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Re Ae Fisher has demonstrated the facility with which regression problems
may be handled when the independent variable is equally spacede He has devel-
oped a simple method of fitting successively higher degree polynomials to n
pairs of observations (Section 14.6) and has computed a table of coefficients
and divisors for determining the reduction in sum of squares of deviations
due to the fitting of successively higher degree polynomials (Table 15,1).
These two contributions are distinct in that the first enables one to compute
each of the n-l polynomials which may be fitted to the n pairs of observations
while the second (Table 15.1), although it does not allow fqr an explicit
expression of any but the first degree regression equations, is more general
in the sense that it allows for k groups of n pairs of observations where the
value of thé independent variable is constant within any group and equally
spaced between groupss

The mechanics of applying the coefficients and divisors of Table 15.1 to
any appropriate set of data arc relatively éimple; however, in order to fully
understand the results of the application it may be helpful to relate this
procedure to the general least squares curvilinear regression problem (Section
1443). Suppose we have kn pairs of observations on the variables X and Y and
that these kn pairs fall into k groups of size n when classified according to

the value of X in the pair. Suppose, further, that these'g distinct values of
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X are equally spaced; ieee, the value of X for the itth group, 1 = 1, 2, «ss,

k, is X, =X ¢+ c(i-1) where ¢ is the constant difference between successive

values of Xe Thus in group 1 we have n pairs of ¥ and ¥ e (Xl’ Yll)’ Xl, le),

(Xl, YlB)’ veey (Xl’ Yln); in group 2, X = X, =Xy + ¢ and Y= Y2j’ i=1, 2,
~eeey n3 in group 1, X = X, and Y = Yij’ J =1, 2, eeey ne Since the values of

Xi’ i=1, 2, eeey k, are equally spaced, they may be coded into any other set

of equally spaced numberss for example, to code them into successive digits

beginning with unity it is necessary only to subtract X1 from each value,

divide the result by ¢, and add 1:

(1) X! = e v 1= [x) + e(i-1)] - %

It will be convenient to code X into simple integral values in such a
manner that the mean of the coded X is also an integral numberj this will be

exemplified in the following casese

Case I k = 2 groups

~

The simplest case to consider 1s that covered by column 1 of Table 15.1,

the case involving two groups of n pairs of observationss

GROUP T GROUP II
X y X y
% bos) X, P
X 15 X, Yoo
X ¥y 3 X, Y3
. . . .
%l: “1n x5 Ton
n n
= = * =
TOTAL n¥, 3§1Y1 5 (=81) nX, JE T, (=8,)%
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Since the independent variable X assumes only two distinct values the
. linear regression line 1s clearly the highest degree polynomial one would fit

to the datae In view of the fact that one needs to compute the quantities

2 n 2
2 _ 2 =Y Y
iz'l ‘]Elxi = nizlxi = n [(Xl x)* + (X2 x)? ]
2 n =z XiZ P Yi]‘
= < - N
z ? ¥y T2 ‘5X1Yij n

Xy ? Yp5+ X, >;,: Ty = z(S Yy + X Yzj)

(xl- x) >§ Ylj + (X,- x) ? YZJ.

it is seen that a convenient method of coding the X, would be to let ] =1,

X} = 3 so that X! = 2,

(X§ =x*) = -1,
(Xé - :JZ') = +l’

n [(Xi - x1)? + (x4 =x1)* ] = n(141) = Zn;

and (X} = x1) z T+ (x3 - x1) ? Yzj = -3 Tyg ) Yos (=sl+82)*-
j h] J

The coding may be accomplished by letting

2(X. - X,) 20X, + e(i-1) -~ X ]
(2) X} = = ls1 = 1 = 1+1=2(i-1)+1'
= 2i "l ’ i = l’ 2, 3, (A XX k

1’ 3, eee, 2k -1 L]
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It is this characteristic of equally spaced numbers that so greatly simplifies
the computations required in estimating regressioﬁ equationsy they may be coded
down to any desired set of equally spaced numbers, and by selecting the correct
set of coded values one minimizes the amount of work involveds Thus, in the
case under consideration the only computations required to arrive at a coded

estimate of the linear regression coefficient arec

(3) oo BZx . ZB172
% T x? 2n

The sum of squares of deviations due to regression is, in the coded data,

(-Sl + 82)2
(4) b1z T xty = =

One could, of course, decode to the original scale of measurcment and would

do so if he were interested in cstimating the population regression coefficient;
howcver, table 151 was designed for the type of problem in which onc is in-
terested only in tests of significance, not in cstimation. Since probabilitics
arc in no way altercd by changing the scalc of measurcment there is no point

in decoding the data for the purposc of tests of significance = and in practice,
of course, onc would not takc the trouble of deovising an cxpression such as

(1) or (2) but would,instcad, automatically sclect the corrcct coding system

by applying the appropriate coecfficicnts and divisors from table 15.le The
sourcc of the cocfficients and divisor found in column 1 of tablec 151 is now

rcadily scen by cxamining thce steps leading up to (3) and (4).

Casc IT k = 3 groups
With thrce groups, or thrce distinet valucs of the indcpendent variable

X, tho simplest sct of coded®X values is Xl =1, X, = 2, Xq = 3« This is scen

——-——-——----——————————————-—--———--—_-—--——-—-

* Since actual dccoding never takes placc, the prime on the X=variable will be
droppcd e
-



. from the fact that

nx X,
3 n i
- _o _ n(1+2+3) _
=2z jElxi/Bn = TEm T Tam o T R
(Xl- x) = (1=-2) = -1,
(xz-i) = (2 =~2) = 0,

i

and (X5- x) (3-2) = 41 &

The sum of squares due to linear regression is then computed in the usual

manners

3
? %xi = n[(Xl- %)%+ (XZ' %)%+ (XB- £)2] = n[(-1)% 0+ (+1)*] = 2n

™M
. M
4

(Xl- x) 2 Ylj + (Xz- x) 2 YZj + (X3- x) 2 Y3j

B

-5, + 8,)?
_ Gz | Bt S
(5) b2 xy mp—— o

with coefficients and divisor as given by column 2 of table 1541 &

With three groups it is possible also to fit a quadratic regression line
through the sample. pointse As indicated earlier, however, this is not the
type of problem in which one is interested in actually estimating regression
equationsj rather, the chief interest here lies in testing whether or not the
fitting of a second degree polynomial will account for a significant additional

‘ part of the variatione The preceding steps indirectly give us an estimate of
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the linear regression line, ¥ = ¥ + b(X = X), and the sum of squares of devia=
tions accounted for by this linej the scattering of points about the line rep-
resents the unaccounted for variatione The question, then, is == would a
second degree regression line through the sample points (X, Y) account for.a
significantly greater part of the variation than did the linear regressiong
iees, is the additional sum of squares of deviations due to quadratic regres-
sion significantly largee. To answer this question one could compute directly
the sum of squares of deviations due to fitting a quadratic and subtract from
it the already computed sum of squares due to fitting the linearj this dif-
ference could then be tested for significances A simpler procedure is followed,
however, by the use of table 15.1« The difference, itself, 1s dircctly ob-
tainable by the method described below.

Consider the variable dy-x =Y - Q, which rcpresents the deviations from
the linear regression line % =y + b(x =x)e If we attcmpted to run a linear

regression of the variable d on X we would, of course, find the slope b

PACS
of the resulting rcgression line to be zcrog this is truc by definition or may
be seen from the fact that crossproducts sum to zeroe If we compute the sum
of squares of deviations of dy-x from the rcgression of dyix on X wec would

arrive at

ZZd;.x = (1-r§y)22y2 .

This latter sum of squarcs may, however, be partitionecd into two parts by
fitting a parabola to the points (dyqx’ X)3 the onc part, thc sum of squeres

of deviations duc to the quadratic rcgression of d on X, represcents the

yex
additional sum of squarcs due to the quadratic regression of Y on X, and is
the differcnce which is to be tested for significancej the other part, the

sum of squarcs of deviations from quadratic regression, is zero in the casc
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. where k = 3 but would be > O when k > 3.
In order to fit a quadratic to the deviations from linear regression it
is necessary to compute the three partial correlation coefficientse. The com-
putations would proceed as followss

A - Ld
Slncedy.x= Y=Y = Y-y =-DbX ~-x)

Y - Z—%-nl—z-z-’-‘xz(x-.i)
X

(8, + S, + 83) (=81 + S3) -
= 1= 3n - 2n (X -x)

the three variables to be considered are as listed in Table 1.

R VRN St DR € P
2~ *2 1 o mo - 3P
. _szldy-x = 0
: = 14
Zrxde, = Sq + 45, + 985 = 5(Sy + 5, + 85) = 4(~=5; + 53)

i

1
-3-(81 - 25, + SB)

22d;,x = (l-r;_x)ZZyz

. Zzﬁdv.x - o
X.d

1yex \/ZZXiZZd;.x

. ) ZX dey-x ) Sq = 25, + 54
x4 -
2
v frdzrae, 3 Eerzsaal)
R _ & WT
XX 7
1= \/ZZXiZZx; 14n/2‘3-



Table le

- 2
% 4o e =X
(S; + 8, + 8,) (=5, + 8,)
1 2 3 1 3
1 Ty - 3n - 2n 1-2) 1
(84 + 8, +8,) (=8, +8
1 2 3 1 3
1 Yo - n T (1-2) 1
: : (S, + S, +8,) (-8, +8 .
1 2 3/ 1 3
1 Y';Ln - 3n - 2n (1-2) 1
(S4 + 8, +8,) (=8, +38,)
1 2 3 1 3
2 Y21 - 3n - 2n (2-2) 4
(S, + 8, + S,) (-8, + S
1 2 3 1 3
2 Yoo = %n -y (22) 4
: : (s, +S, +8,) (~S, +58,) .
1 2 3 1 3
2 Yon = 3n - 2n (2-2) 4
(S, + S, +8,) (=S, +8,)
1 2 3 1 3
3 Ty - ~ 3n - 2n (3-2) 9
(8, + 8, +8,) (=8, + 8 '
1 2 3 1 3
3 Y32 - 3n - 2n (3.2) 9
. . (S, + 8, + S,) (-8, + 8,) .
1 2 3 1 3
3 T3y - 3n 2n (3-2) ?
TOTAL=n+2n+3n 2y i zZ Y, j - 0 = 0 n+4n+9n= 14n



2
+r - r Tr
x2dy | x!dy‘x xquyx X%,
ler?
XyX,

T
xléyqx

R* =

2

(Sy = 28, + 83)
2 H3

ns 3y (l-rxy)

=

The sum of squares of deviations due to the quadratic regression of dy-x on X

is then
(S = 2S, + S,)?
2 2 _ 2 29 .2 - 1 2 3
RFZZ dyqx = R°Z 2 y*(1 :xy) = o

with coefficients and divisors as given in column 3, table 15.1, and this
quantity is likewise the additional sum of squares of deviations due to fitting

the quadratic regressioﬁ of Y on Xe

THE GENERAL CASE

This argument can be extended to show that the coefficients for the
itth degree polynomial may be gotten by fitting an itth degree polynomial to
the deviations from the (i=-1)'th degree polynomial which in turn was fitted to
the deviations from the (i=-2)!th degree polynomial, and so one
DISCUSSION

The numberg appearing in table 15.1 were probably not derived in the
preceding mannery this derivation does, however, give one some understanding
of the logic behind the ealculationse.

One additional feature of the preceding discussion which should bc noted
is that it could as well have been labelled "A Derivation of the Coefficients
and Divisors for Scts of Orthogonal Comparisons in the Analysis of Variance"
In this sense it would be applicable only to the analysis of variance problem
involving k cqual sized groups, each group, of course, corresponding to some

particular treatment,
=Oem



‘ A convenient example is to reconsider Case II in the light that Xl,
being a characteristic common to all n elements in the first group, now corres-
ponds to treatment 1, while X2 corresponds to treatment 2 and X3 to treatment

3¢ Let us assume a randomized block design and the following analysiss

Treatment 1 Treatment 2 Treatment 3
11 i n
Y12 Yoz T3
: : :
Y1n Y2n YBn
TOTAL Slﬁ 82 SB

Analysis of Variance

Source defs SeSe
. Treatments 2 (Si + S; + Sg)/ 3 - (Sl + 8, + 83)2/ 3n
1 vse 3 1 (Si+sg)/n - (Sl+53)2/2n.= (-Sl+Sj)2/2n
1+3 vse 2 1 (Sl+53)2/2n + sg/n - (81*32*53)2/3n =
(81-25,+55)%/6n
. Error 2(n=1)

It is seen that the coefficients and divisors of the individual treatment
comparison sums of squares (or mean squares) are precisely those obtained
earlier under Case IT. This is not surprising when one looks upon the com-
parisons as regression problemsj if we assign X values of 1, 2, 3 to the
treatments 1, 2, 3, we may depict the comparison graphically. Let the solid

points represent the treatment meanss
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Y FIGURE (1)

¢ X = trecatment number
1 2 3

The solid points from left to right are defined by the coordinates (X=1, Y=§i),
(X=2, Y=§2), and (X=3, Y=§3), respectivelyy the point e is defined by (X=2,
¥1*Y5 . . . - -
= =5 ) and the point e is defined by (X=x=2, Y=y).

Using these arbitrarily assigned treatment numbers as the X=values ecnables

one to compute the equation of the least squares regression line having the

S51*83 T,
il $ b is determined by the differcnce betwcen the

means of treatments 1 and 3, rcgardless of the valuc of §2, and is identical

slope b =

to the slope of the dotted line which passes through thc points (Xl, §l),
(X3, 53). The sum of squarcs (or MeSs) duc to lincar rcgression is

2
( -8,+5, )
2n

this mecan square is significant then the slope of the regression linc is sige-

= mean squarc for thc comparison treatment 1 vse treatment 3, and if

nificantly diffcrent from zero and the difference between the means, which

determines the silope, is likewise different from zero.
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FIGURE (2)

\\\\\\\‘\jdvd///// > X = treatment number

N

A quadratic fitted to the deviations from linear regression must pass
through all three points [ figure (2)] and attain its minimm (or maximm) at
the point (X=2, dy¢x= §2-§2), vhich is the solid point in the center of figure
(2)e If the additional sum of squares of deviations dve to quadratic regres-

(8,-25,+85)*
sion = ran is significant then the distance from the point (X=2,

dy¢x= §é-&é) to the dotted line in figure (R) is significantly different from

zero, and this distance represents the difference N1*Y2 - as seen from

2 3
figure (1).

If one wished a different set of treatment comparisons it would simply
necessitate a different assignment of thc numbers 1, 2, 3 to the three treat=—
mentse In practice the researcher automatically makes this assignment when

he selects a particular set of orthogonal comparisonse



