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R. A. Fisher has demonstrated the facility with which regression problems 

may be handled when the independent va~iable is eq~ally spaced. He has devel-

oped a simple method of fitting successively higher degree polynomials to ~ 

pairs of observations (Section 14.6) and has computed a table of coefficients 

and divisors for determining the reduction in sum of squares of deviations 

due to the fitting of successively higher degree polynomials (Table 15,1). 

These two contributions are distinct in that the first enables one to compute 

each of the n-1 polynomials which may be fitted to the U pairs of observations 

~ while the second (Table 15.1), although it does not allow for an explicit 

expression of any but the first degree regression equations, is more general 

• 

in the sense that it allows for k groups of !l pairs of observations where the 

value of the independent variable is constant within any group and equally 

spaced between groups, 

The mechanics of applying the coefficients and divisors of Table 15.1 to 

any appropriate set of data arc relatively simple; however, in order to fUlly 

understand the results of the application it may be helpful to relate this 

procedure to the general least squares curvilinear regression problem (Section 

14.3). Suppose we have~ pairs of observations on tho variables X andY and 

that these !m pairs fall into !£ groups of size ll when classified according to 

the value of X in the pair. Suppose, further, that these'!£ distinct values of 

- ~ - - ~ - ~ - ~ ~ - ~ - - ~ - - - - - - ~ - ~ - - - - ~ - - - -- - - - - -
*The section and table numbers in this paper refer to "Statistical Hethods" 

by George w. Snodecor. 
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X are equally spaced; i.e., the value of X for the i'th group, i = 1, 2, ••• , 

k, is Xi = ~ + c(i-1) uhere s. is the constant difference between successive 

values of X • Thus in group 1 we have !! pairs of X and Y - (X1 1 Y11), (X1 , Y12 ), 

(X1, Y13), ••• , (X1, Yln)J in group 2, X = x2 = x1 + c and Y = y2j, j = 1, 2, 

••• , n; in group i, X = Xi and Y = Yij' j = 1, 2, ••• , n. Since the values of 

x1, i = 1, 2, ••• , k, are equally spaced, they may be coded into any other set 

of equally spaced numbers; for example, to code them into successive digits 

beginning with unity it is necessary only to subtract x1 from each value, 

divide the result by a, and add 1: 

(1) X! = xi-~ 
l. c 

+ 1 = [~ + c(i-1)] - JS. + 1 = 
c i i = 1, 2, ••• , k 

It will be convenient to code X into simple integral values in such a 

manner that the mean of the coded X is also an integral number; this \·rill be 

exemplified in the following cases. 

Case I k = 2 groups 

The simplest case to consider is that covered by column 1 of Table 15.1, 

the case involving two groups of U pairs of observationsg 

GROUP I GROUP II 
X y X y 

xl yll x2 y21 

xl yl2 x2 y22 

xl yl3 x2 y23 

• • • • • • • • • • • • 
xl Yln x2 y2n 

n n 
TOTAL= nXl :E Y, • (=Sl )* nX2 L Y2• (=S2)* 

j=l -J j=l J 
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Since the independent variable X assumes only two distinct values the 

linear regression line is clearly the highest degree polynomial one would fit 

to the data. In view of the fact that one needs to compute the quantities 

2 n 2 
L LX~ 

i=l j=l ~ 
= n L x~ = 

i=l ~ 

n 2 
L L x.y .. 

• ~ ~J 
i .J 

it is seen that a conv~nient method of coding the Xi would be to let Xf ~ 11 

X~ = 3 so that xt = 21 

<x:t - :X•) = -1, 

<x~ - i') = +1, 

n [(Xf- xt) 2 + (X~- xt) 2 ] = n(l+l) = 2n, 

The coding may be accomplished by letting 

(2) 
2(X. - x1 ) 

X' - ----~...__...._ 
i - c 

2 [ x1 + c(i-1) - x1 ] 
+ 1 = + 1 = 2(i-1) + 1 c 

= 2i - 1 ' i = 1, 2, 3, ••• , k 

= 1, 3, ••• , 2k - 1 • 
_.._ __ ........... 
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It is this characteristic of equally spaced numbers that so greatly simplifies 

the computations required in estimating regression equations; they lllB.y be coded 

down to any desired set of equally spaced numbers, and by selecting the correct 

set of coded values one minimizes the amount of work involved. Thus, in the 

case under consideration the only computations required to arrive at a coded 

estimate of the linear regression coefficient are 

(3) = I~ xty = 
I I x12 

• 

The sum of squares of deviations due to regression is, in the coded data, 

(4) • 

One could, of course, decode to the original scale of measurement and would 

do so if he wore interested in estimating tho population regression coefficient; 

however, table 15.1 was designed for tho type of problem in which one is in-

terostod only in tests of significance, not in estimation. Since probabilities 

arc in no. way altered by changing the scale of measurement thoro is no point 

in decoding tho data for tho purpose of tests of significance - and in practice, 

of course, one would not take the trouble of devising an expression such as 

(1) or (2) but t-rould, instead, automatically select the correct coding system 

by applying tho appropriate coefficients and divisors from table 15.1. The 

source of the coefficients and divisor found in column 1 of table 15.1 is now 

readily soon by examining tho stops loading up to (3) and (4). 

Case II k = 3 groups 

With three groups, or three distinct values of the independent variable 

X, the simplest sot of coded*! values is x1 = 1, x2 = 2, x3 = 3. This is seen 
------------~----~----------------------
* Since actual decoding never takes place, tho prime on the x~variable will be 

dropped. 
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from the fact that 

3 n -
~X. 

i ~ 
x = l: l: x.13 i=l j=l ~ n 

= --:3n'" = n(l+2+3) = 
3n 2, 

cx1- x) = (1 - 2) = -1, 

<x2- x) = (2 - 2) = o, 

and cx3- x) = (3 - 2) = +1 • 

The sum of squares due to linear regression is then computed in the usual 

manner: 

n [ (-1) 2+ 0 + (+1) 2 ] = 2n 

(5) bl:l:xy = = 

with coefficients and divisor as given by column 2 of table 15.1 • 

With three groups it is possible also to fit a quadratic regression line 

through the sample points. As indicated earlier, however, this is not the 

type of problem in which one is interested in actually estimating regression 

equations; rather, the chief interest here lies in testing whether or not the 

fitting of a second degree polynomial will account for a significant additional 

part of the variation. The preceding steps indirectly give us an estimate of 
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• A - -) the linear regression line, Y = y + b(X -x, and the sum of squares of devia-

tionsaccounted for by this line; the scattering of points about the line rep-

resents the unaccounted for variation. The question, then, is -- would a 

second degree regression line through the sample points (X, Y) account for a 

significantly greater part of the variation than did the linear regression; 

i.e., is the additional sum of squares of deviations due to quadratic regres-

sion significantly large. To answer this question one could compute directly 

the sum of squares of deviations due to fitting a quadratic and subtract from 

it the already computed sum of squares due to fitting the linear; this dif-

ference could then be tested for significance. A simpler procedure is followed, 

however, by the use of table 15.1. The difference, itself, is directly ob-

tainable by the method described below. 
A 

Consider the variable d = Y - Y, which represents the deviations from y•x 

4lt tho linear regression line Y = y + b(x - x}. If we attempted to run a linear 

regression of the variable d on X we would, of course, find tho slope £ y•x 

of the resulting regression line to be zero; this is true by definition or may 

be seen from the fact that crossproducts sum to zero. If we compute the sum 

of squares of deviations of d from the regression of d on X HO would 
y~ y~ 

arrive at 

This latter sum of squares may, however, be partitioned into two parts by 

fitting a parabola to tho points (dy~' X)J the one part, the sum of squares 

of deviations duo to tho quadratic regression of dy~ on X, represents tho 

additional sum of squares due to the quadratic regression of Y on x, and is 

the difference which is to be tested for significance; tho other part, tho 

41t sum of squares of deviations from quadratic regression, is zero in the case 
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where k = 3 but would be > 0 when k > 3. -
In order to fit a quadratic to the deviations from linear regression it 

is necessary to compute the three partial correlation coefficients. The com-

putations would proceed as followsg 
1\ 

Since d = Y - Y = Y - y - b (X - x) y•x 

= y - L L y - ~ (X - x) 
kn L x2 

the three variables to be considered are as listed in Table 1. 

L L x2d y•x 

= 

-- 98 (14n)2 n- 3n = 

= 0 

= 

8n 
= 

14n{f 
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Table 1. 

xl d x2 = xr ex 

1 yll -
81 + 82 + 83 

(1-2) 1 
3n 2n 

1 
(81 + s2 + 83) ( -s1 + 83) 

1 y12 - 3n - 2n (1-2) 

• • • • • • • • • • • (81 + 82 + 83) ( -81 + 83) • 
1 y - (1-2) 1 ln 3n 2n 

2 y21-
(81 + 82 + 83) (-sl + 83) 

(2.-2) 4 
3n 2n 

2 y22-
(Sl + S2 + S3) (-sl + 83) 

(2-2) 4 3n - 2n 
• • • • • • • • • • • (81 + 82 + s3) (-sl + 83) • 
2 y - (2-2) 4 2n 3n 2n 

3 YJl-
(81 + s2 + s3) (-sl + 83) 

(3-2) 9 3n - 2n 

3 y32-
(sl + 82 + s3) (-sl + 83) 

(3-2) 9 3n 2n 
• • • • • • • • • • • • (81 + S2 + S3) (-sl + 83) • 

3 y3n ... (3-2) 9 3n 2n 

TOT.AL--n+2n+ 3n L:L:Y .• -L:L:Y .• - 0 = 0 n+4n+9n= llen 
J.J J.J 

-8-



(Sl .. 2S2 + 83)2 

6cl: ~ y2 (1-r~) 

The sum of squares of deviations due to the quadratic regression of d on X y•x 

is then 

with coefficients and divisors as given in column 3, table 15.1, and this 

quantity is likewise the additional sum of squares of deviations due to fitting 

the quadratic regression of Y on x. 

THE GENERAL CASE 

This argument can be extended to show that the coefficients for the 

i'th degree polynomial may be gotten by fitting an i'th degree polynomial to 

the deviations from the (i-l)'th degree polynomial which in turn was fitted to 

the deviations from the (i-2)tth degree polynomial, and so on. 

DISCUSSION 

The numbers appearing in table 15.1 were probably not derived in the 

preceding mannerJ this derivation does, however, give one some understanding 

of the logic behind the ealculations. 

One additional feature of the preceding discussion which should be noted 

is that it could as well have been labelled "A Derivation of the Coefficients 

and Divisors for Sots of Orthogonal Comparisons in the Analysis of Variance." 

In this sense it would be applicable only to tho analysis of variance problem 

involving ~ equal sized groups, each group, of course, corresponding to some 

particular treatment. 
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A convenient example is to reconsider Case II in the light that x1, 

being a characteristic common to all ~ elements in the first group, now corres­

ponds to treatment 1, while x2 corresponds to treatment 2 and x3 to treatment 

3. Let us assume a randomized block design and the following analysis: 

Treatment 1 

yll 

yl2 
• • • 

Yln 

TOTAL sl 

Source 

Treatments 2 

1 vs. 3 1 

1+3vs.2 1 

Error 2(n-1) 

Treatment 2 Treatment 3 

y21 y31 

y22 y32 

• • • • • • 
y2n Y3n 

s2 s3 

Analysis of Variance 

s .s. 

(Si+sj)/n - (s1+s3)2/2n. = (-s1+s3)2/2n 

(S1+s3)2/2n + S~n - (S1+s2+s3)2/3n = 
(s1-2S2+s3 )2 /6n 

It is seen that the coefficients and divisors of the individual treatment 

comparison sums of squares (or mean squares) are precisely those obtained 

earlier under Case II. This is not surprising when one looks upon the com-

parisons as regression problems, if we assign X values of 1, 2, 3 to the 

treatments 1, 2, 3, we may depict the comparison graphically. Let the solid 

points represent the treatment meansa 
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y FIGURE (1) 

X = treatment number 
1 2 3 

The solid points from left to right are defined oy the coordinates (X=l, Y=y1 ), 

(X=2, Y=y2), and (X=3, Y=y3), respectively; the point e is defined by (X=2, 

yl+y3 
Y= ~) and the point & is defined by (X=x=2, Y=y). 

Using these arbitrarily assigned treatment numbers as the X-values enables 

one to compute the equation of the least squares regression line having the 

; b is determined by tho difference between tho 

moans of treatments 1 and 3, regardless of the value of y2, and is identical 

to tho slope of tho dotted line which passes through tho points (x1, y1 ), 

(x3, y3). Tho sum of squares (or M.s.) duo to linear regression is 

_( -sl+S2) 2 

--~2~n~~ = mean square for the comparison treatment 1 vs. treatment 3, and if 

this moan square is significant then tho slope of tho regression line is sig-

nificantly different from zero and tho difference botHeon the moans, which 

determines tho slope, is likewise different from zero. 
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FIGURE (2) 

- ~- - - - -e-- - -

A 
d =Y-Y y•x 

X = treatment number 

A quadratic fitted to the deviations from linear regression must pass 

through all three points [figure (2)] and attain its minimum (or maximum) at 

- A ) the point- (X=2, d = y2-Y2 , vThich is the solid point in the center of figure y•X 

4lt (2). If the additional sum of squares of deviations due to quadratic regres-

• 

(Sl-2S2+S3)2 
sion = 6n is significant then the distance from the point (X=2, 

dy.x= y2-Y2) to the dotted line in figure (2) is significantly different from 
- -

zero, and this distance represents the difference yl+y2 - as seen from 
~-y3 

figure (1). 

If one wished a different set of treatment comparisons it would simply 

necessitate a different assignment of tho numbers 1, 2, 3 to the throe treat-

monts. In practice the researcher automatically makes this assignment when 

he selects a particular set of orthogonal comparisons. 
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