Adaptive Error Bracketing for
Controlled-Precision Volume Rendering

Kevin Novins
James Arvo
David Salesin

TR 92-1312
November 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

Adaptive Error Bracketing for Controlled-Precision
Volume Rendering

Kevin Novins, James Arvo, David Salesin
Program of Computer Graphics
Cornell University
Ithaca, New York 14853
April 14, 1992

Abstract

We present a new ray tracing approach to volume rendering in which
the low-albedo volume rendering integral for each ray is efficiently com-
puted to any prescribed accuracy. By bracketing the emission and ab-
sorption functions along each ray with adaptively refined step func-
tions, computation is directed toward large sources of error and con-
tinued until a desired accuracy is reached. As a result, coarse approx-
imations can be used in regions that are nearly uniform, of low emis-
sion, or of low visibility due to absorption by material closer to the
eye. Adaptive refinement for each ray is performed using a hierarchi-
cal organization of the volume data; at each step, a part of the ray
estimated to contribute large error is refined, and the approximate
integral is updated incrementally. Our current implementation oper-
ates on regularly-spaced data samples combined with trilinear inter-
polation; however, the concepts described apply to more general data
topologies and reconstruction filters.

1 Introduction

Approximation is a powerful tool for volume rendering. Carefully chosen ap-
proximations can lead to dramatic speed-ups by allowing closed-form evalu-
ation of integrals and by taking advantage of special-purpose graphics hard-
ware. Unfortunately, few of these approximations readily admit error met-
rics, which makes controlling image fidelity difficult at best. A good error
metric also has an extra benefit: by providing reliable bounds on accuracy, it
may allow an algorithm to concentrate its effort where the error reduction is
largest, thereby affording an additional speed-up. In this paper, we describe
an algorithm that makes use of reliable bounds to give substantial speed-ups
for a certain class of volume data and level of approximation.

Approximations in volume rendering fall into two categories [15]: approxi-
mations in reconstruction and approximations in projection.

Reconstruction describes the process of extending point-sampled data to
a continuous three-dimensional scalar field. As an approximation to the
ideal but impractical sinc filter, reconstruction is commonly performed using
trilinear or Gaussian interpolation. Other approximations include “nearest
neighbor” [12] and combinations of bilinear and linear interpolation [9).

The role of projection is to create a two-dimensional image by integrating the
reconstructed field in depth. Projection is accomplished in a variety of ways.
One approach is to ray trace the image, integrating along each ray from front
to back until the accumulated opacity exceeds a given threshold [6, 7]. This
approach has two sources of error: first, the numerical integration contributes
error that is neglected; and second, if no provision is made to measure the
effect of the remainder of the ray, then this unintegrated part can in theory
contribute error whose magnitude is arbitrarily large, no matter how high
the opacity of the integrated part of the ray.

Other projection methods have been devised to take advantage of special-
purpose graphics hardware, thus substantially increasing rendering speed.
For example, in “splatting” [15, 16], individual samples are reconstructed
and projected in screen space via compositing operations. These operations
introduce a number of errors that are difficult to characterize—for example,
the errors due to neglecting overlap in depth of the filter kernels. Another
algorithm that takes advantage of graphics hardware is the “coherent pro-
Jection” approach of Wilhelms and Van Gelder [17]. Although empirical
estimates of error are given by the authors, it is unclear whether an analytic
metric for this projection technique also exists.

As an algorithm for approximate volume rendering, the “hierarchical splat-
ting” technique of Laur and Hanrahan [5] is interesting in that it provides
a tunable accuracy control by allowing the coarseness of the data approxi-
mation to vary. This control effectively allows for a kind of time-accuracy
tradeoff. However, the algorithm does not provide any control over quality
in an absolute sense. Indeed, even the “highest quality” renderings produced
by the algorithm contain significant errors due to the inherent inaccuracies
of splatting.

Novins and Arvo [11] explore an approximation to the volume rendering inte-
gral that provides absolute bounds on the error due to projection of a single

voxel along a ray. However, the technique, while allowing for renderings of
arbitrarily high accuracy, does not provide for a very good time-accuracy
tradeof, in that the difference in computation time for the highest and low-
est precision results is small.

In this paper, we describe a new approach to the projection problem that
provides absolute error bounds, and that allows the competing goals of speed
and accuracy to be traded off in a reasonable way. The algorithm works
by subdividing the integral along each ray into small regions, bracketing
the contribution of each region, and refining the regions adaptively until a
prescribed error tolerance is reached.

The algorithm as described in this paper makes use of an accurate inte-
gral evaluation routine, such as the one described by Novins and Arvo [11],
to speed convergence. However, any such technique giving accurate error
bounds could be used. Moreover, the algorithm can be made to work with-
out using any explicit evaluator; however, convergence is slower.

Finally, the algorithm as described here does not address error due to re-
construction. Although a trilinear reconstruction technique is assumed here,
the algorithm can accommodate any continuous reconstruction filter.

In the next section, we express the problem of approximating the volume
rendering integral in terms of interval arithmetic. From this formulation we
derive an algorithm for bracketing the continuous integrand by upper and
lower step functions, and for adaptively refining these functions wherever
the error is estimated to be large.

2 Formulation

Our algorithm is based on a simple model of volume illumination that was
originally developed as a model of radiative transfer [3, 13]. The model is
physically-based and allows for independent absorption and emission func-
tions throughout a volume.

The volume illumination model can be expressed as a set of one-dimensional
integrals, with each integral representing the intensity of light emanating
from the volume along a single ray. For each ray originating at the eye,
the total intensity I(a,b) emanating toward the eye from an absorbing and

emitting medium between points a and b is given by

b
umw=‘/nmnqnm, (1)
where T(a,t) is the transparency of the medium between ¢ and ¢, given by

T(a,t) = e-f:a(s)d’, (2)

and a(z) and €(z) are the respective coefficients of absorption and emission
at any point z along the ray. In volume rendering, the functions a and ¢ are
typically reconstructed from point samples and depend upon the ray. Equa-
tions (1) and (2) provide a good approximation for a low-albedo medium
[2], and are exact in the absence of scattering [3, 13].

The goal in volume rendering is to solve for I(a,b) at each view ray. As this
integral has no closed-form solution in general, we must resort to numerical
approximation; that is, at best we can only compute the solution to within
some tolerance 6. Our problem can be stated more formally as follows:

Problem (“Volume Projection”): Given ...sorption and emission func-
tions a and € defined on some interval [a,b] along a ray, and an error
tolerance 6 > 0, compute an approzimation T(a,b) to I(a,b) such that
| I(a,b) - I(a,b)| <.

The volume projection problem is essentially one of numerical quadrature.
The novelty of this particular problem lies in the special structure of the
integrand and in the large computational and storage demands of rendering
large datasets. Our goal, then, is to solve the volume projection problem
with minimal computation by exploiting this structure. In the rest of this
section, we derive an equivalent problem statement that lends itself to effi-
cient computation, and in Section 3 we describe an algorithm for computing
its solution.

2.1 Partitioning the integral

One way to make the volume rendering problem more tractable is to break
up the integral in equation (1) into smaller pieces that are easier to solve
(12, 14]. To make this transformation, observe first that transparency obeys
a simple multiplicative rule. In particular, for any point z in the ray segment
[a,b], we have

T(a,b) = T(G"I)T(zvb)y

as is easily verified from equation (2).

We can therefore discretize the ray into n contlguous segments [do, dy],
[di,d2], ..., [dno1,d,] at distances dy < dj < -+~ < d, from the eye point,
and rewrlte equation (1) as follows:

n d;
I(do,dy) = Z/ T(do, t) (t) dt

= ZT(do, i— l)/ Hd‘l l’t)e(t)dt

=1

= Z I’(do, d,‘_l) I(di—lv dt)
1=1

Finally, by introducing the notation I = I(dk-1,dr) and Ty = T(dy_1,dx)
we can rewrite this equation more succinctly:

i—-1
I(do,d,) = E I; H T;. (3)

Equation (3) expresses the overall intensity of the ray in terms of the in-
tensities and transparencies of the discrete segments. We now address the
problem of approximating the intensities and transparencies of these smaller
elements.

2.2 Bracketing intensity and transparency

The transparency of a segment [di_1, di] is given by equation (2), which we
repeat here using our new notation:

bl dk als S
T, = e Jaf (s)ds

As we have already noted, the integral in this equation has no general closed-
form solution. However, if we replace a(s) with an interval that bounds this
function everywhere within the segment, then the integral can be written in
closed form. This closed-form solution will itself be an interval that bounds
the exact integral along the segment.

We therefore make the following definition. Let ax be a (nonnegative) in-
terval o, af] such that a; < a(s) < af for all s in [dx_;,dx]. We can
then solve for an interval Ty = [T}, T}] bracketing the exact transparency
T}, using standard interval arithmetic [10]:

dg
- Qg d
T, = e J%-1
e~ Ok (dx—dk—1) (4)

Similarly, if we bracket the emission function € within the segment [di_1, di]
by an interval €; = [e;, €f], then it is also possible to solve for I = (I, I},
an interval containing the exact intensity I, as follows:

dk -t Q. ds
I, = / e fd"-l € dt
d

k=1
ek(l——Tk)/ak ifa,: >0
= €x(dr — di_1) ifaf =0 (5)

[e;(l —TH)/af, ef (dy - dk_l)] otherwise.

We can then bound the overall intensity for the ray with an interval I =
[I~,I*] by rewriting equation (3) with interval arithmetic:

n

1—1
I = ; L] T (6)

=1

Finally, by introducing the notation ||I|| = It — I~, we can rewrite the
volume projection problem in terms of these smaller segments:

Problem (revisited): Given absorption and emission functions o and €
defined on some interval [do, d,] along a ray, and an error tolerance § > 0,
find a partitioning of the ray into contiguous segments [do, d1], [dq,d3)], ...,
[dn-1,dn] and bounds on absorption and emission ay, € for each segment
[dk—1,dk] such that || I|| < 6, where I is given by equation (6).

3 Algorithm

The reformulation ot the volume projection problem lends itself well to an
iterative approach. The idea is to start with a single segment representing

the complete intersection of the ray with the volume, and then subdivide
the segment until the tolerance § is reached.

Iterative algorithms have been described previously, for example, by Levoy
[6], who refines the ray front-to-back until a certain opacity is reached. The
advantage of this method is its simplicity, both in implementation and com-
putation. However, the brute force front-to-back approach also has some
drawbacks. First, the algorithm has no way of taking larger steps in places
where the integrand can be easily approximated with acceptable error—for
example, where it is nearly constant. Second, a strict front-to-back evalua-
tion allows only very rough upper bounds on the error due to the remaining
portion of the ray. Together, these drawbacks mean that the brute force algo-
rithm may sometimes do more work than necessary to evaluate the integral
to within a certain tolerance.

The first drawback can be addressed by incorporating some notion of hier-
archy. For example, in later work, Levoy uses an octree [7], which allows the
ray to pass quickly through empty regions of data.

The algorithm described here generalizes this idea further by allowing the
ray to pass quickly through any region that can be integrated approximately
with good error bounds—not just empty regions. Moreover, the algorithm
also addresses the second drawback of a strict front-to-back approach by
allowing the evaluation of the integral to proceed in an arbitrary order along
the ray. In this way, the computation can always be directed toward a region
of the ray that is contributing large error to the overall evaluation of the
integral.

3.1 Overview

As in the octree method described by Levoy [7], we assume a hierarchical
organization of the data. In our implementation, we use a BSP tree [4]
instead of an octree. The hierarchical structure is view-independent, and
can be built once for each dataset and stored as part of the data.

Associated with each segment k are two intervals I and T, which respec-
tively bracket the intensity and transparency of the segment. These intervals
are actually three-tuples consisting of minimum, estimated, and mazimum
contributions. We denote the estimated value of an interval A by A. When
doing arithmetic, the minimum and maximum values are treated as ordinary

intervals [10], whereas the estimated values are treated as ordinary scalars.
For example, given two intervals A = [A7, A, A*] and B = [B~, B, Bt], we
have A-B = [A~ - B, A- B, At - B~].

For each ray, the algorithm maintains a set § of contiguous segments {[d;_, d;]}
along the ray. Initially, the set contains just a single segment whose endpoints
give the intersection of the ray with the entire volume. The algorithm pro-
ceeds iteratively, at each step selecting the segment from S that is estimated
to contribute the most error, then refining that segment—either by splitting
it in two, or else by computing its contribution more precisely—and, finally,
updating the approximation to I based on the new S and associated bounds.
The process is repeated until the overall tolerance § is met.

This solution strategy is shown in pseudo code below, where V is the given
volume dataset and § is the error tolerance.

RenderVolume(V, §)
for each ray R do
let do, d; be the entry and exit points of R through V.
initialize S « {[do, d1]}.
initialize I using d; — dy and global bounds on V.
while || || > 6 do
1. [Select.] Choose a segment [dk_1,d,] from S to refine.
2. [Refine.] Improve the bounds I and Ty for [dy_;, dl,
either directly or by subdividing and bounding
the smaller segments.
3. [Update.] Compute the new value of I.
end while
output [for this ray.
end for

We now look at each of these steps—select, refine, and update—in more
detail.

3.2 Selection

A good selection strategy would be to choose the segment of S that con-
tributes the most error to the overall ray intensity I. Since finding these
errors exactly would be equivalent to solving the original problem, we need

an error estimate that can provide a useful heuristic for choosing the best
segment to refine. Although the selection process will not be optimal, we are
still guaranteed to maintain reliable bounds on 1.

In principle, the error contributed by a single segment k to the overall ray
intensity can be described as the sum of the error it contributes directly,
and the error in its attenuation multiplied by the intensity of the combined
segments behind it. We can write this error as

Er = Ton(k) (‘ik - Iy } - lTk - Tk ’ Iback(k)) ,

where Tgone(k) is the accumulated transparency of the segments in front of &,
and Iback(k) is the intensity of the combined segments behind k. Of course,
we do not know either of these quantities exactly, but from equation (3) we
can estimate them as follows:

k-1 n i—1
Tfront(k) = H Tc 9 Iback(k) = Z Ii Tj .
i=1 i=k+1 j=k+1

Finally, we can bound the quantities | Iy — I} | and | Ty — Tk | to arrive at a
practical estimate E} for the error contribution of segment k:

Ex = Thonk) (ITell + I Te | Toac(k)).

Computing and updating this error estimate efficiently for each segment k
is complicated by the fact that refining a single segment changes the error
estimate for all the others. We therefore employ a binary tree structure,
which we call a span tree, to aid in propagating these updates efficiently.
Each leaf of the tree represents a single segment k of the ray. The intervals I
and Ty are stored with the node. Each internal node represents the union of
all the segments below it, and stores an intensity and transparency interval
for this union. Using this structure, error estimates for any segment & can be
computed while traversing the tree from the root to k. Note that the actual
intensity I of the entire ray is always contained in the I interval of the span
tree’s root.

The selection routine descends the span tree from the root. At each node,
it chooses to descend either toward the front or toward the back of the ray
according to the error estimate for the node’s two children:

Select(root)
return RecursiveSelect(root,1,0)

RecursiveSelect (s, Treont, 11 back)
let f be the front child of s
let b be the back child of s
ijd = Zb+@iback
Tmia = TirontTy _
Ef = Tront(I 171l + [|Ts | Imia)
Ey = Tmia(| L] + [Tl Tvack)
if Ef > Fp then
return RecursiveSelect(f, Tiont, ijd)
else

return RecursiveSelect (b, ’ijd, Tback)
end if

This procedure selects a “promising” leaf segment in O(logn) time. Note
that the search described here does not guarantee that the leaf segment
with the highest estimated error will be chosen. However, a more careful
selection would require visiting all the leaf nodes. In practice, we have found
that the more careful O(n) search is not generally worth the extra selection
cost.

3.3 Refinement

The purpose of refinement is to obtain tighter bounds on the absorption
and emission within the selected segment selected, thereby improving the
approximation of the overall intensity.

Refinement may be performed in different ways. For example, we may sub-
divide the segment and combine bounds on the two pieces to obtain a better
approximation. Alternatively, we may compute the integral along the seg-
ment directly using some kind of quadrature rule, or power series expan-
sion [11].

If refinement is done by subdivision, a splitting point must be chosen. In
our implementation this point is chosen according to the splitting planes of

10

the BSP tree. A power-series quadrature is performed whenever a leaf node
of the BSP tree (i.e., a single voxel) is selected for refinement.

The quadrature rule is not strictly necessary; refinement by subdivision alone
corresponds to Riemann integration, which in general has slow convergence.

3.4 Updating

Once we have refined a segment, we need to update the values of I and Tin
the span tree. This update is accomplished by a O(log n) bottom-up traversal
of the tree, beginning with the refined span:

Update(S, Tnew, Inew)

[Update the bounds associated with this leaf node.]
Ts — Thew

I, Lnew

[Propagate the change up to the root.]
while s has a parent do

let p be the parent of s

let f be the front child of p

let b be the back child of p

T, — T¢T,

Ip — If + TfIb

Se—p
end while

Note that as a result of the update procedure, the I interval of the root node
of the span tree contains the new estimate of the overall intensity.

3.5 [Initializing the BSP tree

Our implementation uses an axis-aligned BSP tree as a simple hierarchical
organization of the voxel data. This data structure can be built once and
stored along with the data. Each node of the BSP tree stores upper and lower
bounds for the absorption and emission coefficients a and ¢ for all the voxels
represented by that node. Estimates & and € are also computed by averaging
the respective upper and lower bounds. This process of propagating error
bounds through the hierarchical data structure is similar in spirit to the

11

approach outlined by Laur and Hanrahan [5].

When a segment is split, the intervals Ty and I; for a new segment k are
computed from the a and € values stored in the corresponding node of
the BSP tree, according to equations (4) and (5). When a quadrature rule is
applied, the BSP tree is queried for the values of @ and € at the corners of the
cell. These values are used in determining the coefficients of interpolation.

4 Results

The selection and update scheme described in Section 3 has an O(logn)
cost at each stage, where n is the number of segments under consideration.
This computational cost is only worthwhile if it pays for itself in terms of a
sufficient reduction in the overall number of refinement operations.

To evaluate this tradeoff, we implemented Levoy’s octree method [7], modi-
fied to compute error bounds. In this method, the ray is refined front-to-back;
thus, selection and update take constant time. The frontmost region is sub-
divided until it is empty, or until it is the size of a single voxel, in which
case a quadrature rule is applied to machine precision. Termination occurs
when the product of the accumulated transparency along the integrated por-
tion of the ray and the maximum possible emission along the length of the
unintegrated ray segment is below the error tolerance.

We tested the adaptive error bracketing scheme (AEB) described in this
paper against the front-to-back method (FTB) outlined in the preceding
paragraph, using three different datasets and a range of error tolerances.
We measured performance in terms of both total computation time and
total number of quadrature rules employed. We ran all our tests on an HP
750, a 70 MIPS machine.

Our results are shown in Figures 1, 2, and 3. For each dataset, we display a
four-by-six array of images. The top three rows show images of minimum, es-
timated, and maximum intensity respectively. The bottom row shows the dif-
ference of maximum and minimum intensities for each pixel. The six columns
show the images produced for increasingly tight error bounds. These bounds
are listed below each column, both in terms of absolute error (§) and rela-
tive error (the ratio 6/I,.,, where I,, is the intensity of the brightest pixel
in the highest-quality image). We also show graphs of total CPU time (in
hundreds of seconds), and total number of quadratures (in thousands) below

12

the images for each of the two methods AEB and FTB.

The first example, shown in Figure 1, is a 64 X 64 x 64 dataset depicting a
uniformly emissive grid behind a cloud of absorptive material that decreases
linearly in density from left to right. The slow variation of cloud absorption
allows for accurate bracketing by the AEB algorithm without many applica-
tions of the quadrature rule. Since the cloud is not completely opaque, the
FTB algorithm cannot employ early termination, thus making it 500% to
7200% slower, as the relative error ranges from 0.2% to 42%.

The second example, shown in Figure 2, is representative of isosurface data.
It is a 192 x 112 x 73 CT dataset of a human pelvis. In this example,
transparency drops sharply upon intersection with the bone surface, reaching
negligible values after penetrating only a few voxels. In this domain, the FTB
algorithm quickly locates the first intersection with the bone surface and
applies the quadrature rule where it is most effective. The AEB algorithm, on
the other hand, tries to find regions where the bracketed error is acceptable,
but ultimately applies quadrature rules to many of the same voxels on the
bone surface. On this high-gradient dataset, the extra cost of deciding where
to refine causes AEB to run between 10% and 23% slower, as the relative
error ranges from 0.5% to 30%.

The third example, shown in Figure 3, is a 97X 97 x 116 electron density map
of an SOD enzyme. Electron density is mapped directly to absorption a, and
emission ¢ is obtained via gradient shading. Absorption is low enough that
rays penetrate deep into the volume, but high enough that few rays have any
transparency left when they exit the dataset. For medium accuracy results
(within 34%), the FTB algorithm is 52% slower than AEB. However, the
benefit of using AEB gradually decreases as accuracy increases, and for the
highest-precision images (within 0.5%), AEB is 23% slower even though it
uses only 77% of the quadratures.

The examples suggest that adaptive bracketing is very effective in reducing
the number of quadratures necessary to compute an accurate image. How-
ever, fewer quadratures does not always translate into an overall speed-up,
since the extra complexity in choosing where to refine imposes additional
cost. In the limit, when the highest accuracy rendering is required, there
is no advantage in trying to be careful about where to refine, since any
method would inevitably have to perform all of the same quadratures along
the entire ray. Thus, the adaptive bracketing method pays off most when a

13

lower-accuracy rendering is desired.

As demonstrated by the first example, the adaptive bracketing scheme has a
great advantage over the front-to-back approach for “cloudy” or low-gradient
data. Such datasets are best displayed with color. Although our current im-
plementation of adaptive bracketingis limited to imaging a single wavelength
at a time, the algorithm itself imposes no such restriction, and we intend to
implement a color version of the algorithm soon.

5 Discussion

In this section we discuss some of the implications of adaptive error brack-
eting, as well as a few remaining implementation issues.

Other refinement strategies. The select-refine-update scheme, which is
central to adaptive error bracketing, can make use of any tools that re-
fine error estimates within a segment. Currently, we have implemented only
two such tools: one for splitting segments, and one for refining a segment’s
bounds using a highly accurate quadrature. Other tools with intermedi-
ate costs and benefits might also be useful. For example, a cheaper, lower-
accuracy quadrature (e.g., trapezoid rule) might be one such tool. We would
also like to explore incorporating some notion of the relative costs and ben-
efits of the various refinement tools into the selection strategy.

Appropriate error tolerances. The error bounds provided by adaptive
bracketing are absolute. This type of error bound is useful if results are de-
sired in precise units that are well-defined in advance. Unfortunately, this is
rarely the case in volume rendering. Instead, once an image is created it is
typically scaled to make effective use of the dynamic range of the display.
This scaling also affects the absolute error. We would therefore like to inves-
tigate an iterative strategy whereby the absolute error tolerance is refined
along with the image in order to achieve a prescribed “relative” error bound.

Storage requirements. One cost of the adaptive bracketing technique that
we have ignored so far is the space required to store the associated data struc-
tures. The span tree takes only O(n) space, where n is the linear resolution
of the data, which is insignificant compared to the size of the dataset. How-
ever, the complete BSP tree, like the raw data, requires O(n3) storage. Since
each node of the BSP tree currently stores about 36 bytes, this structure
can become quite large. With this restriction, the largest dataset we can

14

reasonably handle on our workstation currently has size around n = 128.

Adding color. As we mentioned in the previous section, color is extremely
valuable in visualizing precisely those datasets for which adaptive bracketing
is most effective. Color can be added in a straightforward way to our algo-
rithm without increasing storage requirements since the BSP nodes need
only bound either the greatest contribution in any one channel, or else a
single luminance contribution.

6 Future work

Our initial results are encouraging and suggest a number of extensions:

Progressive refinement. Ideally, the effort invested in making a fast but
low-quality image could be put to good use when making a highly-accurate
rendition of the same image. The idea of progressive refinement is to generate
approximate images as intermediate results on the way to the final image
[1]. The progressive technique of Levoy [8] refines solutions by continually
adding rays and interpolating the regions between them. An approach based
on adaptive error bracketing would instead refine all rays simultaneously.
However, such a scheme would require storing a span tree for every ray, which
would increase the overall storage requirement to size O(m> + mp?), where
m is the linear resolution of the volume data, and p is the linear resolution
of the display. This increased storage requirement may be prohibitive for
very high-resolution data or displays.

Extension to screen space. Our approach currently deals with each ray
independently, as do most algorithms based on ray tracing. A promising
avenue to explore is extending the algorithm to refine an entire set of rays
at once, for example, the set of rays defined by a frustum penetrating the
volume. In this way we might be able to take advantage of coherence among
nearby rays and at the same time address the issue of antialiasing.

Bounding other errors. There are many sources of error that are currently
not addressed but that may in fact be well-suited to the interval arithmetic
approach described here. For example, if bounds could be placed on the data
acquisition and reconstruction errors, this information could be maintained
and propagated quite naturally in our scheme. The final bracketing images,
then, could account for all sources of error: acquisition, reconstruction, and
projection.

15

Irregular data. So long as we can bracket the contribution of any given
sample to a segment along a ray, we can apply our technique to achieve
any given accuracy. Thus, both irregularly spaced data and different filter
kernels could be handled directly.

Acknowledgments

Thanks to Donald Greenberg for helpful discussions, and to Steve Westin,
Dan Kartch, and Brian Smits for reviewing the manuscript. This work was
supported by the NSF grant “Interactive Computer Graphics Input and Dis-
play Techniques” (CCR-8617880) and the NSF/DARPA Science and Tech-
nology Center for Computer Graphics and Scientific Visualization (ASC-
8920219). The authors gratefully acknowledge the generous equipment grant
from Hewlett Packard Corporation on whose workstations this research was
conducted. The CT data was provided by the Department of Radiation
Oncology at the North Carolina Memorial Hospital. The electron density
dataset was provided by Duncan McRee of the Scripps Clinic and obtained
as part of the Chapel Hill volume rendering test dataset.

16

LOWER BOUND

ESTIMATE

UPPER BOUND

UPPER — LOWER

: 1 1 1
6 4 16 84 356 ﬁ 4()1?
% oF Max 170% 43% 11% 2.7% 0.7% 0.2%
CPU SECONDS (HUNDREDS) QUADRATURES (THOUSANDS)
2000 3000
FIB
FIB ., ., e

=
2
8
g
#
-
21—
%
g
8-

Figure 1: Emitting grid behind absorbing cloud of linearly varying density.

17

LOWER BOUND

ESTIMATE

UPPER BOUND

UPPER — LOWER

1 1
) 16 L

1 L 1 1
64 256 1024 1096 ISIT&:
% OF Max 478% 119% 30% 7.5% 1.9% 0.5%
CPU SECONDS (HUNDREDS) QUADRATURES (THOUSANDS)
400

;J_
.
g
K
g
d

Figure 2: Bone iso-surface with gradient shading.

18

LOWER BOUND

ESTIMATE

UPPER BOUND

UPPER — LOWER

5 1 1 L 1 1 1
16 64 256 1024 4096 16384
% oF Max 538% 134% 34% 8.4% 2.1% 0.5%
CPU SECONDS (HUNDREDS) QUADRATURES (THOUSANDS)
2000 3000
FTB /...gw”"".
2000 /‘/
g
1000-/" /
L J
AEB
1000
0 0
1 1 1 ! | 1 1 | 1)
1§ & T8 TR H% 168 B & ™ Tn w% wn

Figure 3: Electron density of the SOD enzyme.

19

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif

