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Introduction

The connectivity properties of graphs form an important
part of graph theory. Efficient algorithms for determining
some of these properties are both theoretically interesting
and useful in a variety of applications. This paper consi-
ders the problem of dividing a graph into triconnected com-
ponents. An algorithm for this purpose is useful for anal-
yzing electrical circuits [1], for determining whether a
graph 1is planar [2], and for determining whether two planar
graphs are isomorphic [3]. An algorithm for planarity may
be used in the design of printed circuit boards; an algorithm
for isomorphism of planar graphs may be used to test struc-
tural isomorphism of chemical compounds [4].

One technique which has been used to solve connectivity
problems is depth-first search. In [5,6] depth-first search
is applied to give efficient algorithms for determining the
biconnected components of an undirected graph and for deter-
mining the strongly connected components of a directed graph.
The method has also been used in an efficient algorithm for
planarity testing [7,8) and in an algorithm to find dominators
in a flow graph [9]. This paper applies depth-first search to
the problem of finding the triconnected components of a graph.
0l1d methods for determining these components require 0(V3)
steps or more, if the graph has V vertices [1,10]. The al-
gorithm described here requires substantially less time, and

it may be shown to be optimal to within a constant factor as-
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suming a suitable model of computation.
Four sections'comprise the paper. The first section pre-

sents the necessary definitions and lemmas from graph theory,

and 1t describes depth-first search. The second section intui-
tively éxplains the triconnectivity algorithm. The third sec-
tion describes preliminary caleulations and a simple test to find
the separation pairs of a graph. The last section gives the heart
of the triconnected components algorithm, including proofs of its
correctness and the derivation of time and space bounds.

In deriving time bounds on algorithms we assume a random-
access computer model. A formal definition of such a model
may be found in [11]). 1Intuitively, any logical, arithmetic,
or control operation requires one step; all numbers must be
integers whose absolute value is 0(V), if the problem graph
has V vertices. (We use the following notation for specify-
ing bounds: 1f f and g are functions of x, we say "f(x) is

0(g(x)) 1f, for some constants k; and k,, lf(x)likllg(x)|+k2

for all x.)



Graphs, Connectivity, and Depth-First Search

The definitions used in this paper are more-or-less
standard; see [12,13]. Triconnected components may be de-
fined in several ways, all more-or-less equivalent. The
results below which we give without proof follow from those
of Saunders Maciaine [14]; our definitions are modified some-
what to make them more suitable for computer applications.
Tutte [15]) has also developed a theory of triconnected com-
ponents; his definitions are equivalent to ours and to
Maclaine's. The theory is also a special case of the more
general theory of decomposing "clutters" into "chunks" due

to Edmonds and Cunningham [16].

A graph G = (¥&) consists of a set Y containing V vertices
and a set d?containing E edges. If the edges are ordered pairs(v,w)
of distinct vertices, the graph is directed; v is called the tail
and w the head of the edge. If the edges are unordered pairs
of distinct vertices, also denoted by (v,w), the graph is
undirected. If d?is a multiset; that is, any edge may occur
several times, then G is a multigraph. If (v,w) 1is an edge
of a multigraph G, vertices v and w are adjacent. Edge (v,w)
is incident to vertices v and w; v and w are incident to (v,w).
1f & 1s a set of edges in G, Y1&") 1s the set of vertices in-
cident to one or more of the edges in (s". If S is a set of
vertices in G, éﬁs) is the set of edges incident to at least

one vertex in S.



If G is a multigraph, a path p: v:>w in G is a sequence
of vertices and edges leading from v to w. A path is gimple
if all its vertices are distinct. A path p:vd>v is a cycle
if all its edges are distinct and the only vertex to occur
twice on p is v, which occurs exactly twice. Two cycles which
are cyclic permutations of each other are considered to be the

same cycle. The undirected version of a directed multigraph

is the multigraph formed by c¢onverting each edge of the direc-
ted multigraph into an undirected edge. Aﬁ undirected multi-

graph is connected if every pair of vertices v and w in G 1is

connected by a path, If G-('Y/,& and G'-'(V,g') are two multi-
graphs such that'V c Y and & gg, then G' is a subgraph of
G. A multigraph having exactly two vertices v,w and one or
more edges (v,w) is called a bond.

A (directed, rooted) tree T is a directed graph whose un-
directed version is connected, having one vertex which is the
head of no edges (called the root), and such that all vertices
except the root are the head of exactly one edge. The rela-
tion " (v,w) is an edge of T " is denoted by v*w. The rela-
tion "there is a path from v to w in T" is denoted by v¥w. If
v+w, v is the father of w and w 1s a son of v. If viw, v is
an ancestor of w and w is a descendant of v. The set of des-
cendants of a vertex v is denoted by D(v). Every vertex is
an ancestor and a descendant of itself. If G is a directed
multigraph, a tree T is a spanning tree of G 1f T is a subgraph

of G and T contains all the vertices of G.
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Let P be a directed multigraph, consisting of two dis-
joint sets of edges, denoted by v*w and v-+*w. Suppose P

satisfies the following properties:

(1) The subgraph T containing the edges v+w 1is a
spanning tree of P.

(11) 1If v-+w, then wiv. That is, each edge not in
the spanning tree T of P connects a vertex with

one of its ancestors in T.

Then P is called a palm tree. The edges v--w are called the
fronds of P.

A connected multigraph G is biconnected if for each
triple of distinct vertices v,w and a in V there is a path
p:v3>w such that a is not on the path p. If there is a dis-
tinct triple v,w,a such that a 18 on every path p:v§>w. then

a 18 called a separation point (or an articulation point) of

G. We may partition the edges of G so that two edges are in
the same block of the partition if and only if they belong

to a common cycle. Let Gi-(vi'Ei) where E, is the set of

i
edges in the ith block of the partition and Vi-V(Ei). Then:

(1) Each Gi is biconnected.
(11) VNo G1 is a proper subgraph of a biconnected sub-
graph of G.

(141) Each vertex of G which is not an articulation
point of G occurs exactly once among the Vi and
each articulation point occurs at least twice.

(iv) For each 1i,3,1¥]3, Vian contains at most one ver-

tex; furthermore, this vertex (if any) is an ar-

ticulation point.
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The subgraphs Gi of G are called the biconnected components

of G. The biconnécted components of G are unique.

Let'{a,b}.be a pair of vertices in a biconnected multi-
graph G. Suppose the edges of G are divided into equivalence
classes EI’EZ""'Bn such that two edges which lie on a common
path not containing any vertex of {a,b} except as an end point are
in the same class. The classes Ei are called the separation clas-
ses of G with respect to {a,b}. If there are at least two separa-
tion classes, then {a,b}is a separation pair of G unless (1) there
are exactly two separation classes and one class consists of a
single edge or (2) there are exactly three classes each consist-
ing of a single edge.

If G 4s a biconnected multigraph such that no pair

{a,b} is a separation pair of G, then G is triconnected.

———— e

Let {a,b} be a separation pair of G. Let

the separation classes of G with respect to {a,b} be

k n
E. E.....,E_. Let E' = UE, and E'"= U E, be such
1072007 1m1 1 T gekl 1
that |E'| > 2, [E"| > 2. Let G, = (v(e'), E'U{(a,0)]D),
G, = (v(e"), E"U{(a,b)}). The graphs G, and G, are
called split graphs of G with respect to ‘{a,b}{f Re-

placing a multigraph G by two split graphs is called
}sglitting G. There may be many possible ways to split a

. gr;ph, even with.respect to a fixed separation pair {a,b}.

A splitting operation is denoted by s (a,b,1); 1 1is a label

distinguishing this split operation from other splits. The



new edges (a,b) added to G1 and G2 are called virtual
edges; they are labelled to identify them with the split.

A virtual edge (a,b) associated with split s(a,b,1) will
be denoted by (a,b,i). If G 1is biconnected, then any split

graph of G 1s also biconnected.

Suppose a multigraph G is split, the split graphs
are split, and so on, until no more splits are possible
(each graph remaining is triconnected). The graphs con-

structed in this way aré called the split components of

G. The split components of a multigraph ére not neces-

sarily unique,

Lemma 1: Let G = (V,E) be a multigraph with |E| > 3.
Let GI’GZ""'Gm be the split components of G. .Then the

total number of edges in Gl’c2""‘cm is bounded by 3'2[-6.

Proof: The lemma is proved by induction on the number of edges

of G. If G has 3 edges the lemma is immediate, because G can-

not be split. Supposa €he lemma is true for graphs with n-1 edges
and suppose G has n edges. If G cannot be split the lemma
i1s true for G. Suppose on the other hand that G can be
split into G' and G", where G' has k+1 edges and G" has
n-k+1 edges for some 2<k<n-2. By induction, the total .
number of edges in cl'GZ”"’Gm must be bounded by 3(k+1)

=6 + 3(n-k+1) - 6 =~ 3n-6. Thus by induction the lemma is

true.



In order to get unique triconnected components we must
partially reassemble the split components. Suppose Gls(Vl,El)
and 62-(v2’E2) are two split components both containing a

virtual edge (a,b,i). Let

6 = (v, (E;-{(a,b,D)NUCE,-{(a,D, D).

Then G is called a merge graph of G1 and Gz; the merge opera-
tion will be denoted by m(a,b,i). Merging is the inverse

of splitting; if we perform a sufficient number of merges on
the split components of a multigraph we recreate the original
multigraph.

The split components of a multigraph are of three types:
triple bonds, of the form ({a,b},{(a,b),(a,b),(a,b)}); tri-
angles, of the form ({a,b,c},{(a,b),(a,c),(b,c)}); and tri-
connected graphs. Let G be a multigraph whose split compo-
nents are a set of triple honds:%y a set of trianglesg; and
a set of triconnected grnphsg?. Suppose the triple bondaézg

are merged as much as possible to give a set of bondséﬁi and

that the triangles 3rare merged as much as possible to give

a set of polygons .? Then the set of graphs %U.?U@ is the

set of triconnected components of 8. If G is an arbitrary

multigraph, the triconnected components of the biconnected

components of G are called the triconnected components of G.

Lemma 2: The triconnected components of a graph G are unique.



-9 -

Proof: See [14,16,17].

Figure 1 illustrates a biconnected graph G with several
separation pairs. Figure 2 gives the split components of G.
The triconnected components of G are formed by merging tri-

angle (1,8,4) and triangle (4,5,8).

Graph algorithms require a systematic way of exploring

a multigraph. We will use a method called depth-first search.

To carry out a depth-first search of G, start from some ver-
tex 8 and choose an edge leading from s to follow. Traversing
the edge leads to a new vertex. Continue in this way, at each
step selecting an unexplored edge leading from the most recent-
ly reached vertex which still has unexplored edges. If G is
connected, each edge is traversed exactly once.

If G is undirected, a search of G imposes a direction
on each edge of G given by the direction im which the edge
is traversed during the search. Thus the search converts

G into a directed multigraph G!

Lemma 3: Let P be the directed multigraph generated by a
depth-first search of a connected undirected multigraph G.

Then P i8 a palm tree.
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Proof: See [5].

Depth-first search is important because the structure of
paths in a palm'tree 18 very simple. To imﬁlement a depth-
first search of a multigraph, we use a simple recursive proce-
dure which keeps a stack of the old vertices with possibly un-
explored edges. To represent a multigraph, we use a set of
adjacency lists, one for each vertex. If v is a vertex, adja-
cency list A(v) contains all w such that (v,w) is an edge of

G. These lists together comprise an adjacency structure for G.

1f G is undirected, each edge (v,w) 1s represented twice, once
in A(v) and once in A(w). If G is directed, each edge is re-
presented once.

Below is a recursive procedure to carry out a depth-first
search. The exact search depends upon the order ﬂf edges in
the adjacency lists. The procedure numbers the vertices from
1 to V in the o}der they are reached during the search, in ad-
dition to identifying tree arcs and fromds. Reference [5] gives
a proof that the procedure is correct and requires O(V+E) time
to execute. It is easy to see that the vertices are numbered so

that NUMBER(v)<NUMBER(w) 1if v3w 1in the generated spanning tree.
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begin comment Routine for depth-first search of a multigraph G
represented by adjacency lists A(v). Variable n denotes
the last number assigned to a vertex;

integer n;

procedure DFS(v,u); begin comment vertex u 1is the father of

vertex v in the spanning tree being constructed. The
graph to be searched is represented by a set of adja-
cency lists A(v);

n:=NUMBER(vV) :=n+1;

a: comment dummy statement;

for wEA(v) do begin
if NUMBER(w)=0 then begin
comment W is a new vertex;
mark (v,w) as a tree arc;
DFS(w,vVv) ;

b: comment dummy statement;

end

else if (NUMBER(w)<NUMBER(v)) and ((w#u) or —FLAG(v))
then begin

comment the test is necessary to avoid exploring an

edge in both directions. FLAG(v) becomes false

when the entry in A(v) corresponding to tree arc
(u,v) is examined;
mark (v,w) as a frond;

c: comment dummy statement;
end;

if w=u then FLAG(v)=false;
end;

o
[-%

n

n:=0;
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for 1:=1 until V do begin
NUMBER(1) :=0;
FLAG(1) :=true;
end;
comment the séérch starts at vertex 8;
DFS(s,0);

end;
The dummy statements a,b,c, will be replaced when DFS is
used to calculate other information about the graph. Figure 3

depicts the palm tree formed by applying DFS to the graph in

Figure 1.
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An Outline of the Triconnectivity Algorithm

This section sketches the ideas behind the triconnectivity
algorithm. Later sections develop the detailed components. The
algorithm is based on an idea of Auslander, Parter, and Goldsteln
[18,19] for testing the planarity of graphs. Auslander, Parter,
and Goldstein's idea gives rise to an O(V) time algorithm for
testing planarity, if depth-first search is used to order the
calculations [7,8]. The same idea gives an O(V+E) time algorithm
for finding triconnected components.

Let G be an arbitrary biconnected multigraph. Suppose a
cycle ¢ is found in G. When the cycle is deleted from G, cer-
tain connected pieces remain, called segments. Auslander and

Parter show that G is planar if and only if:

(1) Any subgraph of G consisting of ¢ plus a single
segment is planar; and,
(11) The segments may be combined consistently to give a

planar embedding of the entire graph.

An efficient planarity algorithm may be developed from this re-
sult [7,8). A similar result holds for the separation pairs of

G; namely:

Lemma 4: Let G be a biconnected multigraph and let c be a cycle
in G. Let Sl,..,Sn be the subgraphs of G-c such that e, and e,

are edges of S, if and only if some path p in G contains both

i
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e, and e, and no vertex of c lies between e and e, in P The
segments S, and the cycle c partition the edges of G. Let {a,b}

be a separation pair of G such that (a,b) is not a multiple edge.
Then: v

(1) Either a and b both lie on c or a and b both lie in some
segment Si.
(2) Suppose a and b both lie on c. Let p; and P, be the two

paths comprising c which join a and b. Then either:

(1) Some segment Si with at least two edges has only a and
b in common with ¢, and some vertex v does not lie in
Si({a.b} is called a type 1 separation pair); or,

(1i1) No segment contains a vertex v#a, b in Py and a vertex
w#a,b in Py and Py and P, each contain a vertex be-

sides a and b ({ ab} is called a type 2 separation pair);

(3) Conversely, any pair {a,b} which satisfies (i) or (11) 1is

a separation pair.

It is easy to prove this lemma; a more technical version is
proved in the next section. Lemma 4 gives rise to an efficient
recursive algorithm for finding split components. We find a cy-
cle in G and determine the segments formed when it is deleted.
We test each segment for separation pairs by applying the al-
gorithm recursively and we test the cycle for separation pairs
by checking the criteria in Lemma 4. Recursive application of
the algorithm requires finding cycles in subgraphs of G formed

by combining a segment Si and the initial cycle c.
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We can make this algorithm very efficient by ordering
the calculations using depth-first search. Each recursive
call on the algorithm requires that we find a cycle in the
plece of the graph to be tested for separation pairs. This
cycle will consist of a simple path of edges not in previous-
1y found cycles, plus a simple path of edges in old cycles.
We use depth-first search to divide the graph into simple
paths which may be assembled into these cycles. The first
cycle ¢ will consist of a sequence of tree arcs followed by
one frond in P, the palm trece formed from G by depth-first
search. The numbering of vertices is such that the vertices
are in order by number along the cycle. Each segment will con-
sist either of a single frond (v,w) or of a tree arc(v,w) plus
a subtree with root w, plus all fronds wich lead from the subtree.
The search explores the segments in decreasing order of v and par-
titions each into simple paths consisting of a sequence of tree
arcs followed by one frond.

Finding paths actually requires two searches because
the pathfinding search must be carried out in a special or-
der if it 1s to succeed, and certain preliminary calcula-
tions are necessary. The section on finding separation pairs
describes the pathfinding process in detail and includes a ver-
sion of Lemma & which characterizes separation pairs in terms
of the generated paths. The section on finding split components
indicates how these results may be used to determine the split

components of a biconnected multigraph in O(V+E) time.
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To determine .the triconnected components of an arbitrary
multigraph, we eliminate multiple edges by splitting them off,
creating a set of bonds with three edges. This requires
O(V+E) time if implemented correctly. Then we find the bi-
connected components of the resultant graph using the 0(V+E)
algorithm described in [5,6]. Next, the split components of
each biconnected component are found using the algorithm out-
lined above and presented in detail in the next two sections.
This gives us the split components of the entire graph. The
total size of the split components is O(V+E) by Lemma 1. Next
we identify the set of triple bondsézg and the set of triangles
3{ For each of these two sets, we construct an auxiliary graph
S whose vertices are the elements of the set; two split compo-
nents are joined by an edge in an auxiliary graph if they have a
a common virtual edge. The connected components of Sﬁﬁz) and
SQ?S correspond to tlie bonds and polygons which are triconnected
components of G. Finding these bonds and polygons requires

O(V+E) time. Below is an outline of the entire algorithm.

procedure TRICONNECTIVITY(G); begin comment an outline of the
triconnected components algorithm;
A: split off multiple edges of G to form a set of triple
bonds and a graph G';

B: find biconnected components of G';
for each biconnected component C of G' do
C: find split components of C;

D: combine triple bonds and triangles into bonds and
polygons by finding connected components of corres-

ponding auxiliary graphs;

(]
=
a.



Steps A,B, and D all require O(V+E) time if correctly im-
plemented. Implementation of step B is described in (5); im-
plementation of steps A and D is left as an exercise. The
hard step is step C, whose implementation is described in the
next two sections. Based on the results of these sections,
the entire triconnectivity algorithm has O(V+E) time and space

bounds.
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Finding Separation Pairs

Let G = qugﬁ be a biconnected multigraph with V vertices
and E edges. 'The main problem in dividing G into its split
components lies in finding its separation pairs. This
section gives a simple criterion, based upon depth-first search,
for identifying the separation pairs of a multigraph. Two depth-
first searches and some auxiliary calculations must be carried
out. These calculations form the first part of the split com-
ponents algorithm and are outlined below. The definitions for
the quantities LOWPT1l, ND, etc., used in the outline will be

given subsequently.

1. Perform a depth-first search on the multigraph G,
converting GC into a palm tree P. Number the ver-
tices of G in the order they are reachéd during
the search. Calculate LOWPT1(v), LOWPT2(v), ND(v),

and FATHER(v) for each vertex v in P.

2, Construct an acceptable adjacency structure A for
P by ordering the edges in the adjacency structure

according to the LOWPT1 and LOWPT2 values.

3. Perform a depth-first search of P using the adja-
cency structure A. Renumber the vertices of A
from V to 1 in the order they are last examined
during the search. Partition the edges into dis-
joint simple paths. Recalculate LOWPT1(v) and
LOWPT2(v) using the new vertex numbers. Calcu-

late Al(v), DEGREE(v), and HIGHPT(v) for each ver-

tex v.
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The details of these calculations appear below. From
Steps 1,2, and 3 we get enough information to rapidly de-
termine the separation pairs of G. Lemma 13 gives a con-
dition for this purpose.

Suppose G is explored in a depth-first manner, giving
a palm tree P. Let the vertices of P be numbered from 1
to V so that v¥w in P implies v<w, 1if we identify vertices
by théir number. For any vertex v in P, let FATHER(v) be
the father of v in the spanning tree of P. Let ND(v) be
the number of descendants of v. Let LOWPT1(v)=min({v} U
(w|v5-*w}). That is, LOWPT1(v) is the lowest vertex reach-
ble from v by traversing zero or more tree arcs in P fol-
lowed by at most one frond. Let LOWPT2(v) = min({v} U
({w|v¥-+w} - {LOWPT1(v)})]. That is, LOWPT2(v) is the second
lowest vertex reachable from v by traversing zero or more tree
arcs followed by at most one frond of P, unless LOWPT1(v)=v.

In this case LOWPT2(v)=v.

Lemma 5: LOWPTl(v)iv and LOWPTZ(V):V in P.

Proof: LOWPTI(v)<v by definition. If LOWPT1(v)=v the result
is immediate. If LOWPT1(v)<v there is a frond u-+LOWPT1(v)
such that viu. Since u-+LOWPTI(v) is a frond, LOWPT1(v)>u.
Since P is a tree, viu and LOWPT1(v)¥u, either v¥LOWPTL(v) or
LOWPTl(v)iv. But LOWPT1(v)<v. Thus it must be the case that
LOHPTl(v)*viu, and the lemma holds for LOWPT1(v). The proof

is the same for LOWPT2(v).
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Lemma 6: Suppose LOWPT1(v) and LOWPT2(v) are defined relative
to some numbering for which vgw in P implies NUMBER(v) <
NUMBER(w). Then LOWPT1(v) and LOWPT2(v) identify unique ver-

tices independent of the numbering used.

Proof: LOWPT1(v) always identifies an ancestor of vertex v.
Furthermore LOWPT1(v) is the lowest numbered ancestor of v

with a certain property relative to the palm tree P. Since
the order of the ancestors of v corresponds to the order of
their numbers, LOWPT1(v) identifies a unique vertex indepen-
dent of the numbering; namely, the first ancestor of v along
the path 1¥v which has the desired property. (Any satisfac-
tory numbering assigns 1 to the root of P.) The proof is the

same for LOWPT2(v).

The LOWPT values of a vertex v depend only on the LOWPT

values of sons of v and on the fronds leaving v; it is easy

to see that if vertices are identified by number,

LOWPT1(v) = min({v} U {LOWPT1(w)|v+w} U {w]|v-+w}) and
LOWPT2(v) = min({v} U (({LOWPT1(w)]|v+w} U {LOWPT2(w)]|v-w}

U {w]v-sw)) - {LowPT1(V)])).

We also have ND(v) # 1 + I ND(w). We may calculate LOWPT values,
vrw

ND, and FATHER for all vertices in O(V+E) time by inserting the

following statements for the dummy statements a,b,c in DFS. Num-

bering the vertices in the order they are reached during the

search clearly guarantees that viv implies v<w.
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comment additions to DFS for step 1;

a: LOWPT1(v) :=LOWPT2(v) :=NUMBER(vV);
ND(v) :=1;

b: if LOWPT1(w)<LOWPT1(v) then begin
LOWPT2(v) :=min{LOWPT1(v) ,LOWPT2(w)};
LOWPT1(v) :=LOWPT1(w) ;
end else if LOWPT1(w)=LOWPT1(v) then
LOWPT2(v) :=min{LOWPT2(v) ,LOWPT2(w) };
else LOWPT2(v) :=min{LOWPT2(v) ,LOWPT1(w)};
ND(v) :=ND(v)+ND(w) ;
FATHER(wW) :=v;

c: if NUMBER(w)<LOWPT1(v) then begin
LOWPT2(v) :=LOWPT1(v);
LOWPT1(v) :=NUMBER(w) ;
end else if NUMBER(w)>LOWPT1(v) then

LOWPT2(v) :=min{LOWPT2(v) ,NUMBER(w) };

It is easy to verify that DFS as modified above will compute
LOWPT1,LOWPT2,ND, and FATHER correctly in O(V+E) time. (See [8,17].
LOWPT1 may be used to test the biconnectivity of G, as described in
[5]. One related lemma is important:

Lemma 7: If G is biconnected and v+w, LOWPT1l(w)<v unless v=1, in

which case LOWPT1l(w)=v=1, Also, LOWPT1(1l)=l.
Proof: See [5].

Let ¢ be the mapping from the edges of P into {1,2,+++,2V+1}

defined by:
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(1) 1if e=v-+w, ¢(e)=2w+l.
(11) if e=v+w and LOWPT2(w)<v, ¢(e)=2LOWPT1(w).

(111) if e=v+w and LOWPT2(w)>v, ¢$(e)=2LOWPT1(w)+1.

Let A be an adjacency structure for P. A is called
acceptable if the edges e in each adjacency list of A are or-

dered according to fncreasing value of ¢(e).

Lemma 8: Let P be a palm tree of a biconnected graph G whose
vertices are numbered so that viy in P implies v<w. Then the
acceptable adjacency structures of P are independent of the

exact numbering scheme.

Proof: If v+w in P, then by Lemma 5, LOWPT2(w) 1is an ancestor

of w. By Lemma 6, LOWPT2(w) is a fixed vertex independent of

the numbering. Since the order of the ancestors is independent
of the numbering, the question as to whether LOWPT2(w) is less
than v is independent of the numbering. Since G is biconnected
if vo*w in P, then LOWPT1(w)<v by Lemma 7. By Lemma 5, LOWPT1(w)
is an ancestor of w. Since LOWPT1(w)<v, LOWPT1(w) must be an
ancestor of v. By Lemma 6, the vertex corresponding to LOWPT1(w)
is independent of the numbering scheme. Similarly if v-+w, then
by Lemma 3 and the definition of a palm tree, w is an ancestor of
v. But the order of the ancestors of v is identical to the order
of their numbers, and this order is independent of the numbering.
Thus the acceptable adjacency structures A for P depend only on

P and not on the exact numbering.
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In general, a palm tree P has many acceptable adjacency
structures. Given a satisfactory numbering of the vertices
of P, we may easily construct an acceptable adjacency struc-
ture A by using a radix sort with 2V+1l buckets. The following
procedure gives the sorting algorithm, which is Step 2 of the
calculations. All vertices are identified by number. It is

obvious that the sorting procedure requires O(V+E) time.

comment construction of ordered adjacency lists;

Ll

or 1:=1 until 2*V+1l do BUCKET({i) :=the empty list;

i)

or (v,w) an edge of G do begin

compute ¢((v,w));

add (v,w) to BUCKET(¢(v,w));

end;
for 1:=1 until V do A(1):= the empty list;
for 1:=1 until 2*V+l do

for (v,w)€BUCKET(1) do add w to end of A(v);

In Step 3 of the calculations we perform a depth-first
search of P using the acceptable adjacency structure A given
by step 2. This search generates a sat of paths in the fol-
lowing manner: each time we traverse an edge we add it to
the path being built. Each time we traverse a frond, the
frond becomes the last edge of the current path. Thus each
path consists of a sequence of tree arcs followed by a single

frond. Because of the ordering imposed on A, each path ter-
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minates at the lowest possible vertex, the initial path is a
cycle, and each path except the first is simple and has only
its initial and terminal vertex in common with previously
generated path;'[7,8].

If p:s:>f is a generated path, we may form a cycle by
adding the tree path f¥s to p+ The cycles formed in this
way are the cycles generated by recursive calls on the basic
triconnectivity algorithm explained in the last section.

We need only minimal information about the paths. Let
the vertices of P be numbered so that viw implies v<w. Let
Al(v) be the first vertex in A(v). If v-+w is the first
frond explored in step 3 which terminates at w,let HIGHPT(w)=v.
Let DEGREE(v) be the number of edges incident to vertex v.
Step 3 numbers the vertices from V to 1 in the order they are
last examined during the search. It is clear that this num-
bering guarantees that v<w if vzw. Step 3 also computes
LOWPT1(v), HIGﬂPT(v), Al(v), and DEGREE(v) with
respect to the numbering. The following routine based on DFS

will perform step 3 in O(V+E) time:
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begin comment routine to generate paths in a biconnected
palm tree with specially ordered adjacency lists A(v).
Vertex s 1s a global variable denoting the start ver-
tex of the current path s is initialized to 0. Vari-
able m denotes the last number assigned to a vertex;

procedure PATHFINDER(v); begin
NEWNUM(v) :=m-ND(v)+1;
for w€A(v) do
if s=0 then begin
s:=v;
start new path;
end;
add (v,w) to current path;
if v+w then begin
PATHFINDER(w) ;
m:=m=-1;
end else begin comment v=-+w;

if HIGHPT(NEWNUM(w))=0 then HIGHPT(NEWNUM(w)) :=
NEWNUM(vV) ;

output current path;
s:=0;

for 1:=1 until V do NEWNUM(1) :=HIGHPT (1) :=0;
comment vertex 1 is the start vertex of the search;
PATHFINDER(1) ;
for all vertices V do
compute Al(v), DEGREE(v) and LOWPT1(v) and
LOWPT2(v) using the new numbering;
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Step 3 numbers- the vertices from V to 1 in the order they
are last reached during the search. However, each vertex must
actually be assigned a number the first time it is reached, in
order for the calculation of HIGHPT to proceed correctly. In
order to accomplish this, variable 1 is set equal to V when the
search begins (statement Z). The value of i is decreased by one
each time a new vertex is discovered (statemeat Y). Thus when
a vertex v is first reached, i is equal to the number we want to
assign to v minus the number of vertices to be examined before v
is examined for the last time. But the vertices to be reached
between the time v is first examined and the time v is last ex-
amined are just the proper descendants of v. Thus 1if we assign
the number i- ND(v)+l to v when v is first examined (statement
X), the numbering will be correct. The other calculations per-
formed in Step 3 are straightforward and easy to implement. The
palm tree for the graph G of Figure 1 is illustrated in Figure 4
along with LOWPT values and the set of paths generated by Step 3.

Let G be a biconnected multigraph on which Steps 1, 2, and
3 have been performed, giving a palm tree P and the sets of
values defined above. Let A with adjacency lists A(v) be the
acceptable adjacency structure constructed in Step 2. Let the
vertices of G be identified by the numbers assigned in Step 3.
We need one more definition. If u+v and v is the first entry
in A(u), then v is called the first son of u. (For each vertex

v, Al(v), the first son of v if one exists, is calculated in
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Step 3.) If u *ul*"'+un and u, is a first son of u for

0 i i-1

1<i<n, then v, is called a first descendant of Yo+ The se-

quence of tree arcs u0+u1+u2+'~-+u1 is part of a path gener-
ated by Step 3. The lemmas below give the properties we need

to determine the separation pairs of G.

Lemma 9: Let A(u) be the adjacency list of vertex u. Let
u+v and u’w be tree arcs with v occurring before w in A(u).

Then u<w<v.

Proof: Step 3 numbers the vertices from V to 1 in the order
they are last examined in the search. 1If u+rv is explored be-
fore u*w, v will be examined last before w Is exzamined last,
and v will receive a higher number. Clearly u will be last
examined after both v and w are last examined, so u receives

the smallest number of the three vertices.

Lemma 10: A is acceptable with respect to the numbering given

by Step 3.

Proof: The sorting in Step 2 creates an acceptable adjacency
structure for the original numbering. By Lemma 9, u+*v implies

u<v and hence by Lemma 8, A is acceptable for the new numbering.

Lemma 11: If v is a vertex and D(v) is the set of descendants
of v, then D(v)=(x|v§x<v+ND(v)}. If w is a first descendant

of v, then D(v)=D(w)={x|v<x<w}.
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Proof: Suppose we reverse all the adjacency lists A(v) and use
thenm to specify'a depth-first search of P. Vertices will be ex-
amined for the first time in ascending order from 1 to V, if ver-
tices are ident;fied by their Step 3 number. Thus descendants of
v are assigned comsecutive numbers from v to v+ND(v)-1. 1If w is
a first descendant of v, vertices in D(w) will be assigned num-

bers after all vertices in D(v) - D(w). Thus D(v) - D(w)={x|vix<w}.

Lemma 12: Let {a,b} be a separation pair in G with a(b. Then

adb in the spanning tree T of P.

Proof: Since a<b, a cannot be a descendant of b. Suppose b

is not a descendant of a. Let Ei for 1<i<k be the separation
classes with respect to {a,b}. Let s<Y - p(a) - D(b).

The vertices S define a subtree in T containing neither a nor

b, so E(S) must be contained in some separation élass, say El'
Let ¢ be any son of a. E(D(c)) must be contained in some separ-
ation class. iBut since G is biconnected and a#1, LOWPT1(c¢c)<a,
by Lemma 7. Thus some edge is incident to a vertex in S and

to a vertex in D(c). Thus E(D(c)) C E A similar argument

1
shows that edges incident to any descendant of b are in El.
But this means that El-E, and'{a,b} cannot be a separation

pair.

Lemma 13: Suppose a<b. Then {a,b} is a separation pair of

G 1f and only if either (1), (2), or (3) below holds.
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(1) There are distinct vertices r#a,b and s#a,b such
that b*r, LOWPT1(r)=a, LOWPT2(r)>b, and s is not
a descendant of r. ({a,b} is called a type 1
separation pair. The type 1 pairs for the graph

in Figure 4 are (1,3),(1,4),(1,5),(4,5),(1,8).)

(2) There is a vertex r#b such that a*rib; b is a
first descendant of r (i.e. a,r, and b lie on
a common generated path); a#l; every frond x-2y
with r<x<b has a<y; and every frond x--y with
a<y<b and b+w§x has LOWPT1(w)>a. ({a,b} is called
a type 2 separation pair. The type 2 pairs for

the graph in Figure 4 are (4,5) and (8,12)).

(3) (a,b) is a multiple edge of G and G contains at

least four edges.

Proof: The converse part of the lemma is easiest to prove.
Suppose pair {a,b} satisfies (1), (2), or (3). Let Ei for
1<i<k be the separation classes of G with respect to {a,bl}.
Suppose {a,b} satisfies (1). Then the edge (b,r) is con-
tained in some separation class, say El. Every tree arc

with an endpoint in D(r) has the other endpoint in D(xr) U
"{a,b}. Also, since LOWPT1(r)=a and LOWPT2(r)>b, every frond
with an endpoint in D(r) has the other endpoint in D(xr) U
"{a,b}. Thus E, consists of all edges with an endpoint in D(r).
No other edges are in E1 and the edges incident to vertex s
must be in some other class, say E2' Since E, and E, each

1 2

contain two or more edges, {a,b} i1s a separation pair.



- 30 -

Suppose {a,b} satisfies (2). Let $=D(r)-D(b).
All edges incident to a vertex in § are in the same separation
class, say E;. Since b is a first descendant of r, S={x|r<x<b}
b

by Lemma 1 . Let b .,bn be the sons of b in the order

1’2"
they occur in A(b). Let io-mih{i|LOWPT1(bi)za}. By the order-
ing imposed on A, i<10 implies LOWPTl(bi)<a, and ilio implies
LOHPTl(bi)Za. By (2), every frond with tail in S has its head
in 8 U {a}. Also by (2), every frond with head in S has its
tail in 8§ U {b} U (U D(b;)). Every edge with an endpoint in

i>i

D(b,), 121, has 1ts 0 other endpoint in S U {a,b} U D(b,).

0°
Thus the class El contains at least all edges with an endpoint
in S, and at _most all edges with an endpoint in s VUV D(bi)'
i1,
Since a¥l, the edges incident to the root of P cannot be in
E,, and therefore {a,b} is a separation pair.
Now we must prove the direct part of the lemma. Thus sup-

ppose that {aab} is a separation pair with a<b. If (a,b) is a
multiple edge of G then it is clear that {a,b} satisfies (3).
Thus suppose that (a,b) is not a multiple edge of G. By

Lemma 12, aib. Let Ei for 1<i<k be the separation classes

of G with respect to {a,b}. Let v be the son of a such that
a*v¥b, S = D(v) - D(b), and X = V - D(a). (Either S or X or
both may be empty.) E(S) and E(X) are each contained in a

separation class, say E(S) C El and E(X) C© Ez.
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Let ai#v be a son of a. If a has such a son, LOWPTl(ai)<a.

This means that E(D(ai)) CE,. Let Y=XU pD(ai). let bl’bZ’
.,bn be the sons of b in the order they tccur on the adjacency

list of b. Let E(D(bi)) be the set of edges with an endpoint
in D(bi)' The separation classes must be unions cf the sets
E(S), E(Y), {(a,b)}, E(D(b;)), E(D(b,)),...,E(D(b )).

If E(D(bi))=Ej for some i and j, then LOWPTl(bi)-a since
G is biconnected and this means LOWPTl(bi)<b by Lemma 7. Also,
LOWPT2(b,)>b. Since {a,b} is a separation pair, there must be

a separation class other than E, and {(a,b)}. Thus there is a

b
vertex s such that s#a, s#b, and sﬁD(bi). This means that {a,b}
satisfies (1) where r is bi'
Suppose now that no E(D(bi)) is by itself a separation
then since G is

class. Let iy =min{i|LOWPT1(b,)>a}. If i>i

0 0
biconnected it must be the case that LOWPTl(bi)<b, and the

separation classes are E1=E(S)U'U E(D(bi)), E2=E(Y)U v E(D(bi)),
izi, i<i,

3=((a,b)}. (E3 may be empty.) We have v#b since {a,b} is not
a type 1 pair and a#l since EZ is non-empty. If x-»>y is a
frond with v<x<b, then xeS, (x,y)eEl, and a<y. If x-+y 1is a

frond with a<y<b and b+b, ¥x, then yeS, (x,y)eE;, and i1,

i
which means that LOWPTl(bi)za. We must verify one more con-
dition to show that (2) holds; namely, that b is a first des-
cendant of v. Since G is biconnected, LOWPT1(v) < a.

Thus some frond with tail in D(v) has head less than a.



By the ordering imposed on A and the definition of a first
descendant, there exists some frond x-*y with x€D(v) and y<a
such that x 1is a first descendant of v. If b were not a first
descendant of v then x would be in S, and E1 and E2 could not
be distinct separation classes. Thus b 1s a first descendant
of v, and (2) holds with r=v. This completes the proof of the

direct part of the lemma.

Lemma 13 and its proof

are worth pondering carefully. The lemma gives three easy-
to-apply conditions for separation pairs. Conditions (1) and
(2) identify the non-trivial separation pairs of the multigraph.
Condition (3) handles multiple edges. Condition (1) requires
that a simple test be performed on each tree arc of P. Thus
testing for type 1 pairs requires O(V) time. Testing for type
2 pairs is somewhat harder but may be done in O(V+E) time using
another depth-first search. Let {a,b} be a type 2 pair satis-

fying a*r¥b and 1 =mih{i|LOWPT2(bi)za}, where by,b,,...,b ~are

0 n

the sons of b in the order they occur in A(b), then one separ-
ation class with respect to {a,bl} is E({xlrix<bio+ND(bio))-{b)).
This follows from the proof of Lemma 13. The new numbering,
which satisfies the somewhat strange condition in Lemma 9, thus
makes it easy to determine the separation classes and to divide
the graph once a separation pair is found. An algorithm for
finding split components based on Lemma 13 is given in the next

section.
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Finding Split Components

We find split components by examining the generated paths
in order and testing for separation pairs with Lemma 13. Separ-
ation pairs will be of several types. Multiple edges and type 1
pairs are easy to recognize. So are type 2 pairs {a,bl}where
a+v+b and v has degree two. Other type 2 pairs are somewhat
harder to recognize. Let c be the first path generated (a cycle).
The cycle consists of a set of tree arcs 1-’v1+v2->---~>vn followed
by a frond vn-+1. The vertex numbering is such that 1<v1<...<vn.
When c is removed, the graph falls into several connected pleces,
called segments. Each segment consists either of a single frond
(vi,vj)or of a tree arc (vi,w) plus a subtree with root w plus
all fronds leading from the subtree. The ordeé of path generation
is such that all paths in one segment are generated before paths
in any other segment, and the segments are explored in decreasing
order of vy

Suppose we repeat the pathfinding search, using it now to
find split components. We 'shall keep a stack of edges, adding
edges to this stack as we back up over them during the search.
Each time we find a separation pair we rewmove a set of edges
from the stack corresponding to a split component . We add
a virtual edge corresponding to the split to both the component
and to the edge stack. We also need to update various pieces

of information, since the fathers of vertices and the degrees
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of vertices may change when a graph is split. The complete
pathfinding search will create a complete set of split com-
ponents. Assembling the split components to give the tri-
connected components is then a simple matter.

To identify type 2 pairs, we keep a stack (called TSTACK)
of triples (h,a,b). {a,b} is a possible type 2 pair and h denotes
the largest numbered vertex in the corresponding split component.
The pairs are in nested order on the stack; that is, if vy is

the current vertex being examined by the pathfinding search and

(hl.al,bl), (hz,az,bz),---,(h ) are on TSTACK then a, <a

UL k=2k-1
livi£b1§b2§°-'ibk. Furthermore all the % and b, are

3

<.++<g,.<a

2
vertices on the cycle c.

We update TSTACK in the following way:
(1) each time we traverse a new path p:s§>f, we delete all
triples (hj'aj’bj) on top of the stack with aj>f. If p has
second vertex v#f, let x=v+ND(v)-1l. Otherwise let x=s. Let
y-max{hjl tripll‘e(hj,aj,bj) deleted from TSTACK}. If (h, ,a,,
bk) was the last triple deleted, we add (max(x,y),f,s) to

the stack. If no triple was deleted, we add (x,f,s) to the

stack.

(2) When we back up over a tree arc vi-*vi+1 with vi#l, e
delete all entries (hj’aj’bj) on top of TSTACK satisfying
HIGHPT(vi)>hj. This test is necessary to guarantee that en-
tries not corresponding to type 2 pairs don't accumulate on
TSTACK.

We use TSTACK to find separation pairs in the fallowing
way: whenever we back up along a tree arc vi*vi+1 during the
pathfinding search, we examine the top triple (hl’al’bl) on

TSTACK. 1If viil, al-vi,and ai#FATHER(bi), {nl,bl) is a type 2
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separation pair. If DEGREE(v )=2 and v has a son, v, and

i

the son of Vit form a type 2 separation pair. We split off

i+1 i+1

components corresponding to type 2 pairs until these two con-
ditions give us no more components. (Simultaneously, we test
for components corresponding to multiple edges and split these
off.) Then we apply Lemma 13 to test whether‘(vi, LOWPTl(vi+1)]
is a type 1 pair, splitting off a component if necessary.
(Again, we need to check for a multiple-edge component.)

We handle the recursive part of the algorithm in the fol-
lowing way: Traversing a path p:s§>f which starts on ¢ means the
search is entering a new segment. Vertex f must be the lowest
vertex in the segment by the ordering imposed on the pathfinding
search. After we update TSTACK as described above, if p contains
more than.one edge we place an end-of-stack marker on TSTACK and
continue finding paths. This corresponds to a recursive call
of the basic triconnectivity algorithm. When we back up over
the first edge of p, we delete entrtes from TSTACK all the way
down to the end-of-stack marker. This corresponds to popping
up from the recursion.

One point remains mysterious; namely, the reason we use
LOWPT2 as well as LOWPT1 to construct A, the acceptable adja-
cency structure which determines the pathfinding search order.
This step is necessary so that all multiple edges are handled
correctly. Suppose v is a vertex, and Wy wz,...,wk are the

sons of v such that LONPTl(wi)-u. Further suppose that v=--u.



Let the vy be ordered as in A(v). There is some 10 such that
iiio => LOWPTZ(wi)<v and i>i0 - => LOWPTZ(wi)zv. In A(v), u
will appear after all the Wy with 1iiiio‘ If i>io, {u,wi} is a
type 1 separation pair; splitting off the corresponding com-
ponent produces a new (virtual) frond v-»u. It is important
that all the L with i>i0 appear together in A(v) so that
these virtual fronds may be located and combined to give split
components which are bonds.

Below is an Algol-like procedure to find spliit components
based on the ideas outlined above. The procedure is applicable
to any biconnected multigraph for which steps 1, 2, and 3 des-

cribed in the previous section have been carried out.



procedure SPLIT(G); begin
comment procedure to determine split components of G, a bi-
connected multigraph on which steps 1, 2 and 3 have been
carried out. G is represented by a set of properly or-
dered adjacency lists A(v). TSTACK contains triples re-
presenting possible type 2 separation pairs. ESTACK con-
tains edges backed up over during search. Other variables
have been defined in the previous section;
procedure PATHSEARCH(v); begin
comment this recursive procedure repeats the pathfinding
search, finding separation pairs and splitting off com-
ponents as it proceeds. It is based cn the material in
this section and the last. Vertex v is the current ver-
tex in the depth-first search;
for w€A(v) do
"if v + w then begin
A if v > w is first edge of a path then begin
y:=0;
while (h,a,b) on TSTACK has a>LOWPT1(w) do begin
y:=max(y,h);
delete (h,a,b) from TSTACK;
end;
if no triples deleted from TSTACK then add (w+ND(w)-1,

LOWPT1{w),v) to TSTACK
else if (h,a,b) last triple deleted then

add (max{y,w+ND(w)-1}, LOWPT1(w),b) to TSTACK;
add end-of-stack marker to TSTACK;

end;
PATHSEARCH (w) ;
add (v,w) to ESTACK;
B: while v#1 and ((DEGREE(w)=2) and (Al(w)>w) or (h,a,b) on

TSTACK satisfies {v=a)) do begin comment test for
type 2 pairs;



if (h,a,b) on TSTACK has (a=v) and (FATHER(b)=a)
then delete (h,a,b) from TSTACK;

else begin
if (DEGREE(w)=2) and (Al(w)>w) do begin
j=3+1;

add top two edges (v,w) and (w,x) on ESTACK to
new component;
add (v,x,j) to new component;
if (y,z) on ESTACK has (y,z)=(x,v) then begin
FLAG:=true;
delete (y,z) from ESTACK and save;
end;
end else if (h,a,b) on TSTACK satisfies v=a and
a#FATHER(b) then begin
j=j+1;
delete (h,a,b) from TSTACK;
while (x,y) on ESTACK has (a<x<h) and (a<y<h) do
1f (x,y)=(2,b) then begin
FLAG:=TRUE;
delete (a,b) from TSTACK and save;
end else begin
"delete (x,y) from ESTACK and add to current
component;
decrement DEGREE(x), DEGREE(y);
end
add (a,b,j) to new component;
x:=b;

end;

if FLAG then begin
FLAG:=false;
ji=3+1;
add saved edge, (x,v,j-1), (x,v,j) to new component;
decrement DEGREE(x), DEGREE(v);

end;



add (v,x,j) to ESTACK;
increment DEGREE{x), DEGREE(vV);
FATHER(X) :=v;
if AL(v)¥x then Al(v)=x;
wi=x;
nd;
comment test for a type 1 pair;
if (LOWPT2(w)>v) and ((LOWPT1(w)#1) or (FATHER(v)#1)

or (w>3))

o

ji=3+1;
while(x,y) on top of ESTACK has (w<x<w+ND(w)) or
(w<y<w+ND(w))
then begin
delete (x,y) from ESTACK;
add (x,y) to new component;
decrement DEGREE(x), DEGREE(y);
end;
add (v, LOWPT1l(w), j) to new component;
if Al(v)=w then Al(v) :=LOWPTI1(w);
comment test for multiple edge;
if (x,y) on top of ESTACK has (%,y)=(v,LOWPT1(w))
ji=j+1;
add (x,y), (v,LOWPT1l(w),j=1), (v,LOWPT1(w),j) to
new component;
decrement DEGREE(v), DEGREE(LOWPT1(W));

end;

if LOWPT1{(w)#FATHER(v) then begin add (v,LOWPT1(w),3)
to ESTACK;
increment DEGREE(v), DEGREE(LOWPT1(w));
end else begin
je=3+1;
add (v,LOWPT1l(w), j-1), (v,LOWPT1(w),j), tree
arc (LOWPT1(w),v) to new component;




mark tree arc (LOWPT1(w),v) as virtual edge j;

end;
end;
C: if v>w is first edge of a path then delete all entries

on TSTACK down to and including end-of-stack marker;
D: while (h,a,b) on ESTACK has HIGHPT(v)>h, do delete(h,a,b)
from TSTACK;

end else begin comment v--w;

F: if v-»w is first (and last) edge of a path then begin
y:=0;
while (h,a,b) on TSTACK has a>w do begin
y:=max(y,h);
delete (h,a,b) from TSTACK;
erd;

if no triples deleted from TSTACK then add (v,w,v) to

TSTACK;
if (h,a,b) last triple deleted then add (y,w,b) to
TSTACK;
end;

if w=FATHER(v) then begin
Ji=3+1;
add (v,w), (v,w,j), tree arc (w,v) to new component;
decrement DEGREE(v), DEGREE(w) ;
mark tree arc (w,v) as virtual edge j;

end else add (v,w) to ESTACK;

end; end;

FLAG:=false;
PATHSEARCH(1) ;

end;



Lemma 14: SPLIT correctly divides a biconnected nultigraph G

into split components.

Proof: We must prove two things: (1) if G is triconnected,
SPLIT will not split it, and (2) if G is not triconnected,

the algorithm will split it. Once we have these two facts,

we may prove the lemma by induction on the number of edges

in the graph. The tests for multiple edges, for type 1 sep-
aration pairs, and for degree two vertices are straightfor-
ward. (The type 1 test (G in PATHSEARCH) includes the condi-
tion (LOWPT1(w)#1) or (FATHER(v)#1) or (w>3) to make sure that
some vertex lies outside the corresponding split compcnent.)
These tests will discover a separation pair of the correct type
if one exists, and they will not report a separation pair if
one does not exist. Thus we must only show that the type 2
test works correctly on multigraphs with no degreze two ver-
tices, multiple edges or type 1 separation pairs, and we will
have verified (1) and (2).

Suppose G is a biconnected multigraph with no degree 2
vertices, multiple edges, or type 2 separation pairs. Let us
consider the type 2 test and the changing contents of TSTACK
as the search of G progresses. If (hl,al,b),...,(hk,ak,bk)
are the contents of TSTACK above the highest end-of-stack
marker and if v is the vertex currently being examined during

the search, then akiak_li---ialiviblﬁ--ibk. This follows by



[ 9]

induction from an examination of the possible changes that can be

made in TSTACK(statements A,B,C,D,E,I in PATHSEARCH). Furthermore

cesv, b "'bk all lie on the cycle corresponding to

#k7%x-1 1

the current recursive call of the basic triconnectivity al-
gorithm.

Suppose (h,a,b) on TSTACK is found to satisfy the type
2 test when the search returns along a tree arc v>w. The test
(B, E in PATHSEARCH) states that a=v, v#1, and FATHER(b)#a.
It fcllows that r=Al(a)#b satisfies a+r3b and b is a first des-
cendant of r (that is, a,r, and b lie on a common generated
path). 1If some frond x-+y with r<x<b had a>y, the triple
on TSTACK corresponding to (h,a,b) would have been deleted
from TSTACK when the frond was explored (A or F in PATHSEARCH).
Similarly, if some frond x-*y with a<y<b and b+w¥x had LOWPTI1(w)
<a, the triple on TSTACK corresponding to (h,a,b) would have
been deleted by the HIGHPT test when vertex y was examined
(D in PATHSEARCH). It follows that {a,b} is a type 2 separa-
tion pair by Lemma 13.

Conversely, suppose G has a type 2 pair {a,b}. Let

b ",bn be the sons of b in the order they occur in A(b).

12
Let i0=min{iIL0WPTl(b.)>a}. If i. exists, then (b, +ND(b, ),
17— [ i, io
LOWPTl(bi),b) will be placed on TSTACK when tree arc b»bi is
explored. This triple may be deleted from TSTACK, but it

will zlways be replaced by a triple of the form (h,x,b) with

LOWPTl(bi)ixZa. Eventually such a triple will satisfy the



type 2 test, unless some other type 2 pair is found first. If
iO does not exist, let (i,j) be the first edge traversed after
is reached such that a<i and j<b. If i-+j then (i,j,1i) will be
placed on TSTACK)possibly modified, and eventually selected as
a type 2 pair, unless some other type 2 pair is found first.
If i+j then (j+ND(j), LOWPT1(j),i) will be placed on TSTACK,
possibly modified, and eventually selected as a type 2 pair
unless some other type 2 pair is found first. Thus if some
type 2 pair exists, at least one type 2 pair will be found
by the algorithm. it follows that the type 2 test works cor-
rectly, and the algorithm splits a multigraph if and only if
a separation pair exists.

The lemma follows by induction on the number cf edges in
G. Suppose the lemma is true for graphs with fewer than k
edges. Let G have k edges. If G cannot be split, the algo-
rithm works correctly on G by the argument above. I G can
be split, it will be split. Consider the first split per-
formed by the algorithm, producing split graphs Gl and GZ'
The behavior of the algorithm on G is a composite-.of its
behavier on G1 and GZ' Since the algorithm splits Gl and 02
correctly by the induction hypothesis, it must split G cor-
rectly. The lemma follows by induction. Figure 4 gives the
contents of ESTACK and TSTACK when the first separation pair

(8,12) in the graph of Figure 1 is detected.



Lemma 15: The triconnected components algoritum processes

a graph G with V vertices and E edges in O{(V+E) time.

Proof: The number of edges in a set of split components of

G is bounded by 3E-6 by Lemma 1. All steps except finding
split components thus require O(V+E) time by the results of
the last two sections. Consider execution of algorithm SPLIT.
Each edge is placed on ESTACK once and deleted once. The
depth-first search itself requires O(V+E) time, including

the various tests. The number of triples added to TSTACK is
O(V+E). Each triple may only be modified if it is on top

of the stack. Thus the time necessary to maintain TSTACK is

also O(V+E) and SPLIT requires O(V+E) ctime.

This completes our presentation of an O(V+E) triconnected
components algorithm. Thié algorithm may be used in the con-
struction of:an O(V log V) algorithm for testing isomorphism
of planar graphs [3]. Thé algorithm is Aot cnly theoretically
optimal (to within a constant factor) but practically useful.
The splii components algorithm has been implemented in ALGOL W
and run on an IBM 360/65 computer. Experiments show that the
algorithm can handle graphs with around 1000 edges in less

than 10 seconds.
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