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Abstract 

Results o(tr(XA)]/OX :=A' , o[tr(X'B)J/ax ;::; B and o[tr(AX'BXC)]/dX 
-- - - - - ,-.1 -- --- -

~ BXCA + B1XA'C' are derived. 

Numerous results on matrix differentiation useful in statistics are given 

in Neudecker [1969] and the papers that he cites. However, the following simple 

results are additionally useful. 

Define X = [x . . } and A = fa .. } so that AX is square. Then 
- ~J - ~J 

and so 

Now define 

tr(~) = EL.x .. a .. 
~J J~ 

=a .. 
Jl 

~tr(XA) ~f f~r{XA)l 
0{{ -- LC)x.. - ... J - lJ 

(1) 

(2) 

i.e., o[ tr(XA) ]/::>,X is defined as each element of X replaced by the differential - - -
of tr(~) with respect to that element. Then by (1) 



. ~· 
, -2-

~tr (XA) = [a .. } "' A' 
-:\X -- J1 

( 3) 

Similarly, for~~~ being square, 

tr(~·~) = tr(BX') = tr(~~·) 

and so by (3) 

" .:._tr(X'B) = B 
~X - -

(4) 

Finally, for AX'BXC being a square matrix, -- ---
tr(AX'BXC) = tr(XCAX'B) "'tr(X'BXCA) -- --- ---- - - ----

so that application of both (3) and (4) gives 

;, 
~t~(AX'BXC) = (CAX'B)' + BXCA = B'XA'C' + BXCA 
~ -~ --- --- ~ ---- - -- - (5) 

Numerous special cases of (5) can be imagined, as well as obvious extensions to 

products involving X and X' more than once. 

In all cases of (3), (4) and (5) it is easily seen from conformability 

considerations that the dimensionality implied by (2) is always maintained. 
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