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Abstract 

 We report on the use of a morphing procedure in a simulated annealing (SA) heuristic 

developed for set-covering problems (SCPs). Morphing enables the replacement of columns in 

solution with similar but more effective columns (morphs). We developed this procedure to solve 

minimum cardinality set-covering problems (MCSCPs) containing columns which exhibit high 

degrees of coverage correlation, and weighted set-covering problems (WSCPs) that exhibit high 

degrees of both cost correlation and coverage correlation. Such correlation structures are 

contained in a wide variety of real-world problems including many scheduling, design, and 

location applications. In a large computational study, we found that the morphing procedure does 

not degrade the performance of an SA heuristic for SCPs with low degrees of cost and coverage 

correlation (given a reasonable amount of computation time), and that it improves the 

performance of an SA heuristic for problems with high degrees of such correlations. 
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1. Introduction 

 The set-covering problem (SCP) forms the basis for a variety of practical problems, 

including location of postal relax boxes [10], bus stops [24], day care facilities [29], emergency 

warning sirens [18] and emergency service facilities [43,48]; scheduling of airline flight crews 

[25,28,49], bus crews [41], a workforce [12,13,42], and naval vessels [11,23]; metallurgical 

grade assignment [44]; ingot selection [47]; data extraction [19]; and problems in the automotive 

industry [33]. A general statement of the SCP is 

(1) 

Minimize   �𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗∈𝐶𝐶

 

(2) 

subject to    �𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
𝑗𝑗∈𝐶𝐶

 ≥ 1     for 𝑖𝑖 ∈ 𝑅𝑅, 

(3) 

𝑥𝑥𝑗𝑗  ∈  {0,1}    𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ 𝐶𝐶, 

where 

R = the set of rows to be covered; 

C = the set of columns for covering the rows; 

𝑎𝑎𝑖𝑖𝑖𝑖= 1 if column j covers row i, 0 otherwise; 

𝑐𝑐𝑗𝑗 = the cost of column j; and 

𝑥𝑥𝑗𝑗 = 1 if column j is in solution, 0 otherwise 

The SCP is well known to be computationally difficult [34], and substantial interest has 

centered on understanding the facets of the set-covering polytope [4, 5] and on finding effective 

procedures for solving problems of practical size. In terms of optimal solution approaches for 



SCPs, early research centered on both branch-and bound [21, 36] and cutting-plane methods [1, 

40]. However, the most recent optimal solution approaches with applicability to relatively large 

SCPs have been based on sub-gradient optimization and Lagrangian relaxation [2, 3, 6, 9, 22, 

27]. For example, using a Lagrangian-based procedure that employed dual heuristics, Fisher and 

Kedia [22] optimally solved SCPs with up to 200 rows and 2000 columns. Similarly, Beasley 

and Jörnsten [9] optimally solved SCPs with up to 400 rows and 4000 columns. Harche and 

Thompson [26] recently developed a “column-subtraction” algorithm that also optimally solved 

some large SCPs. 

Despite advancements in the development of optimal methods, very large SCPs generally 

necessitate the use of heuristic methods. Many heuristic procedures for solving SCPs are based 

on the use of greedy rules for adding columns, one at a time, to form a solution [3, 16, 44–46]. 

While these rules are very efficient, they are generally not capable of providing near-optimal 

solutions to large SCPs. In a comparative study that utilized several sets of very large SCPs, 

Beasley [7] found that a Lagrangian based heuristic he developed substantially outperformed 

several greedy methods [3, 44]. Subsequently, a variety of very effective methods based on 

Lagrangian relaxation with sub-gradient optimization have been developed [2, 14, 15, 37]. For 

example, Caprara et al. [14] proposed a Langrangian-based heuristic which won first prize in the 

FASTER competition. This competition, sponsored by Ferrovie dello Stato SpA and the Italian 

Operational Research Society, was intended to promote the development of procedures for very 

large SCPs. Jacobs and Brusco [30] showed that greedy rules could be much more competitive 

with Lagrangian-based heuristics if they were incorporated within the context of simulated 

annealing (SA) algorithms. Shortly thereafter, Beasley and Chu [8] developed a solution 



approach based on genetic algorithms that is also very competitive with Lagrangian-based 

heuristics. 

Many comparative studies for evaluating heuristic methods have used test suites of SCPs 

that were obtained by randomly generating the 𝑐𝑐𝑗𝑗 and 𝑎𝑎𝑖𝑖𝑖𝑖 coefficients. For this study, we 

additionally investigated SCPs wherein the magnitude of the 𝑐𝑐𝑗𝑗 coefficients is correlated with the 

number of non-zeros in their corresponding column vectors (cost correlation) and where the 

column vectors are correlated with one another (coverage correlation). Cost correlation, 

originally described by Rushmeier and Nemhauser [39], suggests that, in application, the cost of 

a column is likely to be directly (or near directly) related to the level of activity associated with 

that column. As such, cost correlation is only relevant to non-unicost or weighted set-covering 

problems (WSCPs) in which the 𝑐𝑐𝑗𝑗’s are not strictly unit-valued. 

In this paper, we introduce an additional type of correlation, coverage correlation, which 

we believe to be very prevalent in many practical WSCP’s, as well as unicost or minimum 

cardinality set-covering problems (MCSCPs). This new correlation measure is based on the 

premise that different columns in an SCP often have similar non-zero elements. The greater the 

extent to which columns cover the same rows, the greater the coverage correlation. Using the 

earlier definitions, the coverage-correlation index, CCI, is 

(4) 

𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑚𝑚

    �
 
 
 
� � 𝑚𝑚𝑚𝑚𝑚𝑚

{𝑘𝑘∊𝐶𝐶,𝑘𝑘≠𝑗𝑗}𝑉𝑉𝑗𝑗
⊤𝑉𝑉𝑘𝑘 �

𝑗𝑗∊𝐶𝐶
/𝑉𝑉1𝑉𝑉𝑗𝑗 }    

where 

n = the number of rows; 

m = the number of columns; 

V1 = an n-element row vector (1, 1, …, 1); and 



𝑉𝑉𝑗𝑗 = the n-element column vector (𝑎𝑎1𝑗𝑗,𝑎𝑎2𝑗𝑗, …, 𝑎𝑎𝑛𝑛𝑛𝑛). 

The CCI is an average, across all columns, of the maximum commonality each column 

has with any other column in terms of the rows they cover. To illustrate the presence of high 

coverage correlation in practical SCPs, consider the MCSCP described by Torregas et al. [43], a 

location problem, which has CCI values of 0.868 and 0.9498 when the maximum acceptable 

distance for covering a location is presumed to be 10 and 15 miles, respectively. In contrast, 

problems that we randomly generated using the procedure of Balas and Ho [3] had CCI values of 

0.224 to 0.356. 

To illustrate how both cost and coverage correlation might be present in non-unicost or 

weighted set-covering problems (WSCPs), consider a generalized set-covering representation of 

a workforce shift scheduling problem which allows both full-time and part-time employees who 

work eight and four-hour shifts, respectively. Assuming hourly planning intervals, a column 

representing a full-time (part-time) shift would contain eight (four) ones. If the objective were to 

minimize total labor hours, the column cost for a full-time (part-time) shift would be eight (four). 

Thus, in this example, the column cost is perfectly correlated with the number of ones in the 

column. Further, let column j define an eight-hour shift beginning at 8 a.m. and column k define 

an eight-hour shift beginning at 9 a.m. The shifts associated with columns j and k would both 

cover all work hours (rows) from 9 a.m. until 4 p.m. Thus, 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 for seven hours (rows). 

Thus, columns j and k are said to be highly correlated since seven of their eight work periods are 

in the same hours (rows). Cost and coverage correlation are also present in other types of 

WSCPs. For example, a column may represent the cities to include in a particular aircraft 

schedule and it is likely that many pairs of columns may differ by only a single city. Moreover, 



the cost of a particular schedule may be correlated to the number of cities included in the 

schedule. 

This paper proposes that “morphing” provides an effective supplement for SA-based 

heuristics when applied to problems associated with high cost and coverage correlation. 

Morphing enables the replacement of columns in solution with similar, but more effective, 

columns (morphs). Specifically, a morph of a column j is a column that has a high degree of 

correlation with column j. The morphing procedure involves generating a morph list for each 

column that appears in solution and investigating interchanges of columns in solution with their 

morphs (that are not in solution). Based on our assessment of morphing and the type of SCPs for 

which we presume it will be most effective, we offer three hypotheses: 

 

H1a: For SCPs that do not exhibit a high degree of coverage correlation, supplementing  

 an SA-based heuristic with the morphing procedure will increase the time  

 required to identify the best solution. 

H1b: For SCPs that do not exhibit a high degree of coverage correlation, supplementing  

 an SA-based heuristic with the morphing procedure will not increase solution  

 costs, provided that reasonable amounts of computation time are available to  

 compensate for the effect identified in hypothesis H1a. We define “reasonable”  

 for this purpose to be CPU times that are competitive with those of other  

 successful heuristics for WSCPs. 

H2: For MCSCPs that do exhibit high degrees of coverage correlation, supplementing an  

 SA-based heuristic with the morphing procedure will increase its effectiveness. 



H3: For WSCPs that do exhibit high degrees of cost and coverage correlation,  

 supplementing an SA-based heuristic with the morphing procedure will increase  

 its effectiveness. 

 

The rationale for H1a is that the construction of morph lists requires computational effort 

(and thus CPU time), even when the resultant lists are empty (as may be the case for problems 

with low coverage correlation). However, if reasonable time is available for the heuristic to 

check for the presence of morphs, no deterioration in the solution cost should be observed; and 

so we arrive at H1b. Hypothesis H2 stipulates that morphing can significantly improve the 

performance of an SA-based heuristic when high degrees of coverage correlation are present in 

MCSCPs. Hypothesis H3 stipulates that morphing can also improve heuristic performance when 

both high cost and coverage correlation are present in WSCPs. 

The experimental results presented herein confirm that for SCPs that do not exhibit high 

degrees of cost or coverage correlation, our local-search heuristic based on the SA algorithm is 

competitive with one of the best Lagrangian heuristics, regardless of whether the morphing 

procedure is incorporated in the SA heuristic. Moreover, the results demonstrate that for both 

MCSCPs and WSCPs exhibiting high degrees of coverage correlation, the morphing procedure 

substantially improves the performance of the SA heuristic. 

Section 2 describes the SA-based heuristic and shows how the morphing procedure can 

be used to supplement this heuristic. Section 3 presents the results of an experimental study used 

to evaluate the impact of the morphing procedure. Section 4 concludes the paper and offers 

suggestions for future research. 

 



2. Local search heuristics based on the simulated annealing (SA) algorithm 

 Simulated annealing, originally developed as a model for statistical mechanics [38], was 

independently extended to combinatorial optimization by Kirkpatrick et al. [35] and Cerny [16]. 

In this context, SA incorporates a neighborhood-search strategy to seek improved solutions. The 

SA algorithm exhaustively searches the neighborhood of an incumbent solution and allows an 

inferior solution to be accepted, with a probability based on the degree of inferiority and the 

amount of time the algorithm has expended. It is this acceptance of inferior solutions that allows 

SA to backtrack from local optima. Although SA may form the basis for an optimal solution 

approach, prior research has suggested that enormous computational effort might be expended in 

finding optimal solutions to problems of practical interest [31, 32]. The research presented herein 

uses SA in a heuristic context, with the objective of developing procedures that rapidly converge 

to good (though not necessarily optimal) solutions using a modest amount of computational 

effort. 

 

2.1. Simulated annealing heuristic – no morphing (SAHNM) 

 The SA-based heuristic used in this study, SAHNM (simulated annealing heuristic, no 

morphing) is a more efficient and effective version of the one described by Jacobs and Brusco 

[30] (hereafter, SAJB). The SAHNM structure is based on SAJB as provided below: 

Set 𝑋𝑋𝐵𝐵 = ⌀ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍(𝑋𝑋𝐵𝐵) = ∞  
Do 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 10 
Set temp, mtime, iloop, rtime 
GENERATE an initial feasible solution, X, with cost Z(X) 
Begin Loop 
 Do j = 1, iloop 
  SEARCH for a neighbor X’ of X 
  SET Z(X’) = the cost of X, δ = Z(X’)-Z(X), and  𝜔𝜔� = random [0, 1] 
  If 𝛿𝛿 ≤ 0 𝑜𝑜𝑜𝑜 𝜔𝜔���  ≤ 𝑒𝑒−𝛿𝛿/𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
   Set X=X’ and Z(X) = Z(X’) 



   If Z(X’) < Z(𝑋𝑋𝐵𝐵), set 𝑋𝑋𝐵𝐵=X’ and Z(𝑋𝑋𝐵𝐵) = 𝑍𝑍(𝑋𝑋′) 
  End if 
  If rtime > mtime continue with next replicate (i.e., increment irep) 
 End do 
 Set temp = temp * cool 
End loop 
End do 
Return 𝑋𝑋𝐵𝐵 and 𝑍𝑍(𝑋𝑋𝐵𝐵) 

 

Note that we define our procedure to consist of 10 replications of a simulated annealing 

algorithm for each WSCP. An initial feasible, incumbent solution X is obtained using the 

GENERATE subroutine. To create the initial solution, this subroutine uses a variation of a 

common greedy heuristic suggested by Balas and Ho [3]. The initial temperature (temp), cooling 

parameter (cool), maximum CPU time for each replication (mtime), temperature length (iloop), 

and current run time (rtime) are subsequently specified. The algorithm performs iloop iterations 

at a particular temperature as long as the actual CPU time of the replication, rtime, is less than 

mtime. 

The SEARCH routine, which is used to search the WSCP solution space, is structured as 

PERTURB – adjusts the incumbent solution X by removing columns 

CONSTRUCT – builds a trial feasible solution, X’ 

REDUND – eliminates redundant columns 

The PERTURB subroutine removes columns from the incumbent solution, resulting in a 

partial solution to the WSCP. Each time this subroutine is called, one of two rules is used to drop 

columns from solution. The random drop (RD) randomly selects a column to be dropped from 

solution. The “least uniqueness” drop (LUD) rule drops the column that provides the smallest 

number of unique row coverages. While using LUD exclusively tends to result in cycling, we 



found that randomly selecting LUR (RD) for two-thirds (one-third) of the calls to PERTURB is 

superior to SAJB’s exclusive use of RD. 

The CONSTRUCT subroutine is applied to the partial solution to generate a neighboring 

trial solution X’. Each time the CONSTRUCT subroutine is entered, one of two different greedy 

heuristics, similar to those described by Balas and Ho [3] and Chvatal [17], are used to rebuild 

the solution. The first greedy heuristic (GH1), begins with the random selection of an uncovered 

row r. For each column j that covers row r, the sum of uncovered rows that it covers is computed 

and divided by its cost. The column with the maximum ratio of unique coverage to column cost 

is appended to the solution. The second greedy heuristic (GH2) computes, for each column j that 

is not in the current partial solution, the sum of uncovered rows that it would cover, divided by 

its cost (𝑐𝑐𝑗𝑗). The column with the maximum such ratio is appended to the solution. Obviously, 

the second greedy heuristic is more computationally intensive than the first. Nevertheless, we 

have found that the more comprehensive search provided by GH2 represents an enhancement to 

SAJB that has been quite effective in generating lower cost solutions. 

The REDUND subroutine is subsequently applied to eliminate redundant (unnecessary) 

columns from X’. Specifically, columns in solution are examined, in decreasing order of cost, to 

determine if they can be removed without creating an infeasible solution. Upon completion of 

iloop iterations, the temperature is reduced by the cooling parameter, cool. 

 

2.2.Simulated annealing heuristic – with morphing (SAHWM) 

 As an SA procedure converges to a good solution, the elements in solution are generally 

good choices from the complete set of available alternatives. We posit that, in certain 

circumstances, morphing offers a fast means of searching for an even lower-cost solution. The 



goal of morphing is similar to that of Genetic Algorithms (GAs), since both approaches attempt 

to retain the good characteristics of a solution while searching for further improvements. GAs do 

this by combining “parent” solutions into “children” solutions, with the intent that some of the 

“children” will retain the desirable, complementary features of their “parents”. Morphing is a 

column-exchange heuristic that is implemented using a morph list for each element that appears 

in solution. A morph list is simply a list of the solution elements most similar to a specific 

solution element. By replacing a solution element with one of these similar but perhaps superior 

elements (given the current solution), morphing can find improved solutions. 

 SAHWM (simulated annealing heuristic, with morphing), is identical to SAHNM except 

that it includes the supplementary morphing procedure. Specifically, SAHWM calls the routine 

MORPH after the columns are dropped in PERTURB, and after every fourth column is added 

to a partial solution during CONSTRUCT. During MORPH, each column in solution is 

scanned to see if replacing it with one of its morphs improves the value of 

 

cost of the partial solution
number of rows covered in the partial solution

 

 

When first examining a column, SAHWM creates a unique morph list for that column. 

This list contains the columns most similar to the column undergoing examination. For our 

problems, we define the morph index 𝑚𝑚𝑘𝑘𝑘𝑘 to be our measure of the correlation of column j to 

column k, and measure it as 

(5) 

𝑚𝑚𝑘𝑘𝑘𝑘 = 𝑉𝑉𝑗𝑗⊤𝑉𝑉𝑘𝑘/𝑉𝑉1𝑉𝑉𝑘𝑘, 

where 



V1 = an n-element row vector (1, 1, … , 1); 

𝑽𝑽𝒋𝒋 = the n-element column vector (𝑎𝑎1𝑗𝑗, 𝑎𝑎2𝑗𝑗, … ,𝑎𝑎𝑛𝑛𝑛𝑛), and 

𝑽𝑽𝒌𝒌 = the n-element of column vector (𝑎𝑎1𝑘𝑘,𝑎𝑎2𝑘𝑘, … ,𝑎𝑎𝑛𝑛𝑛𝑛). 

 

In early experimentation, we observed a deterioration of performance in SAHWM when using 

morphs that did not exhibit a reasonably high level of correlation with the column. For this study, 

each column’s morph list is comprised of the columns with the highest morph indices. We set 

𝑚𝑚𝑘𝑘𝑘𝑘 ≥ 0.6 as a necessary criterion for selecting column j as a morph of column k, and limited the 

morph list to 30 columns. While the most appropriate values for morph list size and morph index 

cutoff are likely to be problem dependent, we arbitrarily set these values in this study. Finally, 

the morph lists are passed from one replicate to the next during the solution procedure. 

Since SAHWM only develops morph lists for columns that appear in solution, it requires 

less computational effort than would the a priori generation of morph lists for all columns. 

Moreover, since SAHWM can pass the morph lists from replicate to replicate, substantially less 

computational effort is expended in developing morph lists on subsequent replicates. This 

significantly increases the time available for the evaluation of alternate solutions on later 

replicates – thus increasing the likelihood of finding an improved solution. 

 

3. An experimental study 

 We designed an experimental study, consisting of three parts, to address our hypotheses. 

For each part of the experimental study, SAHNM and SAHWM were written in FORTRAN and 

implemented on a Pentium-based (100 MHz) microcomputer. 

 



3.1.Experimental study – part 1: low cost- and coverage-correlated WSCPs 

 In part 1 of the experimental study, we compared SAHWM to SAHNM across 20 large 

WSCPs (sets E, F, G, and H) originally described by Beasley [7]. Since Beasley’s [7] test 

problems were randomly generated using the procedure suggested by Balas and Ho [3], they 

exhibit neither high cost correlation nor high coverage correlation. The optimal solutions to these 

test problems are unknown. To the best of our knowledge, the best known solution costs for 

these 20 problems are reported by Caprara et al. [14], whose Lagrangian procedure (hereafter 

CFT) identified the best known solution for all 20 problems. The solution costs associated with 

SAHNM and SAHWM were compared to those of CFT. Since we defined “reasonable” CPU 

time to be that which is competitive with other heuristics for SCPs, we also compared the CPU 

times of SAHNM and SAHWM to those of CFT in order to ascertain their competitiveness. We 

used mtime = 1 minute (4 minutes) for the E and F (G and H) test problems for both SAHWM 

and SAHNM. 

Tables 1 and 2 present our results for the SAHNM and SAHWM heuristics, respectively. 

Since the CFT procedure is based on a single run, whereas the SAHNM and SAHWM solutions 

represent the best solution found over ten replicates, we used a transformation (similar to that 

used in [14]) of the CPU times accorded to our procedure to provide a comparison. Specifically, 

we selected the first replicate k in which the best solution was found and reported the 

transformed solution time as: mtime × (𝑘𝑘 − 1) + (average time to identify the best solution 

during a replicate). The CPU times reported for CFT in [14] are adjusted based on relative 

machine performances [20].  

Tables 1 and 2 show that SAHNM and SAHWM, respectively, required 28.64 and 31.80 

seconds, on average, to find their best solution in each replicate. Moreover, the average time 



required by SAHWM was higher than that required by SAHNM in 16 of the 20 problems. The 

average transformed times for SAHNM and SAHWM were 106.64 and 115.78 seconds, 

respectively; and the transformed time required for SAHWM was higher than that of SAHNM in 

17 problems. These results offer strong support for H1a; i.e., morphing increases the time 

required to find solutions in environments characterized by low degrees of coverage correlation. 

A comparison of tables 1 and 2 reveals that, for each of the 20 test problems, SAHNM 

and SAHWM yielded identical solution costs. Moreover, the results clearly support hypothesis 

H1b; i.e. morphing does not degrade the performance of the SA heuristic in an environment 

characterized by low degrees of coverage correlation, provided that a reasonable amount of time 

is available for SAHWM to determine the morph lists. 

The SAHNM and SAHWM solution costs match those of CFT for 18 of the 20 test 

problems (the costs for problems G2 and H1 are one unit higher than CFT for these problems). 

Overall, the average cost of SAHNM and SAHWN’s solutions on these problems differs from 

that of the CFT solution costs by only 0.1%. Moreover, the CPU time comparisons to CFT 

indicate that our heuristic generally required less computational effort. Collectively these results 

suggest that both SAHNM and SAHWM are very competitive with the best known procedure for 

large WSCPs. 

 

3.2.Experimental study – part 2: High coverage-correlated MCSCPs 

For the second part of the study, we developed a set of 30 coverage-correlated test 

problems, varying on two dimensions. One dimension was the size of the problem. The smaller 

(larger) problems had 400 rows and 4000 columns (800 rows and 8000 columns). The 

secondproblem dimension was the density – the percentage of elements in the problem A-matrix 



that are nonzero. We used densities of 2, 6, and 10 percent. We define a problem category as a 

set of problems that have the same number of rows and columns and the same density. For each 

of the six problem categories, we generated five MCSCPs, yielding a total of 30 test problems. 

These problems are much larger than the MCSCPs that have been previously examined in the 

literature. 

______________________________________________________________________________ 

Insert Table 1 Here 

______________________________________________________________________________ 

 

 

_____________________________________________________________________________ 

Insert Table 2 Here 

_____________________________________________________________________________ 

 

 

We generated the coverage-correlated columns as follows. First, we generated columns in 

clusters of 20. For the first column in a cluster (assume that it is column j), we generated an n-

element vector Y = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛), where 𝑦𝑦𝑖𝑖 is an independent, uniformly= distributed [0, 1) 

random variate. Next, we used the vector Y to provide the n-element coverage vector 

(𝑎𝑎1𝑗𝑗 ,𝑎𝑎2𝑗𝑗, … ,𝑎𝑎𝑛𝑛𝑛𝑛), using the relationship 𝑎𝑎𝑖𝑖𝑖𝑖= 1, if 𝑦𝑦𝑖𝑖 ≤ problem density (measured as a 

proportion); 𝑎𝑎𝑖𝑖𝑖𝑖= 0, otherwise. Define the set COV as the rows that the first column in the cluster 

covers, i.e., COV = {𝑖𝑖 ∊ 𝑅𝑅 ⎸𝑎𝑎𝑖𝑖𝑖𝑖 = 1}; }; further, set RIC equal to the number of elements in 

COV, i.e., RIC =∑𝑖𝑖 ∊ 𝑅𝑅𝑎𝑎𝑖𝑖𝑖𝑖. For each of the remaining 19 columns in the cluster, the coverage is 



initially set to those rows in COV, but k randomly-selected rows from COV are replaced with k 

randomly-selected new rows, where k = ⌊0.1 * RIC + 0.5⌋. 

For both SAHNM and SAHWM, we used mtime = 2 minutes and mtime = 8 minutes for 

the 400 × 4000 and 800 × 8000 MCSCPs, respectively. A summary of the computational results 

is presented in table 3. This table reports, for each problem category, the number of problems for 

which SAHNM and SAHWM identified the best heuristic solution. SAHWM found the best 

heuristic solution for all 30 test problems, while SAHNM was able to identify the best solution 

for only 10 of the 30 problems. Interestingly, the 10 problems for which SAHNM matched the 

best solutions of SAHWM were associated with densities of 6% or 10%. In other words, 

SAHWM always provided a lower cost solution than SAHNM for the 2% density MCSCPs. 

Table 3 also reveals that SAHWM yielded an improvement in solution cost over SAHNM in all 

problem categories, with an average improvement of 2.56%. These results provide strong 

support for hypothesis H2. 

 

3.3.Experimental study – part 3: High cost- and coverage-correlated WSCPs 

In part 3 of the experimental study, we generated 60 new large WSCPs. Five test 

problems were generated for each of twelve problem categories. These categories were defined 

by all combinations of two cost-correlation structures, two levels of problem size, and three 

levels of problem density. Both cost-correlation structures exhibit a high degree of cost 

correlation. In the first structure, the perfect cost-correlation set-covering problem (PSCP), the 

cost of column j is set equal to the number of rows that it covers. In the second structure, the 

near-perfect cost-correlation set-covering problem (NSCP), the cost of column j is set equal to 

the number of rows it covers plus a uniformly distributed random integer from {–1, 0, +1}. In 



terms of problem size, the smaller problems had 400 rows and 4000 columns, while the larger 

problems had 800 rows and 8000 columns. Problem densities were 2, 6, and 10 percent. The 

coverage-correlation structure for the WSCPs in part 3 was obtained in the same manner as for 

the MCSCPs in part 2. 

______________________________________________________________________________ 

Insert Table 3 Here 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

Insert Table 4 Here 

______________________________________________________________________________ 

 

 

We used mtime = 1 minute (4 minutes) for the 400 × 4000 (800 × 8000) test problems 

for both SAHNM and SAHWM. A summary of the computational results is presented in table 4. 

The solution costs associated with SAHWM were, on average, 2.04% lower than those obtained 

by SAHNM. More importantly, SAHWM yielded a lower solution cost than SAHNM for 56 of 

the 60 test problems, and a higher solution cost on only four problems. The mean percent 

solution cost savings associated with SAHWM was virtually the same for NSCPs (2.04%) and 

PSCPs (2.03%). Thus, hypothesis H3 is well supported by the experimental results. 

 

 

 



4. Conclusions and extensions 

The morph implementation strategy is designed to supplement SA by improving an 

incumbent solution with a very modest incremental expenditure of computational effort. The 

morph lists are central to the success of this strategy. First, SAHWM generates morph lists only 

for columns that appear in solution, thereby eliminating the need to generate such lists for all 

columns. Second, SAHWM passes morph lists from one replicate to the next. Third, as SAHWM 

constructs partial solutions, the morphing procedure examines the morph lists of each column in 

solution, seeking a replacement that improves the solution. Finally, since only the columns that 

are likely to be effective replacements are stored in the morph lists, columns that are unlikely to 

be effective replacements will not be evaluated unnecessarily. 

As expected (H1a and H1b), the morphing process neither improved nor worsened the 

cost of solutions for test problems with low degrees of coverage correlation (though it did take 

slightly longer to find the same solutions). Additionally, we found both SAHNM and SAHWM 

to be highly competitive with the best procedure (CFT [14]) known to us for these problems. 

For the morphing process to yield improved solutions, the likelihood of an exchange of 

columns resulting in an improved solution must be fairly high. Such is the case for MCSCPs 

exhibiting high coverage correlation, and WSCPs exhibiting high cost and coverage correlation. 

For these test problems, the morphing process offered a substantial benefit. Specifically, 

SAHWM yielded a solution cost that was less than (less than or equal to) SAHNMs solution cost 

for 66.7% (100%) of the MCSCPs and 93.3% (93.3%) of the WSCPs (supporting H2 and H3, 

respectively). 

Morph-based improvement strategies should be particularly useful in heuristic procedures 

that alternate between feasibility and infeasibility. This conclusion is based on the observation 



that morphing a partial (infeasible) solution – with the goal of improving the objective while 

reducing the extent of problem infeasibility – is superior to morphing only feasible solutions – 

with the goal of improving the objective. Intuitively, this result makes sense, since there are more 

degrees of freedom with a partial solution than with a solution that must retain feasibility. Since 

heuristic methods for other computationally difficult problems – such as bin-packing or assembly 

line balancing – often alternate between feasibility and infeasibility, we believe the morphing 

concept has broad applicability. The morphing strategy is designed to take advantage of 

similarities in solution elements and the concept is likely to be most useful in situations where 

such similarities exist. 
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