette (Broomall, PA).  The 

samples were centrifuged on a table-top centrifuge for less than a minute.  Denser 

lipids, such as DPPC, tend to pellet out at the bottom of the capillary, while DOPC 

remains fairly evenly dispersed in the water.  The capillaries were sealed with vacuum 

grease and then 5-minute epoxy; the seal must be vacuum-tight for the rotating anode 

sample chamber, which is under vacuum.   
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2.4.2 Rotating anode setup  

 The rotating anode measurements presented in this thesis were carried out in 

the Gruner lab in January 2006 using the "Christine" beamline and September-October 

2006 using the "El Producto" beamline.  A more thorough description of these 

beamlines can be found in Hajduk, 1994.  X-ray measurements were carried out using 

a Ni-filtered Cu Kα line (λ =1.5418 Å) from a Rigaku (The Woodlands, TX) RU300 

rotating anode x-ray source operated at 38 kV and 50 mA.  X-rays were focused using 

orthogonal Franks mirrors.  Tantalum slits at the sample stage trimmed the beam to a 

~1 mm square, with an intensity of ~ 3 x 107 rays/s.  Sample temperature was 

controlled with a water-cooled Peltier controller (Melcor Inc., Trenton, NJ) and 

monitored with a 100Ω platinum RTD sensor (Omega Inc., Stamford, CT).  Images 

were collected on homebuilt CCD detectors (Tate et al., 1997).  The El Producto 

beamline has a 1024 x 1024 pixel CCD with a pixel size of 50.1 μm (the CCD was 

operated in bin 2 mode, making the pixel size 100 μm).  The Christine CCD is a 512 x 

512 pixel CCD with a 95 μm pixel size.  Both detectors have a 50 mm x 50 mm total 

area.  The sample-detector distance was calibrated with silver behenate to convert 

detector pixels into q=4π/ λsinθ, where θ is the scattering angle.  For the 

measurements on El Producto, the sample-to-detector distance was 38.58 cm, while 

the sample-to-detector distance for the Christine setup was 30.67 cm.  Exposure times 

were 300 sec, with a total of 3-5 exposures collected per measurement.  

2.4.3 Measurement difficulties 

 Even in excess water, full hydration of multilamellar vesicles can be 

challenging.  Thermal history and small amounts of salt can affect hydration.  An 

obvious sign of dehydrated lipid is the presence of two lamellar repeat spacings for a 

single-component lipid or for a mixture known to be in a single phase.  Observation of 
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only a single dL-spacing does not assure full hydration.  Temperature hysteresis should 

be examined to assure full hydration was achieved.  For these experiments, the 

samples were first measured near room temperature (25˚C or 30˚C) and then cycled to 

45˚C (above the DPPC melting temperature) and back again to 25˚C and re-measured.   

 The dL-spacing for DOPC as a function of temperature is known (Gruner et al., 

1988).  Therefore, DOPC was used as a standard to determine if the sample 

preparation conditions resulted in full hydration.  Consistently, the sample preparation 

conditions reported above resulted in a dL-spacing which was about 1 Å smaller than 

that reported in the literature: 63.1 Å at 30˚C (Tristram-Nagle et al., 1998) and  63-64 

Å for temperatures of  0-40˚C (Gruner et al., 1988).  Annealing the capillary at 45˚C 

and even at high temperatures (up to 90˚C) did not result in a significant change in dL-

spacing when the DOPC sample was cooled back down to 25˚C.  However, when the 

DOPC capillaries were cooled to -20˚C and then re-measured at 25˚C, the dL-spacing 

was 1 Å higher.  This phenomenon was observed on several occasions with separate 

samples.  For mixtures of 2 or more lipid components, freezing can result in demixing; 

therefore, we did not fully explore the effect of freezing the capillaries on hydration. 

 Lyophilization of lipid from a solvent such as cyclohexane to form a fine 

powder can speed subsequent hydration.  Cyclohexane is convenient for lyophilization 

because it has a relatively high melting temperature (6.5˚C).  However, phospholipids 

and cholesterol have different solubilities in most solvents, and so lyophilization from 

cyclohexane is not a viable option for mixtures containing a significant amount of 

cholesterol.  Chloroform is a good solvent for both cholesterol and phospholipids.  

Juyang Huang developed a procedure termed "low-temperature trapping," which is 

basically lyophilization from chloroform at low temperature (Huang et al., 1999).  

However, this procedure is best-suited for small quantities of lipid (<1 mg) at higher 

water:lipid ratios.  For previous x-ray work in the Feigenson lab, rapid solvent 
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exchange (Buboltz and Feigenson, 1999) followed by ultracentrifugation was used to 

prepare samples.  For mixtures containing low-density lipids (e.g. DOPC), this method 

is not appropriate because the sample does not concentrate during centrifugation.  

 For some experiments, measuring dL-spacings to within less than 1 Å of full 

hydration is important.  An example is structural studies in which the number of 

waters per lipid is calculated (Nagle and Tristram-Nagle, 2000).  For the work 

presented in this thesis, the purpose of measuring the lamellar repeat spacings for 

powder samples in excess water was to ensure that the oriented multilayers were 

within 5 Å of full hydration before collecting GIWAXS data because we want to be 

able to compare our data to experiments on fully-hydrated samples.   

 Table 2.3 shows the dL-spacing values for the MLVs and the oriented samples 

(see Section 0 for protocol) for the DOPC/DPPC/cholesterol mixtures studied.  

Typically, we obtained GIWAXS data at more than one dL-spacing.  Table 2.3 lists the 

values which correspond to the GIWAXS data presented in this thesis (Ch. 4-6).  The 

data were chosen that were closest to full hydration without being flooded (see Section 

2.3.8.1).  The other data were analyzed, and were in agreement with the data chosen 

for presentation.  A discussion of the effects of hydration on the DOPC data and 

analysis is presented in Ch. 4.  The DOPC dL-spacing value presented in Table 2.3 was 

for a sample studied during the February 2006 D-1 experiment.  This sample was used 

for comparison to the DOPC + cholesterol samples, which were measured during the 

same CHESS run.  The DOPC hydration study was performed in October 2006. 

 In Table 2.3, if the oriented sample dL value was more than 5 Å from full 

hydration, this is because this was the best image avoiding flooding conditions.  For 

example, for DOPC + 40% cholesterol, GIWAXS data were also taken closer to full 

hydration (dL=65.1 Å) and were very similar to the data used in the thesis (dL=59.7 Å).  

If two dL values are listed, two lamellar repeats were observed (see Ch. 6). 
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Table 2.3.  Lamellar repeat spacings as a function of temperature for fully-hydrated 
MLVs and oriented samples. 

Sample Temp.
(˚C) 

MLVs 
dL (Å) 

Oriented  
dL (Å) 

DOPC  25 61.9 (should be ~63) 60.9 
DOPC + 10% Chol 25 63.0  (T=30˚C) 60.0 
DOPC + 40% Chol 25 66.6 59.7 (also took data with 

dL=65.1-results in agreement) 
25 63.4 63.4 DPPC 
45 65.5 66.8 
25 80.5 77.5 DPPC + 10% Chol 
45 67.4 64.5 
25 78.4 75.9 DPPC + 15% Chol 
45 67.7 64.3 
25 73.5 68.2 DPPC + 25% Chol 
45 68.4 64.4 
25 67.3 66.7 DPPC + 40% Chol 
45 66.1 65.2 
25 63.2 62.8 1:1 DOPC/DPPC 
45 62.8 60.8 
15 72.4, 63.7 71.2, 60.2 
20 71.6, 63.9 71.0, 60.8 
25 70.5, 64.3 69.2, 59.5 
30 68.8, 64.9 69.1, 61.4 
35 65.4 63.4 
40 65.0 62.0 

1:1 DOPC/DPPC + 15% Chol 

45 64.8 61.5 
15 70.5, 63.9 67.7, 59.9 
20 69.7, 64.0 ----- 
25 68.9, 64.2 65.9, 59.3 
30 67.6, 64.7 ----- 
35 65.3 61.6 
40 64.9 ----- 

1:1 DOPC/DPPC + 20% Chol 

45 64.6 61.6 
15 69.2, 64.8 68.1, 61.3 
20 68.6, 65.0 67.4, 60.5 
25 67.8, 65.5 66.7, 61.0 
30 66.2 67.0, 63.8 
35 66.0 63.2 
40 65.8 63.5 

1:1 DOPC/DPPC + 25% Chol 

45 65.6 62.7 
15 68.5, 65.3 66.4, 60.8 
20 68.0, 65.4 ----- 
25 66.8 64.5, 60.5 
30 66.4 ----- 
35 66.2 64.3 
40 66.1 ----- 

1:1 DOPC/DPPC + 30% Chol 

45 66.0 63.2 
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Chapter 3 - An analytical model for chain-chain scattering: 
theory and fitting 

3.1 Introduction 

 Despite the biological relevance of fluid-phase lipids, much of the work 

involving wide-angle scattering from model membranes has been focused on gel-

phase lipids.  For crystalline packing in which the chains are essentially rigid rods, the 

most important features of the scattering pattern can be predicted by analytical models 

which consider the chain tilt angle and the dimensions of the crystalline lattice (Sun et 

al., 1994 and Tristram-Nagle et al., 1993 and the references therein).  For disordered 

fluid phases, however, there is a distribution of tilt angles and a distribution of 

interchain packing distances.   

 An analytical model addressing all of the features of wide-angle scattering 

from fluid phase lipids would be very complex and require many parameters.  Instead, 

we follow an approach commonly used in the liquid crystal literature for systems of 

rodlike molecules with fluid-like disorder which was popularized by Leadbetter et al. 

(Leadbetter, 1979; Leadbetter and Norris, 1979; Leadbetter and Wrighton, 1979).  The 

model (referred to in this thesis as the "Leadbetter model") focuses on describing the 

angular distribution of scattering based on the distribution of rod orientations, 

described by a chain orientational distribution function.  The major assumption of the 

model is that the scatterers are infinitely long rigid rods, and therefore the form factor 

of each molecule can be neglected.  Leadbetter and others are careful to note that this 

simplistic model does not work equally well in all situations and must be applied and 

interpreted with caution (for a review see Davidson et al., 1995).       

 In Section 3.2, we focus on the theory and development of analytical equations 

for fitting the x-ray scattering data and discuss problems in the approach.  Section 3.3 
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describes how we fit the data to obtain the chain orientational distribution function, 

from which we can calculate the order parameter Smol.  Section 3.3 also describes 

situations where the data fitting shows indirect evidence of phase coexistence.  In 

Section 3.4, we describe the criteria for phase coexistence from our x-ray scattering 

data which we will use to evaluate our data in Ch. 4-6.        

3.2  Analytical model for chain scattering 

3.2.1 Overview: assumptions of the model and approach for 

finding the chain orientational distribution function  

 Prior to Leadbetter, the problem of determining the orientational distribution 

function and order parameters for systems of rodlike particles from scattering 

techniques was addressed by a number of researchers (for examples see Alexander and 

Michalik, 1959; de Vries, 1972; Pynn, 1975; Vainshtein, 1966).  The general formulas 

derived were complicated and cumbersome to use.  Leadbetter popularized a 

simplified model which has been widely applied to many mesogenic particles 

(Leadbetter, 1979; Leadbetter and Norris, 1979; Leadbetter and Wrighton, 1979; for a 

review see Davidson et al., 1995).  Although the model is usually attributed to 

Leadbetter, it was used earlier by Levine and Wilkins to fit scattering data from fluid-

phase egg lecithin/cholesterol mixtures (Levine, 1970; Levine and Wilkins, 1971).   

 Although we do not know the first source of the model, for simplicity we will 

refer to the model as the "Leadbetter model."  In the model, the system is composed of 

straight rods of length L separated by a mean distance drod, with L>>drod (in our case 

drod=dcc).  Figure 3.1 is a schematic for the model, which defines angles and the 

coordinate system used for the derivation of the analytical equations for the scattering 

intensity.  Note that the x-y-z coordinate system shown in Fig. 3.1 is with respect to the 

sample; we define the direction of the membrane normal, n, as + ẑ .  The figure and 
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the theory are independent of the exact scattering geometry used.  Later in the chapter 

(Section 3.2.6) we will relate the sample geometry to the scattering geometry used in 

the experiments presented in the thesis.   

 The model assumes that the sample is composed of different regions of rods 

("grains") with a local director nL which makes an angle β with the z-axis.  Locally, 

the rods are assumed to be well-correlated and rotationally symmetric about nL.  Given 

these assumptions, scattering occurs only on a ring with q at right angles to nL and for 

q=2π/drod (see Fig. 3.1A).  Across the sample, nL can assume a distribution of 

orientations, which is described by the chain orientational distribution function, f(β).  

The fraction of rods with a particular orientation is given by f(β)sinβdβdχ (see Fig. 

3.1C for the definition of angles).  For a particular q, the total scattering is a sum of 

the scattering contributions from grains with local directors nL perpendicular to q (see 

Fig. 3.1B).  Thus the scattering intensity I(φL) at an angle φL (see Fig. 3.1D) is a sum 

of the scattering from grains with tilt angles β in the range: φL≤β≤π/2.  Note that our 

sample is rotationally symmetric about the z-axis; that is, the observed scattering 

intensity depends only on φL and is independent of the azimuthal angle.  The following 

section develops a formula relating I(φL) to the chain orientational distribution 

function, f(β). 

 Here we outline the strategy we followed for analysis of our x-ray scattering 

data based on the model described above: 

1. As a starting point use a formula which relates I(φL) to f(β), the chain 

orientational distribution function [Section 3.2.2].  

2. Assume a particular functional form for f(β) with one adjustable parameter m 

related to the width of the orientational distribution.  Insert this f(β) into the 

general formula for I(φL) to determine a closed analytical expression for I(φL) 

[Section 3.2.4]. 
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3. Fit the scattering data to obtain f(β) with the best-fit value of the adjustable 

parameter m [Section 3.3.1]. 

4. Calculate quantities involving average values of β, such as Smol, from f(β) 

[Section 3.3.3].       

 
Figure 3.1.  (A) In Leadbetter's model, long, thin rods are locally well-aligned along 
the local director nL.  For each grain (group of rods) scattering is concentrated at right 
angles to nL.  (B)  The scattering intensity for a given q is the sum over all grains with 
directors lying on the ring  q·nL=0.  (C) The direction of nL is described by the polar 
angle β and the azimuthal angle χ, the angle of the local director nL projected on the x-
y plane.  Across the sample, the local director nL can assume a distribution of 
orientations.  (D) The orientation of q with respect to the sample director n (in our 
case the membrane normal) is described by the angle φL, the angle between the sample 
plane and q, or more explicitly the angle complementary to the angle between n and q.  
This figure is modified from Fig. 7 in Busch et al., 2007. 
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3.2.2 Corrected calculation of I(φL): the Toombes formula 

 We first present a corrected calculation for the scattering intensity for the 

system described above (the limit of infinitely straight rods which form differently 

aligned regions).  The derivation is by G. E. S. Toombes.  A shortened version of the 

derivation appears in Busch et al., 2007.  As discussed above, scattering only occurs 

for q ⊥ nL and q=q0≈2π/drod.  The scattering observed on the detector from a grain 

with local director nL is given by: 
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where IT is the total scattered intensity, V is the volume, and q0 is the radius of the 

scattering ring in reciprocal space ( rod0 /2 dq π≈ ).  Using the geometry defined in Fig. 

3.1, the scattering wavevector q is given by ( )zxq ˆsinˆcos LL0 φφ += q  and the local 

director nL is given by zyxn ˆcosˆsinsinˆcossinL βχβχβ ++= .  Because the sample 

is rotationally symmetric with respect to the z-axis, the exact value of qx or qy in our 

calculation does not matter; we could have used ( )zyq ˆsinˆcos LL0 φφ += q  .  We just 

need to allow for all possible values of 22
yxr qqq += . 

 To obtain the total scattering from the collection of rodlike particles, we must 

integrate I(q) over all possible local directors nL, weighting by the fraction of rods 

with a particular orientation, f(β)sinβdβdχ, where f(β) is referred to as the chain 
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Scattering is only possible for q=q0.  Integrating across the peak gives: 
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The delta function only contributes to the integration when 
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We now perform the following substitution: 
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By inserting the results of Eq. 3.5 into Eq. 3.3, we obtain for the scattering: 
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Noting that Equation 3.4 can only be true when Lφβ ≥  (this makes sinχ a real 

number) and by integrating over u in Eq. 3.6, we obtain finally for the scattering as a 

function of φL: 
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Finally, simplifying and combining constants gives: 
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where A is a constant, which is proportional to the amount of sample, the incident 

beam intensity, and the length of the exposure.  We will refer to Eq. 3.8 as the 

"Toombes formula."  This is our starting point for x-ray analysis in the strategy 

outlined at the end of Section 3.2.1.    
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3.2.3 Problems with Leadbetter's formula for I(φL) 

 Leadbetter and Norris (1979) have derived a different formula for I(φL) using 

the same model and assumptions as described in Section 3.2.1.  The formula (referred 

to in the thesis as the "Leadbetter formula") is: 
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Compared with the Toombes formula (Eq. 3.8), the Leadbetter formula (Eq. 3.9) is 

missing a factor of cosφL/cosβ.  This factor comes from the angle at which each grain's 

diffraction ring intersects the Ewald sphere.  The intensity of each grain's diffraction 

ring will depend on the orientation of the ring, which Leadbetter did not consider in 

his derivation.  The Leadbetter formula was derived by considering all the possible 

values of the local grain director nL and calculating where the diffraction ring would 

appear in reciprocal space (as a function of φL).  The scattering from all the grains was 

then added up to find the total I(φL).  The step that Leadbetter is missing is to consider 

how the grain orientation affects the scattering intensity.  By explicitly evaluating the 

delta function in the derivation of the Toombes formula, the effect of grain orientation 

on scattering intensity was not neglected. 

 Although Eq. 3.9 is often attributed to Leadbetter et al. (Leadbetter, 1979; 

Leadbetter and Norris, 1979; Leadbetter and Wrighton, 1979), it appears earlier in 

Levine's thesis (1970) without a derivation and without reference.  Levine and Wilkins 

characterized chain orientational order in egg lecithin/cholesterol mixtures using Eq. 

3.9 with different forms for f(β) (Levine, 1970; Levine and Wilkins, 1971).  

 The most straightforward way of showing that the Leadbetter formula is 

incorrect is to consider explicit cases where the formula fails.  In Appendix A, we 

show that the Leadbetter formula results in the incorrect calculation of the invariant 

(Roe, 2000, p.28-29): 
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∫=
V
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Using the spherical coordinates shown in Fig. 3.1, the invariant can be written as (see 

Alexander, 1969, p. 243): 
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Note we are using the azimuthal angle χ to describe the orientation of the vector q, 

whereas in Section 3.2.2 it was used to describe the orientation of the vector nL. The 

most familiar form of Eq. 3.11 is the case of a powder sample, in which there is 

complete rotational symmetry: 
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Since the model assumes that scattering occurs at only one value of q=2π/drod, the 

following equation should be true for I(φL): 

∫=
L

LLL cos)(Constant
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φφφ dI  (3.14)

In Appendix A, we show that Eq. 3.14 is true for the Toombes formula (Eq. 3.8), but 

is not true for the Leadbetter formula (Eq. 3.9), implying a mistake in the Leadbetter 

derivation. 

 Another case where the Leadbetter formula fails is when all the rods have 

orientation β=π/2.  In this case, the Leadbetter formula predicts the that I(φL) should be 

zero, whereas the Toombes formula gives a reasonable result (see Appendix A).  This 

particular case is a very unlikely situation, especially for model membrane systems, 

which would mean all the chains were lying flat in the plane of the membrane.   

 By showing cases where the Leadbetter formula fails, our purpose is not to 

claim that there is anything wrong with the conclusions made from the liquid crystal 
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research done over the past 30 years using the Leadbetter formula.  In most realistic 

situations with rods oriented at modest values of β (closer to 0 than π/2), the 

Leadbetter formula is not unreasonable, especially if one is only interested in trends in 

the orientational distribution, or equivalently trends in the order parameters.   

 In some work, the average of grain orientations nL over the azimuthal angle χ 

is neglected by assuming I(φL)=f(β) (for example see Özdilek et al., 2006).  This is 

equivalent to assuming that scattering from a grain oriented with angle β will only 

occur at the angle φL= β.  Again, if the main purpose of the work is to focus on trends 

in order parameters, this assumption should not drastically change the conclusions of 

the work.  We used the Toombes formula because it seems to correctly predict I(φL) 

for the model described in Section 3.2.1. 

3.2.4 Analytical form for scattering assuming the Maier-Saupe 

orientational distribution function 

 The Leadbetter formula (Eq. 3.9) has been inverted numerically (Leadbetter 

and Norris, 1979) or analytically (Deutsch, 1991) to obtain f(β) from the measured 

I(φL).  However, the inversion can be complicated and cumbersome to use.  Instead, 

we chose to follow a commonly used approach in which an analytical expression for 

the scattering is derived by assuming a particular form for the distribution function 

f(β), which has an adjustable parameter m related to the width of the distribution.  This 

expression can then be fit to the experimental data to obtain f(β), from which order 

parameters and other quantities can be calculated (see Davidson et al, 1995 for a 

review of this approach). 

 The Maier-Saupe orientational distribution function has been applied in 

analysis of x-ray data to a number of nematic and smectic liquid crystalline systems 

(Davidson et al., 1995; Leadbetter and Norris, 1979; Oldenbourg et al., 1988; Özdilek, 
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2006).  Jähnig (1979) has theoretically described the lipid gel to fluid transition using 

a Maier-Saupe mean-field approach.  Because of the wide applicability of Maier-

Saupe theory, we chose to assume the Maier-Saupe distribution function for the lipid 

chains.  The Maier-Saupe distribution results from a mean-field model; it ignores the 

details of molecular structure and angular correlations between neighboring rods 

(Maier and Saupe, 1958, 1959, 1960; see de Gennes and Prost, 1993, p.66-70 for an 

explanation of the derivation in English).  The final normalized form for the Maier-

Saupe orientational distribution function is: 

)cosexp(1)( 2 ββ m
Z

f =  (3.15)

where m is a parameter related to the width of the distribution which can take on any 

positive value and the normalization constant Z satisfies: 
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Satisfying the normalization condition (see Appendix B) gives: 
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where D is Dawson's integral.   

 Figure 3.2 plots the Maier-Saupe distribution function, f(β), as well as f(β)sinβ 

for two cases: m=3.69 and m=30.6.  For larger m, the distribution is narrower, 

meaning that the rods are more likely to be oriented in a narrow range around β=0.  

The two values of m chosen correspond to the sample, DOPC/DPPC + 15% 

cholesterol at 15˚C, which required an assumption of two Maier-Saupe distributions to 

fit the scattering data (for discussion see Section 3.3.1 and Figs. 3.6 and 3.8). 

  We have assumed that the distribution is centered about the angle βt=0 (the 

same direction as the membrane normal); in the liquid-crystal literature, this type of 
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sample is referred to as smectic A.  In smectic C liquid crystals, the distribution is 

centered around a nonzero angle βt.  For this situation, in Eq. 3.15 β is replaced by β-βt 

(see Leadbetter and Norris, 1979 for further complications involving smectic C 

samples).  We had no reason to believe that the samples we studied had an average tilt 

angle other than βt=0, and so we did not include this complication in the analysis.    

 
Figure 3.2.  (A) Plot of Eq. 3.15, the Maier-Saupe orientational distribution function, 
f(β) for two different values of m.  (B)  Plot of f(β)sinβ for the same two values of m.  
Note that f(β)sinβ is proportional to the fraction of rods oriented at the angle β. 
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 Paranjpe and Kelkar were the first to derive a simple analytical equation for 

I(φL) using the Leadbetter formula (3.9) and the Maier-Saupe distribution (Kelkar and 

Paranjpe, 1987; Paranjpe and Kelkar, 1984).  G. E. S. Toombes has derived a result for 

I(φL) using the Maier-Saupe distribution and the Toombes formula (unpublished).  

Inserting Eq. 3.15 into the Toombes formula (Eq. 3.8) gives (see Appendix B): 
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where I0 is a modified Bessel function of the first kind (see Appendix B).  Equation 

3.18 is our starting equation for data fitting (see Section 3.3.1). 

3.2.5 Problems with the analytical model 

 Fitting Eq. 3.18 to experimental I(φL) data is a simple way of obtaining the 

chain orientational distribution function, from which average values involving β, such 

as the molecular order parameter Smol (see Section 3.3.3), can be calculated.  However, 

this approach makes several major assumptions, and so we cannot expect that the f(β) 

found is the true orientational distribution function for the system.    

 We first consider problems independent of the exact form of the distribution 

function chosen (problems with the Leadbetter model and resulting Toombes formula, 

Eq. 3.8).  The following two assumptions can introduce opposite errors in f(β) 

(Leadbetter and Norris, 1979; Davidson et al., 1995): 

1. The model assumes that the scattering intensity comes from a cluster of 

interfering particles.  This assumption will result in a distribution function 

sharper than the true f(β) or equivalently will tend to overestimate the order 

parameter. 
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2. The model assumes that the rods are infinitely long and thus neglects the form 

factor of the rods.  The scattering due to a rod of finite length will contribute to 

the width of I(φL).  Neglecting this effect results in a too broad distribution 

function, and thus a systematic underestimate of the order parameter.  

For highly oriented phases (i.e. the lipid gel phase), the second effect of neglecting the 

form factor for a finite-sized rod is very important.   

 Figure 3.3 shows the scattering expected for rods of length L with perfect 

orientation β=0˚ and packed into a hexagonal lattice.     

 
Figure 3.3.  The top panel shows the perfect hexagonal packing of rods of length L all 
oriented with β=0.  The rods form rows with spacing drod.  The bottom panel shows the 
scattering expected from such a system assuming rotational symmetry about the z-
axis.  The first diffraction spot will occur at rod

22 /2 dqqq yxr π=+= .  In the qz 

direction, the spot has a half-maximum intensity value at qz≈π/L  The apparent angular 
spread of the intensity is given by ΔφL≈drod/(2L).  This figure was modified from a 
drawing by G. E. S. Toombes. 
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In general the scattering intensity from the sample depicted in Fig. 3.3 will depend on 

the Fourier transform of the electron density: 

rdiA 3)exp()()( ∫ •−= rqrq ρ  (3.19)

We can describe the electron density of the rod by a rectangular function: 
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Since we assumed a perfect hexagonal lattice, scattering is only allowed for distinct 

values of qr, the smallest value being rod
22 /2 dqqq yxr π=+= .  The scattering in the 

qz direction depends on the Fourier transform for the rectangular function (Guinier, 

1963, p. 359): 
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where the sinc function is defined as: 
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The scattering intensity is proportional to the square of A(qz): 
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Figure 3.4 shows plots of sinc(qzL/2) and sinc2(qzL/2).  The half-maximum value of 

I(qz)∝sinc2(qzL/2) is near π/L.  The apparent angular spread is given by ΔφL≈drod/(2L), 

where ΔφL refers to the half-width at half-maximum (see Fig. 3.3).   
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Figure 3.4.  Plots of sinc(qzL/2) and sinc2(qzL/2).  For a rod of length L with electron 
density described by a rectangular function along the z-axis, the Fourier transform 
A(qz)∝sinc(qzL/2) and I(qz)∝sinc2(qzL/2).  

  

 We can provide a lower bound to the effect of the finite length of the lipid acyl 

chains on the angular spread of scattering using the measured length of a DPPC chain.  

The effective length depends on the phase that the chain is in (gel, Ld, or Lo).  Table 

3.1 shows calculations for ΔφL using L from the literature for DPPC chains in different 

phases.   

 

Table 3.1.  Apparent angular spread of scattering for finite rods with different effective 
lengths, L.  
Phase drod=dcc (Å) L* (Å) ΔφL≈drod/(2L) 

gel ~4.2  18.75 (DPPC, all trans) 0.11 rad=6.4˚ 
Ld ~4.5 11.6 (DPPC, 52˚C) 0.19 rad=11˚ 
Lo ~4.6 14.9 (DPPC + 33% chol, 52˚C) 0.15 rad=8.8˚ 

*The effective acyl chain lengths (L) come from Sankaram and Thompson, 1990.   
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 According to Table 3.1, by neglecting the finite length of the rods, the 

Leadbetter model would overestimate the angular distribution of scattering due to a 

distribution of chain orientations by ~6-11˚.  For more ordered samples, we can expect 

the model will begin to break down due to the neglect of the finite length of the rods 

because this effect, and not the orientational disorder, begins to dominate the φ-width.  

Leadbetter and Norris (1979) found that the model begins to break down for order 

parameters (Smol) greater than 0.8.  de Vries (1972) has considered the effect of 

neglecting the finite size of the rods on the orientational distribution function and on 

the order parameters calculated from the x-ray diffraction data from liquid crystals.  

He concluded that although the errors on the calculated orientational distribution 

function can be large, the errors on the chain order parameters are not as large and the 

order parameters from the x-ray data are reasonable approximations.  Since we are 

mainly interested in trends in order parameters as a function of temperature and 

composition, approximate values are sufficient. 

 For model membrane gel phases, the chains are well-ordered and the angular 

spread of scattering will be dominated by the apparent width ΔφL≈dcc/(2L) due to the 

finite size of the acyl chains, an effect which the Leadbetter model does not consider 

(see Busch et al., 2007 for a model which explicitly considers the form factor for 

scattering from a rodlike polymer system).  Although the model may be used to fit gel-

phase data, we must be careful in any conclusions that we draw from the fits (this 

issue is further discussed in Ch. 5).  In liquid phases (Ld or Lo), we do expect chain 

orientational disorder, which the Leadbetter approach is designed to model.  

Therefore, the model is more appropriate for liquid-phase lipids.  Because chain tilts, 

lipid areas, etc. can be obtained from the gel phase diffraction data with simple 

models, this is not a major limitation (see Sun et al., 1994 and Tristram-Nagle et al., 

1993 and the references therein).  The value of the Leadbetter model as applied to 
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model membrane systems is that it provides a way of quantitatively analyzing the 

GIWAXS data from liquid-phase samples. 

 In many ways, the gel phase seems to be a better match to the assumptions of 

the model.  For example, in the gel phase the acyl chains' conformation more closely 

resemble rods.  Chains in the fluid phase are conformationally disordered.  The chains 

in the liquid phase are often modeled with two divisions, one closer to the headgroup 

region and one closer to the middle of the bilayer.  The methylene segments toward 

the middle of the bilayer have significantly more disorder than the segments closer to 

the surface (see Gennis, 1989, p. 52-55 and the references therein).  In liquid phases, a 

model consisting of rigid rods with orientation described by the single angle β is 

unrealistic.  Levine and Wilkins (1971) point out that if we think of the scattering 

domains as segments of chains, then application of such a simple model is less 

problematic.    

 An improvement of the model would be to consider the rods as flexible (for 

examples of modification of Maier-Saupe mean-field theory for the situation of 

flexible rods see Jähnig, 1979 and Picken, 1989).  Such a modification would require 

more fitting parameters.  Since our data are well-fit by using a simple Maier-Saupe 

distribution for rigid rods, we could not distinguish between the simple model and a 

more complicated model on the basis of how well they fit the data.  However, we may 

be able to re-interpret the fitting parameters in the context of a more complicated, and 

more realistic, model. 

 In our approach, we constrained ourselves to using the Maier-Saupe 

orientational distribution function.  Assuming a form for f(β) is convenient because it 

allows us to fit our data to an equation (Eq. 3.18) using a basic least-squares fitting 

routine (see Section 3.3.1).  However, there are other simple models for the chain-

orientational distribution function which may be more appropriate for our system; the 
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most appropriate form for f(β) may depend on the lipid, temperature, and hydration 

level.  For example, Levine and Wilkins (1971) found that they needed to assume 

different functional forms for the orientational distribution functions in order to fit 

their egg lecithin data at different levels of hydration.  While the Maier-Saupe 

distribution function works well to describe the scattering from some liquid crystalline 

systems, other models are sometimes more appropriate (Purdy et al., 2003; Savenko 

and Dijkstra, 2004).  As long as our focus is on trends in chain orientational order, the 

exact form of the chain orientational distribution function should not play a major role 

as long as it fits the data reasonably.   

3.2.6 Relationship between the sample geometry and the 

experimental scattering geometry: the φL≈φ approximation 

 Figure 3.5 shows the experimental scattering geometry and shows how the 

angle φL is related to the angle φ.  The angle φ is the angle on the detector from the x-

axis, while φL is the angle between q and the sample plane, more specifically the angle 

complementary to the angle between the membrane normal n and q.  In the preceding 

sections, we have derived an equation relating the scattering intensity to φL.  The 

derivation of I(φL) is independent of the exact experimental scattering geometry used, 

and so the Toombes equation (Eq. 3.8) can be used for a variety of experimental 

setups.  However, to produce the I(φ) plots, we integrated over constant φ, not constant 

φL (See Section 2.3.7.3).  In this thesis we make the approximation φL≈φ.  Leadbetter 

et al. always implicitly made this approximation (Leadbetter, 1979; Leadbetter and 

Norris, 1979; Leadbetter and Wrighton, 1979).  As we will show below, this 

approximation is valid for our experiments, but the approximation begins to break 

down for scattering at wider angles.  This is not a limitation of the model, as I(φL) 

instead of I(φ) can be calculated from the detector images (see Busch et al., 2007).   
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Figure 3.5.  Experimental scattering geometry.  Modified from Fig. 3 in Busch et al., 
2007. 

 

 The following equation relates φL to φ (Busch et al., 2007): 

θαθαφφ sinsincoscossinsin L += . (3.24) 

In our experiments α is small (~0.15˚), and so the above equation simplifies to: 

θφφ cossinsin L = . (3.25) 

For both the February and October 2006 setups, θ~8˚ (cosθ=0.99) for q=1.4 Å-1.  

Table 3.2 relates φL to φ using Eq. 3.25 with cosθ=0.99.  Since even for the most 

orientationally disordered samples, the region of change in the I(φ) plot is over by φ 

≈60˚, the approximation φL ≈φ introduces negligible error.  Note also that we cannot 

record on our detector the full range (0-90˚) of φL for a single sample orientation.  

Again, this is not important because the data do not change much for φ (or φL)>60˚.  
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Table 3.2.  Relationship between φ and φL  
using Eq. 3.25 with cosθ=0.99 

φ (degrees) φL (degrees) 
0 0 
10 9.9 
20 19.8 
30 29.7 
40 39.5 
50 49.3 
60 59.0 
70 68.5 
80 77.2 
90 81.9 

 

3.2.7 Remark on the calculation of I(φ) 

 Leadbetter's model assumes that the scattering peak has no width in reciprocal 

space; that is, scattering occurs only for q=2π/drod.  In practice, the chain-chain 

scattering occurs over a range of q values.  Haase et al. (1988) have shown that )(φI  

should be considered as the intensity integrated radially across the peak for a given φ  

rather than the peak intensity.  Thus, to measure experimentally the angular 

dependence of the scattering, we integrated the data over the peak to obtain: 

∫
=

=

=
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),()(
q

q

dqqII φφ . (3.26)

The range of q=0.8-1.8 Å-1 was chosen to be the widest possible considering 

experimental limitations.  Considering the definition of the invariant (Eq. 3.13), it may 

be more appropriate to use the following equation (Busch et al., 2007): 
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q
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We tried both Eq. 3.26 and Eq. 3.27, and found that the differences in the fitting 

results were negligible.  We decided to use Eq. 3.26 because Eq. 3.27 magnifies the 

problem if the data are not perfectly smooth.  In Section 3.3.1 we will show how  we 
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can obtain the orientational distribution function f(β) by fitting the experimental data 

as obtained by Eq. 3.26 (described in Section 2.3.7.3) to Eq. 3.18, which combines the 

Maier-Saupe orientational distribution function (Eq. 3.15) with the Toombes formula 

(Eq. 3.8). 

3.3 Data fitting 

3.3.1 Fitting equations: Single and double order parameters 

 As a starting point for data fitting equations, we use Eq. 3.18, reproduced here:  
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Note in the above equation that we made the substitution of φ for φL.  This equation 

assumes that Ichains(φ) is only due to scattering from the chains.  However, other 

sources can contribute to the scattering observed in the wide-angle region, most 

notably water, as discussed in Section 2.3.8.1.  In some of the literature for liquid 

crystalline systems, a background was estimated based on the scattering intensity 

surrounding the region of the wide-angle peak (Davidson et al., 1995), while in other 

studies a constant background is included as a fitting parameter (Özdilek et al., 2006).  

Because of the difficulties in estimating a background intensity when water is 

involved, we chose to use the approach of including Iback as a fitting parameter.  We 

assumed that the background scattering was isotropic and so Iback is a constant.  

Including Iback, the fitting equation assuming a single distribution of chains becomes: 
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where the three fitting parameters are: (1) the constant background, Iback; (2) A, 

proportional to the amount of sample, beam intensity, and length of exposure; and (3) 

m, which describes the width of the Maier-Saupe distribution function, given by: 
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 For some samples, we might expect that one orientational distribution function 

would not describe the system.  For example, if there is phase coexistence between a 

disordered and more ordered phase (i.e. Ld/Lo coexistence in ternary mixtures), the 

system may require two distribution functions in order to fit the data.  In this case, we 

assume the total distribution function is a combination of two distributions: 
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P1 and P2 are the fraction of each phase.  The fitting equation is: 
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(3.32)

where the five fitting parameters are the constant background Iback, A1 and m1 for phase 

1, and A2 and m2 for phase 2.  Note that we do not know P1 and P2 prior to the fit; they 

are rolled into the fitting parameters A1 and A2.  The parameters A1 and A2 are 

proportional to the relative amounts of each phase (discussed in more detail in Section 

3.3.3); that is P1=A1/(A1+A2).  In Ch. 4-6, we refer to Eq. 3.29 as the single order 

parameter fit and to Eq. 3.32 as the double order parameter fit.  If the double order 

parameter fit is required to fit the data well, this is indirect evidence for phase 

coexistence (discussed in more detail in Section 3.4). 
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 Figure 3.6 shows examples of fits to our data using Eq. 3.29 and Eq. 3.32.  

Figure 3.6A shows a situation where the data are well-fit by a single order parameter 

while Fig. 3.6B shows a situation where the double-order parameter fit is required to 

fit the data well.  Table 3.3 shows the fitting parameters from the fits.  For fitting, the 

built-in Matlab least-squares fitting function "lsqcurvefit" was used to fit the data.  

The results of the fits did not depend on the initial guess for the parameters, so long as 

the initial values of m1 and m2 were different in the double order parameter fit.  The 

table also shows the 95% confidence intervals for the fitting parameters, calculated 

using the built-in Matlab function "nlparci".  The goodness of fit quantities RMSE and 

R2 are defined in Eq. 3.46 and Eq. 3.44. 

 One question is whether the fitted value for Iback is reasonable.  In Fig. 3.6B, 

the single order parameter fit has an Iback which is larger than some of the data.  This is 

clearly unreasonable and a reason for rejecting the single order parameter fit in favor 

of the double order parameter fit.  Another way of judging whether Iback is reasonable 

is to plot it on top of sector plots (see Fig. 3.7).  The Iback values seem reasonable, 

considering they represent an average background for all q in the range 0.8 Å-1 to 1.8 

Å-1. 

 

Table 3.3.  Results of single and double order parameter fits for the data shown in 
Fig. 3.6.  

Sample Type 
Fit 

Iback A m RMSE R2 

Single 441.5±18.0 A =2746±142 m=1.71±0.09 3.38 0.9986 DOPC (25˚C) 
Double NA NA m1=m2=1.71 NA NA 
Single 809.7±20.6 A=2917±145 m=11.6±1.1 68.9 0.9695 1:1 DOPC/DPPC + 

15% Chol (15˚C) Double 689.6±12.6 A1=2680±74 
A2=1341±50 

m1=3.69±0.23 
m2=30.6±1.3 

8.56 0.9995 

*If "m1=m2" is listed, this means these parameters were the same to within ±0.01 units. 
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Figure 3.6.  (A) I(φ) plot for DOPC (T=25˚C, dL=60 Å, October 2006, G-1) with 
single order parameter fit (Eq. 3.29) shown in blue.  The double order parameter fit 
resulted in m1=m2 and was therefore equivalent to the single order parameter fit.  The 
residual is plotted beneath.  (B)  I(φ) plot for 1:1 DOPC/DPPC + 15% cholesterol 
(T=15˚C, October 2006, G-1) with a single order parameter fit (Eq. 3.29) in blue and 
the double order parameter fit (Eq. 3.32) in red.  The residual plot underneath shows a 
clear improvement for the double order parameter fit over the single order parameter 
fit.  
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Figure 3.7.  I(q) sector plots (see Section 2.3.7.3) for (A) DOPC (T=25˚C, dL=60 Å, 
October 2006, G-1) and (B) 1:1 DOPC/DPPC + 15% cholesterol (T=15˚C, October 
2006, G-1).  The results of the fitted background Iback are shown.  
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3.3.2 Normalization 

 If we were only comparing two equations (the single and double order 

parameter fits) to a single set of data, the logical way to represent the data would be to 

plot the un-normalized data and fits on the same scale, as shown in Fig. 3.6B.  

However, in Ch. 4-6, we want to be able to compare many sets of data.  We chose to 

normalize the data and the output fit as follows: 
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back
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II
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−
=

φ
φ  (3.33)

where I(φ) is the un-normalized experimental data or the un-normalized fit result, Iback 

is the fitted constant background, and Atot=A for a single order parameter fit and 

Atot=A1+A2 for a double order parameter fit. 

 Figure 3.8 shows the same data shown in Fig. 3.6, except normalized 

according to Eq. 3.33.  Figure 3.8A plots the single order parameter fit for the DOPC 

data and 1:1 DOPC/DPPC + 15% cholesterol data, with the data and fit normalized 

using Iback and Atot from the single order parameter fit.  Figure 3.8B plots the double 

order parameter fit for 1:1 DOPC/DPPC + 15% cholesterol data, with the data and fit 

normalized using Iback and Atot from the double order parameter fit.  Note that in each 

case the fitting is performed on the un-normalized data.  The data were normalized 

only for the purpose of presentation.  

 By normalizing to each fit separately, it is immediately obvious that for the 

single order parameter fit to the 1:1 DOPC/DPPC + 15% cholesterol data, Iback is 

greater than I(φ) for the largest φ values: the normalized data go below zero.  In Ch. 4-

6, we normalize all the data in this way.  The data are shown as stacked plots, each 

offset from the one below by a constant value, as in Fig. 3.8A.    
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Figure 3.8.  (A) I(φ) plots for DOPC, T=25˚C (blue) and 1:1 DOPC/DPPC + 15% 
cholesterol, T=15˚C (red) normalized according to Eq. 3.33 with single order 
parameter fits shown in black.  Residuals are plotted below.  (B) I(φ) plot for 1:1 
DOPC/DPPC + 15% cholesterol, T=15˚C with the double order parameter fit shown in 
black.  The colored bars show the zero offset for the corresponding plots.  The same 
un-normalized data and fits are shown in Fig. 3.6.  (All data from October 2006, G-1.)   

 

  



 

127 

 

 Figure 3.9 plots the normalized double order parameter fit for 1:1 

DOPC/DPPC +15% cholesterol (T=15˚C) as well as the two separate components of 

the fit.  The scattering intensity for each component is weighted according to its phase 

fraction: P1=A1/(A1+A2) and P2=A2/(A1+A2). 

 

 

Figure 3.9.  Normalized I(φ) plots showing the results of the double order parameter fit 
to 1:1 DOPC/DPPC + 15% cholesterol (T=15˚C).  The black line shows the 
normalized total intensity.  The dashed and dotted lines show the normalized 
scattering intensity from the less ordered and more ordered distributions, respectively.   
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3.3.3 Calculation of Smol, phase fractions, and scattering 

fractions 

 Once we have fit the data to obtain m and therefore know the chain-

orientational distribution function, we can calculate quantities involving average 

values of the chain tilt angle β.  For a function X(β), the average value can be 

calculated as follows: 
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The molecular order parameter Smol (usually referred to simply as S in the liquid 

crystal literature) is a common quantity used to describe the average orientational 

order in the system.  Smol is calculated as follows: 
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where we use for f(β) the Maier-Saupe orientational distribution function, rewritten 

here for clarity: 
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For the double-order parameter fits, there are two associated values of Smol (one for m1 

and one for m2).  Figure 3.10 shows a plot of Smol vs. m.  While m can take on any 

positive value, Smol can take on values of 0-1, with Smol =1 corresponding to perfect 

orientational order. 
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Figure 3.10.  Plot of Smol vs. m.  Smol was calculated numerically from Eq. 3.35.  

 

 Phase fractions can also be calculated from the double order parameter fits, as 

mentioned previously.  The fraction of sample described by orientational distribution 

function #1, P1(with associated parameters A1 and m1) is: 

21

1
1 AA

AP
+

=  (3.37)

with an analogous equation for P2.  We believe that the phase fractions calculated in 

this way are prone to error and will not necessarily agree with phase fractions found 

from other methods (i.e. microscopy or NMR).  A major problem with the model as 

applied to model membrane systems is that it assumes all of the wide-angle scattering 

is due to chain-chain interactions.  In addition to phospholipid-phospholipid scattering, 

cholesterol-cholesterol and cholesterol-phospholipid scattering will also contribute to 

the total scattering observed.  Even for simple chain-chain scattering in a single-
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component phospholipid system, the model makes many assumptions and does not 

describe the true behavior of the system (see Section 3.2.5).  When phases within the 

same sample have different amounts of cholesterol, we cannot expect the model to 

work equally well.  For example, if cholesterol contributes less to the total scattering 

than the phospholipids, we would expect the phase fraction calculated for the phase 

with more cholesterol to be lower than the true value.  Due to these complications, in 

this work we focus on trends in the data instead of on absolute values of parameters.

 Using our fits, another quantity that we can calculate is the fraction of 

scattering observed on the detector in a certain φ range.  For most samples, we did not 

make this calculation, but we did make the calculation for DOPC to compare to Spaar 

and Salditt (2003).  The fraction of scattering observed on the detector in a range φ1 to 

φ2 is given by: 
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where the first line is a general formula and the second line is the explicit formula for 

a single order-parameter fit.  Note that this is the fraction of scattering observed on the 

detector: we did not include the weighting factor cosφ for purposes of comparing with 

Spaar and Salditt (for the comparison see Ch. 4).   

 Spaar and Salditt assumed that the fraction of chains tilted in the range β1≤β≤β2 

was given by the fraction of scattering observed on the detector in the same angular 

range for φ.  Even in the simple model of chains described by infinitely long rods, 
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these two quantities are not equal.  The fraction of chains in the sample with 

orientation in the range β1≤β≤β2 is: 
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Table 3.4 compares the fraction of scattering on the detector for particular ranges of φ 

with the fraction of chains tilted in the same angular range β for DOPC at 25˚C.  These 

calculations were done numerically.  Since Smol contains the information about the 

distribution of chains, in most cases we do not report the fraction of scattering or 

fraction of chains in various angular ranges. 

 
Table 3.4.  Results for the fraction of chains and fraction of scattering 
intensity in certain angular ranges for DOPC (T=25˚C, dL=60.0 Å, October 
2006, G-1).  This sample is described by a Maier-Saupe distribution with 
m=1.71.  For the fraction of scattering, the angular range corresponds to φ.  
For the fraction of chains, the angular range corresponds to β. 
Angular range Fract. scattering (Eq. 3.38) Fract. chains (Eq. 3.39) 

0˚-30˚ 0.48 0.29 

60˚-90˚ 0.21 0.29 

 

3.3.4 Error propagation 

 The error (or confidence interval) can be calculated for Smol and the phase 

fractions from the error on the fitted parameters.  We use these errors (particularly the 

error in m and Smol) as one of the criteria for accepting or rejecting a double order 

parameter fit versus a single order parameter fit. 

 The error in Smol, σS, is found from the error in m, σm, as follows (see 

Bevington, 1969): 
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where we have abbreviated Smol as S and for σm we use the 95% confidence interval 

from Matlab.  The functions W(β), P(β), and C(β) are defined as follows: 
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 The error in the phase fractions P1 and P2 (σP1 and σP2 respectively) are found 

from the confidence intervals for A1 and A2 (σA1 and σA2 respectively) as follows: 
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Table 3.5 reports the values of Smol and the phase fractions with error for the example 

data we have been using: DOPC and 1:1 DOPC/DPPC + 15% cholesterol.  Although 

σP1 and σP2 were usually small (less than 5%), we are cautious about interpretation of 

P1 and P2 for the reasons stated in Section 3.3.3. 
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Table 3.5.  Order parameters and phase fractions according to the single and double 
order parameter fits for the data shown in Fig. 3.6 (fit results shown in Table 3.3).  

Sample Type Fit Smol Phase Fractions 
Single S= 0.25 ± 0.01 NA DOPC (25˚C) 
Double S1 = S2 = 0.25 NA 
Single S= 0.86 ± 0.01 NA 1:1 DOPC/DPPC + 

15% Chol (15˚C) Double S1= 0.52 ± 0.03 
S2= 0.95 ± 0.01 

P1= 0.67 ± 0.01 
P2= 0.33 ± 0.01 

*Note: If "S1=S2" is listed, this means these parameters were the same to within ±0.01. 
 

3.3.5 Evaluation of goodness of fit  

 For each I(φ) plot generated, we compared the data to two related models: the 

single order parameter fit and the double order parameter fit.  Since the double order 

parameter fit has more fitting parameters (5) compared with the single order parameter 

fit (3), the double order parameter fit will generally fit the data better.  However, we 

do not always accept the double order parameter fit.  For example, the confidence 

intervals on the best-fit parameters may be larger for the double order parameter 

model.  In some cases, the decision of whether to accept of reject a fit is ambiguous.  

Motulsky and Christopoulos (2004) give a very readable introduction to the basics of 

curve-fitting.  When deciding on whether to accept or reject a fit, they suggest asking 

the following questions in the order given: 

1. Does the fit go reasonably close to the data?  A residual plot can help evaluate 

the fit. 

2. Are the best-fit parameters plausible?   

3. Are the best-fit parameters known based on the confidence intervals? 

4. What is the most appropriate model (in our case a single-order parameter fit 

versus a double order-parameter fit)?  Statistical tests such as the "F test" can 

be used to compare models (see Ch. 22 in Motulsky and Christopoulos, 2004).  
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However, these statistical tests should only be used if both models are sensible 

and the more complicated model fits better (in other words, both models have 

passed questions 1-3).  For example, if the best-fit parameters are not plausible 

or the confidence intervals are very wide for either model, then that model can 

be rejected without the need for a statistical test.  For our data, questions 1-3 

were sufficient for us to be able to decide on the most appropriate model. 

3.3.5.1 Residual plots 

 Plotting the residual is a good first test of whether a plot is reasonable or not.  

A residual plot clearly shows if the fit systematically deviates from the data.  The data 

points should not be clustered below or above the fitted curve: whether each point is 

below or above the curve should be random.  Figure 3.6B shows the data, fits, and 

residual plots for both single order parameter and double order parameter fits to a 

single data set (DOPC/DPPC + 15% cholesterol at 15˚C).  The single order parameter 

fit clearly systematically deviates from the data.  Fig. 3.8 shows the same data and fits, 

except normalized. 

3.3.5.2 Reasonableness of parameters and confidence intervals 

 One obvious problem with the single order parameter fit to the 1:1 

DOPC/DPPC + 15% cholesterol data (T=25˚C) is that the data dip below the zero 

level (see Fig. 3.8).  This means the Iback parameter was larger than some of the un-

normalized I(φ) values.  This is an unphysical situation and serves as good reason to 

reject the single-order parameter fit in favor of the double-order parameter fit.   

 Even if a fit looks good and the fitting parameters are reasonable, the 

confidence intervals may be very wide (see the 1:1 DOPC/DPPC + 15% cholesterol, 

T=35˚C entry in Table 6.2).  This serves as another reason for rejecting a fit.  A fit was 

rejected if any of the fitting parameters (Iback, m1, m2, A1, or A2) had an error of greater 
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than 1/3 of the value of the parameter.  This means the confidence interval was 2/3 the 

size of the parameter. 

3.3.5.3 Evaluation of overall goodness of fit: the R2 parameter 

 The value R2, sometimes referred to as the coefficient of determination, 

quantifies the overall goodness of fit.  R2 is defined as follows (Motulsky and 

Christopoulos, 2004): 

SST
SSE

−= 1R 2  (3.43)

where SSE is the summed squares of the residuals and SST is the sum of squares about 

the mean.  The values SSE and SST are calculated as follows: 
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where yi is the observed value, fi is the fitted value, and <y> is the mean value.  In our 

case yi corresponds to the intensity I(φ).  The value of R2 is typically in the range 0-1, 

with a value closer to 1 indicating a better fit.  If R2=0.90, this means the fit explains 

90% of the variation in the data about the average value.  If R2=0, this means the fit is 

no better than a horizontal line at the mean value.  If the fit is worse than just fitting a 

horizontal line, then R2 will be negative.   

 Because we are comparing models with a different number of fitted 

coefficients, in Ch. 4-6, we report the degrees of freedom adjusted R2 (adj. R2).  This 

quantity is defined as (MATLAB Help, version 7.1): 

( )
( )νSST

nSSE 11R adj. 2 −
−=  (3.45)

where n is the number of data points and ν  is the degrees of freedom, equal to n minus 

the number of fitting parameters, m (ν=n-m).  In our case, n~70 and m is either 3 (for 
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the single order-parameter fit) or 5 (for the double order-parameter fit), so the factor 

(n-1)/ν is very close to 1. 

 Another statistical parameter that is often reported is RMSE, the root mean 

square, defined as follows: 

ν
SSERMSE =  (3.46)

where ν is the degrees of freedom and SSE was defined in Eq. 3.44.  We reported 

RMSE values in Table 3.3, but we only report R2 in Ch. 4-6. 

 Motulsky and Christopoulos (2004) point out that when comparing the fit of 

two equations, comparing RMSE or R2 values should not be the only or main criterion 

for accepting one fit as opposed to another.  For our data, the R2 values were always 

close to 1 for both the single and double order parameter fits (see Ch. 4-6).  The fits 

were accepted or rejected based on other criteria (residual plots, plausibility of 

parameters, and confidence intervals).   

 Another common statistical test used to evaluate the goodness of fit is 

Chisquare (χ2), defined as follows: 
2
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 (3.47)

where yi is the observed value, fi is the fitted value, and σi is the error for that data 

point. Calculation of χ2 requires an independent estimate of the error σi.  The best way 

to determine σi  is to repeat the same measurement many times and find the standard 

deviation in the different data sets (see Figure 3.11).  In Ch. 4-6, we report the R2 

parameter because for most samples, we did not repeat the measurement enough times 

in order to estimate σi.       
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Figure 3.11.  Normalized I(φ) plots for DOPC at 25˚C.  Different levels of hydration 
and data taken with different samples on different beamlines (Oct.= October 2006 G-1 
experiment; Feb.=February 2006 D-1 experiment). 
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3.4 Criteria for phase coexistence based on x-ray scattering data  

 In Section 3.3, we showed an example (1:1 DOPC/DPPC + 15% cholesterol at 

15˚C) where an assumption of two Maier-Saupe distribution functions was required to 

fit the I(φ) data well.  In contrast, another example (DOPC at 25˚C) required only one 

distribution to fit the I(φ) data.  If an assumption of two order parameters is required to 

fit the I(φ) data, this provides indirect evidence of phase coexistence.  In the case of 

1:1 DOPC/DPPC + 15% cholesterol at 15˚C, the presence of phase coexistence agrees 

with microscopy and NMR data (Veatch and Keller, 2003b;  Veatch et al., 2007b; 

discussed in detail in Ch. 6).  

 A much better fit using a double order parameter versus a single order 

parameter provides indirect evidence of phase coexistence.  Before making a 

conclusion about the presence or absence of phase coexistence based on this criterion, 

it is important to compare the fit results to fits for other compositions and 

temperatures.  A valid objection to the conclusion of phase coexistence based on a 

poor single order parameter fit is that the sample may be better described by a 

distribution function other than the Maier-Saupe form.  We cannot disprove this 

objection, but we can make the following point: when the 1:1 DOPC/DPPC +15% 

cholesterol sample is heated above 30˚C, a single order parameter fit is sufficient to 

describe the I(φ) data.  This behavior agrees with what is already known about the 

sample: below a certain temperature Tmix, Ld/Lo coexistence is present, while above 

this temperature the sample is in a single liquid phase (Veatch and Keller, 2003b;  

Veatch et al., 2007b; discussed in detail in Ch. 6).  

 In favorable cases, x-ray scattering can provide more direct evidence of phase 

coexistence.  One example is the presence of two lamellar repeats (dL spacings).  If 

two dL spacings are observed (and are reproducible and exhibit no thermal hysteresis), 

this is clear evidence of phase coexistence.  However, the absence of two dL spacings 
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does not necessarily imply the absence of phase coexistence.  To see two lamellar 

repeat spacings, the following conditions must be met: 

1. The dL-spacings must be different enough for the peaks to be resolvable. 

2. The Lo (or Ld) domains must be aligned with the Lo (or Ld) domains in the 

neighboring bilayers (see Fig. 3.12).  Gandhavadi et al. make the analogy to a 

stack of egg cartons (2002).   

 

 
Figure 3.12.  (A) Cartoon showing the Ld and Lo domains in alignment between 
neighboring bilayers.  We assume the Ld phase has a smaller dL-spacing.  (B) The Lo 
(or Ld) domains are unaligned in neighboring bilayers.  The colored areas represent a 
single lipid bilayer plus a water layer.  The white spaces in between layers serve as a 
boundary between the layers. 

 

 Figure 3.12A shows that alignment of domains across many bilayers would 

present a problem, particularly if the two lamellar repeat spacings are very different.  

In order to observe two dL spacings, the domains must be aligned and the dL spacings 

must be different enough to resolve two lamellar peaks.  In other words, the first 

condition for observing two dL values makes the second condition harder to satisfy.  
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The system could relieve strain by organizing as shown in Fig. 3.12B, in which case 

an average dL-spacing would be observed.  The real situation in a stack of oriented 

multilayers or MLVs is likely a mixture of the two situations, with patches of 

membrane in which the domains are aligned and patches in which they are not aligned. 

 In the case of wide-angle x-ray scattering from a sample with phase 

coexistence, domains in adjoining bilayers do not have to be in register in order to 

observe two chain-correlation (dcc) spacings.  However, the two peaks must be 

resolvable.  In the case of gel-fluid coexistence, the gel peak is sharp (HWHM/qcc<3% 

base on our oriented data and the powder data of Sun et al., 1994)  and occurs at 

qcc≈1.50 Å-1 (dcc~4.2 Å), while the fluid phase wide-angle band is broad 

(HWHM/qcc~10%) and occurs at qcc≈1.40 Å-1 (dcc≈4.5 Å).  Therefore, we expect to be 

able to resolve two wide-angle bands in the case of gel-fluid coexistence, in a powder 

sample or oriented sample.  However, in the case of Ld/Lo coexistence, the broad 

bands overlap, and analysis of the I(φ) distribution from oriented samples becomes 

useful. 

 Note that in the case of the Lβ' phase, two wide-angle peaks are present due to 

the distorted hexagonal lattice.  However, we can distinguish this situation from gel-

fluid coexistence, even in powder samples.  Powder samples of Lβ'-phase DPPC 

consist of a very sharp (2,0) peak at q20=1.48 Å-1 (d20=4.24 Å) and the broader (1,1) 

peak at q11=1.50 Å-1 (d11=4.18 Å).  This pattern is different in the following ways from 

scattering we expect from a sample with gel-fluid coexistence: 

1. In the case of the DPPC Lβ' phase (at full hydration), the broader band is at a 

larger q-value but not necessarily for all Lβ'.  The opposite is true for gel-fluid 

coexistence. 

2. For a fluid phase band, HWHM/qcc~10%.  The (1,1) peak is much narrower, 

with HWHM/q11~2.5% (Sun et al., 1994). 



 

141 

Therefore, the characteristic scattering from the Lβ' phase should not be mistaken for 

gel-fluid coexistence, even in powder samples. 

 The following list summarizes the criteria for phase coexistence in model 

membrane systems based on the x-ray scattering data: 

1. Presence of two lamellar repeat spacings.  If two dL spacings are present, this is 

clear evidence of phase coexistence. 

2. Presence of two dcc spacings.  In the case of gel/fluid phase coexistence, we 

would expect a broad band and narrow band in the wide angle pattern (for 

powder or oriented samples).  However, in the case of Ld/Lo coexistence, we 

expect the broad wide-angle bands to overlap. 

3. Poor fit of the I(φ) data by a single order parameter fit.  This is a useful criteria 

for liquid/liquid coexistence.  If gel phases are involved, we must be very 

careful with our interpretation of the fits because the Leadbetter model does 

not apply to well-ordered crystalline phases (see Section 3.2.5 and Ch. 5). 

4. Change in qcc as a function of φ which is consistent with the presence of 

coexisting phases.  This point is subtle and has not been discussed previously.  

It is discussed at length in relation to Ld/Lo coexistence in Ch. 6.  

Note that the first two criteria are sufficient but not necessary for phase coexistence.  

This thesis will test the last two criteria for evaluating liquid-liquid phase coexistence. 
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Chapter 4 - Cholesterol's effect on phospholipid chain order: 
GIWAXS results for DOPC/cholesterol  

4.1 Introduction   

 To provide a framework for our investigation of ternary 

DOPC/DPPC/cholesterol mixtures (Ch. 6), we studied the binary mixtures 

DOPC/cholesterol and DPPC/cholesterol (Ch. 5).  The literature suggests that 

DOPC/cholesterol does not phase-separate at any temperature or cholesterol 

composition (Filippov et al., 2003), whereas many reports suggest DPPC/cholesterol 

does phase-separate (see Ch. 5).  DOPC/cholesterol is a simple system for calibrating 

the GIWAXS method for measuring chain order.   

 Although DOPC is a component in many studies of ternary phospholipid 

mixtures, cholesterol's effect on DOPC chain order is not well-studied in comparison 

with saturated lipids (such as DPPC and DMPC) and monounsaturated lipids (such as 

POPC).  A major reason is that chain-perdeuterated DOPC is unavailable, making 

measurements of chain order by NMR difficult.  Habiger et al. (1992) have made 2H 

NMR measurements on DOPC selectively deuterated at the cis-double bond position 

in each chain.  Warschawski and Devaux (2005) have made NMR measurements on 

undeuterated DOPC.  Both studies are in agreement that cholesterol causes a 

significant ordering of the DOPC chains.  As another calibration of our GIWAXS 

measurements, we calculate lipid areas, which show that cholesterol causes a decrease 

in the DOPC area, consistent with an increase in chain orientational order.  

 This chapter presents our results for chain order parameters (Smol) and lipid 

areas calculated from the GIWAXS data for mixtures of DOPC with cholesterol at 

25˚C, well above the chain melting temperature of DOPC (Tm≈-17˚C; Perly et al., 

1985).  We also discuss the effect of hydration on the DOPC wide angle scattering.          
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4.2 2D diffraction images: effect of cholesterol and hydration on 

the wide angle scattering from DOPC 

 Figure 4.1 shows the 2D diffraction images and I(q) sector plots for DOPC at 

various levels of hydration.  The high-q water scattering begins to overwhelm the lipid 

scattering as the sample approaches full hydration.  As discussed in Section 2.3.8.1, 

we believe that wide-angle data at 98% relative humidity (lamellar repeat~10 Å below 

full hydration) should be very similar to the data at full hydration.  Sections 4.3 and 

4.4 prove this assertion by quantifying the q- and φ-widths of the wide-angle 

scattering.  

 A major assumption involved in our analysis is that we can separate the 

scattering from the chains from other sources of scattering in the sample, such as 

water, headgroups, etc.  Because the wide-angle scattering for liquid-phase lipids is 

diffuse, this can be difficult.  Even for gel-phase DPPC, much of the wide-angle 

scattering may be diffuse scattering due to sources other than chain-chain scattering 

(Sun et al., 1994).   

 A possible source of scattering in the wide-angle region is correlations between 

neighboring headgroups.  Figure 4.2 shows two I(q) slices for DOPC with φ=5-10˚ 

compared with φ=30-35˚.  In the φ=5-10˚ sector, a left shoulder is visible which is no 

longer apparent in the φ=30-35˚ sector.  Münster et al. (2000) have attributed a similar 

shoulder in their grazing incidence data for DMPC as possibly due to in-plane 

headgroup-headgroup correlations.  Attempts have been made to separate out the 

various contributions of scattering (chain-chain correlations, headgroup-headgroup 

correlations, chain-headgroup correlations, etc.) using molecular dynamics simulations 

(Sega et al., 2007; Spaar and Salditt, 2003). 
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Figure 4.1.  The left column shows 2D GIWAXS images for DOPC (T=25 ˚C) at 
different levels of hydration as measured by the lamellar repeat: (A) 51.1 Å, (B) 60.0 
Å, (C) 62.1 Å, and (D) 63.3 Å.  The right panel shows the corresponding I(q) sector 
plots (see Section 2.3.7.3).  The top trace corresponds to the smallest φ range.  
(October 2006, G-1) 
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Figure 4.2.  I(q) sectors for DOPC at 25˚C (dL=60.0 Å, 2D image shown in Fig. 4.1B).  
In the sector integrated over φ=5-10˚ (solid line), a left shoulder, possibly due to 
headgroup-headgroup correlations, is visible.  This shoulder has diminished in the 
φ=30-35˚ sector (dashed line).  (October 2006, G-1) 

  

 Figure 4.3 shows GIWAXS images and sector plots for DOPC, DOPC + 10% 

cholesterol, and DOPC + 40% cholesterol.  The DOPC + 40% cholesterol sample has 

a much narrower angular distribution of scattering compared with pure DOPC and 

DOPC + 10% cholesterol.  Note that the DOPC image and the DOPC + 40% 

cholesterol image have more high q water scattering than the DOPC + 10% 

cholesterol image. 
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Figure 4.3.  The left column shows 2D GIWAXS images taken at 25 ˚C for: (A) 
DOPC (dL=60.9 Å), (B) DOPC + 10% cholesterol (dL=60.0 Å), and (C) DOPC + 40% 
cholesterol (dL=59.7 Å).  The right column shows the corresponding I(q) sector plots 
(see section 2.3.7.3).  The top trace corresponds to the smallest φ range.  (February 
2006, D-1)     
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4.3 Lateral positional ordering for DOPC/cholesterol 

 GIWAXS data contain information about lateral positional ordering that will 

be important in our calculation of areas in Section 4.5.  Figure 4.4 shows quantitative 

results obtained from the 2D diffraction images shown in Fig. 4.1.  Figure 4.4A shows 

the scattering maximum, qcc, as a function of the angle φ.  Note that for the fully 

hydrated sample (dL=63.3 Å), qcc increases rapidly to a maximum of 1.7 Å-1.  This 

sample was flooded with excess water.  At larger φ the high-q water scattering, which 

is isotropic, begins to overwhelm the relatively weaker lipid scattering.  Therefore, the 

value of qcc no longer corresponds to the maximum in the lipid scattering at large φ.   

 Figure 4.4B shows the half width at half maximum (HWHM) as a function of 

φ.  Spaar and Salditt (2003) interpreted the increase in HWHM(φ) as an indication that 

the chain-chain scattering was less well correlated at larger φ.  The steep rise in the 

HWHM(φ) for the dL =63.3 Å plot is again due to water.  If we only compare the data 

at low φ, where the complications due to water scattering are not an issue, the position 

of the scattering maximum, qcc (~1.39 Å-1), and the HWHM (~0.15 Å-1) are relatively 

insensitive to hydration level for lamellar repeats of 51.1 Å to 63.3 Å. 

 Figures 4.4C and 4.4D convert the qcc(φ) and HWHM(φ) information from 

reciprocal space to real space for DOPC (dL =60.0 Å).  The chain-chain correlation 

spacing (dcc =2π/qcc) is shown in Figure 4.4C.  The decrease in dcc as a function of φ is 

likely due to drift of qcc to higher values as water scattering becomes relatively more 

prominent.  The correlation length (ξ=1/HWHM) as a function of φ for DOPC at 25˚C 

is compared to Spaar and Salditt's data for DMPC at 45˚C (2003).  Both samples are in 

the Ld phase.  The DOPC ξ(φ) data is systematically larger than the DMPC data.  

Spaar and Salditt (2003) compared several Ld phase lipids, and did not report such a 

large difference.  The difference may be a result in the different methods used to 

calculate HWHM (see Sections 2.3.7.5 and 2.3.8.2).  Since it is difficult to determine 
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the baseline I(q) value, the HWHM values we report are only estimates.  Kaganer et 

al. (1999) point out that in the monolayer literature some groups report the correlation 

length as 1/HWHM while others use the Scherrer equation (Guinier, 1963, p. 121-

124), which is larger by a factor of 0.94π.  Figure 4.4D shows ξ=1/HWHM in order to 

compare with Spaar and Salditt's data. 

 

Figure 4.4.  Lateral positional information from the wide-angle data for DOPC at 
different levels of hydration (see legend at top left).  Plots (A) and (B) show the 
information in reciprocal space: (A) peak position, qcc(φ) and (B) HWHM(φ).  Plots 
(C) and (D) convert the information to real-space for the dL=60.0 Å data: (C) chain-
chain spacing, dcc(φ)=2π/ qcc(φ) and (D) correlation length, ξ(φ)=1/HWHM(φ).  Spaar 
and Salditt's ξ(φ) data for DMPC at 45˚C are shown in plot (D) for comparison (2003).  
(October 2006, G-1) 
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 For gel-phase lipids, dcc=2π/qcc can be interpreted as the average interchain 

spacing (note for the Lβ' phase there are two spacings: d11 and d20).  As is well-known, 

dcc can be used to calculate the area per chain for gel-phase lipids (see Sun et al., 1994 

and Tristram-Nagle et al., 1993 and the references therein).  However, in the fluid 

phase the interpretation of dcc as the average interchain spacing is flawed because the 

chains are not well-ordered.  In the fluid phase, the chains can even bend over 

themselves.  Such a situation would double the area/chain but not affect qcc.  It also 

complicates the interpretation of correlation lengths.  Spaar and Salditt (2003) and 

Sega et al. (2007) also point out the flaws in naively interpreting dcc=2π/qcc as the 

interchain spacing for fluid-phase lipids.  Based on comparison of scattering data to 

molecular dynamics simulations, Spaar and Salditt (2003) proposed a corrected 

relation for the interchain spacing, which we will call a:  

cccc

2125.1
4
9

qq
a ππ

== . (4.1) 

Based on their simulations, Sega et al. (2007) find the following relation for a: 

cc

22285.1
q

a π
= . (4.2) 

Although dcc and ξ can easily be misinterpreted for the fluid phase, dcc is a useful 

number to report for comparison with other work.  In the rest of this chapter and the 

following chapters, we will continue to use dcc=2π/qcc, but we will interpret it 

differently to obtain the lipid area in Section 4.5.     

 Table 4.1 lists qcc, dcc, and HWHM values (for a φ=5-10˚ sector) for DOPC, 

DOPC + 10% cholesterol, and DOPC + 40% cholesterol.  Cholesterol addition 

decreases qcc from 1.39 Å-1 for DOPC to 1.28 Å-1 for DOPC + 40% cholesterol.  This 

corresponds to an increase in dcc with increasing cholesterol content, which has been 

observed for a variety of lipids (Finean, 1990).  In general, this increase in dcc is 

interpreted as resulting from the cholesterol inserting between chains and increasing 
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the average interchain distance (see for example Maulik and Shipley, 1996a).  

However, Huey Huang has observed that the addition of peptide to phospholipid 

sometimes results in a decrease in dcc (personal communication); the same reasoning 

as applied to cholesterol then does not make sense.  Resolution of this issue would 

require further investigation. 

 

Table 4.1.  Values of qcc, dcc and HWHM for DOPC/cholesterol 
mixtures at 25˚C (φ=5-10˚).  (February 2006, D-1)  

mol% 
cholesterol 

qcc 
(Å-1) 

dcc=2π/ qcc 
(Å) 

HWHM 
(Å-1) 

0 1.39 4.52 0.16 
10 1.36 4.62 0.16 
40 1.28 4.91 0.17 

4.4 Quantifying chain order for DOPC/cholesterol: fits to I(φ) 

 Figure 4.5 shows the single order parameter fits to the I(φ) data for DOPC at 

different levels of hydration.  Due to noise in the data caused by water scattering, the φ 

range for the fits was considerably narrower for the fully hydrated (dL=63.3 Å) data.  

The data are all well-fit by assuming a single Maier-Saupe distribution function.  Note 

that Levine and Wilkins (1971) required different distribution functions to fit their I(φ) 

data depending on the hydration level of the egg lecithin.  As described in Section 

3.3.2, the data are normalized by subtracting the fitted background, Iback, and then 

dividing by the fitting parameter A (proportional to the amount of sample, beam 

intensity, length of exposure).  The colored bars on the graph show the zero offset for 

each normalized plot.  According to the fits, the chain-chain scattering at φ=90˚ is at 

least 25% of its maximum value at φ=0˚.  This may seem high, but Spaar and Salditt 

(2003) obtained a similar result for several lipids in the Ld phase.   
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Figure 4.5.  I(φ) plots at 25 ˚C for DOPC at various levels of hydration are shown by 
colored data points.  Black lines are Maier-Saupe fits assuming one order parameter.  
The colored bars show the zero offset for the corresponding plots. (October 2006, G-1)
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 Figure 4.6 plots the value of Smol, obtained by the fitted Maier-Saupe 

distribution function, as a function of hydration for DOPC.  This figure combines data 

for different samples taken on different beamlines and different sample chambers.  

The variation in Smol between different samples (or beamlines) is larger than the 

variation in Smol due to hydration.  This plot is further evidence that the chain 

scattering should be relatively insensitive to the level of hydration, at least at higher 

hydration levels.  However, for the October 2006 NIH chamber data set, which was 

taken on a single sample, there is a trend of decreasing Smol with increasing hydration.  

This agrees with the expected trend of increasing lipid area with increasing hydration 

(Rand and Parsegian, 1989).   

 

 
Figure 4.6.  Smol vs. lamellar repeat for DOPC at 25˚C.  
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  Figure 4.7 shows the single order parameter fits to the I(φ) data for DOPC, 

DOPC + 10% cholesterol, and DOPC + 40% cholesterol.  The data are all described 

well by assuming a single Maier-Saupe distribution function.  In comparison to 

DOPC, the angular distribution of scattering is much narrower for DOPC + 40% 

cholesterol.  Also, according to the fit, the scattering intensity at φ=90˚ is close to zero 

for DOPC + 40% cholesterol. 

 

 

Figure 4.7.  I(φ) plots at 25 ˚C for DOPC/cholesterol mixtures are shown by colored 
data points.  Black lines are Maier-Saupe fits assuming one order parameter.  The 
colored bars show the zero offset for the corresponding plots.  (February 2006, D-1) 
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 Table 4.2 summarizes the fit results for the DOPC/cholesterol mixtures at 

25˚C.  Spaar and Salditt's results (2003) for the fraction of the integrated scattering 

intensity in the range 0˚≤φ≤30˚ and 60˚≤φ≤90˚ for OPPC, DMPC, and DLPC (all in 

Ld phase at 45˚C) are given for comparison to DOPC.  Since the scattering intensity 

fractions for the fluid phases are similar, this suggests that our method for subtracting 

the non-chain scattering (Iback in Eq. 3.29) and Salditt's method of subtracting a linear 

background (see Section 2.3.8.2) give similar results.  Note that the fraction of 

integrated scattering intensity in a certain φ range does not correspond to the fraction 

of chains tilted at an angle in that range according to the fitted Maier-Saupe 

distribution (see Section 3.3.3).  Of course, in the real system, the chains are not 

straight rods, and so referring to a single tilt angle for each chain is highly simplified.  

Also, the model predicts that some of the chains lie parallel to the plane of the bilayer 

(β=90˚), which is exceedingly unlikely in the real system.  Levine and Wilkins (1971) 

point out that if we think of the scattering domains as segments of chains, then we can 

avoid some of these difficulties in interpretation of the results of the simple model. 

 

Table 4.2.  Results of fits (Eq. 3.2.9) to I(φ) data for DOPC/cholesterol mixtures at 
25˚C.  The data are shown in Fig. 4.7.  

Fraction Scatter  Sample m Smol R2 
0˚≤φ≤30˚ 60˚≤φ≤90˚ 

DOPC 2.10 ± 0.13 0.31 ± 0.02  0.9974 53% 18% 
DOPC + 10% Chol 2.02 ± 0.08 0.30 ± 0.01 0.9988 52% 18% 
DOPC + 40% Chol 5.52 ± 0.09  0.68 ± 0.01 0.9992 83% 3% 

OPPC*    52.2% 19.3% 
DMPC*    49.1% 21.7% 
DLPC*    46.1% 23.7% 

*The OPPC, DMPC, and DLPC data (all at 45˚C) are from Spaar and Salditt (2003). 
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 Smol more than doubles for DOPC + 40% cholesterol compared with pure 

DOPC.  Information about average chain order, as measured by 2H NMR first moment 

data, is unavailable for DOPC.  However, Habiger et al. (1992) have made 2H NMR 

measurements on DOPC selectively deuterated at the C-9 and C-10 positions, the cis-

double bond.  With 50% cholesterol content, the NMR quadrupole splittings almost 

double.  Habiger et al. (1992) interpret this as evidence that at 50% cholesterol, the 

chain orientational order is high.  Warschawski and Devaux (2005) have used NMR to 

measure 1H-13C dipolar couplings for DOPC and DOPC + 30% cholesterol.  This 

technique allows for the measurement of segmental order parameter profiles without 

deuteration.  Their conclusion is that the addition of 30% cholesterol results in a "lipid 

state analogous to the Lo phase" with a substantial increase in chain orientational 

order.  

 A more indirect measure of the effect of cholesterol on chain order is the 

change in the membrane thickness, which can be calculated from electron density 

profile reconstruction from the lamellar diffraction data.  As discussed in Ch. 1, the 

addition of cholesterol causes the chains to straighten, resulting in an increase in 

membrane thickness.  Since the DOPC lipid volume does not change (Greenwood et 

al., 2006), an increase in membrane thickness results in a decrease in the lipid area, 

known as the cholesterol condensing effect.  The thickening effect of cholesterol was 

reported by Levine and Wilkins (1971) for egg lecithin and has been measured for 

various lipids (see Hung et al., 2007 and the references therein).  Hung et al. (2007) 

have shown that the bilayer thickness increases and the lipid area decreases 

substantially with the addition of cholesterol to DOPC.   They report 72 Å2 for DOPC 

at 30˚C and 54 Å2 for DOPC + 40% cholesterol.  Note that these measurements were 

taken at 98% relative humidity.  The Nagle lab had earlier published an area of 72.4 

Å2 for DOPC (Liu and Nagle, 2004; Kučerka et al., 2005b; Tristram-Nagle et al., 
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1998) and has recently obtained 64 Å2 for the area of DOPC + 40% cholesterol 

(Mathai et al., 2007).  These results are qualitatively consistent with the increase in 

Smol observed for addition of 40% cholesterol to DOPC.  In the next section we show 

how areas for fluid-phase lipids can be calculated from combining information about 

the fitted chain orientational distribution with the lateral packing correlation distance, 

dcc.  

4.5 Calculation of lipid areas: combining chain orientational 

order and lateral ordering  

 Lipid area is an important structural parameter which helps define the 

molecular packing microstructure.  Experimental lipid area measurements are often 

used to guide or to evaluate molecular dynamics simulations.  However, experimental 

values of lipid areas, especially for the fluid phase, vary widely (see Nagle and 

Tristram-Nagle, 2000 and the references therein).  Calculation of lipid areas from 

NMR and lamellar diffraction data can be complicated, but these methods make use of 

the simple relation:  

L
VAL =

2
 (4.3) 

where AL is the area per lipid headgroup (AL/2 is the area of a single chain in the plane 

of the bilayer), V is the volume per chain, and L  is the mean chain length.  (See 

Petrache et al., 2000 for an alternative calculation of lipid areas using NMR data.)  

The volume V is typically found from dilatometry (Nagle and Wilkinson, 1978).  In 

the NMR method, L  or equivalently the projected length of each chain segment 

along the membrane normal, is calculated from segmental order parameters (see 

references in: Brown et al., 2006; Nagle, 1993; Petrache et al., 2000).  Lamellar 

diffraction can also be used to find L .  In the well-used Luzzati method, area is 

calculated from the lamellar spacing and a knowledge of the minimum water/lipid 
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ratio necessary to achieve full hydration (Luzzati, 1968), and then the volume of the 

hydrocarbon chain is used to obtain the chain length.  Because not all of the water 

resides between the bilayers, lamellar scattering-based methods that involve 

calculating the hydrocarbon thickness from electron density profiles are preferred (for 

a review see Nagle and Tristram-Nagle, 2000).    

 For fully-extended, rigid gel-phase lipids, areas can be calculated entirely from 

the wide-angle diffraction data.  The lipid area is calculated from the interchain 

spacing(s) and the chain tilt angle, which can be determined from powder or oriented 

WAXS data.  For a calculation of the area for tilted chains in a distorted hexagonal 

lattice, see: Tristram-Nagle et al., 1993 and Sun et al., 1994.  These papers show 

relationships between the real-space lattice spacings and the q values of the scattering 

peaks for the Lβ' phase of DPPC.    

 Levine and Wilkins (1971) considered the fluid phase as an assembly of 

domains with almost fully extended chains packed in a hexagonal lattice.  The 

domains can have different orientations, described by the angle β.  Figure 4.8 is a 

schematic of how the lipid area can be calculated from the lattice spacing dcc for a 

chain tilted at an angle β.  For simplicity we assume perfect hexagonal packing in the 

plane perpendicular to the axes of the chains (not the plane of the bilayer).  Figure 

4.8A shows a hexagonal lattice in a plane perpendicular to the axes of the chains.  

Figure 4.8B shows how the area per chain in the plane of the bilayer, AL(β)/2, is 

related to Ac, the area per chain in the plane perpendicular to the chain.    
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Figure 4.8.  (A) Assumed hexagonal lattice in a plane perpendicular to the axes of the 
chains with interchain spacing dcc.  The unit cell is outlined.  (B) Relationship between 
Ac, the area/chain in the plane perpendicular to the chain axis, and AL/2, the area/chain 
in the plane of the bilayer. 
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 As a check on the model used to fit the I(φ) data (see Ch. 3), we can calculate 

the areas from the wide-angle scattering data and compare to the literature.  With the 

above assumptions, the area/chain in the plane of the bilayer for a chain tilted at an 

angle β is given by: 

β
β

sec
3

2
2

)( 2
cc

L d
A

=  (4.4) 

with dcc=2π/qcc.  We assume dcc is independent of the angle β (or equivalently qcc is 

independent of φ) and use the value of qcc near φ=0 (Note in Fig. 4.4C, the dcc value 

changes by ~5%).  The chains have a variety of orientations, and so to calculate the 

average area per chain, we must average over all angles: 

β
β

sec
3

2
2

)(
2

2
cc

LL d
AA

==  (4.5) 

Recall that the area per headgroup is given by AL.  The average 〈secβ〉  cannot be 

computed because secβ becomes infinite as β approaches 90˚.  In our model, this 

would reflect the situation of an infinitely long chain lying in the surface of the 

bilayer; this situation obviously does not apply to the real physical system.   

 Levine and Wilkins (1971) point out this problem and do not attempt to 

approximate 〈secβ〉.  The same problem of calculating 〈secβ〉 is encountered in a 

calculation of areas from NMR data.  The following three approximations have been 

suggested (Petrache et al., 2000): 

βββ

β

β
β

ββ

2

3

2
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≈

≈ −
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The values 〈cosβ〉  and 〈cos2β〉  can be calculated from the chain orientational 

distribution function, using the generalized equation for average values, Eq. 3.34.  

Since none of these substitutions is strictly correct, we will calculate AL using all three 

and compare.  Table 4.3 summarizes our area/headgroup (AL) values calculated by 

combining the lateral positional information (dcc) with the chain orientational 

information from our fits of f(β).  The two DOPC Smol values listed in the table reflect 

the entire range of Smol values measured for different DOPC samples, different levels 

of hydration, or different beamlines.  We also show our results for DPPC at 45˚C 

(DPPC data discussed in Ch. 5).  The GIWAXS results for the area per headgroup are 

compared with area values measured by the Nagle group using the diffuse scattering 

method.   

 

Table 4.3.  Area per headgroup calculations using Eq. 4.5 for DOPC/cholesterol 
(25˚C) and DPPC (45˚C). 

Lipid dcc 
(Å) 

m Smol Replacement for 
〈secβ〉 

AL  Literature 

〈cosβ〉-1=1.58 74.6 
〈cos2β〉〈cosβ〉-3=1.89 89.2 

1.53 0.23 

3 - 3〈cosβ〉 + 〈cos2β〉 =1.58 74.6 
〈cosβ〉-1=1.46 68.8 

〈cos2β〉〈cosβ〉-3=1.69 79.8 

DOPC 
(25˚C) 

4.52 

2.10 0.31 

3 - 3〈cosβ〉 + 〈cos2β〉=1.49 70.4 

71.2 ± 0.5 (25˚C) 
(Pan, 2007) 

 
72.4 ± 0.5 (30˚C)  

(Mathai et al., 2007) 
 

〈cosβ〉-1=1.48 72.8 
〈cos2β〉〈cosβ〉-3=1.72 84.6 

DOPC + 
10% Chol 

(25˚C) 

4.62 2.02 0.30 

3 - 3〈cosβ〉 + 〈cos2β〉=1.50 73.8 

71.4 ± 1.0 (30˚C)   
(Mathai et al., 2007) 

 
〈cosβ〉-1=1.14 63.4 

〈cos2β〉〈cosβ〉-3=1.17 65.0 
DOPC + 

40% Chol 
(25˚C) 

4.91 5.52 0.68 

3 - 3〈cosβ〉 + 〈cos2β〉=1.16 64.4 

64 ± 1.0 (30˚C) 
(Mathai et al., 2007) 

 
〈cosβ〉-1=1.32 62.2 

〈cos2β〉〈cosβ〉-3=1.46 68.8 
DPPC 
(45˚C) 

4.52 3.03 0.44 

3 - 3〈cosβ〉 + 〈cos2β〉=1.36 64.2 

64.3 (50˚C) 
(Kučerka et al., 2006) 
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 The areas calculated using 3 - 3〈cosβ〉 + 〈cos2β〉 as a substitution give the best 

agreement with the literature.  Although this is unlikely to be the preferred way to 

calculate lipid areas, these calculations serve as a gauge of whether or not our model is 

reasonable.  While we would not trust the exact values of the molecular areas for 

fluid-phase lipids calculated using Eq. 4.5 with 〈secβ〉 replaced by 3 - 3〈cosβ〉 + 

〈cos2β〉, the areas calculated in this way should reproduce trends.  For example, if two 

lipids are known to have significantly different molecular areas, an approximate 

calculation of the areas using the GIWAXS data should reproduce this trend, as was 

the case for DOPC and DPPC.  Also, the calculation from the GIWAXS data shows a 

decrease in area when 40% cholesterol is added to DOPC, in agreement with other 

area measurements.   

 Spaar and Salditt (2003) give a general relation for the area per chain based on 

comparison to molecular dynamics simulations for POPC: 
2

4
932.1

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅

cc

L

q
A π . (4.7) 

Spaar and Salditt simply state the relation without thorough explanation, but we 

attempt to explain their reasoning here.  According to molecular dynamics 

simulations, the area per lipid chain for POPC is AL=65.5 Å2 (Heller et al., 1993) and 

the corresponding wide angle scattering maximum is qcc=1.42 Å-1.  We believe Spaar 

and Salditt simply solved for x in the following equation to obtain Eq. 4.7: 
2

42.1*4
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5.65
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⎝
⎛≅

πx . (4.8) 

Equation 4.7 for the area relies on a comparison to the POPC molecular dynamics 

data.  It only takes into effect changes in the lateral positional correlations between 

chains, as described by qcc.  However, the changes in the chain orientational 

distribution should also be taken into consideration.  Equation 4.7 predicts that if two 
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lipids have the same wide-angle scattering maximum, qcc, they should have the same 

area even if their chain order (and thus 〈secβ〉 ) differs.  DOPC at 25˚C and DPPC at 

45˚C do have the same qcc, but different molecular areas.  Although using Eq. 4.5 with 

an approximation for 〈secβ〉 has obvious flaws, we believe this approach provides a 

better way of thinking about calculating areas for fluid phase lipids from the wide-

angle data than Spaar and Salditt's Eq. 4.7.     

4.6 Effect of undulation fluctuations on the angular distribution 

of scattering 

 In Chapters 2 and 3, we discussed sources of error which can affect our Smol 

values calculated from the x-ray data.  These include: 

1. Sample mosaicity (see Section 2.3.5.1) 

2. Geometric broadening (see Section 2.3.5.2) 

3. Absorption of x-rays: most problematic at small φ (see Section 2.3.7.4) 

4. Use of the approximation φL=φ (see Section 3.2.6) 

These effects introduce an error in the angular distribution of scattering (or Smol 

values) of no more than 10%.  These effects produce systematic errors, and so as long 

as we focus on trends in Smol, these errors should not change our conclusions.  More 

problematic are errors which are different for each sample.  In addition to chain order, 

the amplitude of undulations in the bilayer can affect the angular distribution of 

scattering and thus our Smol values.  The magnitude of the undulation fluctuations 

depends on the elastic properties of the bilayer, which are known to change as a 

function of temperature and lipid composition.  For example, studies show that 

cholesterol stiffens fluid-phase phosphatidylcholine bilayers (Evans and Needham, 

1986; Needham and Nunn, 1990; Henriksen et al., 2004).  Thus, in general we can 

expect the undulation amplitude to be smaller for membranes in the Lo phase (higher 
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cholesterol content) than the Ld phase.  Higher chain order and smaller undulation 

amplitude (both expected for samples with more cholesterol) would result in a 

decrease in the angular distribution of scattering.  However, we will show that the 

undulations have a small effect in comparison with chain orientational order on the 

angular distribution of scattering. 

 A fluctuating bilayer can be divided into sections which are tilted at an angle 

βF with respect to the average membrane normal.  This angle is different from β, the 

angle of each chain with respect to the membrane normal.  Nagle and Tristram-Nagle 

(2000) have considered the effect of undulation fluctuations on calculations of 

membrane areas.  The correction involves multiplying the calculated area by  〈sec βF〉 

≈〈cosβF〉-1.  They find that 〈cosβF〉-1≈1.01-1.02 for fluid-phase lipids, which means a 1-

2% correction to the area.  We have found that 〈cosβ〉-1≈1.3-1.6 for fluid-phase DOPC 

and DPPC, where β refers to the orientation of a chain with respect to the membrane 

normal.  Perhaps a more straightforward way of showing that we can ignore the effect 

of the fluctuations is by comparing 〈βF〉1/2, calculated from the membrane elastic 

properties, to 〈β〉1/2, calculated from our fits of the Maier-Saupe orientational 

distribution function to the x-ray data.  For DOPC at 30˚C, 〈βF〉1/2 ≈10˚ (Nagle and 

Tristram-Nagle, 2000).  In comparison, from the fitted Maier-Saupe distribution 

function, we calculate 〈β〉1/2≈50˚ for DOPC at 25˚C.  Our analysis of the angular 

distribution of scattering does not distinguish between β and βF, but the undulations 

are a small effect.  Thus, the large changes we observe in the angular distribution of 

scattering with addition of cholesterol to DOPC are due in most part to changes in the 

chain orientational order. 



 

164 

4.7 Conclusion 

 For all the DOPC/cholesterol mixtures studied, the I(φ) data are well fit by a 

single Maier-Saupe distribution function.  Our analysis of the GIWAXS data shows a 

significant increase in Smol when cholesterol is added to DOPC, in agreement with the 

available literature NMR data.  The areas calculated from the GIWAXS data are also 

in agreement with the literature, showing that the simplified model of hexagonally-

packed straight rods can reproduce trends such as the decrease in area with the 

addition of cholesterol.  Level of hydration of DOPC had only a small effect on our 

values for Smol and the lateral positional ordering, as measured by qcc and the HWHM 

of the wide-angle peak. 
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Chapter 5 - X-ray scattering results for the controversial 
DPPC/cholesterol system 

5.1 Introduction 

  Although the DPPC/cholesterol system has been much studied, there is no 

definitive phase diagram for this system or other similar systems (other saturated 

phospholipids and cholesterol).  Some experiments suggest gel/liquid phase 

coexistence at low temperatures and liquid/liquid phase coexistence at high 

temperatures, while other experiments suggest no evidence of phase coexistence in 

this system.  In this chapter, we will evaluate our x-ray data for DPPC cholesterol 

using the criteria for phase coexistence discussed in Section 3.4.  We will compare our 

DPPC/cholesterol GIWAXS data to 1:1 DOPC/DPPC, a mixture for which 

fluorescence microscopy clearly shows macroscopic liquid/gel phase separation.  We 

will also compare our x-ray results to those reported in the literature for 

DPPC/cholesterol and other similar systems. 

 In addition to an examination of phase behavior, our DPPC/cholesterol 

measurements provide a test of the analytical model for chain scattering (see Ch. 3) as 

applied to model membranes.  Although there is disagreement about the presence of 

phase coexistence in binary mixtures of phospholipids and cholesterol, there are points 

of agreement in the literature, which were outlined in Section 1.5.  Most researchers 

are in agreement that DPPC + 40% cholesterol is in the Lo phase, both below and 

above the Tm for DPPC (41.4˚C).  The trends in DPPC chain order as a function of 

cholesterol content are well-established by NMR and other techniques.  Comparison to 

these measurements, along with the lipid area calculations in Ch. 4, serve as 

calibration of our method.  We will also discuss cases in which the model should not 

be applied.         
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5.2 Proposed DPPC/cholesterol phase diagrams: summary of 

discrepancies in the literature 

 Figure 5.1 shows the phase diagram for DPPC/cholesterol, based on NMR and 

DSC, published by Vist and Davis in 1990.  This phase diagram was not the first that 

proposed phase coexistence in binary phospholipid/cholesterol mixtures, but it is the 

most cited.  At low temperature (T<Tm; DPPC Tm = 41.4˚C), gel and Lo phases 

coexist; the NMR spectra are a superposition of characteristic gel and Lo spectra and 

DSC thermograms are a superposition of two peaks.  At high temperature (T>Tm), Lo 

and Ld phases coexist; however, the evidence for the liquid-liquid coexistence is 

indirect, as the 2H NMR spectra cannot be represented as a superposition of Ld and Lo 

spectra.  A triple point, a line in which gel, Ld, and Lo phases all exist at a single 

temperature, separates the gel-fluid and fluid-fluid coexistence regions.   

 
Figure 5.1. The Vist and Davis phase diagram for DPPC/cholesterol shows gel/liquid 
coexistence at low temperature and liquid/liquid coexistence at high temperature for 
~7.5-22% cholesterol (modified from Vist and Davis, 1990).   
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 Similar phase diagrams have been published for DMPC (Almeida et al., 1992; 

Recktenwald and McConnell, 1981).  Although most phase diagrams for binary 

lipid/cholesterol mixtures are for saturated phospholipids or sphingomyelin, solid-

liquid and liquid-liquid coexistence have also been reported for monounsaturated 

phospholipids, such as POPC (de Almeida et al., 2003; Thewalt and Bloom, 1992).  

Phase diagrams of the type in Fig. 5.1 have also been modeled theoretically (Ipsen et 

al., 1987). 

 A common reason stated for the discrepancies in the literature is that different 

experimental methods probe different time and length scales.  When domains are 

small, assignment of phases can be difficult (Bloom and Thewalt, 1995).  

Fluorescence microscopy images of GUVs are uniform at all temperatures for 

DPPC/cholesterol and other binary phospholipid/cholesterol mixtures (Veatch and 

Keller, 2005b); therefore, phase-separation, if it exists in binary 

phospholipid/cholesterol systems, must consist of domains less than one micron in 

diameter.  Techniques sensitive to smaller scale heterogeneities, including NMR (Vist 

and Davis, 1990), ESR (Sankaram and Thompson, 1991; Shimshick and McConnell, 

1973) , fluorescence polarization (de Almeida et al., 2003), and x-ray diffraction 

(Engelman and Rothman, 1972), suggest that phospholipid/cholesterol mixtures do 

form phase-separated domains.  2H NMR, with a time scale of 10-5 s, probes domains 

with intermediate sizes of 20 nm or more (Bloom and Thewalt, 1995).  ESR and 

fluorescence polarization, with very fast time scales of 10-8 s, are sensitive to domains 

as small as 1 nm (Bloom and Thewalt, 1995).  Time scales are converted to distance 

scales on the basis of how far the lipid molecules diffuse away on the spectroscopic 

time scale.  For example, for fluid phases a typical value for the lateral diffusion 

coefficient, D, is 4 x 10-12 m2/s and a typical value for the 2H NMR  timescale, τNMR, is 

2 x 10-5 s; this gives a distance scale of LNMR=(4D τNMR)1/2=20 nm (Bloom and 
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Thewalt, 1995).  The time it takes for an x-ray scattering event to occur is rapid in 

comparison with diffusion of lipid molecules.  Diffusion of the molecules does not 

significantly affect the scattering pattern, and so even very small domains should be 

detectable by x-ray scattering. 

 Differences in time and distance scales of different techniques do not fully 

account for the discrepancies in the literature.  Even researchers using the same 

techniques as Vist and Davis (DSC and NMR) disagree with their phase diagram, 

especially the high temperature liquid-liquid coexistence region.  Based on DSC 

measurements, McMullen and McElhaney (1995) have proposed a phase diagram for 

DPPC/cholesterol which does include solid-liquid phase coexistence at low 

temperature and liquid-liquid phase coexistence at high temperature; however, their 

diagram includes no triple point and has different phase boundaries than the Vist and 

Davis diagram.  Also, the diagram distinguishes between several types of gel phase 

and two types of Lo phase (one more fluid-like and one more gel-like).  Using NMR, 

Huang et al. (1993) published phase diagrams for DPPC/cholesterol and 

DSPC/cholesterol which do have a solid-liquid coexistence region at low temperature 

but do not have a liquid-liquid coexistence region at high temperature.  The gel/fluid 

coexistence region reported by Huang et al. (1993) extends to much higher cholesterol 

concentrations than the ~22% cholesterol boundary in the Vist and Davis phase 

diagram.   Huang et al. (1993) are careful to note that it is problematic to discuss their 

spectroscopic measurements in terms of a phase diagram because NMR is sensitive to 

heterogeneities (at least 10's of nanometers in size, but do not have to be macroscopic) 

which are not necessarily thermodynamic phases.  Thewalt and Bloom (1992) do not 

attempt to assign phases in the high-temperature region of their POPC/cholesterol 

phase diagram because 2H NMR measurements do not give direct evidence of liquid-

liquid phase coexistence.  Based on molecular volume data, Heerklotz and 
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Tsamaloukas (2006) suggest POPC/cholesterol mixtures are neither phase-separated 

nor ideal one-phase mixtures, but instead highly nonideal mixtures.  

 X-ray diffraction studies on binary phospholipid/cholesterol mixtures also give 

conflicting results.  Some report evidence of solid-liquid coexistence at low 

temperature (Engelman and Rothman, 1972), while others report no evidence of any 

type of phase separation at any temperature or cholesterol content (Hui and He, 1983; 

Ladbrooke et al., 1968).  Most of the evidence of phase coexistence from the x-ray 

literature concern gel-fluid coexistence (observation of either two dL or two dcc 

spacings below Tm).  However, Petrache et al. (2005) claim that their lamellar repeat 

versus % cholesterol data for DMPC/cholesterol mixtures above Tm, which shows a 

sudden decline in dL spacing values at 30% cholesterol, provide evidence of Ld/Lo 

phase coexistence.  This evidence is indirect, as Petrache et al. (2005) observed only a 

single dL spacing.  To our knowledge, there are no reports of two dL or two dcc 

spacings in binary lipid/cholesterol mixtures at high temperature which would provide 

direct evidence of Ld/Lo coexistence.   

5.3 2D diffraction images for DPPC/cholesterol mixtures 

compared to DOPC/DPPC  

 Figure 5.2 shows the 2D diffraction images and sector plots for DPPC, DPPC 

+ 10% cholesterol, DPPC + 25% cholesterol, and DPPC + 40% cholesterol at 25˚C.  

Cholesterol causes a significant broadening (q-width) of the wide-angle scattering.  

Also, we observe no off-equatorial peak (indicative of no Lβ' phase) for DPPC + 10% 

cholesterol, consistent with previous results that the Lβ' phase disappears at ~7.5% 

cholesterol (Ladbrooke et al., 1968).  The most obvious change in the data is the 

increase in the q-width.  Since the φ-width remains narrow, this indicates a change 

from the gel to Lo for DPPC + 40% cholesterol, in agreement with the literature.   
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Figure 5.2. Left column shows 2D GIWAXS images taken at 25˚C for DPPC plus: (A) 
0% cholesterol; (B) 10% cholesterol; (C) 25% cholesterol; (D) 40% cholesterol.  The 
right column shows the corresponding I(q) sector plots (see Section 2.3.7.3).  The top 
trace corresponds to the smallest φ range.  (February 2006, D-1)   
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 Figure 5.3 shows 2D GIWAXS images and sector plots for DPPC + 15% 

cholesterol and 1:1 DOPC/DPPC at 25˚C.  According to Vist and Davis, DPPC + 15% 

cholesterol is in the middle of a two-phase gel/Lo coexistence region.  While GUV 

images at 25˚C of binary DPPC/cholesterol mixtures are uniform (Feigenson and 

Buboltz, 2001; Veatch, 2004; Veatch and Keller, 2003b), images of GUVs show 

coexisting gel and fluid domains of greater than one micron in size for 1:1 

DOPC/DPPC at 25˚C (Veatch and Keller, 2003b).  For 1:1 DOPC/DPPC, two separate 

peaks, one broad and one narrow, are evident in the I(q) plots at small φ (Fig. 5.3b).  

The narrow peak is characteristic of gel phase with qcc=1.50 Å-1 and dcc=4.19 Å.  For 

large φ, we observe only one broad peak.  The gel phase (corresponding to the sharp 

peak) has high orientational order, and thus the angular distribution of scattering 

should be narrower, explaining the disappearance of the narrow peak at larger φ.  

 Although there is agreement that there is a large region of gel/fluid coexistence 

in the DOPC/DPPC system, the phase boundaries are not clearly defined in the 

literature.  (For instance, the phase diagram published by Lentz et al., 1976 is 

confusing.)  From recent FRET measurements, the gel/fluid phase coexistence region 

is in the following range at 25˚C: 35%-95% DPPC (J. T. Buboltz, personal 

communication).  The 1:1 DOPC/DPPC sample is therefore 75% fluid phase and 25% 

gel phase. 

 We do not observe an off-equatorial peak in the GIWAXS image for 1:1 

DOPC/DPPC cholesterol, indicating that the gel phase is Lβ and not Lβ' as in pure 

DPPC at 25˚C.  Since the choice of grayscale can affect judgment, we also compare 

I(φ) plots for 1:1 DOPC/DPPC and DPPC at 25˚C (Fig. 5.4).  In contrast to 1:1 

DOPC/DPPC, the (1,1) peak from the Lβ' gel phase appears in the I(φ) plots as a 

maximum near φ~30˚ for DPPC.  Note that in another binary phospholipid mixture, 

1:1 DOPC/DSPC, we have observed the coexistence of Lβ' and Ld phases at 25˚C by 
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both GIWAXS on oriented samples and powder WAXS. (Oriented data were taken on 

this system in May 2005 at D1-station and powder data were taken in October 2005 on 

the Gruner rotating anode.  The powder data appears in Zhao et al., 2007a).  It is 

important that we established that Lβ, not Lβ', is coexisting with a fluid phase in 1:1 

DOPC/DPPC because we want to use the GIWAXS pattern for 1:1 DOPC/DPPC as a 

control for fluid/Lβ coexistence.  In Vist and Davis' proposed gel/Lo coexistence 

region for DPPC/cholesterol, there is no evidence of tilted chains in the gel phase.  

 

Figure 5.3. Left column shows 2D GIWAXS images taken at 25˚C for (A) DPPC + 
15% cholesterol and (B) 1:1 DOPC/DPPC.  The right column shows the 
corresponding I(q) sector plots (see Section 2.3.7.3).  The top trace corresponds to the 
smallest φ range.  (February 2006, D-1)   
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Figure 5.4.  I(φ) plots for DPPC and 1:1 DOPC/DPPC.  The peak at φ~30˚ in the 
DPPC plot is indicative of the Lβ' phase.  (February 2006, D-1)    

  

 In contrast to 1:1 DOPC/DPPC, we do not observe two peaks in the I(q) curves 

for DPPC + 15 % cholesterol (Fig. 5.3A), or any other concentration of cholesterol at 

25˚C (Fig. 5.2).  The literature is in disagreement concerning the wide-angle scattering 

data for DPPC/cholesterol mixtures.  Ladbrooke et al. (1968) studied MLV mixtures 

of DPPC with 0%, 5%, 7.5%, 12.5%, 20%, 32%, and 50% cholesterol at 25˚C.  In 

agreement with our results, they observed only a single wide-angle peak for 

cholesterol concentrations of 7.5%-50%, which continuously changes from a sharp 

peak at 7.5% (dcc=4.2 Å) to a broad band at 50% cholesterol (dcc =4.45 Å).  Below 
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7.5% cholesterol, two wide-angle bands, corresponding to the Lβ' phase, were 

observed in agreement with our GIWAXS data and earlier higher compositional 

resolution data on MLV samples taken by the Feigenson lab (see Fig. 5.10A).  

Engelman and Rothman (1972) studied mixtures of DPPC with 0%, 20%, 25%, 30%, 

33%, 36%, and 42% cholesterol at 20˚C.  In contrast to our results, for mixtures 

containing 20%-33% cholesterol, they observed two wide-angle diffraction bands, one 

sharp line (dcc=4.15 Å) and one diffuse band (dcc =4.7 Å), which they interpret as 

evidence of gel/fluid phase coexistence. 

 Figure 5.5 shows the 2D diffraction images and sector plots for DPPC with 

0%, 10%, 25%, and 40% cholesterol at 45˚C.  The diffuse wide-angle scattering shows 

that all of these samples are in a fluid phase.  The angular distribution of scattering (φ-

width) becomes narrower with the addition of cholesterol.  Despite the disagreement 

over the presence of liquid-liquid phase coexistence in DPPC/cholesterol mixtures 

with T>Tm, there is general agreement that DPPC + 40% cholesterol forms a single Lo 

phase at 45˚C.  We do not observe two wide-angle peaks for any of the cholesterol 

concentrations we examined: 10%, 15% (data not shown), 25%, and 40% cholesterol.  

Even if there were fluid-fluid coexistence, we would not expect to observe two peaks 

in the wide angle data because the diffuse scattering from Ld and Lo phases would 

overlap.  Instead, we will evaluate the angular distribution of scattering (I(φ) plots) to 

determine if the data are well fit by assuming one order parameter or two order 

parameters (see Section 5.5).  
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Figure 5.5.  Left column shows 2D GIWAXS images taken at 45˚C for DPPC plus (A) 
0% cholesterol; (B) 10% cholesterol; (C) 25% cholesterol; (D) 40% cholesterol.  The 
right column shows the corresponding I(q) sector plots (see Section 2.3.7.3).  The top 
trace corresponds to the smallest φ range.  (February 2006, D-1) 
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5.4 Lateral positional ordering: qcc and HWHM data 

 For most of the DPPC/cholesterol mixtures, the scattering falls off rapidly as a 

function of φ.  For such well-ordered samples, it is difficult to determine a peak 

position (qcc) and half-width (HWHM) for the larger φ values by the method described 

in Section 2.3.7.5.  Instead of showing qcc(φ) and HWHM(φ) plots, values of qcc, dcc, 

and HWHM (for a φ=5-10˚ sector) are listed in Table 5.1. 

 
 

Table 5.1.  Values of qcc, dcc and HWHM data for DPPC/cholesterol 
mixtures (φ=5-10˚).  (February 2006, D-1) 

T 
(˚C) 

mol% 
cholesterol 

qcc 
(Å-1) 

dcc=2π/ qcc 
(Å) 

HWHM 
(Å-1) 

10 1.48 4.25 0.08 
15 1.46 4.30 0.09 
25 1.45 4.33 0.12 

25 

40 1.38 4.55 0.18 
0 1.39 4.52 0.15 
10 1.39 4.52 0.15 
15 1.37 4.59 0.14 
25 1.38 4.55 0.14 

45 

40 1.35 4.65 0.16 

 

 At 25˚C, the HWHM increases as a function of cholesterol content, indicating 

that cholesterol is causing disorder in the tight packing of the DPPC chains.  The 

HWHM more than doubles for 40% cholesterol compared with 10% cholesterol.  At 

45˚C, where all compositions are in a fluid phase, the HWHM is relatively constant 

(~0.15 Å-1) as a function of cholesterol content.  As with DOPC, the addition of 

cholesterol to DPPC causes a decrease in qcc (increase in dcc), indicating the chain 

segments are further apart on average. 
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5.5 Fits to I(φ) plots: one order parameter or two?  

 Figure 5.6 shows I(φ) plots as well as fits assuming one chain order parameter 

compared with fits assuming two order parameters for DPPC/cholesterol mixtures at 

25˚C.  For cholesterol concentrations of 15%, 25%, and 40%, the I(φ) data are well-fit 

in the steeply changing low-φ region, but the fits are poorer at large φ when compared 

with fits to the DOPC/cholesterol data (see Ch. 4).   

 Figure 5.6 also shows the fit to the 1:1 DOPC/DPPC data at 25˚C, our control 

for gel/fluid phase coexistence.  Although two peaks were clear in the I(q) sector plots 

for 1:1 DOPC/DPPC at 25˚C (Fig. 5.3B), the I(φ) data are well-fit by assuming only 

one order parameter.  In fact, the double order parameter fit returns the same value (to 

within 0.01 units) for both m1 and m2.  We have written "NA" in the "R2" and "Accept 

fit?" columns for the double order parameter fits because they are equivalent to the 

single order parameter fits.  See Table 5.2, which also includes the fit results for the 

45˚C data for 1:1 DOPC/DPPC (data not shown).  

 

Table 5.2.  Results of fits to I(φ) data for 1:1 DOPC/DPPC at 25˚C and 45˚C.  

T 
(˚C) 

m* Smol* R2 Accept fit? 

m= 3.61 ± 0.06  S= 0.51 ± 0.01 0.9994 YES 25 
m1=m2  S1=S2= 0.51  NA NA 

m= 1.99 ± 0.12  S= 0.29 ± 0.02  0.9977 YES 45 
m1=m2  S1=S2= 0.29  NA NA 

* If only one order parameter is given, the fit is to Eq. 3.29.  If two order parameters 
are listed, the fit is to Eq. 3.32.  If "m1=m2" or "S1=S2" are listed, this means these 
parameters were the same to within ±0.01.  
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Figure 5.6.  I(φ) plots at 25˚C for 1:1 DOPC/DPPC and DPPC/cholesterol mixtures are 
shown by colored data points.  Black lines are Maier-Saupe fits assuming one order 
parameter (left panel) and two order parameters (right panel) with representative 
residual plots for the fits to the DPPC + 25% cholesterol (cyan) and DPPC + 40% 
cholesterol (red) data shown beneath.  Each plot is offset from the one below by 0.15 
normalized intensity units.  If the double order parameter fit is not shown, it gave the 
same value (to within 0.01 units) for both order parameters. 
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Figure 5.7.  I(φ) plots at 45˚C for DPPC/cholesterol mixtures are shown by colored 
data points.  Black lines are Maier-Saupe fits assuming one order parameter (left 
panel) and two order parameters (right panel) with representative residual plots for the 
fits to the DPPC + 25% cholesterol (cyan) and DPPC + 40% cholesterol (red) data 
shown beneath.  Each plot is offset from the one below by 0.15 normalized intensity 
units.  If the double order parameter fit is not shown, it gave the same value (to within 
0.01 units) for both order parameters.  (February 2006, D-1) 
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 We will first attempt to explain why only one order parameter is necessary to 

fit the data for 1:1 DOPC/DPPC at 25˚C.  Consideration of the flaws of the model as 

applied to coexisting gel and fluid phases will help with interpretation of the 

DPPC/cholesterol data.  The Leadbetter model was developed to interpret the I(φ) data 

based on chain orientational disorder (Ch. 3).  In gel phases, chain orientational order 

is high.  The finite size of the chains will lead to an apparent angular spread, which 

dominates the φ-width for the gel phase; however, the model neglects the form factor 

resulting from the finite size of the chains (see Section 3.2.5).  Since the model is not 

applicable to highly ordered gel phases, we should not be surprised if the results of the 

fits to the I(φ) data are puzzling when the model is applied to a sample containing gel 

phase.   

 The DPPC/cholesterol data at 25˚C should be interpreted with caution because 

the q-widths of the wide angle scattering becomes significantly larger with the 

addition of cholesterol (see Table 5.1).  This suggests a change from gel-like packing 

at low cholesterol contents to liquid-like packing at high cholesterol content.  

Although the Lo phase is more highly ordered than the Ld phase, there is still 

orientational disorder, particularly toward the ends of the chains (see Section 1.4.2).  

Therefore, the Leadbetter model is still applicable to the Lo phase (higher cholesterol 

content) but may not be applicable to the low-cholesterol (gel-phase) data.   

 Table 5.3 summarizes the results of the fits for the DPPC/cholesterol data.  The 

DPPC + 10% cholesterol data are well fit by assuming a single order parameter.  For 

cholesterol concentrations of 15%, 25%, and 40%, the data are not as well fit by 

assuming a single order parameter as for the DOPC/cholesterol data (see Ch. 4).  

However, the single order parameter fit does describe the data well in the steeply-

changing low φ region (see Fig. 5.6), and the error on the Smol values are reasonable 

(<2% relative error; see Table 5.3).  Similar fitting to I(φ) data using the Maier-Saupe 
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orientational distribution function has been observed for highly ordered smectic 

polymer liquid crystals.  For Smol>0.8, the fit to the polymer data is reasonable in the 

steeply changing low φ region, but underestimates the data at medium φ values and 

overestimates the data at large φ values (see Fig.7d in Davidson et al., 1995).   

 

Table 5.3.  Results of fits to I(φ) data for DPPC/cholesterol mixtures at 25˚C and 45˚C. 

T 
(˚C) 

Mol% 
Chol 

m* Smol* Phase 
Fractions 

R2 Accept 
fit? 

m= 8.79 ± 0.18 S= 0.81 ± 0.01   0.9985 YES 10 
m1=m2 S1=S2=0.81  NA  NA NA 
m= 16.25 ± 0.72 S= 0.90 ± 0.01   0.9937 ? 15 
m1= 7.98 ± 0.77 
m2= 28.9 ± 2.4 

S1= 0.79 ± 0.02 
S2= 0.95 ± 0.01   

P1= 0.53 ± 0.04 
P2= 0.47 ± 0.04 

0.9994 NO 

m= 22.7 ± 1.2  S= 0.93 ± 0.01   0.9911 ? 25 
m1= 5.80 ± 0.42 
m2= 32.9 ± 0.8 

S1= 0.70 ± 0.02 
S2= 0.95 ± 0.01   

P1= 0.37 ± 0.01  
P2= 0.63 ± 0.01  

0.9998 NO 

m= 16.8 ± 0.8  S= 0.91 ± 0.01   0.9934 ? 

25 

40 
m1= 5.01 ± 0.73 
m2= 23.8 ± 1.1 

S1= 0.65 ± 0.06 
S2= 0.94 ± 0.01   

P1= 0.38 ± 0.02  
P2= 0.62 ± 0.02 

0.9995 NO 

m=  3.03 ± 0.11  S= 0.44 ± 0.01   0.9982 YES 0 
m1=m2 S1= S2=0.44   NA NA NA 
m= 4.29 ± 0.06  S=  0.59 ± 0.01   0.9995 YES 10 
m1= m2 S1=S2=0.59 NA NA NA 
m= 5.97 ± 0.13  S= 0.71 ± 0.01   0.9984 YES 15 
m1= 3.93 ± 0.57 
m2= 10.5 ± 1.6 

S1= 0.55 ± 0.06 
S2= 0.85 ± 0.03   

P1= 0.70 ± 0.08  
P2= 0.30 ± 0.08 

0.9998 NO 

m= 9.11 ± 0.32 S= 0.82 ± 0.01  0.9957 YES 25 
m1= 5.28 ± 0.30 
m2= 17.5 ± 1.1 

S1= 0.67 ± 0.02 
S2= 0.91 ± 0.01   

P1= 0.65 ± 0.03 
P2= 0.35 ± 0.03 

0.9999 NO 

m= 11.26 ± 0.37  S= 0.86 ± 0.01   0.9964 YES 

45 

40 
m1= 5.49 ± 0.87 
m2= 17.0 ± 1.5 

S1= 0.68 ± 0.06 
S2= 0.91 ± 0.01   

P1= 0.47 ± 0.05 
P2= 0.53 ± 0.05 

0.9995 NO 

* If only one order parameter is given, the fit is to Eq. 3.29.  If two order parameters are listed, the fit is 
to Eq. 3.32.  If "m1=m2" or "S1=S2" are listed, this means these parameters were the same to within 
±0.01.   

  

 In general, there is agreement in the literature that DPPC + 40% cholesterol is 

in a single Lo phase at 25˚C, and yet the single order parameter fit to these data are 

just as poor as the fits to the 15% and 25% cholesterol data (see the left residual plot in 

Fig. 5.6).  DPPC + 15% cholesterol is in the middle of most phase diagrams claiming 
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gel/fluid coexistence.  In the Vist and Davis two-phase region, 25% cholesterol is just 

outside the gel/fluid two-phase region, while the two-phase region extends to 30% 

cholesterol or more according to other researchers (Scheidt et al., 2005 and Huang et 

al., 1993).      

 Despite the imperfect single order parameter fits, we rejected the inferences 

from the good double order parameter fits for DPPC + 15%, 25%, and 40% 

cholesterol at 25˚C for the following two reasons: 

1. Based on the polymer literature, we do not expect the single order parameter 

fits to work perfectly, particularly in the larger φ region, for very well-ordered 

systems (Smol>0.8). 

2. We should be cautious in interpreting data when the sample may contain gel 

phase. 

 In Table 5.3, "?" was put in the "Accept Fit?" column for DPPC + 15%, 25%, 

and 40% cholesterol because the model works poorly for well-ordered (Smol>0.8) 

systems.  Although we should be cautious in making quantitative comparisons, we can 

safely conclude that at 25˚C, DPPC chain orientational order is high at all cholesterol 

concentrations.            

 Figure 5.7 shows I(φ) plots as well as fits assuming one chain order parameter 

compared with fits assuming two order parameters for DPPC/cholesterol mixtures at 

45˚C.  The HWHM values are similar (~0.15 Å-1) for all of these mixtures at 45˚C; 

therefore, these samples are liquid phases and the model is more applicable to these 

high-temperature data.  In general, the data are better fit by assuming a single order 

parameter than at 25˚C.  For the 25% and 40% cholesterol data, the fitted Smol values 

are high (0.82 and 0.86, respectively), and so we should not expect a perfect fit: these 

data are well fit in the low φ region but not as well in the high φ region.  DPPC + 40% 

cholesterol and DPPC + 25% cholesterol are both in a single Lo phase at 45˚C 
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according to the Vist and Davis phase diagram, but DPPC + 25% cholesterol may be 

in the Ld/Lo two-phase region according to some phase diagrams (Scheidt et al., 

2005).  The DPPC + 15% cholesterol I(φ) data is well-fit by assuming a single order 

parameter.  Although the phase diagrams of Vist and Davis (1990) and McMullen and 

McElhaney (1995) are very different, DPPC + 15% cholesterol at 45˚C is within the 

Ld/Lo phase coexistence region according to both diagrams.  Fits to the I(φ) plots give 

no conclusive evidence of phase separation at 45˚C for the DPPC/cholesterol mixtures 

we examined.       

 An important test of the GIWAXS method for quantifying chain order is to 

reproduce the well-studied trend in chain order for DPPC/cholesterol as a function of 

cholesterol content.  Ipsen et al. (1990) have calculated Smol from the Vist and Davis 

NMR average quadrupolar splitting (M1, first moment data) using the following 

equation (Davis, 1979): 

max

1
mol 4

3322
δνπ

MSS CD ×== , (5.1) 

where 2δνmax is the maximum value of the quadrupolar coupling constant for a 

deuteron on a CH bond (δνmax=125 kHz).  Figure 5.8 compares the Smol values from 

GIWAXS with Smol values from a recent 2H NMR study which included a higher 

range of cholesterol concentrations than the study by Vist and Davis (Scheidt et al., 

2005).  At 45˚C, Smol increases monotonically as a function of cholesterol content and 

stops increasing rapidly at ~25% cholesterol.  This high temperature behavior for 

chain order as a function of sterol concentration has also been observed for 

DPPC/ergosterol (Hsueh et al., 2005) and has been modeled theoretically for general 

sterol-phospholipid mixtures (McConnell and Radhakrishnan, 2006).   
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Figure 5.8.  Comparison of x-ray and NMR order parameter data for DPPC/cholesterol 
mixtures: Smol vs. mol% cholesterol at 45˚C.  NMR data are from Scheidt et al., 2005.  
The error bars for the x-ray Smol are all ± 0.01, and are covered by the symbols. 

  

 The trends in the data are in agreement, but the x-ray order parameters are 

higher compared with the NMR Smol.  The two methods make very different 

assumptions, and so this disparity in the Smol values is not surprising.  A major 

difference between the two methods is that the x-ray analysis makes the assumption 

that the chains are infinitely long straight rods.  In NMR, separate segmental order 

parameters are measured and then averaged. 

 At 25˚C (below Tm), changes in the angular distribution of scattering are small 

in comparison with those at 45˚C (above Tm) as the chains remain orientationally well-

ordered as cholesterol is added at low temperatures.  Although the effect is small, most 

studies agree that below Tm, cholesterol causes a decrease in phospholipid chain 

conformational and orientational order [Cortijo et al., 1982 (uses IR); Haberkorn et al., 

1977 (uses 2H NMR)].  The first moment data of Scheidt et al. (2005) also indicate a 
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small decrease in DPPC chain order with the addition of cholesterol as the bilayer 

transitions from gel to Lo.  Using NMR, Huang et al. (1993) report almost no change 

in DPPC chain orientational order as a function of cholesterol below Tm.  Although 

chain orientational order remains high, the lateral positional order changes from gel-

like to liquid-like, as shown by the increase in the q-width of the WAXS peak (see 

Fig. 5.2 and Table 5.1).  However, the chains must remain orientationally well-ordered 

so that the phospholipid head groups can protect the cholesterol from water (see 

discussion of the "umbrella model" in Huang and Feigenson, 1999).  We are hesitant 

to compare the x-ray Smol values for different cholesterol contents at 25˚C because the 

model may not apply to the lower cholesterol samples (gel phase), but our data 

indicate the chains remain orientationally well-ordered as a function of cholesterol 

content at 25˚C, in agreement with other studies.   

5.6 Effects of hydration on DPPC/cholesterol phase behavior 

 The recent work of Karmakar et al. using x-ray diffraction on oriented 

DPPC/cholesterol multilayers shows that caution must be taken in comparing phase 

diagrams for fully-hydrated systems with those for systems below full hydration.  In 

their first reports of DPPC/cholesterol phase behavior, the phase diagram includes a 

region of Lβ' phase coexisting with a ripple phase (see Fig. 5.9a and Karmakar and 

Raghunathan, 2003, 2005; Karmakar et al., 2005).  This new Pβ phase is distinct from 

the ripple phase (Pβ') found in pure DPPC (and with small amounts of cholesterol) for 

a narrow temperature range just below Tm.  (See Katsaras et al., 2000 for a discussion 

of ripple phases.)  The researchers identified the Pβ phase from the off-qz axis 

"satellite" reflections in the lamellar repeat data, and they identify the region of Lβ'/Pβ 

coexistence by the appearance of two lamellar repeat peaks (Fig. 5.9B). 
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Figure 5.9.  Comparison of our oriented sample data for DPPC/cholesterol with that of 
Karmakar et al.  (A) Phase diagram for DPPC/Cholesterol at 98% relative humidity 
(RH) (Fig. 1a in Karmakar and Raghunathan, 2005).  (B) Lamellar repeat diffraction 
data showing the coexistence of Lβ' and Pβ for DPPC + 10% cholesterol at 10˚C and 
98% RH (Fig. 4a in Karmakar and Raghunathan, 2005).  (C) Our DPPC + 10% 
cholesterol data at 25˚C has only one lamellar repeat.  (D) No off-qz axis peaks are 
visible in our DPPC + 10% cholesterol data.  (C) and (D) are scattering from the same 
sample but (C) is a short exposure to focus on the strong lamellar orders and (D) is a 
long exposure to focus on the weak off-specular reflections. 
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 In contrast, we observed no evidence of two lamellar repeat spacings in our 

oriented data for DPPC + 10% cholesterol at 25˚C, in the Lβ'/Pβ coexistence region 

reported by Karmakar et al. (see Fig. 5.9C).  Also, we did not observe off-qz axis 

reflections at any cholesterol concentration.  In Fig. 5.9D, which covers the q range 

where Karmakar et al. observed the off-qz axis reflections (q~0.1 Å-1), only diffuse 

scattering is observed.  Also, for cholesterol concentrations of 10% and above, we 

observed no evidence of the Lβ' phase.  Figure 5.10 shows lamellar repeat data and 

wide-angle data for fully-hydrated MLVs at room temperature, ~25˚C  (Unpublished 

data from the Feigenson lab taken at CHESS by  J. T. Buboltz, J. Huang, and G. W. 

Feigenson).  These powder data, taken at higher compositional resolution, confirm our 

results for oriented samples.  The sharp peak at 1.48 Å-1, characteristic of the Lβ' 

phase, disappears by 7% cholesterol (Fig. 5.10A).  Only one lamellar repeat spacing 

was observed at all cholesterol concentrations (Fig. 5.10B), in agreement with 

Ladbrooke et al. (1968).  The lamellar repeat increases dramatically at low 

concentrations, which has been explained by thickening of the bilayer due to the loss 

of chain tilt and increased hydration (Ladbrooke et al., 1968; McIntosh, 1978).  

 Although their data were taken at 98% relative humidity (RH), Karmakar et al. 

compared their phase diagram with the Vist and Davis phase diagram for fully 

hydrated DPPC/cholesterol mixtures (Karmakar and Raghunathan, 2003, 2005; 

Karamakar et al., 2005).  They attempt to explain why the Pβ phase was not observed 

previously.  In their most recent paper on this system, Karmakar et al. (2006) report 

results for DPPC/cholesterol mixtures at 100% RH, which agree with our findings: 

their x-ray diffraction measurements do not show any evidence of phase separation 

(only one lamellar repeat)  and the Lβ' phase disappears by ~5 mol% cholesterol.  This 

is a good example of the caution that must be taken in comparing phase diagrams for 

systems at different levels of hydration. 
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Figure 5.10.  (A) Wide-angle I(q) data for MLV samples of DPPC/cholesterol 
mixtures showing the disappearance of the characteristic scattering from Lβ'.  (B) 
Lamellar repeat data for DPPC/cholesterol MLV samples as a function of the mole 
fraction of cholesterol.  These are unpublished data collected by J. T. Buboltz, J. 
Huang, and G. W. Feigenson. 
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5.7 Effect of equilibration on DPPC/cholesterol phase behavior 

 In addition to hydration, temperature equilibration time can have a large effect 

on lipid phase behavior, especially when gel phases, with slow lateral diffusion, are 

involved.  For example, Mortensen et al. (1988) observed very different low-

temperature phase behavior for deuterated DMPC/cholesterol mixtures after storage at 

5˚C for months compared with the phase behavior observed just after preparation and 

after annealing at 30˚C. 

 Figure 5.11 shows our x-ray lamellar diffraction data for DPPC/cholesterol 

MLV samples.  After annealing the bulk sample at high temperature and then loading 

into a capillary (see Section 2.4.1), a small second first order peak was observed at 

25˚C in the DPPC + 10% cholesterol sample (Fig. 5.11A).  The diffuse scattering 

between rings could be due to etiher incomplete equilibration or stacking disorder due 

to frustrated packing of the MLVs.  At 45˚C, only one lamellar repeat with sharp rings 

was observed (Fig. 5.11B).  After the capillary was cooled back down to 25˚C, the 

diffuse scattering remained but the second peak disappeared (Fig. 5.11C).  For DPPC 

+ 25% cholesterol (Fig. 5.11E), the second order lamellar peak was split even after 

cycling the temperature to 45˚C twice.  Only one lamellar repeat was observed for 

DPPC + 15% cholesterol and DPPC + 40% cholesterol (Fig. 5.11D and F).  The 

diffuse scattering between rings in the DPPC + 10% cholesterol and 25% cholesterol 

data at 25˚C is evidence that these samples were not completely equilibrated despite 

annealing of the bulk sample and temperature cycling of the capillary (see Fig. 

5.11A,C, and E).  These temperature-dependent observations were reproduced with a 

second set of MLV samples.  In contrast to the powder sample data, we only observed 

a single lamellar repeat for all the DPPC/cholesterol oriented samples.  The data show 

that thermal history and sample preparation have large effects on equilibration of 

DPPC/cholesterol mixtures at low temperature.   
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Figure 5.11.  Lamellar diffraction data from capillary MLV DPPC/cholesterol 
mixtures showing the first two orders of diffraction (data taken on rotating anode).  
(A) DPPC + 10% cholesterol at 25˚C after loading into the capillary (the bulk sample 
was annealed from high temperature);  the two lamellar repeats are 80.7 Å (strong) 
and 63.8 Å (weak).  (B) DPPC + 10% cholesterol at 45˚C; the single lamellar repeat is 
67.4 Å.  (C) DPPC + 10% cholesterol at 25˚C after the capillary was cooled down 
from 45˚C; the lamellar repeat is 80.5 Å and the second weak first order ring visible in 
(A) is gone.  (D) DPPC + 15% cholesterol at 25˚C after loading into the capillary; the 
single lamellar repeat is 78.1 Å.  (E) The second order diffraction from DPPC + 25% 
cholesterol has two rings even after cycling the temperature to 45˚C twice; the repeat 
spacings are 72.6 Å and 77.1 Å.  (F) DPPC + 40% cholesterol at 25˚C immediately 
after loading into the capillary; the single lamellar repeat is 67.4 Å.     
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 In previous x-ray measurements made in the Feigenson lab, rapid solvent 

exchange (RSE) or low-temperature trapping (lyophilization from chloroform) was 

used to prepare MLV samples (Huang et al., 1999).  The data presented in Fig. 5.10B 

were from samples prepared by rapid solvent exchange.  For these samples, only a 

single lamellar repeat was observed at 25˚C for DPPC with 0-66% cholesterol (66% is 

the solubility limit of cholesterol in DPPC).  Rapid solvent exchange and low-

temperature trapping are advantageous because they give reproducible results for the 

maximum solubility of cholesterol in lipid bilayers, evidence that there is thorough 

mixing of the cholesterol and phospholipid.  Complete mixing of components is often 

a problem with other methods, such as adding excess water to a dried lipid film 

followed by freeze/thaw (the method used for the MLV data presented in Fig. 5.11).  

However, we chose to use the freeze/thaw method instead of rapid solvent exchange 

because this technique is only suitable for low lipid:water ratios (~1 mg/mL).  

Although DPPC can be concentrated by ultracentrifugation, mixtures containing 

DOPC (low density lipid) and pure water cannot be concentrated; we wanted to use 

the same method for all of our MLV samples.       

 Some reports indicate two lamellar repeats for DPPC/cholesterol mixtures at 

low cholesterol concentration and at low temperature.  Rand et al. (1980) report two 

lamellar repeat spacings for DPPC with ~3-10% cholesterol  at temperatures below 

30˚C.  Meyer et al. (1997) report similar behavior for DPPC/cholesterol mixtures 

annealed at 4˚C for weeks to months.  Interestingly, the observation of double lamellar 

repeat spacings is in the single phase (pure gel) portion of the Vist and Davis phase 

diagram.  In most of the Vist and Davis two-phase coexistence region (~7.5-22% 

cholesterol), Rand et al. (1980) and Meyer et al. (1997) observed a single lamellar 

repeat.   
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 Although Karmakar et al. do not observe two lamellar repeat spacings for 

DPPC/cholesterol bilayers in excess water, they do report coexisting gel and fluid 

domains in fluorescence micrographs of GUVs of DPPC with 5-10% cholesterol at 

23˚C; they only observe domains when the GUVs are less than 20 μm in size 

(Karmakar et al., 2005).  According to other reports, GUVs composed of binary 

mixtures of DPPC and cholesterol are uniform (Veatch and Keller, 2003b; Feigenson 

and Buboltz, 2001).  Fluorescence microscopy of GUVs can be problematic when gel 

phases are involved, especially if only one dye is used, the case with the data of 

Karmakar et al.  In two-dye imaging of two-component mixtures (e.g. DLPC/DPPC or 

DOPC/DSPC), the Feigenson lab has on occasion observed three domains, in violation 

of the Gibbs phase rule (G. W. Feigenson and J. Zhao, personal communication).  In 

such pictures, two of the domains are bright (one labeled by a gel-preferring probe and 

the other labeled by an Ld-preferring probe) and one domain is black.  G. W. 

Feigenson believes the black domains are kinetic artifacts.  If only a single, Ld-

preferring probe is used, the black domains cannot be distinguished from the dark gel 

phase domains.  In what appears to be a violation of the Gibbs phase rule if the 

samples were at equilibrium, Li and Cheng (2006) have interpreted three coexisting 

domains (one black and two fluorescently labeled) as evidence of two types of gel 

phase coexisting with the Ld phase for binary DOPC/DPPC or DLPC/DPPC mixtures. 

 Such observations from x-ray diffraction and fluorescence microscopy show 

that caution must be taken in interpreting results for lipid systems in which gel phases 

are involved.  Kinetic artifacts and changes in phase behavior after long equilibration 

can make comparing the data from different experiments problematic.  
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5.8 What can we learn about DPPC/cholesterol phase behavior 

from x-ray experiments? 

 As with other techniques, there are many discrepancies in the x-ray literature 

concerning binary mixtures of phospholipids and cholesterol.  We have made the 

following observations concerning DPPC/cholesterol phase behavior: 

1. Two dL-spacings were not observed at any cholesterol concentration in 

oriented samples.  The lamellar repeat spacing data for MLV samples at low 

temperature were dependent on thermal history.   

2. Two dcc-spacings were not observed in the GIWAXS data at any cholesterol 

concentration at either 25˚C or 45˚C. 

3. At 45˚C, the I(φ) data can be described by a single order parameter fit.  

Because our model should not be applied to cases of gel/fluid coexistence, we 

cannot make conclusions about the I(φ) data at 25˚C. 

Based on our x-ray data, we observe no evidence of phase coexistence in 

DPPC/cholesterol mixtures.   

 There are discrepancies in the x-ray diffraction literature for temperatures 

below Tm (discussed earlier and summarized here).  There are some reports of phase 

coexistence below Tm based on the observation of two lamellar repeat spacings or two 

chain-chain correlation (dcc) spacings.  Meyer et al. (1997) and Rand et al. (1980) 

report two lamellar repeat spacings for DPPC with 3-10% cholesterol, in a range 

assigned to a single gel phase by Vist and Davis (1990).  For mixtures containing 

20%-33% cholesterol at 20˚C, Engelman and Rothman (1972) observed two wide-

angle diffraction bands, one sharp line (dcc=4.15 Å) and one diffuse band (dcc=4.7 Å), 

which they interpret as evidence of gel/fluid phase coexistence.       

 In other reports, there is no evidence of phase separation based on the lamellar 

repeat or wide angle x-ray data.  For DPPC with 0%-50% cholesterol at 25˚C, 
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Ladbrooke et al. (1968) only observed a single lamellar repeat spacing.  In the wide-

angle region, Ladbrooke et al. observed only a single wide-angle peak for cholesterol 

concentrations of 7.5%-50%, which continuously changes from a sharp peak at 7.5% 

(dcc =4.2 Å) to a broad peak at 50% cholesterol (dcc =4.45 Å).  For their measurements 

on DPPC/cholesterol oriented samples at full hydration, Karmakar et al. (2006) report 

no evidence of phase separation from x-ray diffraction.  They conclude that they did 

not observe a gel/fluid coexistence region because their steps along the composition 

axis were coarse (~2.5% cholesterol).  This reasoning makes no sense because the 

postulated two-phase region is much larger than their compositional steps (~7.5%-

22% cholesterol according to Vist and Davis, 1990).  Many experiments reporting 

phase coexistence, including Vist and Davis, use even fewer data points.  Hui and He 

(1983), Needham et al. (1988), and Finean (1990) observed only one lamellar repeat 

and one wide-angle band for DMPC/cholesterol mixtures, which are thought to have 

similar phase behavior to DPPC/cholesterol.  Although they do not observe evidence 

of phase coexistence, Hui and He (1983) and Finean (1990) observe a change in 

behavior of the lamellar repeat data at 20%-30% cholesterol, where the spacings above 

and below Tm merge.  Researchers have also observed abrupt changes in other 

physical properties at 20% cholesterol, including the lateral diffusion coefficients 

(Rubenstein et al., 1979).  Hui and He (1983) and Finean (1990) interpret their x-ray 

data in terms of complex formation instead of phase separation.  We cannot comment 

on the abrupt change at 20% cholesterol because our data were not taken at high 

enough temperature and compositional resolution. 

 Our null results based on x-ray measurements for phase coexistence in 

DPPC/cholesterol mixtures are important in the context of other mixtures, where we 

do observe evidence of gel/fluid or fluid/fluid phase coexistence.  In 1:1 DOPC/DPPC, 

we observed two wide-angle diffraction bands, one broad (fluid-like) and one narrow 



 

195 

(gel-like).  In the next chapter, we report data for ternary mixtures of DOPC, DPPC, 

and cholesterol.  In a region of known fluid-fluid coexistence, these mixtures have two 

lamellar repeat spacings (reproducible with no thermal hysteresis).  In addition, the 

I(φ) data is best described by a two-order parameter fit for the ternary mixtures (see 

Ch. 6).  In contrast to DPPC/cholesterol mixtures, for which fluorescence images of 

GUVs are uniform, fluorescence microscopy shows direct evidence of gel/fluid 

coexistence in binary DOPC/DPPC mixtures and fluid/fluid coexistence in ternary 

mixtures (Veatch and Keller, 2003b).   

 If mixtures of DPPC/cholesterol do phase-separate, why are the experimental 

observations so different from other cases of gel/fluid (e.g. binary DOPC/DPPC 

mixtures) or fluid/fluid (e.g. ternary DOPC/DPPC/cholesterol mixtures) phase 

coexistence?  In the case of gel/fluid coexistence, we could make the argument that 

phase behavior is very dependent on equilibration time and that is why we did not 

observe evidence of gel/fluid coexistence in DPPC/cholesterol mixtures.  Yet, 

gel/fluid coexistence was clear in the GIWAXS data for 1:1 DOPC/DPPC, which 

underwent the same annealing and equilibration steps as the DPPC/cholesterol 

mixtures. 

 Evidence from other methods (DSC, NMR, ESR, FRET, etc.) indicate that 

DPPC/cholesterol, and other binary phospholipid/cholesterol mixtures, do not behave 

as ideal mixtures (see Section 5.1).  While phase coexistence is a popular 

interpretation of the experimental observations, other models have been proposed for 

DPPC/cholesterol interactions.  McConnell et al. explain the high-temperature 

spectroscopic data by the formation of condensed complexes between phospholipids 

and cholesterol (McConnell and Radhakrishnan, 2006; McConnell and Vrljic, 2003).  

Based on the umbrella model of microscopic interactions of cholesterol with 

phospholipids (Huang and Feigenson, 1999), G. W. Feigenson and J. Huang have 
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postulated that cholesterol causes small-scale defects in the bilayer in which the 

physical properties of the phospholipids neighboring the cholesterol are changed 

(unpublished manuscript entitled "Continuous phase changes: a new picture of 

cholesterol/dipalmitoylphosphatidylcholine mixing in aqueous bilayers").  The region 

affected by Huang and Feigenson's cholesterol defects or McConnell's condensed 

complexes would have different spectroscopic signals than the surrounding region, 

explaining why the NMR or ESR data appears to be a superposition of two signals. 

 Consideration of the interactions between phospholipids and cholesterol 

naturally leads to the following question: if phase separation exists in binary 

phospholipid/cholesterol mixtures, what is the driving force?  The umbrella model 

emphasizes the repulsive nature of cholesterol-cholesterol interactions.  Cholesterol 

has too small a headgroup to cover its hydrophobic part, and so cholesterol would 

prefer to be neighboring phospholipids than other cholesterol molecules.  The 

condensed complex model emphasizes an attractive interaction between cholesterol 

and saturated lipids.  Both models predict nonideal mixing for 

phospholipid/cholesterol mixtures because cholesterol disrupts the phospholipid 

packing. 

 In both the umbrella model and the condensed complex model, it is unclear 

why a cholesterol-rich phase would form.  In binary mixtures of DOPC (a low melting 

lipid) and DPPC (a high melting lipid), like-like interactions are favorable, explaining 

why these mixtures phase separate into a DOPC-rich liquid phase and a DPPC-rich gel 

phase below the Tm of DPPC.  In ternary mixtures of DOPC, DPPC, and cholesterol, 

several interactions are important: the unfavorable interaction between DOPC and 

DPPC, the unfavorable interaction between cholesterols, and the preferential 

interaction between cholesterol and DPPC (saturated phospholipid).  In order to model 

liquid-liquid immiscibility in ternary mixtures, Radhakrishnan and McConnell (2005) 
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needed to add the unfavorable DOPC-DPPC interaction to the condensed complex 

model.  If cholesterol-DPPC interactions are more favorable than cholesterol-

cholesterol interactions, true for both the condensed complex model and umbrella 

model, it is unclear why DPPC and cholesterol would phase-separate.  In order for the 

mixture to phase-separate, other interactions must be important:  Ipsen et al. (1987) 

have modeled phase separation in DPPC-cholesterol by treating the system as a 

pseudoternary mixture of cholesterol, chain-disordered DPPC, and chain-ordered 

DPPC.  Sankaram and Thompson (1990) propose a similar model in which the length 

mismatch between the cholesterol and phospholipid lead to two populations of chains, 

one shorter and one longer. 

 Models and experiments all point to the complicated nature of cholesterol-

phospholipid interactions: if binary lipid/cholesterol mixtures were simple and well-

behaved, there would be agreement.  Discrepancies in the x-ray literature concern the 

low temperature region of the phase diagram.  If any more experiments were to be 

done in this portion of the phase diagram, powder samples, not oriented samples, 

should be used for the following reasons: 

1. If gel-fluid phase coexistence is present, there should be two reproducible 

wide-angle peaks in the powder x-ray I(q) data.   

2. Keeping oriented samples at full hydration for long time periods (days-months) 

is difficult.  As described in Section 5.7, the low temperature region is 

particularly problematic because gel phases, which require long equilibration 

times, are involved.  If further experiments were done to explain the x-ray 

literature discrepancies, they should involve a careful investigation of the 

effects of equilibration time.   

In addition to equilibration time, experimental factors of possible importance are 

hydration and temperature cycling (annealing protocol).  Much powder x-ray data, 
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especially wide-angle data, are taken on samples with a 1:1 (v/v) water/lipid ratio, 

which is close to the minimum required for full hydration (Lecuyer and Dervichian, 

1969).  In our experience, mixing is very difficult in such highly viscous samples; 

incomplete mixing, which affects hydration, may help explain some of the 

discrepancies.  Systematically separating out the effects of these experimental 

variables (equilibration time, hydration, annealing protocol, etc.) would require great 

patience, and may not fully explain all the discrepancies in the literature.  

5.9 Conclusion   

 We have evaluated our x-ray data in terms of the following criteria for phase 

coexistence: observation of two wide-angle spacings, observation of two lamellar 

repeats, or necessity of two chain order parameters to fit the I(φ) data.  We observed 

no evidence of phase coexistence in DPPC/cholesterol mixtures below or above the 

DPPC Tm using x-ray diffraction.  Below Tm, there are discrepancies in the x-ray 

literature: some report evidence of solid-liquid coexistence (Engelman and Rothman, 

1972), while others report no evidence of phase separation (Ladbrooke et al., 1968).  

Because of the difficulties in equilibration when gel phases are involved, sorting out 

these discrepancies would be a difficult undertaking. 

 Our null result for phase coexistence in DPPC/cholesterol is interesting in 

comparison to other mixtures, where we do find evidence of phase coexistence in the 

x-ray scattering data.  In 1:1 DOPC/DPPC at 25˚C, two wide-angle peaks are evidence 

of gel/fluid coexistence.  In ternary DOPC/DPPC/cholesterol mixtures (see Ch. 6) 

known to phase separate into coexisting Ld and Lo domains, we observed two 

lamellar repeats and a double order parameter fit was required to fit the I(φ) data.  

Unlike DPPC/cholesterol, in these systems phase coexistence has been previously 

observed by fluorescence microscopy (Veatch and Keller, 2003b).  
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 We also used our DPPC/cholesterol data to calibrate our method for 

quantifying chain order in model membranes using GIWAXS and the fitting model 

presented in Ch. 3.  The trends in Smol calculated from the x-ray data agree well with 

trends in chain order measured by 2H NMR for DPPC/cholesterol mixtures at 45˚C.  

Also, we have determined that the model for fitting the I(φ) data should not be applied 

(or at least very cautiously interpreted) if gel phase may be present.  As gel/fluid 

coexistence should be evident by two non-overlapping wide angle peaks (in oriented 

or powder samples), this is not a major limitation. 
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Chapter 6 - A new approach using GIWAXS for studying 
Ld/Lo phase coexistence 

6.1 Introduction 

 In 2002 Gandhavadi et al. reported a single lamellar repeat spacing in MLVs 

composed of 1:1:1 DOPC/brain sphingomyelin (BSM)/cholesterol; they concluded 

that their x-ray scattering results showed no evidence of three-dimensional phase 

separation in this mixture.  Since Dietrich et al. (2001) reported macroscopic liquid-

liquid coexistence in this same mixture using fluorescence microscopy imaging of 

GUVs, many experimenters have used microscopy to examine Ld/Lo phase 

coexistence in model membrane systems.  The discrepancy between the x-ray work of 

Gandhavadi et al. and the fluorescence microscopy results of Dietrich et al. is 

particularly relevant at this time because of recent work documenting the artifacts with 

fluorescent probes in model membrane systems (Ayuyan and Cohen, 2006; Veatch et 

al., 2007a; Zhao et al., 2007b).    

 Since x-ray scattering requires no probe, evidence of liquid-liquid coexistence 

using this technique could be particularly illuminating, even for a well-studied mixture 

like DOPC/DPPC/cholesterol.  Our GIWAXS experiments on oriented samples and 

lamellar repeat spacing measurements on MLVs both indicate the presence of phase 

coexistence for mixtures of DOPC/DPPC/cholesterol previously shown to exhibit 

Ld/Lo coexistence by fluorescence microscopy and NMR (Veatch and Keller, 2003b; 

Veatch et al., 2004; Veatch et al., 2007b).  This chapter is devoted to these x-ray 

results and a comparison to the NMR and fluorescence microscopy results of Veatch 

et al. 
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6.2 GIWAXS results for ternary mixtures  

 In Chapters 4 and 5, we showed that GIWAXS on oriented lipid samples, 

unlike powder WAXS, can be used to distinguish the Lo phase from the Ld phase.  

The Lo phase has a narrower angular (φ) distribution of scattering.  We also showed 

that we can quantitatively relate the angular distribution of scattering to the chain 

orientational distribution to obtain the average chain order parameter, Smol, for model 

membrane systems.  This section presents our GIWAXS data for ternary mixtures of 

DOPC/DPPC/cholesterol.  For these mixtures at low temperatures, two distributions of 

chains (two values of Smol) are needed to fit the GIWAXS data, providing evidence of 

phase coexistence.  Also, the order parameters give physical information about the 

coexisting phases.    

6.2.1 2D diffraction images: liquid-liquid coexistence not 

visually apparent 

 Figures 6.1-6.4  show 2D diffraction data for the four ternary mixtures we 

studied which are in a liquid-liquid coexistence region at low temperature (1:1 

DOPC/DPPC + 15%,  20%, 25%, and 30% cholesterol).  From the diffraction data, as 

the temperature is increased, the angular (φ) distribution of scattering widens.  

Fluorescence microscopy and NMR results indicate that the miscibility transition 

temperature, Tmix, for these mixtures is near 30˚C (Veatch and Keller, 2003b).  Below 

this temperature, there are coexisting Ld and Lo phases.  However, the presence of 

two coexisting phases is not obvious from the GIWAXS images taken at 15˚C and 

25˚C.  This result is expected, as scattering from coexisting Ld and Lo phases is likely 

to overlap.  In Section 6.2.3, we will show that the GIWAXS data for these mixture at 

15˚C and 25˚C can be deconvolved into scattering from two different distributions of 

chains.  
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Figure 6.1.  Left column shows 2D GIWAXS images for 1:1 DOPC/DPPC + 15% 
cholesterol at the following temperatures: (A) 15˚C; (B) 25˚C; (C) 35˚C; (D) 45˚C.  
The right column shows the corresponding I(q) sector plots (see Section 2.3.7.3).  The 
top trace corresponds to the smallest φ range.  (October 2006, G-1) 
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Figure 6.2.  Left column shows 2D GIWAXS images for 1:1 DOPC/DPPC + 20% 
cholesterol at the following temperatures: (A) 15˚C; (B) 25˚C; (C) 35˚C; (D) 45˚C.  
The right column shows the corresponding I(q) sector plots (see Section 2.3.7.3).  The 
top trace corresponds to the smallest φ range.  (February 2006, D-1) 
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Figure 6.3.  Left column shows 2D GIWAXS images for 1:1 DOPC/DPPC + 25% 
cholesterol at the following temperatures: (A) 15˚C; (B) 25˚C; (C) 35˚C; (D) 45˚C.  
The right column shows the corresponding I(q) sector plots (see Section 2.3.7.3).  The 
top trace corresponds to the smallest φ range.  (October 2006, G-1) 



 

205 

Figure 6.4.  Left column shows 2D GIWAXS images for 1:1 DOPC/DPPC + 30% 
cholesterol at the following temperatures: (A) 15˚C; (B) 25˚C; (C) 35˚C; (D) 45˚C.  
The right column shows the corresponding I(q) sector plots (see Section 2.3.7.3).  The 
top trace corresponds to the smallest φ range.  (February 2006, D-1) 
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6.2.2 Lateral positional ordering  

 Although the peak position, qcc, and HWHM for the I(q) plots can be 

misleading for large φ due to water scattering (see Section 2.3.7.5 and Section 4.3), we 

present these plots here because of an interesting trend in the data only observed for 

the ternary mixtures at low temperature (see Figs. 6.5-6.8).  For most samples, there is 

a monotonic increase in the peak position as a function of φ angle, probably because 

the isotropic high q water peak is a more significant fraction of the scattering at larger 

φ.  However, for the ternary mixtures, at temperatures of 30˚C and below, qcc 

decreases as a function of φ up to φ~20˚, and then begins to increase.  This trend is 

also detectable in the sector plots (Fig. 6.1-6.4).  At high temperatures, the peak 

position is monotonically increasing as a function of φ.  

 A possible explanation for this trend is that as φ increases, the Ld phase begins 

to dominate the wide-angle scattering.  If qcc is smaller for the Ld phase in comparison 

with the Lo phase, this would explain the dip in the qcc(φ) plot.  Although we do not 

have x-ray data for the endpoints of the tie lines, we can determine if this is a 

reasonable explanation based on our qcc values for DOPC/cholesterol and 

DPPC/cholesterol mixtures.  Table 6.1 shows the qcc and dcc values for 

DOPC/cholesterol and DPPC/cholesterol mixtures at 25˚C.  For 1:1 DOPC/DPPC + 

15% cholesterol at 25˚C, the compositions of the coexisting phases (the tie line 

endpoints) are: Ld = 57% DOPC / 34% DPPC / 9% Chol and Lo = 16% DOPC / 58% 

DPPC / 26% Chol (Veatch et al., 2007b).  If we assume the qcc value for the Ld 

composition is close to that of DOPC + 10% cholesterol (qcc=1.36 Å-1)  and the qcc 

value for the Lo composition is close to that of DPPC + 25% cholesterol  

(qcc=1.45 Å-1), the above explanation makes sense.   
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Figure 6.5.  Wide-angle peak position, qcc(φ), and HWHM(φ) plots for 1:1 
DOPC:DPPC + 15% cholesterol at different temperatures. 

 

 

Figure 6.6.  Wide-angle peak position, qcc(φ), and HWHM(φ) plots for 1:1 
DOPC:DPPC + 20% cholesterol at different temperatures. 
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Figure 6.7.  Wide-angle peak position, qcc(φ), and HWHM(φ) plots for 1:1 
DOPC:DPPC + 25% cholesterol at different temperatures. 

 

 

Figure 6.8.  Wide-angle peak position, qcc(φ), and HWHM(φ) plots for 1:1 
DOPC:DPPC + 30% cholesterol at different temperatures. 
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Table 6.1.  Values of qcc and dcc for DPPC/cholesterol 
and DOPC/cholesterol mixtures at 25˚C (φ=5-10˚).  

 mol% 
cholesterol 

qcc 
(Å-1) 

dcc=2π/ qcc 
(Å) 

10 1.48 4.25 
15 1.46 4.30 
25 1.45 4.33 

DPPC 

40 1.38 4.55 
0 1.39 4.52 
10 1.36 4.62 

DOPC 

40 1.28 4.91 

 

 A larger qcc value for the Lo phase (more cholesterol) in comparison with the 

Ld phase (less cholesterol) may seem counterintuitive based on our knowledge of 

binary mixtures of phospholipid and cholesterol.  For binary mixtures of phospholipid 

and cholesterol, we have observed that qcc decreases as a function of cholesterol 

concentration (see Table 6.1).  Based on the NMR tie line data, the ternary mixtures at 

low temperature separate into an Ld phase (lower cholesterol content) and an Lo phase 

(higher cholesterol content).  We might expect the Lo phase, not the Ld phase, to have 

a smaller qcc.  However, the Ld and Lo phases have different amounts of DOPC and 

DPPC, which appear to dominate the relative qcc values. 

 The wide-angle HWHM values are very similar for the different mixtures and 

for different temperatures: at low φ, the HWHM is about 0.16 Å-1.  This agrees with 

our DOPC/cholesterol and DPPC/cholesterol data, for which we observed that the 

fluid phases, no matter whether they are orientationally ordered or disordered, have a 

similar distribution of nearest neighbor distances as measured by HWHM.  Thus, the 

q-widths are not a criterion for distinguishing the different liquid phases.   
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6.2.3 Fits to I(φ) data: one order parameter or two? 

 To our knowledge, no one has reported fitting I(φ) data for a liquid crystal 

known to have coexisting phases using the method described in Ch. 3.  If the chain 

ordering in the two phases is different, then a combination of two chain orientational 

distribution functions may be necessary to describe the system.  We have found that 

this is indeed the case for the DOPC/DPPC/cholesterol mixtures we studied.     

 Figures 6.9-6.12 show the I(φ) plots with fits assuming one order parameter 

(Eq. 3.29) and two order parameters (Eq. 3.32) for the mixtures 1:1 DOPC + 15%, 

20%, 25%, and 30% cholesterol.  For all the mixtures, for temperatures of 35˚C and 

above, the data were well-fit with one order parameter.  For temperatures below 35˚C, 

we needed two different order parameters in order to fit the data well.  Later in the 

chapter (see Fig. 6.18), we plot the GIWAXS order parameter data as well as NMR 

order parameter data and lamellar repeat data for these mixtures.  

 Note that at temperatures below 35˚C, the single order parameter fits miss the 

data for all values of φ (the residual has structure instead of being randomly positive or 

negative).  This differs with the imperfect single order parameter fits to the DPPC + 

cholesterol data, where the fit and data matched fairly well in the steeply changing 

low-φ region (see Fig. 5.7).  As mentioned in Ch. 5, the fits to the DPPC + cholesterol 

data look like fits to I(φ) for a very well-ordered liquid crystal.  Another reason to 

reject the single order parameter fits below 35˚C is that the normalized data go below 

the zero offset, meaning the Iback parameter is larger than the high-φ data.  For some of 

the DPPC + cholesterol data, the choice between the single and double order 

parameter fits was not clear-cut.  In contrast, the choice of accepting the two-order 

parameter fit for the ternary mixtures below 35˚C is more clear-cut.   
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 The double order parameter fit always fits the data as well as or better than the 

single order parameter fit.  The double order parameter fit was rejected if the 

following two conditions were met (see also Section 3.3.5): 

1. The single order parameter fit was reasonable.  The single order parameter fit 

was judged as reasonable if the residual plot was fairly random and the 

normalized data fell above the zero offset. 

2. Any of the double order parameter fitting parameters (Iback, m1, m2, A1, or A2) 

had error of greater than 1/3 of the value of the parameter.  This means the 

confidence interval was 2/3 the size of the parameter.    

 We interpret the poor single-order parameter fit as evidence of phase 

coexistence at low temperature.  A criticism of this interpretation is that the form of 

the distribution function may change as a function of temperature.  For example, the 

sample may be in a single phase, but the chain orientational distribution may no longer 

be well-described by the Maier-Saupe form.  Levine and Wilkins (1971) required two 

different models, each describing a single distribution of chains, in order to describe 

their egg lecithin I(φ) data at two different levels of hydration.  We cannot disprove 

the possibility that the system may be described well by a completely different 

distribution function for a single population of chains at low temperature.  However, 

our interpretation of the fitting results as evidence for phase coexistence at low 

temperature is consistent with microscopy and NMR (see Section 6.4).  

 Furthermore, since the wide-angle scattering is diffuse for all of these mixtures 

(large HWHM~0.16 Å-1), the coexisting phases must both be liquids.  The two 

different Smol values tell us about chain order in the two phases.  Thus, the GIWAXS 

data give information about phase coexistence and physical information about the 

coexisting phases.  Table 6.2 summarizes the fitting data for all of the mixtures.  Phase 

fractions are listed, but there are caveats about phase fractions (see Section 3.3.3).  
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Figure 6.9.  I(φ) plots at different temperatures for 1:1 DOPC/DPPC + 15% 
cholesterol are shown by colored data points.  Black lines are Maier-Saupe fits 
assuming one order parameter (left panel) and two order parameters (right panel) with 
representative residual plots for the fits to the 30˚C (orange) and 35˚C (magenta) data 
shown beneath.  Each plot is offset from the one below by 0.15 normalized intensity 
units.  For temperatures of 35˚C and above, the data were well-fit with one order 
parameter.  For temperatures of 30˚C and below, two order parameters were needed to 
obtain a good fit.  The double order parameter fits are not shown for 40˚C and 45˚C 
because they gave the same value (within 0.01 units) for both order parameters. 



 

213 

 

 

 

Figure 6.10.  I(φ) plots at different temperatures for 1:1 DOPC/DPPC + 20% 
cholesterol are shown by colored data points.  Black lines are Maier-Saupe fits 
assuming one order parameter (left panel) and two order parameters (right panel) with 
representative residual plots for the fits to the 25˚C (green)  and 35˚C (magenta) data 
shown beneath.  Each plot is offset from the one below by 0.15 normalized intensity 
units.  For temperatures of 35˚C and above, the data were well-fit with one order 
parameter.  For temperatures of 25˚C and below, two order parameters were needed to 
obtain a good fit.  The double order parameter fit is not shown for the 45˚C data 
because it gave the same value (within 0.01 units) for both order parameters.   
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Figure 6.11.  I(φ) plots at different temperatures for 1:1 DOPC/DPPC + 25% 
cholesterol are shown by colored data points.  Black lines are Maier-Saupe fits 
assuming one order parameter (left panel) and two order parameters (right panel) with 
representative residual plots for the fits to the 30˚C (orange) and 35˚C (magenta) data 
shown beneath.  Each plot is offset from the one below by 0.15 normalized intensity 
units.  The double order parameter fit was rejected for the 35˚C data because of the 
large error in the fitted parameters (the error in m1 was greater than 1/3 of m1) despite 
the clear improvement in the residual when two order parameters are assumed.  For 
temperatures of 30˚C and below, two order parameters were required to fit the data. 
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Figure 6.12.  I(φ) plots at different temperatures for 1:1 DOPC/DPPC + 30% 
cholesterol are shown by colored data points.  Black lines are Maier-Saupe fits 
assuming one order parameter (left panel) and two order parameters (right panel) with 
representative residual plots for the fits to the  25˚C (green)  and 35˚C (magenta) data 
shown beneath.  Each plot is offset from the one below by 0.15 normalized intensity 
units.  The double order parameter fit was rejected for the 35˚C data because of the 
large error in the fitted order parameters (the error in m1 was greater than 1/3 of m1) 
despite the clear improvement in the residual when two order parameters are assumed. 
For temperatures of 35˚C and above, the data were well-fit with one order parameter.  
For temperatures of 25˚C and below, two order parameters were needed to obtain a 
good fit.  

 

   

 



 

216 

 

 

 

Table 6.2.  Results of fits to I(φ) data for 1:1 DOPC/DPPC with varying amounts of 
cholesterol. 

Mol% 
Chol 

T 
(˚C) 

m* Smol* Phase 
Fractions 

R2 Accept 
fit? 

m= 11.5 ± 1.1  S= 0.86 ± 0.01    0.9695 NO 15 
m1= 3.69 ± 0.23  
m2= 30.6 ± 1.3  

S1= 0.52 ± 0.03  
S2= 0.95 ± 0.01 

P1= 0.67 ± 0.01  
P2= 0.33 ± 0.01  

0.9995 YES 

m= 8.96 ± 0.86 S= 0.82 ± 0.02    0.9693 NO 20 
m1= 3.48 ± 0.12 
m2= 29.8 ± 0.9 

S1=0.50 ± 0.01 
S2= 0.95 ± 0.01 

P1= 0.72 ± 0.01  
P2= 0.28 ± 0.01  

0.9998 YES 

m= 7.08 ± 0.58 S= 0.76 ± 0.02    0.9782 NO 25 
m1= 3.34 ± 0.14 
m2= 25.7 ± 1.1 

S1= 0.48 ± 0.02  
S2= 0.94 ± 0.01 

P1= 0.77 ± 0.01  
P2= 0.23 ± 0.01  

0.9998 YES 

m= 5.15 ± 0.29 S= 0.66 ± 0.02    0.9910 NO 30 
m1= 3.16 ± 0.14 
m2= 20.1 ± 1.5 

S1= 0.46 ± 0.02  
S2= 0.92 ± 0.01 

P1= 0.85 ± 0.01  
P2= 0.15 ± 0.01  

0.9998 YES 

m= 3.47 ± 0.07 S= 0.50 ± 0.01    0.9993 YES 35 
m1= 1.43 ± 3.52 
m2= 4.61 ± 2.01 

S1= 0.21 ± 0.56  
S2= 0.61 ± 0.18 

P1= 0.58 ± 0.36  
P2= 0.42 ± 0.36  

0.9997 NO 

m= 3.25 ± 0.04 S= 0.47 ± 0.01    0.9998 YES 40 
m1=m2 S1=S2=0.47 NA NA NA 
m= 2.96 ± 0.05 S= 0.43 ± 0.01    0.9995 YES 

15 

45 
m1=m2 S1=S2=0.43 NA  NA NA 
m= 11.2 ± 1.0 S= 0.86 ± 0.01    0.9747 NO 15 
m1= 3.61 ± 0.25 
m2= 27.6 ± 1.2 

S1= 0.51 ± 0.03  
S2= 0.94 ± 0.01 

P1= 0.66 ± 0.01  
P2= 0.34 ± 0.01  

0.9995 YES 

m= 7.54 ± 0.53 S= 0.78 ± 0.02    0.9837 NO 25 
m1= 3.48 ± 0.17 
m2= 21.6 ± 1.0 

S1= 0.50 ± 0.02  
S2= 0.93 ± 0.01 

P1= 0.73 ± 0.01  
P2= 0.27 ± 0.01  

0.9998 YES 

m= 4.65 ± 0.09 S= 0.62 ± 0.01    0.9989 YES 35 
m1= 3.43 ± 0.38 
m2= 9.80 ± 1.92 

S1= 0.49 ± 0.05  
S2= 0.83 ± 0.04 

P1= 0.82 ± 0.07  
P2= 0.18 ± 0.07  

0.9998 NO 

m= 3.71 ± 0.04 S= 0.53 ± 0.01    0.9998 YES 

20 

45 
m1=m2 S1=S2=0.53 NA NA NA 

* If only one order parameter is given, the fit is a one order parameter fit (Eq. 3.29).  If 
2 order parameters are listed, the fit assumes 2 order parameters (Eq. 3.32).  If 
"m1=m2" or "S1=S2" are listed, this means these parameters were the same to within 
±0.01. 
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 Table 6.2 (continued) 

Mol% 
chol 

T 
(˚C) 

m* Smol* Phase 
Fractions 

R2 Accept 
fit? 

m= 10.6 ± 0.8 S= 0.85 ± 0.01   0.9811 NO 15 
m1= 4.71 ± 0.16 
m2= 28.3 ± 0.9 

S1= 0.62 ± 0.01  
S2= 0.95 ± 0.01 

P1= 0.66 ± 0.01  
P2= 0.34 ± 0.01  

0.9998 YES 

m= 8.65 ± 0.60 S= 0.81 ± 0.02    0.9836 NO 20 
m1= 4.05 ± 0.18 
m2= 23.8 ± 1.1 

S1= 0.56 ± 0.02  
S2= 0.94 ± 0.01 

P1= 0.70 ± 0.01 
P2= 0.30 ± 0.01  

0.9998 YES 

m= 7.58 ± 0.47 S= 0.78 ± 0.02    0.9876 NO 25 
m1= 3.68 ± 0.15 
m2= 20.4 ± 0.8 

S1= 0.52 ± 0.02  
S2= 0.92 ± 0.01 

P1= 0.72 ± 0.01  
P2= 0.28 ± 0.01  

0.9993 YES 

m= 5.98 ± 0.26 S= 0.71 ± 0.01    0.9868 NO 30 
m1= 3.29 ± 0.28 
m2= 14.1 ± 1.2 

S1= 0.48 ± 0.04  
S2= 0.89 ± 0.01 

P1= 0.75 ± 0.02 
P2= 0.25 ± 0.02  

0.9999 YES 

m= 4.90 ± 0.12 S= 0.64 ± 0.01   0.9943 YES 35 
m1= 2.30 ± 0.77 
m2= 7.85 ± 1.0 

S1= 0.34 ± 0.11  
S2= 0.79 ± 0.03 

P1= 0.65 ± 0.07 
P2= 0.35 ± 0.07  

0.9997 NO 

m= 4.52 ± 0.09 S= 0.61 ± 0.01     YES 40 
m1= 1.79 ± 1.8 
m2= 6.13 ± 1.2 

S1= 0.27 ± 0.28  
S2= 0.72 ± 0.06 

P1= 0.56 ± 0.14 
P2= 0.44 ± 0.14  

 NO 

m= 4.03 ± 0.06  S= 0.56 ± 0.01     YES 

25 

45 
m1= 2.02 ± 4.0 
m2= 5.16 ± 2.3 

S1= 0.30 ± 0.59  
S2= 0.66 ± 0.17 

P1= 0.51 ± 0.44 
P2= 0.49 ± 0.44 

 NO 

m= 9.47 ± 0.67  S= 0.83 ± 0.01    0.9828 NO 15 
m1= 3.61 ± 0.23 
m2= 21.9 ± 0.9 

S1= 0.51 ± 0.03  
S2= 0.93 ± 0.01 

P1= 0.65 ± 0.01  
P2= 0.35 ± 0.01  

0.9997 YES 

m= 7.37 ± 0.39 S= 0.77 ± 0.01    0.9904 NO 25 
m1= 3.38 ± 0.25 
m2= 16.4 ± 0.9 

S1= 0.49 ± 0.03  
S2= 0.91 ± 0.01 

P1= 0.69 ± 0.02  
P2= 0.31 ± 0.02  

0.9998 YES 

m= 5.33 ± 0.15 S= 0.67 ± 0.01   0.9975 YES 35 
m1= 2.37 ± 0.92 
m2= 8.60 ± 1.23 

S1= 0.35 ± 0.13 
S2= 0.81 ± 0.03 

P1= 0.65 ± 0.07  
P2= 0.35 ± 0.07  

0.9996 NO 

m= 4.70 ± 0.07 S= 0.62 ± 0.02    0.9994 YES 

30 

45 
m1= 2.64 ± 1.49 
m2= 6.61 ± 1.53 

S1= 0.39 ± 0.21  
S2= 0.74 ± 0.07 

P1= 0.59 ± 0.19  
P2= 0.41 ± 0.19  

0.9998 NO 

* If only one order parameter is given, the fit is a one order parameter fit (Eq. 3.29).  If 
2 order parameters are listed, the fit assumes 2 order parameters (Eq. 3.32).  If 
"m1=m2" or "S1=S2" are listed, this means these parameters were the same to within 
±0.01. 
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6.3 Double lamellar repeat spacings: is seeing (in reciprocal 

space) believing?   

 Fluorescence microscopy has a major advantage over other techniques for 

detecting phase coexistence: seeing is believing.  Fitting to a model is not required to 

determine if there are two coexisting phases from a GUV image with clear-cut 

domains.  Other methods for detecting phase coexistence, such as NMR, FRET, and 

GIWAXS, are less direct.  For these methods, extensive analysis including comparison 

to models and data for other samples may be required to determine if a sample has 

phase-separated.  Observation of two resolvable peaks in the x-ray diffraction data is a 

direct criterion to determine that a mixture has phase-separated; however, observation 

of only a single lamellar repeat does not necessarily imply the absence of phase 

coexistence (see Section 3.4).  

 Figure 6.13 shows our lamellar repeat spacing data for fully-hydrated MLV 

(powder) samples for mixtures of DOPC/DPPC/cholesterol known to exhibit liquid-

liquid coexistence at low temperatures.  Figures 6.14-6.17 show the same data on a 

larger scale.  For 1:1 DOPC:DPPC + 15% cholesterol (Fig. 6.13A), two first order and 

two second order peaks are clearly visible for temperatures of 25˚C and below.  At 

30˚C, two second order peaks are visible, but two peaks are not resolvable on the first 

order.  For the other mixtures (Fig. 6.13B-D), the first order is not clearly separated 

into two peaks at any temperature, but at low temperatures there is a shoulder on the 

first order.  We relied on the second order to calculate lamellar repeat spacings which 

are summarized in the next section (see Fig. 6.18). 
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Figure 6.13.  I(q) plots for MLV samples of 1:1 DOPC/DPPC + varying amounts of 
cholesterol: (A) 15%; (B) 20%; (C) 25%; (D) 30%.  The first order and second order 
lamellar peaks are visible.  (Rotating anode measurement)   
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Figure 6.14.  (A) First order lamellar diffraction peaks and (B) second order lamellar 
diffraction peaks for MLV samples of 1:1 DOPC/DPPC + 15% cholesterol.  The 
vertical scale in (B) is 4 times larger than the scale in (A). 
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Figure 6.15.  (A) First order lamellar diffraction peaks and (B) second order lamellar 
diffraction peaks for MLV samples of 1:1 DOPC/DPPC + 20% cholesterol.  The 
vertical scale in (B) is 4 times larger than the scale in (A). 
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Figure 6.16.  (A) First order lamellar diffraction peaks and (B) second order lamellar 
diffraction peaks for MLV samples of 1:1 DOPC/DPPC + 25% cholesterol.  The 
vertical scale in (B) is 4 times larger than the scale in (A). 
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Figure 6.17.  (A) First order lamellar diffraction peaks and (B) second order lamellar 
diffraction peaks for MLV samples of 1:1 DOPC/DPPC + 30% cholesterol.  The 
vertical scale in (B) is 4 times larger than the scale in (A). 
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 The existence of two lamellar repeats is evidence of two coexisting phases, but 

insufficient time for hydration and temperature equilibration can cause temporary 

double lamellar repeats.  As described in Section 2.4.1, the samples were hydrated in a 

large excess of water (5:1 to 10:1 (v/v) water: lipid) and taken through temperature 

cycling before being loaded into capillaries.  After mounting in the rotating anode 

apparatus, the capillary samples were equilibrated for at least 30 minutes at each 

temperature before data collection.  After the samples were heated to 45˚C, where 

there is clearly only one dL-spacing, the samples were cycled back down in 

temperature to determine if the double dL-spacings were reproducible.  In all cases, 

after cooling the samples, the double dL-spacings were reproducible.  The values of 

the dL-spacings varied by no more than 0.3 Å between the heating and cooling cycles.  

Since the samples were well-hydrated and did not exhibit thermal hysteresis, we are 

confident that the double dL-spacings are due to phase separation. 

 Gandhavadi et. al. (2002) observed only one lamellar repeat spacing for 1:1:1 

DOPC/BSM/cholesterol, a mixture which has been called the “canonical raft mixture”.  

Veatch and Keller (2003a) point out that this mixture is very close to a phase 

boundary.   A small error in the lipid ratio could have caused the mixture to be outside 

the two-phase region.  Veatch and Keller (2003a) suggest that 1:1 DOPC/BSM + 20% 

cholesterol is a better choice for experiments because it is well within a two-phase 

region at 25˚C.  Our x-ray scattering results for an MLV sample of 1:1 DOPC/BSM + 

20% cholesterol indicate only one lamellar repeat spacing of 69.7 Å at 25˚C. 

 Even more puzzling is our observation of only one lamellar repeat spacing for 

1:1 DOPC/DPPC at 25˚C (dL=63.2 Å), in both the fully hydrated MLV sample and the 

oriented sample.  This mixture is known to exhibit gel/fluid coexistence; in addition, 

our GIWAXS data clearly show two wide-angle peaks for this sample (see Fig. 5.3B).  

On the other hand, Gandhavadi et al. observed two lamellar repeat spacings for 1:1 
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DOPC/BSM at 25˚C, also known to be separated into a gel and fluid phase.  Clearly, 

relying on lamellar repeat spacings to determine the absence or presence of phase 

coexistence can be misleading.    

 As discussed in Section 3.4, to see two lamellar repeat spacings, the following 

conditions must be met: 

1. The dL-spacings must be different enough for the peaks to be resolvable. 

2. The Lo (or Ld) domains must be aligned with the Lo (or Ld) domains in the 

neighboring bilayers.  Gandhavadi et al. (2002) make the analogy to a stack of 

egg cartons.   

In principle, we could calculate the correlation length in the direction of the membrane 

normal by using the Scherrer equation (Warren, 1969): 

,
cosFWHM

94.0

rad θ
λξ =  (6.1) 

where ξ is the correlation length, 2θ is the standard scattering angle, λ is the x-ray 

wavelength, and FWHMrad is the full width in radians of the powder pattern peak at 

half maximum intensity  The Scherrer equation applies to Gaussian-shaped scattering 

peaks.  Converting to q from radians, the Scherrer equation can be approximated as : 

,
FWHM

2

q

πξ ≈  (6.2) 

where FWHMq is the full width at half maximum in reciprocal angstroms (q).  For a 

Gaussian the FWHMq can be found from the measured value, FWHMmes, and the 

instrumental resolution, FWHMres using the following formula (Kaganer et al., 1999):  

2
res

2
mes

2
q FWHMFWHMFWHM −= . (6.3) 

The size of the beam was not measured for the rotating anode setup, so we do not have 

a direct measure of FWHMres.  The beam size is usually near 0.7 mm, so we used this 

number to estimate FWHMres for the 1:1 DOPC/DPPC + 15% cholesterol data at 15˚C 
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presented in Fig. 6.14.  Converting to q (with sample to detector distance of 386 mm 

and λ=1.542 Å), a 0.7 mm beam size gives a FWHMres of 0.007 Å-1.  Unfortunately, 

FWHMmes is approximately 0.008 Å-1 for either of the first order peaks shown in Fig. 

6.14, and so we are resolution-limited.  However, we can put a lower limit on the 

correlation length by using FWHMq=0.008 Å-1 in Eq. 6.2.  This gives ξ≥785 Å, i.e. 

~13 lipid bilayers in correlated stacks.     

 Lipid type, lipid purity, and sample preparation may all affect whether the two 

conditions are met.  Pure DOPC and pure DPPC have very similar lamellar repeat 

spacings at 25˚C (dL~63-64 Å).  We may have only observed one lamellar repeat for 

1:1 DOPC/DPPC because the two lamellar peaks were not resolvable.  Brain 

sphingomyelin (BSM) is a naturally occurring mixture of sphingomyelins with 

different chain lengths and degrees of unsaturation.  Such a mixed system may make 

alignment of the domains across bilayers more sensitive to the exact sample 

preparation conditions.  This would explain why we and Gandhavadi et al. (2002) do 

not observe two lamellar repeat spacings for mixtures of DOPC, BSM, and cholesterol 

and yet  Nicolini et al. (2004) report that the domains are aligned in 1:1:1 

DOPC/BSM/cholesterol based on small-angle neutron scattering experiments.  

 Karmakar et al. (2006) have reported the observation of double lamellar repeat 

spacings in oriented samples composed of DOPC, DPPC, and cholesterol.  We also 

observed two lamellar repeat spacings in our oriented samples, but equilibration in 

oriented samples can be problematic (see Section 2.3.4.2) .  Although lamellar repeat 

spacings can be misleading, the observation of two spacings is intriguing.  For the 

DOPC/DPPC/cholesterol system, the observation of two lamellar repeats appears to be 

a robust, reproducible phenomenon.  The observation in one system and not in another 

leads to many questions.  What interactions cause the domains to align across stacks of 

bilayers?  What factors can disrupt these interactions?   
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 As pointed out by Gandhavadi et al. (2002), the second condition (aligning of 

domains across bilayers) means that the sample must be phase-separated in three 

dimensions in order to see two lamellar repeat spacings.  On the other hand, the chain-

chain correlation peak results from ordering within a single bilayer; thus, GIWAXS 

can detect two-dimensional phase separation within single bilayers.  Fitting to the 

GIWAXS data is not as straightforward as observation of two lamellar repeats, but the 

GIWAXS method may be more reliable for detecting liquid-liquid phase coexistence 

by giving fewer false negatives. 

6.4 How do the GIWAXS and lamellar repeat data compare 

with NMR and fluorescence microscopy?   

 Figure 6.18 compares our values of Smol from GIWAXS to 2H NMR data 

(Veatch et al., 2007b) for mixtures known by fluorescence microscopy to exhibit 

Ld/Lo phase coexistence.  Lamellar repeats for fully hydrated MLV samples are also 

shown.  For a given temperature, two different values of Smol or two lamellar repeats 

indicate phase coexistence.  The larger Smol corresponds to the Lo phase and the 

smaller Smol corresponds to the Ld phase.  We based the assignment of the larger 

lamellar repeat value to the Lo phase based on the trend in lamellar repeat spacings for 

binary mixtures of DPPC + cholesterol and DOPC + cholesterol and on the nearly 

horizontal direction of tie lines in the liquid-liquid coexistence region (see Fig. 1.7).   

The miscibility transition temperatures, Tmix, from 2H NMR (Veatch et al., 2007b) and 

fluorescence microscopy (Veatch and Keller, 2003b) are indicated on the plots.  2H 

NMR first moments (M1) were converted to Smol using Eq. 5.1.  We assumed that 

substitution of DPPC by DPPC-d62 reduces the 2H NMR temperatures by 2.5˚C 

(Veatch et al., 2004).  An offset of 2.5˚C has already been added to the 2H NMR 

temperatures.   
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Figure 6.18.  Top plots show Smol vs. temperature (from GIWAXS and NMR) and 
bottom plots show lamellar repeat (for MLV samples) vs. temperature for 1:1 
DOPC/DPPC + varying amounts of cholesterol: (A) 15%; (B) 20%; (C) 25%; (D) 
30%.  The NMR data are from Veatch et al., 2007b.  The fluorescence microscopy 
Tmix temperatures are from Veatch et al., 2004.  
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 Errors on Tmix as determined by 2H NMR are ±  2˚C.  Errors on Tmix as 

determined by fluorescence microscopy are more complicated.  Without considering 

the effects of dye, the uncertainty is at most 5˚C (Veatch and Keller, 2003b).  

However, Veatch et al. have shown that dye impurities may significantly shift Tmix 

values and phase boundaries (2007a).  The effect of the dye has been to increase Tmix 

and expand the region of Ld/Lo coexistence.  

 Since the Leadbetter model (Ch. 3) has not been used to examine phase 

coexistence in model membranes, we will compare the x-ray data with the NMR and 

fluorescence microscopy data to calibrate the GIWAXS method.  Using Figure 6.18, 

we can compare trends in Smol values as determined by GIWAXS and NMR.  Also, we 

can determine if the x-ray data are in agreement with Tmix values as determined by 

fluorescence microscopy and NMR.    

 Comparison of Smol values.  When there is two phase coexistence, the two 

Smol values as determined by GIWAXS are always significantly larger than the two 

Smol values as determined by 2H NMR.  This was also the case for mixtures of DPPC 

and cholesterol (see Fig. 5.8).  The two Smol values do not reflect the same physical 

quantity because of the different assumptions made in the two different methods.  The 

most obvious difference is that the GIWAXS fits make the assumption that the chains 

are infinitely long straight rods.  NMR does not make this assumption: the order 

parameter is determined for each methylene chain segment separately and then 

averaged.  At high temperatures with a single Smol value, the NMR and GIWAXS 

values are in better agreement.  We believe this is an accident caused by two 

competing effects.  First, we have observed that the GIWAXS Smol values are 

consistently higher that the NMR values.  Second, the NMR Smol reports on chain 

order for only the deuterated DPPC, whereas the GIWAXS Smol is an average order 
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parameter for all the lipids.  The saturated DPPC chains are likely to be more ordered 

than the unsaturated DOPC chains.   

 The Smol values for the coexisting Lo and Ld phases are not very sensitive to 

temperature or composition.  In the ternary mixtures at low temperature, the GIWAXS 

Smol values for the Ld phases were close to 0.5 and the Lo Smol values were all near 

0.9.  The mixtures we studied with GIWAXS only varied in cholesterol concentration.  

Since we know the tie lines are roughly horizontal with an upward slope toward higher 

DPPC concentration (see Fig. 1.7), we can be confident that these mixtures do not fall 

on the same tie line.  Therefore, our observation that the Smol values for the Ld and Lo 

phases are very similar as a function of temperature and composition suggests that 

chain orientational order is similar for different Lo phase (or Ld phase) compositions 

as we move along the liquid-liquid phase boundary.   

 We are not at all suggesting that the Lo (or Ld) phase has a single set of 

properties.  This is a common misconception, which Clarke et al. (2006) have shown 

to be untrue by studying properties of the Lo phase using NMR and powder WAXS in 

systems of DPPC and cholesterol for a variety of temperatures and compositions.  

Also, mixtures of DOPC and cholesterol are not considered to phase-separate at any 

temperature (Filippov et al., 2003), and yet our GIWAXS measurements show that the 

addition of 40% cholesterol significantly orders the chains.  At least for the 

DOPC/cholesterol system, the liquid phase has a continuum of properties, from Ld to 

more Lo-like.   

 If the Smol values for each phase changed significantly as a function of 

temperature or composition for the samples in the Ld/Lo coexistence region, we could 

possibly determine tie lines from the GIWAXS data.  To do so, we would compare the 

Smol values determined for a mixture in the Ld/Lo region to the Smol values along the 
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two-phase boundary to determine which compositions could make up endpoints of a 

tie line through the given mixture.  Our data suggest this is not possible.              

 Comparison of miscibility transition temperatures (Tmix).  In the following 

discussion, NMR
mixT  is the NMR Tmix temperature, Fluor

mixT  is the fluorescence microscopy 

Tmix temperature, WAXS
mixT  refers to the temperature break between single and double 

Smol values as determined by GIWAXS, and LAXS
mixT  refers to the temperature break 

between the observation of double and single lamellar repeat spacings.  For 1:1 

DOPC:DPPC + 15% cholesterol and 1:1 DOPC:DPPC + 20% cholesterol, WAXS
mixT  and 

LAXS
mixT  agree with NMR

mixT  and Fluor
mixT  to within the 5˚C resolution of the x-ray 

experiments (see Fig. 6.18A and B).  For the higher cholesterol concentrations, 25% 

and 30%, there is agreement between Fluor
mixT  and WAXS

mixT  (see Fig. 6.18C and D).  

However, the other data are not in complete agreement.  First of all, there is a single 

lamellar repeat at temperatures with two Smol values as determined by GIWAXS.  

Lamellar repeat spacings can be misleading.  As discussed in Section 6.3, the absence 

of two lamellar repeats does not necessarily imply a single phase.  Second, NMR
mixT  is 

lower than the 5˚C WAXS
mixT  range.  However, this discrepancy is not large and could be 

accounted for by a +5˚C relative shift of NMR
mixT .  This is not unreasonable given the 

assumptions and uncertainties associated with both methods.  Determination of NMR
mixT  

involves deciding when the 2H NMR spectrum is composed of two overlapping φ 

distributions.  Similarly, determination of WAXS
mixT  involves deciding if the GIWAXS 

data is described by one or two overlapping peaks.  For the 25% and 30% cholesterol 

samples, the third and largest discrepancy is between NMR
mixT  and Fluor

mixT .  By comparing 
NMR

mixT  values for samples with and without fluorescent dye, Veatch et al. (2007a) have 

shown that the effect of dye is to increase NMR
mixT , which helps explain this discrepancy. 

 The disagreement between NMR
mixT  and WAXS

mixT  at the higher cholesterol 

concentrations makes sense because the higher cholesterol concentations (25% and 



 

232 

30%) are closer to the critical point (Sarah Veatch, personal communication).  Thus, 

the tie lines are shorter and we would expect the Ld and Lo phases to have more 

similar properties, making deconvolution of the NMR or x-ray data more challenging 

and error-prone. 

 In order to make WAXS
mixT  agree with NMR

mixT  for 1:1 DOPC/DPPC with 25% and 

30% cholesterol, we would have to change our criteria for rejecting the double order 

parameter fits.  The current criteria (see also 6.2.3) are that the double order parameter 

fit is rejected if any of the double order parameter fitting parameters (Iback, m1, m2, A1, 

or A2) had error of greater than 1/3 of the value of the parameter.  In order to make the 

x-ray and NMR data agree for 1:1 DOPC/DPPC + 25% cholesterol, we would have to 

reject the double order parameter fit at 30˚C, requiring an error cutoff of 1/10 of the 

parameter value instead of 1/3.  In order to make the x-ray and NMR data agree for 

1:1 DOPC/DPPC + 30% cholesterol, we would have to reject the double order 

parameter fit at 25˚C, requiring an error cutoff of 1/20 of the parameter value instead 

of 1/3.  In both cases, we would also have to accept a single order parameter fit with 

negative normalized data at high φ.     

 When comparing Tmix values, it is intriguing to consider the effect of 

differences in averaging between 2H NMR and x-ray methods.  A GIWAXS image is a 

spatial average of very fast snapshots of the system.  The 2H NMR data are time-

averaged for each molecule on a microsecond time scale, so if molecules diffuse into 

coexisting domains faster than that, the data will indicate only one phase.  If the 

domains are macroscopic, GIWAXS and NMR should both report phase coexistence.  

If the domains are smaller than 20 nm, the 2H NMR signal will be averaged (Bloom 

and Thewalt, 1995).  On the other hand, in an x-ray experiment, the scattering from a 

small domain with different chain ordering properties is recorded faster than the lipids 

can diffuse away.  Arguing along these lines, we might expect the GIWAXS method 
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to give a higher Tmix than NMR because the domains must be larger before NMR can 

detect them.  For our data, this was indeed the case.  Domains must be greater than the 

diffraction limit of light, ~0.5 microns, before being detectable with optical 

microscopy.  If distance scale sensitivity were the only factor affecting Tmix, Fluor
mixT  

should be the lowest.  However, as discussed above, the presence of fluorescent dye 

may tend to increase Fluor
mixT . 

6.5 Conclusion 

 Fits to the GIWAXS I(φ) data suggest the presence of liquid-liquid coexistence 

in ternary mixtures of DOPC, DPPC, and cholesterol.  Our results are in relatively 

good agreement with 2H NMR and fluorescence microscopy, suggesting that our 

method of determining if two order parameters are necessary to fit the chain-chain 

scattering data is a valid way of deciding if a mixture is phase-separated into two fluid 

phases.  On the other hand, while the presence of double lamellar repeat spacings in 

well-equilibrated samples is proof of phase separation, their absence is inconclusive.   

 Many methods used to examine liquid-liquid phase coexistence use a 

potentially perturbing probe.  Given the recent experiments showing that fluorescent 

dye can have a large effect on phase behavior (Ayuan and Cohen, 2006; Veatch et al., 

2007a; Zhao et al., 2007b), the availability of another probe-independent method for 

examining liquid-liquid phase coexistence in model membranes is useful.  Our data 

add to the evidence that liquid-liquid phase separation does indeed occur in probe-free 

model membrane mixtures.   

 Veatch et al. have shown that NMR can be a useful complement to 

fluorescence microscopy experiments.  Our GIWAXS method provides another way 

of examining model membrane phase behavior and characterizing coexisting Ld and 

Lo phases.  Both GIWAXS and NMR can be used to determine Tmix temperatures and 
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the chain ordering properties in the different coexisting phases.  In addition, Filippov 

et al. (2004) and Polozov and Gawrisch (2006) have shown how NMR techniques can 

be used to measure diffusion coefficients in the coexisting phases.  Although x-ray 

scattering cannot be used to measure the dynamic property of diffusion, GIWAXS 

provides a direct measurement of lateral positional ordering (chain packing), which is 

not directly observable from NMR.  Thus, NMR and x-ray scattering are 

complementary techniques for examining lipid physical properties.  Clarke et al. 

(2006) have shown that a combination of powder WAXS and NMR data is useful for 

characterizing Lo phase properties.  In the future, interesting observations from 

microscopy experiments on model membranes may warrant more careful investigation 

of the physical properties of the system with techniques such as GIWAXS.   
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Chapter 7 - Conclusion  

7.1 Summary of results 

 The angular (φ) distribution of scattering intensity in a GIWAXS image can 

give information about the chain orientational order in liquid phases which is not 

available from powder samples.  In order to calculate the chain orientational 

distribution function f(β) and chain order parameter Smol from I(φ) data, we used the 

Leadbetter model, which assumes that the chains are infinitely long rods.  This 

analysis approach has been applied to a number of liquid crystal systems, but to our 

knowledge has not been applied to model membrane systems since Levine and 

Wilkins' studies of egg lecithin/cholesterol mixtures (Levine, 1970; Levine and 

Wilkins, 1971).  

 Using this analysis approach, we were able to reproduce the reported trends in 

NMR order parameters as a function of cholesterol content for DOPC/cholesterol 

(25˚C) and DPPC/cholesterol (45˚C).  In both these systems, the addition of 40% 

cholesterol more than doubles Smol, and yet the lateral positional order remains low as 

indicated by the large q-width of the WAXS peak.  This decoupling of chain 

orientational order and lateral positional order is characteristic of the Lo phase. 

 In addition to calculating Smol values, we combined information about f(β) 

(chain orientational order) with dcc (lateral positional order) to calculate areas for 

lipids in the liquid phase, based entirely on the GIWAXS data.  Although WAXS data 

is often used to calculate areas for gel phases (Tristram-Nagle et al., 1993, 2002), most 

x-ray methods for calculating liquid-phase lipid areas are based on combining lamellar 

repeat data with volume measurements (Nagle and Tristram-Nagle, 2000).  Our 

calculations for lipid areas from the GIWAXS data agree to within 5% with the Nagle 

group's area measurements based on LAXS data.  This is reasonable agreement, 
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especially considering the large discrepancies in the literature for areas of liquid phase 

lipids (Nagle and Tristram-Nagle, 2000).  We reproduced the trend of decreasing area 

as a function of cholesterol content for DOPC/cholesterol mixtures, showing that our 

approach for calculating areas from the GIWAXS data is reasonable. 

 In addition to calibrating the GIWAXS method based on comparisons to 

literature values for areas and NMR order parameters, we extended the method to 

study Ld/Lo phase coexistence in ternary mixtures of 1:1 DOPC/DPPC + cholesterol 

(15%, 20%, 25%, and 30%).  In these ternary systems at low temperatures, the I(φ) 

data were best fit by assuming two distributions of chains (two order parameters), 

while at high temperature the data were well fit by assuming a single order parameter.  

In addition, we observed two lamellar repeat spacings in these mixtures, providing 

further evidence of phase coexistence.  Our Tmix values based on x-ray work agree 

reasonably (to within the 5-10˚C steps used) with the Tmix values based on the NMR 

and fluorescence microscopy work of Veatch et al. (Veatch and Keller, 2003b; Veatch 

et al., 2004; Veatch et al., 2007b).  

 While liquid-liquid coexistence in ternary mixtures such as DOPC, DPPC, and 

cholesterol is well-established by a variety of techniques (microscopy, NMR, FRET), 

phase coexistence in binary mixtures of DPPC and cholesterol is controversial.  

Although fluorescence microscopy indicates neither liquid-liquid nor gel-liquid 

coexistence in DPPC/cholesterol mixtures (Veatch and Keller, 2005b), other methods 

such as NMR indicate the presence of phase coexistence (gel/liquid at low temperature 

and liquid/liquid at high temperature) in this system (Vist and Davis, 1990).  We 

observed no conclusive evidence of phase coexistence in DPPC/cholesterol based on 

x-ray scattering.  This null result is interesting in the context of control samples for 

which fluorescence microscopy images contain macroscopic domains (showing either 

gel-liquid or liquid-liquid coexistence).  For 1:1 DOPC/DPPC (25˚C), we observed 
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two WAXS peaks (one broad and one narrow in q-width), in agreement with the 

observation of gel-liquid coexistence by fluorescence microscopy (Veatch and Keller, 

2003b).  For ternary mixtures of DOPC/DPPC/cholesterol known to separate into 

macroscopic Ld and Lo domains, we observed two lamellar repeats and found that the 

I(φ) data were best fit by assuming two order parameters.  Our null result for phase 

coexistence in the DPPC/cholesterol system adds to a long list of conflicting literature 

for this system.  At low temperature, some of the discrepancies in the literature may 

result from slow equilibration when slowly diffusing gel phases are involved. 

 We have shown that GIWAXS can be useful for studying chain order and 

liquid-liquid phase coexistence in model membranes.  We have compared our data to 
2H NMR, another probe-free method for order parameter determination and phase 

coexistence identification.  These two techniques are complementary.  Compared with 

x-ray scattering, NMR provides much more detailed information about chain 

orientational order as order parameters can be measured for each chain segment and 

for phospholipids and cholesterol separately.  Although GIWAXS provides only 

global information about chain orientational order, it provides a direct measurement of 

lateral chain packing, a property which NMR can measure only indirectly. 

7.2 Future directions 

7.2.1 Other systems of interest 

 Now that we have characterized the GIWAXS method for studying chain 

orientational order in a well-studied system, there are many possible interesting 

applications.  The following are suggestions for other systems to study. 

 (1) Other outer leaflet models.  POPC/sphingomyelin/cholesterol is a more 

realistic model for the outer leaflet of the cell membrane than 

DOPC/DPPC/cholesterol.  POPC/SM/cholesterol would have been a poor choice for a 
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test system because the previously reported observation of liquid-liquid coexistence in 

this system (Veatch and Keller, 2005a) may be an artifact due to fluorescence probe 

oxidation effects (Zhao et al., 2007b).  The fact that a small amount of impurity in this 

system can cause large-scale demixing into two liquid phases suggests that 

POPC/SM/cholesterol may be a highly nonideal mixture (Veatch et al., 2007a).  A 

comparison of GIWAXS data for this mixture to our DOPC/DPPC/cholesterol data 

would be of interest. 

 (2) Inner leaflet lipids.  Much lipid work has focused on phosphatidylcholines 

(PCs).  The inner leaflet contains a large amount of phosphatidylethanolamines (PEs) 

and charged lipids such as phosphatidylserines (PSs).  An investigation of the 

structural properties of these lipids is particularly interesting because inner leaflet 

models do not phase-separate into two liquid domains (Wang and Silvius, 2001).  The 

PE headgroup is much smaller than the PC headgroup, and so pure DLPE (and other 

PEs) form an Lβ gel phase rather than Lβ' (McIntosh and Simon, 1986).  In the fluid 

phase, NMR measurements show that POPE chains are more ordered than POPC 

chains, and that the addition of 45% cholesterol results in a smaller increase in the 

POPE order parameter in comparison to POPC (Lafleur et al., 1990; Paré and Lafleur, 

1998).  It has been proposed that the small PE headgroup restricts the conformational 

freedom of the acyl chains (Lafleur et al., 1990).  This is the same line of reasoning as 

the umbrella model (Huang and Feigenson, 1999): the chains must straighten in both 

the gel phase (untilted chains in the Lβ phase instead of Lβ') and the fluid phase in 

order to be covered by the PE headgroup.  We hypothesize that angular (φ) 

distribution of scattering in a GIWAXS image would be much lower for POPE 

compared with POPC.   

 (3) Mixtures with different sterols.  Cholesterol is the major sterol found in 

mammalian membranes, but other molecules can function like cholesterol.  In fact, 
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viable cholesterol-free mice (with desmosterol replacing cholesterol) have been 

genetically engineered (Wechsler et al., 2003).  Ergosterol, found in fungal cells, and 

the plant sterols sitosterol and stigmasterol have been found to function similarly to 

cholesterol in model systems (Xu et al., 2001).   The increase in chain NMR order 

parameters as a result of incorporation of sterol into fluid phase bilayers depends on 

the type of sterol: cholesterol, lanosterol, ergosterol, and others (Urbina et al., 1995).  

The effect of sterol on the ability of the chains to form an ordered, tightly packed state 

has been linked to their effect on Lo domain formation; some sterols inhibit domains 

while others, like cholesterol, promote domain formation (Wang et al., 2004; Xu and 

London, 2000; Xu et al., 2001).      

 (4) Lipid/ceramide mixtures.  Ceramides, lipids formed by conversion of 

sphingomyelins by sphingomyelinase, have been reported to displace cholesterol from 

liquid ordered domains (Megha and London, 2004).  Because of its small headgroup, 

ceramide can take on the structural role of cholesterol and cause ordering of acyl 

chains; however, a ceramide-rich ordered phase is thought to have different properties 

than a cholesterol-rich ordered phase (Megha and London, 2004).  Rapid increase in 

ceramide levels due to sphingomyelinase action has been postulated to play a role in 

the formation of transient ordered domains (rafts) in the cell membrane (Feigenson, 

2006). 

 (5) Membranes with peptides.  The Salditt group has studied lipid/peptide 

interactions using experimental and simulated GIWAXS data (Spaar et al., 2004).  

Currently, the Nagle lab is studying cholesterol-sequestering peptides using both 

WAXS (chain-chain scattering) and LAXS (scattering from lamellae); they plan to 

investigate the effect of these peptides on chain order by analysis of the GIWAXS data 

using the approach described in this thesis.  One question is whether these cholesterol-

sequestering peptides induce domains in the membrane (Epand, 2006). 
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7.2.2 Correlation between chain order and other structural 

properties 

 The correlation between increased chain order (straighter chains) and increased 

hydrophobic thickness or decreased area is direct and easily explained (Petrache et al., 

2000), but the relationships between chain order and other physical properties are not 

as clear-cut.  Recently, Henriksen et al. (2006) have explored the relationship between 

chain order and elastic properties.  They observed a linear relationship between  the 

bending modulus and NMR first moment (M1) for POPC mixed with several different 

sterols; they called the correlation between bending modulus and chain order 

"universal."  The Nagle lab has measured the bending modulus of DOPC/cholesterol 

mixtures using their diffuse scattering method; the addition of 40% cholesterol to 

DOPC causes a negligible change in the bending modulus (Tristram-Nagle et al., 

2007; see Liu and Nagle, 2004 for methodology).  However, we have shown in this 

thesis that chain orientational order in DOPC + 40% cholesterol is almost double that 

in DOPC (see Ch. 4).  This suggests that the correlation between bending modulus and 

chain order observed by Henriksen et al. (2006) is not universal.   

 Tristram-Nagle and Nagle (2007) have reported that HIV fusion peptide 

dramatically increases the bending modulus of DOPC; the Nagle lab has also observed 

a change in the elastic properties of DOPC with alamethicin addition (unpublished).   

It would be interesting to see if these peptides cause changes in chain order (both 

orientational and lateral positional order) using GIWAXS. 

 The Nagle lab is particularly well-situated to investigate the correlation 

between chain order (using GIWAXS) and elastic properties (using LAXS).  The same 

sample can be used for both measurements; at CHESS we frequently switched 

between the GIWAXS setup and the Nagle lab's LAXS setup over the course of an 

experiment.        
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7.2.3 Comparison to molecular dynamics simulations 

 In this thesis, we have applied a simple analytical model to study chain 

orientational order.  Spaar and Salditt (2003) have demonstrated the value of 

comparing experimental GIWAXS data to GIWAXS images constructed from the 

Fourier transforms of molecular dynamics (MD) simulations.  The simple Leadbetter 

model has advantages, in that it can be applied to a large set of data and to ternary 

mixtures, for which simulations are time-consuming and costly.  However, a 

comparison to simulations allows for more detailed interpretations on the molecular 

level.  In addition, GIWAXS data provide another way to check MD simulations 

against experimental data.  [Lipid areas, NMR order parameter profiles, and electron 

density profiles can all be calculated from MD simulations and compared to 

experimental data (for example see Smondyrev and Berkowitz, 1999).]  J. Sachs and 

A. Grossfield are collaborating with the Nagle group to produce GIWAXS images 

from DOPC/cholesterol MD simulations for comparison to the data presented in this 

thesis.  
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APPENDIX A   
Examples of failures of the Leadbetter formula 

A.1 Summary  

 The purpose of this appendix is to show two situations where the Leadbetter 

formula for I(φL) fails and the Toombes formula gives the correct behavior:  

1. The Leadbetter formula results in an incorrect invariant. 

2. The Leadbetter formula fails when all the rods are oriented at β= π/2. 

The appendix also gives examples where both the Leadbetter formula and Toombes 

formula give reasonable results: 

1. Both give a reasonable result in the case of a powder sample. 

2. Both formulas give a reasonable result when all the rods are oriented with 

angle β0<π/2.  

The calculations shown in this appendix were done by G. E. S. Toombes 

(unpublished).  The Leadbetter formula and Toombes formula were discussed in Ch. 3 

and are repeated here for clarity.  The Leadbetter formula (Leadbetter and Norris, 

1979) is: 

∫
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The Toombes formula (Busch et al., 2007) is: 

∫
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A.2 Calculation of the invariant 

 The first test is determining if the two equations yield the correct invariant for 

the scattering.  Assuming rotational symmetry about the z axis, the following equation 

in general must hold true (see Ch.3 for discussion): 
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Equation A.3 states that the total scattering in all of q space for all sample orientations 

is a conserved quantity.  Since Leadbetter's theory and the modification presented 

above both assume that all of the chain scattering occurs at only one value of q, the 

equation we need to test is: 
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Note that Deutsch (1991) and Davidson et al. (1995) assume that the following 

equation should hold: 
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Davidson et al. (1995) state:  "As already implicitly noted [by Deutsch], no solid angle 

correction...needs to be made to calculate the integrated intensity because it is directly 

included in I(φL) by the solid angle of the detector itself."  This statement is false 

because I(φL) is supposed to represent only the scattering measured by the detector for 

a particular orientation of the sample.  In our case and the case of Leadbetter's model, 

sample orientations are averaged with respect to rotation about the z-axis.  Unlike a 

powder sample for which the cosφL term in the invariant calculation is unnecessary, 

our samples are not rotationally averaged with respect to the x-y axes.  The solid angle 

must be taken into account when calculating the total scattering over all sample 

orientations (Alexander, 1969). 

  The following calculation will show that Eq. A.5 is indeed true for 

Leadbetter's formula; thus, the correct invariant, Eq. A.4, is not constant, evidence that 

Leadbetter's formula is faulty.  We wish to solve the following integral: 
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Switching the order of integration gives: 
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The inner integral can be solved by making the following substitutions: 
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The outer integral in Eq. A.7 is equal to 1/(4π) from the normalization condition for 

f(β).  Inserting the results of A.8 into Eq. A.7, we obtain for the invariant using 

Leadbetter's equation for I(φL): 

8
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24
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φ

dI . (A.9)

This is the same result reported in the literature for Leadbetter's model (Davidson et 

al., 1995), but as stated above, this integral should not yield a constant if I(φL) were 

derived correctly. 

 Now we will show that the Toombes' formula (Eq. A.2) does satisfy the correct 

formula for the invariant (Eq. A.4).  Substituting Eq. A.2 into Eq. A.4 gives:   
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Switching the order of integration and pulling out a sinβ in order to make use of the 

normalization condition for f(β), we obtain: 

∫ ∫∫
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The integral over φL can be simplified as follows to a form where clever substitution 

will help solve the integral: 
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We now make the following substitutions to solve the integral over φL: 
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Inserting the results of Eq. A.13 into Eq. A.11, we obtain for the Toombes formula for 

I(φL): 
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The correct equation for the invariant is indeed a constant for the Toombes formula, 

while Leadbetter's formula does not result in the correct invariant calculation.  This 

suggests an error in Leadbetter's formula. 

A.3 Results for Leadbetter's formula and the modified form for 

three cases 

 In order to further test the validity of Leadbetter's original equation and the 

modified form, the following discussion will consider three cases for the distribution 

of rods, or chains in the sample: (1) a powder sample; (2) a sample where all the rods 

have the same tilt angle β= β0; and (3) a sample where all rods are tilted at the angle 

β=π/2.  Both Leadbetter's original formula and the modified form give reasonable 

results for the first two cases (when β0<π/2), but Leadbetter's original formula does not 

give a reasonable result for the third case. 

A.3.1 Case 1: Powder sample 

 In the case of a powder sample, all orientations are equally likely and the chain 

orientational distribution function is a constant: 

π
β

4
1)( =f  (A.15)

The constant value satisfies the normalization condition: 

∫
=

=
2/

0 4
1sin)(

π

β π
βββ df  (A.16)

In the case of a powder pattern: 

constant)( L =φI . (A.17)
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We will check that Eq. A.17 is valid for the Toombes formula and the Leadbetter 

formula.  Using f(β) (Eq. A.15) in the Leadbetter formula (Eq. A.1) gives: 
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Making the substitutions βφ 2
L

2 cossec=u  and βββφ ddu sincossec2 L
2−=  with 

limits on u=1 to 0 gives: 
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The Leadbetter formula gives a constant for I(φL) as expected. 

Using f(β) (Eq. A.15) in the Toombes formula (Eq. A.2) gives: 
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Making the substitutions βφ cossec L=u  and ββφ ddu sinsec L−=  with limits on 

u=1 to 0 gives: 

8
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(A.21)

The Toombes formula also gives the expected result for the powder sample case. 

 

A.3.2 Case 2:  Rods all have β= β0. 

 In this case, the distribution function takes on the following form: 

)()( 00 ββδβ −= Cf , (A.22)

where the constant C0 is found by satisfying: 

∫
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=−
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00 4
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β π
ββββδ dC  (A.23)

Solving for C0 we obtain finally for f(β): 

)(
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1)( 0

0

ββδ
βπ

β −=f , (A.24)

The Toombes formula (Eq. A.2) becomes with the above f(β): 
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In summary for I(φL) or the Toombes formula in the case of all rods oriented with 

β=β0 we obtain: 
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(A.26)

 With the distribution function described by Eq. A.24, the Leadbetter formula 

(Eq. A.1) becomes: 
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In the last line the same steps as shown in Eq. A.25 were followed.  In summary for 

I(φL) or the Leadbetter formula in the case of all rods oriented with β=β0 we obtain: 
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(A.28)

Figure A.1 shows plots of the results of Eq. A.26 and Eq. A.28.  Both plots are 

reasonable for β<π/2. 

A.3.3 Case 3:  Rods all have β= π/2   

 The case of all rods with orientation β=π/2 is a special case of the one 

described in the previous section.  For any given grain direction (χ, β= π/2), scattering 

is concentrated on a circle through the poles (+z and -z axes).  Since there is rotational 

symmetry about the z-axis, I(φL)dφL should be proportional to 1/Aring, where Aring is the 

area of a ring in reciprocal space with φL between φL and  φL+dφL: Aring=2πsin(π/2-

φL)dφL=2πcosφLdφL.  The scattering intensity is given by:   

( )
Lring

L cos
11
φ

φ ∝∝
A

I . (A.29)

Another way to think about this case is that the total intensity for any range dφL should 

be proportional to the size of the angular range.  That is,  

LLLL ~cos)(
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φ

ddI
d

∫
+

. (A.30)

I(φL)∝1/cosφL is the scaling factor needed to produce the same intensity integrated 

over any range dφL. 

 For the Toombes formula, Eq. A.26 with β0=π/2 gives the expected result: 
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For the Leadbetter formula, Eq. A.28 with β0=π/2 gives: 
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The Leadbetter formula does not yield a reasonable result in the case of rods all 

oriented with β0=π/2.  In our system, this corresponds to the case of all the chains 

lying in the plane of the membrane, an unphysical situation.  In fact, this is an unlikely 

situation for all the systems studied in the liquid crystal literature with the Leadbetter 

formula, and so the distribution functions found using the Leadbetter formula are still 

reasonable, especially since much of the work in the literature was concerned with 

trends.  Figure A.1 summarizes the results of the last two sections with a plot of I(φL) 

with three specific values of β0. 

 

Figure A.1.  Plot of I(φL) in the case that all rods are oriented with angle β=β0 for three 
values of β0: 20˚, 40˚, and 90˚.  For this case, both the Leadbetter formula (Eq. A.28) 
and the Toombes formula (A.26) give reasonable results for  β0<90˚, while the 
Leadbetter result in unreasonable for β0=90˚.  
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APPENDIX B   
Calculation of I(φL) using the Maier-Saupe orientational 

distribution function 

B.1 Summary 

 In this appendix, we show the calculation of I(φL) using the Maier-Saupe 

orientational distribution function in the Toombes formula for I(φL).  The first section 

explains the normalization of the Maier-Saupe distribution.  The second section 

derives a formula for I(φL) using the normalized Maier-Saupe f(β).  For clarity we 

repeat the Toombes formula for I(φL) here (Busch et al., 2007; see full derivation in 

Ch. 3): 
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B.2 Normalization of the Maier-Saupe distribution function 

 The final normalized form for the Maier-Saupe orientational distribution 

function is (Maier and Saupe, 1958, 1959, 1960; see de Gennes and Prost, 1993, p.66-

70 for an explanation of the derivation in English): 

)cosexp(1)( 2 ββ m
Z

f =  (B.2)

where m is a parameter which can take on any positive value and 

the normalization constant Z can be solved for with the normalization condition: 
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Substituting βcos=x  gives: 

∫=
1

0

2 )exp(4 dxmxZ π . (B.4)
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Note in general: 
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where erfi is the imaginary error function and D is Dawson's integral.  Using Eq. B.5 

in Eq. B.4, we get for Z: 
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B.3 Calculation of I(φL) using the Maier-Saupe distribution 

function in the Toombes formula  

 The following derivation was done by G. E. S. Toombes and is unpublished.  

Inserting the Maier-Saupe orientational distribution function (Eq. B.2) into the 

Toombes formula (Eq. B.1) gives: 

∫
=

= −
=

2/

L
22

L

2

L
tantancos

tan)cosexp()(
πβ

φβ φβφ

βββφ dm
Z
AI  (B.7)

The integral in Eq. B.7 can be solved by converting to a more convenient form: 
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The following substitutions can simplify the above equation: 
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Inserting the above substitutions into Eq. B.8 and simplifying gives: 
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We now convert Eq. B.10 into a form which can be found in an integral table by using 

the double angle formula ( ) 2/12coscos2 += AA .  Letting L
2cos φma = , Eq. B.10 

becomes: 
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where in the last three lines we have substituted ψ2=y , changed the upper limit of 

integration from π to 2π, and changed a cosine to a sine.  The general form for this 

integral can be found in an integral table: 
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where )(0 xI is a modified Bessel function of the first kind (Spiegel, 1998).  Re-

substituting L
2cos φma = , we obtain 



 

255 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

2
cos

22
cos

exp)( L
2

0
L

2

L
φπφ

φ
m

I
m

Z
AI  (B.13)

Inserting normalization constant Z (Eq. B.6) into Eq. B.13 results in the final equation 

for I(φL): 
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 We used Eq. B.14 as a starting point for the data fitting equations.  
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