
  

X-PINCH PLASMA DYNAMICS STUDIED WITH HIGH TEMPORAL 

RESOLUTION DIAGNOSTICS 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

Marc David Mitchell 

May 2007



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2007 Marc David Mitchell



 

 

X-PINCH PLASMA DYNAMICS STUDIED WITH HIGH TEMPORAL 

RESOLUTION DIAGNOSTICS 

 

Marc David Mitchell, Ph. D. 

Cornell University 2007 

 

The X-pinch plasma produces extreme material conditions that make it 

interesting both as a high-energy-density plasma and an x-ray source for imaging.  

These extreme conditions include high densities (near solid density, 1023 ions/cm-3 for 

Mo), high temperatures (above 2.5 keV for Mo), high energy densities (up to 1012 

J/cm3), high x-ray power densities (up to 1022 W/cm3), small source sizes (which can 

be less than 1 µm in diameter), and short time scales for the x-ray radiation (less than 

100 ps).  These extreme conditions are difficult to produce in a laboratory setting and 

even harder to study.  The X-pinch plasma is produced by driving a high current (100-

500 kA, 100 ns FWHM pulse for our experiment) through two or more wires that 

cross at a point forming an “X.”  A magnetically driven z-pinch forms near the cross 

point allowing the X-pinch to reliably reproduce the conditions given above.  As such, 

we present a range of experiments designed to study the conditions produced in the X-

pinch plasma.  Until recently many of the diagnostics used to study the X-pinch have 

not had the resolution (spatial or temporal) necessary to determine the actual size or 

duration of the X-pinch x-ray source.  We present experimental results showing the 

temporal extent of the x-ray radiation produced by an X pinch using an x-ray streak 

camera with better than 10 ps resolution.  We also present experiments designed to 

study the temporal and spatial relationship of the two different radiation sources 

(thermal and energetic-electron-generated) observed from an X pinch using a filtered 



 

diode array.  In addition, we studied the plasma dynamics using both a multi-channel 

150 ps, 532 nm (Nd:YAG) laser backlighting system and x-ray radiography (using an 

X pinch as an x-ray source).   We correlate the observed plasma parameters (implosion 

and explosion rate, neck diameter, axial jet propagation speed, and coronal plasma 

axial modulation wavelength along the X-pinch legs) to wire material. 
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CHAPTER 1 

 

INTRODUCTION 

The concept of the z-pinch stretches back as far as 1790 when Martinus van 

Marum utilized 100 Leyden jars to explode a one meter long wire with around 1 kJ of 

energy [Haines et al. 2000].  Since then we have come to understand a great deal 

about the physics governing z-pinches, but, as we will soon see, we still have much 

more to learn.  There are many different configurations for z-pinches, but 

fundamentally they are all the same.  Essentially, a z-pinch is a plasma column with a 

current following along its axis, the z axis.  The current flowing in the column creates 

a radial force inward on the moving charged particles, forcing them in toward the axis.  

Acting against this inward force, is the thermal pressure from the hot plasma column.  

(The physical concepts of the z-pinch are discussed further in Chapter 2.)  Physicists 

have found that by using the right balance of current, temperature, and mass we can 

cause a z-pinch to implode and release an intense burst of x-rays.  A z-pinch is now 

the world’s most powerful and efficient soft x-ray source [Spielman et al. 1998]. 

Of the many types of z-pinches, it is the wire-array z-pinch that is the world’s 

most powerful x-ray source, and thus it is of interest to the Inertial Confinement 

Fusion (ICF) community as a radiation source for indirect drive ICF concepts [Haan et 

al. 1995].  ICF research featuring a z-pinch compression driver is the main initiative 

behind the Z machine at Sandia National Laboratories.  The Z machine is a 100 ns, 20 

MA pulsed power driver for plasma radiation sources [Matzen 1997, Spielman et al. 

1998].  Experiments with tungsten wire-array z pinches on the Z facility can produce 

up to 280 TW and 1.8 MJ of soft x rays in the 100-10,000 eV range.  However, the 

succession of physical mechanisms that produce these short, intense bursts of x-ray 

radiation is still not well understood.  The next larger (26 MA) wire-array z-pinch 
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generator is under construction, and an understanding of the physics of x-ray 

production is necessary in order to use it most effectively for ICF research.  A better 

understanding of the radiation mechanisms in a z-pinch opens the door for increasing 

x-ray power and yield as well as the tailoring of the x-ray pulse shape, which is critical 

for ICF. 

Despite the possible explanations of kinetic energy, PdV work, and ohmic 

heating for radiation production, the precise timing, structure and energy of the x-ray 

pulse produced in a wire array z-pinch are hard to pin down, both experimentally and 

theoretically.  Experiments have shown that wire array implosions proceed as a 

complex process of steady ablation from the wires, plasma collection on axis, and 

finally much of the residual mass is swept toward the axis, commonly referred to as a 

“snowplow” implosion, where it stagnates and radiates the x-ray pulse [Lebedev et al. 

2002]. 

Still further complexity comes with the “trailing mass” phenomenon that is 

often observed during the snowplow implosion.  Trailing mass is observed when the 

snowplow implosion does not involve 100% of the original wire-array mass.  In fact, 

up to 40% of the array material remains near the original wire positions during the first 

implosion [Hall et al. 2006].  Moreover, the current carried towards the axis during an 

implosion may switch back out to flow through this “trailing mass” at some point 

during the stagnation phase.  This is sometimes called a “current restrike” [Hall et al. 

2006] and can produce another implosion, resulting in the trailing mass being swept 

inwards onto the stagnated plasma of the first implosion. 

A significant role player in these implosion processes is the susceptibility of 

the plasma to a number of instabilities, such as a Rayleigh-Taylor instability in the 

imploding sheath, as well as Magnetohydrodynamic (MHD) instabilities (further 

discussed in Chapter 2) in the stagnating plasma, creating even further complexities in 
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understanding x-ray production.  Previous observations of “bright spots” from which 

x-rays are emitted in wire array experiments have been attributed to instabilities or 

electron beam formation [Deeney et al. 1991], which have also been observed in 

experiments involving single wire z-pinches.  More recently, however, wire array 

experiments done at Imperial College have shown that if MHD instabilities are 

responsible for the development of bright spots in wire arrays, it is not the instability 

mechanism that produces bright spots in single wire z-pinches [Hall et al. 2006].  A 

more detailed discussion of the instabilities that impact single wire z-pinches can be 

found in Chapter 4. 

Although in the case of the single wire z-pinch, the mechanism of bright spot 

formation is different than in wire array z-pinches, single wire z-pinch experiments 

have continued at university laboratories in an attempt to understand that 

phenomenon.  Results of these experiments have shown that instabilities give rise to 

multiple small, localized plasma constrictions or micropinches (bright spots), from 

which soft X-rays are emitted.  Temporal and spatial studies of these micropinches 

proved difficult, however, due to the unpredictable behavior of the time and location 

of the micropinch formation, which occurs randomly along the wire-initiated plasma. 

A necessary condition in order to study these bright sources with high temporal and 

spatial accuracy was the localization of the x-ray source itself.  The development of 

the X-pinch plasma (described in more detail in Chapter 2) was, for this reason, first 

introduced in 1981 by Ulshmid et al. at the P.N. Lebedev Physical Institute in 

Moscow, Russia [Zakharov et al. 1982]. 

An X-pinch is a variant of the single wire z-pinch and is made by arranging 

two or more wires to touch-cross at the center, in the form of an “X” (see Fig. 1.1).  A 

current pulse from a pulsed power device (in our case, ~450 kA peak current,  
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Figure 1.1:  Drawings of a two-wire and a multi-wire X-pinch are shown together with 
two X-pinches in parallel as they would be loaded between an anode and cathode of a 
pulsed power generator. The anode-cathode gap is typically 1.5 cm in experiments at 
Cornell. 

 

Two-wire Multi-wire Double

X pinch
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100 ns full-width at half-maximum [FWHM], 40-50 ns rise time) is passed through the 

wires creating a plasma along the surface of the wire, commonly referred to as 

“coronal plasma.”  The currents in all the wires of an n-wire X-pinch combine at the 

cross-point (the current doubles for two-wire X-pinches) and the magnetic pressure 

increases as n2 (quadruples for two-wire X-pinch) relative to that in a single wire.  The 

magnetic field is strong enough to confine the plasma formed in the cross point region 

during the current-induced wire explosion, and a small z-pinch is formed, resembling 

a 100-400 µm long single wire z-pinch.  As the magnetic field continues to compress 

the plasma column, or mini z-pinch, the column undergoes instabilities that cause an 

implosion of the plasma into small regions of high temperature and density, often 

referred to as micropinches.  It is from these regions that one or more sub-nanosecond 

soft x-ray bursts (1 – 10 keV) are emitted [Kalantar 1993, Shelkovenko et al. 1999, 

Shelkovenko et al. 2001a, Shelkovenko et al. 2001b].  Figure 1.2 depicts a two-wire 

X-pinch as current is being applied, before and after x-ray emission.  The picture 

shows the current heating the wires and creating plasma along the surface of the wires 

that expands as it is heated by the current.  Also illustrated is the formation of the mini 

z-pinch at the cross point region of the X-pinch.  A more detailed description of the X-

pinch implosion process is presented in Chapter 2. 

The reproducible times of bright spot formation (to within +/- 1 – 3 ns) 

occurring within a very small region of space (to within +/- 0.1 mm) in the X-pinch, 

allows X-ray spectroscopic measurements to be made with the use of high-resolution 

diagnostic instrumentation.  Moreover, the characteristics of the x-ray emission of the 

X-pinch have led to a significant amount of study concentrated in developing the X-

pinch as a reliable laboratory radiographic tool [Shelkovenko et al. 2001b].  Not only 

does the small source size make the X-pinch ideal for point-projection radiography, 

but the fast time-scale of the x-ray burst emission has made the X-pinch an ideal 



 

6 

 

 

 

 

 

 

 

 
Figure 1.2:  A radiograph of a two-wire X pinch before and after x-ray emission.  A 
column of plasma, or “mini z-pinch”, is formed due to the higher magnetic field 
strength in the central cross-point region.  The plasma column is further compressed 
until it unstably implodes into small regions of high density and temperature, called 
“micropinches.”  It is from these micropinches that x-rays are emitted [Shelkovenko et 

al. 2001b]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3:  Radiograph obtained with an X pinch of a single exploding wire made 
from 11.5 µm W with a 2.2 µm polyimide insulator.  Observed here is the non uniform 
expansion (a) at the contact near the cathode, (b) in the central region, and (c) the 
more expanded region.  Also observed is a striated structure inside the expanded core 
as well as the thin insulator [Sinars et al. 2001]. 
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source for radiography of rapidly evolving objects as well.  Consequently, X-pinches 

have been used to radiograph the time evolution of single wire explosions, where 

expansion times have been obtained for many materials [Chandler et al. 2001], and to 

image the small-scale structure of the wire core and coronal plasma, as shown in Fig. 

1.3 [Sinars et al. 2001].  Furthermore, X pinches have also been able to provide 

quantitative areal density measurements of wire array z-pinches [Hu et al. 2002] and 

other high-density plasmas.  Since the intermediate stage between X-pinch wire 

explosion and x-ray burst emission is a z-pinch configuration, it is reasonable to 

expect that the bright spot characteristics of each emission point in a single exploding 

wire z-pinch are similar to those for X-pinch bright spots with the same wire material, 

making X-ray spectroscopy of the X-pinch applicable to studies of the z-pinch with a 

comparable current. 

X pinches have been successfully developed as point sources of soft x rays for 

radiography [Kalantar 1993, Shelkovenko et al. 1999, Kalantar et al. 1995, Pikuz et al. 

1997].  However, the physical mechanisms responsible for the short bursts of radiation 

are only partially understood, and the plasma conditions at the moment of burst 

emission are not well known.  Computer simulations have brought us closer to 

understanding the MHD conditions that lead to x-ray emission.  However, many 

questions still remain about the final moments before and during x-ray emission itself 

[Ivanenkov et al. 2000, Ivanenkov et al. 2002] and [Chittenden et al. 2007].  An 

understanding of the plasma dynamics at the cross-point region of the X-pinch could 

help the understanding of some of the mysteries behind the physics of the wire-array 

z-pinch.  In addition, from a basic physics perspective, the X-pinch could provide 

experimental data on highly stripped ionic emission line wavelengths and spectral line 

profiles at electron densities up to 1024 cm-3 for Al [Abdallah et al. 1996] and Ti 

[Sinars et al. 2003] and where atomic physics modeling is still being developed.  
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The goal of this dissertation is to contribute to the understanding of X-pinch 

plasma dynamics, namely, the physics behind the micropinch formation and x-ray 

burst emission.  More specifically, in this dissertation I will address the following 

questions: 

1. What is the duration of the micropinch radiation, and what mechanisms 

allow this short time scale radiation? 

2. When does the energetic electron radiation begin relative to the micropinch 

radiation, and where is its source location as a function of time? 

3. What roles do the plasma dynamics (plasma expansion rate, neck 

compression and expansion rates, jet formation, axial modulations) play in 

the X pinch? 

In the past we have tried to answer some of these questions, and have come up 

with a few core hypotheses: 

1. Micropinch radiation lasts for less than 1 nanosecond (quickly turned on by 

rapid temperature increase and off by density decrease). 

2. Energetic electron radiation starts after the micropinch (once lower density 

gaps begin to form) and progresses from the center to the anode. 

3. Coronal plasma expansion rates and neck compression rates are linked to 

the time of x-ray emission and are dominated by the energy deposited in 

the plasma per unit mass. 

We will now, in this dissertation, discuss experiments designed to test these 

hypotheses.  We have included additional observations made possible by the laser 

imaging.  Namely, we observed similar axial modulations of the coronal plasma 

similar to those seen in wire-array z-pinch experiments.  Also, we present an image 

showing the relative position of the dense wire core and surround coronal plasma. 
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 In the following chapter (Chapter 2), I will discuss the background of the X-

pinch, how plasma is formed in more detail, and our present understanding of how the 

physical processes involved lead to the production of x-ray radiation.  Also, the results 

of previous experiments and what has been done experimentally up until this thesis, 

will also be discussed.  I will then discuss, in Chapter 3, the pulsed power device used 

to conduct all experiments described in this dissertation, as well as the experimental 

setup for the experiments conducted. 

Presented in Chapter 4 is the basic physics of a z-pinch, namely, the balance 

between thermal and magnetic pressure, and how this relates to the compression of the 

X-pinch neck.  The Bennett pinch relation, radiative collapse, and sausage instabilities 

are also presented as current theories believed to be responsible for micropinch 

formation and x-ray production.  

In Chapter 5, the radiation structure of the X-pinch is discussed along with 

experiments involving an x-ray streak camera and the results of those measurements. 

Measurments taken from PCDs (photoconducting devices), Si-diodes, and a Si-diode 

array will also be shown.  An in depth discussion of the study of energetic electron 

radiation will also be presented and the experiments conducted to observe the 

energetic electron radiation will also be described. 

Laser imaging is addressed in Chapter 6, including a description of the 

evolution of coronal plasma formation, as well expansion rates of coronal plasma, 

both obtained with this diagnostic.  The density of early time coronal plasma is 

discussed, as is the formation of the plasma jet along the axis of the X-pinch (see Fig. 

1.2).  Also shown are observations of the X pinch near the time of emission of x-rays 

and at late times.  We also present results of experiments designed to capture images 

of the dense wire core with x-ray radiography, and the less dense coronal plasma by 

laser imaging at the same time. 
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Finally, a summary of the experimental results and a discussion and directions 

for future experiments are presented in Chapter 7.
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CHAPTER 2 

 

BACKGROUND ON X PINCHES  

The wire array z-pinch is an intense source of x-rays which plays an important 

role in Inertial Confinement Fusion (ICF) [Sanford et al. 2000].  By varying the wire 

material, wire diameter, and array diameter, optimization of the x-ray yield is studied, 

as is the conversion of kinetic energy to x-ray radiation.  Also, yield scaling with 

current may be determined.  In addition to ICF studies, the intense sources of x-rays 

such as high power wire array z-pinch may be used to create an environment suitable 

for nuclear weapons effects testing.  Unfortunately, the large wire number arrays that 

produce high yield cannot be studied on the modest scale pulsed power generators at 

universities; much more powerful generators are needed. 

Consequently, several university laboratories have concentrated their efforts on 

studying the plasma dynamics of single wire z-pinches and X pinches.  Although the 

dynamics of single wire explosions are significantly different from wire arrays, there 

are some advantages to studying this more simple case.  For example, the results of 

single wire experiments have revealed wire expansion rates and have given insight 

into material properties that may influence x-ray yield in wire arrays.  Also, the study 

of X pinches have led to the development of the X pinch as an x-ray backlighting 

diagnostic, and have further led to questions involving the plasma dynamics of x-ray 

production, not only for X-pinch applications, but also from a fundamental physics 

perspective.  As such, the X-pinch has developed into an interesting and very useful 

topic of study for many in the plasma physics community.  Both z-pinches and X 

pinches have fundamental similarities in plasma formation and x-ray production, and 

both are described in great detail in the following sections.
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2.A Z-pinch and X-pinch plasmas 

 One way to form a Z-pinch is to use a single wire as the load of a pulsed power 

device.  The high current that is delivered to the wire in a short time (~100 ns) causes 

the wire to heat and devolve gas from the surface, leading to plasma formation along 

the surface of the wire.  The plasma first expands due to the plasma pressure, which 

increases with increasing current.  At the same time, the current induces a magnetic 

field which applies a force on each moving charge carrier in the plasma that acts 

against the plasma pressure and eventually exceeds it.  This causes the plasma to 

undergo an m = 0 (azimuthally symmetric) sausage instability in the imploding plasma 

column, causing axial variation in plasma radius and number density, resulting in one 

or more localized “pinches.”  The pinch region of small radius with high temperature 

and density is often referred to as a micropinch.  From the micropinch an intense x-ray 

burst is emitted and is therefore also commonly known as a bright spot. 

A closer look at the three stages that occur during the formation of X-pinch 

plasmas can be seen in the schematic “movie” of X-pinch plasma development shown 

in Fig. 2.1.  In the first stage, current passes through the wires, heating them and 

causing them to expand.  A rapidly expanding coronal plasma on the surface of the 

wire surrounds a more dense, cold wire core, where the majority of the mass remains. 

The dense core is highly resistive and so the majority of the current flows in the 

surface coronal plasma.  Therefore, the rate of energy deposition in the core is very 

slow, and so is its ablation rate [Sinars et al. 2001].  At the cross point region, the 

magnetic field is greater than at the legs, which serves to confine the plasma resulting 

in a 150 µm - 300 µm long cylindrical column (see Fig. 2.1).  This region is also 

called the “minidiode,” in which electron beams may be produced later in the 

development of the X-pinch.  Jet-like plasma structures can also be seen above and 

below the minidiode at regions of minimum magnetic field.   
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Figure 2.1:  Illustration showing the phases of the X pinch.  (a) The top set of 
drawings shows the cold wires at 0 ns, and then the wires at 10 ns, 12 ns, 20 ns, and 45 
ns after the start of the current pulse.  As the wires are heated, they expand as plasma 
forms along the wires’ surface.  At around 45 ns after the start of the current pulse, the 
increased magnetic field pressure present at the cross-point of the X pinch due to the 
larger current in the cross-point region causes a plasma column or “neck” to form.  (b) 
The second set of drawings, the wires continue to expand as more current continues to 
drive the X pinch. The plasma column in the cross-point region begins to undergo 
instabilities at around 50 ns after the start of the current pulse, and within 0.5 ns, the 
column collapses in on itself at one or more spots along the column (often referred to 
as “hot spots” or micropinches).  A burst of x-rays is emitted from each of the 
hotspots, and shortly after x-ray emission a small gap opens up, across which electrons 
are accelerated.  (c) The bottom drawings are enlarged pictures of the neck illustrating 
the instabilities that the plasma column undergoes to form the hotspot(s). 

(a)  

(b)  

(c)  
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The second stage begins with the implosion of the plasma column, including 

strong sausage (m = 0) instabilities.  The plasma column is compressed into a series of 

smaller and smaller necks (see Fig. 2.1c), where densities can reach near solid density 

and temperatures are ~1 keV for Mo wires [Hansen et al. 2004].  The plasma column 

implodes on itself on a timescale of a few nanoseconds.  The x-ray bursts are emitted 

from regions as small as 1 µm.   

 After the emission of x-ray bursts from bright spots, rapidly propagating shock 

waves are seen in x-ray backlighter images [Pikuz et al. 2002] and a gap forms in the 

minidiode region in which the density of the plasma is no longer detectable through 

radiography or optical interferometry (> 1018 - 1019 cm-3).  Current continues to be 

conducted during this phase, and electron beam generated radiation is observed, 

implying that electrons are accelerated across the gap and then radiate as they collide 

with more dense regions.  Evidence for this is the emission of K-alpha line radiation, 

i.e., inner shell transition radiation from weakly ionized, relatively cold plasma.  

Figure 2.1b shows the gap formation and the region of energetic electron formation. 

 

2.B Short-lived and long-lived e-beam formation 

More recent experiments have revealed that there are two different sources of 

radiation greater than 8 keV in the X-pinch:  radiation from the micropinch and harder 

radiation from the electron beam source [Shelkovenko et al. 2005].  The harder 

radiation reaches photon energies up to 100 keV and comes from a larger source 

(~100 µm) that is slightly displaced from the region where the soft x-rays are emitted 

and lasts for several nanoseconds.  This harder radiation comes from the interaction of 

the energetic electrons with the ~100 µm plasma that acts as the anode side of the 

minidiode.  These harder x-ray sources proved to be useful in radiographic imaging of 

thicker biological samples that could not be penetrated using the soft, 1 - 10 keV x-ray 
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radiation.  Images of a several millimeter thick chicken wing, including bone, and a 

live tropical fish that was about 1 cm thick, have been taken with at least a 30 µm 

resolution [Song et al. 2004]. 

 The electron beam source, which produces the harder radiation, is emitted from 

the immediate vicinity of a gap that is observed in the imploded plasma column, 

immediately after the thermal x-ray burst is emitted. Energetic electrons are 

accelerated across that gap, as evidenced by the generation of nonthermal x-ray 

radiation in the 10 - 100 keV energy range from a 0.1 - 1 mm source.  The energy 

distribution of the 10 - 100 keV x-rays depends on the details of a particular test 

[Shelkovenko et al. 2001b].  Results of studies of the characteristics of the energetic 

electron-produced x-ray source show that it is slightly displaced from the thermal 

burst location.  Also, studies show that its time duration ranges from 2 to 20 ns, which 

is a function of the energy range and it is considerably larger than the thermal x-ray 

source [Kantsyrev et al. 2004]. 

 The intensity of the electron-beam-generated spectral lines depends on the X-

pinch wire material, mass, current through the X pinch, and the details of the 

experimental configuration.  An important feature in the radiation from Ti X pinches, 

for example, is the set of satellite spectral lines near the resonance line of He-like ions 

that indicates the presence of Ti atoms that are ionized only into the L shell. 

 The pinhole images in Fig. 2.2a show that both Al and NiCr X pinches emit 

radiation with energy > 20 keV (4.5 mm Al filter) from a 1 mm source.  Four-wire Mo 

and W X pinches yield pinhole images through a 1.6 mm Cu filter (Fig. 2.2b) 

indicating that high Z wire X pinches can emit > 60 keV x rays.  All of these pinhole 

images show that all four-wire X pinches studied emit radiation with energy greater 

than 20 keV, from a source that is 1 mm or less. 
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Figure 2.2:  Pinhole images from (a) an Al 4-wire 50 µm X pinch and a NiCr 4-wire 
25 µm Xpinch show that both Al and NiCr emit radiation with E > 20 keV.  4-wire X 
pinches using higher Z materials like W and Mo (b) show radiation above 60 keV as 
seen though a 1.6 mm Cu filter.  These high energy radiation regions appear to be 
about 1 mm or less. 
 

 
Figure: 2.3:  Images captured with a Slit-Step-Wedge (SSW) camera show two distinct 
radiation source regions:  a bright micron scale 7 – 12 keV source from the micropinch 
and a lager 0.1 – 0.5 mm source of > 8 keV radiation from energetic electrons.  For 
this shot the sources were separated by about 0.5 mm. 
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 The harder x-ray source size and structure were studied with the SSW camera 

and images of various objects.  As illustrated in Fig. 2.3, experiments show two 

distinct source regions for x-rays: a micron scale 7 - 12 keV x-ray source and a higher 

energy source with 0.1 - 0.5 mm scale size.  Figure 2.4 shows the x-ray image of a Ni 

mesh (40 µm wire diameter with 800 µm between the wires) that was imaged with 

three times magnification in which the presence of two x-ray sources separated by 150 

µm in the cathode-anode direction is clearly seen.  One source is 5 µm or less in size 

while the other is 100 µm.  Results of experiments that show the presence of several 

small micropinches and one or several larger sources resulting from electron beams 

are presented and discussed in Chapter 5. 

 

2.C Source size measurements of the X pinch 

Previous experiments using a time-integrated filtered pinhole camera reveal 

source sizes for greater than 2.5 keV radiation from Al X pinches to be less than 10 

µm in diameter [Kalantar 1993].  More recently, experiments looking at the diffraction 

pattern of an image and comparing it to calculations using different source sizes to 

find a best fit, led to estimations of source size as small as 1 µm for Mo and Nb X-

pinches [Song et al. 2005].   

The small source size (1 - 10 µm) of the X-pinch has made it ideal for use as a source 

for point-projection radiography.  One of the earliest applications of this process was 

used to radiograph another X-pinch [Kalantar 1993].  X-pinches have also been used 

to study single wire explosions [Shelkovenko et al. 2001a].  By varying the wire 

material, wire size, and filters in front of the film, the wavelengths for imaging can be 

optimized for the type of imaging required. 
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Figure 2.4:  An image of a Ni wire mesh at 3 times magnification shows the spatial 
relationship of the 2 radiation sources.  The small (~ 1 µm) micropinch source gives a 
sharp image of the Ni mesh (~ 5 µm resolustion).  The larger (~100 µm) source from 
energetic electron radiation gives a blurred, displaced image of the Ni mesh.  The two 
sources were displaced by about 150 µm.  The image was obtained with a W 4-wire 
20 µm X pinch. 
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2.D Temporal duration of radiation                                                                                                          

The temporal parameters of the X-pinch x-ray source have been determined 

with experiments involving the use of a direct x-ray streak camera.  These experiments 

involved testing the duration of x-ray bursts from Al, Ti, NiCr, Mo, and W X-pinches.  

Tests showed the time variation of the > 1 keV radiation emission from Mo X-pinches 

on a time scale as short as 10 ps [Sinars et al. 2001]. 

Further experiments have been conducted to give insight into the properties of 

the X-pinch plasma during the x-ray bursts using x-ray spectroscopy.  Spectroscopic 

analysis of K-shell line emission has determined electron temperatures near 1 keV and 

ion densities from 1019 cm-3 up to perhaps 1023 cm-3 for Al and Ti  X pinch plasmas 

driven by about 400 kA peak current [Sinars et al. 2003].  There have been recent 

studies in which L-shell spectroscopic models have been applied to study time-

integrated and time-resolved Mo spectra from 450 kA and 1 MA X-pinch plasmas 

[Hansen et al. 2003].  More recently, L-shell and K-shell line emission have been 

studied for Manganin (CuMn) four-wire X-pinches from x-ray streak camera data on a 

time scale as short as 10 ps.  Estimations have been made of the electron temperature 

of the plasma of  ~200 eV from L-shell Cu spectra and ~2 keV from K-shell Cu 

spectra and K-shell Mn spectra [Chandler 2005].  An observation of the relative 

timing of the L-shell and K-shell line radiation, as well as the relative timing of the 

continuum radiation has been made, allowing tentative conclusions to be drawn on the 

formation of this radiation [Chandler 2005].  

Even though previous results from X-pinch experimentation have brought us 

closer to understanding X-pinch physics, there are still questions left unanswered due 

to the fast timescale of x-ray production by the X-pinch.  The emission of x-ray bursts 

from an X-pinch happens on a time scale of tens to hundreds of picoseconds, creating 

a challenging situation for diagnostic tools.  
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2.E Measuring the timing of the x-ray burst emission 

The timing of the emission of the x-ray bursts in the 1 - 10 keV range depends 

on the wire material and diameter as well as the current.  For a given current pulse, the 

plasma formed around the cross-point during the explosion of the X-pinch needs time 

to implode to the axis in order to form a dense, hot plasma.  Given the same size wires 

and current pulse, the initial x-ray bursts occur within 2 ns of each other (for Mo X-

pinches).  The timing of these bursts is determined by the signals from 

photoconducting detectors (PCDs) relative to the start of the current pulse.  PCDs 

generate electrical signals in response to incident x-ray radiation by acting like a 

resistor.  With a fixed applied bias voltage, the incident x-ray flux generates a current 

through the device that produces a voltage drop.  For small signals, the effect on the 

bias voltage is minimal, but if the measured voltage drop reaches half of the applied 

voltage, the output current is reduced by a factor of two.  This saturation compresses 

the data and increases the dynamic range, allowing PCDs to be used over a wide range 

of incident powers from 10 - 104 W/cm2.  Figure 2.5 shows a typical current pulse 

through the load of the XP Pulser together with a PCD trace to show the relative 

timing of the x-ray burst emission.   

 

2.F Applications of the X pinch 

 Conventional x-ray tubes that rely on electron-beams are the source of x-rays 

in traditional radiography.  Although x-ray tubes can cover a wide range of energies, 

source sizes with collimation, intensities, and pulse duration for many applications, the 

efficiency of these tubes is less than 0.1% up to about 20 keV [Flugge et al. 1957].  

Also, the minimum duration of x-ray bursts from pulsed tubes is about 0.1 µs which is 

two orders of magnitude more than the minimum duration of the electron-beam-

generated x-ray bursts in an X pinch. Furthermore, for x-rays below 20 keV in an 
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Figure 2.5:  Current trace through a typical two-wire Mo X-pinch load.  In this case, 
the first x-ray burst occurred at the peak of the current pulse, and the subsequent bursts 
are less intense. 
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x-ray tube, it is difficult to achieve both a small ( ≤ 100 µm) scale focal spot size and 

high intensity with sub-microsecond duration x-ray bursts.  By contrast, the X-pinch 

produces intense bursts of 10–20 keV energy x-rays, with a few nanoseconds pulse 

duration, which are generated by electron beams that immediately follow the thermal 

burst(s).  Moreover, the micropinch (thermal) x-ray sources are even smaller size and 

shorter duration, as has already been discussed. 

 

2.F.1 Point-projection and coherence-based phase-contrast imaging 

 Given a point source, and an object at a distance away from the source, the 

object can be imaged by placing a detector behind the object.  The small source size 

and low energy of the micropinch radiation enables its use for imaging weakly-

absorbing objects with excellent spatial resolution by a method called coherence-

enhanced imaging (often called phase-contrast imaging).  The principle of the method 

is described as follows: 

If the radiation source is highly coherent spatially and the detector is located at 

a suitable distance behind the object, the x-rays emerging from the sample at their 

various angles will propagate through free space until they reach the detector.  One 

will observe a fringe pattern as a result of a combination of refraction, diffraction, 

absorption, and interference effects. 

At very small distances, the image is formed by absorption contrast, in which 

there is only a shadow of the more absorbing components of the object.  At greater 

distances, a boundary contrast enhancement appears as a result of interference at the 

boundary of refracted x-rays and with unaffected x-rays.  This is a result of the spatial 

coherence of the x-rays and can lead to a change of intensity up to 100%.  Therefore, 

the boundaries of different parts of the object become clearly visible even for a nearly 
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transparent object.  This method has been demonstrated successfully using 

polychromatic radiation from a laboratory x-ray tube source.   

The relaxed requirements on the spectral (temporal) coherence of the radiation 

are essential to implementing coherence-based phase contrast imaging using an X 

pinch as a source of radiation.  A wavelength band selected by a metal foil filter 

creates a sufficient spectral coherence of the radiation, while the spatial coherence is 

rather good taking into account the size of the X-pinch source (a few microns or less).  

Furthermore, the divergence of the x-rays from an extremely small point source can 

enable a high optical magnification and increased image resolution, depending on the 

imaging geometry. 

X-pinch point projection radiography is very useful in the energy range of 3 - 

15 keV since X pinches made with commonly available and relatively easily handled 

wire materials, produce intense and very small radiation sources over this energy 

range.   

 

2.F.2 X pinches in frames 

Although the harder x-ray source from the energetic electron beams proves 

useful for imaging relatively thick biological samples, the multiple bright spots from 

electron beams can create multiple displaced images.  In order to advance the field of 

X-pinch radiography it is necessary to increase the rate at which X-pinch pulses can be 

produced beyond that which can be achieved by loading wires in the cathode-anode 

gap by hand and then pumping the system down to its operating pressure of 10-4 Torr.  

One possible solution includes the use of a chain of preloaded dielectric frames with 

one or several X pinches in series, as shown in Fig. 2.6 [Mitchell et al. 2006a].  This 

would enable the load to be changed in vacuum.  The proposed X-pinch 

configurations were also predicted to reduce the effects of two problems encountered 
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with X-pinch point projection radiography.  First, as already noted, many X-pinches 

develop multiple bright spots, creating multiple displaced images.  Second, we 

commonly have intense background radiation connected with energetic electrons 

generated as part of the pinching and explosive disassembly phases [Shelkovenko et 

al. 2005].  These problems can render images from some tests unusable, thereby 

reducing the rate of collecting useful X-pinch images.  Furthermore, there is also the 

possibility that reproducible loading of holders would produce more reproducible 

timing of X-pinch x-ray bursts, which is useful when imaging dynamic systems such 

as rapidly evolving plasmas.  In addition, more reproducible timing would enable the 

best possible temporal resolution with time-dependent x-ray spectra obtained using an 

x-ray streak camera.  We found it possible to eliminate all of the above problems with 

a fiberglass frame configuration that suppresses conduction of current on the surface 

of the frame early in the current pulse, while allowing conduction of the frame later in 

the current pulse in order to eliminate further pinching in the exploding wire plasma. 
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Figure 2.6:  X-pinch configurations in frames are illustrated, including (a) a single X 
pinch, (b) four X pinches in series, and (c) two X pinches in series using a dielectric 
frame and plastic threads. 
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CHAPTER 3 

 

EXPERIMENTAL DESIGN 

3.A  Load parameters 

 The X pinches studied in this thesis were driven with Cornell’s XP pulsed 

power generator.  The X pinches were loaded into the 15 mm anode-cathode (A-K) 

gap and pulsed with 200-500 kA with 40 ns rise time.  Most X pinches were centrally 

located within 4 25 mm diameter return current posts placed at a 40 mm radius.  

Connections of the X pinch to the anode and cathode were made by stringing the wires 

though small holes in the anode and cathode and hanging small weights on the wires 

to keep them tensioned. 

 

3.B  XP pulsed power generator 

All of the experiments shown were carried out on Cornell’s XP pulsed power 

generator.  The XP pulser is a low impedance generator that is capable of delivering 

up to 600 kA to the load with a 40-50 ns rise time and about a 100 ns FWHM.  The 

XP generator uses a four stage current amplification process to create the desired pulse 

shape.  The energy delivered to the load is initially stored in a Marx generator 

followed by an intermediate storage capacitor and pulse forming line for pulse shaping 

and finally a water-vacuum interface to deliver the current to the load. 

The Marx generator consists of ten 1.8 µF capacitors typically charged to 42 

kV each for a total of about 16 kJ.  In general, a Marx generator is designed to produce 

a high voltage pulse by charging a number of capacitors in parallel and discharging 

them in series.  This is accomplished by first charging the capacitors with a network of 

resistors intended to give a relatively long charging time constant (typically seconds).  

Once the capacitors reach the desired voltage a series of spark gap switches 
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connecting the capacitors are triggered.  Once closed, the spark gaps give the system a 

discharge time constant much shorter than the charging time constant.  This allows the 

capacitors to discharge in series with a total voltage that is equal to the sum of the 

voltages on all of the capacitors.  The output pulse of the Marx generator is further 

processed to achieve the fast rise time desired. 

The next stage is the intermediate storage capacitor, which consists of four 

coaxial cylinders with a total capacitance of 80 nF.  The intermediate storage capacitor 

is connected to the pulse forming line by an SF6 filled self-breaking spark gap switch.  

The pulse forming line is three water filled coaxial cylinders with a total capacitance 

of 34 nF.  This section is connected to the load region through 8 parallel water gaps.  

Characteristic voltage traces for the intermediate storage capacitor and pulse forming 

line are shown in Fig. 3.1a.  The peak current delivered to the load is 450-600 kA 

(depending on the impedance of the load) with about 100 ns FWHM (Fig. 3.1b). 

 

3.C  Shearing air wedge interferometer 

The laser images presented here were obtained using a frequency-doubled 

Nd:YAG laser produced by EKSPLA (model SL312).  This laser system uses an SBS 

(stimulated Brillouin scattering) cell to compress the natural pulse width (~5 ns) of the 

solid state laser to 150 ps.  This short pulse length is important for studying X pinch 

plasmas since much of the interesting physics happens on a sub-nanosecond time 

scale.  The maximum energy output of the laser at λ = 532 nm is about 120 mJ.  

However, the laser was operated at about 80 mJ output for most experiments, with 

only about 4 mJ per each of the three beam lines getting to the load to form an image.  

It is important that the time-integrated intensity of the laser be greater than the total 

time-integrated radiated intensity from the X pinch in the λ = 532 ± 5 nm band, 

because images were recorded by CCD cameras that were not time-gated. 
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Figure 3.1:  Examples of (a) typical voltage traces from the intermediate storage 
capacitor (ISC) and pulse forming line (PFL) along with (b) a typical current trace 
(taken from shot 4730) showing half of the total current to be about 280 kA at peak, 
100 ns FWHM, and 40 ns rise time.  The red trace has the higher frequencies filtered 
out using a fast Fourier transform (FFT). 
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For most shots we were able to obtain laser images at three different times by 

splitting the main beam and using three independent beam paths (see Fig. 3.2).  The 

output from the laser was expanded from 0.5 cm diameter to about 4 cm and then split 

into 3 beams using a glass wedge.  The beam intensity of each of the reflected paths 

(from the front and back surface of the glass wedge) was about 5% of the original 

beam (~4 mJ).  The transmitted beam passed through a neutral density filter to bring it 

down to approximately the same intensity as the other two.  After splitting, the path 

length of each beam was set in order to control the relative timing of the beams with 

respect to each other.  Each of the three beams passed through the experiment at a 

slightly different angle (about 1° between beams) so that they could be independently 

manipulated after the experiment.  Finally, each beam was split again to form both 

shadow and interference images side-by-side on film using an air wedge shearing 

interferometer [Pikuz et al. 2001]. 

The shearing interferometer is a simple, inexpensive configuration for studying 

electron densities in the X pinch plasma.  The shearing interferometer has been around 

for some time [Schirmann et al. 1970], but was first implemented using the reflection 

of two glass-air interfaces by Sarkisov in 1996.  In our experiments, we are using a 

modified version of the air wedge interferometer using two right angle prisms 

proposed by Pikuz et al. in 2001.  A shearing interferometer is designed to take an 

incoming beam and split it in such a way as to interfere with itself.  The splitting of the 

incoming beam is accomplished by reflecting the beam off two partially reflective 

surfaces formed by two glass-air interfaces (see Fig. 3.3a).  These interfaces (the 

hypotenuses of the right angle prisms) are tilted with respect to each other in order to 

steer the beams.  The angle of the resulting “air wedge” is determined by the 

experimental geometry, but is set as to achieve the proper overlap of the reference and 

object parts of the original beam (see Fig. 3.3b).  
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Figure 3.2:  Illustration of optical paths of the laser interferometer.  The beam is split 
and the three independent optical paths are manipulated to control the relative timing 
of the beams (set to about 10 ns between beams).  Each beam passes through the 
experiment at slightly different angles so that they can be independently manipulated.  
Each beam is split by the air wedge in such a way that it can interfere with itself. 

 

In order to obtain high contrast interference fringes, it is important to have nearly 

equal intensities for the two beams forming the interference image.  For the glass-air-

glass interfaces found in the air wedge this can be achieved at two angular regions of 

reflection (see Fig. 3.4).  The first angular region is near normal, which has low 

reflectivity (< 5%) for each beam.  This low reflectivity would require imaging beam 

to have a very high intensity.  The other angular region is near 40 degrees and has a 

higher reflectivity (about 20%), but is much more sensitive to deviation.  The air-

wedge using right angle prisms is designed to use the later angular region for 

maximum reflectivity. 
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Figure 3.3:  Illustration of the air-wedge interferometer.  (a) Two reflecting surfaces 
are formed by the hypotenuse of two right angle prisms.  A slight angle is formed 
between the two beams in order it steer the beams.  (b) The incoming laser beam is 
focused near the air gap and the two reflecting surfaces give two virtual point sources 
that are overlapped in such a way to form an interference image.  For this type of 
interferometer it is important to have part of the beam pass through an unperturbed 
region of space at the object. 
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Figure 3.4:  Reflectivity of the two air-wedge surfaces.  In order to achieve high 
contrast interference fringes the intensity of the two beams must be nearly equal.  This 
is true for the air wedge near normal (0 degree) incidence.  However, at about 40 
degree angle of incidence the intensity of the two beams is not only matched, but is 
also near 20% reflectivity (almost a factor of 5 greater than normal incidence). 

 

The interference images obtained give us information about the line integrated 

density of the electrons (∫nedl).  This is found from the phase shift (∆Φ) of the fringes 

from their unperturbed position.  The relation is found by  

 

(3.1) 

where ε0 is the permittivity of free space, me is electron mass, λ is the wavelength of 

the laser light (532 nm), and e is the electron’s charge [Hutchinson 2002].  The 

smallest detectible phase shift is about one-tenth of a fringe or ∆Φ = 0.1 × 2π.  The 
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means the lowest detectible line integrated election density is about ∫nedl  = 4.2 × 1016 

cm-2. 

 The upper bound on detectable electron density is found because the laser 

frequency (ω) must be above the ωpe plasma frequency (ωpe). 

 

(3.2) 

This means the laser beam is completely reflected at 

 

(3.3) 

where nc is called the critical density.  However, in reality we cannot probe densities 

this high.  Refraction of the incident laser beam due to the shape and density 

distribution of the plasma cause the maximum detectable density to be much lower.  It 

can be shown that for a cylindrically shaped plasma with a parabolic density 

distribution that the angular deviation (θ) of the beam is [Hutchinson 2002] 

 

(3.4) 

where n0 is the electron density on axis for the parabolic distribution.  Using n0 as an 

upper bound on the detectable densities and an acceptance angle of about 2 degrees 

(from the optical geometry), we find that we are able to measure electron densities 

 

(3.5) 

This quantity will be used as an upper bound for the density edge seen in the shadow 

images. 

 The resolution of the imaging system is limited in part by the resolution of the 

digital camera used to capture the images.  Each pixel equates to about 10 µm at the 
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object.  However, the diffraction limited resolution of the system is estimated to be at 

least 10 µm, so we use 10 µm as the lower limit on resolution. 

 

3.D  X-ray streak camera 

 The x-ray streak camera is a device that allows temporally resolved 

information on x-ray emission.  The streak camera produces an image that has time 

along one axis and spatial information (that can be truly a spatial image or a spectral 

image) along the other axis.  The entrance slit defines the spatial direction.  For our 

experiment the streak camera was coupled to a spectrograph to produce time 

dependent spectra of X-pinch radiation. 

The first stage of the x-ray streak camera converts x-rays into electrons when 

incident radiation strikes the photocathode, which converts the x-rays into electrons 

via the photoelectric effect.  The electrons are then accelerated by an anode mesh 

toward the end plane of the streak camera (see Fig. 3.5).  On the way, they are 

deflected by voltage on a pair of plates which can be set to apply a nearly linearly-

varying time-dependent voltage.  This voltage changes the position of the arrival 

location of the photoelectrons on a phosphor screen.  The phosphor screen exposes 

film or similar detector (after passing through an image intensifier to increase the 

intensity). The result of these processes is a focused image that is streaked across the 

film nearly linearly with time.  Therefore, the position of the image on the film varies 

with time, as illustrated in Fig. 3.5. 

By coupling the streak camera to a spherically bent mica crystal spectrograph, 

we are able to obtain time-dependent spectra by dispersing the spectrum in the long 

direction of the entrance slit.  The spectrograph records wavelength perpendicular to 

the time-axis of the streak camera.  Each bright region in “streaked” spectra on the 
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film represents a separate x-ray burst that occurs at a different time within the X pinch, 

as seen in the example in Fig. 3.6. 

A spherically bent crystal spectrograph acts like a spherical mirror for x-rays.  

However, the x-ray reflection occurs off of multiple crystal planes.  The reflected x-

rays from these crystal planes constructively interfere if the Bragg condition is 

satisfied, 

 

λθ md =sin2     (3.6) 

where d is the distance between crystal planes, θ is the angle between the incoming 

incident x-rays and the crystal planes, m is an integer, and λ is the wavelength of the 

incident radiation. 
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Figure 3.5:  Illustration of the x-ray streak camera.  Incoming x-rays are converted to 
electrons at the photocathode and are accelerated by the anode mesh.  The path of the 
electrons that are then bent by the linearly varying voltage applied to the sweep plates.  
A bias voltage is used to control the start position of the streak.  The electrons are 
incident on a phosphor screen that converts the electrons to optical light to expose 
film. 
 
 

 
Figure 3.6:  Example of a time dependent spectrum of a Mo 4-wire 22 µm X pinch 
taken with an x-ray streak camera coupled to a spherically bent mica spectrograph. 
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CHAPTER 4 

 

THEORIES RELEVANT TO MICROPINCH FORMATION 

The formation of micropinches or bright spots in a single wire z-pinch and X 

pinch is due to a struggle of pressure balance between the thermal pressure from the 

expanding plasma column, and the j × B force of the magnetic field induced by the 

applied current.  Consider a uniform column of plasma of radius r as shown in Fig. 

4.1.  The pressure outside of the column is due to the induced magnetic field: 

22

2
00

0

2

82 r

IB
pmagnetic

π

µ

µ
==      (4.1) 

 

where B is the magnetic field, µ0 is the permeability of free space, and I0  is the current 

through the wire.  The magnetic pressure is being acted against by the pressure inside 

the column due to the thermal or kinetic pressure that occurs as the plasma continues 

to be heated by the applied current: 

iBieBekinetic TknTknp +=     (4.2) 

 

where ne is the electron density in the plasma, ni  is the ion density, kB is the 

Boltzmann constant, and Te and Ti  are the electron and ion temperatures respectively. 

The column of plasma is also susceptible to the m = 0 (azimuthally symmetric) 

sausage instability [Book et al. 1976], resulting in non-uniformities along the wire.  In 

addition to the thermal and magnetic field pressures, there is also radiation escaping 

from the plasma, or radiative loss, which, in turn, cools the plasma column, thus 
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Figure 4.1:  A drawing of the plasma column with applied current along in the z-
direction (vertical axis).  The current induces an azimuthal magnetic field that creates 
a force perpendicular to the direction of current flow. The thermal or kinetic pressure 
of the expanding plasma column acts against this force, creating a struggle for 
pressure balance. 
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lowering the thermal pressure.  The result of the combination of the sausage instability 

and radiative loss is the collapse of the plasma column due to the magnetic field 

pressure exceeding that of the thermal pressure in specific (but unpredictable) points 

along the plasma column.  These processes are further discussed below. 

 

4.A The Bennett pinch relation 

The Bennett Pinch relation describes the approximate current needed for the 

uniform plasma column to be in equilibrium. The derivation begins with the 

equilibrium condition of a neutral column of plasma, i.e., ne = Zni.  From equations 

4.1 and 4.2 we get 

∫ =
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r

magnetic
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drrp

π
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∫ =
volume

ieBkinetic TNkdvp ,  

 

where N is the total number of charge carriers and Te,i are the electron and ion 

temperatures respectively, assuming that they are equal. This results in the Bennett 

equilibrium current for a stable plasma column: 
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So, in order to compress the uniform plasma column, the Bennett current, I0, must be 

exceeded. 
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For n-wire X pinches, if the total current is I, then the current through each 

wire is I/n.  Furthermore, if I0 is Bennett current at the cross point, then from equation 

4.4 the Bennett current in each individual wire is I0-wire = I0 / n
½ (assuming uniform 

plasma density).  At the time that the Bennett current, I0, is reached at the cross point 

the current in each of the wires will be I0 / n.  Since I0 / n
½ > I0 / n for n > 1, the 

Bennett current will always be exceeded at the cross point before the rest of the X 

pinch.  This is how the X-pinch results in a localized region of soft x-ray emission 

near the cross point. 

 

4.B Sausage instability 

As discussed in Chapter 2, instabilities in the plasma column or mini z-pinch 

of the X pinch are at least partially responsible for the formation of micropinches and 

the emission of x-ray bursts.  Specifically, it is the m = 0 or sausage instability that we 

have observed in radiographs of both single wire z-pinch and X-pinch experiments. 

An example of this is shown in Fig. 4.2. The basic idea behind the sausage instability 

is that a current-carrying cylindrical plasma in equilibrium should exhibit an 

instability.  This is caused by the onset of any perturbation on the plasma column that 

disrupts the pressure balance on the plasma column.  Consider a uniform column of 

plasma with radius r0, and current, I0, flowing in the axial direction. The balance of 

magnetic field pressure to the kinetic pressure of the column at the boundary radius is 
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and in cylindrical coordinates: 
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Figure 4.2:  The m = 0 (sausage) instability causes the smaller diameter regions of a 
plasma column to be compressed faster that the surrounding regions.  This process 
helps the X pinch achieve the small, dense plasma neck that forms near the cross point 
of the wires. 

The pinch is self-sustaining as the plasma in 
the constricted regions experience higher 
magnetic pressure. 

Plasma 
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Assuming that mene << mini we get 
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If the assumption that any variation or perturbation along the wire is of the 

form ei(kz- ωt)  (azimuthally symmetric) and has a wavelength λ = 2π/k such that r(z, t) = 

re
i(kz- ωt), the term on the right can be expressed as: 
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and so from equation 4.7, it follows that: 
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where ρ is the mass density of the expanded column of plasma.  Expressing this in 

terms of the solid density (ρ0) of the wire (if the wire were to expand uniformly), times 
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the square of the ratio of the plasma and wire radii (r and r0 respectively) times the 

fraction of material that participates (A): 

A
r

r
2

2
0

0ρρ = .        (4.10) 

Rewriting equation 4.9 we have 

0

0
2

1

0
2

0

8 r

I

A
r

ωρπ

µ








= .        (4.11) 

 

Given that everything on the right side of the equation is not a function of z except ω, 

we see that where r is minimum (due to the eikz perturbation) the rate of change of the 

plasma column (ω) is maximum.  This causes the small diameter regions of the plasma 

to decrease in diameter faster that the surrounding regions.  This self sustaining 

process is key to creating the dense neck in the X pinch.  This approximation breaks 

down of course when the density becomes high enough that the plasma is opaque to 

the escaping radiation cooling the plasma. 

 

4.C Radiative Collapse 

Along with the pressure balance in the plasma column, there is an additional 

balance that occurs between the radiation power loss and the rate of ohmic heating. 

The ohmic heating rate per unit length of the plasma column is 
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where j is the current density in the plasma and σ is the conductivity of the plasma.  

For simplicity if we assume constant current density and Spitzer conductivity, 
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where σ0 is a collection of constant terms equal to 1.03 × 10-4 in mks units.  Zeff is the 

effective ion charge and ln Λ is the Coulomb logarithm, which is a very slowly 

varying function of the plasma parameters and for most laboratory plasmas assumes 

values between 7 and 20 [Roth 1986].  If we also assume that most of the radiation 

losses from the plasma are due to bremsstrahlung (Qb), the radiated power per unit 

length is given by 
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where 

2/12
TnSZQ eeffb = . 

 

Again S is a collection of constant terms equal to 1.69 × 10-4 in mks units.  If the 

plasma is optically thin to the bremsstrahlung radiation, then the power balance is 
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given by PΩ = Pb.  Using equation 4.4 to get rid of the temperature and density 

dependence this balance yields the Pease-Braginskii current (IPB) for a fully 

ionized plasma 

.4.1)(ln433.0 2/1
MAI PB ≈Λ=      (4.17) 

 

For a more rigorous derivation see Robson 1989.  Above the Pease-Braginskii current 

the radiation losses exceed the ohmic heating and the outward thermal pressure is 

overwhelmed by the magnetic field.  This is not the exact condition in X-pinch 

plasmas, but it shows that we are in a current regime that has a substantial amount of 

radiation loss.  This helps contribute to the pinching of the plasma neck of the X 

pinch.  Further investigation reveals that this current is considerably modified in the 

presence of highly-charged ions, so the above result would be for a hydrogen plasma.  

The modified Pease-Braginskii current for high Z plasmas would be far less, but takes 

on a complicated form [Negus et al. 1978].   
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CHAPTER 5 

 

RADIATION STRUCTURE OF THE X PINCH  

The X pinch has several radiation characteristics that make it a useful 

diagnostic tool and interesting high energy density plasma.  We have reported that the 

X pinch emits an intense burst of x-rays from a micropinch that last less than a 

nanosecond, often followed by energetic electron radiation.  The experiments outlined 

in this chapter were designed to test the core hypotheses that: 

1. Micropinch radiation lasts for less than 1 ns and starts from a rapid 

temperature rise of the plasma. 

2. Energetic electron radiation starts after the micropinch (once lower density 

gaps begin to form) and progresses from the center to the anode. 

Experiments in the past suggest that micropinch radiation is sub-nanosecond, but the 

duration of micropinch radiation was beyond the resolution of the diagnostics used 

[Sinars et al. 2003].  We now, with the use of a high speed x-ray streak camera, will 

show the temporal structure of micropinch radiation.  In addition, we usually assert 

that energetic electron radiation is starts as gaps begin to form in the plasma neck after 

the micropinch.  Although energetic electron radiation has been studied using 

collimated diagnostics to look at the temporal radiation structure of specific region of 

the X pinch [Kantsyrev et al. 2004], this hypothesis has not been tested until now with 

a diagnostic that possesses both temporal and spatial resolution and has the ability to 

compare different spatial regions from a single shot. 

We present results from experiments designed to study the time-dependent 

radiation structure of the X pinch using higher temporal resolution than obtained in the 

past using an x-ray streak camera and an array of filtered silicon diodes.  Better 

temporal resolution should give us a better understanding of what is happening in the 
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X pinch.  We start with time-integrated measurements to obtain information about 

spatial structure. 

 

5.A  Spatially resolved, time integrated measurement of X pinch radiation 

 Pinhole cameras and slit step-wedge (SSW) cameras (Fig. 5.1) give us spatially 

resolved, time integrated information about the radiation from the X pinch.  They 

show intense radiation from the small micropinch source in addition to the large 

source from energetic electron radiation (Fig. 5.2).  Figure 5.2 is provided simply to 

give a visual reference of the relative size and location of the different x-ray sources in 

the X pinch.  The pinhole images directly show a small central spot from the 

micropinch.  They also show the large energetic electron source extending toward the 

anode.  The SSW camera gives us spatial resolution in one dimension, by the use of a 

slit, taking advantage of the fact that the central part of the X pinch has very little 

radial extent.  The slit is oriented perpendicular to the z-axis to give us spatial 

resolution along the z-direction.  The various filter thickness in the SSW give us an 

idea the photon energies radiated from different locations along the z-axis.  As with a 

pinhole camera, the SSW camera shows a narrow intense spot from the micropinch in 

the center with more diffuse radiation from energetic electrons. 

 

5.B  Time resolved measurements using an x-ray streak camera 

As described in chapter 3 an x-ray streak camera is a device that allows us to 

obtain temporal information about radiation from the X pinch.  For these experiments 

the streak camera was coupled to a spherically bent mica crystal spectrograph.  By 

coupling a spectrograph to the streak camera we are able to obtain spectral information 

as a function of time.  Studies of X pinch radiation using x-ray streak cameras have 
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Figure 5.1:  Illustration of the slit step-wedge (SSW) camera.  This camera gives 
spatial resolution along the z-axis.  The various filter thickness gives information 
about the photon energy from locations along the z-axis. 
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Figure 5.2:  Typical images produce by the pinhole and SSW cameras.  These images 
illustrate the relative size and location of different radiation sources in the X pinch.  
Both the pinhole and SSW images show and intense small spot of radiation in the 
center from the micropinch and a larger radiation source from energetic electrons 
extending toward the anode. 

 

 

Micropinch 
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 been reported by several authors [Chandler 2005, Pikuz et al. 2002, and Sinars et al. 

2003].  However, very little information exists using the faster sweep speeds (< 1 ns 

window) of the streak camera to give the best possible temporal resolution.  Streaked 

images of X pinch radiation at fast streak speed have proven difficult to collect 

because of the complication of accurately timing the streak window to the x-ray burst 

of an X pinch.  The X pinch inherently has a few nanosecond jitter in the timing of the 

initial x-ray burst.  In addition, most pulsed power devices have several nanoseconds 

of jitter for switching out the final pulse forming sections (~ 5 ns jitter for the XP 

pulser).  The combination of these jitters in addition to the trigger jitter of the streak 

camera due to noise makes capturing a sub-nanosecond radiation burst in a < 1 ns 

window very difficult.  However, the use of a low trigger delay x-ray streak camera 

recently developed by Kentech has enabled us to capture X-pinch radiation at high 

speed by allowing us to trigger from UV radiation produced by the X pinch early in 

the radiation pulse.  Triggering from the UV radiation by use of an x-ray diode (XRD) 

eliminates the jitter of the pulsed power device. 

 We present in Fig. 5.3 a streaked image of the radiation produced by a Mo 4-

wire 22 µm X pinch obtained with a 40 ns time window, in order to show the long 

time scale radiation characteristics of the Mo X pinch.  The image shows the intense 

continuum radiation from the micropinch followed immediately by (or possibly 

simultaneous with) Ne-like Mo line radiation from the expanding neck.  Spectral 

analysis of time dependent x-ray emission of an X pinch by Hansen et al. in 2004, 

suggests that the line radiation comes from an expanding region that is larger than the 

source of continuum radiation.  The expanded images in Fig. 5.4 show that at this 

streak speed the continuum radiation from the micropinches appears to be on the order 

of 1 ns.  The line radiation, however, seems to last much longer (about 10 ns).  The 

subsequent bursts of continuum emission in Fig. 5.4 are from additional 



 

51 

 

 
 
Figure 5.3:  Time dependent image of Mo 4-wire 22 µm X pinch taken with an x-ray 
streak camera coupled to a spherically bent mica spectrograph.  The 1 mm/ns sweep 
rate (40 ns streak window) shows the long time scale radiation structure.
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a. 

  
b.                 

    
 
Figure 5.4:  Expansion of the image in Fig 5.3 shows the (a) ~1 ns continuum 
radiation from the micropinch and (b) the longer time scale line radiation.  There are 
multiple short (~1 ns) x-ray bursts from multiple micropinches, but the line radiation 
does not appear turn on and off so quickly.  

4.4  4.6   4.8   5.0   5.2 

Wavelength (Å)  Pulse 4505 2 ns 

4.4   4.6     4.8      5.0      5.2 
Wavelength (Å)  Pulse 4505 

10 ns 



 

53 

micropinches that form in neighboring regions of space or result from energetic 

electron radiation.  

 Now if we turn our attention to Fig. 5.5 we see similar radiation characteristics 

but captured in a 1 ns time window.  In Fig. 5.5 we see that the continuum radiation 

lasts just a few tens of picoseconds.  The limiting factor in the resolution is the width 

of the focus of the x-rays on the photocathode by the spherically bent crystal (about 

300 ± 100 µm), which translates to about 8 ps at speed 6 (1 ns window in Fig. 5.5-6) 

and about 300 ps at speed 3 (40 ns window in Fig. 5.3-4).  The first radiation burst 

seen in Fig. 5.5a was not captured in the linear part of the sweep (see chapter 3 for 

more details).  However, the second burst, shown expanded in Fig. 5.5b indicates that 

the continuum radiation lasted for about 30 ps.  We also see some line radiation, which 

lasts only a few picoseconds longer than the continuum.  Figure 5.6 shows the longer 

time scale line radiation that occurs after the continuum (on a different pulse), 

demonstrating that the line radiation is turning on and off (about 500 ps duration in the 

Fig. 5.6).  This pulsing of the line radiation is likely due to weak pinching of the 

plasma that does not produce bright continuum. 

 We see from these results that the duration of the micropinch radiation is still 

comparable to the resolution of the streak camera especially for the x-ray burst shown 

in Fig. 5.5b that only lasted for 30 ps.  This short time scale along with the bright 

continuum makes analysis of the temperature over the extent of the x-ray burst 

difficult.  However, we can use the 500 ps x-ray burst from Fig. 5.6 to look at the 

temperature profile for the burst.  Even though this is not one of the initial intense x-

ray bursts, it can still reveal information about the radiation mechanism of a 

micropinch.  Figure 5.7 shows temperature at four different times in the x-ray burst 

found using the Gabreal model developed by Chandler in 2005.  We see that the 

temperature does appear to increase in the early part of the x-ray burst.  This supports  
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Figure 5.5:  Time dependent image from a Mo 4-wire 22 µm X pinch (a) obtained 
with a 40 mm/ns sweep rate (1 ns streak window) shows that in fact the continuum 
radiation from the micropinch lasts much less than 1 ns.  The expanded image (b) 
shows the radiation lasts for about 30 ps. 
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Figure 5.6:  Time dependent image of Mo 4-wire 22 µm X pinch obtained with a 40 
mm/ns sweep rate (1 ns streak window) shows that the line radiation is turning on and 
off (probably from weak pinching that does not produce bright continuum).  However, 
the duration is longer than the more intense x-ray burst seen in Fig. 5.5 (about 500 ps 
in the image above). 
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Figure 5.7:  Temperature was found using the Gabreal model at four different times 
during the x-ray burst shown in Fig. 5.6.  We see that the temperature increases in the 
early stages of the x-ray burst suggesting that the x-ray burst is initiated by an increase 
in the plasma temperature.  
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the hypothesis that micropinch radiation starts from the increase of plasma 

temperature as the opacity increases.  The increased opacity is of course from the 

increased density from the pinch process.  Despite the fact that the x-ray burst in Fig. 

5.7 is from a weak pinch after the main x-ray burst, it is likely that the radiation from 

the initial micropinch works in a similar manner.  The initial x-ray burst would of 

course be more intense since the total ion number is greater, since nearly all of the 

particles in the neck would be participating in the initial burst but not necessarily 

subsequent ones. 

 Now let us look at the relationship of the continuum and line radiation in more 

detail.  For this we choose the Mo 4-wire 22 µm X pinch from pulse 4520 seen in Fig. 

5.8a because it was the fastest swept image we obtained that shows all of the 

continuum and line radiation.  The temporal resolution for this shot, which used an 8 

ns streak window, was about 60 ps.  The graphs in Fig. 5.8a show the intensity profile 

at discrete times.  We see that during the first ~200 ps there appear to be 2 bursts and 

the continuum radiation is falling off only slightly (reflected by the average intensity 

in the graphs).  At the same time the line radiation (identified by the letters A-G) is 

increasing in intensity slightly.  Over the course of the next 500 ps the continuum 

radiation drops off dramatically while the line radiation continues to increase.  The 

intensity of each one of these lines along with the continuum is plotted as a function of 

time in Fig. 5.8b.  The plots show that the rising edge of the initial burst is dominated 

by continuum radiation.  By the time the continuum reaches the first peak line 

radiation begins to emerge.  The ratio of the line radiation to the continuum continues 

to grow as time progresses.  In Fig. 5.9 the intensity profile is plotted again in 3-D as a 

function of time and wavelength to help visualize the radiation structure. 
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Figure 5.8:  Radiation from a Mo 4-wire 22 µm X pinch in an 8 ns streak window (a) 
shows the relationship of continuum and Mo Ne-like line radiation.  (b) The relative 
intensity of each line is plotted as a function of time compared to the continuum.  The 
graphs show that continuum radiation dominates at early times but give way to the line 
radiation at later times. 
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Figure 5.9:  Plot of intensity as a function of time and wavelength from the streaked 
image shown in Fig. 5.8 to help visualize the radiation sturcture.  The designations A-
G in the figure denote Ne-like Mo resonance lines.   
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The radiation structures seen in figures 5.3-9 give us information about the 

dynamics of the micropinch.  It is likely that the initial continuum radiation is a 

combination of both thermal and energetic electron bremsstralung radiation.  As the 

plasma neck is being compressed the plasma is being radiatively cooled because it is 

optically thin in MHD computer simulations [Chittenden et al. 2007].  However, as 

the density in the neck continues to rise as the plasma becomes optically thick to the 

lower energy portion of the radiation, and the temperature begins to rise dramatically.  

In a short period of time the plasma column becomes hot and dense enough to rapidly 

ionize to the Ne-like state (32 times ionized for Mo).  This triggers bremsstrahlung, 

line radiation and free-bound continuum, as well as black body continuum where the 

plasma column is optically thick.  The dramatic increase in temperature also causes 

the neck to expand explosively as the kinetic pressure overwhelms the magnetic 

pressure.  As the neck expands the continuum radiation begins to fall off since its 

intensity is highly dependent on both temperature and density.  The intensity of the 

continuum radiation at this point is most likely dominated by bremsstralung radiation 

from the bulk plasma.  The fact that the line radiation continues to increase as the 

continuum decreases suggests the plasma maintains (or possibly increases) its high 

temperature as the column is expanding as a result of ohmic heating and dissipation of 

stored magnetic energy. 

The micropinch radiation is commonly followed by energetic electron radiation as low 

density gaps form in the exploding plasma neck.  This energetic electron radiation is 

also primarily from bremsstralung radiation as the electrons accelerated by the electric 

field through the low density neck collide with the more dense regions.  The energetic 

electron radiation usually contains higher energy photons than the micropinch 

radiation since the electrons gain more kinetic energy as they are accelerated though 

the low density regions [Shelkovenko et al. 2005]. 
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5.C  Spatially and temporally resolved study of energetic electron radiation 

 In order to study energetic electron radiation in more detail we devised an 

experiment using an array of filtered silicon diodes (SiD).  Each SiD was filtered using 

60 µm of Al and 50 µm of mylar (see transmission curves in Fig. 5.10) and collimated 

to look at a 0.4 mm section of a Mo 4-wire 22 µm X pinch along the z-axis (Fig. 5.11).  

Diamond photoconducting detectors (PCD) were also used to see the softer radiation 

emitted by the micropinch.  We see from the plots of relative intensity in Fig. 5.11a 

that one or two bursts of soft (1 keV < E < 5 keV) radiation were emitted by 

micropinches.  This soft radiation is followed almost immediately by “short lived” 

energetic electron radiation in the central section of the pinch.  This short lived 

radiation is a result of small gaps that open immediately after the micropinch radiates 

[Shelkovenko et al. 2005].  These smaller gaps quickly (within 5 ns) give way to 

larger gaps killing this radiation.  Once larger gaps develop, higher energy “long 

lived” energetic electron radiation emerges first in the central region and then 

propagates toward the anode.  Figure 5.11b is provided to give an easier comparison 

of the relative timing of each signal.  We found that this long lived radiation was most 

intense in the region neighboring the center.   

We see for the first time that energetic electron radiation starts after the softer 

micropinch radiation but only in the central region.  This supports the hypothesis that 

the “short lived” energetic electron radiation is from small gaps that form in the neck 

region as it explodes after the micropinch.  We also see that the “long lived” energetic 

electron radiation starts in the central region and propagates toward the anode 

supporting the hypothesis that this radiation starts once larger gaps form and continue 

to expand. 

The small peak at the end (at 120 ns) is a result of energetic electrons that 

passed through a hole in the anode and collided with the back of the experiment 
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chamber.  The collimation did not block this post anode region.  We do not know 

when the electrons were generated so we cannot find their average energy.  However, 

the signal does provide a useful check for the comparison of the relative sensitivity 

and timing of the different diodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10:  Plot of the transmission ratios for the filters used with the SiDs.
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Figure 5.11:  (a) Views of the SiDs used to study the energetic electron radiation from 
a Mo 4-wire 22 µm X pinch along with plots of the relative intensity of radiation from 
each region.  (b) The intensity of each detector is plotted on the same graph for easier 
comparison of the relative timing. 
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CHAPTER 6 

 

RESULTS AND DISCUSSION FROM LASER AND X-RAY IMAGING  

The X pinch has been studied as an x-ray source for some time now, but we 

still cannot consistently predict its radiation characteristics.  If we wish to accurately 

predict X-pinch behavior we must better understand the physics governing x-ray 

production.  This is no simple task and no one diagnostic can give us all of the 

information we need to accomplish this task.  Here, we present results from 

experiments designed to take us a few steps closer to understanding the X pinch. 

The experiments in this chapter were designed to test the following 

hypotheses: 

1. Coronal plasma expansion rates and neck compression rates are linked to the 

time of x-ray emission and are dominated by the energy deposited in the 

plasma per unit mass. 

2. The micropinch radiation quickly “shuts off” from the rapid decrease in 

density as the neck explodes after the micropinch. 

In addition, we will attempt to answer the following questions: 

1. Is there plasma surrounding the neck at the time of maximum compression? 

2. Do the plasma jets affect the radiation mechanisms of the X pinch? 

3. Do the axial modulations seen in the coronal plasma of the X pinch match 

those seen in wire-array z-pinch experiments? 

4. What is the relative position of the dense wire core in the surrounding coronal 

plasma? 

In addition to answering these main questions the following experiments were also 

designed to give us a more complete picture of how the plasma evolves during the life 

of the X pinch. 
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6.A  Morphology of the X pinch 

One crucial piece to understanding the X pinch is to know how the plasma 

forms and evolves in time.  To this end, we have assembled a full battery of images 

from current start to beyond x-ray production using a 150 ps pulse width laser.  The 

short pulse width of the laser is important since some of the interesting physics of the 

X pinch happens on a sub-nanosecond time scale.  In addition, this diagnostic gives us 

unique information compared to the X-pinch radiographic images.  The X-pinch 

radiographs show impressive detail [Pikuz et al. 2005], but the time relative to the 

start of the current that we are able to produce an x-ray burst limits the time scale over 

which we can take pictures.  Also, by taking multiple pictures with the laser in each 

shot we are able to see the dynamics of the X pinch without depending upon shot-to-

shot reproducibility.  Since there is inherently some jitter in timing of some of the 

events in the X pinch, finding certain quantities like expansion rates of the coronal 

plasma is much less uncertain if calculated from a single shot. 

 We see by inspecting the laser backlit shadow images (Fig. 6.1) the 

morphology of the X pinch coronal plasma as it progresses through the major stages of 

the pinch sequence.  Figure 6.1 shows a series of laser shadow images taken of a 4-

wire 25 µm Al X pinch as it progresses in time.  These images illustrate the three 

major stages of coronal plasma development:  coronal plasma expansion, m = 0 

compression of the cross region, and the explosion phase after the initial x-ray burst. 

If we compare the images of an Al X pinch in Fig. 6.1 to the images taken of a 

4-wire 20 µm W X pinch (Fig. 6.2) we can immediately see some of the differences in 

plasma evolution.  We see that the plasma from the Al X pinch expands at a greater 

rate.  We can also see the neck region in the W X pinch takes much longer to evolve, 

leading to later x-ray emission.  In addition, we see that even though the plasma jets 

forming on axis are propagating away from the center at approximately the same rate  
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Figure 6.1:  Laser shadow images showing the evolution of a 4-wire 25 µm Al X 
pinch as it progresses in time.
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Figure 6.2:  Laser shadow images showing the evolution of a 4-wire 20 µm W X pinch 
as it progresses in time.  
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for both materials, the jet is far more developed at the time the W X pinch radiates its 

thermal x-ray burst. 

 

6.B  Expansion of the coronal plasma 

We found expansion rates for the coronal plasma surrounding the legs of the X 

pinch using both shadow and interference images obtained with the air wedge 

interferometer.  The shadow and interference images show different expansion rates 

because we see different electron density thresholds.  As discusses in chapter 3, the 

laser light is completely reflected by the plasma for electron volume densities above 4 

× 1021 cm-3.  However, with the interference images we can detect lower densities.  

Given a detection threshold of ∆Φ  = 0.1 × 2π phase shift, we are able to see line 

integrated electron densities greater than 4.2 × 1016 cm-2.  This line density is what we 

will be defining as the plasma edge from the interferograms.  Defining a density 

boundary for the shadow images is a bit more difficult.  Refraction due to the density 

gradients in the plasma plays a role in forming the shadow images in addition to 

absorption.  Therefore, the shadow images are presented for two main reasons.  First, 

they give us an easy way to visualize the shape of the plasma.  Second, it gives us an 

upper bound of the expansion rates for the 1 × 1020 cm-3 electron density boundary 

(see chapter 3). 

The expansion rate of the coronal plasma early in time for a 4-wire 25 µm Al 

X pinch was found to be 36 µm/ns from the inerference images and 32 µm/ns from the 

laser shadow images (see Fig. 6.3).  These numbers are consistent with coronal plasma 

expansion rates for Al found by Kalantar in 1993.  We can look at the coronal plasma 

expansion rate only early in time because it is difficult to measure coronal plasma 

expansion much past 30 ns into the current pulse.  This is due to the fact that once the 

global magnetic field becomes large enough, the ablated plasma begins to move 
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toward the axis, at which time we no longer have the symmetry needed to find the 

diameter of the plasma columns.  This plasma motion will ultimately lead to the build 

up of plasma on axis.  This is what we have called the plasma jet, but is actually more 

analogous to the precursor plasma that builds up on axis in wire array z-pinch 

experiments (more on this in section 6.E).   

We have also found coronal plasma expansion rates for W to be 11 µm/ns from 

the interference images and 10 µm/ns from the shadow images (see Fig. 6.4).  The W 

X pinches used for these experiments were 4-wire 20 µm X pinches.  This lower 

expansion rate compared to Al ultimately leads to a later neck formation and x-ray 

burst. 

The coronal plasma expansion rate for Mo 4-wire 25 µm X pinches was found 

to be 13 µm/ns from the shadow images (Fig. 6.5).  We were not able to find an 

expansion rate for Mo from the interference images because the ablated plasma from 

the wires started moving toward axis very early in time.  Ultimately, as we will see 

later, this more rapid movement of the plasma toward axis will result in a much faster 

propagation of the plasma jet.  It is unclear, however, how this earlier plasma motion 

away from the legs affects the radiation structure of Mo X pinches, if at all. 

The time of x-ray emission seems to be tied to expansion rate.  High expansion 

rate materials like Al radiate earlier than lower expansion rate materials like Mo and 

W.  This will be discussed further in section 6.C. 

 

6.C  Compression of the cross point 

As discussed in earlier chapters, the compression of the cross point region is 

the primary mechanism leading up to x-ray emission.  The neck goes though three 

distinct phases over the course of the current pulse. 
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Interference Image Shadow Image

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 4791
 4792
 4793

 

 

C
or

on
al

 P
la

sm
a 

D
ia

m
et

er
 (

m
m

)

Time from Current Start (ns)

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 4791
 4792
 4793

 

 

C
or

on
al

 P
la

sm
a 

D
ia

m
et

er
 (

m
m

)

Time from Current Start (ns)

slope = 0.036 slope = 0.032

a. b.

 
Figure 6.3:  Plots of coronal plasma expansion rates for a 4-wire 25 µm Al X pinch 
from (a) interferometry and (b) shadography.  The shadow images show an expansion 
rate of 32 µm/ns where the interference images show 36 µm/ns.  Measurements were 
taken about half way between the cross point and the cathode. 
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Figure 6.4:  Plots of coronal plasma expansion rates for a 4-wire 20 µm W X pinch 
from (a) interferometry and (b) shadography.  The shadow images show an average 
expansion rate of 12 µm/ns where the interference images show 14 µm/ns.  
Measurements were taken about half way between the cross point and the cathode. 
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Expansion rate of coronal plasma (Mo) 
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Figure 6.5:  Plot of coronal plasma expansion rate for a 4-wire 25 µm Mo X pinch 
from shadography.  The shadow images show an expansion rate of 13 µm/ns.  
Measurements were taken about half way between the cross point and the cathode. 

 

 

The first is expansion of the coronal plasma.  Just like the legs of the X pinch, 

the cross region begins to expand as current flows in the wires.  The expansion is due 

to the increased temperature resulting from ohmic heating.  However, the magnetic 

field produced by the current eventually overwhelms the kinetic pressure and the neck 

enters a compression phase. 

In the compression phase the magnetic field maximum that exists near the 

cross point causes an m = 0 instability to develop.  As the m = 0 instability progresses 

all of the material is not being driven toward the axis.  Some of the material is 

squeezed out of the center along the axis, adding to and/or starting the plasma jets on 

axis [Chittenden et al. 2007].  This transport of material away from the center will 

ultimately aid in producing the micron size plasma column.  A more detailed 
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discussion of neck compression can be found in chapter 4.  Ultimately, at maximum 

compression, a burst of x-rays is emitted followed by the explosion phase of the neck 

region. 

The graphs in Fig. 6.6 and 6.7 show how the diameter of the neck region 

evolves for Al and W X-pinches respectively.  Al 4-wire 25 µm X pinches show 

expansion until about 17 ns, at which time the diameter of the z-pinch at the cross 

point is about 0.4 mm.  Next, the neck continues to compress until x-ray emission at 

about 30 ns.  Resolution and timing prevent us from finding the minimum radius of 

the neck.  The minimum spatial resolution of the laser imaging system is a several tens 

microns (1 pixel = 10 µm in the digital camera).  The time of peak compression is also 

difficult to capture since the final stages of compression last far less than a 

nanosecond. 

We see many of the same features with the W 4-wire 20 µm X pinches, but on 

a longer time scale (Fig. 6.7).  W shows a maximum diameter of between 0.4 and 0.5 

mm at 28 ns.  X-ray emission comes at about 47 ns.  The longer time scale of neck 

development for W and the lower expansion rate for W reported in section 6.B seems 

to be tied to the lower energy deposited in the plasma per unit mass.  We did not 

measure the energy deposited, but much research has been done to study the energy 

deposited for a give current pulse as a function of wire material [Chandler et al. 2002].  

We found that material with the highest energy deposited per unit mass (Al) had the 

highest expansion rates of the coronal plasma and fastest compression time. 

If we closely inspect an interference image of the Al 4-wire 25 µm X pinch 2.3 

ns before x-ray emission (Fig. 6.8) we see that there is no detectable material outside 

of the dense plasma neck.  We see no fringe shifts outside of the 0.1 mm radius neck, 

and the fringes disappear inside of the dense neck.  This sharp boundary implies a very 

high density gradient.  The interferometer is not sensitive to line densities below 4 × 
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1016 cm-2, which translates to about 4 × 1018 cm-3 for the given scale length of 0.1 mm.  

This density is certainly high enough to conduct the majority of the current.  However, 

the sharp density gradient (beyond measure by the interferometer) implies there is 

little material just below the detection threshold. If there is lower density plasma 

surrounding the neck it is probably a couple orders of magnitude or more below the 

detection threshold.  This means that the pinch has swept the majority (possibly all) of 

the surrounding material into the small diameter neck, which in turn implies that the 

majority of the current appears to be flowing through this neck.   

Furthermore, since the interference images show that the plasma in the neck 

region is very dense (electron volume densities above 1 × 1020 cm-3 and the ion 

volume densities within 1 to 2 orders of magnitude depending on the average 

ionization state) we should be able to see all of the material in the neck regions with 

the x-ray radiographs.  The x-ray radiographs show similar sharp density boundaries in 

the neck region as the interferograms.  This again implies that the majority of the mass 

is contained within the small diameter neck.  Fortunately, we were able to capture a 

radiograph of a Mo 2-wire 13 µm X pinch within 0.1 ns of x-ray emission (Fig. 6.9).  

This radiograph shows a minimum neck diameter of 2.5 µm.  Nearly all of the current 

may well be flowing through this very small diameter neck. 
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Figure 6.6:  Plots of neck diameter before x-ray emission for a 4-wire 25 µm Al X 
pinch from (a) interferometry and (b) shadography.  Both graphs show maximum 
diameter around 17 ns.  The data shown is up to the time of maximum compression 
around 30 ns. 
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Figure 6.7:  Plots of neck diameter before x-ray emission for a 4-wire 20 µm W X 
pinch from (a) interferometry and (b) shadography.  Both graphs show maximum 
diameter around 28 ns.  The data shown is up to the time of maximum compression 
around 47 ns. 
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Figure 6.8:  Interference images of the cross point regions show that there is no 
detectable material outside of the small diameter neck.  This sample image is of an Al 
4-wire 25 µm X pinch 2.3 ns before x-ray emission.  There is no fringe shift outside of 
the 0.1 mm diameter neck and the lines disappear inside the dense neck. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.9:  This x-ray radiograph of a Mo 2-wire 13 µm X pinch within 0.1 ns of x-
ray emission shows that the diameter of the neck before x-ray emission can be as small 
as 2.5 µm. 

100 µm 

100 µm 
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6.D  Explosion phase 

Immediately after the X pinch reaches maximum compression and the 

micropinch radiation is emitted the neck region of the X pinch explodes.  The plasma 

in the neck region rapidly expands quickly decreasing the density of the plasma.  We 

believe this rapid expansion is tied to the same mechanism that triggers the micropinch 

radiation.  As stated in the chapters 4 and 5 we believe that the temperature of the 

plasma in the neck rises rapidly once the density become sufficiently high to limit 

radiative cooling.  The resulting dense, hot plasma is believed to be the source of the 

micropinch radiation.  If the plasma temperature does indeed rise sharply it could now 

be hot enough that the kinetic pressure overwhelms the magnetic pressure, stopping 

the neck implosion and causing it to explode instead.  Is the drop in density from the 

exploding neck sufficiently fast to explain how the micropinch radiation “turns off” so 

quickly? 

We calculated the expansion rates of the neck region for Al and W (Fig. 6.10 

and 6.11 respectively) by tracking the diameter of the neck after x-ray emission.  For 

each material we did not have many shots that we could use to calculate expansion 

rate.  For each individual shot the expansion rate appeared to be very linear, but there 

was enough shot-to-shot variation in the diameter of the neck at a given time that we 

only used shots with all three laser images after the x-ray burst to find expansion rates.  

We saw that the expansion rate for the Al 4-wire 25 µm X pinch in Fig. 6.10 was 

about 300 µm/ns (slightly more from the interference image and slight less from the 

shadow image).  The expansion rate for the W 4-wire 20 µm X pinch in Fig. 6.11 was 

found to be about 90 µm/ns.  

Since the expansion rates were nearly linear, let us assume for now that the 

necks expand at the same rate immediately after the x-ray burst.  The minimum 

diameter for Al in Fig. 6.6 was about 100 µm (2.3 ns before x-ray emission).  If we 



 

77 

Neck Expansion (Al) 

Interference Image Shadow Image

35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

9

10

11

12
 4795

 

N
ec

k 
D

ia
m

et
er

 (
m

m
)

Time from Current Start (ns)

35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

9

10

11

12
 4795

 

N
ec

k 
D

ia
m

et
er

 (
m

m
)

Time from Current Start (ns)

slope = 0.348 slope = 0.264

a. b.

 
Figure 6.10:  Shortly after the neck region of the X pinch reaches maximum 
compression it begins to rapidly expand or explode.  We see from both (a) the 
interference images and (b) the shadow images that for W the neck expands at about 
300 µm/ns. 
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Figure 6.11:  The (a) interference images and (b) shadow images for W show that the 
neck expands about 90 µm/ns after maximum compression. 
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use this diameter as an upper bound of the diameter of neck at the time of x-ray 

emission and the expansion rate of 300 µm/ns than the density in the neck would drop 

by at least a factor of 1/16 in the first nanosecond after the x-ray burst.  Since the 

intensity of the radiation is proportional to the density squared [Hansen 2003] the 

intensity would decrease by a factor of 1/256 in the first nanosecond.  But, as we saw 

in Fig. 6.9 the diameter of the neck can be as small as a few microns.  If we were to 

use a neck diameter of about 10 µm then the intensity of the radiation would drop two 

more orders of magnitude in the first nanosecond.  We can see from these calculations 

that the density drop from the expanding neck is more than sufficient to “turn off” the 

micropinch radiation in less than a nanosecond. 

The 90 µm/ns expansion rate for W of course means that the x-ray intensity 

would not decrease as rapidly, but it is still sufficient to kill the radiation on a similar 

time scale, assuming an initial radius at x-ray-burst-time of a few ns. 

It is during the explosion phase that we begin to see energetic electron 

radiation from the cross point region.  Previous work suggests that the energetic 

electron beam radiation starts when small gaps begin to form in the neck region after 

the micropinch [Shelkovenko et al. 2005].  Radiographs show gaps forming in the 

neck almost immediately after the x-ray burst (Fig. 6.12).  However, we now see from 

the laser images (sensitive to lower densities) that plasma remains in the central region 

until much later in time (figures 6.1 and 6.2).  This means that the gaps that create the 

energetic electron radiation are actually lower density regions that increase the mean 

free path of the electrons.   

Figure 6.13 is presented to give a better comparison of the gaps observed using 

x-ray radiography and laser backlighting.  Both images are of an Al 4-wire 25 µm X 

pinch (from different shots).  The radiograph in Fig. 6.13 shows that a 0.5 mm gap has 

formed 11.0 ns after the x-ray pulse while the laser shadow image shows the a gap just 



 

79 

 

t = -0.6 ns t = 0.2 ns t = 0.6 ns t = 1.7 ns

1mm

t = -0.6 ns t = 0.2 ns t = 0.6 ns t = 1.7 ns

1mm

 
 
Figure 6.12:  Radiograph of the X pinch show that gaps begin to form in the neck 
region almost immediately after the first x-ray burst. 
 
 
 
 

 
 
Figure 6.13:  Comparison of an x-ray radiograph and laser shadow image of an Al 4-
wire 25 µm X pinch at similar times.  The radiograph shows about a 0.5 mm gap 11.0 
ns after the x-ray burst while the laser shadow image is just starting to show a gap 
forming 14.3 ns after the x-ray burst.  In general the laser images show that there is 
material in the neck region much longer than seen in the radiographs. 
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starting to open.  By this time in the current pulse the energetic electron radiation is 

often still strongly radiating (see Fig. 5.11). 

 

6.E  Plasma jet formation 

  The geometry of the X pinch gives rise to plasma jets that form on axis.  The 

mass in these jets comes from two different processes that occur in the X pinch.  Some 

of the mass comes from the cross point region.  As the magnetic field compresses the 

plasma near the cross point, some of the mass escapes along the z-axis.  Computer 

simulations suggest that most of the original mass from the cross point region ends up 

being ejected axially before the main x-ray burst [Chittenden et al. 2007].  This axial 

transport of mass allows the plasma column to be compressed down to only a few 

microns at the beginning of x-ray emission (because the total number of particles N in 

the Bennett condition is reduced). 

 Another process leading to jet formation is the build up of ablated plasma from 

the legs onto the z-axis.  This is analogous to the precursor plasma in wire array 

experiments [Bott et al. 2006].  The global magnetic field (centered on the z-axis) 

exerts a force on the charged particles carrying current in the legs of the X pinch.  This 

j × B force accelerates the coronal plasma particles perpendicular to the leg of the X 

pinch.  This plasma builds up on axis at the magnetic field null. 

 We found that the propagation speeds of these jets were similar for Al and W 

despite the fact that they have very different coronal plasma expansion rates.  The 

propagation speeds were found from the length of the jet extending from the cross 

point to the lowest detectable boundary on axis (electron line density about 4 × 1016 

cm-2 from interferometry and volume density below 1 × 1020 cm-3 from 

shadowgraphy).  The propagation speed of the jet from the cross point toward the 

anode for Al 4-wire 25 µm X pinches was found to be 170 µm/ns from the  
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Figure 6.14:  Plots of propagation of the plasma jets from the cross point toward the 
(a) anode and (b) cathode for an Al 4-wire 25 µm X pinch. 
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Figure 6.15: Plots of propagation of the plasma jets from the cross point toward the (a) 
anode and (b) cathode for a W 4-wire 20 µm X pinch. 
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interference images and 140 µm/ns from the shadow images (Fig. 6.14a).  The 

propagation speed for the anode jet in W 4-wire 20 µm X pinches was slightly greater 

at 180 µm/ns and 160 µm/ns from the interference and shadow images respectively 

(Fig. 6.15a). 

This propagation speed does not actually reflect the speed at which particles in 

the jet are moving.  Rather, this propagation speed is the speed at which the detectible 

edge of the electron areal density is moving along the axis.  To help visualize what is 

going on let us first imagine the X pinch as two “V” shaped sections joined at their 

vertices (one on the anode side and one on the cathode side).  Now looking at only one 

of the V’s as in Fig. 6.16 we can imagine the ablated plasma front heading toward the 

z-axis from both sides.  As these front meet on axis they “zipper” together forming the 

plasma jet.  In this way it is possible for the detectible density front in the jet to be 

moving faster than the axial velocity of the particles in the jet. 

  

 

 

 

 

 

 

 
Figure 6.16:  This illustration shows one half of an X pinch to demonstrate plasma jet 
propagation due to “zippering” of the ablated plasma fronts from the X-pinch legs. 

 

We actually saw more variation between the propagation speeds of the plasma 

jets toward the anode and cathode than we did between Al and W X pinches.  Figure 

6.14b shows that the velocity of the cathode jets for Al were found to be 150 µm/ns 

X-pinch leg 

plasma jet 

ablated plasma fronts z-axis 
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(interference) and 140 µm/ns (shadow).  W showed a cathode jet speed of 160 µm/ns 

from interferometry and 140 µm/ns from shadowgraphy (Fig. 6.15b). 

The speeds of the cathode jets were found to be less than the speeds of the 

anode jets for both materials.  Assuming that most of the material in the jet is coming 

from the legs of the X pinch, it is not surprising that the anode jet propagates faster.  

Many single wire and X pinch experiments have shown that the expansion rate on the 

anode side is greater that the cathode side [Sarkisov et al. 2002].  If the anode side is 

ablating material more quickly, than the anode jet should accumulate material faster 

than the cathode jet. 

Another interesting thing to note from Fig. 6.14 and 6.15 is that even though 

Al and W showed similar jet propagation speeds, Al radiated its first x-ray burst 

before the jets connected the A-K gap whereas W radiated after the jets connected the 

A-K gap.  This connection of the A-K gap by the jets may help contribute the 

energetic electron radiation commonly seen in W X pinches.  This is certainly not the 

only contributing factor to the generation of energetic electron radiation (discussed in 

detail in chapter 5), but the lower inductance of the X pinch due to the added current 

path could help drive more electrons across the minidiode formed after the initial x-ray 

burst. 

We found from the interference pictures that the electron density exceeds 1019 

cm-3 on axis by 30 ns into the current pulse for the X pinches in our experiments.  As 

discussed in chapter 3 the interference images give us a line integrated electron density 

from the phase shift in the interference fringes.  Using this information and assuming 

cylindrical symmetry we were able to extract electron volume density using Abel 

inversion. 
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6.F  Modulations of the coronal plasma 

  Periodic axial modulations of the plasma streaming toward the axis have been 

observed in experiments with both X pinches and wire array z-pinches (Fig. 6.17).  

The period of these modulations seems to be material dependent, but not greatly 

dependent on magnetic field strength or geometry.  In previous single wire ablation 

experiments performed at Cornell [Mitchell et al. 2006b], as well as in cylindrical 

wire-array z-pinch experiments at Imperial College [Lebedev et al. 2004] and Sandia 

National Laboratories [Jones et al. 2005] modulation wavelengths have been reported 

that are the same for each wire material.  Now we have found that the wavelength of 

the periodic modulation of the coronal plasma from the legs of an X pinch is also 

consistent with the numbers reported the publications above.  The wavelength found in 

the present experiments for Al, W, and Mo were 0.50 ± 0.09 mm, 0.29 ± 0.07 mm, and 

0.37 ± 0.07 mm respectively. 
 

 
 
Figure 6.17:  Periodic modulations of the coronal plasma streaming toward axis 
observed from W wires as (a) part of a wire array and (b) from the legs of an X pinch. 

1mm 1mm 

a. b. 

Periodic 
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6.G  Experiments with simultaneous x-ray and laser imaging 

 We present here experiments designed to capture simultaneous images of a Mo 

2-wire 13 µm X pinch from the x-ray radiography and laser backlighting.  This was 

achieved by loading the X pinch to be imaged in the return path of the current and 

loading 2 parallel X pinches in the main current path.  The two backlighting X pinches 

were placed in such a way to preserve the optical path of the laser (Fig. 6.18) 

 

 

 
 
Figure 6.18:  Schematic diagram of optical and x-ray imaging paths. 

 

 

 The synchronization of the x-ray and laser images is limited to the time that we 

can produce x-ray bursts from the X pinches.  As such we were only able to capture a 

small number of images at nearly the same time.  All of the x-ray radiographs captured 

are presented in Fig. 6.19.  The images show the evolution of the dense wire cores 

from the beginning of neck compression and jet formation through well after x-ray 

emission.  Out of these images we were only able to capture one laser image within a 
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Figure 6.19:  Evolution of a Mo 2-wire 13 µm X pinch captured with X pinch x-ray 
backlighting.  Each image shows the central 4 mm of the X pinch. 

1 mm 
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small time of the x-ray image from the same shot.  The laser image is shown 

superimposed on the x-ray image in Fig. 6.20.  In this image we can see how the dense 

core is positioned in the expanded coronal plasma.  The wire core remains in a stable 

position while the ablated plasma is rocketed away. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.20:  Superposition of the laser shadow image and x-ray radiograph for pulse 
4908.  The radiograph was captured 1.1 ns before x-ray emission and the laser image 
was captured 1.9 ns before x-ray emission. 
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CHAPTER 7 

 

SUMMARY AND CONCLUSIONS  

In this thesis we have presented experiments designed to study the dynamics 

and radiation structure of the X pinch using high temporal resolution diagnostics.  We 

were able to answer or at least provide additional insight to many of the questions 

posed at the onset of this research. 

 

7.A Radiation structure of the X pinch 

Question 1:  What is the duration of the micropinch radiation, and what mechanisms 

allow this short time scale radiation? 

Hypothesis 1:  Micropinch radiation lasts for less than 1 nanosecond (quickly turned 

on by rapid temperature increase and off by density decrease). 

We used a low delay x-ray streak camera to obtain time dependant spectra of X 

pinch radiation with better than 10 ps time resolution.  These are the first experiments 

with temporal resolution this good.  The results showed that the Mo 4-wire 22 µm X 

pinches studies radiated only a few tens of picosecond of continuum/line radiation 

from an early micropinch.  This early micropinch radiation was follow by subsequent 

weaker bursts lasting about 50 ps.   

The weaker pinches did not show continuum radiation, possibly either due to 

smaller density or less total mass.  However, these weaker pinches helped provide 

insight into the micropinch mechanisms.  Because the weaker pinches did not show 

bright continuum the temperature was easier to analyze over the course of the pinch.  

Using the Gabreal model we found that the temperature was rising in the early part of 

the x-ray burst.  The temperature remained high for the remainder of the x-ray burst.  

The supports the hypothesis that micropinch radiation is triggered by the rapid 
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increase in temperature as the plasma become opaque to the radiation acting to cool 

the plasma.   

To examine if the micropinch radiation turns off quickly due to rapid decrease 

of the density of the plasma we studied the dynamics of the plasma after the x-ray 

burst.  We were not able to directly observe the density in the neck region as it was too 

high for the laser interferometer.  However, by looking at the expansion rate of the 

neck after the x-ray burst and extrapolating that expansion rate to the time 

immediately after x-ray emission we estimated that the density was dropping 

sufficiently fast enough to kill the intensity in less than a nanosecond.  Therefore, the 

micropinch could well be turned on by a rapid increase in plasma temperature and 

turned off by the rapid decrease of plasma density. 

 

Question 2:  When does the energetic electron radiation begin relative to the 

micropinch radiation, and where is its source location as a function of time? 

Hypothesis 2:  Energetic electron radiation starts after the micropinch (once lower 

density gaps begin to form) and progresses from the center to the anode. 

The energetic electron radiation was studied with spatial and temporal 

resolution with the use a filtered array of collimated SiD’s.  The results of these 

experiments showed that the micropinch radiation is followed immediately by “short 

lived” energetic electron radiation from the cross point region.  This short lived 

radiation lasts up to about 5 ns.  The short lived radiation most likely emanates from 

small gaps that form in the neck [Shelkovenko et al. 2005] as the micropinch region(s) 

explodes.  This short lived radiation is likely terminated as the dense regions in the 

neck dissipate leaving only a single large gap across the central region.  The formation 

of this larger gap gives rise to “long lived” energetic electron radiation.  The long 

lived radiation appears first in the central region but grows in intensity toward the 
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anode (as the gap expands).  The most intense radiation was found to come from the 

region neighboring the central region and lasts more than 50 ns. 

 

7.B Plasma dynamics of the X pinch from laser and x-ray imaging 

Question 3:  What roles do the plasma dynamics (plasma expansion rate, neck 

compression and expansion rates, jet formation, axial modulations) play in the X 

pinch? 

Hypothesis 3a:  Coronal plasma expansion rates and neck compression rates are linked 

to the time of x-ray emission and are dominated by the energy deposited in the plasma 

per unit mass. 

We studied the X-pinch plasma dynamics in order to better understand the 

conditions leading up to x-ray emission.  The low density coronal plasma (electron 

density > 1017 cm-3) was studied using a 150 ps pulse width Nd:YAG laser operating 

at 532 nm.  Images were produced using a shearing air-wedge interferometer.  We 

reported expansion rates of the coronal plasma that forms around the legs for Al, W, 

and Mo X pinches.  We also reported neck compression rates for the same X pinches.  

We correlated these observations to the time of x-ray emission.  We found that 

material with the highest energy deposited per unit mass had the highest expansion 

rates of the coronal plasma.  We did not measure the energy deposited, but much 

research has been done to study the energy deposited for a give current pulse as a 

function of wire material [Chandler et al. 2002].  The higher expansion rate material 

also had a more rapid compression of the neck region (again related to the lower 

mass). 

 

Hypothesis 3b:  Energetic electron radiation comes from acceleration of electrons 

across gaps that form as the neck region explodes. 
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Observations of gaps in the neck region have been made using x-ray 

radiography [Shelkovenko et al. 2005].  These observations led to the hypothesis 

given above.  However, we now see with the help of the laser produced images 

(sensitive to lower densities than the x-ray radiographs) that plasma exists in the 

central region for a much longer period of time.  This has forced us to redefine the 

gaps as lower density regions with sufficiently high mean free paths to allow the 

acceleration of energetic electrons.  Gaps seen with the laser images do not appear 

until about 15 ns after they are first observed using x-ray radiography. 

 

Hypothesis 3c:  Plasma jet formation is dominated by mass ablation rate and should be 

greater for materials with high expansion rates. 

We also used the laser images to study jet formation in X pinches.  We found 

that the propagation speed of the jets for Al and W were very similar despite the fact 

the Al shows greater expansion rates for the coronal plasma.  However, Mo showed a 

propagation speed about 25% higher than Al and W.  Therefore, the ablation rate for 

Mo is higher than both Al and W even though Al has a higher expansion rate and W 

has a lower expansion rate.  This means that ablation rates and expansion rates are not 

correlated.  In addition, since W radiates later in the current pulse the jets were found 

to connect the anode-cathode (A-K) gap before x-ray emission whereas jets did not 

connect the A-K gap before x-ray emission for Al.  This may affect the radiation 

characteristics of the energetic electron radiation, but further experiments are required. 

 

Observation 3d:  Axial modulation of the coronal plasma in X pinches match those 

observed in wire-array z-pinch experiments. 

X pinches show similar axial modulation in the coronal plasma as seen in wire 

array experiments z-pinch experiments [Lebedev et al. 2004, Mitchell et al. 2006b].  
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The wavelengths of these modulations were measured and compared to values 

reported for wire arrays.  The values of 0.50 ± 0.09 mm for Al, 0.29 ± 0.07 mm for W, 

and 0.37 ± 0.07 mm for Mo are within the error reported for wire arrays.  This 

agreement suggests that the wavelength is dominated by material properties and not 

the magnetic feed topography. 

 

Observation 3e:  Spatial relationship of the coronal plasma and the dense wire cores. 

We conducted experiments using simultaneous x-ray radiograph and laser 

imaging.  These images give us the first glimpse as to where the dense wire cores are 

located in the coronal plasma.  This helps use determine how the coronal plasma is 

moving and can be useful for comparison to computer models. 

 

7.C Future work 

Many opportunities exist to expand this research and improve our 

understanding of X pinch dynamics. 

First, the data presented in this thesis are only a small sampling of possible 

configurations of X pinches that could be studied.  If we can collect more data on 

various wire materials, wire diameters, current shapes, and X pinch geometries we 

may better understand what factors dominate X pinch dynamics.  Also more data and 

analysis are needed for time dependent spectra from X pinches.  Although beyond the 

scope of this thesis, it is possible to estimate the temperature and density of the 

radiating plasmas by fitting the spectra to known models. 

Better values of coronal plasma density would greatly increase our 

understanding of X pinch dynamics.  We were limited in our experiment by the 532 

nm wavelength of the laser light.  The densities and density gradients were too high 

during much of the current pulse for the laser to penetrate the plasma.  If an 
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interferometer with a shorter wavelength were use we could penetrate denser regions 

of the coronal plasma.  This would be very helpful for computer modeling of the X-

pinch, which is now being pursued. 

Finally, much work is needed to develop the X pinch as a practical laboratory 

and bio-medical imaging source.  The X pinch shows great promise as a high 

resolution (both temporal and spatial) imaging source.  However, in order to make the 

X pinch useful to a broader customer base it must be reliable and well characterized.  

The X pinch needs to be optimized to get the best imaging characteristics out of the 

small amount to energy.  This would relax the requirement on the pulsed power source 

and allow more compact designs.  We must also continue research to find ways to 

control the radiation characteristics and increase the repetition rate on x-ray pulses as 

with the research of X pinches in dielectric frames [Mitchell et al. 2006a].
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