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Abstract

Due to the advancement in Interenet, auctions are increasingly used not only in
distribution but also in procurement in supply chain. We study a reverse auction in
which a buyer procures a single unit of good or service from one of many competing
sellers through auctions. Sellers have i.i.d. costs. We show that the buyer should
prefer the second-price auction to the first-price auction. In the first-price reverse
auction, there are multiple symmetric equilibrium bidding strategies. The symmetric
bidding strategy in the second-price auction has a unique equilibrium, at which the
expected cost to the buyer is less than or equal to the expected cost at any of the
multiple equilibria of the first-price auction. If the first-price auction is used, the buyer
should use a reserve price to eliminate the multiplicity of the symmetric equilibrium
bidding strategies, and should select it so as to strike an optimal balance between the
expected price and shortage cost. These findings contrast with the results found in
forward auctions, which is shown by a classical auction theory to have the uniqueness

of symmetric equilibrium bidding strategy in the first-price auction.



1 Introduction

With the rise of Internet and electronic commerce, auctions are increasingly used to deter-
mine prices and to allocate resources. Auctions can be administered fairly and efficiently
online, eliminating costly negotiations due to their clearly defined rules. The use of auctions
is not limited to the transfer of goods among end-users (as in the case of art and antiques),
but also includes supply chain management. Auctions are used to distribute goods from
upper-echelon producers to lower-echelon dealers and consumers. For nearly a century, the
floral industry has been running auctions, participation of which is now available through the
Internet (e.g. BloomAuction.com in Canada). Electronics manufacturers and distributors
increasingly rely on auction sites such as eBay.com to liquidate their products.

Auctions are also increasingly used in the procurement side of a supply chain. For
example, Covisint and Fast Buyer, business-to-business solution and product providers for
the automobile industry founded by OEM’s, provide online auction services. These auctions
can be originated not only by a seller (in a forward auction), but also a buyer (in a reverse
auction). In a reverse auction, a buyer sets up an auction, specifies an auction type, and
notifies qualified suppliers to submit bids. Another application of auctions in procurement
is the U. S. Government who uses reverse auctions to award contracts among competing
bidders.

Although reverse auctions are commonly used, surprisingly little amount has been written
about them in auction literature. The auction literature is almost entirely written for a
forward auction, and asserts that a reverse auction has equivalent properties. The equivalence
does indeed exist, but it is a mathematical one. In a reverse auction, a bidder is a seller and
prefers any price greater than his cost to losing his bid; in a forward auction, a bidder is a
buyer, and wants to pay less than his value of the object. The range of acceptable prices
to a bidder is unbounded in a reverse auction, but is bounded in a forward auction. This
difference is due to the existence of an implicit reserve price of zero in a forward auction,

since both values and bids have to be nonnegative. In a reverse auction, there is no fixed



natural reserve price, and bids can be arbitrarily high. The buyer is contractually bound to
pay the price determined by the price-determining mechanism and the set of bids.

This assymmetry results in significant supply chain implications, particularly in the de-
sign of sealed-bid reverse auctions. Only a handful of papers (e.g. Carey (1993)) have been
written about reverse auctions. In reverse (forward) auctions, the seller (buyers) with the
lowest (highest) bid wins the object. There are two common methods of determining the
price of the object. In the first-price reverse (forward) auction, the price is the same as
the winning bid; in the second-price reverse (forward) auction, the price is given by the
lowest (highest) losing bid. The buyer in a reverse auction often has the power to design
the auction mechanism. Suppose that the U. S. government sets up an auction to procure
a certain service. It is reasonable to assume that each bidder willing to provide this service
has an independent and identically distributed cost. Then, is the risk-neural expected cost
to the government irrelevant to the type of a sealed-bid reverse auction chosen? Does setting
buyer’s reserve price have any impact? Suppose now that an automobile plant wants to buy
a new press. Which type of auction should be used to attain the lowest expected cost? These
are some of the questions addressed in this paper.

This paper makes the following strategic implications for the buyer who wants to procure
using an auction. First, when there is no reserve price, the buyer should prefer the second-
price auction over the first-price auction because the second-price auction admits only one
symmetric equilibrium for bidding strategies. Thus, in the second-price auction, the behavior
of bidders is more predictable and stable. Furthermore, the (unique) expected payment by
the buyer in the second-price auction is less than or equal to any of the multiple equilibria
for the first-price auction. Second, if a first-price reverse auction is used, the buyer should
set a reserve price. The existence of the reserve price eliminates the multiplicity of bidding
strategies. Third, in reverse auctions, the reserve price should be determined to strike the
optimal balance between the expected price and the shortfall probability. Depending on
the shortage cost, setting the reserve price below the buyer’s shortage cost may prove to be

optimal.



In this paper, we study single-unit single-period sealed-bid reverse auctions in which
bidders are symmetric and have independently and identically distributed private costs. In
particular, we examine first-price and second-price reverse auctions. For a first-price reverse
auction, we derive symmetric bidding strategies by the sellers and the buyer’s expected
payment, and examine the impact of the seller’s reserve price. The first-price reverse auction
is compared with the second-price reverse auction.

The main contribution of this paper is to articulate how designing a first-price auction
for procurement is different from designing it for distribution. In each of the first-price
and second-price forward auctions, Milgrom and Weber (1982) show that there is a unique
symmetric equilibrium. The much-celebrated Revenue Equivalence Theorem due to Vickrey
(1961) and its generalizations due to Myerson (1981) and Riley and Samuelson (1981) imply
that the expected revenue to the seller is the same in the first-price and second-price for-
ward auctions. Based on literature, the buyer may be tempted to draw an analogous result
in setting up a reverse auction. Klemperer (2002) warns that poorly understood economic
theory may find inappropriate applications and yield unexpected results. We show that in
the reverse first-price auction, in general, there are multiple symmetric Nash equilibria for

bidding strategies. !

Each of these bidding strategies corresponds to a distinct expected
payment by the buyer. The first-price reverse auction bidding strategy, corresponding to the
lowest payment by the buyer, has the same expected payment as the (unique) bidding strat-

egy of the second-price reverse auction. In the second-price reverse auction, by comparison,

! The multiplicity of equilibrium bidding strategies in first-price reverse auction exists because the sellers’
bids have an unbounded support. One may argue that it is not a reasonable model since there is a finite
amount of money in the world. This has merit if one adopts a purely mathematical point of view grounded
in the auction theory. However, we believe that considering an unbounded support might be useful for the
following reasons: First, the value of the object is often very small compared to the amount of money the
buyer possesses. In this situation the seller might perceive that the buyer has an essentially infinite amount
of money and take action according to this perception. Second, distributions with an unbounded support
such as an exponential distribution are commonly used in operations literature. Third, in real auctions (such

as the electricity market), we observe very large bids, which cannot otherwise be adequately explained.



a simple extension of Vickrey (1961) shows an analogous result in the first-price auction that
bidding one’s own cost is a dominant strategy of every seller.

The second contribution is to study the impact of the buyer’s reserve price in eliminating
the multiplicity of bidding strategies, as well as maximizing the buyer’s cost. Such benefits
are consistent with a recent trend in the automobile industry. More buyers are setting reserve
prices when they originate auctions, following Covisint’s recommendation. Furthermore, we
remove a widely-used restriction in classical auction theory, which, in a reverse auction,
translates to an assumption that the penalty cost to the buyer for failed procurement falls
within the support of sellers’ costs. In the supply chain context, the buyer’s shortage cost is
often much more expensive than the cost of production. We show that even if the penalty
cost is higher than the highest possible cost by the seller, it may still be profitable for the
buyer to set the reserve price less than the maximum cost.

The third contribution is to allow the distribution of sellers’ costs to have a support that
is not bounded above, as in an exponential distribution. Such a general modeling assumption
is very common in operations research and operations management literature. Yet, auction
literature has almost always assumed an upper bound for distributions of costs. (In forward
auctions, this assumption translates to the existence of a lower bound on buyers’ values,
which is reasonable for the sale of an object.) Since the support of costs is not bounded
above, neither the support of bids nor the support of the payment by the bidder is bounded
above. It is the first paper, to our knowledge, that introduces such generalizations to the
auction theory.

In Section 2, we develop theoretical properties of the first-price reverse auction, including
bidding strategies, expected buyer’s payment, and optimal reserve price of the buyer. These
findings are illustrated using an exponential cost distribution in Section 3, and a uniform

cost distribution in Section 4.



2 Reverse Auction

2.1 Model

In a reverse auction, the buyer wants to procure an indivisible object from one of N > 2
sellers. Seller # = 1,--- , N has a nonnegative private cost c; of production, having a p.d.f.
fi, c.d.f. F;, and a continuous support. Denote the smallest of the infima of these supports
by ¢, which is nonnegative. Seller ¢ submits a nonnegative bid b;, and the buyer buys the
object from the highest-bidding seller. The price equals the lowest bid in the first-price
reverse auction, and equals the second-lowest bid in the second-price reverse auction.

We study the bidding behavior of the seller 7 as a function of his cost ¢; given the distri-
bution of others’ bids. The seller ¢’s problem is to choose his bid b; as to maximize expected
profit, which is the product of the probability that he wins the bid and the conditional ex-
pected price minus the cost of production given that he has won the unit. Alternatively, since
the probability p; that seller 7 submits the winning bid is a nondecreasing function of his bid
b;, it is convenient to consider bid b;(p;) as a function of probability p;. (We define b;(p;) the
smallest bid such that the probability that 7 wins the bid is at least p;.) The expected profit
associated with seller i’s choice of p; is e;(p;) — ¢; - p; where e;(p;) is the expected payment
to i. (In the first-price reverse auction, e;(p;) = b;(p;) - pi — ¢; - pi.) Let pf(c;) minimize the
expected profit function e;(p;) — ¢; - p;.

If e; is differentiable, the first-order condition of the expected profit yields

e;(p; (ci)) = ci. (2.1)

In general, either (2.1) or a limit argument shows

i) = elpi() + [ " dpt(w). (2.2)

9
This is a mathematical expression of the Revenue Equivalence Theorem. Now, (2.2) depends
on the auction mechanism used only through p; and e;(pf(c)). A reverse auction is efficient if

the seller with the lowest cost wins the bid. All efficient reverse auctions have a common pj.



Thus, all efficient symmetric bidding strategies with the same expected payment e;(p;(c))
given that seller i’s cost is ¢, have the same expected payment by the buyer.

In the second-price reverse auction, bidding one’s cost is the dominant strategy. Thus,
e;(pf(c)) equals to the second lowest cost of sellers given that seller i’s cost is at the lowest

possible value ¢. This value of e;(pf(c)) specifies the unique solution to (2.2).

2.2 First-Price Reverse Auction and Bidding Strategy

This section computes differentiable bidding strategies in the first-price reverse auction, and
shows that the symmetric bidding strategy is not unique in general.

In the first-price reverse auction, we have e;(p;) = b;(p;) - pi, and el(p;) = b;(p;) + b (i) - pi-
It follows from (2.1),

i —bilpi(a) _ d o _d%bi(p?(ci))
i) ()P = T

Now we switch our notation so that we decide on bids b;(c¢;), the probability p;(b;(c;)) of
winning depends on the bidding function b;(c;). Thus,

L _plble) d
bz(cz) = ¢ %pz(bz(cz)) dCin( Z). (23)

If the bidding function is increasing, then as the cost ¢; increases, the probability p;(b;(c;))
of winning weakly decreases. Thus, bid-inflation occurs; i.e., b;(c;) > ¢;.

Now we find a symmetric bidding strategy 3(-) that maps each seller’s cost to his bid.
(We drop subscript in the bidding strategy 3(-) because sellers employ a symmetric strategy.)
We assume that the private costs of production by each seller has a common distribution
with a finite mean. Let f and F denote the p.d.f. and c.d.f of the cost distribution. It can
be shown that the symmetric bidding strategy ((-) is strictly increasing if it is continuous.
(See Appendix A.) From the strict monotonicity of 3(-), the probability that a bidder wins
the unit is the probability that his cost is lower than the cost of any other bidder. Thus, the

probability p;(b;(c;)) = p(¢;) of winning is a function of cost ¢; only, and this function p(-) is



common for all bidders. Equation (2.3) becomes

pi(c;) d
bZ(Cz) = C— 77— _-" —bz(CZ)
d%pz'(ci) de;
Since there are N — 1 sellers other than ¢, we have

ple) = (1— F()™
d%pxcz-) = (N-1) () (1— F()",

which implies

Ble) =e++ ]61(_0)1) . }(IZ )(C) . (2.4)

We now solve this differential equation. Because ¢ is the infimum of the support of costs,

the solution to the above differential equation (2.4) is given by

B(c) = c — et / e~y + Ce

where C' is some scalar, and

Ale) = /C(N —1). %du = (1— N)log(1 — F(c)).

Thus,

Ble)=c—(1—=F(c))'™" /C(l — Fu))"'du+C(1 - F(c))' V. (2.5)

c

This is a necessary condition for a symmetric bidding strategy. Since A(-) is strictly increas-
ing in cost ¢ within the support of costs, the second term in (2.5) is strictly decreasing.
There is no incentive for bidders to win the auction at the price below their productions
costs. It follows 3(c) > c for all possible ¢, which implies from (2.5) that C has to big enough
to ensure fcc e~ AW dy < C for all ¢ in the support of costs. This condition is satisfied if and

only if

/00(1 — Fu)"ldu < C. (2.6)



If the cost distribution has a bounded support, then the integral is proper, and taken over
the entire support. It can be shown based on the finite mean of the cost distribution that
the improper integral in the above expression is finite.

We denote by S¢c(-) the bidding strategy given by (2.5) and scalar C. If the bidding
strategy fc (+) satisfies Bor(¢) > ¢ and is strictly increasing, then Sen (+) also satisfies Sor (¢) >
¢ and is strictly increasing for all C” > C'. Thus, if a symmetric bidding strategy exists,
then there are multiple symmetric strategies in general. It is clear that higher bids lead to a
higher payment by the buyer, and thus the bidding strategy with the minimal C' is preferred
by the buyer. The minimal C is obtained by replacing the inequality in (2.6) with equality.
It can be shown that the symmetric bidding strategy corresponding to this minimal C' in the
first-price reverse auction yields the lowest possible expected payment by the buyer, which
equals the expected payment in the second-price reverse auction.

We remark the second factor of the integrand of A(c) the density of the hazard rate of

the cost distribution.

2.3 Buyer’s Reserve Price in the First-Price Reverse Auction

This section shows that in the first-price reverse auction, the buyer’s reserve price eliminates
the multiplicity of symmetric equilibrium bidding strategies. Furthermore, if there is no
reserve price, the unique expected payment by the buyer in the second-price auction is less
than or equal to any of the multiple equilibria for the first-price auction. It also shows what
the buyer should set her reserve price.

Suppose the buyer sets a reserve price R beyond which sellers are not allowed to bid, and
R is in the support of sellers’ costs. An analysis similar to the previous section shows that
any symmetric bidding strategy in the first-price reverse auction must satisfy (2.5) where C
satisfies following two conditions. The first condition is Sc-(R) = R. The second condition
is (2.6) where the integral is taken in the support of costs no more than R; i.e. c(c) > ¢ for

all ¢ € [¢, R]. Therefore, the choice of R determines the unique symmetric bidding strategy



by specifying the constant C' = C(R) of integration in (2.5). It follows

C(R) = / (1~ F(u))¥du,

[

and

B (€) = ¢+ (1 F(e))'™ / (1= F(u)Vdu. (2.7)

We observe two properties. First, the second term in the right side of (2.7) decreases in ¢
for a fixed reserve price R. The amount of bid-inflation decreases in the cost of production.
Second, a seller with a fixed cost ¢ will increase his bid as the buyer’s reserve price R increases.

If a seller’s cost is greater than R, then this seller has no incentive to participate in the
auction. Suppose seller i’s cost ¢; equals R. Then, the expected payment received by ¢ is the
product of his bid, which is B(R) = R, and the probability that he wins the bid, which is
the probability that every other bidder’s cost is greater than R. We compare this with the
second-price reverse auction, in which the expected payment received by i is also the reserve
price R multiplied by the probability that he has the lowest cost. Thus, e;(p} (R)) is the same
in both the first-price and the second-price reverse auctions. It follows from (2.2) that the
bid-your-cost strategy of the second-price reverse auction and the bidding strategy Sec(z)(:)
of the first-price reverse auction yield the same expected payment by the buyer, which is a
familiar conclusion of the Revenue Equivalence Theorem.

In the first-price reverse auction, as R increases, the corresponding C'(S) also increases.
Suppose that there exists at least one symmetric bidding strategy for the first-price reverse
auction when there is no reserve price. We have shown that the limit of C'(R) as R approaches
infinity is finite and defined, and we denote it by C(oc0). This is the minimal C' discussed at
the end of the previous section.

If every seller’s cost is greater than R, then the buyer cannot purchase any unit. It occurs
with probability (1 — F((R))". Let L be the penalty cost to the buyer if she fails to procure
the unit. The buyer’s expected cost is the expected price of the object plus expected penalty

cost:

/ Beg (O f™(Q)de + L - F(R))™, (2.8)

10



where (") (c) = Nf(c)(1— F(c))V~' is the density of the minimum of N costs of all bidders
having identical and independent distributions. The first term of (2.8) depends on C in the
bidding behavior (2.5), which in turn is a function of the reserve price R. Thus, the buyer’s

problem is to set the cost of R as to minimize his expected cost (2.8).

3 Exponential Distribution of Costs

This section uses an exponential distribution of costs to illustrate a case where the supports
for the seller’s cost distribution and the buyer’s payment are not bounded.

Suppose the cost c; of each seller ¢ is distributed as an independent and identical expo-
nential distribution with a rate parameter A > 0, i.e. f(x) = )\e_)‘zl[wzo]. Then, the support

of the cost distributions is unbounded.

Lemma 3.1. In first-price auction, if costs are distributed as an exponential distribution

with rate parameter A, then the symmetric bidding strategy is

1

A(N-1)e
)\(N _ 1) + Cle s (39)

Blc)=c+

where C; > 0 specifies symmetric bidding functions which strictly increases and satisfies

B(c) > c. Furthermore, the expected price is

1, 1 GN
AN AN =1) T A

which is at least the expected price of the unique bidding strategy of the second-price auction.

Proof. From (2.5),

ﬂ(C) - ¢c— e)\(Nfl)c /C e*/\(Nfl)udu + Cfue/\(Nfl)c
0

e)\(Nfl)c

— - (1= —A(N-1)c Co A(N-1)c
c )\(N—l)( e )+ Coe

11



for some scalar C, and C; = C, Condition (2.6) implies that C, > [ e ™ du =

1
AN

A(N-1)c

and thus C7 > 0, which is required since e and its derivative can be arbitrarily

X1
large for a large c.

For C; > 0, the bidding strategy () is strictly increasing. The minimum of N exponen-
tial distributions with rate parameter A is distributed as an exponential distribution with
rate parameter AN. Denote the density of this distribution by f®)(c) = ANe ¢, The

expected payment by the auctioneer is

/0 Be)fM(c)de = /OOO cfM(c)de + ﬁ + /OOO AN=De ¢V (0)de

1 1 o0
— N —Ac
)\N+7/\(N—1)+Cl /0 e Cdc
1.1 1 N
- A(N+N—1)+01A

We compare this to the expected payment in the second-price auction. The expected cost of
the minimum of N exponential distributions with rat parameter is AN, and by memoryless
property, the expected cost of the gap between the first and the second order statistic is

m. Thus the expected price in the second-price auction is the expectation of the second
order statistics, which is 1% N + m O

Figure 1 illustrates some multiple symmetric bidding strategies.

Now, suppose the buyer sets a reserve price R > 0. A seller does not participate in the
auction if his cost is greater than R, and setting 5(R) = R specifies C; = —W in
(3.9). The probability that the buyer will fail to purchase any unit is (1 — F(R))Y = e V&

and the expected total cost by the buyer is

/ B(c) c)dc+ L(1 — F(R))Y

_ / f(N ( )d 4 1-— e_ANR + C /R ,\(N—l)cf(N)( )d +L —ANR
= ; C C 7A(N — 1) 1 ; e c)dac €
—ANR

R
1 —
= / ANce *Nede + ¢

R
N A f)\cd L —ANR
A 7)\(]\]_1) + C /0 e c+ Le

12



= = bidw/C1=.1

= = bidw/C1=.01

= = bid w/ C1=.001
bid w/ C1=.0004

==bid w/ C1=.0003

=bhid w/ C1=.0002

=—bid w/ C1=.0001

—hidw/C1=0

Bid

Figure 1: Multiple Symmetric Bidding Functions. There are 6 sellers bidding for sale. Costs

are distributed as an i.i.d exponential distribution with rate parameter 1. See (3.9).

13



. R _ _ —AN¢
Since [;" ANce *ede = [—ce Ve — &8 =

v 1 — e MVE) — Re=ANE the above expres-

1
5
sion becomes

1 — MR ,=A(N-DR

AN —1) MN-1)

(1 — e AVR) _ Re=ANE N(1 — e?B) + Le ™ NE,

AN
We want to find the optimal reserve price R for the buyer. Differentiation of the above

expected total cost yields

Ne AMN-DE. AR+ A — AL —1].

SAN-1)

Since R is strictly positive, and AR + e is strictly increasing in R, the expected

payment is quasi-convex in R. The optimal choice of R satisfies
AR+ M = AL + 1. (3.10)

With respect to R, the right-side is a constant no less than 1, and the left-side increases
strictly from 1 to infinity as R goes from 0 to infinity. Thus, there must be a unique optimal
R satisfying (3.10). Equation (3.10) is equivalent to A(L — R) = e*® — 1, which is strictly
positive for all R > 0. It follows that R < L: the optimal reserve price for the buyer is strictly
less than his shortfall penalty cost. This finding is consistent with the optimal reserve price
result (e.g. McAfee and McMillan (1987)) where the support of costs is restricted to be
bounded.

Figure 2 demonstrates the relationship between the buyer’s reserve price, and the prob-
ability that she will win the auction. When the reserve price is low, the probability of
procuring the object is low. As the buyer increases the reserve price, the probability of
procurement also rises.

The buyer pays the price of the object if purchase is made, and incurs a penalty cost if
she fails to procure an object. In Figure 3, the expected total cost of the buyer, consisting
of the purchase cost and the penalty cost, is given as a function of the buyer’s reserve price,
where N =6, A =1 and L = 0.6. We see that the expected total cost is minimized when
when the probability of purchase is 0.813, which occurs from Figure 2, when the reserve price

is R = 0.28. We can verify that these parameters satisfy the optimality condition (3.10).

14
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0 0.25 0.5 0.75 1 1.25

Reserve Price

Figure 2: Probability of Purchasing vs. Buyer’s Reserve Price. There are 6 sellers bidding
for sale. Costs are distributed as an i.i.d exponential distribution with rate parameter 1.
The lower left corner corresponds to a low reserve price, and the upper corner corresponds

to a high reserve price.
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=Expected Payment
=Total Cost
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Probability of Procurement

Figure 3: Probability of Purchasing vs. Expected Total Cost to Buyer. There are 6 sellers
bidding for sale. Costs are distributed as an i.i.d exponential distribution with rate parameter
1. The penalty cost for failed purchase is 0.60 dollars. The expected cost to the buyer consists

of the expected payment and expected penalty cost.



4 Uniform Distribution of Costs

This section assumes that the seller’s cost has a uniform distribution. It shows that the
buyer’s shortfall penalty cost is higher than the highest possible cost by the seller, and thus
the buyer may set the reserve price less than the maximum cost of the seller, achieving less
than the globally optimal allocation of the object.

Suppose the cost ¢; of each bidder 7 is distributed as a uniform [0,1) distribution, i.e.

f(¢) = 1pp<c<1)- The support of cost distributions is bounded.

Lemma 4.1. Using the uniform [0,1) distribution of costs, symmetric bidding strategies are

given by
1+(N—-1) B
ﬁ(c) — # +C’1(1 _ C)l N’
for some scalar C, > fol e~ AW dy = % and Cy =C, — ﬁ > 0. The expected price is
2
—— + (1N
Nyl &

which is at least the expected price of the unique bidding strateqy in the second price auction.

Proof. For c € (0,1),

Ble) = c—(1— c)’(N’l) /C(l — u)(N’l)du +C,(1—c)¥
(N—1)e 1 1

L oY o, (1= )Y
v TN NlT9T G-
= — — 1—
N + N+C1( c)
for some scalar C, > fo AWdy = L+ and C; = C, — + > 0. Since (1 — ¢)'~V tends to

positive infinity as ¢ approaches 1 from left, we require that C} is nonnegative for §(-) to be

proper. The expected payment made by the buyer is

/01+(N o)de + /01 1N £ (0)de

N
1
- = (N) 7_ (V) — )N, — -
= N/o N (c)de + N /chN(c)dc—i-Cl/O(l )N N1 =)V e
1 N —1

1 9
- Iyt yviev=_2 Lo
Nty ) TON =51 1tO
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We recall that the expected payment of the second price auction, in which bidding at cost
is the unique symmetric equilibrium, is the expected cost of the second order statistic.

Assuming the uniform [0,1) distribution of costs, the expected payment is the expected

N—|—1’
cost of the second order statistics of N uniform [0,1) distributions. O

If there is a reserve price R € [1,00), then the symmetric Nash-equilibrium corresponding
to C1 = 01is unique. The bidding strategy and the expected price do not depend on the exact
cost of the reserve price as long as it is at least 1. Therefore, the existence of an arbitrarily
high reserve cost eliminates the multiplicity of bidding strategies.

If R € (0,1), then it follows from S(R) = R that C; = —(1 — R)". The expected total
cost to the buyer is the sum of the expected payment and the expected penalty:

/ B(O)f™(e)de+ L(1 — F(R)N
‘/fW @+———/cj @+QN/dm¢a—m

Since f™(c) = Ne(1 — ¢)V~1, we have fOR fM(c)de =1— (1= R)N, and fOR cfM(c)de =

[—c(1 -0V — w7 (1 = )"E = —R(1 = R)N — 551 = RN + 5

N1l Thus, the above

N+1-

equations becomes

1-(1-R¥ N-1

N (1— R)N*! 1
N N

N+1 T Nt1

[-R(1 - R)" — ]-1-R"R+L(1-R)".

It can be shown that the derivative of the expected total cost is
(1—R)M"'2NR - (2+ LN)].

Thus, the expected total cost is quasi-convex, and is minimized when the buyer sets

LN +2

R = min{ 5N ,1}.

(N D

We observe that R is at most 1 if the shortfall penalty cost L is at most Even

if the shortfall penalty cost is greater than the supremum of the support of costs (e.g.

L € 1, 2(]\]]\,_1)), we see that it may still be optimal for the buyer to set a reserve price

somewhere in the interior of the support of costs.
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A Appendix

Proposition A.1. In the forward first-price auction, suppose that the supports of the dis-
tribution of costs and the distribution of corresponding bids mapped by a symmetric bidding

strateqy B are continuous. Then, B is strictly increasing.

Proof. Suppose B(c') = B(c") for some ¢ < ¢”. In (2.3), the left side expression as well as
the second term in the right side depends on ¢ only through £(c). By taking the difference
of 5(c') and B(c"), we get ¢’ = ¢” implying the injectivity of £.

Suppose, by way of contradiction, that §(-) is not increasing. Then, there must exist ¢
and ¢” such that ¢/ < ¢’ and 3(c¢') > B(c”"). Since B(c”) maximizes the expected profit of the

bidder given his cost ¢”, it follows that
(B(c") — ") - P[B(c") is the highest bid] > (B8(c') — ¢") - P[B(c) is the highest bid].

From fS(c¢") > B(c’) and the continuity of the support of bids, the probability that B(c¢”) is
the highest bid is strictly greater than the probability that 8(c’) is the highest bid. Thus,

(" = ) - P[B(c") is the highest bid] < (¢" — ¢) - P[B(c) is the highest bid].
By adding two above inequalities, we get
(B(c") = ) - P[B(c") is the highest bid] > (8(c) — ¢') - P[B(c') is the highest bid]

contradicting the optimality of 3(c”). We conclude that 3 is strictly increasing. O
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