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Abstract: Women earn nearly half of doctoral degrees in research fields, yet doctoral education in
the United States remains deeply segregated by gender. We argue that in addition to the oft-noted
segregation of men and women by field of study, men and women may also be segregated across
programs that differ in their prestige. Using data on all doctorates awarded in the United States
from 2003 to 2014, field-specific program rankings, and field-level measures of math and verbal
skills, we show that (1) "net" field segregation is very high and strongly associated with field-level
math skills; (2) "net" prestige segregation is weaker than field segregation but still a nontrivial form
of segregation in doctoral education; (3) women are underrepresented among graduates of the
highest-and to a lesser extent, the lowest-prestige programs; and (4) the strength and pattern of
prestige segregation varies substantially across fields, but little of this variation is associated with
field skills.

Keywords: gender segregation; prestige segregation; field segregation; gender inequality; higher
education; women in STEM

OMEN earn 60 percent of baccalaureate degrees and 46 percent of doctoral
degrees in research fields (National Science Foundation [NSF] 2015a), yet
higher education in the United States remains deeply segregated by gender. To date,
the literature on educational segregation has focused on the distribution of men
and women across fields of study, how this distribution varies over time and space,
and its consequences for gender inequality in career outcomes (Charles and Bradley
2002, 2009; England and Li 2006; England et al. 2007; Barone 2011; Bobbitt-Zeher
2007; Mann and DiPrete 2013, 2016; NSF 2015b; Ransom 1990). We extend this
line of research by offering a multidimensional analysis of segregation in doctoral
education across fields of study and across PhD-granting programs that differ in
their prestige.

Our interest in prestige segregation stems from four sources. At the most basic
level, prestige segregation, like field segregation, is an indicator of the extent to
which men and women’s educational outcomes are equal. However, the two types
of segregation are conceptually and empirically distinct. Even in a hypothetical
world in which every field graduates the same proportions of men and women,
men may be overrepresented among degree recipients from the highest ranked
programs and women among degree recipients from the lowest ranked programs.
In this world, gender integration exists with respect to field, but not with respect to
program prestige.

Second, field and prestige segregation represent two qualitatively different
forms of gender inequality in higher education. Prestige segregation is inherently
vertical, meaning that segregation occurs across categories that are ordered from
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high to low. Field segregation, by contrast, is horizontal: the boundaries between
fields define qualitatively different positions, but fields "represent distinctions more
of kind than of grade" (Charles and Bradley 2002:574). To be sure, some scholars
estimate vertical segregation by identifying an external continuous variable that
is assumed to capture distinctions of grade among fields (e.g., the average wages
of new graduates), applying this variable to fields, and calculating the share of
the overall association between gender and fields of study that is captured by this
variable (England et al. 2007; Barone 2011). Prestige segregation can be understood
as a complementary (and more direct) measure of vertical segregation in higher
education.

Third, prestige segregation presages gender inequality in the jobs for which
the doctoral degree is a gateway. Prior research has established a strong, positive
correlation between the prestige of doctorates” degree-granting institutions and
their later career success (Burris 2004; Long and Fox 1995). This correlation may be
driven by differences across programs in the talent of incoming students, the quality
of the training they receive, the level of financial support they enjoy, the professional
networks they develop, the "halo" effect of obtaining a degree from a high-prestige
program, or some combination. For our purposes, the causal mechanism is less
critical than the correlation: if women are less likely than men to receive their
doctoral degrees from high-prestige programs, they will also be underrepresented
in the labor market positions in which high-prestige doctorates have a competitive
advantage.

Finally, prestige segregation is an expected, albeit underappreciated, outcome of
more general social processes identified in the gender inequality and organizational
literatures. We focus on five such processes: (1) sorting based on gender differ-
ences in readily observed indicators of ability (and their unobserved correlates),
(2) sorting based on gender-biased self-assessments of ability, (3) self-selection
based on gender-differentiated preferences for different program attributes that are
correlated with prestige, (4) prestige-linked organizational strategies surrounding
admissions, and (5) gender-specific attrition from graduate programs. The first two
processes are often deployed to understand the sources of field segregation and in
particular women’s underrepresentation in scientific (STEM) fields. The third and
fourth processes, which focus on the attributes of the degree-granting programs
themselves, are rarely discussed in the educational segregation literature, presum-
ably because the organizations that represent fields (e.g., scholarly societies) have
little input into admissions and training. The fifth process, gender-specific attrition,
is often analyzed as an outcome in its own right but rarely linked to segregation.
Our theoretical contribution is to articulate possible sources of prestige segregation,
which we accomplish by drawing from a variety of literatures that are rarely in
dialogue with each other.

Our main contribution, however, is empirical: we offer a systematic analysis of
levels and patterns of field and prestige segregation among research doctoral degree
recipients in the United States.! This analysis is based on a national census of earned
doctoral degrees from the Integrated Postsecondary Education Data System (IPEDS),
which we merged to prestige rankings of doctoral programs from the National
Academies of Sciences (NAS) and to field-level measures of math and verbal skills
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drawn from the General Record Exam (GRE) (Educational Testing Service [ETS]
2008). We analyze these data with log-multiplicative association models that allow
us to tease out levels and patterns of field and prestige segregation, estimate cross-
field variations in prestige segregation, and quantify the extent to the which field
segregation and cross-field variations in prestige segregation map onto field math
and verbal skills.

Prior Research on Prestige Segregation

Extant research on prestige segregation in higher education is both sparse and
inconclusive. In a study of prestige segregation at the undergraduate level, Davies
and Guppy (1997) show that men are more likely than women to graduate from
selective institutions (as measured by average SAT scores), in lucrative fields (as
measured by the average pay of graduates), and in lucrative fields within selective
institutions. By contrast, Jacobs (1995, 1999) found few gender differences in the
prestige of baccalaureate institutions after adjusting for women’s lower represen-
tation in STEM fields and the high concentration of STEM fields in high-prestige
universities (e.g., Cal Tech, MIT). Quite aside from the disparity in their core find-
ings, studies of undergraduates don’t necessarily generalize to doctoral education,
for which admissions and training decisions take place at the department level,
the academic orientation of the "average" student is greater, and postmatriculation
field- or program-switching is uncommon.

Research on prestige segregation among doctoral students is even less well
developed, and most of it is very dated. The few studies that exist are inconclusive,
in our view, because they deploy data on a very limited range of fields or institutions,
conflate the prestige of the doctoral program with the prestige of the university in
which it resides, use methods that cannot differentiate prestige segregation from
field segregation, or assume a linear relationship between program prestige and
the gender composition of graduating cohorts (Fox 1995; Gilford and Snyder 1977).
We will take up these data and methodological issues below. First, however, we
motivate our analysis by identifying social processes that might plausibly generate
prestige segregation and the empirical patterns of segregation that these processes

imply.

Sources of Prestige Segregation

The gender composition of a cohort of doctorates is a function of the gender compo-
sition of incoming cohorts and gender-specific attrition. We will first discuss social
processes that could generate segregation at the point of creating a cohort, then
gender-specific attrition. Throughout, we will devote more attention to prestige
segregation than to field segregation, given that the theoretical literature on field
segregation is already quite extensive.

sociological science | www.sociologicalscience.com 125 February 2017 | Volume 4



Weeden, Thébaud, and Gelbgiser

Degrees of Difference

Self-Selection Based on Measured Ability

To begin, we assume that applications to and rejection from grad school is costly, that
students will only apply to programs for which they believe they have a nonzero
probability of admission, and that they will only matriculate at programs for which
they believe they have a nonzero probability of completion. We also assume that
their assessments of these chances are affected by their prior academic performance
and their beliefs about whether they will be competitive. This, in turn, is plausibly
associated with program prestige: students expect the competition for slots in a
cohort and for faculty time (and other resources) to be stiffer at higher-ranked
programs than at lower-ranked programs. As a result, students who are the most
able (or who perceive that they are the most able) will be overrepresented among
applicants to (and matriculates of) high-prestige programs.

The "measured ability" variant of the selection argument can only help us
understand gender segregation in doctoral education if observed indicators of
academic ability and the unobserved indicators with which they are correlated
differ systematically by gender. In this regard, studies of high school students
typically find modest gender differences in test scores at the mean but nontrivial
gender differences in the distributions: on tests of math and scientific reasoning,
young men outnumber women at the top of the distribution but also at the bottom
(i.e., greater male variance); on tests of verbal reasoning and writing ability, young
women outnumber young men at the top of the distribution, although to a lesser
extent (Penner and Paret 2008; Riegle-Crumb et al. 2012; Makel et al. 2016). Among
GRE test takers in research fields, men’s average and 75th percentile scores are
approximately 20 points higher than women'’s average and 75th percentile scores
on the verbal test and a much more substantial 60 points higher than women’s
average and 75th percentile scores on the quantitative test (ETS 2008).? Studies of
gifted students show even more extreme gender gaps (favoring men) at the right
tail of the math test score distributions and smaller gender gaps (favoring women)
at the right tail of verbal test score distributions, although the latter are less stable
across different tests of ability and prior achievement (Makel et al. 2016).

At the undergraduate level, gender differences in standardized math test scores
and prior math preparation account for only a modest portion of the gender gap
in STEM major choice (Mann and DiPrete 2013; Morgan, Gelbgiser, and Weeden
2013; Riegle-Crumb et al. 2012; Xie and Shauman 2003), in part because men are
overrepresented in the lower tails of the distributions as well as the upper tails
(i.e., greater male variance). At the graduate level, however, the pool of applicants
is presumably drawn from the upper tails of the distributions of test scores and
academic preparation, where gender differences in the easily observed indicators
of ability are more substantial. Assuming potential applicants use these scores
and their correlates to assess their likelihood of success, it follows that the level of
math skills associated with a given field will be positively associated with male
overrepresentation in that field. The level of verbal skills will have much weaker
association with female overrepresentation, given the less extreme gender gaps in
the right tail of observed indicators of verbal ability.

Could these gender differences in measured ability at the top of the distri-
bution also generate prestige segregation? If applicants with relatively modest
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qualifications—in GRE scores or in the measures of ability and achievement that are
correlated with GRE scores—select out of the applicant pools at the highest-prestige
programs, and if women are overrepresented among those with modest (measured)
qualifications, it follows that women will be underrepresented in the highest pres-
tige programs and overrepresented in lower-prestige programs. Furthermore, levels
of prestige segregation are likely to be stronger in math-intensive fields than in
verbal-intensive fields, again because of the much smaller gender gaps in the right
tail of verbal ability.

Self-Selection Based on Perceived Ability

Segregation in higher education can also result from gender differences in perceived
or self-assessed ability. A now voluminous body of experimental and survey re-
search shows that men and women believe that men are generally more competent
and capable than women and that this gender gap in expectations of others” compe-
tence is especially strong when the task is associated with stereotypically male traits
and abilities such as math reasoning or higher-order cognitive thinking (Wagner
and Berger 1997; Ridgeway 1997). Gender status beliefs can also inform individuals’
self-assessments of competence at career-relevant tasks: women evaluate their own
competence and abilities more negatively than men with the same measured ability,
which in turn affects their career-relevant educational decisions (Correll 2001, 2004;
Foschi 2008). Consistent with this argument, gender differences in self-assessed
math ability have been shown to affect gender differences in STEM (baccalaureate)
major aspirations and choices and, at the aggregate level, field segregation (Correll
2001, 2004; Mann and DiPrete 2016).

The logic of the self-assessed ability argument implies prestige segregation as
well as field segregation. If, on average, women underestimate their competence
relative to men with similar ability, women are less likely to believe that they will
be competitive for slots at the highest-ranked programs and consequently less
likely to apply to these programs. They may also be less likely to matriculate at
a highly ranked program, if low self-assessed ability leads them to second-guess
the admissions committee’s positive decision, through what psychologists have
dubbed the "imposter phenomenon" (Clance and O'Toole 1988).% The end result,
according to this logic, is prestige segregation. Moreover, this prestige segregation
will be greatest in math-intensive fields, given the strong cultural beliefs about
men’s greater competence in math and science. However, gender differences in self-
assessed ability also predict women’s underrepresentation in the highest prestige
programs in "verbal" fields, given beliefs about men’s superior general competence
in tasks that require higher cognitive ability.

Self-Selection Based on Program Attributes

In choosing where to apply and matriculate, prospective students presumably also
consider a host of program-related factors: distribution of subfields, intellectual
"fit" with the target program, availability of mentors and faculty advisors, funding,
proximity to family and friends, geographic region, and so forth. Many of these
factors are correlated with program prestige. For example, higher-prestige programs
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tend to have better funding packages, fewer women or underrepresented minority
faculty, and more limited geographic dispersion (NSF 2015a; Trower and Chait
2002).4

The key question for prestige segregation is whether men and women give these
factors different weight in selecting a graduate program. The available evidence is
mixed. On one hand, women are more likely to have familial constraints that lead
them to give more weight to geographic location than men (Blau and Ferber 1982;
on undergraduates, see Jacobs 1999; on elite faculty, see Schiebinger, Henderson,
and Gilmartin 2008). One implication is that women will be more likely to choose a
lower-ranked program that is proximate to home or family over a higher-ranked
program some distance away; all else equal, and at the aggregate level, this will
likely lead to male overrepresentation in high-prestige programs. On the other
hand, familial constraints may lead women to attach more weight to the availability
of funding (see Berg and Ferber 1983; but see Dwyer, Hodson, and McCloud 2013),
which could increase their concentration in high-prestige programs where, on
average, funding is likely to be better. And, finally, male and female graduate
students have grown more similar to each other on many demographic attributes
(Long 2001), and norms of shared parenting have diffused. These changes may
equalize gender disparities in the weight that men and women give to geographic
proximity to family or funding and in the process reduce the potential for gender-
specific preferences to impact segregation patterns.

Men and women may also differ in the types of programs that they select out of a
preference for demographic and subfield matching. Demographic matching occurs
when students either select into or are more likely to complete programs for which
there are faculty mentors of the same gender (Rosser 2004; Wallace and Haines 2004),
implying that the segregation of male and female faculty across programs will tend
to generate similar patterns of segregation of students across programs. Consistent
with this claim, a recent study of 20 economics departments shows that the higher
the share of female faculty, the higher the share of female students graduating six
years later (Hale and Regev 2014). Similarly, some disciplines (e.g., sociology) have
substantial gender segregation by subfield, and "male"- and "female"-dominated
subfields are not evenly distributed across high- and low-prestige programs. This
form of segregation, too, may generate gender differences in the applicant pools to
programs of higher or lower prestige.

As this discussion suggests, gender differences in the weight given to different
program attributes can create prestige segregation simply by virtue of the associ-
ation between these (nonprestige) attributes and program ranking. However, the
implication for prestige segregation is not clear, in part because gender differences
in preferences can have offsetting implications for aggregate patterns. We sim-
ply note that program-linked attributes, when coupled with gender differences in
weighting of particular attributes, may generate prestige segregation.

Prestige-Linked Admissions Decisions

Students” application and matriculation decisions are just one side of the match-
ing process, and doctoral programs” admissions and training decisions will also
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affect the gender composition of incoming cohorts and attrition from graduate
school. We assume that with the exception of a few noncompetitive programs
that admit all applicants who can pay the fees, most doctoral programs must limit
the number of students they admit because of limited resources, including faculty
time. Admissions committees select applicants who they believe will maximize
their "returns," including skilled research or teaching assistance, the creation of
new knowledge, the prestige that accrues to a program when a graduate student
secures a high-status job, and other contributions to local or institutional goals.
Departments also compete with each other to attract "the best" students, however
this is defined (Posselt 2016).

How might programs’ admissions decisions contribute to prestige segregation?
First, the highest-prestige programs may simply extend offers of admission to
students (male or female) who are at the very top of the applicant pool with respect
to easily observable indicators of ability and academic achievement, under the
assumption that they will win the interdepartmental competition for these students
often enough to fill their cohorts. Middle- and lower-ranked programs, by contrast,
may put more effort into identifying "diamond-in-the-rough" students who would
not necessarily draw the attention of top-ranked programs. Prestige segregation can
thus result from "gender blind" admissions processes by virtue of uneven gender
distributions on the easily observed indicators of ability and achievement. This
argument also implies that prestige segregation will be greater in math-intensive
fields (see above), given the greater gender gaps in performance on easily observed
indicators of ability in math than in verbal skills.

Second, members of admissions committees may hold male-advantaging status
beliefs and judge female applicants by stricter standards than male applicants
(Milkman, Akinola, and Chugh 2012; Moss-Racusin et al. 2012; Posselt 2016). These
biases in admissions are most obviously relevant to field segregation. However,
they may also generate prestige segregation if high- and low-ranked programs
systematically differ in the strength of faculty members’ gender status beliefs or in
the extent to which the admissions process creates the conditions for gender beliefs
to become salient, such as severe time constraints, premature ranking of candidates,
or failing to read past letters of recommendation. In addition, high- and low-prestige
programs may differ in the availability of local examples that counteract general
cultural beliefs about men’s greater competence at higher cognitive tasks in general
and math-related tasks in particular.

Third, doctoral programs may make different admissions decisions depending
on their position in local prestige orders. According to the theory of middle status
conformity ([MSC]J; Phillips and Zuckerman 2001), organizations’ likelihood of
innovating differs according to whether they are high, middle, or low status®: High-
status and low-status actors have more leeway to innovate because their actions
will have little effect on their status, whereas middle-status actors have less leeway
to innovate (i.e., more likely to conform) because they are at greater risk of falling
in the status order. To be applicable to the graduate admissions context, MSC
requires several crucial assumptions: doctoral programs must be aware of their
position in the status order and seek to improve their position or at least avoid
falling in position; programs’ admissions decisions must affect, even if only in the
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long term, their position; and it must be possible to identify "conforming" and
"nonconforming” admissions decisions.

We argue that in contemporary higher education in the United States, there are
strong institutional pressures to diversify the academe along gender (and racial)
lines and that "conformity" thus means some measure of adherence to these egali-
tarian pressures. Over the last two decades, universities and external agencies (e.g.,
NSF’'s ADVANCE program) have made large financial investments in diversity
programming and infrastructure, and egalitarian discourse is now common within
universities, including among administrators who allocate resources. To be sure, the
carrots and sticks associated with efforts to increase diversity vary in effectiveness,
and one or two cohorts that lack diversity may garner much attention from internal
or external observers. In the long term, however, departments can gain a reputation
of being "woman friendly" or "woman unfriendly,” which can affect the internal
allocation of resources and, in the long term, rankings. Indeed, many scholarly soci-
eties (e.g., Sociologists for Women in Society, American Chemical Society) explicitly
rank programs by their gender diversity, and the new National Research Council
(NRC) ranking system includes measures of demographic diversity as component
factors in the summary scores (NRC 2010).

According to the logic of MSC, middle-prestige programs are the most likely
to be harmed by acquiring a reputation of "woman unfriendliness" and hence are
the most likely to consider gender diversity during the admissions process. Low-
prestige programs are less likely to conform, according to this theory, because they
have little status to lose (Phillips and Zuckerman 2001). High-prestige programs
are also less likely to conform to institutional pressures to diversify because they
can parlay their high prestige into relative autonomy from the dictates of central
administration and into relatively stable pools of highly talented applicants. Con-
sistent with this claim, Posselt (2016) found that admissions committees at elite
departments rarely discuss gender diversity, although of course without data on
less elite departments, this evidence is only suggestive.

If MSC is on the mark, the relationship between program prestige and gender
segregation will be an inverted U shape: women will be underrepresented in high-
status programs, overrepresented in middle-status programs, and underrepresented
in low-status programs. We might also anticipate the curvilinear pattern will be
more pronounced in math-intensive fields, simply because institutional pressures
to increase gender diversity are stronger in the STEM fields.

Gender-Specific Attrition

Even in a hypothetical world of no gender segregation among incoming cohorts,
gender-specific attrition rates can produce gender segregation among cohorts of
earned doctorates. Studies of attrition consistently show that women are less likely
to complete graduate school than men but also that these patterns vary greatly by
field and by institution. Within-institution studies find that most of the gender gap
in attrition disappears when one adjusts for men’s overrepresentation in math and
sciences and women’s overrepresentation in fields for which an MA is a meaningful
terminal degree (Ehrenberg and Mavros 1995; Lott, Gardner, and Powers 2009;
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Zwick 1991). Within-field studies, which are more relevant to prestige segregation,
show that gender gaps in attrition have narrowed in the past three decades and in
many fields are either trivial or nonexistent (Baker 1997; Nettles and Millett 2006;
Ampaw and Jaeger 2012).

Is there reason to believe that residual within-field gender differences in attrition
vary with program prestige? In this regard, some scholars have argued that women
do not perform as well as men in highly competitive, mixed-sex environments
(Gneezy, Niederle, and Rustichini 2003), which might make them more likely
than men to drop out of high-prestige programs. Others argue that men have
better alternatives in the labor market than women and hence pay a lower price
for dropping out of graduate school or are less willing to carry debt to complete
graduate school (Dwyer et al. 2013). Although neither argument specifically
discusses graduate education, their logic implies male overrepresentation in high-
prestige programs. On the other hand, women may be more likely to drop out of
low-prestige programs than men because of their greater sensitivity to funding (see
above), which would have the opposite impact on aggregate patterns of prestige
segregation. We don’t take a position on which of these countervailing effects will
dominate, but merely note that in addition to processes at the point of admissions
and matriculation, gender-differentiated attrition could, in theory, generate prestige
segregation.

We do not claim to have identified all of the sociological processes that could,
in theory, generate prestige segregation, nor will our data allow us to evaluate
which processes are at work. The preceding discussion does imply, however,
four empirically testable descriptive claims: (1) field segregation will be strongly
associated with field-level math skills and moderately associated with verbal skills;
(2) independent of field segregation, men and women will be unevenly distributed
across programs grouped by their prestige; (3) men will be overrepresented in
the highest prestige programs and, as predicted by MSC, in the lowest-prestige
programs; and (4) prestige segregation will be stronger in math-intensive fields
than in verbal fields, as predicted by self-selection based on "objective" measures of
ability or perceived ability.

Data

We assess levels and patterns of field and prestige segregation using program-level
data on earned doctorates from the IPEDS, which covers all colleges and universities
that participate in federal financial assistance programs and some that volunteer
data. We pool the IPEDS data collected between 2003 and 2014 in order to have
sufficient cases to disaggregate fields and prestige groups.® An IPEDS crosswalk
allows us to reconcile the Classification of Instructional Programs (CIP) scheme
used to classify fields in the post-2010 data with the CIP scheme from 2003 to 2010.

We construct measures of program prestige from the 1995 NRC ratings of doc-
toral programs’ faculty quality, which cover 41 research fields, 274 universities, and
3,271 degree-granting programs in universities that report to IPEDS.” We chose
the 1995 NRC rankings over the alternatives because of its timing, construction,
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and coverage. First, the 1995 rankings were published before the cohorts in our
data were admitted to graduate school, so logically they could affect these cohorts’
admissions decisions. Second, the 1995 rankings are based solely on subjective
assessments, whereas the later 2010 NRC rankings are based on a combination of
subjective and objective factors, including the program’s demographic composition.
And, third, unlike the U.S. News & World Report’s rankings, the 1995 NRC rankings
cover more fields and use consistent evaluation methods across fields.

The NRC, like other alternatives, does not rank all PhD-granting programs. The
unranked programs are a heterogeneous mix of programs located in research univer-
sities, teaching- or clinical practice—oriented universities, and specialty institutions
(e.g., military schools, theological seminaries). To gain leverage on this heterogene-
ity within unranked programs, we categorize them by the Carnegie type of the
university in which they are located: very high research university (RU/VH); high
research university (RU/H); and doctoral research university, specialty, and other
(DRU/S/0O). Although in theory one could estimate segregation across Carnegie
type—or even university prestige—in addition to program prestige, in practice this
is intractable because of the very strong association between university type and
program ranking. Instead, we treat Carnegie type as a partial table relevant only
for unranked programs.

For each doctoral program, the 1995 NRC provides an average score on a five-
point, Likert-type assessment of faculty quality collected from representatives of
other programs in the same field. From these average scores, we create a measure
of absolute prestige, which is the rank order of a given program in its field, and
a measure of relative prestige, which is the program’s position in the percentile
distribution of scores in its field. The absolute prestige rankings capture socially
meaningful distinctions (e.g., "4th ranked program"). The relative prestige ranking
adjusts for the fact that the NRC rates more programs in some fields than in others
and assumes that the social meaning of a "top 25" program may be quite different
in a field with 185 ranked programs than with just 26 ranked programs.

We categorize the absolute and relative rankings into "prestige buckets," which
allows us to increase cell counts, easily incorporate the unranked programs (by
treating them as additional categories), and identify nonlinearities in the pattern
of prestige segregation. We create 13 "prestige buckets" from the relative prestige
measure: 10 that correspond to NRC ratings deciles, and three that correspond to
Carnegie types of unranked programs. Similarly, we create 10 buckets from the
absolute prestige measure: top 5, 6-10, 11-15, 16-20, 21-25, 26-30, 31-185, and
the same three Carnegie types for unranked programs. The 7th absolute prestige
bucket, corresponding to programs ranked 31st-185th, cannot be divided further
without creating structural zeros because of the limited number of NRC-ranked
programs. As it is, there are no programs in Classics and Oceanography ranked
31st-185th and no unranked programs in Comparative Literature or Aerospace
Engineering in "DRU/special/other" universities. Rather than assign an arbitrary
constant to these zero cells, we calculate the average gender ratio for the field,
assign one of the gender-specific cells the value of 1 (e.g., men in Classics in the
31st-185th absolute ranking "bucket"), and assign the other gender-specific cell a
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count that will preserve the field-specific gender ratio. Analyses that weight these
cells out of the data (not shown) generated nearly identical results.

We measure the math and verbal skills of the 41 NRC fields with the average
math and verbal GRE scores of test-takers intending to go to graduate school in a
given field of study (ETS 2008). From these GRE scores, we construct two categorical
variables, each of which differentiates five skill groups: more than 1 standard
deviation below the cross-field mean, between 0.5 and 1 standard deviation below
the mean, within a 0.5 standard deviation on either side of the mean, between 0.5
and 1 standard deviation above the mean, and more than 1 standard deviation
above the mean.® Table S1 in the online supplement lists the 41 NRC fields, their
math and verbal GRE scores, and their math and verbal skill groups.

We then match the 3,271 programs ranked in the NRC to the 5,132 programs
listed in the IPEDS database as granting doctoral degrees in the NRC research fields.
Of the NRC-ranked programs, we could easily match 2,877, or 88 percent, to the
IPEDS using the university name and CIP codes aggregated to the level of the 41
NRC fields. In some cases, universities reported doctorates using a less detailed CIP
code than the NRC fields: for example, "Romance Studies" rather than "Spanish"
and "French." Using lists of graduate students on these department’s web sites, we
estimate the (current) share of graduate students in that program in Spanish and
in French and divide up the counts in the aggregate CIP code that is reported in
IPEDs into the two NRC fields accordingly.

We are left with 284 NRC-ranked programs that we cannot easily match to the
IPEDS, most of which are in the biological sciences. For 219 of these programs,
we estimate the number of graduates in the NRC-ranked program by identifying
the CIP code in the IPEDs in which those graduate students are most likely to
be reported. For example, if Cellular Biology is a ranked program at University
X, and University X didn’t report any graduates in "Cellular Biology" but did
report graduates in "Biological Sciences, General" and the other biology subfields,
we attribute the counts in the general code to "Cellular Biology." For 65 of the
unmatched NRC programs, we cannot identify which CIP code is likely to contain
the "missing” graduates, so we exclude these programs from the analysis.As a
robustness check (not shown), we also ran analyses on data that exclude all 284
unmatched programs and found no noteworthy differences in the results.

Compared to matched programs, unmatched programs tend to have lower NRC
ratings (i.e., lower subjective quality) and to reside in universities that are private,
do not grant medical degrees, and have comparatively few NRC-ranked fields (see
online supplement Table S2). We cannot, of course, know the number or gender
composition of graduates from the 65 unmatched and excluded programs, but they
constitute a mere 2 percent of the NRC-ranked programs. Their gender composition
would need to be wildly different from the ranked programs for their exclusion to
have an appreciable impact on the results, and we have no reason to believe this is
the case.

Finally, we create cross-classified arrays of field, program prestige (including
the unranked categories), and gender from the merged NRC-IPEDs data. The cell
counts in these arrays are the number of doctoral degrees: 406,721 in the relative
prestige array and 406,726 in the absolute prestige array, where the difference
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Table 1: Summary measures of gender segregation of U.S. doctorates by field and program prestige.

D A

Field of study (41 fields) 0.33 2.12
Relative prestige

Percentiles (1-100; unranked) 0.11 1.29

Percentiles + unranked (1, ..., 100; RU/VH; RU/H; DRU/Other/Special)  0.12 1.29

"Buckets" (10 deciles; RU/VH; RU/H; DRU/Other/Special) 0.09 1.26
Absolute prestige

Absolute prestige (1, 2, ..., n, unranked) 0.13 1.64

Absolute prestige (1, 2, ..., n, RU/VH; RU/H; DRU/Other/Special) 0.14 1.64

"Buckets" (1-5, 6-10 ..., 31-185, RU/VH; RU/H; DRU/Other/Special) 0.09 1.30

NOTES: Data are from the IPEDs, 2003—2014. Relative prestige N = 406,721; Absolute prestige N = 406,726. The NRC
ranks between 26 and 185 programs, depending on the field.

emerges because of imputation of additional structural zeros in the absolute prestige
arrays. These doctorates are distributed across a maximum of 1,066 cells, yielding
a minimum average cell count of 381 doctorates. Even with this large sample, we
had one empty gender-specific cell in an unranked program, to which we assigned
a value that preserves the field-specific gender ratio (see above).

Summary Measures of Segregation

Table 1 presents two indices of segregation calculated for fields and program pres-
tige, each collapsing across the other dimension. The index of dissimilarity (D)
measures the percentage of men or women who would need to change fields (or
programs) in order for each field (or program) to have equal percentages of men
and women. The log-linear index (A) is the deviation of the field (program) gender
ratios from the mean and can be interpreted as the multiplicative factor by which
women (or men) are overrepresented in the average field or program (Charles and
Grusky 1995).

Table 1 shows, unsurprisingly, that field segregation in doctoral education is
extensive. Women (or men) are overrepresented in the average field by a factor of
2.12, and a third of male or female doctorates would need to change fields in order
for men and women to receive the same percentage of PhD degrees in all fields (D =
0.33). This estimate of D is slightly lower than the 35-39 percent estimate provided
by England and her colleagues (2007) for the early 2000s, most likely because they
measure segregation across 202 fields, and D typically increases with the specificity
of the units.

Prestige segregation in U.S. doctoral education over this period is weaker but,
we argue, still substantively significant. If we group programs by their prestige
percentile and differentiate Carnegie groups for unranked programs, we find that
12 percent (D = 0.12) of male (or female) doctorates would need to change programs
to achieve integration, and men (or women) are overrepresented by a factor of 1.29
(Table 1). The comparable index values for the absolute prestige rankings are a
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bit higher, with a dissimilarity index of 14 percent and a log-linear index of 1.64.
These indices shrink when we aggregate programs into larger prestige buckets: D
decreases to 0.09 (relative and absolute prestige), and A decreases to 1.26 (relative)
or 1.30 (absolute). Even at this more aggregate level, however, the indices indicate
nontrivial levels of prestige segregation.

Log-Linear Models of Segregation

We investigate net levels and patterns of segregation with a series of log-linear and
log-multiplicative models developed for gender segregation research (Charles and
Grusky 1995, 2004; Weeden and Serensen 2004:254-257). Because a formal presenta-
tion of these models is available elsewhere, we will focus on their conceptual logic
and introduce each model in the context of the substantive question it addresses.

How Much Field and Prestige Segregation Is There?

Model 1, a model of conditional independence, provides a baseline estimate of the
total gender-related association in the data. This model fits main effects of gender,
field, and prestige and the interaction of prestige and field but does not allow
for prestige or field segregation. Not surprisingly, it fails to fit either the relative
(columns 1-3) or absolute (columns 4-6) prestige arrays, indicating substantial
gender-related association in the data (see Table 2).

The next two models are scaled association models that assume just one form
of segregation, without assuming segregation on the other dimensions: Model
2 assumes field segregation but not prestige segregation, and model 3 assumes
prestige segregation but not field segregation. Both models improve fit relative to
conditional independence. Model 2 (field segregation) reduces the log-likelihood
(L?) by 63,356 with the expenditure of 40 degrees of freedom (df) and accounts
for 96 percent (relative prestige array) to 97 percent (relative prestige array) of
the residual association under conditional independence (see model contrast 1,
Table 2). The Bayesian Information Coefficient (BIC) becomes negative, where
smaller values indicate better fit. Applied to the relative prestige array, model 3
(prestige segregation) reduces L?by 6,426 (12 df) and accounts for 9.7 percent of the
residual association; fit to the absolute prestige array, the reduction in L? is 6,229
(10 df), corresponding to a 9.5 percent decline in the test statistic of model 1 (see
model contrast 2, Table 2).

Model 4 is a scaled association model that allows for field and prestige segrega-
tion simultaneously and estimates prestige segregation scale values (for example)
that are purged of the field by gender and field by prestige associations.” A negative
prestige scale value for top 10th percentile programs would indicate that men are
overrepresented in top 10th percentile programs, adjusting for the overrepresen-
tation of men in engineering and the comparatively large size of elite engineering
programs compared to elite programs in fields in which women are overrepresented.
As we show in Table 2, model 4 reduces Lzby 171 (12 df) in the relative prestige
array and by 109 points (9 df) in the absolute prestige array compared to the field
segregation model (see model contrast 3, Table 2). For the relative prestige array,
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Table 2: Fit statistics for basic log-multiplicative models of field and prestige segregation.

Relative Prestige Absolute Prestige
(10 Decile Groups + 3 Unranked) (7 Prestige Buckets + 3 Unranked)
A. Models L2 d.f. A BIC L2 d.f. A BIC
1 Conditional 66,086 532 16.6 59,215 65,602 409 16.6 60,319
independence
2 Field segregation 2,729 492 2.7 -3,625 2,245 369 22 -2,521
3 Prestige segregation 59,660 520 15.8 52944 59,373 400 16.5 54,206
4 Field and prestige 2,559 480 2.5 -3,641 2,136 360 2.1 -2,514
segregation
4* Model 4, equivalence 2,572 482 2.5 -3,653 2,151 362 2.1 -2,524
constraint in
unranked programs
5a Math skill groups and 21,124 516 8.9 14,460 20,588 396 8.8 15,473
prestige segregation
5b Verbal skill groups 48,609 516 14.0 41944 48,510 396 14.0 43,395
and prestige
segregation
Explained Explained
Change Change variability Change Change Change variability Change
B. Model Contrasts inl2 ind.f. (%) inBIC inl2 ind.f. (%) in BIC
1 Field segregation 63,356 40 95.9 -62,840 63,356 40 96.6 -62,840
(model 2 vs. model 1)
2 Prestige segregation 6,426 12 9.7 -6,271 6,229 9 9.5 -6,113
(model 3 vs. model 1)
3 Net prestige 171 12 6.2 -16 109 9 49 7
segregation (model 4
vs. model 2)
4 Net field segregation 57,101 40 95.7 -56,585 57,237 40 96.4 -56,720
(model 4 vs. model 3)
5 Constant segregation 13 2 0.5 -12 15 2 0.7 -11
in unranked
programs (models 4*
vs. model 4)
6 Math skill segregation 38,536 4 64.6 -38,485 38,785 4 65.3 -38,733
(model 5a vs.
model 3)
7 Verbal skill 11,052 4 18.5 -11,000 10,863 4 18.3 -10,811

segregation (model
5b vs. model 3)

A measures the percentage of cases misclassified under the relevant model.
NOTES: Data are from the IPEDs, 2003—2014. Relative prestige N = 406,721; Absolute prestige N = 406,726.

the value of BIC is smaller for model 4 than for model 2, meaning that model 4 is
preferred by this test of model fit. For the absolute prestige array, however, BIC is
slightly larger (6.8 points) for model 4, meaning the more parsimonious model 2 is
preferred (Raftery 1995).
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We also test the contribution of segregation within the unranked programs
to overall prestige segregation by constraining the scale values corresponding to
the three Carnegie types to equivalence (see model 4%, Table 2). These constraints
yield small but statistically significant reductions in the fit of model 4 applied to
the relative prestige array (L2test statistic = 13.4, 2 df) and the absolute prestige
array (L2 test statistic = 15.3, 2 df). BIC, however, prefers the more parsimonious
model 4* over model 4 or model 2, even for the absolute prestige array. Because the
two criteria for model selection are ambiguous, we will continue to differentiate
the unranked categories in later models. We note, though, that most prestige
segregation occurs among ranked programs.

What Is the Pattern of Field Segregation?

Figure 1 graphs the field segregation scale values from model 4 applied to the
relative prestige array; scale values estimated from the absolute prestige array are
nearly identical (r = 0.98). Scale values greater than zero indicate female overrepre-
sentation relative to the average field, and scale values less than zero indicate female
underrepresentation. The greater the absolute magnitude (positive or negative) of
the scale value, the more segregated that field is relative to the average. These scale
values show the same pattern that has been found in prior research (e.g., England
et al. 2007), so we will not discuss them in depth here.

We assess the association between field segregation and skills by estimating
models that fit prestige segregation, the two-way association between fields and
prestige, and the two-way associations between gender and math skill groups
(model 5a) and gender and verbal skill groups (model 5b). Applied to the relative
prestige arrays, these models show that 64.6 percent of field segregation is associated
with math skills and only 18.5 percent with verbal skills (see model contrasts 6 and
7, Table 2); these values are much the same in the absolute prestige array. This
strong association between segregation and math skills is greater than the estimated
association between segregation and the humanities-STEM divide in undergraduate
education found in other research (Barone 2011), although differences in measures
and methods can’t be ruled out.!”

What Is the Pattern of Prestige Segregation?

Figure 2 graphs the prestige segregation scale values from model 4, fit to the relative
prestige array. The scale values, which have the same interpretation as those in
Figure 1, show that men are overrepresented in programs in the top three deciles but
especially in the top decile. Women’s representation increases toward the middle of
the prestige distribution, reaching its peak (among ranked programs) in the 71-80th
percentile bucket.!! Men’s representation increases in the bottom two prestige
groups, such that these two deciles show male overrepresentation (i.e., scale values
below 0), although not to the same extent as male overrepresentation in the top
two decile groups. This modestly curvilinear pattern breaks down in unranked
programs, where women are overrepresented, in particular in the lower research or
nonresearch universities ('DRU/S/Q"). The latter is, we suspect, partly a function
of the large number of programs and graduates in psychology in the DRU/S/O,
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Figure 1: Pattern of field segregation among U.S. doctorates, 2003—2014.

Notes: Data source: IPEDs 2003-2014.

many of which are likely in clinical practice rather than research. Unfortunately,
we cannot differentiate clinical and research psychology PhDs using the IPEDs
data, but weighting Psychology out of the analyses eliminates the spike in female
overrepresentation in the DRU/S/O category.

A different pattern emerges when we apply model 4 to the absolute prestige
array (see Figure 3). As in the relative prestige arrays, men are overrepresented in
the top prestige groups, although this overrepresentation is slightly lower in the
top five programs than in the sixth through 10th ranked and 11th through 15th
ranked programs. Women’s representation increases as ranking declines, and in
the lowest-ranked group (i.e., programs ranked 31st or higher), women are slightly
overrepresented. Consequently, the absolute prestige array shows no evidence
of the curvilinear pattern revealed in the relative prestige array (compare Figures
2 and 3). This difference emerges because the lowest absolute prestige bucket
is a heterogeneous mix of middle-status programs (in fields with many ranked
programs) and low-status programs (in fields with few ranked programs).
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Figure 2: Pattern of relative prestige segregation among U.S. doctorates, 2003-2014.

Notes: Lighter shaded bars a
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How Does Prestige Segregation Vary across Fields?

Model 4 may, of course, mask cross-field variation in both the strength and the
pattern of prestige segregation. To estimate variation in the strength of prestige
segregation across fields, we fit a shift effect model (model 6; see Xie 1992; Weeden
and Serensen 2004, model 8.6) that assumes generic patterns of field and prestige
segregation but allows the strength of prestige segregation to vary across fields.
Model 6 captures cross-field variability with 41 field-specific "shift effects,” which
stretch out (in fields with stronger prestige segregation) or contract (in fields with
weaker segregation) the common pattern. It improves the fit of model 4, reducing
the L?by 1,197 (40 df) in the relative prestige array and 1,057 L?(40 df) in the
absolute prestige array (see model contrast 9, Table 3); BIC also declines by 680.4
and 530.2 points, and indeed by the BIC criterion, model 6 is preferred over all
others. Substantively, the model contrasts imply that just less than half (1,197
/ 2,558 = 0.468 and 1,057 / 2,136 = 0.490) of the residual association in model
4 is attributable to cross-field differences in the strength of prestige segregation,
assuming a common pattern. We will discuss specific field-level differences in
segregation in the context of our final model, below.
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Figure 3: Pattern of absolute prestige segregation among U.S. doctorates, 2003—2014.

Notes: Lighter shaded bars are unranked programs. Data source: IPEDs 2003-2014.

To assess how much of this cross-field variation is associated with math and
verbal skills, we estimate variants of model 6 that replace the 41 field shift effects
with five shift effects, one for each math skill group (model 7a) or verbal skill group
(model 7b). The fit statistics of these models show that little cross-field variation in
the strength of prestige segregation maps is attributable to skills. For example, in
the relative prestige array, model 7a (math skills) yields an L? reduction of 181.9 (4
df) from model 4 (see Table 3, model contrast 6), compared to the L2 reduction of
1,197 (40 df) when all 41 field-specific shift effects are fit. Put differently, math skills
account for about 15 percent (182 / 1,197 = 0.152) of the total field-level variation in
the strength of prestige segregation, while verbal skill shift effects account for about
22 percent (265 / 1,197 = 0.221). Skill shift effects capture slightly more cross-field
variation in the absolute prestige models, but never exceed 27 percent. Field-level
skills thus contribute only modestly to observed differences in the strength of

prestige segregation.
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Table 3: Fit statistics for multiplicative shift effect models of prestige segregation.

Relative Prestige Absolute Prestige
(10 Decile Groups + 3 Unranked) (7 Prestige Buckets + 3 Unranked)

A. Models L2 d.f. A BIC L2 d.f. A BIC
4 Field and prestige 2,559 480 2.5 -3,641 2,136 360 2.1 -2,514

segregation
6 Model 4 + field shift effects 1,362 440 1.9 —4,321 1,089 320 15 -3,044
7a Model 4 + math skill 2,377 476 24 -3,771 1,915 356 2.0 2,683

shift effects
7b Model 4 + verbal shift effects 2,294 476 24 -3,854 1,849 356 2.0 -2,749

Explained Explained
Change Change variability Change Change Change variability Change

B. Model Contrasts inL2 ind.f. (%) inBIC inL2 ind.f. (%) in BIC
8. Field shift effects on prestige 1,197 40 46.8 -680 1,047 40 49.0 -530

segregation

(model 6 vs. model 4)
9 Math skill shift effects 182 4 15.2 -130 221 4 21.1 -169

on prestige segregation

(model 7a vs. model 4)
10 Verbal skill shift effects 265 4 222 -214 287 4 27.4 —-235

on prestige segregation
(model 7b vs. model 4)

A measures the percentage of cases misclassified under the relevant model.
NOTES: Data are from the IPEDs, 2003—2014. Relative prestige N = 406,721; Absolute prestige N = 406,726.

How Do Fields Vary in Their Pattern of Segregation?

The residual association in model 6 implies that slightly more than half of the
cross-field variation in prestige segregation occurs in the underlying pattern of
segregation. To explore these cross-field variations, we fit a saturated model that
we parameterize to pull out cross-field variations in the strength of prestige segre-
gation. We fit this model to the relative prestige array, given it is better at capturing
heterogeneity among the lower-prestige programs. The saturated model generates
574 estimated parameters, which we present in online supplement Table S3 and
graph for six illustrative fields in the humanities, social sciences, and sciences in
Figure 4. The "phi" values indicate the overall strength of segregation, and the
graphed scale values indicate the pattern. So, for example, English (Figure 4a) has
comparatively weak segregation (phi = 0.23) but a fairly linear pattern of segre-
gation, with male overrepresentation in top programs and female representation
increasing in lower-ranked programs, whereas Sociology (Figure 4d) has a mod-
erate level of segregation (phi = 0.47) but near gender parity in the top-ranked
programs, male overrepresentation in lower-ranked programs, and strong female
overrepresentation in unranked programs.

To facilitate interpretation across all 41 fields, we classify each field-by-prestige
cell as male-dominated if men are overrepresented by a factor of 1.05 or greater,
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Figure 4: Prestige segregation scale values from saturated model, selected fields.

Notes: Phi indicates the overall strength of segregation, and positive values indicate female overrepresentation. Lighter shaded bars are

unranked programs. Data source: IPEDs 2003-2014.
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female-dominated if women are overrepresented by a factor of 1.05 or greater,
and neutral otherwise (Weeden and Serensen 2004). The saturated model shows
that women are underrepresented in the highest prestige programs in most, but
not all, fields. More specifically, top decile programs are male-dominated in 27 of
the 41 NRC-ranked fields, female-dominated in four fields (Spanish, Biomedical
Engineering, Materials Engineering, and Geography), and gender-neutral in the
remaining 10 fields, according to our rule-of-thumb classification. However, this
tally masks differences across fields in the extent of male overrepresentation in the
highest prestige programs. For example, male overrepresentation in the top decile
programs is quite strong in Economics (Figure 4c), where men are overrepresented
by a factor of 1.27, and Mathematics (Figure 4e), where men are overrepresented by
a factor of 1.48; by contrast, female overrepresentation in the top decile programs
ranges from 1.08 (Spanish) to 1.16 (Biomedical Engineering). And, among the four
fields in which top decile programs are female-dominated, only in Biomedical
Engineering are women also overrepresented in the second decile program.

Women’s underrepresentation in low-prestige programs is much less robust
across fields. Using the same rule-of-thumb characterization of field-specific pro-
gram cells, we find that 14 low-prestige programs are male-dominated, eight are
gender-neutral, and the remaining 19 are female-dominated. Put differently, the
curvilinear pattern of prestige segregation observed in Figure 2 is far from universal
across fields. Finally, the saturated model illustrates the comparatively weak rela-
tionship between field skills and prestige segregation. Figure 4 shows, for example,
that although women are overrepresented in the bottom two deciles in Mathematics
(Figure 4d) and Economics (Figure 4e), two math-intensive fields, they are also un-
derrepresented in the bottom two deciles in History (Figure 4c), a verbal-intensive
field.

Discussion

This article provides a systematic, multidimensional analysis of field and prestige
segregation by gender in doctoral education using a unique matched data set that
we constructed from the IPEDs, NRC, and GRE. We show that field segregation in
doctoral education is pronounced, follows a similar pattern as field segregation at
the baccalaureate level, and is strongly associated with field-level skills. Indeed,
close to two-thirds of the net association between gender and field is captured by
a five-category measure of math skills.By contrast, Barone (2011) found that less
than half of gender segregation by undergraduate field of study is attributable to
the humanities-STEM divide. This disparity could, of course, reflect differences
in the student populations (primarily undergraduate vs. exclusively graduate), in
the measures of skill, or in modeling strategies. If there is indeed more skill-based
gender segregation in graduate education than in undergraduate education, the
sources of these disparities warrant further research.

Our core result, though, is that prestige segregation is weaker than field segrega-
tion but substantively important. On average, between 11 and 13 percent of female
doctoral students would need to "trade" programs with men in order to eliminate
prestige segregation (Table 1). Averaged across all fields and adjusting for field
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segregation, men are overrepresented in the highest-prestige programs by a factor
of 1.06. In many fields, however, male overrepresentation in the highest-prestige
programs is substantially higher and in the most segregated field (Mathematics)
approaches 1.5 (see Figures 2 and 3; online supplement Table S3). A six percent
male advantage in elite representation in the average program, up to a 50 percent
advantage in some especially prestige-segregated fields, is a nontrivial gender
disparity.

We also found some evidence, albeit less robust, of a curvilinear pattern of
segregation: averaged across fields, men are overrepresented in low-prestige pro-
grams as well as in high-prestige programs. This pattern does not characterize all
fields, and it breaks down in the unranked programs, where women are strongly
overrepresented. Moreover, although there is significant cross-field heterogeneity
in both the strength and the pattern of prestige segregation, prestige segregation
does not map onto field-level skills. For example, math-intensive disciplines do not
necessarily have more prestige segregation than verbal-intensive disciplines, nor
are they more likely to evince the curvilinear pattern shown in Figure 2.

How can these patterns of prestige segregation be understood with respect to the
potential sources of prestige segregation? Like most quantitative studies of gender
segregation, our data are at the aggregate level and can’t be used to test mechanisms.
We can, however, comment on whether the aggregate patterns we observe are
consistent with aggregate patterns implied by the five social processes: self-selection
based on observed ability, self-selection based on self-assessed ability, self-selection
based on prestige-linked program attributes, prestige-linked admissions decisions
by the programs themselves, and gender-specific attrition.

The overrepresentation of men in the highest prestige programs is broadly
consistent with all of the posited mechanisms at the point of admissions. However,
we did not find evidence that prestige segregation is higher in math fields, as
is anticipated by the "measured ability" argument (given larger gender gaps at
the right tail of the distribution on observed measures of math ability than of
verbal ability). Men’s overrepresentation in the top programs—and the absence of
strong skill-based variation across fields in this pattern—is more consistent with
self-selection based on perceived ability, at least under the assumption that there
is a generalized cultural belief that men are better at all higher cognitive tasks,
not just math-related tasks. However, it’s also consistent self-selection based on
prestige-linked program attributes or prestige-linked admissions decisions.

The curvilinear pattern of segregation is more of a puzzle. At first blush, it’s
tempting to attribute this pattern to greater male variance in ability. This explanation
falls short, though, if the pool of applicants to graduate school is drawn from the
right side of the distribution on easily observed measures of ability and achievement
and on the unobserved measures with which they are correlated. Moreover, the
variance of GRE scores within fields is not greater for men than it is for women
(ETS 2001, 2008). Similarly, the curvilinear pattern is not consistent with selection
based on self-assessed ability, which predicts the clumping of women of high ability
in lower-ranked programs. It is more consistent with MSC, which argues that
low-status organizations have little to lose by failing to conform, and middle-status
programs are most likely to conform to institutional pressures to diversify. However,
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MSC does not predict women’s overrepresentation in unranked programs, nor does
it anticipate the substantial variation in the curvilinear pattern across fields. The
curvilinear pattern of prestige segregation certainly bears further investigation, not
only to understand why it emerges but also to understand why it is stronger in
some fields than others.

Regardless of its source, the basic pattern of prestige segregation will be familiar
to students of gender inequality: women are underrepresented among graduates of
programs that most often lead to the higher paying, higher prestige jobs. This pat-
tern has obvious implications for efforts to address gender inequality in the STEM
workforce, including academia. Indeed, representatives of elite STEM departments
have long claimed that a barrier to diversifying the faculty is the shortage of women
(and minority) PhDs from status-equivalent institutions (e.g., Hopkins 2006). Our
results show that in most fields, the tacit assumption—that elite PhD pipelines
are more male-dominated than average PhD pipelines—is on the mark. From a
policy perspective, this implies that efforts to diversify the faculty at elite research
institutions must be complemented by efforts to reduce prestige segregation at the
doctoral level.

Our analysis also holds two lessons for research on gender segregation in higher
education. First, the near exclusive focus in the theoretical literature on the social
psychological, macroinstitutional, and cultural antecedents of segregation might
usefully be supplemented with attention to the organizational antecedents of segre-
gation. In particular, degree-granting programs and universities are organizational
actors that operate within local status orders and within institutional rules that en-
courage status-seeking admissions practices (Sauder and Lancaster 2006; Espeland
and Sauder 2007; Stevens 2007). Second, as important as fields of study are for
understanding the experiences of men and women in higher education, they do not
capture all the ways that men and women’s experiences in higher education, even
within a given education level, differ. There are many other structural positions in
higher education—including but not limited to program prestige—across which
men and women may be segregated, potentially with important consequences for
gender inequality in higher education.

Notes

1 We exclude for-profit graduate programs, professional degrees, business degrees, and
education degrees from our analysis. The processes that lead to segregation in these
programs likely differ from those that lead to segregation in research fields.

2 We don’t make claims about the source of gender differences in GRE test scores. We
note, however, that these gender differences are probably affected by self-selection into
the test, which may in turn be affected by gender-differentiated perceptions of the payoff
to a PhD and labor market alternatives.

3 If women hold themselves to stricter standards than men, in theory women could
self-select out of the graduate school applicant pool altogether. We see little evidence of
this in aggregate data on GRE takers: in 2001 and 2002, nearly 60 percent of GRE test
takers were women, which exceeds their share of doctoral recipients in the late 2000s.
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4 Given suitable data, it would be possible to estimate how much of the gender—prestige
association is captured by funding, faculty gender composition, and other program
attributes. The IPEDS contains some of these measures for universities but not for
individual programs within universities.

5 We use "status" in this section to be consistent with the MSC literature but assume status
and prestige are interchangeable.

6 Field segregation changed very little over this period (NSF 2015b:4; see also England et.
al 2007). We assume the same is true of prestige segregation.

7 The NRC ranks six PhD programs at the Uniformed Services University of Health
Sciences, which does not report to IPEDS.

8 Discretizing the GRE scores allows for nonlinearities in the relationship between each
type of skill and prestige segregation and simplifies the presentation of the models.

9 Because we will discuss model 4’s estimates at length, we give its formula as follows:
Mijp = ocﬁ,-'yj(sk/\ike‘f’(zf”f)e‘p(zf‘/k), where i indexes field, j indexes sex, k indexes prestige
group, ¢ captures the strength of field segregation, y i are the scale values that define
the pattern of field segregation, i captures the strength of prestige segregation, and the
v k are prestige scale values that the pattern of prestige segregation. Scale values are
identified under the standard normalization constraint of zero mean and unit variance.

10 Barone (2011) uses a rule-of-thumb, binary indicator of whether a field is humanities or
STEM.

11 The dip in the scale value for the sixth decile is present in supplementary analyses we
conducted to check robustness: weighting out Psychology, excluding the 284 unmatched
programs, and imposing equality constraints on segregation in the three unranked
programs. Estimates from the saturated model (see below; also online supplement Table
S3) show that in most fields, the sixth decile is female-dominated or gender-neutral, but
in a handful of fields it is heavily male-dominated.
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