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This thesis is mostly concerned with two questions: Is it possible to construct

de Sitter solutions in string theory? How do strings make up spacetime in string

theory? In this thesis, modest progress along those two directions is reported.



BIOGRAPHICAL SKETCH

Manki Kim was born in 1994, in South Korea. His childhood memory is filled

with one of his grandmothers, who was a famous shaman1 in the local community.

When Manki was of age to attend schools, he quasi-permanently moved back to

parents’ house until he attended high school.

Manki’s attention was mostly captivated by computer games although he was

not a good player, until he saw a flyer for a science high school2. As Manki

was in desperate need of living away from his parents, getting accepted into the

science high school became his imminent goal. This was the moment, when Manki

seriously started his study, math and physics in particular.

After graduating the science high school, Manki attended KAIST (Korea Ad-

vanced Institute of Science and Technology) from 2011 to 2016, graduating summa

cum laude with a double major in physics and mathematics. Manki’s initial inten-

tion was to become a mathematician, but he soon realized that he was not gifted

in math. This realization drove his attention away from pure mathmatics to more

down to earth physics.

In 2016, He became a graudate student in physics at Cornell University with

the intention to study flavor physics. But, it was soon clear that he did not

enjoy flavor physics. While he was contemplating quitting physics, he attended

a colloquium given by his current advisor Liam McAllister.3 On the very next

day, Manki switched his field of study and since then Manki kept studying string

theory. Manki will continute his research as a Pappalardo fellow at MIT.

1In Korean, female shamans are called mudang.
2In Korea, science high schools are public boarding schools.
3The title of the colloquium was “The Discrete Character of Physical Law from String Theory

to the CMB.”

iii



This thesis is dedicated to my dearest friends who are more than families to me.

iv



ACKNOWLEDGEMENTS

My research progress for most of the time has resembled a random walk in the

space of ideas in many ways. Without the constant driving force, which has been

pointing towards correctness, provided by my advisor Liam McAllister, I may not

have achieved what I did during the ph.d study. I would like to sincerely thank

Liam for being a great mentor and giving me an opportunity to be his student in

the first place.

Of course, all of this was possible thanks to my first advisor Yuval Grossman,

who encouraged and supported me to follow my heart.

I would like to thank Tom Hartman for giving me countless advices and en-

couragement.

I would also like to thank Csaba Csaki, Maxim Perelstein, Michael Stillman,

Seung Joon Lee for their positive influences on me.

I thank Michael Niemack, although he may not remember, for his very insightful

question “can you compute the mass of electrons in string theory?” This question

has echoed in my head for many days and it still does.

It is not an overstatement to say that I may not have been able to finish my

ph.d study if I had not known my dearest friend Seuk Young Song. With all my

heart, I sincerely thank you for being a great friend.

It would not have been possible to endure my time in Ithaca, if I did not have

the support from my friends. Please forgive me if I failed to write your name. An

incomplete list of friends of mine includes: Cheol Ho Jeon, Eugene Lee, Eunyoung

Go, Miso Myung, Gyutak Kim, Gwan Young Ahn, Dong Hwan Kim, Gowoon

Cheon, Sooyeon Lee, Seungbin Park, Jiyoung Lee, Junghoon Han, YoungJu Jo,

Euijin Jeon, Yoonsoo Bach Park, Kyeong-Ro Kim, Hyeongseop Kim, Shin Kim,

Myungha Lee, Gang Ihn Kim, Daegwang Choi, Rebecca Da-In Choi, Aro Lee,

v



Minsoo Chung, Daeho Kwon.

My time in Ithaca is cherishable because of many friends I met in Ithaca. I

thank Mehmet Demirtas, Jakob Moritz, Naomi Gendler, Andres Rios-Tascon, Ge-

offrey Fatin, Peter Cha, Ibrahim Shehzad, Gowri Kurup, Sungwoo Hong, Gabriel

Lee, Yoonhyung Choi, Kyungsoo Kim, Jongil Kim, Sangwoo Park for being great

friends to me.

I want to specially thank Yikun Jiang, for sharing his passion towards physics.

I trully learned a lot from you.

I was able to learn unique approaches to physics thanks to many of my col-

laborators. I take this as a chance to thank Shamit Kachru, Max Zimet, Gabriel

Wong, William Donnelly, Cody Long.

I cannot thank enough Youngsun Yoon and Sunku Kim for hosting me numer-

ous times whenever I needed some time off in Karlsruhe, Germany.4

I also thank a faculty member, who shall not be named, for saying that I talk

fluently unlike the other Asian students but I am terrible in using the articles.

I cannot thank the physics department enough as the department always

demanded more than reasonable teaching load, especially for the autotutorial

classes5, which well prepared me for the future workload one has to bear as an

academic.

I acknowledge the tremendous effort of Cornell health in fighting depression.

By being hospitalized against my will6, I learned how to eat up the emotion and

4Now I can finally admit that one of the primary reasons to visit Karlsruhe was this one pub
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CHAPTER 1

INTRODUCTION

Our universe on large scale is spatially flat, homogeneous, and isotropic. Not

only our universe is highly symmetric, but it is also expanding at an accelerating

rate. The standard model of cosmology that explains such a large-scale structure of

our universe is the so-called Λ-CDM model supplemented with inflationary initial

conditions.

As a phenomenological model, the standard model of cosmology is a tremen-

dous success.1 But, successful phenomenological models do not always come along

with clean theoretical understanding. In fact, it has been notoriously difficult to

understand the very fundamental assumption or input of the Λ-CDM model, the

positive and small cosmological constant.

Let me illustrate the puzzle, the cosmological constant problem.2 Consider an

effective theory with the cutoff Ecut, and a massive field φ whose mass m is smaller

than Ecut. To compute the contribution to the cosmological constant from φ, one

can compute the vacuum expectation value of the vacuum energy which generically

yields

Λ ∼ O(E4
cut). (1.1)

It should be noted that no matter what the mass and the spin of φ are, the general

expectation (1.1) always holds. Now the trouble comes. Below the energy cutoff

Ecut, there are numerous fields and each of them give O(E4
cut) contribution to the

1Note that the Hubble constant measurements of the present and of the early universe are
in strong tension. This Hubble tension may require a renovated understanding of cosmology.
Even if the modifications to the Λ-CDM model are required, it does not change the fact that our
current universe and inflation are still well approximated by quasi de Sitter solutions.

2More broadly, as we will see, the cosmological constant problem can be understood as an
avatar of the hierarchy problem.
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cosmological constant. This genericity of (1.1) therefore leads to an expectation

that the cosmological constant itself will also be an order of the energy cutoff un-

less one has compelling evidence that numerous contributions to the cosmological

constant somehow conspire to cancel each other.

Let us pretend for a moment that the standard model of particle physics works

up to the Planck scale Ecut = Mpl at which quantum gravitational effects become

unavoidable. (1.1) then tells us that the cosmological constant is evaluated to be

Λ ' 1076 GeV4. (1.2)

Compared to the observed value of the cosmological constant, Λobs ' 10−44 GeV4,

we realize that there is an order 10120 discrepancy between the theoretical expecta-

tion and the observed value. Perhaps, one may argue that this tremendous failure

is due to our arrogance that we know physics all the way up to the Planck scale.

So, let us be more modest and suppose that the standard model of particle physics

works up to the TeV scale. The troubling result is that the expected value of

the cosmological constant is still order of Λ ' 1027 GeV4, which is still 1071 times

bigger than the observed value of the cosmological constant.

Something is awfully wrong.
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1.1 The cosmological constant in string theory

All five approaches have one other thing in common: They show that

any solution of the cosmological constant problem is likely to have

a much wider impact on other areas of physics or astronomy. One

does not need to explain the potential importance of supergravity and

superstrings.

S. Weinberg [335].

It is conceivable that we are off by the factor of 10120 because the cosmological

constant is inherently a quantum gravitational effect and we do not understand

much about the quantum gravity. Therefore, one reasonable approach is to study

the cosmological constant in string theory.

String theory is a weird theory from quantum field theory point of view. Hence,

it may be worth stating what it means to study the cosmological constant in string

theory first before we delve into the details.

It is by now a well known fact that string theory lives in high dimensions: 10, 11,

or 12 depending on how one view string theory. In order to connect string theory to

our real world, we need to come up with a way to hide 6, 7, or 8 dimensions away.

This procedure is so-called compactification.3 In the context of weekly coupling

string theories, this means that we consider a spacetime of a form

M10 'M4 ×M6, , (1.3)

where M4 is the non-compact spacetime and M6 is a six dimensional compactifica-

tion manifold. Note that (1.3) should not be taken literally, as one may often find

3It is deeply disturbing that we still do not understand why string theory has to favor 4-
dimensional non-compact spacetime.
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that interesting solutions of string theory are non-trivial fibrations over spacetime.

In general, the compactification manifold M6 comes with many different mod-

ules that can control the volume and the shape of M6 for example. The abundance

of those modules, which I will call moduli from now on, presents a tremendous

technical challenge for string theory. Simply put, we do not understand how to

compute scattering amplitudes of strings in such a background or how to build up

non-trivial spacetime in string theory.4

To overcome such a difficulty, a common practice one performs is to take three

major approximations. First, we approximate (1.3) as a controllable deviation

from

M10 = M4 ×X3, (1.4)

where X3 is a Calabi-Yau threefold. Second, we take a low energy effective theory

of string theory on M10, a common choice is ten-dimensional supergravity with

extended objects on M10. The third approximation is to integrate out all the heavy

modes associated with high mass excitations of the compactification manifold. We

take the first approximation because the moduli space of the Calabi-Yau is one

of the best-understood moduli space. The second and the third steps are alike in

that those approximations are justified in the spirit of effective field theory.

For example, physics would’ve been a mess if one has to bring string theory

to understand a simple harmonic oscillator. Fortunately, we could understand

a simple harmonic oscillator with Newton’s theory of dynamics, which is a good

approximation to string theory when quantum effects are small. It should be noted

that it is not to imply that string theory or theories at high scales do nothing to our

4This is partly due to the intricacy to find a background independent formalism of string
theory.
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world. Theories at high energy scales do constrain the structure of the low energy

effective theories, such as coupling constants and allowed terms. This constraining

power of high energy theories is basically what we are after.

Coming back to the compactification, we can now state the task. To study the

cosmological constant in string theory, we want to examine a meta-stable solution

of the low energy supergravity of string theory of the form

M10 'M4 ×X3, (1.5)

where M4 is well approximated by the four-dimensional de Sitter space dS4.

We must now ask, is finding de Sitter vacua in string theory even possible?

1.1.1 The Dine-Seiberg problem

In fact, classical or not, I don’t know any clear-cut way to get de

Sitter space from string theory or M-theory. This last statement is not

very surprising given the classical no go theorem. For, in view of the

usual problems in stabilizing moduli, it is hard to get de Sitter space

in a reliable fashion at the quantum level given that it does not arise

classically.

E. Witten [350].

It has been notoriously difficult to construct a de Sitter solution in string theory.

In fact, no one has ever succeeded in finding one. In this section, we explain the

challenges in the context of the Dine-Seiberg problem [111].
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String theory is best understood in the weak coupling regime, where the string

coupling is small gs � 1 and volume of the compactification manifold is large

1/V � 1.5 Then the argument simply goes as follows. The effective potential of

string compactification asymptotes to zero when the string coupling and inverse

the compactification volume go to zero. If string theory ever admits de Sitter

solutions, then there should be a deflection point at and beyond which higher order

corrections to the tree-level supergravity approximations are equally important as

the tree-level terms. Hence, even if string theory admits de Sitter solutions, Dine

and Seiberg argued that those solutions may be in the strong coupling regime

where we cannot easily explore with the current understanding of string theory.

There are a few loopholes in the argument. Despite the asymptotic behavior

in the weak coupling limit of string theory, there could be tiny wiggles in the tree-

level potential that can allow meta-stable de Sitter solutions. The other important

loophole is that the tree-level potential in string theory is determined by discrete

flux choices, which allows judicious fine-tuning [60].

Despite its attractiveness, it has been extremely challenging to find classical

meta-stable de Sitter solutions in string theory in part due to the no-go theorems

[254, 191, 354]. This should come as no surprise. We know the full classical action

of stringy supergravity, and we all know that our life will be pretty boring if we

know everything.

5In string theory with many supercharges, this restriction can be avoided due to strong-weak
coupling dualities [328, 194, 344, 347, 294]. But, it is not clear how to take advantage of such
dualities when there is no supersymmetry or too few supercharges.
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1.1.2 The KKLT proposal

The vacua in [215] are not at all simple. They are jury-rigged, Rube

Goldberg contraptions that could hardly have fundamental significance.

But in an anthropic theory simplicity and elegance are not consider-

ations. The only criteria for choosing a vacuum is utility, i.e. does

it have the necessary elements such as galaxy formation and complex

chemistry that are needed for life. That together with a cosmology that

guarantees a high probability that at least one large patch of space will

form with that vacuum structure is all we need.

L. Susskind [314].

The KKLT proposal [215] is the very first concrete proposal for the construc-

tion of de Sitter solutions in string theory.6 To explain how the KKLT proposal

circumvents the Dine-Seiberg problem, let us consider a type IIB string theory

compactified on a CY3 orientifold with O3/O7-planes. The resulting 4d effective

field theory is N = 1 supergravity with the following ingredients:

• Kähler moduli.

• Complex structure moduli.

• D3/D7-branes.

To simplify the discussion, let us assume that there is only one Kähler modulus,

all the D3-branes are dissolved into the three form fluxes F, H, and the D7-brane

moduli are frozen by the worldvolume flux.

6For an alternative to the KKLT proposal, see [23].
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The tree-level superpotential of the low energy supergravity is given by the

so-called Gukov-Vafa-Witten (GVW) superpotential [176]

Wtree =

∫
(F − τH) ∧ Ω, (1.6)

where τ is the axio-dilaton. Due to the non-renormalization theorem, (1.6) does

not receive pertutrbative corrections. The leading non-perturbative corrections to

the tree-level superpotential is due to the gaugino condenstaion on the D7-brane

stack

Wnp = Ae−aT +O(e−1/gs , e−2aT ), (1.7)

where T is the Kähler modulus, A is the one-loop pfaffian.

In order for the Kähler modulus to be stabilized near the F-term minimum,

one must ensure that the non-perturbative superpotential is comparable in size to

the tree-level superpotential. Näıvely, this will drive the Kähler modulus to the

strongly coupled regime in which we lose control of the large volume expansion.

Hence, to avoid this crisis, one should fine-tune the three form fluxes F, H to yield

an exponentially small value of the GVW superpotential.

Once this fine-tuning 〈Wtree〉 � 1 is achieved, we can finally stabilize the Kähler

modulus at the F-term minimum and obtain a supersymmetric AdS4 vacuum of

string theory, with exponentially small cosmological constant. We are not done

yet, as the sign of the cosmological constant is negative.

To yield positive and small cosmological constant, we must break supersym-

metry in a controllable way. A generic choice of supersymmetry breaking breaks

supersymmetry at string scale, which is too high and quite hard to control. Fur-

thermore, if we break supersymmetry at string scale, the cosmological constant

will become string scale, albeit positive.
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This calls for low-energy supersymmetry breaking. Fortunately, it was shown

in [151] that in type IIB string theory one can engineer an exponential hierarchy

which is like the RS model [298]. Once, one engineers the exponential hierarchy

such that the IR scale is commensurate to the F-term potential, one can place an

anti-D3 brane at the IR region to yield

Veff = VF + /SUSY, (1.8)

where /SUSY = e4A0TD3, such that the effective potential is locally minimized at

exponentially small and positive value. This last step acheives meta-stable de

Sitter vacua of string theory.

1.1.3 The challenges to realize the KKLT proposal

It is thus fair to say that these scenarios have not yet been rigorously

shown to be realized in string theory.

G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa [283].

The blueprint for the construction of de Sitter solutions in string was put

forward in 2003. But, we still have no explicit KKLT-like de Sitter solutions. In

this section, we list some of the challenges that forbade the explicit realization of

the proposal.

One relatively new challenge or issue is the mismatch between the ten-

dimensional type IIB supergravity and the four-dimensional effective field theory

[279]. More explicitly, there are two puzzles: divergences due to the gaugino con-

densation, the sign problem in the anti-D3-brane uplift. What was previously
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known is that the gaugino condensation induces singularities in the compactifica-

tion manifold in supergravity approximation [189, 27, 135]. In [279], it was pointed

out that such a divergence can lead to a diverging cosmological constant of the four-

dimensional effective field theory which is an indication of pathology. The other

puzzle arises when one näıvely evaluates the contribution of the anti-D3-brane to

the cosmological constant, which yields

δΛ ' −e8A0TD3. (1.9)

Comparing to (1.8), we see two problems. The anti-D3-brane does not respect

the supersymmetry of the susy AdS background, hence, one normally expects that

the addition of an anti-D3-brane to the background will increase the energy hence

the uplift. But, the näıve 10d supergravity computation tells us that actually the

energy is lowered. The other problem is related to the supersymmetry breaking

scale. The natural IR scale is given by e4A0 not e8A0 , but still, we see a much more

small scale which was not present in the geometry. Those two problems, if they

are true, indicate serious misunderstanding.

The second challenge is to realize the fine tunings required for the KKLT:

finding three form fluxes F, H such that 〈Wtree〉 � 1, engineer the exponential

hierarchy such that e4A0 ' |VF | while maintaining 〈Wtree〉 � 1. From the statis-

tical analysis, it was expected that there may exists a few flux choices that yield

〈Wtree〉 � 1 [21, 98, 99, 128]. But, due to the scarcity of such good flux choices,

it was not possible to find such flux choices with 〈Wtree〉 � 1. To illustrate the

problem more vividly, let us take a relatively simple Calabi-Yau the mirror of

P[1,1,1,6,9][18] [69]. One can take an O3/O7 orientifold of the mirror of P[1,1,1,6,9][18]

which we will call X̃ henceforth. Type IIB compactification on X̃ has two com-

plex structure moduli, and the D3-brane tadpole QD3 = 138. Rough estimate tells

us that there are at least 6 × 1013 different flux vacua. On the other hand the
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number of flux vacua such that 〈Wtree〉 ' exp(−2π) is computed to be O(1). This

clearly shows that in order to find good flux vacua, one has to perform an expo-

nentially pricey numerical scan, unless one has an algorithm better than a brute

force method.

The challenge to fine-tune 〈Wtree〉 is closely tied with the problem to realize the

exponential hierarchy. In order to realize exponentially small 〈Wtree〉, one must

have the ability to compute the prepotential for the complex structure moduli

as much as possible. Until recently, the computation of the prepotential near

conifold singularities was severely limited. Because engineering the exponential

hierarchy requires stabilizing at least one of the complex structure moduli near a

conifold singularity, the computational limitation made it challenging to engineer

the exponential hierarchy while maintaining 〈Wtree〉 � 1.

The next challenge is to stabilize the Kähler moduli explicitly, in a vacuum

with 〈Wtree〉 � 1 and the exponential hierarchy. In my opinion, this is a purely

technical challenge that requires more rigorous and demanding computation.

The last challenge is to break supersymmetry such that an anti-D3-brane in

the IR region does not jeopardize the whole solution. There is still much work to

do to fully grasp when the supersymmetry breaking is mild enough.

In this thesis, we close the first two issues.

1.2 How is the spacetime made up?

Up until now, we have been ignoring one very important question by taking the

supergravity approximation. Supergravity does not tell us how the universe or the
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spacetime is formed. In this section, we give a brief overview on this question.

Because we lack the background-independent formalism of string theory, it is

not easy to understand how the spacetime is formed in string theory. For example,

in quantum field theory or quantum mechanics, one can construct the wave function

by adding up the particles or the excitations to the vacuum state. But, in string

theory we have no ability to construct the spacetime by adding up strings to the

vacuum state.

To circumvent this difficulty, one can take an indirect route. Entangle-

ment entropy between subregions A and Ac tells us how degrees of freedom in

A are entangled with Ac. At the leading order, the entanglement entropy is

Min(AreaA∩Ac)/4GN [303, 243]. The entanglement entropy is a particularly ap-

pealing quantity to compute, because the area term, conjecturally, counts the

number of edge modes across the horizon [115, 246]. Hence, rather than directly

constructing spacetime out of a vacuum state in string theory, one can compute

the entanglement entropy to understand the fine structure of the spacetime.7

Declaring that one can compute the entanglement entropy does not solve any

problems. Because to compute the entanglement entropy access to the wavefunc-

tion or the partition function of the universe is still required and it is still extremely

challenging to compute the wavefunction of the universe in physical string theory.

Furthermore, it is not quite clear how to divide a region to obtain the extended

Hilbert space in string theory because strings are extended objects [24].

As a first step towards understanding the origin of the spacetime, we study

topological string theory which is a simplification of physical type II string theories.

7In the examples we consider in this thesis, we see a strong hint that the edge modes indeed
correspond to the area term in the entanglement entropy.
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Topological string theory is particularly appealing, as it is well known how to

compute the partition function of topological string theory.8 Furthermore, one

can compute the wave function of the universe in the topological string theory

[63]. Lastly, topological string theory is dual to various field theories. Because we

understand how to compute the entanglement entropy in field theories, one can

have a crosscheck from field theories.

1.3 Organization of this thesis

The organization of this thesis is as follows. In §2, we study how important it is to

control the back-reaction from the monodromy charges to ensure the meta-stability

of de Sitter solutions in string theory. In §3, we study the KKLT proposal in the

ten-dimensional type IIB supergravity and show that ten-dimensional supergrav-

ity agrees exactly with the four-dimensional effective theory proposed in [215]. In

§4, we show that it is possible to find flux vacua with exponentially small flux

superpotential. We also give an explicit algorithm to find such flux vacua. In §5,

we show a simple method to compute the prepotential near conifold singularities.

We also extend the algorithm of §4 to find exponentially small flux superpotential

with the exponential hierarchy. In §6, we study the entanglement entropy of topo-

logical A model on the resolved conifold. We compute the entanglement entropy

via a replica trick and the extended TQFT for the topological string theory and

show that those two independent results agree with each other. We also see an

emergence of q-deformed symmetry. In §7, we study the entanglement entropy of

the topological string theory from the dual Chern-Simons theory. We again obtain

the result that agrees with the results found in §6.

8For review, see [258].
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CHAPTER 2

MONODROMY CHARGE IN D7-BRANE INFLATION

Abstract1

In axion monodromy inflation, traversing N axion periods corresponds to dis-

charging N units of a quantized charge. In certain models with moving D7-branes,

such as Higgs-otic inflation, this monodromy charge is D3-brane charge induced

on the D7-branes. The stress-energy of the induced charge affects the internal

space, changing the inflaton potential and potentially limiting the field range. We

compute the backreaction of induced D3-brane charge in Higgs-otic inflation. The

effect on the nonperturbative superpotential is dramatic even for N = 1, and may

preclude large-field inflation in this model in the absence of a mechanism to control

the backreaction.

1This chapter is published as M. Kim, L. McAllister, “Monodromy Charge in D7-brane Infla-
tion,” JHEP 10 (2020) 060 [arxiv:1812,03532 [hep-th]].
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2.1 Introduction

Inflationary models involving super-Planckian displacements provide a striking

connection between quantum gravity and observable phenomena. Upper limits

on primordial B-mode polarization in the CMB have excluded some models of

large-field inflation, but others remain viable [12]. At the same time, the theoret-

ical question of the status of super-Planckian displacements in quantum gravity

remains unresolved, despite much activity.

Large-field inflation is readily described in effective field theory, but crucially

relies on assumptions about symmetries in quantum gravity. A prototypical ex-

ample is the shift symmetry of an axion with decay constant f � Mpl [143]. No

assumption about quantum gravity that is sufficient to protect large-field inflation

has yet been put on indisputably solid footing in string theory: on the contrary,

general expectations about the destruction of global symmetry charges by black

holes, as well as conjectures about Weak Gravity and about moduli spaces in quan-

tum gravity [287, 19], suggest that controlling a super-Planckian displacement in a

quantum gravity theory is difficult. In view of these results, ignoring the problem

of ultraviolet completion and studying large-field inflation solely from the bottom

up appears untenable.

A practical way forward is to search for candidate realizations of large-field in-

flation in compactifications of string theory, and to investigate their characteristics

and limitations. To shed light on the question of interest, these realizations should

be sufficiently explicit, and sufficiently well-controlled, so that quantum gravity

corrections to the inflaton action can be computed.

In this work we study models of large-field inflation in string theory in which
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the inflaton is the position of a D7-brane. We focus on D7-brane monodromy

scenarios, such as Higgs-otic inflation [205], in which the D7-brane repeatedly

traverses a loop in the internal space, discharging an induced charge or flux, and

reducing the four-dimensional energy density, with each cycle. Compared to other

scenarios for axion monodromy inflation in string theory, an advantage of existing

D7-brane models is that the compactification can be a simple and comparatively

explicit toroidal orientifold. In this setting, one can carefully examine effects that

might interfere with achieving a super-Planckian displacement.

Arguably the most dangerous effect in axion monodromy inflation is backreac-

tion of monodromy charge. Transporting the inflaton field N times around a loop

in configuration space leads to the accumulation of N units of physical, quantized

charge, corresponding for example to D-brane charge carried by branes or fluxes.

This monodromy charge is the order parameter measuring displacement from the

minimum of the inflaton potential. The stress-energy of the monodromy charge

is a leading source in the four-dimensional Einstein equations, and in a success-

ful model this stress-energy drives inflationary expansion. At the same time, the

monodromy charge is a source for the Einstein equations in the internal six dimen-

sions. We refer to the resulting effects on the internal space as ‘backreaction of

monodromy charge’, and we use the term ‘probe approximation’ to describe the

approach of neglecting the backreaction.

One of our main conclusions is that in D7-brane axion monodromy inflation,

the probe approximation is not a valid or consistent approximation. The prob-

lem of backreaction of monodromy charge was already emphasized in [269] and

its implications were the main subject of [140, 266], but because these works ex-

amined axion monodromy on NS5-branes [269] — a scenario requiring a rather
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complicated warped throat compactification — some have suggested that backre-

action of monodromy charge may be a particular defect of the NS5-brane model,

and may be negligible in all F-term axion monodromy models [256]. Our analysis

excludes this possibility. We find that the backreaction of monodromy charge is,

if anything, even more visible and more dangerous in D7-brane monodromy on

toroidal orientifolds than it is in the NS5-brane case: it was shown in [140, 266]

that by fine-tuning the position of an NS5-brane pair in a warped throat, the

leading backreaction effects can be mitigated, but there is no obvious analogue of

this mechanism in a toroidal orientifold. We do not rule out the possible existence

of a mechanism for ameliorating backreaction in D7-brane inflation, but in our

view, inventing and establishing such a mechanism is a prerequisite to any claim

of large-field inflation in this setting. On the other hand, although our work nat-

urally generalizes to other models with monodromy charge localized on D-branes

or NS-branes, backreaction may be less problematic in scenarios with delocalized

monodromy charge, e.g. in the form of bulk fluxes [271].2

The ten-dimensional backreaction we consider here should be carefully distin-

guished from the four-dimensional backreaction studied in [31, 329, 57], which

involves non-linear interactions among moduli fields in four-dimensional theories,

e.g. shifts of saxion vevs following large axion displacements, along the lines of

[113]. We are examining the effects of localized sources in the ten-dimensional

equations of motion: these lead to couplings that are difficult or impossible to

compute in the four-dimensional theory obtained by dimensional reduction in the

probe approximation. In particular, ten-dimensional backreaction effects are not

readily computed in a Kaloper-Sorbo [225] description of axion monodromy infla-

tion in a four-dimensional effective theory, and should be understood instead as

2We thank E. Silverstein for emphasizing this point.
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ultraviolet inputs to such a theory. In particular, a primary aim of the present

work is to compute, in ten-dimensional supergravity, the precise form of the Pfaf-

fian prefactors (2.78) that were approximated by constants in [31, 329, 57] and

were modeled phenomenologically in [301]. Our results (2.78), (2.79) can then be

taken as inputs for analyses in the frameworks of [31, 329, 57, 301].

The organization of this note is as follows. In §2.2 we review the construction

of Higgs-otic inflation [205]. In §2.3 we compute the backreaction of induced D3-

brane charge in configurations of moving D7-branes. We describe the impact of

this effect on Higgs-otic inflation in §2.4, and we also comment on a related issue

in fluxbrane inflation. Our conclusions appear in §5.5. Appendix A.1 gives our

conventions for differential forms, and Appendix A.2 collects a few results about

Green’s functions in toroidal orientifolds.

2.2 Higgs-otic Inflation

We begin by recalling key elements of the Higgs-otic inflation scenario [205, 49, 50].

For the phenomenology of these models, which we will not review, we refer the

interested reader to the original references [205, 49, 50]. Related constructions

include [86, 87, 177, 256, 186].

Higgs-otic inflation is a construction of chaotic inflation in type IIB string

theory via monodromy. The inflaton field is identified as the position of a D7-

brane wrapping a four-cycle in a flux compactification. As the D7-brane moves

through a background of three-form flux, it accumulates induced anti-D3-brane

charge, breaking supersymmetry and creating a potential. The idea is to choose

the geometry and flux in such a way that the D7-brane can repeatedly travel
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around a one-cycle in the compactification, acquiring more induced anti-D3-brane

charge with each cycle. In other words, the D7-brane couplings to the background

flux introduce monodromy, and the order parameter for the monodromy is the

amount QD3 of induced anti-D3-brane charge on the D7-brane.

2.2.1 Setup

We will examine Higgs-otic inflation in the context of compactifications of type

IIB string theory on toroidal orientifolds. In the conventions of [293], the type IIB

supergravity action in Einstein frame takes the manifestly SL(2,Z)-invariant form

SIIB =
1

2κ2
10

∫

R1,3×X
?10R−

1

2( Im τ)2
dτ ∧ ?10dτ̄ −

1

2 Im τ
G3 ∧ ?10Ḡ3 −

1

4
F̃5 ∧ ?10F̃5

+
1

8iκ2
10

∫

R1,3×X

1

Im τ
C4 ∧G3 ∧ Ḡ3 + Sloc . (2.1)

We consider an ansatz for the metric and Ramond-Ramond five-form of the form

ds2 =h−1/2(z)ds2
R1,3 + h1/2(z)ds2

X , (2.2)

F̃5 =(1 + ?10)dα(z) ∧
√
− det(g)dx0 ∧ dx1 ∧ dx2 ∧ dx3,

where z denotes the coordinates on the internal space X. We denote the Hodge

star operators in ten dimensions, on X, and on a divisor D ⊂ X by ?10, ?6, and

?4, respectively. We also define

G± =
(?6 ± i)

2
G3, (2.3)

and refer to G+ and G− as imaginary self-dual (ISD) and imaginary anti-self-dual

(IASD) flux, respectively. See Appendix A.1 for more details of our conventions.

In [205] G was assumed to be a constant ISD flux, while [50] generalized G to

a linear combination of ISD and IASD fluxes. For simplicity, in this section we
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consider an ISD background with G− = 0, h−1 = α, and constant axio-dilaton

field τ ; our main analysis in §2.3 is robust to relaxing these restrictions.

2.2.2 Magnetized D-brane action

Consider a D7-brane that fills the noncompact spacetime and wraps a divisor

D ⊂ X. A general two-form flux F on the D7-brane can be written as the sum of

self-dual (SD) and anti-self-dual (ASD) components:

F = (1 + ?4)F/2 + (1− ?4)F/2 = F+ + F−. (2.4)

We will refer to a D7-brane carrying nontrivial worldvolume flux F as being mag-

netized. In this section we examine the Dirac-Born-Infeld (DBI) and Chern-Simons

(CS) actions of a magnetized D7-brane.

Viewing the two-form flux on D as a 4×4 skew-symmetric matrix, and writing

the metric on D as g, we have the identities

det(I + g−1F) =1− 1

2
tr(g−1F)2 + det(g−1F), (2.5)

− 1

2

∫

D

VolD tr(g−1F)2 =

∫

D

F ∧ ?4F . (2.6)

It follows that

det(I + g−1F)1/2 =1− 1

4
tr(g−1F)2 +

1

2
det(g−1F)− 1

32

[
tr(g−1F)2

]2
+O(F6).

(2.7)

Note that the above expansion is exact up to O(F2) if F = ± ?4 F .

We can now expand the DBI+CS actions of a static D7-brane in an ISD back-
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ground, written in Einstein frame, up to O(F2):

SD7 =− µ7

∫

R1,3×D
VolR1,3 ∧ VolD( Im τ)−1 det

(
I + ( Im τ)1/2g−1F

)1/2

+ µ7

∫

R1,3×D
C8 + C6 ∧ F +

1

2
C4 ∧ F ∧ F (2.8)

=− µ7

∫

R1,3×D
VolR1,3 ∧ 1

2

(
( Im τ)−1J ∧ J + F ∧ ?4F

)

+ µ7

∫

R1,3×D
C8 +

1

2
C4 ∧ F ∧ F +O(F4) . (2.9)

Here VolR1,3 is the volume in the metric h−1/2gµν , and similarly the Hermitian

form3 J corresponds to the full internal metric including the warp factor, and

obeys 1
2
J ∧J = VolD. We have dropped the C6 ∧F term because C6 can be fixed

to be zero in an ISD background. From the Chern-Simons term involving C4 in

(2.9) it is clear that an SD flux on a D7-brane induces D3-brane charge, whereas

an ASD flux induces D3-brane charge.

The candidate inflaton potential arises from the terms in the D7-brane action

(2.9) that are quadratic in F :

SF2 =− µ7

∫

R1,3×D
(VolR1,3 − C4) ∧ 1

2
F+ ∧ ?4F+ − µ7

∫

R1,3×D
(VolR1,3 + C4) ∧ 1

2
F− ∧ ?4F−,

(2.10)

=− µ7

∫

R1,3×D
VolR1,3 ∧ F− ∧ ?4F−. (2.11)

In the last equality we used h−1 = α, i.e. VolR1,3 = C4|R1,3 , which holds in an ISD

background.

3The Hermitian form J is a Kähler form if dJ = 0.
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2.2.3 Inflaton potential from induced charge

Now suppose that the D7-brane position z3 is a modulus in the absence of fluxes,

i.e. suppose that [D] ∈ H4(X,Z) has a continuous family of representatives parame-

terized by z3, which we write as D(z3). Displacing such a D7-brane in a background

of three-form flux causes ASD flux to accumulate on the D7-brane worldvolume, as

we will review below. This ASD flux carries anti-D3-brane charge, which interacts

with the dissolved D3-brane charge carried by the background flux, and creates a

potential for D7-brane motion. From (2.10), this potential is

V (z3) = µ7

∫

D(z3)

h−1F− ∧ ?4F−. (2.12)

In the special case that h−1 is a constant, we have

V (z3) =2µ3h
−1µ7

µ3

∫

D(z3)

1

2
F− ∧ ?4F−, (2.13)

=2µ3h
−1QD3(z3), (2.14)

Thus, the inflaton potential is proportional to the induced anti-D3-brane charge.

In the simplest incarnation of Higgs-otic inflation, D(z3) is a family of effective

divisors — i.e., a D7-brane rather than an anti-D7-brane wraps D(z3) — and the

flux that accumulates on the D7-brane is ASD, corresponding to anti-D3-brane

charge. The inflaton potential in the probe approximation, and prior to including

the effects of moduli stabilization, is given by (2.12). At the minimum of this

potential, the induced ASD flux vanishes, and the D7-brane preserves the same

supersymmetry as the background (2, 1) flux. A system of this sort provides a

realization of F-term axion monodromy inflation [256] in string theory [205].

In this note we will demonstrate that the relation (2.12) presents a strong

constraint on model-building. We will see that as a D7-brane moves one or more
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times around a one-cycle, the backreaction of accumulated anti-D3-brane charge on

the compactification geometry is large and rapidly changing, precluding inflation.

2.2.4 An example

A prototypical example of Higgs-otic inflation given in [205] occurs in a toroidal

orientifold for which the covering orbifold is of the form (T 4 × T 2)/Z4, with the

orbifold action

θ : (z1, z2, z3) 7→ (−iz1,−iz2,−z3). (2.15)

No explicit orientifold action was given in [205]. In this section, we will take the

orientifold action to be

σ : (z1, z2, z3) 7→ (z1, z2,−z3). (2.16)

This orientifold action is consistent with the presence of D7-branes and O7-

planes whose position is described by the coordinate z3. As θ2σ : (z1, z2, z3) 7→

−(z1, z2, z3), another choice of orientifold action,

σ′ : (z1, z2, z3) 7→ −(z1, z2, z3) , (2.17)

is equivalent to (2.16).

The constant ISD fluxes allowed by the orbifold action (2.15) are

G+ = G(2,1)dz1 ∧ dz2 ∧ dz̄3 +G(0,3)dz̄1 ∧ dz̄2 ∧ dz̄3. (2.18)

The NS-NS three-form flux is

H =
i

2 Im τ

(
dz1∧dz2∧(G(2,1)dz̄3−G(0,3)∗dz3)+dz̄1∧dz̄2∧(G(0,3)dz̄3−G(2,1)∗dz3)

)
.

(2.19)
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We can choose a gauge (corresponding to the normal coordinate expansion in [212])

so that the NS-NS two-form field B is

B =
i

2 Im τ

(
dz1∧dz2(G(2,1)z̄3−G(0,3)∗z3)+dz̄1∧dz̄2(G(0,3)z̄3−G(2,1)∗z3)

)
. (2.20)

If the background (2.20) pulled back to a D7-brane leads to ASD flux F , then the

key ingredients for Higgs-otic inflation are present.

2.2.5 An issue of orientation

We now explain a subtlety concerning orientation and the self-duality of flux.

The most straightforward realization of the Higgs-otic scenario requires a flux

background in which ASD flux is induced on a D7-brane that wraps a four-cycle

D. However, we will show that a B-field of Hodge type (0, 2) + (2, 0), such as

(2.20), is SD, not ASD, when D is an effective divisor.

If one provisionally takes the orientation of D to be

dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2, (2.21)

then a B-field of Hodge type (0, 2) + (2, 0) is indeed ASD, as desired for Higgs-otic

inflation. A simple check of the anti-self-duality is that B ∧B is negative relative

to the orientation (2.21), as required for an ASD real two-form — see (A.13).

However, we will now argue that the correct orientation for an effective di-

visor differs from (2.21) by a sign: as recognized in [301], the orientation (2.21)

corresponds to the orientation on an anti-D7-brane, not a D7-brane, wrapping D.

Suppose that X is a Kähler threefold with Hermitian metric i gab̄, and let D be

an effective divisor written as {z3 = a} in local coordinates. We show in Appendix
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A.1 that there are two possible choices of conventions for the Hodge star map, and

correspondingly there are two choices of Kähler form, which in a unitary frame

read

J = ±i(g11̄dz
1 ∧ dz̄1 + g22̄dz

2 ∧ dz̄2) . (2.22)

Given either Kähler form in (2.22), the volume form of D is

1

2
J ∧ J = −g11̄g22̄dz

1 ∧ dz̄1 ∧ dz2 ∧ dz̄2. (2.23)

The orientation (2.21) used in [205] has opposite sign relative to (2.23). This

implies that the volume of D with the orientation (2.21) measured by the Kähler

form (2.22) is negative. Note also that the eigenvalues of the four-dimensional

Hodge star operator on D change sign under a change of the sign of the volume

form. As a result, the NS-NS 2-form B (2.20), of Hodge type (2, 0) + (0, 2),

corresponds to a self-dual 2-form given the orientation (2.23).

We conclude that in the particular orbifold proposed in [205], the three-form

fluxes allowed by the orbifold action (2.15) result from an NS-NS two-form B

(2.20) of Hodge type (0, 2) + (2, 0). Such a form is SD when pulled back to a

D7-brane.4 We therefore find that a D7-brane displaced in the z3 direction in the

compactification proposed in [205], taking (2.16) to be the orientifold action, does

not accumulate ASD flux, and does not lead to axion monodromy inflation. We

have not found an alternative orientifold action that leads to a successful model

based on the orbifold (2.15).

However, we now give an example of a toroidal orientifold that could support

Higgs-otic inflation. Consider the toroidal orientifold T 6/Z′6 studied in [40], T-

4We have argued above, and in more detail in Appendix A.1, that the orientation of the
worldvolume of a D7-brane is given by (2.23), which differs by a sign from the orientation (2.21)
used in [205]. Our choice of conventions is anchored by the requirement, almost ubiquitous in
the literature, that G3 flux of Hodge type (0, 3) should be ISD rather than IASD.
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dualized six times in order to obtain O3-planes and O7-planes rather than O5-

planes and O9-planes. The orbifold action θ and the orientifold action σ are

θ : (z1, z2, z3) 7→ (eiπ/3z1, e
−iπz2, e

2πi/3z3), (2.24)

σ : (z1, z2, z3) 7→ −(z1, z2, z3). (2.25)

As θ3σ : (z1, z2, z3) 7→ (z1, z2,−z3), the position modulus of an inflationary D7-

brane is z3. The orbifold action (2.24) allows the bulk three-form flux

G = G(2,1)dz1 ∧ dz̄2 ∧ dz3, (2.26)

which generates an ASD B-field on the divisor {z3 = a}:

B =
igs
2

(
G(2,1)z3dz

1 ∧ dz̄2 −G(2,1)∗z̄3dz̄
1 ∧ dz2

)
. (2.27)

Thus the toroidal orientifold defined by (2.24), (2.25) could support a Higgs-otic

inflation scenario. However, in the presence of bulk flux of Hodge type (0, 3),

which is required to induce a nonvanishing flux superpotential, the (2, 0) + (0, 2)

components of F do not vanish in general, and so the B field on the divisor is

a linear combination of SD and ASD components. This leads to somewhat more

complicated backreaction effects than purely ASD flux would produce, as we shall

see.

2.3 Backreaction of Monodromy Charge

Having recalled the essential elements of Higgs-otic inflation, most notably the con-

tribution (2.12) of ASD flux on the inflationary D7-brane to the inflaton potential,

we can now study Higgs-otic inflation beyond the probe approximation. We will

find that the accumulation of ASD flux sources significant changes in the super-
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gravity solution for the internal space — changes that are omitted by assumption

in the probe approximation.

In particular, we will see that the actions of Euclidean D3-branes, even those

that are well-separated from the inflationary D7-brane, depend sensitively on the

inflaton vev once backreaction is included. As a result, we will be able to draw

strong conclusions about Higgs-otic inflation scenarios in which nonperturbative

superpotential terms from Euclidean D3-branes5 make important contributions to

the potential for the Kähler moduli, as in [215, 23, 58]. The presence of perturbative

contributions to the Kähler moduli potential, as in the Large Volume Scenario, does

not affect our conclusion: all that matters is that the nonperturbative terms play

a non-negligible role in moduli stabilization. On the flip side, our analysis does not

directly constrain a hypothetical Higgs-otic inflation scenario stabilized by purely

perturbative effects.

Although our computation will occur in ten-dimensional type IIB supergrav-

ity in the presence of localized and distributed sources, the results are efficiently

expressed in four-dimensional N = 1 supergravity, with the superpotential

W =

∫

X

G ∧ Ω +
∑

a

Aae−2πQ i
a Ti . (2.28)

Here {Ti} are the complexified Kähler moduli, i = 1, . . . , h1,1(X), and the coeffi-

cients Q i
a ∈ Z are the charges of Euclidean D3-branes under the shift symmetries

of the Ramond-Ramond four-form axions. Determining which homology classes

[D] ∈ H4(X,Z) support Euclidean D3-brane superpotential terms is beyond the

scope of this work, and so we do not specify the Q i
a or the range of the index a.

5Precisely parallel results hold for superpotentials from gaugino condensation on D7-branes,
but for simplicity of language we suppress the gaugino condensate case in our discussion.
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It will suffice, in fact, to examine a single term, so we write

W =

∫

X

G ∧ Ω +A e−2πT (2.29)

henceforth. The Pfaffian prefactor A depends on the complex structure moduli,

on the positions of any D3-branes [146, 214, 40, 28], and, as we shall now show,

on the positions of magnetized D7-branes.

Consider a Euclidean D3-brane wrapping a holomorphic divisor D in a general

flux background. No essential generality is lost in assuming that the complexified

volume of D is one of the Kähler moduli, denoted T . We allow ASD flux FD on the

Euclidean D3-brane in accordance with the conditions for an instanton to preserve

supersymmetry [259, 47].6 The DBI action of such a magnetized Euclidean D3-

brane is

SDBI =µ3

∫

D

1

2

(
J ∧ J + Im τFD ∧ ?4FD

)
, (2.30)

=µ3

∫

D

1

2

(
J ∧ J − Im τFD ∧ FD

)
. (2.31)

One immediate observation is that the flux-induced D(-1)-brane charge

µ3

µ−1

∫
D

1
2
FD∧?4FD is coupled to the axio-dilaton, and so the magnetized Euclidean

D3-brane should be sensitive to the D7-brane position moduli in general.

The magnitude of the Euclidean D3-brane superpotential obeys

∣∣Ae−2πT
∣∣ ∝ e−SDBI . (2.32)

One can therefore compute the Pfaffian A by computing SDBI , as in [28]. We will

now do so to leading order in expansion around an ISD background.

6Notice that on a spacetime-filling D7-brane SD flux can be supersymmetric, while on a
Euclidean D3-brane only ASD flux can be supersymmetric.
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2.3.1 Perturbative computation of backreaction

We begin with the full equations of motion. Taking the ansatz (2.2) and defining

the quantities

Φ± = h−1 ± α, (2.33)

Λ = h−1 ?6 G3 − iαG3 = Φ+G− + Φ−G+, (2.34)

the type IIB supergravity action (2.1) leads to the following equations of motion

and Bianchi identities, in the conventions of [27, 145]:

∇2Φ± =
(Φ+ + Φ−)2

24 Im τ
G±,abcḠ

abc
± +

2

Φ+ + Φ−
∇aΦ±∇aΦ± + κ2

10

(Φ+ + Φ−)2

2

(
1

4
(T̂ ii − T̂ µµ )± µ3ρ

D3

)
,

(2.35)
(
dΛ +

idτ

Im τ
∧ Re Λ

)
∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 2iκ2

10C4 ∧
δSloc
δC6

+ 2iκ2
10

δSloc
δB2

,

(2.36)

d(G3 + τH3) = dF3 = −2κ2
10

δSloc
δC6

, (2.37)

∇2τ =
∇τ · ∇τ
i Im τ

− i(Φ+ + Φ−)

12
G+,abcG

abc
− + 4iκ2

10( Im τ)2 δSloc
δτ̄

, (2.38)

Rmn =
∇(mτ∇n)τ̄

2( Im τ)2
+

2

(Φ+ + Φ−)2
∇(mΦ+∇n)Φ− − gmn

R4

2(Φ+ + Φ−)

− Φ+ + Φ−
8 Im τ

(
G pq

+(m Ḡ−n)pq +G pq
−(m Ḡ+n)pq

)
+ κ2

10

(
T̂mn −

1

4
gmnT̂

i
i

)
,

(2.39)

where T̂ is the energy momentum tensor of localized objects such as D-branes and

O-planes.

Approximation scheme and simplifying assumptions

We would like to solve the system (2.35)-(2.39) to leading order in the effects of

the two-form flux F that accumulates on the inflationary D7-brane.
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To this end, we consider a compactification of type IIB superstring theory

on a toroidal orientifold7 with local coordinates (z1, z2, z3), containing O7-planes,

magnetized D7-branes, ISD flux, O3-planes, and possibly also D3-branes. We will

first find a background solution containing ISD flux, O3-planes, and — optionally

— D3-branes, with Φ− = 0. Then we will perturb the equations of motion by

including the O7-planes and magnetized D7-branes as localized source terms.

Without loss of generality, we assume that the orientifold involution is σ :

z3 7→ −z3, so that the O7-planes and D7-branes are extended over the z1 and z2

directions. We assume that each D7-brane α wraps a holomorphic divisor Dα =

{z3 = z3,α}, whose unwarped volume is
∫
D

VolD = ReTD. The D7-brane charge

density is then

ρD7(z3) =
∑

α

ρD7
α δ(2)(z3 − z3,α), (2.40)

where ρD7 = 1 for D7-branes and ρD7 = −4 for O7-planes. Because we have

assumed that the background ISD flux includes nonzero components of Hodge

types (0, 3) and (2, 1), the two-form flux F on a D7-brane may include both ASD

and SD components — see (2.4). We do not consider any flux on the O7-planes.

The D3-brane charge density of D3-branes and O3-planes takes the form

ρD3(z) =
∑

i

ρD3
i δ(6)(z − zi), (2.41)

where zi is the position of the D3-brane or O3-plane, ρD3
i = 1 for D3-branes, and

ρD3
i = −1/4 for O3-planes.

A primary focus of this note is the DBI action (2.30) of a Euclidean D3-brane

at a fixed location. The NS-NS two-form B pulled back to the Euclidean D3-brane

describes how NS-NS three-form flux H accumulates under a displacement of the

7The toroidal orientifold restriction makes it possible to compute the explicit Green’s function,
see (A.20). We expect, but will not show here, that our qualitative results hold more generally.
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Euclidean brane along the normal direction. Thus for a Euclidean D3-brane at a

fixed location, corrections to H do not significantly affect the DBI action (2.30).

This allows us to consider only the fields Φ±, τ, and gmn in the perturbed equations

of motion.

To achieve considerable gains in simplicity, we will only focus on localized

sources, such as those in (2.40) and (2.41), in the perturbed equations of motion.

We will find that localized stress-energy and charge associated to ASD flux on the

inflationary D7-brane strongly affects the solution at other locations in the com-

pactification, including on the divisors wrapped by Euclidean D3-branes. While

it is logically possible that including the backreaction of distributed sources, such

as bulk three-form flux, could produce a counterbalancing effect on the Euclidean

D3-brane action and leave the inflationary model unmodified in the final account,

we find such a conspiracy to be most implausible.

Away from the minimum of the inflaton potential, the energy stored in the

D7-brane configuration presents an obstacle to solving the ten-dimensional equa-

tions of motion with purely classical sources. We refer to such an obstacle as an

NS-NS tadpole. In our ten-dimensional analysis we assume that there exist sources

that cancel all NS-NS tadpoles, i.e. we assume that perturbative and nonpertur-

bative corrections to the ten-dimensional equations of motion allow for consistent

cosmological solutions. One leading candidate for an effect that cancels NS-NS

tadpoles is gaugino condensation, as in [27, 279], but establishing NS-NS tadpole

cancellation from specific quantum effects is beyond the scope of this work.

Practically, for a bosonic supergravity field A, we expand A = A(0) +A(1) + · · · ,

where A(0) is the background field, and A(1) is the perturbed field at leading order.

Given this expansion, we rewrite the perturbed equations of motion schematically
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as

∇2A(1) = ρbulkA + ρD7
A + ρ′A, (2.42)

where ρbulkA is a bulk source term that involves bulk fields, ρD7
A is a source term

that is localized on D7-branes, and ρ′A is a source term added by hand to ensure

tadpole cancellation. We write ρNSA := ρbulkA + ρ′A and refer to ρNSA as the NS-NS

tadpole cancelling source.

As an example, we expand the equation of motion of τ. The kinetic term ∇2τ

is expanded as
(
∇2τ

)(1)
= ∇2(0)τ (1) +∇2(1)τ (0), (2.43)

where we often write ∇2(0) as ∇2 when there is no ambiguity. Similarly, we expand

the terms on the right hand side of (2.38) and treat the D7-brane density as a

first-order term,

∇2(0)τ (1)+∇2(1)τ (0) =

(∇τ · ∇τ
i Im τ

)(1)

−
(
i(Φ+ + Φ−)〈G+, G−〉

2

)(1)

+4iκ2
10( Im τ)2 δSloc

δτ̄
.

(2.44)

Note that for τ we do not have to add a term by hand to ensure tadpole cancellation

at leading order. The localized source ρD7
τ is

ρD7
τ = 4iκ2

10( Im τ)2 δSloc
δτ̄

. (2.45)

Then we define ρbulkτ by

ρbulkτ = −∇2(1)τ (0) +

(∇τ · ∇τ
i Im τ

)(1)

−
(
i(Φ+ + Φ−)〈G+, G−〉

2

)(1)

, (2.46)

and ρbulkτ is identical to ρNSτ due to the absence of a ρ′τ term. Finally, we write

down the perturbed equation of motion for τ as

∇2τ (1) = ρD7
τ + ρNSτ . (2.47)

For further details of this perturbation scheme, see [145].
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Strictly speaking, the perturbed dilaton could be negative in a small region

around an O7-plane, and the perturbed metric could be negative around a mag-

netized D7-brane. To suppress effects of these singular regions on our solution, we

will require Φ+,c � gs � 1.

Perturbed equations of motion

Consider first a compactification containing only ISD flux, D3-branes, and O3-

planes, so that Φ
(0)
− = Λ(0) = 0. With the localized source terms (2.41), the equa-

tions of motion and Bianchi identities (2.35) are

d
(
G

(0)
3 + τ (0)H

(0)
3

)
= 0, (2.48)

∇2τ (0) =
∇τ (0) · ∇τ (0)

i Im τ (0)
, (2.49)

R(0)
mn =

∇(mτ
(0)∇n)τ̄

(0)

2( Im τ (0))2
+

2

Φ
(0)
+ + Φ

(0)
−
∇(mΦ

(0)
+ ∇n)Φ

(0)
− , (2.50)

∇2(Φ
(0)
+ )−1 = −

∑

i

µ3κ
2
10ρ

D3
i δ(6)(z − zi)−

|G(0)
+ |2

4 Im τ (0)
. (2.51)

The solutions for the ISD background are then

(Φ
(0)
+ )−1 = Φ−1

+,c −
∑

i

µ3κ
2
10ρ

D3
i G(6)(z; zi), (2.52)

τ (0) = i/gs, (2.53)

g
(0)
z1z̄1 = g

(0)
z2z̄2 = g

(0)
z3z̄3 = 1/2, (2.54)

where Φ−1
+,c and gs are constants. Denoting the unwarped volume of the compacti-

fication by V , the warped volume Vw is then

Vw =

(
Φ−1

+,c

2

)
V . (2.55)

The D3-brane charge dissolved in ISD flux is

QD3
flux =

|G(0)
+ |2V

4µ3κ2
10 Im τ (0)

. (2.56)
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Now we incorporate localized magnetized D7-branes, as well as O7-planes, as

perturbations of the above background. The perturbed equations of motion are

∇2Φ
(1)
− = −1

4

∑

α

µ7κ
2
10ρ

D7
α Φ

(0)2
+ tr(g(0)−1F−,α)2δ(2)(z3 − z3,α) + ρNS− , (2.57)

∇2(Φ
(1)
+ )−1 =

1

4

∑

α

µ7κ
2
10ρ

D7
α tr(g(0)−1F+,α)2δ(2)(z3 − z3,α) + ρNS+ , (2.58)

∇2 Im τ (1) = −2µ7κ
2
10

∑

α

ρD7
α δ(2)(z3 − z3,α) + ρNSIm τ , (2.59)

∆Kg
(1)
mn =ρNSg,mn(z3)− 2µ7κ

2
10( Im τ (0))−1

∑

α

ρD7
α δ(2)(z3 − z3,α)δz3(mδn)z̄3

+ µ7κ
2
10

∑

α

Φ
(0)
+ ρD7

α δ(2)(z3 − z3,α)
(
Fma,αFnb,αg(0)ab − 1

2
g||(0)
mn |Fα|2

)
,

(2.60)

where ρ−, ρ+, ρ Im τ , and ρg are NS-NS tadpole cancelling sources, g
||(0)
mn is the

background metric with legs parallel to the D7-brane divisor, and

∆Kg
(1)
mn := ∇2g(1)

mn +∇m∇ng
(0)abg

(1)
ab . (2.61)

Equation (2.60) can be separated into two equations,

∇2g(0)abg
(1)
ab = −4µ7κ

2
10( Im τ (0))−1

∑

α

ρD7
α δ(2)(z3 − z3,α) + g(0)abρg,ab, (2.62)

∇2g||(1)
mn = µ7κ

2
10

∑

α

Φ
(0)
+ (z3,α)ρD7

α δ(2)(z3−z3,α)
(
Fma,αFnb,αg(0)ab−1

2
g||(0)
mn |Fα|2

)
+ρNS,||g,mn(z3).

(2.63)

Solution incorporating backreaction

The solutions for the equations (2.57)-(2.59) and (2.62)-(2.63) are readily obtained

in terms of the scalar Green’s functions G(6)(z; z′) and G(2)(z3; z′3) derived in Ap-
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pendix A.2:

Φ
(1)
− (z) =− 1

4

∑

α

µ7κ
2
10ρ

D7
α

∫

D

d4z′G(6)(z; z′)Φ(0)2
+ (z′, z′3,α) tr(g(0)−1F−,α)2

+

∫

X

G(6)(z; z′)ρNS− (z′), (2.64)

(Φ
(1)
+ )−1(z) =

1

4

∑

α

µ7κ
2
10ρ

D7
α G(2)(z3; z′3,α) tr(g(0)−1F+,α)2 +

∫

X

G(6)(z; z′)ρNS+ (z′),

(2.65)

Im τ (1)(z3) = −2µ7κ
2
10

∑

α

ρD7
α G(2)(z3; z3,α) +

∫

X

G(6)(z; z′)ρNSIm τ (z
′), (2.66)

g(0)abg
(1)
ab = −4µ7κ

2
10( Im τ (0))−1

∑

α

ρD7
α G(2)(z3; z3,α) +

∫

D⊥
G(2)(z3; z′3)g(0)abρNSR,ab,

(2.67)

g||(1)
mn (z3) =µ7κ

2
10

∑

α

Φ
(0)
+ (z3,α)ρD7

α G(2)(z3; z3,α)
(
Fma,αFnb,αg(0)ab − 1

2
g||(0)
mn |Fα|2

)

+

∫

D⊥
G(2)(z3; z′3)ρNS,||g,mn(z′3), (2.68)

where D⊥ denotes the two-cycle dual to D.

2.3.2 Effects on Euclidean D3-branes

Now we examine the DBI action (2.31) for a Euclidean D3-brane wrapping a divisor

D that is parallel8 to the D7-brane divisors Dα. In local coordinates, (2.31) can

be written

SDBI = µ3

∫

D

h gz1z̄1gz2z̄2dz
1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 − Im τ

2
FD ∧ FD, (2.69)

which to first order in the perturbations is

S
(1)
DBI =2µ3

∫

D

d4z

((
Φ

(1)
+

)−1

−
(

Φ
(0)
+

)−2

Φ
(1)
−

)
+
(

Φ
(0)
+

)−1 (
g

(1)
z1z̄1g

(0)−1
z1z̄1 + g

(0)−1
z2z̄2 g

(1)
z2z̄2

)

− µ3

∫

D

Im τ (1)

2
FD ∧ FD. (2.70)

8Our methods can also be applied when D is not parallel to the Dα, though we will not
present the non-parallel case in this note.
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Evaluated in the perturbed solution given by (2.64)-(2.68), the DBI action (2.70)

reads

S
(1)
DBI =− µ3

∑

α

ρD7
α

∫

D

(
1

2
F−,α ∧ ?4F−,α +

1

2
F+,α ∧ ?4F+,α

)
G(2)(z3; z3,α)

− µ3

∑

α

ρD7
α

∫

D

1

2
FD ∧ ?4FD G(2)(z3; z3,α), (2.71)

where G(2)(z3; z3,α) is the two-dimensional Green’s function (A.30). If we express

the induced D3-brane charge and D3 brane charge as

QD3
α =

µ7

µ3

∫

D

1

2
F+,α ∧ ?4F+,α, (2.72)

QD3
α =

µ7

µ3

∫

D

1

2
F−,α ∧ ?4F−,α, (2.73)

and define

QD3
D =

µ7

µ3

∫

D

1

2
F−,D ∧ ?4F−,D, (2.74)

then (2.71) takes the form

S
(1)
DBI = −2π

∑

α

ρα

(
QD3
α +QD3

α +QD3
D

)
G(2)(z3; z3,α). (2.75)

We can now read off the effect of magnetized D7-branes on the nonperturbative

superpotential. Writing (2.32) as

∣∣Ae−2πT
∣∣ = A0 exp

(
−S(0)

DBI − S
(1)
DBI

)
, (2.76)

and noting that S
(0)
DBI = 2πT − 2π

∑
i ρ

D3
i G(2)(z3; z3,i), we decompose the Pfaffian

factor A into A0, AD3, and AF :

A = A0AD3AF , (2.77)

where A0 encodes the dependence on the complex structure moduli of the internal

space, AD3 = exp
(
2π
∑

i ρ
D3
i G(2)(z3; z3,i)

)
encodes the dependence on the posi-

tions z3,i of D3-branes, and AF encodes the dependence on the positions z3,α of
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magnetized D7-branes. From (2.75), the Pfaffian factor AF takes the form

AF = exp

(
2π
∑

α

ρα
(
QD3
α +QD3

α +QD3
D

)
G(2)(z3; z3,α)

)
. (2.78)

Equation (2.78) is one of our main results.

The final expression (2.78) is rather simple, especially in view of the intricate

system of perturbed equations of motion presented in §2.3.1. The emergent sim-

plicity can be understood as follows. Magnetized D7-branes can be viewed as

bound states of D7-branes with D3-branes dissolved as the flux (2.4), and one

should expect the Pfaffian to depend on the position moduli of this dissolved D3-

brane charge (2.72), (2.73), just as the factor AD3 depends on the positions of

mobile D3-branes that are not bound to a D7-brane. Our explicit computation

shows that this expectation is precisely fulfilled.

While the terms proportional to QD3
α and QD3

α represent the backreaction of

induced D3-brane charge on the warped volume of a Euclidean D3-brane, the term

involving QD3
D has a qualitatively different origin. It encodes the change in the

action of a magnetized Euclidean D3-brane, with magnetization FD, that results

from the dilaton profile due to the mobile D7-branes. With a slight abuse of

language we may call QD3
D the induced D(-1)-brane charge.

Using the explicit form (A.30) for G(2)(z3; z3,α), the Pfaffian (2.78) from a single

magnetized D7-brane α is

AF =
N∏

i=1

[∣∣∣∣ϑ1

(
z3 − θiz3,α

L

∣∣∣∣U
)
η−1(U)

∣∣∣∣ exp

(−π Im (z3 − θiz3,α)2

L2 ImU

)]QD3
α +QD3

α +QD3
D

,

(2.79)

where L is the lattice size of the torus, U is the complex structure modulus of the

torus, and θ is the orientifold and orbifold action.
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2.4 Implications

We have shown in §2.3 that the nonperturbative superpotential depends on the

positions of magnetized D7-branes, as in (2.78) and (2.79), because the D3-brane

charge induced on the D7-branes backreacts on the internal space. Thus, in D7-

brane monodromy models, backreaction of monodromy charge leads to inflaton-

dependence of the nonperturbative terms in the moduli potential.

2.4.1 Inflaton-dependence of the Pfaffian

To understand how these couplings affect inflation, we can relate the induced

charges QD3, QD3, and QD3
D in (2.79) to the position z3,α of the inflationary D7-

brane, and in turn to the canonically-normalized inflaton field ϕ. From (2.79) it

is clear that unless Qtot := QD3
α +QD3

α +QD3
D is very small compared to unity, the

dependence of ϑ1 on z3,α causes AF to oscillate strongly over a cycle z3,α → z3,α+L.

By definition, axion monodromy involves traversing N > 1 periods of the axion,

so the oscillations could in principle be repeated N times. In practice, the change

in the moduli potential after a fraction of a cycle is large enough to destabilize the

configuration, for example toward decompactification. Barring a mechanism that

weakens the inflaton-dependence of the superpotential compared to what we have

found, prolonged inflation — whether small-field or large-field — does not occur.

One could ask whether for fine-tuned values of the complex structure modulus

U the dependence (2.79) might be mild enough to allow inflation. A numerical

investigation has produced no evidence for this possibility, whereas fine-tuning of

U can partially alleviate the eta problem [40, 177] in the related D3-D7 model

[86]. The distinction is that in a small-field model, a problematic Pfaffian coupling
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matters only very near a single point in field space, such as a hilltop or inflection

point, and correspondingly can sometimes be fine-tuned to vanish by adjusting a

single number, such as U . But for D7-brane monodromy to be possible despite

the coupling (2.79), it would be necessary to fine-tune away the problematic terms

along the entire trajectory, i.e. over one or more complete cycles. This is a con-

crete incarnation of the notorious problem of functional fine-tuning in large-field

inflation.

A further perspective on our findings comes from [301], in which Ruehle and

Wieck studied Pfaffian couplings in an effective supergravity theory. They consid-

ered a Kähler potential and superpotential of the form

K = −3 log(T + T̄ ) +
1

2
(Φ + Φ̄)2, (2.80)

W = W0 + µΦ2 + A0ϑ3(iΦ, q)δe−αT , (2.81)

where Φ corresponds to a D7-brane position modulus, T is a Kähler modulus, and

W0, µ, α, q, δ, and A0 are constants. It was shown in [301] that for δ & 1/2, the

modulation of the potential via the inflaton-dependence of the Pfaffian is strong

enough to adversely affect inflation.9 Comparing (2.81) and (2.79), we have δ =

Qtot.

To apply the results of [301], we can estimate Qtot. For the benchmark values

for the potential given in [205], V (φ)α′2 ∼ O(1), the induced D3 charge is

QD3 = 4π3h
V

M4
S

' O(100h). (2.82)

Since h . 1, we conclude that Pfaffian couplings due to the backreaction of induced

D3-brane charge spoil Higgs-otic inflation for the benchmark parameters of [205].

9The results of [301] accord with the general finding, in the context of D3-brane inflation
models, that the displacement of even a single unit of D3-brane charge typically causes a sizable
correction to the Pfaffian of the nonperturbative superpotential [214, 40, 265, 28], and so precludes
inflation.
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To understand how the importance of backreaction depends on compactification

parameters away from these benchmark values, we examine a simplified model. We

consider the two-form flux (2.20) on the inflationary D7-brane divisor D, and we

only include bulk fluxes of Hodge type (2, 1).10 The self-dual two-form flux (2.20)

induces D3-brane charge on D:

QD3 =
µ7Re(T )

µ3

|B|2
2
, (2.83)

=
g2
sRe(T )

4µ3/µ7

|G(2,1)z̄|2. (2.84)

Identifying the inflaton with Im (z), the induced charge (2.84) simplifies to

QD3 =
gsµ7Re(T )Φ−1

+,c

2M2
p

QD3
flux Im (z)2, (2.85)

=
1

2
gsQ

D3
fluxN

2
w, (2.86)

where Nw = Im (z)/L. In (2.86) we used the relation M2
p = (Φ−1

+,cV)/(2κ2
10). In

terms of the canonically normalized field ϕ, for small field excursions ϕ . O(Mp)

the induced charge (2.84) is given by

QD3 =
1

4
Φ−2

+,cQ
D3
flux

∣∣∣∣
ϕ

Mp

∣∣∣∣
2

, (2.87)

whereas for large field excursions, ϕ & O(Mp),

QD3 =
1

4
Φ−2

+,c

√
gsµ3Φ−1

+,cRe(T )QD3
flux

∣∣∣∣
ϕ

Mp

∣∣∣∣ . (2.88)

Note that µ3Φ−1
+,cRe(T )/2 is the DBI action of a Euclidean D3-brane wrapping D.

To display the leading dependence of the Pfaffian (2.78) on ϕ, we make further

simplifications: we set U → 1, we omit the orientifold images of the magnetized

D7- branes, and we expand ϑ1 for small displacements z3/L� 1. This yields

AF(ϕ) '
[
c
ϕ− ϕ0

Mp

exp

(
−πc2 (ϕ− ϕ0)2

M2
p

)]d ϕ2

M2
p

, (2.89)

10As explained in §2.2.5, these restrictions are problematic in complete models, but they are
innocuous for the present purpose of obtaining parametric scalings.
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where d = 1
4
Φ−2

+,cQ
D3
flux, and ϕ0 is the location of the Euclidean D3-brane, ex-

pressed in terms of the canonically-normalized D7-brane position coordinate ϕ.

For QD3
flux � 1 we have d� 1, and even for the marginally controllable parameter

choice Φ−1
+,c = 2, QD3

flux = 1 we have d = 1. Because the equations (2.51) and

(2.56) imply that QD3
flux is integrally quantized, d cannot be made arbitrarily small.

Evidently the Pfaffian (2.78) cannot be approximated by a constant independent

of ϕ.

2.4.2 Comment on fluxbrane inflation

Even though the primary focus of this note has been on the backreaction of mon-

odromy charge in the Higgs-otic model, the dependence of the Pfaffian (2.78) on

the induced charge (2.72), (2.73) has broader applicability. We now discuss the

implications of (2.78) for fluxbrane inflation.

Fluxbrane inflation [185, 184, 14] is a hybrid inflation scenario in string theory

in which the inflaton field is the separation of a pair of spacetime-filling D7-branes.

Suppose that X is an orientifold of a Calabi-Yau threefold, with [Σ] ∈ H4(X,Z)

a homology class that admits a continuous family of holomorphic representatives.

Two D7-branesDa andDb can then be wrapped on distinct representatives Σa,Σb ∈

[Σ]. The proposal of [185] was to introduce a non-supersymmetric relative gauge

flux F on Da and Db, so that the D7-branes feel an attractive force and are driven

to meet and fuse.

In order for inflation to be possible in this scenario, the flux F must fulfill

certain conditions. First, F should be chosen to lie in the part of H2(Σ) that

descends from H2(X): this ensures the absence of a superpotential term of the
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form
∫
C5 Ω ∧ F , with C5 a five-chain ending on Σ. If such a term were present it

could produce a problematically large F-term potential for the D7-brane position,

cf. [211]. Next, some choices of F will induce D3-brane charge on the D7-branes,

and it is well-known that such D3-brane charge can lead to significant couplings in

the nonperturbative superpotential [214, 40, 28, 255]. In order to avoid unwanted

forces from induced D3-brane charge, the authors of [184] imposed the requirement

∫

Σ

F ∧ F = 0 . (2.90)

Because
∫

Σ
F ∧ F =

∫
Σ
F+ ∧ ?4F+ −

∫
Σ
F− ∧ ?4F−, the condition (2.90) enforces

that the net induced D3-brane charge vanishes, but allows D3-brane and anti-D3-

brane charge density to be present in equal amounts. Thus, imposing (2.90) does

not suffice to ensure that the backreaction of D3-brane charge vanishes: the SD

and ASD components separately provide source terms.

Let us therefore examine the backreaction of induced charge on the Pfaffian in

fluxbrane inflation. The induced D3 brane tension

µ7

µ3

∫

Σ

1

2
F ∧ ?4F = QD3

Σ +QD3
Σ , (2.91)

which perturbs the warp factor h in the metric (2.2) significantly, does not vanish.

As a result, the warped volume of a divisor in the internal space, and so too the

Pfaffian, receive corrections depending on (2.91), and this leads to new inflaton-

dependence of the moduli potential.

This effect is not necessarily the most stringent restriction on fluxbrane infla-

tion. Examining a toroidal orientifold T 4 × T 2/Z2 for simplicity, (2.91) can be

rewritten as

QD3
Σ +QD3

Σ = 2
µ7

µ3

(∫
Σ
J ∧ F

)2

1
2

∫
Σ
J ∧ J . (2.92)
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The quantity on the right-hand side is constrained [184] by upper bounds on the

cosmic string tension [323], which put an upper bound on the D-term potential,

and so on the scale of inflation. The resulting bound is

QD3
Σ +QD3

Σ . 10−1 . (2.93)

Thus, fluxbrane inflation scenarios whose D-term potential is small enough to avoid

upper limits on cosmic strings involve the accumulation of a relatively small D3-

brane dipole, and backreaction is not a severe problem. However, for any variations

of fluxbrane inflation that evade cosmic string limits through a mechanism other

than reducing the overall scale of inflation, and in which QD3
Σ + QD3

Σ becomes

significant, a detailed study of backreaction would be important.

2.5 Conclusions

Axion monodromy inflation proceeds via the progressive discharge of N > 1 units

of a quantized charge. The stress-energy of this monodromy charge sources cur-

vature in the noncompact spacetime, leading to accelerated expansion, but also

necessarily sources curvature in the internal six dimensions. The backreaction ef-

fects of monodromy charge on the internal solution are known to be important in

the NS5-brane axion monodromy scenario of [269], and were extensively studied in

that context in [269, 140, 266], but have not been examined at a comparable level

in other models.

In this work we computed the backreaction of monodromy charge in Higgs-otic

inflation, an axion monodromy scenario in which inflation is driven by the mo-

tion of a D7-brane that becomes magnetized as it travels through a background

of three-form flux. Such a magnetized D7-brane is a localized source in the super-
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gravity equations of motion, and its position and degree of magnetization affect

the solution in the internal space. In §2.3 we obtained the resulting solution, to

first order in the perturbation due to the D7-brane, in the case of a toroidal ori-

entifold compactification. We found that nonperturbative superpotential terms

from Euclidean D3-branes or from gaugino condensation depend on the position

of the magnetized D7-brane, cf. (2.78) and (2.79). Thus, the moduli potential

depends on the inflaton vev, via the backreaction of induced D3-brane charge on

the supergravity solution in the internal space.

Our result echoes the situation in D3-brane inflation, where the position of a

mobile D3-brane appears in a Pfaffian factor of the nonperturbative superpotential

[146, 214, 40, 28], and leads to inflaton-dependence of the moduli potential. Here,

however, the D3-brane charge in question is dissolved as flux in a mobile D7-brane;

the amount of induced charge changes as the D7-brane moves; and both D3-brane

and anti-D3-brane charges contribute. After a somewhat intricate calculation, our

final result is the simple expression (2.78), in which D3-brane charge and anti-D3-

brane charge on the D7-brane, and D(-1)-brane charge on the Euclidean D3-brane,

enter on precisely equal footing.

The methods used here apply with little modification to any scenario of axion

monodromy in which the inflaton is the position of a mobile brane, and in which

there are important nonperturbative contributions to the moduli potential. We

expect comparably strong backreaction effects in such models. However, our results

do not constrain axion monodromy scenarios stabilized by purely perturbative

effects, nor do they apply to scenarios such as [271] in which the monodromy

charge is dispersed in the six-dimensional bulk rather than localized on a brane.

Our findings present an obstacle to achieving D7-brane axion monodromy in-
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flation in a stabilized string compactification, but in our view they do not give such

models a uniquely problematic status. Instead, our results show that F-term ax-

ion monodromy constructions such as Higgs-otic inflation face the same challenges

as the NS5-brane models of [269], and manifest in these models the well-known

couplings of moving branes to nonperturbative superpotential terms that plague

D3-brane inflation scenarios [214, 40, 265, 28, 30]. In short, the backreaction prob-

lem that we find in D7-brane axion monodromy inflation has causes and severity

that precisely match what we would expect based on studies of kindred models.

In view of our findings, it would be worthwhile to search for a mechanism that

can alleviate the backreaction of monodromy charge in D7-brane monodromy mod-

els. More generally, exhibiting an explicit and arbitrarily well-controlled solution

of string theory that supports large-field inflation remains an important problem.
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CHAPTER 3

DE SITTER VACUA FROM TEN DIMENSIONS

—— Dedicated to the memory of Steven S. Gubser ——

Abstract1

We analyze the de Sitter construction of [215] using ten-dimensional supergrav-

ity, finding exact agreement with the four-dimensional effective theory. Starting

from the fermionic couplings in the D7-brane action, we derive the ten-dimensional

stress-energy due to gaugino condensation on D7-branes. We demonstrate that

upon including this stress-energy, as well as that due to anti-D3-branes, the ten-

dimensional equations of motion require the four-dimensional curvature to take

precisely the value determined by the four-dimensional effective theory of [215].

1This chapter is published as S. Kachru, M. Kim, L. McAllister, M. Zimet, “de Sitter Vacua
from Ten Dimensions,” [arxiv:1908.04788 [hep-th]].
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3.1 Introduction

A foundational problem in cosmology is to characterize de Sitter solutions of string

theory. Tremendous efforts have been expended in the study of flux compactifica-

tions of weakly-coupled type II string theories on orientifolds (see e.g. the reviews

[308, 162, 124, 56, 95, 268, 96, 30, 296]). Non-supersymmetric vacua necessar-

ily remain more difficult to analyze than supersymmetric ones, if only because

fewer theoretical tools can be applied there. However, we can take heart by re-

calling that the entirety of real-world physics is strictly non-supersymmetric, and

progress has nonetheless been possible in a few areas, beginning with the work of

the non-supersymmetric theorists of antiquity.

A paradigm for exhibiting realistic compactifications of string theory is to de-

rive directly the properties of a four-dimensional effective theory in parametrically

controlled limits, such as weak coupling, large volume, and small supersymmetry

breaking, and then carefully argue for the form of corrections to the effective the-

ory away from such limits. When the corrections are parametrically small, one

expects the vacuum structure computed in the effective theory to be robust.

The couplings in such an effective theory can sometimes be computed in more

than one way, e.g. on the string worldsheet and in ten-dimensional supergravity.

When dual perspectives are available, they provide a cross-check that lends a

degree of further support to the computation of the effective theory. However, it

is rarely the case that everything that can be computed in one duality frame can

also be computed in the other frame: instead, certain effects are manifest in one

frame, and other effects are manifest in the other frame, as is familiar from famous

strong-weak dualities in quantum field theory and holography.
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The study of de Sitter vacua of type IIB string theory compactified on orien-

tifolds of Calabi-Yau threefolds, as in [215], has relied heavily on computations of

vacuum structure in the four-dimensional effective theory. However, certain ques-

tions about these theories are intrinsically ten-dimensional, and answering them

requires a quantitative description of the de Sitter vacua in terms of configurations

of ten-dimensional fields. For example, integrating the ten-dimensional equations

of motion over the compact space reveals constraints on possible solutions (see

e.g. [90, 151, 311, 279]), and it would be instructive to expose all such constraints.

Similarly, the couplings between distinct sectors of the effective theory are often

most readily computed by finding solutions for the massless fields in ten dimen-

sions.

At the same time, it is not generally possible even in principle to derive all four-

dimensional couplings through a purely ten-dimensional computation. Consider,

for example, the infrared dynamics of a pureN = 1 super-Yang-Mills theory arising

on a collection of D7-branes that wrap a four-cycle Σ in the compact space. The

eight-dimensional gauge theory is not even asymptotically free, but at energies far

below the Kaluza-Klein scale, the four-dimensional theory confines and generates

a gaugino condensate. Attempting to compute the gaugino condensate from the

ten-dimensional equations of motion, and rejecting the simplifications of the four-

dimensional description, would be quixotically self-limiting.

A practical approach, then, is to compute the configuration of ten-dimensional

fields that corresponds to a four-dimensional de Sitter vacuum, while taking specific

expectation values — such as those of gaugino bilinears — to be those determined

by the four-dimensional equations of motion. We refer to the result of this analysis

as a ten-dimensional description of a de Sitter vacuum.
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In this work we provide a ten-dimensional description of the de Sitter scenario

of [215]. This problem has been examined in [279, 178, 147, 71, 148, 179, 37]

(see also the earlier works [240, 27, 135]). As we will explain below, our analysis

aligns with some aspects of these works, but also resolves certain puzzles that were

implicit in the literature.

Our approach is a computation from an elementary starting point. Beginning

with the ten-dimensional action of type I string theory, we derive the two-gaugino

and four-gaugino couplings on D7-branes, and then compute the ten-dimensional

stress-energy sourced by a gaugino bilinear expectation value 〈λλ〉. Then, taking

〈λλ〉 to have the value predicted by the four-dimensional super-Yang-Mills the-

ory — and we stress that this step is the only point at which information from

four dimensions is injected — we compute the four-dimensional scalar curvature

determined by the ten-dimensional equations of motion.

In order to evaluate the contribution of the D7-brane gaugino-flux coupling,

we use the Killing spinor equations for compactification on a generalized com-

plex geometry, with which we establish that in a supersymmetric configuration

the generalized complex geometry superpotential equals the full superpotential of

the four-dimensional theory. We then compare the scalar curvature resulting from

the ten-dimensional configuration to the scalar curvature determined by the four-

dimensional Einstein equations equipped with the scalar potential of [215]. We

prove that the match is exact in the supersymmetric vacuum. Furthermore, pro-

vided that the generalized complex geometry superpotential continues to equal the

full superpotential in off-shell configurations — which we find very plausible but

do not prove here — our ten-dimensional computation of the scalar potential for

the Kähler modulus continues to precisely match the four-dimensional theory, in
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the presence of anti-D3-branes as well as off-shell.

The organization of this paper is as follows. In §3.2 we assemble the equations

of motion of type IIB supergravity. In §3.3 we consider the effects of an expectation

value for the gaugino bilinear on a stack of D7-branes. We show that couplings of

the D7-brane gauginos, including the couplings to flux derived by Dymarsky and

Martucci in [135] following [66], source a contribution T
〈λλ〉
µν to the stress-energy

tensor. Including this stress-energy in the ten-dimensional equations of motion, we

compute the four-dimensional scalar curvature, and find perfect agreement with

that determined by the F-term potential in the four-dimensional N = 1 super-

symmetric effective theory of [215]. In §3.4 we consider the combined effects of an

anti-D3-brane and a D7-brane gaugino bilinear. We examine the ten-dimensional

supergravity solution with these sources and show that T
〈λλ〉
µν continues to match

the four-dimensional potential derived in [216]. Our conclusions appear in §5.5.

In Appendix B.1 we first dimensionally reduce and T-dualize the type I action to

obtain the couplings of D7-brane gauginos. We then analyze the ten-dimensional

Killing spinor equations, correcting an inconsistency in the literature, and use

them to demonstrate explicitly that the superpotential for compactification on a

generalized complex geometry captures both the classical flux superpotential and

the gaugino condensate superpotential. Appendix B.2 shows, based on the spec-

troscopy of T 1,1, that the interactions of an anti-D3-brane and a gaugino condensate

mediated by Kaluza-Klein excitations of a Klebanov-Strassler throat can be ne-

glected compared to the interaction mediated by the Kähler modulus. In Appendix

B.3 we consider the singular contributions to the four-dimensional equations of mo-

tion, which originate in the fact that the D7-brane stack is localized to a divisor.

We show that these divergent terms cancel each other, and the finite remainder

is the four-dimensional scalar potential. We then repeat this computation for a
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compactification containing a D3-brane, with analogous results.

3.2 Ten-dimensional Equations of Motion

In this section, we set our notation and collect useful forms of the ten-dimensional

Einstein equations and five-form Bianchi identity. We then express the stress-

energy tensor of the four-dimensional effective theory in terms of the ten-

dimensional field configuration.

We consider type IIB string theory on X ×M, where X is a four-dimensional

spacetime and M is a six-dimensional compact manifold that in the leading ap-

proximation is an O3/O7 orientifold of a Calabi-Yau threefold. We take the metric

ansatz

ds2 = GABdX
AdXB = e−6u(x)+2A(y)gµνdx

µdxν + e2u(x)−2A(y)gabdy
adyb , (3.1)

with x denoting coordinates in X and y denoting coordinates in M. Greek indices

take values in {0, . . . , 3}, and Latin indices take values in {1, . . . , 6}. We use the

abbreviations g6 = det gab and g4 = det gµν , and note that
√
−G =

√−ge−6u−2A =

√−g4g6e
−6u−2A.

The ten-dimensional type IIB supergravity action is

S =
1

2κ2
10

∫
d10X

√
−G
(
R10−

∂Aτ∂
Aτ

2 (Im τ)2
−G3 ·G3

2 Im τ
− F̃

2
5

4

)
+

1

8iκ2
10

∫
C4 ∧G3 ∧G3

Im τ
+Slocal ,

(3.2)

where R10 is the Ricci scalar computed from G, τ = C0 + i e−φ is the axiodilaton,

G3 := F3−τH3 ≡ dC2−τdB2, and F̃5 = F5− 1
2
C2∧H3 + 1

2
B2∧F3, with F5 = dC4.

The local term Slocal encodes the contributions of D-branes and orientifold planes.

We work in units where (2π)2α′ = 1.
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For the five-form F̃5 we take the ansatz

F̃5 = (1 + ?10)e−12u
√−g4 dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (3.3)

with ?10 the ten-dimensional Hodge star, and define the scalars

Φ± := e4A ± α . (3.4)

We also define the imaginary self-dual and imaginary anti-self-dual fluxes

G± :=
(?6 ± i)

2
G3 , (3.5)

with ?6 the six-dimensional Hodge star. We abbreviate (3.2) as

S =
1

2κ2
10

∫
d10X

√
−GR10 +

∫
d10XL ≡ SEH +

∫
d10XL , (3.6)

with L encoding everything except for the Einstein-Hilbert term.

From (3.1) one computes the Ricci tensors

R4,µν = R4,µν [g]− e−8u+4Agµν∇2A+ 3gµν �u− 24∂µu∂νu, (3.7)

R6,ab = R6,ab[g] +∇2Agab − e8u−4A gab�u− 8∂aA∂bA , (3.8)

where R4,µν [g] and R6,ab[g] are the Ricci tensors of gµν and gab, respectively. Ex-

panding the Einstein-Hilbert part of (3.2) using (3.7) and (3.8), we find

SEH =
1

2κ2
10

∫
d4x d6y

√−g4g6

(
e−4AR4[g]+e−8uR6[g]−24e−4A∂µu∂

µu−8e−8u∂aA∂
aA
)
,

where indices are raised using gµν or gab as appropriate. The Planck mass is given

by

M2
pl =

V
κ2

10

, (3.9)

where V is the warped volume of M , defined as

V =

∫

M

d6y
√
g6e
−4A . (3.10)
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The equation of motion for the breathing mode u obtained from (3.6) is

24�u = 4e4A−8u
(
R6[g]− 8∂aA∂

aA
)
− κ2

10e
4A δL
δu

. (3.11)

We next turn to the Einstein equations, in conventions where the stress-energy

tensor is defined as

TAB = − 2√
−G

δL
δGAB

. (3.12)

The four-dimensional components of the ten-dimensional Einstein equations are

R4,µν = κ2
10

(
Tµν −

1

8
GµνT

)
. (3.13)

Reversing the trace using the ten-dimensional metric Gµν , we have

R4,µνG
µν = −κ2

10TµνG
µν − κ2

10

2

(
TabG

ab − 3TµνG
µν
)
. (3.14)

Integrating (3.14) over M and using (3.7) leads to

M2
pl

(
R4[g]+12�u−24∂µu∂

µu
)

=

∫

M

√
g6e
−6u−2A

[
−TµνGµν−1

2

(
TabG

ab − 3TµνG
µν
)]
.

(3.15)

Similarly, the six-dimensional components of the ten-dimensional Einstein equa-

tions are

R6,ab = κ2
10

(
Tab −

1

8
GabT

)
, (3.16)

with trace-reversed form

R6,abG
ab =

κ2
10

4

(
TabG

ab − 3TµνG
µν
)
. (3.17)

Integrating (3.17) over M and using (3.8) gives

−6M2
pl�u+

1

κ2
10

∫

M

√
g6e
−8u
(
R6[g]−8∂aA∂

aA
)

=
1

4

∫

M

√
g6e
−6u−2A

[
TabG

ab − 3TµνG
µν
]
.

(3.18)

Finally, we examine the Bianchi identity

dF̃5 = 2µ3κ
2
10ρD3 dVolM = H ∧ F + 2µ3κ

2
10ρ

loc
D3 dVolM . (3.19)
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Here dVolM =
√
g6dy

1 ∧ · · · ∧ dy6, ρD3 is the net D3-brane charge density, and ρloc
D3

is the net D3-brane charge density of localized objects such as D3-branes and anti-

D3-branes. (We use ρD3 to denote the contributions of anti-D3-branes specifically.)

From (3.19) we derive the useful integrated form

0 =

∫

M

√
g6

(
e−8u−8A∂ae

4A∂aα + 2µ3κ
2
10e
−12ue4AρD3

)
. (3.20)

Combining (3.15), (3.18), and (3.20) we obtain

M2
plR4[g] = 24M2

pl∂µu∂
µu−

∫

M

√
g6

(
e−4AT̂µνg

µν + 4µ3e
−12u+4AρD3

)

− 2e−8u

κ2
10

∫

M

√
g6R6[g] +

e−8u

κ2
10

∫

M

√
g6e
−8A∂aΦ−∂

aΦ− ,

(3.21)

where T̂µν denotes the stress-energy tensor excluding the contribution from F̃5.

Substituting the type IIB supergravity action (3.2) into (3.21), and taking Slocal

in (3.2) to include D3-branes and D7-branes, we find

M2
plR4[g] = 24M2

pl∂µu∂
µu+

∂µτ∂
µτ

( Im τ)2
+ 8µ3

∫

M

√
g6e
−12u+4AρD3 −

∫

M

√
g6e
−4ATD7

µν g
µν

− 2e−8u

κ2
10

∫

M

√
g6R6[g] +

e−8u

κ2
10

∫

M

√
g6e
−8A∂aΦ−∂

aΦ− .

(3.22)

To interpret (3.22), we consider a general four-dimensional action

S4 =
M2

pl

2

∫

X

√−g4R4[g] +

∫

X

√−g4 L4 . (3.23)

The four-dimensional Einstein equations imply

M2
plR4[g] = −T , (3.24)

where Tµν is the four-dimensional stress-energy tensor, i.e. the stress-energy tensor

computed from L4. The four-dimensional stress-energy tensor Tµν and the four-

dimensional components Tµν of the ten-dimensional stress-energy tensor TAB are
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related by

Tµν =

∫

M

√
g6

[
e−4AT̂µν + µ3e

4A−12ugµνρD3 +
e−8u

2κ2
10

gµνR6[g]− e−8A−8u

4κ2
10

gµν∂aΦ−∂
aΦ−

]

+M2
pl

(
24∂µu∂νu− 12gµν∂ρu∂

ρu
)
. (3.25)

Comparing (3.22) and (3.24), the right-hand side of (3.22) can be identified with

−T , i.e. with minus the trace of the stress-energy tensor of the effective theory.

The master equation (3.22) thus encodes the relationship between the curvature

R4[g] of the four-dimensional Einstein frame metric gµν on the one hand, and

the contributions of the ten-dimensional field configuration to the effective four-

dimensional stress-energy tensor Tµν on the other hand. This relation will be

crucial in our analysis. We note that (3.22) matches the effective potential derived

from the ten-dimensional Einstein equations in [152], see e.g. equation (5.30) of

[152].

An equivalent route to deriving (3.22) is to first follow the steps leading to the

Einstein-minus-Bianchi equation (2.30) of [151], which in our conventions reads

∇2Φ− = e−4A∂aΦ−∂
aΦ−+

1

2
κ2

10e
2A+2u

(
T̂abG

ab−T̂µνGµν
)
−2κ2

10µ3e
8A−4uρD3+e8uRRef.[12]

4 .

(3.26)

Because we have made explicit the breathing mode u, which was instead implicit

in the metric ansatz of [151], the scalar curvatures there and here are related by

RRef.[149]
4 = R4[g] + 12�u− 24∂µu∂

µu . (3.27)

Substituting (3.27) in (3.26) and using the Einstein equations and Bianchi identity,

one arrives at (3.22). The point we would like to stress is that equation (2.30) of

[151] — which has been the basis of a number of constraints on compact solutions

— and the master equation (3.22) contain equivalent information, provided that

one correctly accounts for the breathing mode as in (3.27).
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3.3 Stress-energy of Gaugino Condensate

Our goal is to examine the de Sitter scenario of [215] using the ten-dimensional

equations of motion. In the four-dimensional effective theory, the scalar potential

has two components: an F-term potential for the moduli of an N = 1 supersym-

metric compactification, and a supersymmetry-breaking contribution from one or

more anti-D3-branes. We will examine these in turn: in this section we consider

the ten-dimensional configuration without anti-D3-branes, and then in §3.4 we

incorporate the effects of anti-D3-branes.

The relevant moduli at low energies are the Kähler moduli of the Calabi-Yau

orientifold M , because the complex structure moduli and axiodilaton acquire mass

from G3 flux at a higher scale.2 For simplicity of presentation we will consider

a single Kähler modulus, which we denote by T , but our method applies more

generally.

The four-dimensional analysis of [215] established that in the presence of a suit-

ably small3 classical flux superpotential, combined with a nonperturbative super-

potential from Euclidean D3-branes or from gaugino condensation on D7-branes,

the Kähler modulus T is stabilized in an N = 1 supersymmetric AdS4 vacuum.

To recover this result from ten dimensions, we need to understand how these two

superpotential terms correspond to ten-dimensional field configurations.

2If D3-branes are present, their position moduli have masses parametrically comparable to
those of the Kähler moduli, and the corresponding potential can be computed in ten dimensions
[27]: see Appendix B.3.

3The statistical approach of Denef and Douglas [97] gives strong evidence that (in the spirit of
[59]) one can fine-tune the classical flux superpotential W0 = 〈Wflux〉 to be small. This conclusion
is supported by [94], which explicitly demonstrates that values of W0 small enough for control of
the instanton expansion are achievable even with few complex structure moduli.
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First of all, the Gukov-Vafa-Witten flux superpotential [176]

Wflux = π

∫
G ∧ Ω (3.28)

encodes in the four-dimensional effective theory the interaction corresponding to

the term

Sflux = − 1

2κ2
10

∫
d10X

√
−G G3 ·G3

2 Im τ
(3.29)

in the ten-dimensional action (3.2). In particular, the ten-dimensional stress-

energy associated to Wflux is that computed from (3.29).

In the remainder of this section, we will describe the gaugino condensate super-

potential in similarly ten-dimensional terms, and compute the contribution T
〈λλ〉
µν

of gaugino condensation on D7-branes to the ten-dimensional stress-energy tensor.

We will see that the stress energy T
〈λλ〉
µν arises from gaugino-flux couplings generaliz-

ing those derived by Cámara, Ibáñez, and Uranga in [66], and also from associated

nonsingular four-gaugino terms. We will then show that this stress-energy4 leads

to a potential for the Kähler modulus that exactly matches the F-term potential

of [215].

Because the gaugino condensate relies on the dynamics of the D7-brane

gauge theory below the Kaluza-Klein scale, it is not entirely obvious that a ten-

dimensional description of gaugino condensation should exist at all. However, as

explained in [27], one can consider D7-branes wrapping a divisor that is very small

compared to the entire compact space. A localized ‘observer’ far from the D7-

branes, such as a distant D3-brane, should then be able to treat them as a fuzzy

source. This approach turns out to be fruitful: we will exhibit below a precise

correspondence between the ten-dimensional and four-dimensional computations

4In Appendix B.3 we account for the terms other than TD7
µν in (3.22), and demonstrate that

our conclusions remain unchanged.
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of the potential for the Kähler modulus, just as the four-dimensional result for the

potential of a D3-brane probe was obtained from ten dimensions in [27].5

3.3.1 Four-dimensional effective theory

We begin by recalling results from the four-dimensional effective theory that we aim

to recover from ten dimensions. Dimensional reduction of the theory on a stack of

D7-branes wrapping a divisor D leads at low energies, and in the limit that gravity

decouples, to the N = 1 supersymmetric Yang-Mills Lagrangian density

1

16πi

∫
d2θf(T )WαW

α + c.c. , (3.30)

where we have adopted the conventions of [319], but suppress Lie algebra indices.

We will denote the dual Coxeter number of the gauge group by Nc.

Classically, theN = 1 supergravity theory associated to (3.30), for D7-branes in

a background whose moduli potential is described by a classical flux superpotential

Wflux, has the Lagrangian density (see e.g. [221])

L =− 1

4
Ref(T )FµνF

µν − iλ̄σ̄µ∂µλRef(T )− 1

4
λλ eκ

2
4K(T,T )/2KTT∂Tf(T )KTW flux + c.c.

+
3κ2

4
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(
λ̄σ̄µλRef(T )

)2

− 1

16
λλλ̄λ̄KTT∂Tf(T )∂T f̄(T ) , (3.31)

which reduces to (3.30) in the limit κ4 → 0. We take the divisor D to be rigid,

so that the Yang-Mills theory has no charged matter. Here, the D7-brane gauge

coupling is given by the holomorphic expression6

f(T ) =
T

4π
with T :=

∫

D

√
g6e
−4A+4u + i

∫

D

C4 . (3.32)

5See Appendix B.3 for a computation of the D3-brane potential that extends the result of
[27].

6The normalization f(T ) = T/(2π) was used in the study of gaugino-flux couplings in [135,
279], but we take instead f(T ) = T/(4π) for ease of comparison to the supergravity literature.
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However, as explained by [226], in a quantum mechanical effective field theory

treatment of supergravity (as opposed to classical supergravity) the gauge coupling

function receives a non-holomorphic contribution from the Kähler potential:

f(T, T̄ ) =
T

4π
− Nc

16π2
κ2

4K(T, T̄ ) . (3.33)

This term is present thanks to an anomaly in the Weyl rescaling that transforms

fields from the normalization which has linearly realized supersymmetry (when

one restores the auxiliary fields) and a holomorphic f(T ) to the physical normal-

ization employed in (3.4). Because of this, the usual expression for the gaugino

bilinear expectation value in terms of the gauge coupling function depends non-

holomorphically on T [226]:

〈λλ〉 = −32π2

Nc

A e− 8π2

Nc
f(T,T̄ ) . (3.34)

Similarly, the classical Lagrangian (3.31) requires a number of modifications to

account for the fact that f is not holomorphic.

After integrating out the vector multiplet, one obtains an effective field theory

valid below the confinement scale that involves only the chiral superfield containing

the Kähler modulus and the supergravity multiplet. This has the superpotential

W = Wflux +Wnp , (3.35)

where [226]

Wnp = A e− 2πT
Nc . (3.36)

This leads to the relation

〈λλ〉 = −32π2

Nc

eκ
2
4K/2Wnp . (3.37)
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The Pfaffian prefactor A depends on the complex structure moduli and the posi-

tions of any D3-branes: see [40, 28]. Finally, the Kähler potential is7

K = −3 log
(
T +T

)
− log

(
−i(τ−τ)

)
− log

(
i

∫

M

e−4AΩ ∧ Ω

)
+log

(
27V3

)
. (3.38)

In terms of these functions, the F-term potential in this effective field theory is

V = eκ
2
4K
(
KTTDTWDTW − 3κ2

4WW
)
. (3.39)

Our goal is now to show that the F-term potential (3.39), which we have just

recalled as a result in four-dimensional supergravity, can also be derived from the

ten-dimensional equations of motion, upon assigning the vev (3.34) and examining

the ten-dimensional stress-energy.

3.3.2 D7-brane gaugino couplings

Now we turn to ten dimensions. To describe the backreaction of the gaugino

condensate on the bulk fields, we must relax the Calabi-Yau condition and employ

generalized complex geometry, as in [164, 38, 240, 239]. In particular, as reviewed

in Appendix B.1, the single covariantly constant spinor is replaced by two internal

Killing spinors η1 and η2. We can combine these to form a bispinor Φ1, defined as

Φ1 := − 8i

|η|2η1 ⊗ η†2 , (3.40)

and we also define

t := Re
(
e−φ+(φ/4−A)p̂Φ1

)
, (3.41)

7Although the complex structure moduli and dilaton receive supersymmetric masses from the
flux background, we retain the associated terms in (3.38) because their expectation values matter
for the overall normalization. The Kähler potential (3.38) is consistent with that of [102, 240, 223]
— see Appendix B.1 for details of our conventions.
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where the operator p̂ is defined by

p̂ Cp := pCp (3.42)

for a p-form Cp [189]. In type IIB string theory compactified on an orientifold

of a Calabi-Yau threefold, and in the absence of nonperturbative effects, one has

t = 0. However, upon including the effects of gaugino condensation, t develops a

nonvanishing two-form component [135], cf. (B.29), that will be important for our

analysis.

We now study the action of D7-branes on such a generalized complex geom-

etry. The eight-dimensional action describing a stack of D7-branes is derived in

Appendix B.1 via dimensional reduction and T-dualization of the type I action.

We will highlight the important changes that occur when, instead of dimensionally

reducing these D7-branes on a divisor in a Calabi-Yau orientifold, one wraps a

divisor in a generalized complex geometry. Our findings reproduce results of [240].

Gaugino-flux couplings

To write the flux superpotential and the gaugino-flux couplings on D7-branes in a

generalized complex geometry, we first define

G := G3 + idt , (3.43)

and

G[2] := G3 + id2t , (3.44)

where d2 is a differential operator defined in terms of coordinates along the D7-

brane, and is given in Appendix B.1.2.

The gaugino-flux couplings on D7-branes are determined by the supersymmet-

ric Born-Infeld action. In the conventions of [249, 135], with the metric ansatz
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(3.1), and recalling that we have set (2π)2α′ = 1, these couplings – on a divisor in

a Calabi-Yau orientifold, not a generalized complex geometry – are

SGλλ =
i

32π

∫ √−g4 g6e
φ/2e−2uG3 · Ω λ̄λ̄ δ(0) + c.c. (3.45)

We re-derive this interaction via dimensional reduction of the eight-dimensional

D7-brane action in Appendix B.1.

In similar fashion, we find the action that one obtains from wrapping a divisor

in a generalized complex geometry. The details are relegated to Appendix B.1; the

result, in agreement with [38, 240], is that one should promote8

G3 → G3 + id2t ≡ G[2] . (3.46)

Thus, (3.45) becomes (cf. [135])

SGλλ =
i

32π

∫ √−g4 g6e
φ/2e−2uG[2] · Ω λ̄λ̄ δ(0) + c.c. (3.47)

One can likewise generalize the familiar flux superpotential (3.28). The super-

potential in a generalized complex geometry has been studied in e.g. [163, 38, 277,

240, 249] from several angles, for example by computing the mass and supersym-

metry transformation of the gravitino. In our class of solutions this superpotential

takes the form

WGCG = π

∫

M

G ∧ Ω , (3.48)

as we show in Appendix B.1.3.

To relate WGCG to the superpotential W = Wflux + Wnp given in (3.35), we

impose the ten-dimensional Killing spinor equations that govern supersymmetric

solutions. In Appendix B.1.3 we show that

〈WGCG〉 = Wflux +Wnp , (3.49)

8Discussions of (3.46) in this context include [264] and the recent work [37].
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where the brackets indicate evaluation in the supersymmetric configuration. The

generalized complex geometry thus elegantly encodes the effects of the nonpertur-

bative superpotential.

Evaluating the gaugino-flux coupling (3.47), one finds (see Appendix B.1.4 for

details of the computation)

SGλλ = −κ2
4

∫

X

√−g4e
κ2

4KKTT∂TWKTW + c.c.+ Ssing
λλ , (3.50)

where Ssing
λλ is a singular contribution, given in (B.109), that is treated in Appendix

B.3.

Four-gaugino coupling

We similarly demonstrate in Appendix B.1, by dimensional reduction and T-

dualization of the ten-dimensional type I action, that there is a four-gaugino cou-

pling9 on D7-branes given by

Sλλλλ = − 1

6144π3

∫ √−g4 g6e
−4A+8uν Ω · Ω |λλ|2 δ(0), (3.51)

where ν ≡ V−1
⊥ = V−1

∫
D

√
g6e
−4A is the inverse of the volume V⊥ transverse to

the D7-branes. Upon assigning the gaugino bilinear vev (3.34), the four-gaugino

term (3.51) dimensionally reduces to

Sλλλλ = −
∫

X

√−g4e
κ2

4KKTT∂TW∂TW. (3.52)

See Appendix B.1 for details of the computation.

9The importance of four-gaugino couplings in this context was stressed in [178].
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3.3.3 Ten-dimensional stress-energy

We can now obtain the F-term potential for the Kähler modulus T from the ten-

dimensional field configuration. Upon assigning the gaugino bilinear vev (3.34)

and using (3.50), the properly-holomorphic gaugino-flux coupling (3.47) evaluates

to

LGλλ = −κ2
4e
κ2

4KKTT
(
∂TWKTW + c.c.

)
+ Lsing

λλ . (3.53)

The associated ten-dimensional stress-energy is

T λλµν := − 2√
G

δLGλλ

δGµν
=

i

32π
e4A+φ/2−2uG[2] · Ω λ̄λ̄ δ(0)gµν + c.c. , (3.54)

which integrates to

−
∫

M

√
g6e
−4AT λλµν g

µν = 4κ2
4e
κ2

4KKTT∂TWKTW + c.c.− 4Ssing
λλ . (3.55)

Setting aside Ssing
λλ for the moment, we see from (3.55) that the gaugino-flux cou-

pling contributes a finite term in the F-term potential for the Kähler modulus

T,

Vλλ = κ2
4e
κ2

4KKTT∂TWKTW + c.c. (3.56)

We now follow the same steps for the four-gaugino coupling. From (3.51), T λλλλµν is

T λλλλµν := − 2√
G

δLλλλλ
δGµν

= −e8u ν Ω · Ω
6144π3

|λλ|2 δ(0)gµν , (3.57)

which integrates to

−
∫

M

√
g6e
−4AT λλλλµν gµν = 4eκ

2
4KKTT∂TW∂TW. (3.58)

The four-gaugino coupling (3.51) therefore contributes the term

Vλλλλ = eκ
2
4KKTT∂TW∂TW . (3.59)

The total ten-dimensional stress-energy is then

T 〈λλ〉µν := T λλµν + T λλλλµν , (3.60)
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with T λλµν given by (3.54) and with T λλλλµν given by (3.57). Combining (3.56) and

(3.59) to evaluate the integral of T
〈λλ〉
µν over the internal space, and continuing

to set aside the singular term Ssing
λλ , we conclude that the ten-dimensional field

configuration sourced by gaugino condensation on D7-branes gives rise to the four-

dimensional scalar potential,

V = eκ
2
4K
(
KTTDTWDTW − 3κ2

4WW
)
, (3.61)

and so precisely recovers the potential (3.39) computed in four-dimensional su-

pergravity. In summary, we have shown that the ten-dimensional equation of

motion (3.22), incorporating the stress-energy T
〈λλ〉
µν in (3.60), requires that the

Einstein-frame scalar curvature R4[g] takes exactly the value demanded by the

four-dimensional Einstein equation (3.24) with the scalar potential (3.39), i.e. the

value computed in the four-dimensional effective theory in [215]. This is one of our

main results.

Before proceeding, we will comment briefly on the singularities in our solu-

tion, including Ssing
λλ , deferring a complete treatment to Appendix B.3. The ten-

dimensional configuration corresponding to gaugino condensation on D7-branes

contains specific singular field profiles, because the D7-branes are localized to a

complex hypersurface in the internal space. In particular, as shown in [27], the G−

flux sourced by gaugino condensation is

(G−)ac̄d̄ = −ie−4A−φ/2+8u λλ

32π2
∂a∂bG(2)(z; zD7)gbb̄Ωb̄c̄d̄ , (3.62)

where G(2) is the Green’s function on the internal space transverse to the D7-

branes, with complex coordinate z. Similarly, it was shown in [135] that gaugino

condensation sources G+ flux that is localized on the D7-branes:

G+ = −ie
−4A

64π2
e−φ/2 λλΩ δ(0). (3.63)
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Upon evaluating the D7-brane action and the bulk supergravity action in the

presence of these flux configurations, one finds divergent contributions to the stress-

energy, and in turn to the six-dimensional curvature R6 in (3.22). However, we

show explicitly in Appendix B.3 that a highly nontrivial cancellation occurs: all

the divergences appearing in (3.22) cancel, and the finite piece that remains gives

exactly (3.61).

3.4 Anti-D3-branes and Gaugino Condensation

Thus far we have shown that the F-term potential in and around the N = 1 su-

persymmetric AdS4 vacuum of [215] can be obtained in two ways. The first is

four-dimensional supergravity, as originally argued in [215]. The second deriva-

tion, as shown above, is from ten-dimensional supergravity, supplemented with

the gaugino bilinear vev (3.34) substituted into the two-gaugino and four-gaugino

terms in the D7-brane action.

We now turn to the effects of anti-D3-branes, and to the study of four-

dimensional de Sitter vacua from ten dimensions.

3.4.1 Decompactification from anti-D3-branes

We first consider the effects of an anti-D3-brane in a no-scale flux compactification,

without a nonperturbative superpotential for the Kähler moduli.

The Dirac-Born-Infeld action of a spacetime-filling anti-D3-brane at position
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yD3 in the internal space leads to the stress-energy tensor

TD3
µν = −µ3e

8A−12ugµνδ(y − yD3) . (3.64)

Inserting (3.64) in (3.21), we learn that including a single anti-D3-brane in a no-

scale background leads to a shift in the effective potential,10

1

4
M2

plδR4[g] = 2µ3e
−12ue4A(yD3) . (3.65)

The potential energy captured by (3.65) is minimized in the infinite volume limit

u → ∞, so in the absence of any other effects an anti-D3-brane will cause run-

away decompactification. The expression (3.65) agrees with the four-dimensional

analysis of [215].

3.4.2 Interactions of anti-D3-branes and gaugino conden-

sation

To examine the ten-dimensional stress-energy, we write the ten-dimensional field

configuration in the schematic form

φ = φbg + δφ , (3.66)

with

δφ = δφ|〈λλ〉 + δφ|D3 . (3.67)

Here φ is any of the ten-dimensional fields, φbg is the field configuration when

neither gaugino condensation nor anti-D3-branes are included as sources, δφ|〈λλ〉
is the change in the field configuration when gaugino condensation is included as

10As explained in [214], if the anti-D3-brane is in a strongly warped region, the dependence on
the breathing mode becomes e−8u rather than e−12u.
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a source, and δφ|D3 is the change in the field configuration when p anti-D3-branes

are included as a source.

The changes δφ|〈λλ〉 and δφ|D3 are each parametrically small away from their

corresponding sources: 〈λλ〉 is exponentially small by dimensional transmutation,

and the anti-D3-brane is in a warped region. Because the anti-D3-branes and

the D7-brane stack are widely-separated, we can safely neglect the nonlinear cor-

rections to the field configuration resulting from simultaneously including both

gaugino condensation and anti-D3-branes as sources.11

Separating the ten-dimensional Lagrange density as

L = LSUSY + pLD3
loc , (3.68)

with LSUSY = Lbulk + LD7
loc , the total ten-dimensional stress-energy can be written

Tµν = − 2√
−G

δLSUSY

δGµν
− 2√
−G

δLD3
loc

δGµν
≡ T 〈λλ〉µν

∣∣∣
φ

+ TD3
µν

∣∣∣
φ
, (3.69)

which we write as

Tµν = T 〈λλ〉µν

∣∣∣
φbg+δφ|〈λλ〉

+ p TD3
µν

∣∣∣
φbg

+ T int
µν . (3.70)

The first term on the right in (3.70) is the stress-energy (3.60) of gaugino con-

densation on D7-branes, computed in the field configuration φ = φbg + δφ|〈λλ〉,

i.e. without including the backreaction of any anti-D3-branes, as in §3.3. The

second term is the stress-energy (3.64) due to the Dirac-Born-Infeld action of p

anti-D3-branes, computed as probes of the background φ = φbg, as in §3.4.1.

The interaction term T int
µν is defined by (3.70), and captures the stress-energy

due to the interactions of the anti-D3-branes and the condensate: specifically, the

correction to T
〈λλ〉
µν from the shift δφ|D3, and the correction to TD3

µν from the shift

11See [145] and Appendix B.2 for further details and references on nonlinear interactions.
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δφ|〈λλ〉.12 We will now explain why T int
µν can be neglected, so that Tµν is well-

approximated by the first two terms on the right in (3.70). Since we have already

shown in §3.3 and §3.4.1 that these two terms together precisely reproduce the

four-dimensional effective potential of [215], establishing that T int
µν is negligible will

complete our demonstration that the ten-dimensional equations of motion recover

the result of [215].

To show that the interaction T int
µν is negligible, one can consider the leading

effects of p anti-D3-branes on the ten-dimensional fields at the location of the

the D7-branes, and evaluate the resulting correction to the ten-dimensional stress-

energy T
〈λλ〉
µν .

As a cross-check, one can reverse the roles of source and probe, estimate the

leading effects of the D7-brane gaugino condensate on the ten-dimensional fields

at the location of the anti-D3-branes, and evaluate the resulting correction to the

stress-energy p TD3
µν computed from the probe action of p anti-D3-branes.

The methodology for the computation is parallel in the two cases, and builds

on investigations of supergravity solutions sourced by antibranes [219, 103, 273, 36,

33, 34, 134, 35, 75, 1, 20], and of D3-brane potentials in warped throats [214, 28,

104, 26, 27, 145]. One can approximate the Klebanov-Strassler throat as a region

in AdS5 × T 1,1, and use the Green’s functions for the conifold (see e.g. [232])

to compute the influence of a localized source — i.e., the anti-D3-branes or the

D7-brane gaugino condensate — on distant fields. Far away from the source, the

dominant effects appear as certain leading multipoles, corresponding to the lowest-

dimension operators to which the source couples. Schematically (see Appendix B.2

12Corrections to TD3
µν from the shift δφ|D3 are subleading.
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for details),

δφ =
∑

∆

α∆

( r

rUV

)−∆

+ β∆

( r

rUV

)∆−4

, (3.71)

where ∆ is the dimension of an operator O∆ in the dual field theory, r is the

radial coordinate of the throat, and rUV is the location of the ultraviolet end of the

throat. The coefficients α∆ and β∆ correspond to expectation values and sources,

respectively, for the dual operator.

The spectrum of operators of the Klebanov-Witten theory [234] dual to AdS5×

T 1,1 is well-understood, due to the pioneering work of Gubser [175] and of Ceresole

et al. [72, 73] (see also [11, 27, 145, 144]), and moreover there are many quantitative

cross-checks of the long-distance solutions created by anti-D3-branes [103, 218, 26,

36, 33, 134, 35, 27, 41] and by gaugino condensates [26, 27, 189, 135, 279]. In

Appendix B.2 we assemble key results from this literature, and then apply them

to compute the leading interactions of anti-D3-branes with a gaugino condensate.

A brief summary is as follows.

In the linearized supergravity solution sourced by anti-D3-brane backreaction,

as in [36, 33, 34, 134], the leading effects of anti-D3-branes in the infrared on the

D7-brane gaugino condensate are mediated by expectation values for operators of

dimension ∆ ≥ 8, cf. (B.128),(B.129), and so can be neglected when the hierarchy

of scales in the throat is large. Nonlinear effects are likewise negligible [145, 267].

Similarly, in the supergravity solution sourced by gaugino condensate back-

reaction, the leading effects of the D7-brane gaugino condensate on the anti-D3-

branes are negligible compared to the probe anti-D3-brane action in the Klebanov-

Strassler background, cf. (B.154),(B.155) [145, 144], both at the linear and the

nonlinear level.
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In sum, the dominant influence of the anti-D3-branes on the gaugino condensate

is via the breathing mode eu. All other interactions are suppressed by further

powers of the warp factor. We have therefore established that

Tµν ≈ T 〈λλ〉µν + p TD3
µν + . . . , (3.72)

where T
〈λλ〉
µν is given by (3.60), TD3

µν is given by (3.64), and the ellipses denote terms

suppressed by powers of eA.

It follows that the ten-dimensional equation of motion (3.22), incorporating

the total stress-energy T
〈λλ〉
µν + p TD3

µν in (3.72), requires the Einstein-frame scalar

curvature R4[g] to take exactly the value computed in the de Sitter vacuum of the

four-dimensional theory in [215]. In other words, the precise quantitative match

between ten-dimensional and four-dimensional computations that we established

for the N = 1 supersymmetric theory in §3.3 continues to hold in the presence of

anti-D3-branes.

3.5 Conclusions

We have derived the four-dimensional scalar potential in the de Sitter and anti-de

Sitter constructions of [216] directly from type IIB string theory in ten dimensions,

supplemented with the expectation value 〈λλ〉 of the D7-brane gaugino bilinear.

We first computed the two-gaugino and four-gaugino couplings on D7-branes,

by dimensionally reducing and T-dualizing the ten-dimensional type I supergravity

action. From these terms we computed the ten-dimensional stress-energy sourced

by gaugino condensation on a stack of D7-branes, carefully accounting for the fact

that the ten-dimensional solution in the presence of the condensate is a gener-
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alized complex geometry. As a key step in this computation, we used the ten-

dimensional Killing spinor equations to prove that in a supersymmetric configura-

tion, the generalized complex geometry superpotential (3.48) is equal to the full

superpotential, i.e. we established the relation (3.49). Upon dimensional reduc-

tion, the ten-dimensional stress-energy of the supersymmetric configuration then

gives rise to the scalar potential of the N = 1 supersymmetric theory of [216],

evaluated in its supersymmetric AdS4 vacuum. The match is exact, at the level

of the approximations made in [216]. Furthermore, provided that (3.49) continues

to hold off-shell — which we find plausible but have not established here — we

recovered the complete scalar potential of the four-dimensional theory, even away

from the supersymmetric minimum of the potential for the Kähler modulus.

To combine the stress-energy of the gaugino condensate with that of anti-D3-

branes at the tip of a Klebanov-Strassler throat, we examined the Kaluza-Klein

spectrum of T 1,1, and found the operators of the dual field theory that mediate the

leading interactions between a condensate in the ultraviolet and anti-D3-branes

in the infrared. We found that all such couplings via Kaluza-Klein excitations

are suppressed by powers of the warp factor compared to the probe anti-D3-brane

action. This left the interaction via the breathing mode, as in [216], as the only

important one. We thus concluded that the ten-dimensional stress-energy of the

gaugino condensate and the anti-D3-branes together lead to the scalar potential

of the non-supersymmetric theory of [216]. The match is again exact, even away

from the de Sitter minimum, in the same sense as above.

This work has not altered the evidence, which we judge to be robust [124],

for the existence in string theory of the separate components of the scenario [216],

namely a small classical flux superpotential, a gaugino condensate on a stack of D7-
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branes, and a metastable configuration of anti-D3-branes in a Klebanov-Strassler

throat. Instead, we showed that provided these components exist in an explicit

string compactification, their effects can be computed either in ten dimensions or

in the four-dimensional effective theory, with perfect agreement.

Progress in understanding the physics of de Sitter space in string theory con-

tinues. Our findings may aid in pursuing de Sitter solutions in ten dimensions.
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CHAPTER 4

VACUA WITH SMALL FLUX SUPERPOTENTIAL

Abstract1

We describe a method for finding flux vacua of type IIB string theory in which

the Gukov-Vafa-Witten superpotential is exponentially small. We present an ex-

ample with W0 ≈ 2 × 10−8 on an orientifold of a Calabi-Yau hypersurface with

(h1,1, h2,1) = (2, 272), at large complex structure and weak string coupling.

1This chapter is published as M. Demirtas, M. Kim, L. McAllister, J. Moritz, “Vacua with
Small Flux Superpotential,” Phys.Rev.Lett. 124 (2020) 21, 211603 [arxiv:1912.10047 [hep-th]].

74



4.1 Introduction

To understand the nature of dark energy in quantum gravity, one can study de

Sitter solutions of string theory. Kachru, Kallosh, Linde, and Trivedi (KKLT)

have argued that there exist de Sitter vacua in compactifications on Calabi-Yau

(CY) orientifolds of type IIB string theory [215]. An essential component of the

KKLT scenario is a small vacuum value of the classical Gukov-Vafa-Witten [176]

flux superpotential,

W0 :=
√

2
π

〈
eK/2

∫

X

G ∧ Ω
〉
. (4.1)

Here X is the CY orientifold, G is the three-form flux, Ω is the (3, 0) form on X, K

is the Kähler potential for the complex structure moduli and the axiodilaton, and

the brackets denote evaluation on the vacuum expectation values of these moduli.

The stabilized values of the Kähler moduli are proportional to log(|W0|−1), so

control of the α′ expansion is possible only if |W0| is very small.

String compactifications are characterized by discrete data, including the topol-

ogy of the internal space, and quantized fluxes within it. The number of distinct

choices is vast, and although |W0| � 1 is evidently not typical, strong evidence

for the existence of vacua with |W0| � 1 comes from the statistical treatment

of [21, 98, 99, 128, 129], as reviewed in [125]. By approximating the integrally-

quantized fluxes by continuous variables, one can compute the expected number

of flux vacua with |W0| ≤ δ, for δ some chosen threshold. This approach predicts

that in an orientifold with a sufficiently large value of the D3-brane charge tadpole

QD3 there should exist choices of flux giving vacua with exponentially small |W0|.

We are not aware of any flaw in this statistical approach, but one can never-

theless ask: do there in fact exist orientifolds and choices of flux giving vacua with
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|W0| � 1, as the statistical theory predicts? In this Letter we answer this question

in the affirmative.

In §4.2 we present a general method for constructing vacua with small W0 at

large complex structure (LCS) and weak string coupling, building on [155, 100].

In §4.3 we give an explicit example2 where W0 ≈ 2 × 10−8, in an orientifold of a

Calabi-Yau hypersurface in CP[1,1,1,6,9]. In §4.4 we show that our result accords well

with the statistical predictions of [98]. We show in §4.5 that at least one complex

structure modulus in our example is as light as the Kähler moduli. We explain why

this feature occurs in our class of solutions, and we comment on Kähler moduli

stabilization in our vacuum.

4.2 A landscape of weakly coupled flux vacua with small

W0

Vacua with |W0| � 1 are rare elements in a large landscape. It is therefore

impractical to exhibit vacua with |W0| � 1 by enumerating general vacua on

a massive scale and filtering out the desired ones. Instead one should pursue

algorithms that preferentially find fluxes that lead to vacua with small |W0|.

One algorithm of this sort3 [155, 100] proceeds by finding quantized fluxes

that solve an approximate form of the F-term equations, with the corresponding

approximate superpotential exactly vanishing, at some given point U? in moduli

space. One then solves for nearby moduli values U = U? + δU that solve the true

2Pioneering work in this direction appears in [100, 101]. Issues related to the size of |W0| are
discussed in e.g. [74, 289].

3For an approach via genetic algorithms see [76].
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F-term equations with the same choice of fluxes. When the approximation made

in the first step is a good one, the true superpotential evaluated at U = U? + δU

will be small.

We will construct a class of flux vacua along these lines. The approximate

superpotential is obtained by neglecting nonperturbative corrections to the prepo-

tential for the complex structure moduli around the LCS locus in moduli space.4

Stabilization near LCS, where these nonperturbative terms are exponentially small,

then yields an exponentially small flux superpotential.

We consider an orientifold X of a Calabi-Yau threefold with −QD3 units of

D3-brane charge on seven-branes and O3-planes. Let {Aa, Bb} be a symplectic

basis for H3(X,Z), with Aa ∩ Ab = 0, Aa ∩ Bb = δ b
a , and Ba ∩ Bb = 0. We use

projective coordinates {Ua} on the complex structure moduli space of dimension

n ≡ h2,1
− , and we work in a gauge in which U0 = 1. Denoting the prepotential by

F and writing Fa = ∂UaF , we define the period vector as

Π =



∫
Ba

Ω
∫
Aa

Ω


 =



Fa
Ua


 . (4.2)

The integer flux vectors F and H are similarly obtained from the three-form field

strengths F3 and H3 as

F =



∫
Ba
F3

∫
Aa
F3


 , H =



∫
Ba
H3

∫
Aa
H3


 . (4.3)

Defining the symplectic matrix Σ =
(

0 I
−I 0

)
, the flux superpotential and the Kähler

4Recent discussions of flux potentials near LCS appear in [192, 169, 193].
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potential are5

W =
√

2
π

(
F − τH

)T
· Σ · Π , (4.4)

K = − log
(
−iΠ† · Σ · Π

)
− log

(
−i(τ − τ̄)

)
. (4.5)

The LCS expansion of the prepotential is F(U) = Fpert(U) + Finst(U) [197] with

the perturbative terms

Fpert(U) = − 1

3!
KabcUaU bU c +

1

2
aabU

aU b + baU
a + ξ , (4.6)

and the instanton corrections

Finst(U) =
1

(2πi)3

∑

~q

A~q e
2πi~q·~U . (4.7)

Here Kabc are the triple intersection numbers of the mirror CY, aab and ba are ratio-

nal, the sum runs over the homology classes ~q of effective curves in the mirror CY,

with amplitudes A~q determined by the corresponding Gromov-Witten invariants,

and ξ = − ζ(3)χ
2(2πi)3 , with χ the Euler number of the CY. We write

W = Wpert +Winst , (4.8)

with Wpert the portion obtained by using Fpert(U) in (4.4), and Winst the correc-

tion from Finst(U). We call Wpert the perturbative superpotential, and Winst the

nonperturbative correction, even though the full flux superpotential W is classical

in the type IIB theory.

The real parts of ~U are axionic fields that do not appear in the perturbative

Kähler potential, enjoying discrete gauged shift symmetries ~U 7→ ~U + ~ν with

~ν ∈ Zn. Under such a shift, the period and flux vectors undergo a monodromy

5We have set the reduced Planck mass to unity, and we omit here the Kähler potential for the
Kähler moduli, which reads KK = −3 log

(
2 Vol2/3

)
, with Vol the volume of X in ten-dimensional

Einstein frame, in units of (2π)2α′. Our conventions match those of [217] upon taking V = 1/4π
and b = 1 in §A.3 of [217], cf. [101].
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transformation {Π, F,H} 7→ M~ν
∞{Π, F,H} with the monodromy matrix M~ν

∞ ∈

Sp(2n + 2,Z). For generic choices of flux quanta, these discrete axionic shift

symmetries are spontaneously broken, realizing axion monodromy [309, 270, 225].

A discrete shift symmetry remains unbroken if and only if there exists a monodromy

transformation M~ν
∞ combined with an SL(2,Z) transformation T r : (H,F ) 7→

(H,F + rH), r ∈ Z, that leaves the pair of flux vectors invariant.

Consider a choice of fluxes and moduli values that solves the F-flatness condi-

tions, has an unbroken shift symmetry, and has Wpert = 0, all at the level of the

perturbative prepotential Fpert(U). We call such a configuration a perturbatively

flat vacuum. Here is a sufficient condition for the existence of such a vacuum.

Lemma: Suppose there exists a pair ( ~M, ~K) ∈ Zn ×Zn satisfying −1
2
~M · ~K ≤

QD3 such that Nab ≡ KabcM c is invertible, and ~KTN −1 ~K = 0, and ~p ≡ N −1 ~K lies

in the Kähler cone of the mirror CY, and such that a · ~M and ~b · ~M are integer-

valued. Then there exists a choice of fluxes, compatible with the tadpole bound set

by QD3, for which a perturbatively flat vacuum exists. The perturbative F-flatness

conditions obtained from (4.6) are then satisfied along the one-dimensional locus

~U = τ~p along which Wpert vanishes.

To verify the Lemma, one considers the fluxes

F = ( ~M ·~b, ~MT · a , 0, ~MT ) , H = (0, ~KT , 0, 0) , (4.9)

which can be shown to be the most general ones leading to a perturbative su-

perpotential Wpert that is homogeneous of degree two in the n + 1 moduli. The

monodromy transformation M~ν
∞ combined with an appropriate SL(2,Z) transfor-

mation leaves (4.9) invariant, so a discrete shift symmetry remains unbroken.

Because Wpert is homogeneous, there is a perturbatively-massless modulus cor-
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responding to an overall rescaling of the moduli. This modulus can be stabilized

by the nonperturbative terms in F . Given ( ~M, ~K) for which stabilization of the

rescaling mode occurs at weak coupling, Winst will be exponentially small. One

finds the effective superpotential

Weff(τ)√
2/π

= Ma∂aFinst =
∑

~q

A~q ~M · ~q
(2πi)2

e2πiτ~p·~q , (4.10)

where we have chosen the axiodilaton τ as a coordinate along the flat valley. As

the inner product ~p · ~q need not be integer, it is possible to find flux quanta such

that τ can be stabilized at weak coupling, by realizing a racetrack.6 This works

efficiently if the two most relevant instantons, which we label as ~q1 and ~q2, satisfy

~p · ~q1 ≈ ~p · ~q2.

4.3 An example

We now illustrate our method in an explicit example, with n = 2. We consider

the degree 18 hypersurface in weighted projective space CP[1,1,1,6,9] studied in [69].

This is a CY with 272 complex structure moduli, but as explained in [155], it is

useful to study a particular locus in moduli space where the CY becomes invariant

under a G = Z6×Z18 discrete symmetry.7 By turning on only flux quanta invariant

under G, we are guaranteed to find solutions of the full set of F-term equations,

by solving only those corresponding to the directions tangent to the invariant

subspace. Conveniently, the periods in these directions are identical to the periods

of the mirror CY, and are obtained from an effective two-moduli prepotential as

6Achieving racetrack stabilization within our class of models could aid in the search for large
axion decay constants via alignment, as in [228]. See [188, 54] for approaches using unbroken
shift symmetries, and [183] for Kähler moduli stabilization in this context.

7If we were to orbifold by this symmetry group and resolve the singularities we would obtain
the mirror CY [166]. We will not proceed in this direction, but instead stay with the original
CY.
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in (4.6) with the data

K111 = 9 , K112 = 3 , K122 = 1 ,

a =
1

2




9 3

3 0


 , ~b =

1

4




17

6


 . (4.11)

The instanton corrections take the form [69]

(2πi)3Finst = F1 + F2 + · · · , (4.12)

F1 = −540q1 − 3q2 , (4.13)

F2 = −1215

2
q2

1 + 1080q1q2 +
45

8
q2

2 , (4.14)

where qi = exp(2πiU i) with i ∈ {1, 2}. Note the O(10−2) hierarchy in the coeffi-

cients of the one-instanton terms. We consider an orientifold involution described

in [248], with two O7-planes, each with four D7-branes, and in which we find

QD3 = 138. The D7-brane tadpole cancels automatically.

We will now use the Lemma to find a pair ( ~M, ~K) ∈ Z2×Z2 yielding a pertur-

batively flat vacuum. Using (4.11), the condition ~KTN −1 ~K = 0 becomes

M1 =
M2K2(2K1 − 3K2)

(K1 − 3K2)2
, (4.15)

and the flat direction is given by

~U = τ



p1

p2


 =

τ(K1 − 3K2)

M2



−K2/K1

1


 . (4.16)

Once the nonperturbative corrections (4.12) are included, the effective superpo-

tential along the flat direction reads

Weff(τ) = c
(
e2πip1τ + Ae2πip2τ

)
+ · · · , (4.17)

where c and A depend on the pair ( ~M, ~K), but not on τ . A racetrack potential is

realized when the two terms in (4.17) are of comparable magnitude, which requires
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Figure 4.1: The scalar potential on the positive Im τ axis.

|p1 − p2| � p2. We are thus looking for ~M and ~K obeying (4.15) for which

Qflux
D3 ≡ −1

2
~M · ~K ≤ 138 and |K1 +K2| � |K2|. A suitable choice is

~M =



−16

50


 , ~K =




3

−4


 , (4.18)

which gives Qflux
D3 = 124, A = − 5

288
, and c = −

√
2
π

8640
(2πi)3 . The resulting racetrack

potential is depicted in Figure 1. The moduli are stabilized at

〈τ〉 = 6.856i , 〈U1〉 = 2.742i , 〈U2〉 = 2.057i , (4.19)

and we find

|W0| = 2.037× 10−8 . (4.20)

The instanton expansion is under excellent control: the two-instanton terms (4.14)

are a factor O(10−5) smaller than the one-instanton terms (4.13), and the three-

instanton terms are smaller by a further factor O(10−5).

4.4 Statistics of small W0

A systematic understanding of statistical predictions of the flux landscape was

developed in [21, 98, 99, 128, 129], in part by approximating the integer fluxes
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by continuous variables. Let us compare our result (4.20) with the statistical

prediction for the smallest possible W0 in our orientifold.

We write N (λ∗, QD3) for the expected number of vacua with D3-brane charge

in fluxes less than QD3 and with |W0|2 ≤ λ∗ � 1. According to [98], N (λ∗, QD3)

is given for n = 2 by

N (λ∗, QD3) =
2π4(2QD3)5

5!
λ∗

∫

M
? e2KFabcFabc , (4.21)

where M is the axiodilaton and complex structure moduli space, ? is the Hodge

star onM, and Fabc ≡ ∂3
abcF . Taking QD3 = 138 and numerically integrating over

the LCS region 1 < Im(U), we find that N (λ∗, 138) < 1 for
√
λ∗ . 6× 10−7. The

prediction of [98] is thus that the smallest value of |W0| expected to exist is of

order 6× 10−7, which agrees reasonably well with (4.20).

4.5 Toward stabilizing all moduli

Thus far we have found a class of no-scale vacua in which the complex structure

moduli and axiodilaton F-terms vanish, and W0 is exponentially small. To achieve

stabilization of the Kähler moduli from this promising starting point, two issues

must be addressed: the masses of the complex structure moduli and axiodilaton,

and the nonperturbative superpotential for the Kähler moduli.

For the example of §4.3, we have computed the mass matrix along the G-

symmetric locus. Two of the moduli are heavy, but the third, corresponding to the

perturbatively-flat direction τ , has a mass proportional to |W0|. We are not aware

of a reason why any of the G-breaking combinations should be comparably light,

but checking this directly will be important, and rather challenging. Assuming
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that the G-breaking moduli are indeed heavy, the low energy theory describing

Kähler moduli stabilization will include τ and the Kähler moduli T1, T2.

Provided that the configuration of seven-branes (with vanishing D7-brane tad-

pole) wraps divisors that are either rigid [346], or else are rigidified by the intro-

duction of fluxes [224, 222, 47], we expect a nonperturbative superpotential of the

form

Weff(τ, T1, T2) = c
(
e2πi 2

5
τ + Ae2πi 3

10
τ
)

+Be
− 2π
c1
T1 + Ce

− 2π
c2
T2 . (4.22)

Here A and c are known coefficients, cf. (4.17), c1 and c2 are the dual Coxeter

numbers of the confining seven-brane gauge groups, and Re(Ti) are the volumes of

the corresponding divisors.

The unbroken discrete shift symmetry implies that the Pfaffian prefactors B

and C are independent of τ , up to nonperturbatively-small corrections, and so can

be treated as unknown constants.

To exhibit vacua with all moduli stabilized in this setting, one should establish

(4.22) and compute B and C for a seven-brane configuration in which c1 and c2

are sufficiently large to ensure control of the α′ expansion. This worthy goal is

beyond the scope of the present work.

4.6 Conclusions

We have described a method for constructing flux vacua with exponentially small

Gukov-Vafa-Witten superpotential in compactifications of type IIB string theory

on Calabi-Yau orientifolds, at weak string coupling and large complex structure.
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The first step is to neglect nonperturbative terms in the prepotential expanded

around large complex structure, and find quantized fluxes that at this level yield

vanishing F-terms and vanishing superpotential along a flat direction in the com-

plex structure and axiodilaton moduli space. We provided simple and constructive

sufficient conditions for the existence of such solutions, and we determined the

flat direction analytically, vastly simplifying the search for vacua. Upon restoring

the nonperturbative corrections, one can find full solutions in which the flat direc-

tion is lifted, although it remains anomalously light, and the flux superpotential is

exponentially small.

We gave an explicit example with |W0| ≈ 2 × 10−8 in an orientifold of the

Calabi-Yau hypersurface in CP[1,1,1,6,9]. This value of |W0| accords well with the

statistical expectation derived from the work of Denef and Douglas [98]. Stabilizing

the Kähler moduli in this class of vacua, and then pursuing more explicit de Sitter

solutions, are important tasks for the future.
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CHAPTER 5

CONIFOLD VACUA WITH SMALL FLUX SUPERPOTENTIAL

Abstract1

We introduce a method for finding flux vacua of type IIB string theory in which

the flux superpotential is exponentially small and at the same time one or more

complex structure moduli are stabilized exponentially near to conifold points.

1This chapter is published as M. Demirtas, M. Kim, L. McAllister, J. Moritz, “Conifold
Vacua with Small Flux Superpotential,” Fortschritte der Physik, Volume 68, Issue 11-12 2000085
[arxiv:2009.03312 [hep-th]].
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5.1 Introduction

In order to understand the cosmologies that are possible in quantum gravity, one

can search for de Sitter solutions in compactifications of string theory. Kachru,

Kallosh, Linde, and Trivedi (KKLT) famously proposed that orientifold compact-

ifications of type IIB string theory that contain specific ‘components’ in the right

proportions will admit parametrically controlled de Sitter vacua [215].

These components — a small classical flux superpotential [21, 98, 100, 92],

a warped throat region [233, 151, 152, 127, 54, 262], a potential for the Kähler

moduli from Euclidean D3-branes or strong gauge dynamics [346, 240, 53, 167, 47,

48, 178, 179, 71, 148, 37, 217], and a supersymmetry-breaking sector from anti-

D3-branes [219, 36, 134, 32, 20, 55, 297, 130] — are by now rather well understood

separately. A remaining challenge in the pursuit of explicit examples of KKLT de

Sitter vacua is to exhibit Calabi-Yau orientifolds that contain all these components

at once, through calculations in which corrections to the leading approximations

are demonstrably well-controlled.

In this work we present a method for finding flux vacua that contain both

a warped throat region and an exponentially small classical flux superpotential,

|W0| � 1. We do so by building on our recent work [92], where we showed how

to find flux vacua with |W0| � 1. In [92] we took all complex structure moduli to

be near large complex structure (LCS). Warped throats, on the other hand, occur

in flux vacua in which one or more complex structure moduli are stabilized near

conifold singularities — we refer to such vacua as conifold vacua.

If the quantized fluxes threading the A-cycle and B-cycle of a conifold in such a

vacuum are sufficiently large, then the conifold region is accurately described by the
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warped deformed conifold supergravity solution found by Klebanov and Strassler

[233], and can serve as a setting for metastable supersymmetry breaking by anti-

D3-branes [219]. In the opposite regime of small ’t Hooft coupling, the conifold

region is accurately described by a cascading gauge theory that potentially has a

metastable supersymmetry-breaking state — gauge theory vacua of this sort have

been analyzed in [15, 299, 18, 17, 16].

In order to generalize the mechanism of [92] to include conifolds one has to

overcome the following obstacle. Introducing fluxes on the conifold cycles generates

a conifold superpotential Wcf that by itself cannot be tuned to be small. Thus,

the total flux superpotential will be small in string units only if the large conifold

superpotential is efficiently canceled by a comparably large contribution Wbulk

generated by fluxes on other cycles, i.e. if

|W0| := |〈Wflux〉| = |〈Wcf〉+ 〈Wbulk〉| � 1 . (5.1)

To achieve such a cancellation, one must first accurately compute the conifold

superpotential Wcf in the vicinity of a conifold singularity.

In the first part of this work, we compute Wcf analytically in the case where the

shrinking S3 of the conifold is mirror dual to a shrinking curve. In such a case Wcf is

obtained by resumming the instanton corrections from string worldsheets wrapping

the shrinking curve in the mirror threefold. We then show, along the same lines

as [92], that one can choose quantized fluxes leading to an exponentially precise

cancellation of the form shown in eq. (5.1). Finally, we present explicit examples

of conifold vacua in an O3/O7 orientifold of a Calabi-Yau hypersurface X̃ with

h1,1(X̃) = 99 and h2,1(X̃) = 3.

Let us be clear in advance about the scope of this work. We will present a

mechanism for constructing classical flux vacua in which |W0| � 1 and at least
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one complex structure modulus is stabilized near a conifold, and we will illustrate

the mechanism with flux vacua of an explicit orientifold. Although a long-term

goal is to combine such results with Kähler moduli stabilization and a metastable

uplift to a de Sitter solution,2 we will not take these latter steps here. Exhibiting

ensembles of flux vacua that can be lifted to metastable de Sitter solutions is an

ambitious task for the future.

The organization of this paper is as follows. In §5.2 we set our notation (§5.2.1),

recall a few results about the large complex structure limit in Calabi-Yau moduli

space (§5.2.2), and review the mechanism of [92] for constructing vacua with small

flux superpotential (§5.2.3). In §5.3 we present a mechanism for constructing

conifold vacua with small flux superpotential. To illustrate this, in §5.4 we examine

a Calabi-Yau threefold X with h1,1(X) = 3 and h2,1(X) = 99 (§5.4.1); construct

its mirror X̃, and an orientifold thereof (§5.4.2); and exhibit conifold vacua with

|W0| � 1 in the orientifold of X̃ (§5.4.3). We conclude in §5.5. The appendix

contains two independent computations of the D3-brane tadpole in the orientifold

of §5.4.2.

5.2 Vacua with small flux superpotential

5.2.1 Setup

We will work in the landscape of four-dimensional N = 1 supergravity solutions

obtained from compactifications of type IIB string theory on O3/O7 orientifolds

of Calabi-Yau threefolds. While we are ultimately interested in analyzing the full

2See e.g. [248] for an analysis of a de Sitter solution arising from an explicit flux vacuum.
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vacuum structure of such models, arising in particular from the non-perturbative

potential for the Kähler moduli, in this paper we will neglect the Kähler moduli

altogether. That is, we consider the classical no-scale solutions of [151]. Through-

out this paper, unless noted otherwise, we will work in ten-dimensional Einstein

frame in units where `2
s ≡ (2π)2α′ = 1, and use our freedom to Weyl-rescale the

four-dimensional metric to set the four-dimensional reduced Planck mass to one.

These conventions match those of [92].

To begin, we consider a Calabi-Yau threefold X̃ and a holomorphic and iso-

metric involution Ĩ : X̃ → X̃, with induced action on the holomorphic three-form

Ω 7→ −Ω. After the orientifolding, the fixed locus of Ĩ hosts O3-planes and O7-

planes.

Let Q be the total D3-brane charge of the O3-planes and seven-brane stacks.

If Q < 0 then its contribution to the D3-brane tadpole can be canceled by ND3

mobile D3-branes as well as three-form fluxes F3 and H3 such that3

Qtotal
D3 = ND3 +

1

2

∫

X̃

F3 ∧H3 +Q = 0 . (5.2)

Let {Σ(3)a,Σ
a
(3)} be a symplectic basis of H3(X̃,Z) and {αa, βa} their Poincaré

dual forms,

∫

X̃

αa ∧ βb = δab ,

∫

X̃

αa ∧ αb =

∫

X̃

βa ∧ βb = 0 , a, b = 0, ..., h2,1(X̃) . (5.3)

The periods

za =

∫

Σ(3)a

Ω =

∫

X̃

Ω ∧ αa , Fa =

∫

Σa
(3)

Ω =

∫

X̃

Ω ∧ βa (5.4)

form an overcomplete set of coordinates on complex structure moduli space: locally

we have Fa = Fa(z) and the za are a set of projective coordinates. Similarly, the

3In our conventions a mobile D3-brane has a single unit of D3-brane charge, while a D3-brane
frozen onto the orientifold fixed locus has charge 1/2.
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fluxes F3 and H3 are characterized by the Dirac-quantized flux vectors

fa =

∫

Σ(3)a

F3 , fa =

∫

Σa
(3)

F3 , ha =

∫

Σ(3)a

H3 , ha =

∫

Σa
(3)

H3 , (5.5)

and we will write ~f = (fa, f
a), ~h = (ha, h

a).

Prior to orientifolding, the complex structure moduli come in N = 2 vector

multiplets, and the periods Fa(z) derive from a prepotential F(z) via Fa(z) =

∂aF(z). The tree-level exact Weil-Petersson metric on complex structure moduli

space is obtained from the Kähler potential

Kcs = − ln

(
−i
∫

X̃

Ω ∧ Ω

)
= − ln

(
−i~Π†Σ~Π

)
, (5.6)

with period vector ~Π = (∂aF , za)t and symplectic pairing Σ :=




0 I

−I 0


.

The orientifold involution induces a splitting of the cohomology groups,

Hp,q(X̃,Q) = Hp,q
+ (X̃,Q)⊕Hp,q

− (X̃,Q) (5.7)

into even and odd eigenspaces, and the complex structure moduli that survive

the projection are counted by h2,1
− (X̃, Ĩ) := dimH2,1

− (X̃,Q) and come in N = 1

chiral multiplets. We will denote these surviving complex structure moduli by za,

a = 1, ..., h2,1
− (X̃, Ĩ). Likewise, h1,1

+ (X̃, Ĩ) counts the number of surviving Kähler

moduli Tα. Finally, h1,1
− (X̃, Ĩ) and h2,1

+ (X̃, Ĩ) are the number of axionic chiral

multiplets and U(1) vector multiplets, respectively, but will play no role in this

paper. The full tree-level effective action has been worked out in [170].

After orientifolding, the Kähler potential of eq. (5.6) will in general receive cor-

rections from fluxes and orientifold planes, but these are subleading at sufficiently

large volume where fluxes are dilute and warping is negligible. The superpoten-

tial, however, is exact up to non-perturbative corrections in the Kähler moduli and
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D(-1) instantons and is given by [176, 151]

W (z, τ, T ) = Wflux(z, τ) +Wnp(z, τ, T ) , with (5.8)
√

π
2
Wflux(z, τ) =

∫

X̃

(
F3 − τH3

)
∧ Ω(z) =

(
~f − τ~h

)t
Σ~Π(z) , (5.9)

where Wnp(z, τ, T ) parameterizes non-perturbative corrections in the Kähler mod-

uli T and the dilaton τ , which are typically difficult to compute.4 We will neglect

these corrections self-consistently. Moreover, even when flux backreaction is se-

vere, the vacuum solutions DτW = DzaW = 0 obtained using the classical Kähler

potential (5.6) are reliable as long as the ten-dimensional geometry is in the su-

pergravity regime, even though the scalar potential away from the supersymmetric

minimum can no longer be computed from it [151].

This fact will be particularly important for the purposes of this paper because

we will stabilize complex structure moduli near a conifold point in moduli space. In

this case, for moderate values of the overall volume modulus, in the vicinity of the

(deformed) conifold regions in the Calabi-Yau the fluxes are no longer dilute and

their backreaction produces the famous Klebanov-Strassler throats [233]. These

produce an exponentially strong gravitational redshift (warping) that is not ap-

propriately captured by eq. (5.6) and (5.8). Nevertheless, the Klebanov-Strassler

solution falls into the class of imaginary-self-dual (ISD) solutions of [151], and the

F-term equations arising from (5.6) and (5.8) can be used as a tool to find points

in Calabi-Yau moduli space where the fluxes are indeed ISD.

4The leading order contributions come from D(-1) instantons ∼ e2πiτ as well as Euclidean
D3-branes and gaugino condensation effects on seven-branes ∼ e−2πT/c, c ∈ N.
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5.2.2 The large complex structure patch

In the following, we will be interested in the large complex structure (LCS) patch

of complex structure moduli space of X̃, which is mirror dual to the large volume

region of the mirror threefold X.5 Let {Σ(2)a} be a basis of H2(X,Z) and {Σa
(4)}

a dual basis of H4(X,Z), i.e. Σ(2)a · Σb
(4) = δ b

a . Curve classes [C] ∈ H2(X,Z) are

represented by integer vectors βCa ,

[C] =

h1,1(X)∑

a=1

βCa [Σ(2)a] , βCa ∈ Z . (5.10)

The complexified (string frame) curve volumes za =
∫

Σ(2)a
(B + iJ), a =

1, ..., h1,1(X), serve as local coordinates on moduli space and are identified with

the type IIB complex structure moduli za in a gauge where z0 = 1. Henceforth,

we will work in this gauge and let a, b = 1, ..., h1,1(X).

The prepotential enjoys the expansion [197]

F(z) = Fpoly(z) + Finst(z) , (5.11)

with Fpoly(z) = − 1

3!
Kabczazbzc +

1

2
aabz

azb + baz
a +

χζ(3)

2(2πi)3
. (5.12)

Here, Kabc are the triple intersection numbers of X, and the quadratic term can

be taken to be

aab =
1

2





Kaab a ≥ b

Kabb a < b

, (5.13)

where ba = 1
24

∫
Σa

(4)
c2(X), χ =

∫
X
c3(X), and ζ(3) is Apéry’s constant. Moreover,

Finst(z) = − 1

(2πi)3

∑

[C]
n0
C Li3(qC) , qC := exp

(
2πiβCaz

a
)
, (5.14)

5For a recent study of scalar potentials from fluxes in asymptotic limits such as the LCS
region, see [169].
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where the sum runs over all effective curve classes [C], n0
C ∈ Z are the genus

zero Gopakumar-Vafa (GV) invariants [158, 159], and Lik(q) :=
∑∞

n=1 q
n/nk is the

polylogarithm. When all effective curves in X are large, Finst parameterizes type

IIA worldsheet instanton corrections to the derivatives of the prepotential as

Fa(z) = ∂aFpoly −
1

(2πi)2

∑

[C]
n0
Cβ
C
a Li2(qC) . (5.15)

5.2.3 Small flux superpotentials at large complex structure

As demonstrated in [92], one can find weakly coupled flux vacua at LCS with

exponentially small flux superpotential by making a restricted choice of fluxes.

Near LCS, the flux superpotential splits as

Wflux(za, τ) ≡ Wpoly(za, τ) +Winst(z
a, τ) , (5.16)

where Wpoly(z, τ) is the flux superpotential that arises from the approximation

F(z) ≈ Fpoly(z), and Winst(z, τ) parameterizes the instanton corrections,

−
√

π
2
Winst(z, τ) := (fa − τha)∂aFinst(z) + (f 0 − τh0)

(
2Finst(z)− za∂aFinst(z)

)
.

(5.17)

We choose fluxes

~f = (baM
a, aabM

b, 0,Ma)t , ~h = (0, Ka, 0, 0)t , (5.18)

parameterized by a pair ~M, ~K ∈ Zh2,1
− (X̃,Ĩ) that satisfies

Kap
a = 0 , 0 ≤ −MaKa ≤ −2Q , with pa := (KabcM c)−1Kb , (5.19)

such that ~p is in the Kähler cone of X. For such a choice of fluxes the polynomial

part of the superpotential takes the form

Wpoly(z, τ) ∝ 1

2
KabcMazbzc − τKaz

a , (5.20)
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and has a supersymmetric valley ∂zaWpoly = Wpoly = 0 along the one-dimensional

locus where za = paτ . Generically, the orthogonal directions to the flat valley

are heavy and can be integrated out — we will verify this in explicit examples in

§5.4.3.

As the polynomial part of the superpotential vanishes along the flat valley, the

instanton corrections to the superpotential become relevant, and serve to stabilize

τ . The effective superpotential is

Weff(τ) := Winst(p
aτ, τ) =

√
2
π

1

(2πi)2

∑

[C]
n0
CM

aβCa Li2

(
e2πiβCap

aτ
)

+O(e2πiτ , e−2πT ) .

(5.21)

In the regime where D(-1) instanton effects can be consistently neglected, one

should only retain terms in the sum with βCap
a < 1. For appropriately aligned pa

and suitably hierarchical GV invariants the above structure leads to a racetrack

stabilization of τ at weak coupling and near LCS.

5.3 Stabilizing near the conifold

We will now extend the construction of [92] to operate in a regime where one or

more of the moduli are away from their LCS region, and are instead exponentially

close to developing a conifold singularity.

At a conifold singularity in complex structure moduli space a collection of

ncf three-cycles shrink to zero size [67, 70]. Let us assume that these all lie in

the same homology class, corresponding to one of the basis elements Σ(3)a, with

corresponding modulus zcf. We denote the remaining moduli by zi, i.e. {za} =
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{zcf, z
i}. Then the dual period, which we will denote by Fcf, takes the form

Fcf(z
a) = Fcf(z

i, zcf) =
ncf

2πi
zcf ln(zcf) + f(zi, zcf) , (5.22)

where f(zi, zcf) is a model-dependent function. Although f(zi, zcf) is holomorphic

around zcf = 0, it will play an important role in our discussion, because generically

f(zi, 0) 6= 0.

Then, with −M units of F3 flux on the shrinking cycle and K units of H3 flux

on the dual cycle, the flux superpotential splits as [151]

Wflux = Wcf(z
a) +Wbulk(za) (5.23)

√
π
2
Wcf(z

a) := M
( ncf

2πi
zcf ln(zcf) + f(za)

)
− τKzcf , (5.24)

where Wbulk(za) is holomorphic around zcf = 0 and parameterizes the contribution

to the superpotential from other cycles. Provided that |K| > gs|M | and that K

and M have the same sign, this stabilizes the conifold modulus exponentially close

to the singularity,

|zcf| ∼ exp

(
− 2πK

ncfgsM

)
. (5.25)

Upon stabilizing in this regime, one is left with codimension-three defects hosting

confining Klebanov-Strassler gauge theories if gsM � 1, or with warped throats

with a controlled ten-dimensional supergravity description in the regime gsM � 1

[233]. In the former case, |zcf|1/3 is identified with the confining scale of the gauge

theory, while in the latter case it is the gravitationally redshifted Randall-Sundrum-

type [298] warp factor6 eA|tip ∼ |zcf|1/3.

For generating uplifts to de Sitter vacua by including anti-D3-branes it is natu-

ral to consider the regime gsM & 1 where the infrared region of the throat supports

6Here we assume only a moderately large Calabi-Yau volume V, i.e. |zcf| � 1 and also
V|zcf|2 � 1. In the opposite regime of parametrically large volume such that V|zcf|2 � 1, there
is neither a throat nor a gauge theory but simply an everywhere weakly curved conifold region
with dilute fluxes. For results on moduli stabilization in this opposing regime, see [54].
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metastable supersymmetry-breaking anti-D3-brane configurations that contribute

to the vacuum energy [215]. However, this restriction might well be unneces-

sary due to the plausible existence of a supersymmetry-breaking vacuum in the

Klebanov-Strassler gauge theory, see e.g. [15, 299, 18, 17, 16]. In any event, in

this paper we will study classical conifold vacua in both regimes of gsM , and defer

metastable supersymmetry breaking to future work.

After stabilizing exponentially close to the conifold singularity, the flux super-

potential reads

Wflux(zi, zcf) =
√

2
π
Mf(zi, 0) +Wbulk(zi, 0) +O(zcf) . (5.26)

In particular, the holomorphic piece f(za) in the conifold period (5.22) gives an

O(1) contribution to the superpotential that has to be canceled against the bulk

superpotential Wbulk to give a small flux superpotential, as alluded to in the intro-

duction. We will now explain how this cancellation is achieved.

5.3.1 The conifold prepotential from a shrinking curve

In this section we will compute the periods of X̃ analytically near certain types

of conifold points. The idea is to analytically continue the periods computed at

LCS into the regime where one of the moduli, zcf, is small and close to a conifold

singularity, while the other moduli zi stay large. Our result will take the form of

a double expansion in the conifold modulus zcf � 1 and in type IIA worldsheet

instantons wrapping curves in X that are not mirror-dual to the A-cycle of the

conifold.

Performing an analytic continuation from the LCS region to the conifold region

generally requires knowing the instanton expansion of the prepotential in eq. (5.14)
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i=0 n

0
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0
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i=0 n
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i=0 n

0
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∑2
i=0 n

0
(i,1,0)

n0
(1,0,0)

Figure 5.1: The slice βC3 = 0 in the Mori cone of the Calabi-Yau X described in
§5.4. Blue lattice points are populated by nonvanishing GV invariants n0

(i,j,0). The
red lattice point is GV-nilpotent of order one, and lies outside the closure of the
interior cone (bounded by dashed purple lines). Near the origin of the Coulomb
branch z1 → 0, one retains a controlled expansion in e2πiz2,3

with coefficients∑
i n

0
(i,j,k). These are the GV invariants on the Higgs branch, and are computable

because the sum over i terminates: each row in the figure has finite length.

to all orders. After all, the conifold branch cut can at best arise at the radius of

convergence of the LCS expansion. Lacking such all-orders information, one might

instead determine the prepotential to high order in the instanton expansion, and

compute the Taylor coefficients of f(za) in (5.22) numerically by comparing in an

overlapping region where both expansions converge, as in [54]. However, in order to

demonstrate an accurate cancellation between the bulk and conifold superpotential

(5.1) by this approach, one has to reach high numerical precision. For this reason

we opt instead for an analytic approach, and now lay out a set of conditions under

which we can obtain the required all-orders information.

First, let us introduce some terminology. We write M(X) for the Mori cone

of X, and we call a curve class [C] ∈ M(X) GV-nilpotent of order k0 if the genus

zero GV invariants of k[C] vanish for all k > k0. A class that is not GV-nilpotent

of order k0 for any finite k0 we call GV-potent. We define the interior cone as the

closure of the real cone generated by all GV-potent curve classes in M(X).
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Comparing to eq. (5.14), one sees that the infinite tower of instanton corrections

from worldsheet instantons wrapping a GV-nilpotent curve class [C] an arbitrary

number of times are simply determined by a finite sum over polylogarithms. There-

fore, if we can find a slice in moduli space where only GV-nilpotent curve classes

shrink, we only need to analytically continue the well-known polylogarithms. The

following condition (which we will establish in the example of §5.4) guarantees this.

We suppose that there exists a curve Cv ∈ M(X) in the mirror threefold X

that is GV-nilpotent of order one and lies outside the closure of the cone generated

by all other curve classes in M(X) with non-vanishing GV invariants: see Figure

5.1. (In particular, Cv lies outside the interior cone.) In this case, there exists a

wall WCv of the Kähler cone of X where the volume of Cv vanishes. The wall WCv
is a cone itself, and asymptotically far out in this cone the volumes of all other

curves with non-vanishing GV invariants tend to infinity. For ease of exposition

we will assume that Cv is an element of our basis of curves, so without loss of

generality we can choose Cv = Σ(2)1. We will denote the corresponding Kähler

modulus of X by zcf := z1. The other Kähler moduli of X will be denoted by zi

with i = 2, ..., h1,1(X). Then, we have

Fi(zcf, z
i) := ∂ziF(zcf, z

i) =− 1

2
Kiabzazb + aiaz

a + bi −
1

(2πi)2

∑

[C] 6=[Cv ]

n0
Cβ
C
i Li2(qC) .

(5.27)

Since the vanishing class [Cv] does not appear in the instanton sum, the arguments

of the polylogarithm remain small as in the LCS regime even for small zcf. This is

not quite enough for a sensible expansion: for two curve classes [C] and [C ′] with

[C]−[C ′] ∝ [Cv] the corresponding arguments of the polylogarithms become identical

in the limit zcf → 0, so the GV invariants of curve classes differing by the vanishing

class are effectively summed up in that limit.7 For the instanton expansion to

7Note that if there is a Higgs branch meeting the origin of the Coulomb branch at zcf = 0,
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remain controlled, we need that these sums of GV invariants terminate. But this

is guaranteed because our vanishing curve class lies outside the interior cone (see

Figure 5.1). Thus, any ray parallel to [Cv] intersects finitely many lattice points in

the interior cone.

The remaining task is to compute F1(zcf, z
i) := ∂zcf

F(zcf, z
i). The crucial

difference compared to the Fi(zcf, z
i) is that the vanishing curve does contribute

to the instanton sum, so we need to evaluate the polylogarithm near q = 1. This

is most easily done using Euler’s reflection formula8

−Li2(e2πiz)

(2πi)2
=

1

24
+

z

2πi
ln
(
1−e2πiz

)
+

Li2(1− e2πiz)

(2πi)2
=

1

24
+

z

2πi

(
ln(−2πiz)−1

)
+O(z2) .

(5.28)

Thus, finally, we arrive at

F1(zcf, z
i) := ∂zcf

F(zcf, z
i) = ncf

zcf

2πi
ln(1− e2πizcf) (5.29)

−1

2
K1abz

azb + a1az
a + b1 + ncf

(
1

24
+

Li2(1− e2πizcf)

(2πi)2

)
− 1

(2πi)2

∑

[C] 6=[Cv ]

n0
Cβ
C
1 Li2(qC) .

Provided that the singular locus zcf → 0 is in fact a conifold singularity in X̃, we

may identify Fcf(zcf, z
i) ≡ F1(zcf, z

i). The first term in (5.29) contains the universal

logarithm of the general conifold period of eq. (5.22), as well as an infinite series

of holomorphic corrections. These corrections, together with the entire second line

of eq. (5.29), constitute the holomorphic term f(za) in (5.22). We can therefore

compute f(za) to any desired accuracy by computing the GV invariants n0
C of curve

classes [C] up to a sufficently high degree.

In summary, we have gained the much needed analytical control over the period

such a summation yields the GV invariants of the Higgs branch.
8The corresponding series of instanton corrections to the period vector is thus resummed into

the perturbative one-loop correction from integrating out light hypermultiplets from wrapped
D2-branes/M2-branes near the origin of the Coulomb branch [312, 165, 158, 159].
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vector near a special class of conifolds.9 For this special class the shrinking S3 of

the conifold is mirror dual to a shrinking curve. This is a nontrivial restriction

because a conifold singularity in X̃ may be mirror dual to a shrinking curve,

divisor or entire threefold X.10

5.3.2 Moduli stabilization in three steps

We will turn on the following subset of three-form fluxes:

~f = (P0, Pa, 0,M
a)t , ~h = (0, Ka, 0, 0)t . (5.30)

Instead of splitting the superpotential into contributions from the conifold fluxes

and the bulk, we expand in the conifold modulus zcf,

√
π
2
Wflux(zcf, z

i, τ) = W (0)(zi, τ) +W (1)(zi, τ, zcf)zcf +O(z2
cf) . (5.31)

The O(z0
cf) term takes a form akin to the LCS expansion (5.16), but only in the

bulk moduli zi, i.e.

W (0)(zi, τ) = W
(0)
poly(zi, τ) +W

(0)
inst(z

i) , (5.32)

with

W
(0)
poly(zi, τ) = Ma

(
1

2
Kaijz

izj − aaizi − b̃a
)

+ Piz
i + P0 − τKiz

i , (5.33)

W
(0)
inst(z

i) =
1

(2πi)2

∑

[C] 6=[Cv ]

n0
CM

aβCa Li2(qC)|zcf=0 , (5.34)

and with shifted b̃a := ba + ncfδa1/24. Note that by expanding in zcf we have

absorbed all contributions to the flux superpotential that survive in the conifold

9Note that we have left out the remaining period F0, which receives a nontrivial correction
from resumming instanton corrections on Cv. These are holomorphic in zcf. We will not turn on
fluxes on the dual cycle, so we can omit this period.

10For instance the famous conifold point in the mirror quintic is mirror dual to a shrinking
Calabi-Yau threefold [68]. For more examples, see [168, 52].
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limit zcf → 0 into the expression W (0)(zi, τ) containing both bulk and conifold

contributions. Provided that we can stabilize the bulk moduli and the dilaton

such that |〈W (0)(zi, τ)〉| � 1, and also stabilize zcf near the conifold, a small

overall flux superpotential as in eq. (5.1) will result.

The next-to-leading order term in the expansion (5.32) contains the conifold

logarithm

W (1)(zi, τ) = M
ncf

2πi

(
ln(−2πizcf)−1

)
−τK+K1aiM

azi+P −a1aM
a+O

(
e2πizi

)
,

(5.35)

where

M := −M1 , P := P1 , and K := K1 . (5.36)

Given this structure, we may stabilize moduli in three essentially independent

steps. First, we use W
(0)
poly to stabilize all but one combination of the bulk moduli

and dilaton as in [92] in a vacuum with W
(0)
poly = 0. For that we choose integer

fluxes such that

Pi = aiaM
a , P0 = b̃aM

a , (5.37)

and

Kip
i = 0 , 0 ≤ −MaKa ≤ 2Q , with pi := (KijaMa)−1Kj , (5.38)

such that pi is interior to the wall of the Kähler cone of X specified by zcf = 0.

In analogy to the previous section, this stabilizes the bulk moduli along the valley

zi = piτ and indeed W
(0)
poly(zi = piτ, τ) = 0. At this stage the leading contributions

to the superpotential from the bulk and the conifold have been canceled against

each other perfectly. The neglected contributions from W
(0)
inst and zcfW

(1) to the F-

term conditions of the directions orthogonal to the flat valley zi = piτ are negligible

if Im(τ) is large and the conifold modulus zcf is small.

102



We note that the above corresponds to a Wilsonian integrating out of heavy

degrees of freedom (the orthogonal moduli), so we can stabilize the light degrees

of freedom (τ, zcf) using the low energy effective field theory. Below the mass scale

of the heavy orthogonal moduli, the effective superpotential reads

√
π
2
Weff(τ, zcf) = W

(0)
inst(z

i = piτ, τ) + zcfW
(1)(zi = piτ, τ, zcf) . (5.39)

Next, we may solve the F-term equation of the conifold modulus zcf, giving

|zcf| =
1

2π
exp

(
− 2πK ′

ncfgsM

)
+O

(
z2

cf, zcfe
2πipiτ

)
, (5.40)

in terms of the string coupling 1/gs = Im(τ), and with K ′ := K1−MaK1aip
i.11 The

phase of zcf is similarly stabilized in terms of C0 = Re(τ). As long as zcf � 1 the

stabilization of zcf does not affect the stabilization of the previously integrated-out

heavy moduli.

The remaining light direction τ can be stabilized as in [92] using the instanton

corrections W
(0)
inst in a regime where Im(τ) is indeed large.12 If we stabilize in

a regime where the resulting vev 〈W (0)
inst〉 is much larger than zcfW

(1) then it is

consistent to neglect the contribution of zcfW
(1) to the F-term of τ . The vacuum

value of the full flux superpotential is then given, up to corrections of O(zcf), by

W0 ≈
√

2
π

〈
W

(0)
inst(p

iτ, τ)
〉
. (5.41)

We have therefore extended the mechanism of [92] to conifold vacua.

11The combination K ′/ncf appearing in eq. (5.40) is naturally interpreted as the integrated
(but not necessarily quantized) three-form field strength residing in a single throat. The presence
of more than one throat that share the same B-cycle may lead to the presence of light degrees of
freedom (thraxions) that control the relative distribution of fluxes [187] and would threaten the
stability of a warped uplift. In our example of §5.4 we will have ncf = 2, but the two throats are
identified in the orientifold so the thraxion is projected out.

12We are primarily interested in the regime |zcf|2/3 ∼ |W0| � 1 where τ is much lighter than
the conifold modulus, i.e. mτ ∼ |W0| ∼ |zcf|2/3 � |zcf|1/3 ∼ mzcf . In the opposite regime
|zcf|1/3 � |W0| it is more natural in the Wilsonian sense to first integrate out τ and finally
stabilize the light conifold modulus zcf, but our formulas are valid in both regimes.
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5.3.3 Comments on the supergravity approximation

In the regime of small string coupling gs < 1, the curvature of the infrared region of

the throat is large in string units unless one chooses sufficiently large M to ensure

that gsM > 1. Furthermore, obtaining a substantial throat hierarchy |zcf| � 1

requires choosing K > ncf gsM > 1, and thus the contribution to the D3-brane

tadpole from the throats is generically substantial, KM � 1. This leaves little

room to choose appropriate bulk fluxes that would give rise to a small flux super-

potential. Given a flux tadpole Q the maximum possible value of gsM is obtained

by saturating the above inequalities, which gives

gsM |max .
√
|Q| . (5.42)

In §5.4 we will work with an orientifold that has Q = −52, so that the maximum

possible gsM is of order 7. In this orientifold we will be able to find fluxes giving

gsM ∼ 3. Whether this is enough for the anti-D3-brane stability analysis of [219]

to apply will be left for future work to decide.

We note that it has been argued in [32] that the restriction (5.42) generally

prevents one from obtaining well-controlled warped throats in weakly-coupled type

IIB compactifications. While it is clear that parametrically large gsM is impossible,

we see no reason why finding numerically large values should be impossible.

5.4 An example

In this section we will construct explicit flux vacua with small flux superpoten-

tial, exponentially close to a conifold singularity, along the lines discussed in the

previous section.

104



We start with a certain Calabi-Yau hypersurface X in a toric fourfold Y , with

Hodge numbers h1,1(X) = 3 and h2,1(X) = 99, and specify an O3/O7 orientifold

involution I : X → X such that h1,1
− (X, I) = h2,1

+ (X, I) = 0. Using the Greene-

Plesser description [166] of the mirror threefold X̃ as the resolution of an orbifold

X/G for a particular abelian group G, we show that the induced action of I on

X̃, denoted Ĩ : X̃ → X̃, specifies an O3/O7 orientifold involution in X̃ with

h1,1
− (X̃, Ĩ) = h2,1

+ (X̃, Ĩ) = 0. For the orientifold of X̃ specified by Ĩ we will find

conifold vacua with small flux superpotential.13

For simplicity, we choose to cancel the D7-brane tadpole locally by placing four

D7-branes on top of each O7-plane, with trivial gauge bundle. More precisely, we

choose diagonal worldvolume fluxes FDI = −1
2
c1(DI) on the worldvolumes of the

so(8) seven-brane stacks on the fixed divisors DI to cancel potential Freed-Witten

anomalies [142]. Furthermore, we turn on a half-integral orientifold-even NSNS

two-form,

B2 =
∑

I

1

2
[DI ] . (5.43)

Since c1(DI) = −i∗[DI ], where i∗ is the pull-back of the two-form [DI ] to the divisor

DI , the gauge-invariant field-strengths FDI := FDI − i∗B2 are proportional to the

Poincaré duals of the two-cycles in DI obtained by intersecting with
∑

J 6=I [DI ].

Because the orientifold-invariant Calabi-Yau will be smooth, the O7-planes do not

intersect each other. Therefore, the field-strengths FDI are trivial in H2(DI ,Z) and

so do not contribute to the D3-brane and D5-brane tadpoles. In this configuration

the total D3-brane charge Q of the seven-brane stacks and O3-planes is given by

Q = −χ(FI)

4
, (5.44)

where χ(FI) is the Euler characteristic of the fixed locus FI of I [78].

13Alternatively, one can search for vacua along the G-symmetric locus in the complex structure
moduli space of the orientifold of X, as in [155]. This would require an analysis of the action of
G on the three-cycles in X, which we would like to avoid in this paper.
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5.4.1 A Calabi-Yau threefold and an orientifold

Let ∆◦ ⊂ N ' Z4 be the favorable reflexive polytope whose points not interior to

facets are the columns of



−1 1 −1 −1 −1 −1 −1

3 −1 0 0 0 0 0

−2 0 0 0 1 2 1

−1 0 1 0 1 0 0



. (5.45)

The first six of these points are vertices. A fine, regular, star triangulation (FRST)

of the points in (5.45) defines a complete, simplicial fan. The toric fourfold Y

defined by this fan contains a smooth anticanonical hypersurface X that is Calabi-

Yau. The linear relations among these points define the rows of a gauged linear

sigma model (GLSM) charge matrix

Q =




0 0 1 −1 −1 0 1

1 3 −1 1 2 0 0

0 0 0 1 0 1 −2



. (5.46)

Each of the points in (5.45) corresponds to a prime effective divisor D̂i ⊂ Y defined

by xi = 0, that intersects X transversely. The polytope ∆◦ has three FRSTs, each

giving rise to a smooth Calabi-Yau threefold with favorable embedding in Y , i.e. the

divisors Di := D̂i ∩X generate H4(X,Z)[25]. Denoting the FI parameters by ξa,

we find that the corresponding Kähler cones are14

CY1 : ξ1 > 0 , ξ2 > 0 , ξ3 > 0 , (5.47)

CY2 : − ξ1 > 0 , ξ2 + 2ξ1 > 0 , ξ3 + ξ1 > 0 , (5.48)

CY3 : ξ3 > 0 , ξ2 + 2ξ1 > 0 , −ξ3 − ξ1 > 0 . (5.49)

14We have computed the Kähler cone and intersection numbers using the software package
CYTools [93].
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One can show that the triple intersection numbers and the second Chern class of

the three phases agree with each other in a suitable basis. Thus, it follows from

Wall’s theorem [334] that the three Calabi-Yau manifolds are all diffeomorphic to

each other. Without loss of generality we will focus on the phase CY1.

In general, computing the Kähler cone (or its dual, the Mori cone) of a Calabi

Yau hypersurface is difficult. However, in the present example the Mori cone of

the ambient fourfold Y , M(Y ), is equivalent to the Mori cone of the Calabi-Yau

hypersurface M(X). This can be shown as follows. We have M(Y ) ⊇ M(X)

as X is a holomorphic submanifold of Y . The GV invariants of the generators of

M(Y ) are non-trivial (see (5.54)), so M(X) ⊇M(Y ).

The Stanley-Reisner (SR) ideal of this phase is15

SR = {x3x6, x4x6, x3x7, x1x2x4x5, x1x2x5x7} . (5.50)

We choose to work in a basis of divisor classesHa ∈ H2(X,Z) dual to the generators

Ca ≡ [Σ2,a] of M(X), i.e.

H1 = [D1] + [D3] , H2 = [D1] , H3 = [D6] . (5.51)

In this basis, the non-vanishing triple intersection numbers are

K111 = K112 = K122 = 4 , K113 = K123 = K223 = 2 , K222 = 3 , (5.52)

and the second Chern class is

∫

~H

c2(X) =




52

42

24



. (5.53)

In the limit ξ1 → 0, keeping ξ2,3 > 0, one approaches the wall in the Kähler cone

that separates CY1 from CY2. The holomorphic curve class represented by (1, 0, 0)

15We have used Sage to determine this [321].
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is GV-nilpotent of order one, and lies outside the interior cone. Because this class

is a generator of the Mori cone, it also lies outside the cone generated by all other

curves with non-vanishing GV invariants. Thus, as we approach the wall of the

Kähler cone only the instanton corrections in (5.14) from the curve class (1, 0, 0)

become unsuppressed and have to be resummed using (5.28). Only the period F1

develops a logarithmic singularity, indicating a conifold singularity in the mirror

dual X̃.

For later reference (using the methods developed in [198, 199]) we compute all

the non-vanishing GV invariants n0
(i,j,k) with j + k ≤ 2 and arbitrary i,

n0
(i,0,0) n0

(i,1,0) n0
(i,0,1) n0

(i,2,0) n0
(i,1,1)

n0
(1,0,0) = 2 n0

(0,1,0) = 252 n0
(0,0,1) = 2 n0

(0,2,0) = −9252 n0
(1,1,1) = 2376

n0
(1,1,0) = 2376 n0

(1,0,1) = 2 n0
(1,2,0) = 10260 n0

(2,1,1) = 2376

n0
(2,1,0) = 252 n0

(2,2,0) = 206712

n0
(3,2,0) = 10260

n0
(4,2,0) = −9252

(5.54)

Since n0
(1,0,0) = 2, we expect to find two conifold singularities in the corresponding

limit in complex structure moduli space of X̃. We will confirm this in the next

section.

We now choose an orientifold using the involution

I : x2 7→ −x2 . (5.55)

The fixed locus in the ambient variety is

FI ={x2 = 0} ∪ {x1 = x3 = x4 = 0} ∪ {x1 = x5 = x7 = 0} . (5.56)

The generic Z2-even anticanonical polynomial is non-vanishing along these loci.

The third locus does not intersect X, while the first two intersect X transversally.
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The first locus gives rise to an O7-plane on the divisor D2, and the second gives

rise to a single O3-plane. Using the adjunction formula one computes χD2 = 207.

Placing four D7-branes on top of the O7-plane, the D7-brane tadpole is canceled

and the total induced D3-brane charge on the O7-plane plus the D3-brane charge

of the O3-plane is

Q = −χD2

4
− 1

4
= −207

4
− 1

4
= −52 . (5.57)

Therefore, we can turn on three-form fluxes (F3, H3) with

Qflux
D3 :=

1

2

∫

X

F3 ∧H3 ≤ 52 . (5.58)

We have h1,1
− (X, I) = 0 because the toric divisors generate H4(X,Z) and they are

invariant under the orientifold action. From the Lefschetz fixed point theorem one

computes

h2,1
− (X, I) = h1,1

− (X, I)−Q−χCY
4
−1 = 0+52−(−48)−1 = 99 = h2,1(X) . (5.59)

Thus we have h1,1
− (X, I) = h2,1

+ (X, I) = 0. As a consequence, none of the moduli

are projected out. In the following we will use the involution I to define an

involution Ĩ in the mirror threefold X̃.

5.4.2 The Greene-Plesser mirror dual

Next, we construct the orbifold X/G. We start by computing the dual polytope

∆ := (∆◦)◦, ∆ ⊂M ' Z4. Its vertices are the columns of



1 1 −5 −11 1 1

2 0 −4 −10 2 2

0 0 0 −6 3 0

0 0 −6 −6 0 6



. (5.60)
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We have an embedding

ı : N ↪→M , n 7→ Λn , Λ =




11 10 6 6

10 10 6 6

6 6 3 6

6 6 6 0



, (5.61)

which is a group homomorphism that maps the vertices of ∆◦ to the vertices of ∆.

The Greene-Plesser group is the group coset G := N/ı(M) ' Z6×Z6. The two Z6

factors can be chosen to act on the toric coordinates with charges

~w1 = (0, 3, 0, 0, 1, 1, 1) , ~w2 = (0, 0, 0, 0, 5, 0, 1) . (5.62)

The points in ∆◦ not interior to facets are mapped to the vertices of ∆, and to the

further point (−5,−4,−3, 0)t. These seven points correspond to seven G-invariant

monomials of the anticanonical line bundle of our toric fourfold Y ,

f(~x) = ψ0

7∏

i=1

xi−ψ1x
6
1−ψ2x

2
2−ψ3x

6
4x

6
6x

6
7−ψ4x

6
3x

12
4 x

6
7−ψ5x

3
5x

6
6x

3
7−ψ6x

6
3x

6
5−ψ7x

6
3x

6
4x

3
5x

3
7 .

(5.63)

This represents the generic anticanonical polynomial defining X/G, or equivalently

the generic G-invariant polynomial defining a symmetric Calabi-Yau X. There

exists a special locus in moduli space where the G-symmetric X develops a set of 18

conifold singularities. To see this one considers the patch where x3,5,7 6= 0, where we

can gauge fix (part of) the toric scaling relations by setting x3 = x5 = x7 = 1. Note

that this leaves a residual scaling equivalence (x4, x6) ∼ (−x4,−x6), because the

toric scaling relation associated with the third row of the GLSM charge matrix in

(5.46) preserves our gauge fixing condition for scaling parameters±1. Furthermore,

we use up the action of the algebraic torus on X and the freedom to rescale f to

set ψ0,2,3,4,5 = 1. Then, along a codimension-one locus in moduli space specified

by

ψ7 = 1 + ψ6 , (5.64)
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one finds that f = df = 0 at the following set of points in X,

x1 = x2 = 0 , x6
4 = −1 , x6

6 = 1− ψ6 . (5.65)

Näıvely this is a set of 6 × 6 = 36 conifold singularities, but we need to account

for the residual scaling equivalence (x4, x6) ∼ (−x4,−x6) which implies that there

are only 18 inequivalent conifolds. One can show that these 18 conifolds can be

resolved to give the anticanonical hypersurface in the toric fourfold specified by

the GLSM charge matrix




0 −1 0 0 0 1 1 0

0 0 1 −1 0 0 −1 1

1 3 −1 1 0 0 −1 0

0 0 0 1 1 0 0 −2




(5.66)

with positive FI parameters. The first row corresponds to the resolution P1 and

indeed has GV invariant equal to 18.

The gauge-invariant coordinates adapted to the LCS patch are ψ̃a =
∏7

i=1(ψi)
Qai , i.e. in our gauge we have

ψ̃1 = ψ7 , ψ̃2 = ψ1 , ψ̃3 =
ψ6

ψ2
7

, (5.67)

and the flat LCS coordinates mirror-dual to curve volumes are

za =
ln(ψ̃a)

2πi
+
∑

~n∈N3
0

αa~n

3∏

b=1

ψ̃nbb , (5.68)

with coefficients αa~n that can be computed systematically as in [199]. Let us define

Ψ(ψ̃3) :=
1−

√
1− 4ψ̃3

2ψ̃3

= 1 + ψ̃3 +O(ψ̃2
3) . (5.69)

In terms of the ψ̃a, the conifold locus (5.64) occurs when ψ̃1 = Ψ(ψ̃3). In terms of

the flat coordinates za this simply corresponds to the locus z1 = 0, as follows from
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the identity

ln
(

Ψ(ψ̃3)
)

+ 2πi
∑

~n∈N3
0

α1
~n Ψ(ψ̃3)n1ψ̃n2

2 ψ̃n3
3 = 0 , (5.70)

which one may verify order by order in ψ̃2, ψ̃3.16 Thus, we see that keeping

Im(z2,3) > 1 while sending z1 → 0 produces the 18 conifold singularities that we

just analyzed.

Next, we take X̃ at its orbifold point in Kähler moduli space, and consider the

induced action of I : X → X , [x1 : ... : x7] 7→ [x1 : −x2 : x3 : ... : x7] on X̃,

Ĩ : X̃ → X̃ , π([x1 : ... : x7]) 7→ π([x1 : −x2 : ... : x7]) , (5.71)

defined to act on representatives [x1 : ... : x7] as π ◦ I. Here, π : X → X/G

is the projection mod G. Since G commutes with I, the involution Ĩ is well-

defined. Clearly, no complex structure moduli are projected out by the orien-

tifolding, i.e. h2,1
+ (X̃, Ĩ) = 0. This is simply because none of the complex structure

moduli of X were projected out by orientifolding by I. Furthermore, we can extend

the action of Ĩ to the resolution of the orbifold in such a way that h1,1
− (X̃, Ĩ) = 0.

This is done by letting all toric coordinates associated with the resolution divisors

transform trivially under the involution Ĩ. This leaves the inherited divisor classes

invariant, and one can show that in fact all divisor classes are invariant under the

involution — see Appendix C.1.1. Using this and the Lefschetz fixed point theorem

one computes the D3-brane tadpole for so(8) stacks as

−Q =
χ(FĨ)

4
=

1

2

(
h1,1(X̃)+h2,1(X̃)

)
−
(
h1,1
− (X̃, Ĩ)+h2,1

+ (X̃, Ĩ)
)

+1 = 52 , (5.72)

where χ(FĨ) denotes the Euler characteristic of the fixed locus FĨ of the invo-

lution Ĩ. Alternatively, one can directly compute the Euler characteristic of the

fixed locus in the orbifold limit (see Appendix C.1.2), which agrees with (5.72).

16We have verified this to order 42 in ψ̃2,3.
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Since h1,1
+ (X̃, Ĩ) = h1,1(X̃, Ĩ) we may go away from the orbifold point in Kähler

moduli space without affecting the periods. As a consequence, we have defined an

orientifold of the resolved orbifold X̃.

It remains to show that the conifolds in X correspond to conifolds in X̃, and

to determine how many conifold singularities arise in the singular limit z1 → 0. To

do so, we will need to slightly change the gauge of the defining polynomial f(~x). In

eq. (5.63) we have used the continuous G-compatible ambient space automorphisms

x2 7→ x2 + λx1x3x4x5x6x7 , λ ∈ C , (5.73)

in order to eliminate the monomial x2
1x

2
3x

2
4x

2
5x

2
6x

2
7. In order to analyze the orien-

tifold, instead we would like to restrict to a manifestly orientifold-invariant poly-

nomial f . Starting from (5.63) in our gauge ψ0 = ψ2 = 1, and using (5.73) with

λ = −1/2 amounts to replacing

∏

i

xi 7→ −
1

4
x2

1x
2
3x

2
4x

2
5x

2
6x

2
7 , (5.74)

which makes the defining polynomial f manifestly invariant under Ĩ.

Since (5.73) acts trivially on the locus x1 = x2 = 0 where the conifolds reside,

their position is not altered by (5.74). In X, the curve x1 = x2 = 0 can be shown

(see Appendix C.1) to be a fixed curve of a Z2 subgroup of the Greene-Plesser

group G = Z6 × Z6. The coset G/Z2 acts transitively on the 18 conifolds, so after

modding out by G/Z2 we retain only a single conifold singularity. Finally, we have

to mod out by the remaining Z2 symmetry that maps the curve x1 = x2 = 0 to

itself pointwise. Locally, around a solution of (5.65), we may embed the conifold

in C4 3 (x, y, u, v) via the vanishing of the polynomial

P (x, y, u, v) = x2 + y2 + u2 + v2 − ε+ ... = 0 , (5.75)
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with deformation parameter ε such that we have dP = P = 0 on the locus x =

y = u = v = 0 in the singular limit ε→ 0. Here,

x :=
x0

6

2
x1 , y := ix2 ,



u

v


 :=



−6i 3i(1− ψ6)

0 3(1− ψ6)







x4

x0
4
− 1

x6

x0
6
− 1


 , (5.76)

and (x0
4, x

0
6) is a solution to eq. (5.65). Here, ε := 1 + ψ6 − ψ7, and we neglect

higher-order corrections in (x, y, u, v) as well as non-constant terms that vanish in

the limit ε→ 0.

Locally, the Z2-orbifold action is given by

Z2 : (x, y) 7→ (−x,−y) , (5.77)

and the local action of the orientifold involution is

Ĩ : (x, y) 7→ (x,−y)
Z2∼ (−x, y) , (5.78)

so there is an O7-plane on the divisor x = 0 as well as on y = 0.

Orbifolding by (5.77) produces an A1 singularity in the ambient C2 ⊂ C4 pa-

rameterized by (x, y), and both orientifold planes and the conifold intersect at the

singular locus (see Figure 5.2). As usual, we can resolve this singularity using toric

geometry by introducing a blowup coordinate α (see Figure 5.3 for the toric fan),

and a C∗-scaling relation

(x, α, y) ∼ (λx, λ−2α, λy) , λ ∈ C∗ . (5.79)

The locus x = y = 0 is removed (it is in the SR ideal of the toric fourfold) and

replaced by the exceptional divisor α = 0. The polynomial P is replaced by

P̂ (α, x, y, u, v) = α(x2 + y2) + u2 + v2 − ε = 0 , (5.80)

In the limit ε → 0 we get not one but two conifold singularities. To see this,

consider the exceptional divisor {α = 0} ' P1×C2 parameterized by homogeneous
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Figure 5.2: Left: the slice {u = v = 0} = C2/Z2 and the position of the orientifold
planes x1 = 0 and x2 = 0. Two O7-planes intersect at the orbifold singularity
x1 = x2 = 0 which also contains the conifold singularity. Middle and right: the
same slice after the resolution of the orbifold singularity and a closeup of the
exceptional divisor. The O7-planes intersect the exceptional divisor α = 0 at
antipodal points [1 : 0] and [0 : 1]. The conifold singularities reside at [1 : i] and
[1 : −i] and are mapped into each other by the orientifold involution.

Figure 5.3: Left: the toric fan of the singular surface C2/Z2 with with two vertices
vx = (1, 2) and vy = (1, 0). Right: the toric fan of the resolution of C2/Z2 by a
resolution divisor α = 0 associated with the vertex vα = 1

2
(vx + vy) = (1, 1).
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coordinates [x : y] ∈ P1 and (u, v) ∈ C2. For ε = 0 we have P̂ = dP̂ = 0 at the two

points

α = u = v = 0 , [x : y] = [1 : ±i] . (5.81)

Indeed, the GV invariant of the curve class (1, 0, 0) that is mirror dual to the

conifold S3 has n0
(1,0,0) = 2, see eq. (5.54). Finally, the O7-planes at x = 0 and

y = 0 intersect the exceptional divisor α = 0 at [x : y] = [0 : 1] and [x : y] = [1 : 0],

respectively, so the two orientifold planes no longer intersect each other and the

two conifold singularities are also separated from the O7-planes at finite blowup

volume. The conifolds are moreover mapped into each other by the involution in

eq. (5.78) and are therefore identified in the orientifold. We conclude that in the

limit z1 → 0 there appears a single conifold at generic position in the orientifold

of X̃.

5.4.3 Explicit flux vacua

Now we are ready to find explicit conifold vacua with small flux superpotential in

the complex structure moduli space of the Calabi-Yau orientifold discussed in the

previous section. We have h1,1
+ (X̃, Ĩ) = h1,1(X̃) = 99, and h2,1

− (X̃, Ĩ) = h2,1(X̃) =

3. Thus, all three-form classes are orientifold-odd and we can turn on generic

three-form fluxes ~f,~h ∈ Z8 on the three-cycles in X̃, compatible with the D3-

brane tadpole bound

1

2

∫

X̃

F3 ∧H3 =
1

2
~f
t
Σ~h ≤ 52 . (5.82)
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We will search for appropriate flux quanta systematically as follows. As a first

step, we compile a list of restricted candidate flux integers in a box:

VM :=

{
~M ∈ Z3

∣∣∣∣∣ 0 6= Ma ∈ {−200, 200} ∀a = 1, 2, 3 , M3 > 0 , det

(
3∑

a=1

KijaMa

)
6= 0 ,

3∑

a=1

Mab̃a ∈ Z ,
3∑

a=1

aiaM
a ∈ Z ∀i = 2, 3

}
, (5.83)

with

aia =




2 3
2

0

0 0 0



ia

, b̃a =
1

24







52

42

24




+




2

0

0






a

=




9
4

7
4

1



a

. (5.84)

Such choices of ~M give rise to integer RR fluxes as in eq. (5.30) that satisfy

eq. (5.37), and we have gauge-fixed the center of SL(2,Z) by enforcing that M3 >

0.

For each element ~M ∈ VM , let V
( ~M)
K be the set of integers ~K ∈ Z3 that satisfy

eq. (5.38) for the given choice of ~M . Enumerating these involves solving a homo-

geneous Diophantine equation of degree two in the variables (K2, K3) ∈ Z2 subject

to the constraints 0 ≤ − ~M t ~K ≤ 104 and 0 < pi < 1 with pi := (KijaMa)−1Kj.

This can be done efficiently using Mathematica.17 The resulting set of flux integers

in

V :=
{

( ~M, ~K) ∈ VM × V ( ~M)
K

}
(5.85)

give rise to perturbatively flat vacua of the superpotential W
(0)
poly(zi, τ),

i.e. W
(0)
poly(zi, τ) = dW

(0)
poly(zi, τ) = 0 along the loci where zi = piτ , compatible

with the tadpole bound.

For each element of V , we stabilize the remaining light direction using the

truncation of W
(0)
inst in (5.31) to leading order in the instanton expansion, i.e. we

17Note that quadratic Diophantine equations are solvable, in contrast to the generic case
[307, 284].
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approximate

W
(0)
inst(τ) ≈ A(1,0)e

2πip2τ + A(0,1)e
2πip3τ , (5.86)

with

A(1,0) :=
1

(2πi)2

∑

j

(jM1 +M2)n0
(i,1,0) =

2880(M1 +M2)

(2πi)2
, (5.87)

A(0,1) :=
1

(2πi)2

∑

j

(jM1 +M3)n0
(i,0,1) =

2(M1 + 2M3)

(2πi)2
. (5.88)

The above superpotential has ∂τW
(0)
inst = 0 for

e2πiτ =

(
−A(0,1)p

3

A(1,0)p2

) 1
p2−p3

. (5.89)

Generically, we have A(1,0) � A(0,1), so one stabilizes at weak coupling, Im(τ) > 1,

if p2 > p3. If furthermore p2 ≈ p3, then e2πiτ is in fact exponentially small.

Of course, the true F-term equations also contain the Kähler covariantization

of the partial derivative ∂τ → Dτ = ∂τ + ∂τKeff, with effective Kähler potential

obtained by evaluating (5.6) along the flat valley, i.e.

Keff(τ, τ̄) = −4 ln
(
−i(τ − τ̄)

)
+O

(
Im(τ)−3

)
+ constant . (5.90)

For large Im(τ) this gives a small correction to eq. (5.89), and even for relatively

small values one still finds nearby vacua of the actual F-term equation.

We will consider only those fluxes in V for which the next-to-leading corrections

to W
(0)
inst are suppressed at least at the 10% level relative to the leading terms in

(5.86), and for which |zcf| � |W0| � 1. This leaves us with 696 vacua, for which we

show the values of |W0| and |zcf| in Figure 5.4.18 For most of these the Klebanov-

18Strictly speaking, each of these vacua again comes as a family because we have not specified
the flux integer P which can be freely chosen in a fundamental domain of the conifold monodromy
0 ≤ P < |M |. Since it only affects the phase of the conifold modulus, and does not contribute to
the D3-brane charge its value is of no relevance to us.
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Figure 5.4: Scatter plots showing the values of 2 ln(1/|W0|) and 4
3

ln(1/|zcf|) with
diagonal in red indicating the critical region where the uplift potential of an anti-
D3-brane would compete efficiently with KKLT bulk moduli stabilization. Left:
All vacua. Right: Only vacua that live close to the critical line.
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Figure 5.5: A scatter plot as in Figure 5.4 but showing only vacua with gsM > 1.

Strassler sector has small ’t Hooft coupling |gsM | < 1, and the smallest value of

W0 that we find is given by (see Table 5.1)

min |W0| ≈ 7.4× 10−9 . (5.91)

However, there are also 63 vacua with |gsM | > 1 that may somewhat marginally

live in the ten-dimensional supergravity regime.19 We find a maximum value (see

Table 5.1)

max |gsM | ≈ 2.8 . (5.92)

The 63 vacua with potential supergravity throats come in three families with flux

superpotentials |W0| ≈ {6.9× 10−4, 4.1× 10−2, 8.1× 10−2}, but with vastly differ-

ent values of |zcf|. We have checked that the neglected two-instanton corrections

are suppressed by a relative factor of order |W0| and the three-instanton correc-

tions are suppressed by further such factors. We show the values of |W0| and |zcf|

in Figure 5.5.

Let us walk through the stabilization steps for one of these vacua. We consider

~M = (4,−8, 8) and ~K = (−8, 3,−6). These correspond to the family of flux

19Although it is well-known that gsM � 1 is sufficient for the infrared region of the throat to
be weakly curved in string units, we are not aware of a specific numerical threshold (gsM)min

that demarcates the region below which the supergravity approximation fails. Determining such
a threshold would be worthwhile.
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vectors

~f = (3, P,−4, 0, 0, 4,−8, 8)t , ~h = (0,−8, 3,−6, 0, 0, 0, 0)t , (5.93)

and we may choose P = 0. We have

QD3
flux =

1

2
~f
t
Σ~h = −1

2
~M t ~K = 52 , (5.94)

so we exactly saturate the tadpole bound. Furthermore,

Nij :=
∑

a

KijaMa = 8




1 −1

−1 0



ij

, pi := (N−1)ijKj =
3

8




2

1




i

, piKi = 0 .

(5.95)

Thus, we stabilize the two bulk moduli z2,3 and the dilaton along the flat valley

zi =
3

8
τ




2

1




i

. (5.96)

In the basis (τ, z2, z3), the matrix of second derivatives of the superpotential

W
(0)
poly(τ, zi) reads

∂2W
(0)
poly(τ, zi) =




0 −Kj

−Ki Nij


 =




0 −3 6

−3 8 −8

6 −8 0



, (5.97)

which has eigenvalues (0, 4 ± 5
√

5). Thus, we may indeed integrate out the field

directions away from the flat valley, and consider the effective theory along the

valley in the next step. The effective superpotential W
(0)
inst takes the form

W
(0)
inst(τ) ≈ A(1,0)e

2πi 3
4
τ + A(0,1)e

2πi 3
8
τ , (5.98)

with

A(1,0) =
2880(M1 +M2)

(2πi)2
=
−11520

(2πi)2
, A(0,1) =

2(M1 + 2M3)

(2πi)2
=

40

(2πi)2
, (5.99)
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so we stabilize τ near

e2πiτ0 =

(
40 · 3/8

11520 · 3/4

) 8
3

≈ 4.4× 10−8 . (5.100)

Replacing ∂τ → Dτ shifts this slightly to gs ≈ 0.38. Furthermore, the vacuum

value of the superpotential is

|W0| ≈
√

2
π

∣∣∣W (0)
inst(τ0)

∣∣∣ ≈ 6.9× 10−4 , (5.101)

neglecting the contribution from W (1)zcf. The neglected two-instanton corrections

are suppressed by a relative O(10−3) factor and the three-instanton corrections are

suppressed by a further O(10−3) factor, so the value of |W0| is a good measure of

control of the instanton expansion.

In the final step, we stabilize the conifold modulus zcf with the superpotential

Wcf(zcf). The conifold fluxes are

K ′ := K1 −MaK1aip
i = −5 , M := −M1 = −4 , (5.102)

so we stabilize the conifold modulus at

|zcf| =
1

2π
e−2π K′

2gsM ≈ 5× 10−6 . (5.103)

The Klebanov-Strassler theory is (marginally) in its supergravity regime with some-

what large ’t Hooft coupling gsM ≈ 1.5, and the infrared warp factor is of order

e2A|min ∼ |zcf|
2
3 ≈ 2.9× 10−4 . (5.104)

We note that e2A|min and |W0| are of the same order, as one would want for a

KKLT uplift from including an anti-D3-brane in the warped region. In Table 5.1

we list some interesting flux vacua.
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~M ~K |W0| |zcf| |zcf|2/3−|W0|
|W0| gsM ε

(4,−8, 10) (−6, 3,−4) 7.4× 10−9 5.4× 10−14 −0.8 0.6 ∼ 10−7

(8,−12, 6) (−5, 1,−2) 6.9× 10−4 1.4× 10−5 −0.2 1.0 ∼ 10−3

(−8, 4, 12) (5, 1,−4) 4.1× 10−2 5.2× 10−3 −0.3 2.8 4× 10−2

(−14, 6, 27) (4, 1,−2) 1.4× 10−3 5.3× 10−5 0.03 0.9 ∼ 10−3

Table 5.1: Some interesting vacua. First line: smallest W0. Second line: smallest
W0 with gsM > 1. Third line: largest gsM . Fourth line: best alignment between
z

2/3
cf and W0. The parameter ε is the magnitude of the neglected two-instanton

contributions to the superpotential relative to the retained one-instanton terms.

5.5 Discussion

In this work we have demonstrated that the mechanism of [92] for constructing

flux vacua of type IIB string theory with exponentially small values of the flux

superpotential can be applied not just at large complex structure, as in [92], but

also near conifold points in moduli space. We laid out a procedure for finding

conifold vacua in which the flux superpotential is small.

The key challenge was to compute, and then to cancel, an order-one contribu-

tion to the superpotential coming from flux on the conifold cycles. To accomplish

this we considered the case in which the shrinking three-cycle of the conifold in a

Calabi-Yau X̃ is mirror to a shrinking curve in the mirror threefold X. Computing

the prepotential for the complex structure moduli space of X̃, and then resumming

the terms corresponding to type IIA worldsheet instantons wrapping the shrinking

curve in X, we obtained the flux superpotential for type IIB compactification on

X̃, including the term resulting from fluxes on the shrinking three-cycle of the

conifold. We then applied the mechanism of [92] to find fluxes for which the total

flux superpotential, including the conifold term, is exponentially small.

We illustrated our approach in flux compactification of type IIB string theory on

an orientifold of a Calabi-Yau threefold X̃ with h1,1(X̃) = 99 and h2,1(X̃) = 3. To
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analyze X̃ and its orientifold we made heavy use of the Greene-Plesser construction:

X̃ is the resolution of the orbifold X/G, with X the mirror of X̃, and G ' Z6×Z6

the Greene-Plesser group of X. We found an O3/O7 orientifold involution Ĩ of X̃

leading to a D3-brane tadpole −Q = 52, allowing reasonable freedom in choosing

fluxes. We found many flux vacua and laid out in detail a flux choice for which

|W0| ≈ 7× 10−4, the conifold modulus zcf is stabilized at |zcf| ≈ 5× 10−6, and the

Klebanov-Strassler throat has gsM ≈ 1.5.

As classical flux vacua, our examples are rather well-controlled. However, they

are just a first step toward finding parametrically large Klebanov-Strassler throats

in vacua with small values of the flux superpotential, and subsequently achieving

Kähler moduli stabilization and a metastable uplift to de Sitter space. Indeed, in

our examples ten-dimensional supergravity is at best marginally valid near the tip

of the throat, and at the same time the significant number of Kähler moduli makes

stabilization computationally challenging. We believe that these limitations have

no deep relationship to our mechanism, but are instead accidental properties of the

examples. After all, we would expect to have to search through many candidate

geometries to find one in which the flux superpotential is exponentially small, a

throat region is parametrically large, and the numbers of moduli are small enough

for simultaneous computational control of the geometry and its mirror. Here we

have examined one particularly tractable orientifold with h2,1(X̃) = 3, and already

finding therein a foundation for a parametrically controlled KKLT de Sitter vacuum

would have been surprising to us.

One further limitation, however, is intrinsic to our mechanism, and will hold in

all examples: at least one linear combination of the string coupling and the complex

structure moduli remains rather light, with a mass of the same order as that of the
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Kähler moduli. As noted in [92], this is a departure from the original scenario of

[215]. In the present context of conifold vacua, an important consequence is that

the warp factor at the tip of the Klebanov-Strassler throat is set by the vev of a

relatively light field.20 Metastable supersymmetry breaking in the presence of such

light moduli will require further analysis.

Systematically enumerating conifold vacua in a much larger class of geometries

will be very informative, but we leave this for future work.

20Qualitatively similar results have been emphasized in [55, 32], though the details and the
causes are very different here.
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CHAPTER 6

ENTANGLEMENT ENTROPY AND EDGE MODES IN

TOPOLOGICAL STRING THEORY: I

Abstract1

Progress in identifying the bulk microstate interpretation of the Ryu-Takayanagi

formula requires understanding how to define entanglement entropy in the bulk

closed string theory. Unfortunately, entanglement and Hilbert space factorization

remains poorly understood in string theory. As a toy model for AdS/CFT, we

study the entanglement entropy of closed strings in the topological A-model in the

context of Gopakumar-Vafa duality. We will present our results in two separate

papers. In this work, we consider the bulk closed string theory on the resolved

conifold and give a self-consistent factorization of the closed string Hilbert space

using extended TQFT methods. We incorporate our factorization map into a

Frobenius algebra describing the fusion and splitting of Calabi-Yau manifolds,

and find string edge modes transforming under a q-deformed surface symmetry

group. We define a string theory analogue of the Hartle-Hawking state and give a

canonical calculation of its entanglement entropy from the reduced density matrix.

Our result matches with the geometrical replica trick calculation on the resolved

conifold, as well as a dual Chern-Simons theory calculation which will appear

in our next paper [117]. We find a realization of the Susskind-Uglum proposal

identifying the entanglement entropy of closed strings with the thermal entropy

of open strings ending on entanglement branes. We also comment on the BPS

microstate counting of the entanglement entropy. Finally we relate the nonlocal

1This chapter is published as W. Donnelly, Y. Jiang, M. Kim, G. Wong, “Entanglement
entropy and edge modes in topological string theory: I,” [arxiv:2010.15737 [hep-th]].
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aspects of our factorization map to analogous phenomenon recently found in JT

gravity.

6.1 Introduction

The holographic principle states that the number of degrees of freedom in a

spacetime region scales with the area of its boundary, and is exemplified by the

Bekenstein-Hawking (BH) entropy formula. In the context of the AdS/CFT corre-

spondence [252, 174, 348], the Ryu-Takayanagi (RT) formula [303] generalizes BH

entropy to extremal surfaces in AdS which are anchored to the asymptotic bound-

ary, and identifies the leading area term with the leading O(N2) contribution to

the entanglement entropy of the boundary CFT [253, 138]. Given a factorization

of the CFT Hilbert space2, this implies that the bulk extremal area is capturing

the degrees of freedom for quantum states of a boundary subregion. However, the

bulk micro-state interpretation of the entropy remains mysterious. One aspect of

this puzzle is that the bulk supergravity only contains O(1) number of fields, while

the classical area term is of O(N2) [246, 317]. Where does this large number of

degrees of freedom come from?

We want to understand this question directly in the bulk from the microscopic

string theory. In the case of BH entropy, Susskind and Uglum [315] proposed

that the horizon area measures the entanglement entropy of closed strings across

the horizon. In the tree level replica trick calculation, the entanglement entropy

is due to a sphere diagram which intersects the entangling surface, representing

2Even though it is quite plausible, such a factorization has never been carefully worked out.
However for rational CFT’s, the question of Hilbert space factorization and edge modes was
recently addressed in [204].
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φ

Figure 6.1: The partition function of the A-model on a line bundle over S2 has
two interpretations. In the closed string channel (left), it represents the overlap
〈HH∗|HH〉 between the Hartle-Hawking state and its orientation reversal. In
the open string channel (right), it represents a trace in the Hilbert space of open
strings. Figure borrowed from Ref. [122].

closed strings which are cut into open strings as depicted in figure 6.1. What

distinguishes string theory from quantum field theory (QFT) is that this tree level

closed string diagram has a one-loop open string interpretation, suggesting a trace

over a quantum Hilbert space. This led Susskind and Uglum to conclude that the

BH entropy counts microstates of open string endpoints anchored on the horizon.

In the language of Ref. [122] the horizon is wrapped by entanglement branes, which

gives rise to entanglement edge modes responsible for the large O(1/g2
string) =

O(1/GNewton) entropy. Given the analogy between RT formula and BH entropy,

it is tempting to apply this proposal to give a canonical interpretation of the RT

entropy from the bulk string theory.

While the seminal work [313] succeeded in reproducing the BH entropy for

five dimensional extremal Reissner-Nordstrom black holes via counting BPS mi-

crostates in string theory, little is known about how to compute entanglement

entropy and the associated Hilbert space factorization in string theory. In field the-

ory, the replica trick as computed by the Euclidean path integral offers a shortcut

that circumvents the factorization problem. However a naive application to string

theory requires putting an n-sheeted cover in the target space, which requires an
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off-shell formulation of string theory that is not well understood.3 Since string the-

ory is well-defined in the presence of conical deficits, the references [84, 182, 351]

attempted worldsheet calculations of entanglement entropy using an “orbifold”

replica trick. However these calculations do not capture the sphere contribution

to the entanglement entropy and the associated edge modes.4 An attempt at

an off-shell calculation was made in [24] via Witten’s open string field theory.

They showed that the symplectic structure of the string field theory in a subre-

gion implies that pure gauge (BRST) modes become dynamical edge modes at the

entanglement cut, but did not go beyond this classical analysis.

Edge modes are boundary degrees of freedom introduced to give a self con-

sistent description of a subsystem. In string theory they appear due to the need

to cut strings at the point where the string worldsheet intersects the entangling

surface, leaving configurations where the strings end at the entangling surface.

A similar phenomenon occurs in Maxwell theory, where the edge modes can be

thought of as configurations of “electric strings” with their endpoints anchored to

the entangling surface [64]. As in string field theory, the presence of edge modes

can be deduced from the symplectic structure of a subregion [116]. These edge

modes give an important contribution to the entanglement entropy [120, 121], in

particular reproducing the contact interaction of [213] which may be viewed as a

field theory limit of a string worldsheet intersecting the entangling surface. How-

ever, these field theory calculations can only capture the one-loop correction to the

entropy, corresponding to toroidal worldsheets.

In this work, we initiate a program to realize the Susskind-Uglum proposal

3For the closed bosonic string, such an off-shell formulation was proposed by Tseytlin [322]
and applied by Susskind and Uglum in their proposal.

4The sphere contribution vanishes at the orbifold point, and hence remains zero when ana-
lytically continued in the replica number.
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for the topological A-model string in the context of Gopakumar-Vafa duality (GV

duality) [158, 159, 161, 160, 285, 6, 91], which can be viewed as a topological version

of AdS/CFT. The role of the bulk string theory is played by the topological A-

model closed string on a resolved conifold geometry [67]. This is a six-dimensional

Calabi-Yau manifold which is a rank-2 bundle over a sphere of complexified area

t. The boundary CFT is replaced by the large-N limit of U(N) Chern-Simons

theory, with gauge coupling gcs = 2π
k+N

and ‘t Hooft parameter igcsN . The closed

string coupling gs and the target space modulus t in the bulk are related to the

parameters of the CS theory by

gs = gcs =
2π

k +N
,

t =
2πiN

N + k
. (6.1)

The advantage of studying the A-model string is that it provides a setting

similar to AdS/CFT where we can give precise accounting of edge modes and their

entanglement entropy on both sides of the duality. In this paper, we will focus on

the closed string theory and define its Hilbert space via the categorical description

of the A-model as a topological quantum field theory (TQFT) [62, 8, 63]. This

allows us to apply the framework developed in [122] to define the factorization of

the string theory Hilbert space purely in terms of the categorical data of an open-

closed TQFT. For the A-model, the relevant TQFT can be viewed as coming from

a large N , chiral limit of q-deformed 2D Yang-Mills theory (2DYM)[9].5 Using

the TQFT description, we propose a factorization of the closed string Hilbert

space that is consistent with the entanglement entropy as computed by the replica

trick. For the Hartle-Hawking state of the closed string theory, we find that the

5The q-deformed 2D Yang-Mills theory has been proposed as a non-chiral UV completion for
the closed topological string theory, and in the discussion section we will discuss the implications
of this completion and its connection to wormholes and baby universes.
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entanglement entropy can be interpreted as the thermal entropy of open strings,

with the aforementioned O(1/g2
s) scaling arising from the counting of Chan-Paton

factors.

As in [122], these Chan-Paton factors are the entanglement edge modes of

the closed string theory, which we will interpret as coming from the stacks of

entanglement branes at the entangling surface. Interestingly, the coupling of these

branes to the string endpoints endows them with nontrivial braiding statistics.

The corresponding edge modes thus behave like anyons and transform under a

quantum group symmetry, which plays the role of the surface symmetry group

(c.f. [116]) for the topological string theory.

In the follow-up paper [117], we will give a dual Chern-Simons gauge theory

description of the entanglement entropy and the corresponding edge modes, thus

giving an independent check of our closed string calculations. In the closed string

theory, we will define a Hartle-Hawking state obtained by summing over world-

sheets ending on a stack of D-branes. By applying GV duality, we will show that

there is a local mapping between these worldsheets and unknotted Wilson loops

in the Chern-Simons theory, so that cutting the worldsheets correspond to cutting

the Wilson loops. In gauge theory, the entanglement entropy δS due to cutting a

Wilson loop WR in a representation R is [244]

δS = (1− n∂n) log 〈WR〉 = 〈Hmod〉WR
+ log 〈WR〉 . (6.2)

This is the entanglement entropy relative to the vacuum state, also referred to

as the defect entropy [209, 210]. Here 〈Hmod〉WR
is the expectation value of the

modular Hamiltonian in the presence of the Wilson loop, which vanishes in Chern-

Simons theory. Thus, the defect entanglement entropy associated with the Wilson

loop is just log 〈WR〉. For the unknot, 〈WR〉 is precisely the quantum dimension
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which captures the topological degeneracy associated with the fusion Hilbert space

of an anyon. By superposing such Wilson loops in all possible representations, we

will reproduce the string theory Hartle-Hawking state as well as its entanglement

entropy in an appropriate large-N limit of the quantum dimensions. This limit

gives a precise relation between the closed string edge modes and the anyons of

Chern-Simons theory.

Our description of the relation between string worldsheets and Wilson loops

has a direct analogue in AdS/CFT [285, 156, 133]. A Wilson loop in the CFT in

the fundamental representation is dual to a probe string worldsheet in the bulk

geometry, and equation (6.2) was used in [244] to compute its entanglement en-

tropy. In this calculation the entanglement entropy is O(log(1/gs)), which is large

at weak coupling but still much smaller than the O(1/g2
s) RT entropy.

A similar phenomenon was noted in Refs. [122] for the string dual to 2DYM

— any state with O(1) number of strings has an entanglement entropy of

O(log(1/gs)). However, for the Hartle-Hawking state, competition between the

Chan-Paton factors and the string action leads to a saddle point with O(1/g2
s)

strings. The counting of Chan-Paton factors at this saddle point leads to an

O(1/g2
s) entanglement entropy that is reminiscent of the scaling of “spacetime”

entropy [119].

Similarly, in AdS/CFT, in the presence of Wilson loops corresponding to “large

representations” with order O(N2) = O(1/g2
s) number of boxes, the dual branes

backreact on the geometry. In this case the defect entropy can be computed using

the RT formula in the new background, and the O(N2) = O(1/g2
s) entropy is

recovered [10, 149]. In our computation, the resolved conifold itself is an emergent

geometry arising from the superposition of a large number of fundamental strings,
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dual to a large number of Wilson loops in the dual gauge theory. By accounting for

the contributions from the entire superposition of states, our entropy calculation

captures the entanglement which “makes up the spacetime” itself.

Finally, we comment on how our work differs from the recent work [202] which

also studied entanglement in the A-model string theory. The essential difference

is twofold: first our choice of state cuts through the base manifold S2 where the

closed string worldsheets wrap, whereas the state defined in [202] does not. As a

result, our entanglement cut will directly probe the string edge modes that were

not revealed by their computation. Second, rather than relying solely on the dual

Chern-Simons field theory, we give a self-consistent Hilbert space factorization and

entropy calculation on the closed string side.

6.2 Summary, overview of GV duality and the Hartle-

Hawking state

Here we give a summary of our paper, starting with an overview of the GV duality

and a description of the closed string state whose factorization and entanglement

entropy we will be studying.

6.2.1 Summary of the GV duality

Like AdS/CFT, the Gopakumar-Vafa duality is an open-closed string duality. Fig-

ure 6.2 shows the 6D target space geometries for the closed and open strings. These

can be conveniently presented as two different ways to resolve the singularity of
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the conifold geometry, which is a cone over S3×S2. The closed strings live on the

resolved conifold where the conical tip is resolved into an S2, whereas the open

strings live on the deformed conifold, where the tip is deformed into an S3. The

defining equations and details of the geometries are summarized in §D.2.

An intuitive way to understand the GV duality is via ‘t Hooft’s argument for the

emergence of string theory from gauge theory [316]. ‘t Hooft observed that in the

large N limit, the Feynman diagrams of a U(N) gauge theory can be represented

by ribbon graphs which should be viewed as Riemann surfaces with holes. These

are open string worldsheets, corresponding to a free energy expansion in which the

gauge coupling g2
YM plays the role of the string coupling gs:

F =
∞∑

g=0

∞∑

h=1

(g2
YM)2g−2+hNhFg,h. (6.3)

Here g is the genus of the worldsheet, h is the number of holes, and N accounts

for Chan-Paton factors of U(N). The dual closed string theory is obtained by

summing over holes, giving

F =
∞∑

g=0

(g2
YM)2g−2Fg(t),

Fg(t) =
∞∑

h=1

Fg,ht
h, t = g2

YMN. (6.4)

Here t is the ‘t Hooft coupling of the gauge theory, which plays the role of a target

space modulus for the closed string.

In the ‘t Hooft paradigm, the gauge theory which is relevant to GV duality is

U(N) Chern-Simons theory on S3. A direct 1/N expansion of the Chern-Simons

partition function leads to the connected amplitudes Fg,h of the open topological

string on the deformed conifold, which is the same as the cotangent bundle T ∗S3

[161]. In this geometry the open string degenerates into a pointlike object and
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is restricted to live on the base S3. These degenerate Riemann surfaces of zero

area correspond precisely to the ribbon graphs of the gauge theory. Chern-Simons

theory is thus the string field theory of these open strings [343]. Closed topological

strings wrap minimal volume representative among homologous 2-cycles [340, 349];

in the resolved conifold, the only such 2-cycle is the S2 at the tip. Open topological

strings end on Lagrangian 3-cycles, and in the GV duality, they end on the base S3

of the deformed conifold. Similar to AdS/CFT, the open string theory with a large

N number of branes on S3 is dual to a closed string theory where the branes have

been dissolved and replaced by a nontrivial flux t = igSN of the B field through

the S2.

The dual closed string theory was derived from the worldsheet by directly

summing over the holes in [285]. The resulting theory is the A-model closed string

on the resolved conifold, which should be viewed as the gravitational dual of Chern-

Simons theory on S3. While the resolved conifold is locally a direct product,

globally it has a nontrivial fiber bundle structure over the base S2. Denote by

O(n) the complex line bundle over S2 with Chern class n. The resolved conifold

can then be identified with the rank-2 vector bundle:

O(−1)⊕O(−1)→ S2. (6.5)

More generally we can consider A-model closed strings on geometries of the form

X = L1 ⊕ L2 → S, (6.6)

where S is a general Riemann surface, and L1, L2 are line bundles with Chern

classes (k1, k2).6 It was shown in [63] that the all genus amplitudes on such vector

6Strictly speaking, when S is contractible, the Chern class c1 ∈ H2(S) is always trivial. Hence,
the Chern class cannot keep track of the bundle data required for the gluing. For a manifold
with boundary, such as a disk, we instead use the euler class e(L) ∈ H2(S, ∂S) which equals to
the Chern class upon gluing.
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bundles satisfy the gluing rules of a TQFT, which can be viewed as the string

field theory for the A-model. Formally, the A-model TQFT is a functor from the

category 2 CobL1,L2 of 2-dimensional cobordisms with line bundles to the category

of vector spaces. Physically, it can be interpreted as an appropriate large N limit

of q-deformed 2D Yang Mills on the base manifold S. Figure 6.2 gives a summary

of the geometries and target space theories on both sides of the duality.

Open A model string Closed A model string

A Model  TQFT U(N) Chern Simons theory  
onTarget space theory 

Target space geometry

Deformed Conifold Resolved  Conifold

Geometric transition 

N branes

Figure 6.2: Gopakumar duality relates closed A-model string on the resolved coni-
fold to the open A-model string on the deformed conifold

6.2.2 The Hartle Hawking state in string theory

In QFT, quantum states live on a codimension-1 time slice Σ. Geometric states

are defined by the Euclidean path integral on a manifold M with ∂M = Σ.

In particular, the Hartle-Hawking state |HH〉 is defined cutting the spacetime

geometry at a moment of time reflection symmetry[181]. Thus the QFT partition
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function can be expressed as the overlap7

ZQFT = 〈HH|HH〉 . (6.7)

However, in closed string theories the fundamental degrees of freedoms are

closed loops, so the field theory construction of geometric states doesn’t strictly

apply. In the first quantized theory, a single string state is a wavefunctional on the

space of loops

Ψ[Xµ(σ)], Xµ(σ) ∈ F . (6.8)

Here, elements of F are closed string configurations specified by the embedding

map Xµ(σ), with σ ∈ S1. By direct analogy with QFT, the operators of the second

quantized theory are obtained by promoting Ψ to a string field

Ψ̂ = Ψ̂[Xµ(σ)], (6.9)

which is an operator-valued function on the loop space F of the target manifold.

This is in contrast to QFT where the second-quantized field operators are functions

of spacetime points Xµ. Thus the degrees of freedom in string theory are labelled

by elements of the loop space F , and the specification of time slices refers to subsets

of F .

Similarly, the second quantized string Hilbert space is defined on a time slice

of F rather than on a time slice Σ of spacetime [338, 337, 355]. Nevertheless, we

can associate a string Hilbert space HΣ with Σ by a choice of mapping between

time slices

Σ→ FΣ ⊂ F . (6.10)

7Following conventions in TQFT, the geometric dual 〈M | denotes the amplitude on the man-
ifold M with orientation reversed. The braket is then just a gluing of manifolds, viewed as a
natural pairing. In particular a TQFT does not assume a Hermitian inner product.
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For example, if Σ is given by X0 = 0, we could define a time slice in the loop space

by

FΣ = {Xµ(σ) : X0(σ) = 0, σ ∈ S1}. (6.11)

However, as noted in [24], the mapping between Σ and FΣ is not unique; for

example, we can restrict only the center of mass of the string to live in Σ.

Figure 6.3: The left figure shows the codimension-1 slice Σ of the resolved conifold
where a QFT state would be defined. In the closed string theory, the analogue of
a time slice is a set FΣ of loops configurations associated with Σ. For the A-model
string, we will restrict these loop configurations to lie in a Lagrangian submanifold
L ⊂ Σ. The string wavefunctional assigns an amplitude to each configuration of
such loops.

To define the A-model Hilbert space, we choose Σ to be the 5-dimensional

region of the resolved conifold which intersects the base S2 along the equator C.

This represents a symmetric cut through the target space geometry, and we would

like to define the string theory analog of the Hartle-Hawking state on Σ. We choose

FΣ to consist of noncontractible string loops living on a Lagrangian submanifold

L ⊂ Σ. A shown in figure 6.3, this is a three-dimensional manifold with topology

C×S1 and its defining equation is given in (D.26) of appendix D.2. The topological

vertex formalism [4, 263] can then be applied to define a string wavefunctional on

FΣ which gives a string theory analog of the Hartle-Hawking state.
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The topological vertex encodes the A-model amplitude on C3 with three stacks

of D-branes. It is a basic building block for partition functions on toric Calabi-

Yau manifolds, such as the resolved conifold. To compute the partition functions

of more complicated geometries, one can glue the topological vertices by brane-

antibrane annihilation. This gluing procedure allows us to cut and sew target space

geometries as in Euclidean path integrals. In particular, we will define the Hartle-

Hawking state |HH〉 using the topological vertex with a single stack of nontrivial

D-branes on L. Denoting by 〈HH∗| the opposite vertex with antibranes inserted

and opposite orientation, it can be shown that

Z = 〈HH∗|HH〉 , (6.12)

where Z is the partition function on the resolved conifold. Note that that Z is not

a real norm of a state as in the QFT definition (6.7). The is due to the holomorphic

nature of the A model partition function, which is analogous to a chiral half of

a conformal block. From the point of view of 2 CobL1,L2 , the HH state is given

by a hemisphere with (0,−1) Chern class, while 〈HH∗| is the oppositely oriented

hemisphere with (−1, 0) Chern class:

|HH〉 =
(0,-1)

, 〈HH∗| = (-1,0) . (6.13)

In our next paper we will derive the Chern-Simons dual of the HH state, which

lives on the surface of a torus containing a specific superposition of Wilson loops

inside.

6.2.3 Outline of the paper

Our paper is organized as follows. We start with closed topological A model in

section 3 and give a chiral boson description of the Hilbert space. Using the
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topological vertex formalism, we obtain the Hartle-Hawking state of topological A

model on the resolved conifold and compute its entanglement entropy using the

geometric replica trick preserving the Calabi-Yau condition. We will also introduce

the entanglement brane boundary state as a coherent state of chiral bosons.

In sections 4-5, we define a factorization of the closed string Hilbert space

following the framework introduced in [123]. We first review the the relation be-

tween extended Hilbert space factorization and extensions of closed TQFT. We

then present the A-model closed TQFT [63] and propose an extension compatible

with the entanglement brane axiom introduced in [123]. The essential new ingredi-

ent in this factorization is the presence of an emergent quantum group symmetry

which acts on the string edge modes. Compatibility with this symmetry leads us

to modify the usual definition of Von Neumann entropy to:

S = − trq(ρ log ρ) = − tr(Dρ log ρ), (6.14)

where the quantum trace trq is defined with the insertion of the operator D,

the Drinfeld element of a quantum group. We find that this definition of the

entropy in the factorized Hilbert space agrees with the replica trick calculation

in section 3. This q-deformed notion of entropy has been studied previously in

the context of quantum group invariant spin chains and non-unitary quantum

systems [81, 295]. D is also the direct analogue of the defect operator introduced

in [208]8 to factorize the Hilbert space of JT gravity and in our case it is completely

determined by the surface symmetry group. In the end of section 5 we will revisit

the geometric calculation of the replica trick and show how the preservation of the

Calabi-Yau condition is enforced by the quantum trace. We will also show that the

entanglement entropy has a natural interpretation in terms of the BPS microstate

counting.

8ρ is equivalent to ρ̃ in [208].
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Finally, in the discussion section, we will comment on the relation between

our work and factorization in JT gravity, particularly as it relates to the quantum

group symmetry.

6.3 The closed string Hilbert space and entanglement en-

tropy from the replica trick

Topological string theory is a broad subject, so we will not try to give an extensive

review in this paper. Nevertheless we give a short review on topological sigma

model in Appendix D.1. In a similar spirit, we give a very short review on geometric

transition between the deformed conifold and the resolved conifold in Appendix

D.2. Curious readers may refer to [195, 280, 258, 200, 257, 333].

6.3.1 The Hartle-Hawking state from the all-genus ampli-

tude

Worldsheet topological string theory comes from applying topological twists to

the N = (2, 2) supersymmetric sigma models, and the two inequivalent twisting

procedures give the topological A-model and the topological B-model [340]. In this

paper, we will consider the A-model, whose target space is a six real dimensional

Calabi-Yau manifold X. The theory only depends on the Kahler modulus of the

target space and is invariant under area preserving diffeomorphisms in the target

space. The free energy for the A model is a sum over all worldsheet instanton

sectors corresponding to holomorphic worldsheets. Let [Si] be a basis of H2(X,Z),
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so that a generic element β ∈ H2(X,Z) can be expressed as β =
∑

i ni[Si]. Let

ti =
∫
Si
ω be the complexified Kahler parameters and denote Qβ =

∏
i e
−niti . The

free energy of the A-model on X then takes the form of a sum over all worldsheet

instanton sectors:

F =
∑

g

g2g−2
s Fg(ti) =

∑

g,β

g2g−2
s Ng,βQ

β. (6.15)

Ng,β is the genus-g Gromov-Witten invariant that “counts” the number of holo-

morphic curves of genus g in the two-homology class β in an appropriate sense.

A remarkable fact about the closed A-model string is that we can compute the

all-genus amplitude using localization, connection to M-theory, mirror symmetry,

and many other techniques [235, 4, 343, 161, 108, 2, 326, 263]. The free energy

of the A-model can be resummed to be expressed in terms of the BPS index,

Gopakumar-Vafa invariants ngβ for a curve β,

F =
∑

g,β,k

ngβ
1

k

(
2 sin

kgs
2

)2g−2

Qkβ. (6.16)

In particular the partition function Z = eF on the resolved conifold is

Z(O(−1)⊕O(−1)→ S2) = exp

( ∞∑

n=1

1

n(2 sin(ngs
2

))2
e−nt

)
, (6.17)

because ngS2 = 0 for all g > 0 but n0
S2 = 1. In (6.17), we have already summed over

all genera. Note that although the partition function on the resolved conifold is

well-defined for both weak and strong coupling, we presented an asymptotic form

(6.17) which is valid for large values of the string coupling gs. By expanding (6.17)

in gs, one can recover the free energy expression (6.15) in terms of Gromov-Witten

invariants, which is valid at weak string coupling. The e−nt factors correspond to

holomorphic worldsheet instantons that wrap n > 0 times the base manifold S2.

As discussed in section 6.2, we want to define a Hartle-Hawking state for the

resolved conifold as a wavefunctional of string loops inside the Lagrangian manifold
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L. To do this we apply the topological vertex formalism [326] which express the

string partition function (6.17) in terms of the overlap in (6.12) by inserting branes

and antibranes on L. These branes cut through the worldsheets along the equator

while extending into the fiber directions as shown in figure 6.4.

Figure 6.4: The left figure shows a D-brane on L ⊂ Σ which intersects the base
S2 along the equator and extends in to the fiber directions along a hyperbola. In
the right figure, we show the string loops in the time slice FΣ which lives in L.
The state |HH〉 state is defined via worldsheets which end on these loops and
wrap the upper hemisphere, as shown in the left figure. Similarly 〈HH∗| describes
worldsheets on the southern hemisphere which end on anti-branes.

Due to the coupling between the string endpoints and the branes, the A-model

amplitude depends on the holonomy U of the world volume gauge field. For the

worldsheets ending on the branes and wrapping the upper hemisphere D+, the

amplitude is

Z+(O(0)⊕O(−1)→ D2
+, U), U = P exp

∮

C

A. (6.18)

For N branes the worldvolume gauge theory is U(N) Chern-Simons theory, and

in the large N limit the amplitude (6.18) corresponds to the topological vertex

with a single nontrivial stack of branes. Similarly we can define another vertex via

the amplitude Z− for the oppositely oriented worldsheets which wrap the lower
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hemisphere and end on antibranes. By annihilating the brane-antibrane pairs,

these vertices can be glued together to recover the partition function of the resolved

conifold:

Z(O(−1)⊕O(−1)→ S2) =

∫
dU Z+(U)Z−(U−1). (6.19)

Here the gluing is implemented by integration over the gauge group U(N) using

the Haar Measure.

The vertex Z+ can be interpreted as a closed string wavefunctional for the

Hartle-Hawking state:

〈U |HH〉 = Z+(U). (6.20)

|HH〉 is a state in the second-quantized string theory, and the path integral Z+

includes all disconnected worldsheet configurations winding an arbitrary number

of times in one orientation. Each closed string configuration is defined by the

occupation numbers kj which enumerate how many closed strings wind j times

around C, which should be identified with the non-contractible cycle of L.

In terms of kj, the wavefunctional is of the form

〈U |HH〉 =
∑

~k

C00~k(gs, t)
∏

i=1

( trU i)ki

z~k
, ki > 0

z~k =
∞∏

j=1

jkjkj!, (6.21)

where C00~k(gs, t) are the vertex coefficients derived in [4, 263], and the normal-

ization z~k is a combinatorial factor associated with redundancy in labelling by ~k.

(6.21) can be also derived by calculating the open Gromov-Witten invariants from

the worldsheet theory [227, 263]. In the large N limit the multi-trace factors form

a linearly independent set called the winding basis |~k〉

lim
N→∞

∏

i=1

tr(U i)ki = 〈U |~k〉 , kj > 0. (6.22)
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The overlap between the states |~k〉 is defined via the Haar measure dU :

〈~k|~k′〉 =

∫
dU tr~k(U) tr~k′(U

−1) = δ~k,~k′z~k. (6.23)

This basis defines the chiral closed string Hilbert space HΣ associated with strings

winding around the equator.9

So far we have expressed the closed strings states as functions of the holonomies

U . Let us interpret these explicitly as wavefunctionals of loops in FΣ. Due to the

topological invariance of the A-model, elements of FΣ fall into equivalence classes

labelled by their winding numbers around C. If Xn(σ) is a string loop winding n

times, then each single trace factor in (6.22) should be treated as a single string

functional:

Ψ[Xn(σ)] = tr(Un) = trP

(
exp

∮
X∗nA

)
. (6.24)

Similarly, the Hartle-Hawking state is a multi-string functional obtained by treat-

ing multi loop configuration in FΣ as boundary conditions for the string path

integral.

6.3.2 The chiral boson description of HΣ and D branes

The Hilbert space HΣ has a second quantized description in terms of a chiral boson

which can be viewed as a string field theory for the A-model.10 This is obtained

by defining string creation/annihilation operators α∓n, n > 0 which create and

9This Hilbert space can be viewed as a “chiral half” of the space of functions on U(N) in the
large N limit in the following sense. In the large N limit, the Hilbert space of functions on U(N)
factorizes into two sectors consisting of positively oriented strings represented by wavefunctions
tr(Uk) and negatively oriented strings represented by wavefunctions tr(U†

k

) [172]. The Hilbert
space we consider consists only of the positively-oriented strings.

10This is the Hilbert space associated with the representations of U(∞). Strictly speaking,
this is the string field theory for the topological B-model on the mirror manifold [4, 45, 2].
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annihilate closed strings winding n times with positive orientation [45, 2, 4]:

〈U |
∏

n

αkn−n |0〉 =
∏

n

tr(Un)kn . (6.25)

In terms of these oscillators, the D-branes |U〉 are coherent states

|U〉 = exp

( ∞∑

n=1

tr(Un)

n
α−n

)
|0〉 . (6.26)

This gives a more precise definition of |U〉 in the large N limit, as we can apply

the mapping

|U〉 → |t〉 = exp

( ∞∑

n=1

tn
n
α−n

)
|0〉 , tn = trUn. (6.27)

In the large N limit, tn can be viewed as formal variables without reference to

the matrix U . In particular, the HH state is given by evolution of such a coherent

state [4]

|HH〉 = e−tĤ/2 exp

(∑

n=1

1

n(qn/2 − q−n/2)
α−n

)
|0〉 , (6.28)

Ĥ =
∞∑

n=1

α−nαn, q = exp(igs), (6.29)

where Ĥ is the Hamiltonian of the closed string field theory and e−
t
2
Ĥ is a string

field propagator which evolves the geometry from an infinitesimal disk to a fi-

nite hemisphere of area t/2. The dual state defined by the amplitude Z− with

antibranes inserted is given by11

〈HH∗| = 〈0| exp

(∑

n=1

αn
−1

n(qn/2 − q−n/2)

)
e−tĤ/2. (6.30)

11This is a nontrivial adjoint operation which corresponds to changing the Chern class in
addition to changing the orientation of the hemisphere[4, 45, 325]. When t is real, this is equal to
the complex conjugation. When t is complex, due to the holomophicity of the A-model, we shall
not use the complex conjugation and our formula for the dual is correct for a generical complex
t.
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It can be verified directly from (6.28),(6.30),and (6.17), that

Z = 〈HH∗|HH〉 . (6.31)

The entanglement brane boundary state It is useful to identify the holon-

omy D ∈ U(∞) corresponding to the state on the infinitesimal disk :

|U = D〉 = exp

(∑

n=1

1

n(qn/2 − q−n/2)
α−n

)
|0〉 . (6.32)

From (6.27), we know D must satisfy

trDn =
1

(qn/2 − q−n/2)
=

1

[n]q
, (6.33)

where we have introduced the q-deformed integer [n]q. A diagonal matrix that

satisfies this equation in the N →∞ limit has components:

Djj = q−j+
1
2 , j = 1, · · ·N. (6.34)

Deriving this holonomy requires a regularization of the trace. Note that

trDn =
N∑

j=1

qn(−j+ 1
2

) = q−n/2
∑

j=0

(q−n)j =
1− q−n(N+1)

qn/2 − q−n/2 , (6.35)

so we need to give gs = −i log q a small imaginery part for the sum to converge.

This analytic continuation is possible because in topological string theory gs is a

formal expansion variable rather than a physical coupling. In terms of |D〉 we can

write Z as a propagation amplitude

Z = 〈D∗| e−Ĥt |D〉 . (6.36)

We will show in section 6.5 that the state |D〉 is the analogue of the “entangle-

ment brane” boundary state described in [122], and the holonomyD determines the
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corresponding entanglement boundary condition. We can compute the amplitude

(6.36) in the winding basis using the overlaps:

〈~k|D〉 =
∏

n=1

( trDn)kn =
∏

n=1

(
1

eigsn/2 − e−igsn/2
)kn

, (6.37)

which gives another expression for the partition function:

Z =
∑

~k

(dq(~k, gs))
2e−l(k)t, l(~k) =

∑

j

jkj,

(dq(~k, gs))
2 =

1

z~k
| 〈k|D〉 |2 =

∏

n=1

1

z~k
(|[n]−1

q |)2kn . (6.38)

If we interpret Z as a statistical partition function with Boltzmann factor e−l(k)t,

this expression suggests that (dq(~k, gs))
2 is a degeneracy factor. A small gs expan-

sion of (6.37) then shows that

(dq(~k, gs))
2 ∼

∏

n

(
1

gs

)2kn

. (6.39)

We will see that this factor leads to a large O( 1
gs

) number of microstates per

open string endpoint, as alluded to in the introduction. The appearance of the

quantum integers [n]q indicates an emergent quantum group symmetry in the target

space. In the next subsection we will see addition evidence of this symmetry in

the structure of the entanglement entropy as computed by the replica trick.

Boson representation of the topological vertex As a final remark, we note

that in the chiral boson language, the topological vertex can be viewed as a highly

nontrivial choice of the “pair of pants” amplitude. This is a state |V〉 ∈ HΣ ⊗

HΣ ⊗HΣ. It’s wavefunction in the coherent state basis is defined by

〈U1, U2, U3|V〉 = ZC3 , (6.40)

where ZC3 is the A-model amplitude on C3 with 3 stacks of D-branes with

holonomies Ui, i = 1, 2, 3. It is in this sense that the states |U〉 corresponds to
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degrees of freedom on A-branes. In terms of the vertex, the Hartle-Hawking state

in (6.21) is

〈U |HH〉 = 〈U | ⊗ 〈0| ⊗ 〈0| |V〉 , (6.41)

where |0〉 corresponds to the state with no strings.

6.3.3 Entanglement entropy from the replica trick

In string field theories, an entanglement partition corresponds to a cut in the space

FΣ of field configurations. Given a spatial partition Σ = ΣA∪ΣB, one can consider

string configurations FΣA and FΣB , define the respective string Hilbert spaces HΣA

,HΣB , and define the factorization map

HΣ → HΣA ⊗HΣB . (6.42)

However, here we will bypass this procedure and apply the replica trick as suggested

by Susskind and Uglum [315]. We choose ΣA to be the subregion fibered over an arc

A ⊂ C of the equator, and ΣB to be region over the complementary arc B. The

entangling surface is a codimension-2 surface fibered over two points on C and

separates the Lagrangian manifold L into two pieces, cutting the closed strings

winding around the equator into two open strings.

To apply the replica trick we have to compute the A-model partition function

Z(α) on the α-fold replicated geometry with opening angle 2πα around ∂ΣA. As

we will show later, the replication can be applied in a way that preserves the

bundle structure and the Calabi-Yau condition. As the topological A-model is

invariant under area preserving diffeomorphisms, the replicated manifold thus re-

mains O(−1)⊕O(−1)→ S2 with the volume rescaled by a factor of α. The replica
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partition function is thus:

Z(α) =
∑

k

(dq(~k, gs))
2e−αl(k)t, (6.43)

which gives the entanglement entropy:

Sreplica = (1− α∂α)|α=1 logZ(α) =
∑

k

p(k)(− ln p(k) + 2 ln dq(~k, gs)),

p(k) =
(dq(~k, gs))

2e−tl(k)

Z
. (6.44)

This formula is reminiscent of entanglement entropy in gauge theories. To

make this analogy more precise, we compute the amplitude expression (6.36) for

Z(α = 1) in the representation basis. At finite N , these basis elements |R〉 are

defined by characters of U(N).

〈U |R〉 = trR(U),

〈R′|R〉 =

∫
dU trR′(U

−1) trR(U) = δRR′ , (6.45)

where R labels irreducible representations(irreps) of U(N). They are related to

the winding basis by the Frobenius relation

|R〉 =
∑

~k⊂Sn

χR(~k)

z~k
|~k〉 . (6.46)

Here each R is identified with a Young diagram with n boxes, and χR(~k) is the

character of the symmetric group Sn associated with the diagram. In the N →∞

limit we take the expression on the RHS (which is independent of N) as a definition

of |R〉. This limit captures states |R〉 whose diagrams have columns of arbitrary

length.12

12This only captures a chiral half of the Hilbert space because it misses the representations
obtained by tensoring anti-fundamental representations of U(N).
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In the representation basis we have

〈R|D〉 = trR(D) = (−i)l(R)dq(R)qκR/4. (6.47)

where l(R) is the number of boxes in the Young diagram. The quantity dq(R) is

the quantum dimensions of the symmetric group representation R. In term of the

Young diagram, dq(R) is given by

dq(R) =
∏

�∈R

i

qh(�)/2 − q−h(�)/2
=
∏

�∈R

1

2 sin(h(�)gs
2

)
, (6.48)

with h(�) being the hook length, and the phase qκR/4 is given by

κR = 2
∑

�∈R
(i(�)− j(�)), (6.49)

here i(�), j(�) are the row and column numbers of the box.

It will be useful to view these quantities as arising from a particular large N

limit of the quantum dimensions dimq(R) for U(N)q:

lim
N→∞

q−Nl(R)/2 dimq(R) = (−i)l(R)dq(R)qκR/4, (6.50)

where the prefactor q−Nl(R)/2 renormalizes the quantum dimension for U(N)q, ren-

dering it finite in the large N limit. As we will show later, this is the same

regularization used to determine the matrix D in (6.34).

In the representation basis, the Hartle-Hawking state (6.28) can be written as

|HH〉 =
∑

R

e−tĤ/2 |R〉 〈R|D〉 =
∑

R

dq(R)(−i)l(R)qκR/4e−tl(R)/2 |R〉 , (6.51)

and the partition function on the resolved conifold is

Z =
∑

R

(dq(R))2e−tl(R). (6.52)

Equations (6.51) and (6.52) are direct analogues of formulas for the Hartle-Hawking

state in two dimensional gauge theories as well as in JT gravity. Together with
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(6.50), they suggest that (dq(R))2 is a degeneracy factor due to a quantum group

symmetry associated with the large N limit of U(N)q.

Applying the replica trick to (6.52) gives another expression for the entropy

(6.44):

Sreplica = (1− α∂α)|α=1 logZ(α),

=
∑

R

p(R)(− ln p(R) + 2 ln dq(R)), p(R) =
(dq(R))2e−tl(R)

Z
. (6.53)

This is a direct analogue of the entropy in 2D nonabelian gauge theories [114, 171,

115] with R playing the role of representation labels for a surface symmetry, p(R)

a probability factor, and dq(R) the dimension of each representation. Indeed it can

be shown [117] that the Hartle-Hawking state and its entropy is a large N limit of

|HH〉 =
∑

R

dimq(R)e−tl(R) |R〉 ,

Sreplica(N) =
∑

R

p(R)(− ln p(R) + 2 ln dimq(R)), p(R) =
(dimq(R))2e−tl(R)

Z
,

(6.54)

which are the Hartle-Hawking state and entropy for q-deformed 2DYM. In the

context of the q-deformed 2d Yang-Mills, the limit (6.50) has a very natural expla-

nation. Rather than removing the N dependence of dimq(R) by hand, we should

view this as a renormalization procedure in which the divergent term qNl(R)/2 is

absorbed into the Boltzmann factor e−tl(R). The divergence arises due to the ana-

lytic continuation of q, and has precisely the right form so that it can be absorbed

into a redefinition of the “coupling” t. In out next paper [117], we will explain this

renormalization from the point of view of the geometric transition.

Given this limit, we expect that 2 log dq(R) has a state counting interpretation

in terms of edge modes transforming in an irrep of a surface symmetry group. This
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symmetry group has been q-deformed, leading to quantum dimensions which do

not have to be integers.

6.4 The A-model closed TQFT and representation cate-

gory of quantum groups

6.4.1 General comments about factorization, E-brane ax-

iom, and cobordisms

In the following two sections, we give a canonical interpretation of the replica

trick entropy in (6.53) by defining a factorization of the closed string Hilbert space

HΣ associated with the decomposition Σ = ΣA ∪ ΣB into the subregions. The

intersection of these subregions with L are shown in the right of figure 6.5. We

start by defining the spaces FΣA , FΣB of string configurations associated to these

subregions. These spaces contain open string configurations Xij(σ) inside L ∩ ΣA

which are stretched between entanglement branes (E-branes) which cut L in two

disconnected slices. The E-branes wrap a submanifold 13 L′ that intersects the

base S2 along a circle orthogonal to C. The indices i, j are Chan-Paton factors

labelling the N � 1 E-branes, which can be identified with the entanglement edge

modes of the closed string. We will give an explicit description of the open string

Hilbert space HΣA ,HΣB and the factorization map

HΣ → HΣA ⊗HΣB . (6.55)

13We expect L′ to be a Lagrangian submanifold. see comments in the discussion section .

153



This mapping embeds the Hilbert space of closed strings into an extended Hilbert

space of open strings.

c
c c

Figure 6.5: On the left, we show the splitting of the worldsheet boundary into A
and B. On the right, the brane L on which the closed string configurations X(σ)
live is split into subregions by the entanglement branes. We show an open string
configuration Xij(σ) ∈ FΣA . These end on the entanglement branes intersecting L
along two open disks.

Just as in QFT, the factorization problem is strongly ambiguous in the absence

of locality constraints. For example, as noted in [208], we can always map the

physical states into a maximally entangled state of some arbitrary extended Hilbert

space, leading to an arbitrarily large entanglement entropy. When the locality

constraints are available, the strongest form of such constraints come from using the

Euclidean path integral to split a time slice into subregions. In 2 dimensions, such

a factorization of a circle or an interval is obtained from the Euclidean evolution

(read from top to bottom)

: Hcircle → Hinterval. : Hinterval → Hinterval ⊗Hinterval (6.56)

with some appropriate choice of boundary conditions at the entangling surface. In

the previous work [123], we introduced a constraint on these factorization maps
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called the entanglement-brane (E-brane) axiom (6.57), which ensures that the

factorized state preserves all the correlations of the original state. This requires

that all holes traced out by the entangling surface can be closed up. For example,

we require that the cobordisms14 in (6.56) satisfy

= , = . (6.57)

This ensures that splitting the state does not change its correlations, since we can

fuse it back and obtain the identity map by allowing the hole to contract.

The E-brane axiom, generally requires that the factorization involves a sum

over edge modes at the entangling surface. It axiomatizes the state counting inter-

pretation of the replica trick entropy. The replica trick, in both gravity and QFT,

involves a path integral Z(α) on a background with a contractible circle around

the entangling surface. However a thermal interpretation

Z(α) = trV e
−αH (6.58)

requires a path integral in a background with a non-contractible circle. The E-

brane axiom enforces the non-trivial requirement that these two are equal:

= . (6.59)

Previous works in gauge theory have shown that this can be satisfied provided we

introduce appropriate edge modes into the Hilbert space of the subregion V [123].

Unfortunately, demanding a path integral formulation of the target space

physics is an overly restrictive requirement; in particular it is not generally a

14The right diagram of (6.57) was was refered to as isometry condition and employed to study
factorization in JT gravity in [208]. It is one of the axioms of a “special” Frobenius algebra.
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useful assumption in CFT’s or in string theory. However there is a categorical

reformulation of the path integral in terms of cobordisms which does not presume

a notion of path integration over local fields. From the categorical point of view,

a path integral for a D-dimensional Euclidean theory is a rule which assigns a

number (the partition function) to a D-dimensional manifold, a Hilbert space to

D − 1 manifolds, and linear maps to cobordisms, which are D-dimensional man-

ifolds with “initial” and “final” boundaries. Gluing of cobordisms along initial

and final boundaries corresponds to composition of linear maps. The standard

example of such a cobordism theory is a closed 2D TQFT in which a Hilbert space

V ⊗n is assigned to a disjoint union of n circles, and linear maps are assigned to

cobordisms interpolating between collections of circles. The theory on an arbitrary

closed Riemann surface can then be constructed by gluing the basic cobordisms

[237, 22]:

, , , . (6.60)

Consistency of different gluings for the same manifold is enforced by a set of sewing

axioms which provide strong constraints on the cobordism data (6.60). For a 2D

TQFT, the resulting structure is a Frobenius algebra with multiplication defined

by the pair of pants cobordism. A similar formulation can be applied to 2D gauge

theories and 2D conformal field theories [204].

In the categorical framework [123], the path integral factorization maps

(6.56) are viewed as additional cobordism data that defines an open extension

of the closed TQFT. This extension introduces Hilbert spaces associated with

codimension-one manifolds with boundaries (i.e. intervals) and additional set of

cobordisms

, , , , , . (6.61)
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which must be compatible with (6.60) according to the sewing relations

= , = , = ,

(6.62)

= , = , (6.63)

that defines an open-closed TQFT [242, 278].

It was shown in [123] that the sewing axioms for an open-closed TQFT can be

consistently combined with the E-brane axiom:

=

e

e , (6.64)

to give a complete set of locality constraints that a consistent factorization should

satisfy. As explained in [123], when combined with (6.62) equation (6.64) is pow-

erful enough to ensure that all holes traced out by the entangling surface can be

closed. A solution to all of these constraints was given for 2DYM and its string

theory dual, and led to a factorization consistent with the replica trick entropy.

In the next 2 sections, we will apply the approach described above to define the

factorization of the A-model string theory. It was shown in [8, 63] that the closed

string amplitudes on direct sums of line bundles

X = L1 ⊕ L2 → S, (6.65)
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over a Riemann surface S can be determined by a closed TQFT on 2 CobL1,L2 .

This means that the A-model amplitudes on X can be broken up into open string

amplitudes by inserting brane-antibrane pairs as in our construction of the Hartle-

Hawking state, and the gluing of these open string amplitudes satisfies the same

rules as the category 2 CobL1,L2 of 2-cobordisms with line bundles. The A-model

TQFT [63] is a generalization of 2D TQFT, with the information about the higher-

dimensional geometry captured by Chern classes (k1, k2) of the line bundles L1, L2.

It is generated by cobordisms in (6.60) with (0, 0) Chern class, together with the

following four cobordisms

(-1,0) , (0,-1) , (1,0) , (0,1) . (6.66)

Note that this generates a much larger category than the set 2 Cob of two-

dimensional cobordisms, and the A-model TQFT has a more complicated set of

sewing relations than an ordinary Frobenius algebra. However, in formulating the

factorization of the A-model Hilbert space, we will restrict to target spaces which

are Calabi-Yau manifolds. This requires the Chern classes to satisfy

k1 + k2 = −χ(S), (6.67)

where χ(S) is the Euler characteristic of the base manifold. This is an important

restriction that determines the form of the factorization map which we will propose.

6.4.2 A model TQFT on Calabi Yau manifolds

The subcategory of 2 CobL1,L2 corresponding to Calabi-Yau manifolds defines a

symmetric Frobenius algebra just like a 2D TQFT. The basic building blocks

for this category are the same as the generators in (6.60), except they are now

decorated by Chern class labellings satisfying (6.67). Since both the Chern classes
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and the Euler characteristic of the base manifolds are additive under gluing, the

Calabi-Yau condition (6.67) is preserved under gluing. The A-model TQFT is a

functor which assigns a linear map to each generators [8] :

(0,-1) =
∑

R

(−i)l(R)dq(R)qκR/4e−tl(R) |R〉 (6.68)

(-1,0)
=
∑

R

il(R)dq(R)q−κR/4e−tl(R) 〈R| (6.69)

(0,1)

=
∑

R

il(R)

dq(R)
q−κR/4e−tl(R) |R〉 〈R| 〈R| (6.70)

(1,0)

=
∑

R

(−i)l(R)

dq(R)
qκR/4e−tl(R) |R〉 |R〉 〈R| (6.71)

(0,0)

= e−tĤ =
∑

R

e−tl(R) |R〉 〈R| (6.72)

Note that each of the cobordisms describes a Riemann surface S with bound-

aries in the target space. Each (oriented) circle intersects a stack of Lagrangian

branes on which worldsheets wrapping S ends. Due to the area-dependent Boltz-

mann factors e−tl(R), the A-model TQFT is not exactly a Frobenius algbera. How-

ever the Frobenius algebra gluing rules are satisfied provided we keep track of the

Kahler modulus t, which just adds upon gluing [302].

Gluing rules To see the effect of introducing the Chern classes, we present some

of the gluing rules here in detail. The pair of pants 15 (6.70) defines a multiplication

on closed string states and the Hartle Hawking state (6.68), also known as the

15Note that the pair of pants amplitude here differs from the one defined by the topological
vertex, because the location of the branes is different in the two cases.
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“Calabi Yau cap” is the unit element. These satisfy

(0,-1)

(0,1)
=

(0,0)
(6.73)

with the (0, 0) cylinder treated as the identity of the algebra. Gluing the counit

(6.69) to the product (6.70) we obtain a bilinear form we call the closed pairing:

(-1,1)
:=

(-1,0)

(0,1)

=
∑

R

(−1)l(R)q−2κR/4 〈R| 〈R| . (6.74)

Note that the closed pairing has a different Chern class than the cylinder even

though both have the same Euler characteristic. This is required by the Chern

class assignments of the counit and and unit, together with the fact that they are

adjoint with respect to each other under the closed pairing.

Applying the closed pairing to the unit gives the counit:

(0,-1)

= (-1,0) . (6.75)

This equation implements the mapping16

|HH〉 → 〈HH∗| (6.76)

taking the Hartle-Hawking state to its adjoint as defined in section 6.3.

The pairing has an inverse, called the copairing, which is obtained by gluing

16In general the mapping ∗ which changes orientation while mapping branes to anti branes is
given in the representation basis by |R〉 → (−1)l(R) 〈Rt|. This agrees with the adjoint operation
defined by (6.74) when acting on the unit (6.68) and counit (6.69).
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the unit to the coproduct

(1,-1)
:=

(0,-1)

(1,0)

(1,-1)

(-1,1)

=

(0,0)

(6.77)

The resolved conifold partition function is obtained by gluing the unit to the

counit:

Z =
(0,-1)

(-1,0)
=
∑

R

(dq(R))2e−tl(R). (6.78)

More generally, by gluing the generators, we can obtain the closed string partition

function for a local Calabi-Yau manifold with base manifold S of genus g and

Chern classes (2g − 2 + p, p):

Z =
∑

R

(
1

dq(R)

)2g−2

q(g−1)κR/2e−tl(R) (6.79)

where t is the complexified area of S.

6.4.3 Quantum traces and q-deformation of the A model

TQFT

Following [8], we have expressed the linear maps (6.68) to (6.72) in an orthonormal

basis |R〉 labelled by representations of U(∞). These linear maps should be viewed

as string amplitudes. This becomes manifest when we express the basis |R〉 as
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wavefunctions on the group

〈U |R〉 = trR(U), (6.80)

where U = exp
∮
A gives the usual coupling of the worldsheet boundary to the

worldvolume gauge field.

This gives a consistent closed TQFT so long as we restrict to gluing of cobor-

disms along circles. However, it was observed in [88] that for finite N the use of

the classical trace in (6.80) leads to inconsistencies when gluing along open edges.

This is precisely the type of gluing which was needed to compute the replica trick

entropy (6.44), since this requires opening the base S2 into a disk D2 and then

gluing a sequence of such disks along half of their boundary ∂D2. The same incon-

sistency appears if we apply the 2DYM factorization in [122] to the closed string

wavefunction trR(U). This was defined by splitting the Wilson loop U = UAUB

into the product of Wilson lines in region A and B, and then taking the classical

trace:

trR(U)→ trR(UAUB) =
dimR∑

i,j=1

Rij(UA)Rji(UB), (6.81)

where Rij(UA,B) are matrix elements in the R representation, viewed as wave-

functions in the subregion A,B. The indices i, j label entanglement edge modes

transforming under the gauge group U(∞), and in the case of undeformed 2DYM,

led to an entropy consistent with the replica trick. However, for the A-model, this

naive counting of edge modes would lead to degeneracy factors of dimR, which

are incompatible with the quantum dimensions in the replica trick entropy (6.53).

In terms of the sewing relations, the U(∞) edge modes fail to satisfy the E-brane

axiom.

This problem arises because the A-model TQFT restricted to Calabi-Yau man-

ifolds is really a functor which maps 2 CobL1,L2 to the representation category of
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a quantum group. This is suggested by the presence of the q-deformed dimension

factor dq(R), which implies that the surface symmetry acting on the endpoints

of the open strings, is q-deformed. However, the classical trace employed in the

wavefunction (6.80) is not invariant under this quantum group symmetry. We will

explain what this quantum group symmetry is in subsequent sections. For now we

note that [88] observed that gauge invariance under the quantum group symmetry

can be achieved by replacing the classical trace with the quantum trace:

〈U |R〉 = trq,R(U) := trR(uU), (6.82)

where u is the Drinfeld element of the quantum group. This element is defined

abstractly from quantum group data, and its classical trace gives the associated

quantum dimension.

Thus for U(N)q we have

trq,R(1) = trR(u) = dimq(R). (6.83)

This equation remains valid for a general quantum group, with dimq(R) the quan-

tum dimension defined from its representation category data. For the A-model

string, the role of the Drinfeld element is played by the matrix D defined in (6.34),

which may be viewed as a renormalized version of the Drinfeld element u for U(N)q:

D = q−N/2u,

lim
N→∞

trR(D) = (−i)l(R)dq(R)qκR/4. (6.84)

This is the analogue of equation (6.50) and will be useful in relating the quan-

tum group symmetry for the A-model string to U(N)q. Finally note that the

wavefunctions (6.82) are orthonormal

∫
dU trq,R(U) trq,R′(U) = δR,R′ , (6.85)
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and span the Hilbert space of class functions on the quantum group, which is

isomorphic to HΣ defined previously in section 6.3. For this reason, the use of

classical traces in [8] was adequate for the purposes of computing A-model partition

functions by sewing along circles. However, as we will see, the quantum trace and

the q-deformed nature of the holonomy U becomes essential when we perform

operations that effectively cut open the closed string loops.

6.4.4 String theory origin of the q-deformation

In the previous discussion, we explained the necessity for quantum traces and

the associated q-deformation of the closed string Hilbert space from consistency

requirements of the TQFT. Here we would like to explain how the quantum group

symmetry emerges from the viewpoint of the worldvolume gauge theory on the

D-branes.

q-deformed connection in the worldvolume gauge theory Replacing clas-

sical traces with quantum traces means that the coupling of the worldsheet bound-

ary to the worldvolume gauge fields have been changed to

tr(uP exp

∮
A). (6.86)

This is because the classical gauge field should be viewed as a q-connection, whose

components Aaµ(X) (a is a group index) are noncommutative functions on the

brane. This q-deformation is a known property of the worldvolume U(N) Chern

Simons theory on a stack of N branes, and we will give a brief review here. Usually,

the gauge fields components Aµ(X) are taken to be commutative functions of X.

However one can see how a q-deformed gauge field arises by considering the Gauss
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law constraint. This is a constraint applied in canonical quantization along a

constant time slice M (see figure 6.6), which we can take to be a surface at fixed

angle along the non-contractible S1 on the Lagrangian manifold L (D.26). In the

c
c c

Figure 6.6: Quantizing the worldvolume gauge theory with time running around
the non-contractible cycle of L, we have to impose Gauss’s law on M . The puncture
on M corresponds to the anyon charge on the Wilson loop which sources Gauss
Law.

presence of a Wilson loop around this cycle, corresponding to boundary γ of the

string worldsheet ending on the brane, Gauss law reads

k

8π
εijF a

ij(X) = δ2(X − P )T a, (6.87)

where i, j are spatial indices on M , P is the location of the puncture where M cuts

the Wilson loop, T a, a = 1 · · · dim U(N) are generators of U(N). It was noted in

[341] that this equation cannot be solved for an ordinary gauge field because F a
ij is

a number while T a is a non commuting matrix. This mismatch occurs because the

Wilson loop is a non-dynamical defect operator; there is no “matter field” on the

loop γ that couples to A. One solution is to “integrate in” dynamical degrees of

freedom on the loop, which will couple to A and render the objects on both sides

of (6.87) commutative[341, 136]. However to see the quantum group symmetry,

we should apply the alternative prescription suggested in [341], and q-deform the

gauge field Aaµ into a non-commutative object, i.e. a matrix in the lie algebra
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of U(N). This idea was carried out in [173], where an explicit solution to (6.87)

was derived, giving a noncommutative connection that can be identified with the

Knizhnik–Zamolodchikov connection in conformal field theory. In appendix D, we

give a string sigma model argument for noncommutative world volume gauge fields

following [305]

6.5 Extension of the A-model closed TQFT

Having formulated the A-model closed TQFT in terms of representation categories

of quantum groups, we now describe its extension to the open sector. We begin

by defining the open string Hilbert space associated to an interval on which the

operators of the open sector act. We give an explicit action of the quantum group

symmetry on this Hilbert space and the associated decomposition into irreducible

representations. Next, we derive the open-closed cobordisms which include dia-

grams describing the factorization of the closed string Hilbert space. We then

compute the q-deformed entropy from the reduced density matrix of the Hartle-

Hawking state and show that it matches the geometric replica trick calculation in

section 6.3.3. Finally we will revisit the geometric replica trick calculation and

show that the preservation of the Calabi Yau condition requires the insertion of a

“defect” operator at the entangling surface, which plays the role of the (inverse)

Drinfeld element of the quantum group.
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6.5.1 The open string Hilbert space as the coordinate al-

gebra A(U(∞)q)

The q-deformation of the spacetime gauge field A means that its holonomy

U = P exp
∮
A is an element of the quantum group U(N)q. This can be de-

fined by q-deforming the algebra A(U(N)) of functions on U(N), refered to as its

coordinate algebra. A(U(N)) is generated by matrix elements Uij satisfying the

unitary constraint

∑

k

UikU
∗
jk =

∑

k

U∗kiUkj = δij. (6.88)

As a vector space, A(U(N)) is defined over the complex numbers and spanned by

the basis

Ui1j1Ui2j2 · · ·Uinjn , n = 1, · · ·∞. (6.89)

In the undeformed algebra, the matrix elements themselves commute:

UijUkl = UklUij. (6.90)

However, in the quantum group U(N)q this multiplication law (distinct from the

matrix multiplication rule) becomes noncommutative. There exists a conjugate

linear involution ∗ of the coordinate algebra A(U(N)q) for which the unitary

constraint (6.88) still holds. However, due to the noncommutativity, the place-

ment of the ∗ is now crucial in (6.88). In particular, it should be noted that for

Uij ∈ A(U(N)q)

∑

k

U∗ikUjk 6= δij. (6.91)

It is customary to abuse language and refer to both the “quantum space” U(N)q

and the algebra of functions A(U(N)q) as a quantum group. This is done in
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the spirit of noncommutative geometry, where the geometry of a noncommutative

space X is defined by the algebra of noncommutative functions on X [79, 126].

The precise nature of the noncommutative product in U(N)q is determined by

the R-matrix of the quantum group. To express the product rule it is useful to con-

sider an element U ∈ U(N)q as a matrix acting in the fundamental representation.

Thus it acts on a vector space V according to

U : V → V,

vi 7→
∑

i

Uij ⊗ vj, (6.92)

where the tensor product ⊗ symbol has been used to distinguish this product from

the noncommutative product we wish to define. In the same fashion, the R-matrix

R ∈ U(N)q⊗U(N)q can be regarded as an element R ∈ End(V ⊗V ), i.e. a matrix

operator acting on two copies of V . If we define matrices

U1 = U ⊗ 1,

U2 = 1⊗ U. (6.93)

Then the multiplication rule for the coordinate algebra on U(N)q is

RU1U2 = U2U1R, (6.94)

where the composition of the operators above is defined with ordinary matrix mul-

tiplication. An explicit example of the R-matrix , ∗ structure, and other quantum

group properties of SLq(2) is presented in appendix D.3.

Definition of the open string Hilbert space We now define the open string

Hilbert space HΣA assigned to the subregion string configurations in FΣA as the
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large N limit of the coordinate algebra on U(N)q:

HΣA = A(U(∞)q),

q = eigs . (6.95)

This a q-deformation of the open string Hilbert space defined in [122] for the string

theory dual to 2DYM. In particular the subspace of n open strings is spanned by

the states |IJ〉 with wavefunctions

〈U |I, J〉 = Ui1j1Ui2j2 · · ·Uinjn ,

Uiaja = P exp

∫
X∗iajaA, (6.96)

where in the second equation we have emphasized that these wavefunctions live

on the space of subregion open string configurations Xij(σ) ∈ FΣA . Due to the

topological invariance, they are completely specified by the multi-index Chan-

Paton factors I, J labeling the entanglement branes. In the undeformed case where

q = 1, the commutativity of the matrix elements Uij implies these open string are

bosonic [122], so that the n string Hilbert space is

Hn = (V ⊗ V ∗)⊗n/Sn. (6.97)

Here V ∗ denotes the dual of the fundamental representation, giving the strings

an orientation. Open string indistinguishability is enforced by the quotient of the

permutations group Sn, which permutes the open strings by acting simultaneously

on both endpoints |I, J〉 → |σ(I), σ(J)〉 for σ ∈ Sn. In the presence of nontrivial

string interactions, gs > 0, q 6= 1, the open string endpoints become anyons [156].

This change in statistics is implemented by the equivalence relation (6.94), which

tells us that the exchange of open strings must be accompanied by an R matrix

transformation. The operation of permutating strings is therefore replaced by
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i1 j1

i2 j2
...

in jn

Figure 6.7: The state |IJ〉 represents a configuration of n open strings with Chan-
Paton factors (i1, j1) . . . (in, jn).

braiding, and the open string Hilbert space is

HΣA =
∞⊕

n=1

Hn(q),

Hn(q) = (V ∗ ⊗ V )⊗n/(RU1U2 ∼ U2U1R). (6.98)

For q ∈ R, the inner product on HΣA is defined by the quantum group Haar

measure and is given in terms of the representation basis in (6.112).

6.5.2 Quantum group symmetry on the open string Hilbert

space

Each open string in the state |I, J〉 transforms in the adjoint representation of the

quantum group symmetry, which is the surface symmetry of the A-model string.

To describe the action of this symmetry and the associated decomposition

of A(U(∞)q), we need to introduce an operation called the antipode. A more

thorough presentation of the algebraic structure of a quantum group is given in

appendix D.3. Below we will work with A(U(N)q) and then consider the N →∞

limit later.
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Figure 6.8: The figure shows a state of two open strings. Antisymmetrization
of the right and left indices can be expressed by fixing the Chan-Paton factors
while changing the pattern of connection between them. In the figure we have
put string number 1 on top of string number 2. When the open strings have
bosonic statistics as imposed by the Sn quotient in (6.97), the antisymmetrization
of the left or the right endpoints give the same state, since the two operations
are relating by commuting string number 1 and 2. However, the A-model open
string has anyonic statistics, so the two orderings are not equal. This corresponds
a nontrivial braiding structure in the diagrams above.

The antipode and the conjugate representation Given a quantum group

A the antipode is an anti-homomorphism

S : A → A, (6.99)

S(UV ) = S(V )S(U), U, V ∈ A. (6.100)

It acts on single string elements fij(U) = Uij ∈ A(U(N)q) by giving the analogue

of the matrix inverse:

∑

j

UijS(U)jk = S(U)ijUjk = δik. (6.101)

Note that due to the noncommutativty of Uij, S(U)ij is different from the usual

inverse U−1
ij , which is defined with respect to a commutative multiplication rule.

The definition of S can be extended to the rest of the algebra recursively using the

property (6.100).

Given a representation R of A, the antipode defines the conjugate (“anti-

particle”) representation R̄ by

R̄(U) = (R ◦ S(U))t, (6.102)
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where t denotes the transpose.

The adjoint action, Drinfeld element, and the quantum trace We can

now define how the quantum group acts on the open string Hilbert space via the

adjoint action of the quantum group on itself. For an element g ∈ A(U(N)q), the

adjoint action is defined using a combination of the coproduct and antipode:

Uij → (Adg(U))ij =
∑

k,l

Ukl ⊗ gikS(g)lj, (6.103)

where we have used ⊗ in the same manner (6.92) to distinguish the objects Uij in

the representation space V ∗ ⊗ V with the quantum group elements acting on that

space. It is important to note that Uij commutes with gik and S(g)lj but gik and

S(g)lj do not commute among themselves.

As observed earlier, the ordinary trace trR(U) in any representation R is not

invariant under this transformation law. However, there exists an invariant “quan-

tum” trace function which can be defined purely in terms of quantum group data.

One first defines the “Drinfeld” element u in terms of the R matrix

R =
∑

i

ai ⊗ bi ∈ A⊗A, (6.104)

and the antipode S according to

u =
∑

i

S(bi)ai. (6.105)

The quantum trace of an element U ∈ A in any representation R can then be

defined as:

trq,R(U) =
∑

ij

uRijRji(U), (6.106)
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where Rij(U) are the representation matrices for U and we defined uRij = Rij(u).

The properties

S2(V ) = uV u−1

S(UV ) = S(V )S(U), U, V ∈ A, (6.107)

of u and S then imply that the quantum trace is invariant under the adjoint action

(6.103) of the quantum group. An explicit proof is given in eq.(5.8) of [88], and

it gives a nice illustration of subtleties arising from the q deformed multipication

rule. For U(N)q the Drinfeld element is a diagonal matrix of complex phases17

given explicitly by [285, 88]

uii = q
N
2 q−i+

1
2 . (6.108)

Finally, we note that the quantum trace is multiplicative under tensor products:

trq(A⊗B) = trq(A) trq(B). (6.109)

The representation basis and Schur-Weyl duality Let us now consider

how the open string Hilbert space is organized into irreducible representations of

the quantum group symmetry. Compact quantum groups such as U(N)q satisfy a

Peter-Weyl theorem [353], which states that its space of functions is spanned by the

matrix elements in all irreducible representations18 of the quantum group. These

(noncommutative) matrix elements form an un-normalized basis of wavefunctions

on A(U(N)q):

〈U |Rij〉 = Rij(U) i, j = 1, · · · dimR, U ∈ U(N)q, (6.110)

17The quantum group is an associative algebra over the complex numbers, so u is a nongeneric
element that consists of scalar elements of the algebra.

18A precise description of the representation theory for quantum groups is described in chapter
11 of [236].
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where dimR, distinct from dimq(R), is the integer dimension of the representation

R. Note that |Rij〉 labels a basis in VR⊗V ∗R, which is a vector space with an integer

dimension. There is also a q-analogue of the translation-invariant Haar measure,

h : A → C, (6.111)

which can be used to define the inner product on A(U(N)q)

(Rij(U), R′kl(U)) := h(R∗ij(U), R′kl(U)) = δRR′
(uR)−1

jk δil

dimq R
. (6.112)

We now relate the representation (6.110) and the open string basis (6.96) by

applying a q-deformed version of Schur-Weyl duality to the n-open string states

Hn(q). This relation will be necessary to define the representation basis in the

N → ∞ limit. We first recall the undeformed Schur-Weyl duality. The vector

space V ⊗n carries a representation of Sn which permutes the factors as well as a

diagonal action of U(N). The Schur-Weyl duality states that V ⊗n decomposes into

irreducible representations of these two groups as:

V ⊗n =
⊕

R∈Yn
V
U(N)
R ⊗ V Sn

R , (6.113)

where Yn denotes the set of Young diagrams with n boxes which label irre-

ducible representations of both U(N) and Sn. Equation (6.113) is the formal

way of saying that irreducible representations of U(N) are obtained by symmetriz-

ing/antisymmetrizing fundamental representations according to a Young diagram

R. To obtain the decomposition of the Hilbert space of n strings, we apply the

Schur-Weyl duality twice:

Hn = (V n ⊗ V ∗n)/Sn,

=
(
⊕R∈YnV U(N)

R ⊗ V Sn
R

)
⊗
(
⊕R′∈YnV U(N)

R′ ⊗ V Sn
R′

)∗
/Sn,

= ⊕R∈YnVR ⊗ V ∗R, (6.114)

VR := V
U(N)
R ⊗ V Sn

R , (6.115)
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where the vector space VR⊗V ∗R is spanned by the representation basis |Rij〉 i, j =

1, · · · dimR. We can thus interpret |Rij〉 as symmetrized/antisymmetrized linear

combinations of |I, J〉. As a simple example, the projection on to the antisymmetric

representation R for n = 2 is given by:

U1
ijU

2
kl → Rab(U) = U1

ijU
2
kl − U1

ilU
2
kj ∈ VR ⊗ V ∗R,

a, b = 1, · · · dimR, (6.116)

where the superscripts label the strings. This decomposition (6.114) holds in the

large N limit, and leads to a dimension formula

dimHn =
∑

R∈Yn
(dimR)2, (6.117)

which relates the counting of Chan-Paton factors to degeneracy factors of U(N).

In the q-deformed case, the vector space V ⊗n is a tensor product of U(N)q

fundamentals, so it can be organized into quantum group representations in a

similar way. The operations which commute with the action of U(N)q belong to

a q-deformed version of the symmetric group called the Hecke algebra Sqn, which

combines the permutation of the tensor factors with applications of the R matrix.

Given a transposition τ12 ∈ Sn which acts on a basis of V1 ⊗ V2 by

τ(e1 ⊗ e2) = e2 ⊗ e1. (6.118)

We define an element h(τ) ∈ Sqn in the Hecke algebra by

h(τ) = τ ◦R. (6.119)

The q-deformed Schur-Weyl duality states that the space V ⊗n decomposes un-

der the commuting action of (U(N)q)
⊗n and Sqn as:[88]

V ⊗n = ⊕R∈YnV U(N)q
R ⊗ V Sqn

R . (6.120)
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The q-deformed Hilbert space for n strings decomposes into

Hn(q) = (V n ⊗ V ∗n)/ ∼,

=
(
⊕R∈YnV U(N)q

R ⊗ V Sqn
R

)
⊗
(
⊕R′∈YnV U(N)q

R′ ⊗ V Sqn
R′

)∗
/ ∼,

= ⊕R∈YnV q
R ⊗ V q∗

R , (6.121)

V q
R := V

U(N)q
R ⊗ V Sqn

R , (6.122)

where ∼ refers to the equivalence relation

RU1U2 = U2U1R, (6.123)

which determines the braiding structure of the open strings. In direct analogy with

the undeformed case, we should view |Rij〉 as a basis for the subspace V q
R ⊗ V q∗

R ,

obtained by symmetrizing/antisymmetrizing the Chan-Paton factors |IJ〉 using the

Hecke algebra elements. The corresponding projectors labelled by Young diagrams

R ∈ Yn were constructed in [88]. In contrast to the permutation group, the action

of the Hecke algebra provides a representation of the braid group. This is because

the endpoints of the open strings behave as anyons due to their coupling to the

worldvolume Chern-Simons theory of the A-model branes [156]. The quantum

dimension of Hn(q) is the computed from the trace of the Drinfeld element in the

representations given in the Hilbert space decompositions of Eq. (6.121):

dimqHn(q) := trHn(u) =
∑

R∈Yn
(dimq R)2, (6.124)

which is the q-deformed version of equation (6.117). In the large N limit, this

formula will give a canonical interpretation to the total degeneracy factors in the

resolved conifold partition function (6.52) and the replica trick entanglement en-

tropy (6.53).

The large N limit of Schur-Weyl duality and the Drinfeld element Schur-

Weyl duality continues to hold in the large N limit of U(N). As N →∞, we con-
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tinue to identify the representation basis |Rij〉 with Young diagrams describing the

(anti)symmetrizations of Chan-Paton factors of the open string states |IJ〉. This

basis spans the extended Hilbert space for the string theory dual to 2DYM with

gauge group U(∞) [122]. At large N the 2DYM partition function is determined

by symmetric group data, which captures the wrapping of string worldsheets on

the target space.

In a similar fashion, the q-deformed Schur-Weyl duality also survives the large

N limit of U(N)q and the corresponding basis |Rij〉 is once again determined by

the symmetrization of the Chan-Paton factors by elements of the Hecke algebra

[88]. This basis spans the extended Hilbert space of q-deformed 2DYM with gauge

group U(∞)q. As in the undeformed case, we wish to identify these states with

the extended Hilbert space of the A-model TQFT, which is also determined by

q-deformed symmetric group data.

Moreover in order for the counting of states in q2DYM to match with the A-

model, we must identify the correct large N limit of the Drinfeld element u given

in (6.108). Since u determines the trace function (6.106) on the extended Hilbert

space, it can be viewed as determining the choice of measure on the open string

states.

We will define the large N limit of u according to (6.84) in terms of the holon-

omy matrix D of (6.34). As explained in the derivation of (6.34) this limit requires

an analytic continuation of q which regularizes the trace over the large N Hilbert

space. As a result, even though the dimension

trR(u) = trR(u−1) = dimq R, (6.125)
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is always a real quantity, in the large N limit D has a complex trace:

trR(D) = (−i)l(R)dq(R)qκR/4 ∈ C,

trR(D−1) = ( trR(D))∗ = il(R)dq(R)q−κR/4. (6.126)

Accordingly, we define the quantum trace for the large N limit

trq(U) = tr(DU). (6.127)

This feature is related to the holomorphic nature of the A model and essential to

the emergence of the line bundle structure of the Calabi-Yau manifold.

With this definition of the large N Drinfeld element, the quantum dimension

of the n-string Hilbert space becomes

dimqHn := trHn(D) =
∑

R∈Yn
trR⊗R̄(D)

=
∑

R∈Yn
trR(D) ( trR(D))∗ =

∑

R∈Yn
(dq(R))2, (6.128)

where in the second to last equality we have used the multiplicative property of

the quantum trace (6.109) and the unitarity of the representations.

6.5.3 A-model open-closed TQFT and factorization maps

We have now assembled all the ingredients necessary to describe the extension of

the A-model TQFT into a q-deformed open-closed theory which incorporates the

factorization of the closed and open string states.

We begin by defining the factorization maps in (6.56) and then extend these

into an interwoven set of open-closed cobordisms.
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Factorization maps The factorization map which embedds closed string states

into open string states in the extended Hilbert space as shown in the left of figure

(6.56) is called the zipper i∗. Our definition of the closed string wavefunction 〈U |R〉

as a quantum trace suggests that

i∗ = : |R〉 →
∑

i,j

(D−1)Rji |Rij〉 . (6.129)

Compatibility with the E-brane axiom then requires the co-zipper to be

i∗ = : |Rij〉 → (−i)l(R) δij
dq(R)q−κR/4

|R〉 , (6.130)

so that

= : |R〉 → |R〉 , (6.131)

as can be shown by noting that
∑

i(D
−1)Rii = il(R)dq(R)q−κR/4.

Next we consider the cobordism on the right of figure (6.56), which embeds open

string states of one subregion into the open string Hilbert space of two subregions.19

We identify this factorization map with the coproduct in the open sector of the

A-model TQFT:

∆ = : |Rij〉 →
∑

k

|Rik〉 |Rkj〉 . (6.132)

To see that this satisfies the E-brane axiom, we have to first define the open product

µO = , (6.133)

which fuses two subregions together. This is the A-model version of the “entangling

product” [116], and we propose that it is given by

µO = : |Rij〉 |R′kl〉 → (i)l(R)
DR
jk

dq(R)qκR/4
|Ril〉 . (6.134)

19The intervals in the cobordism diagrams really correspond to subregions of a time slice FΣ

in the space of string loops.
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This satisfies the E-brane axiom which requires that splitting followed by fusion

gives the identity map:

= : |Rij〉 → |Rij〉 , (6.135)

which follows from
∑

iD
R
ii = (−i)l(R)dq(R)qκR/4. Finally, combining the zipper

and coproduct gives the factorization map as promised in (6.55):

ΣA ΣB

Σ

: HΣ → HΣA ⊗HΣB ,

|R〉 →
∑

ij

(D−1)Rij |Rji〉 →
∑

ijk

(D−1)Rij |Rjk〉 |Rki〉 . (6.136)

We have seen from previous sections that open string Hilbert spaces HΣA ,HΣB

transform nontrivially under the quantum group symmetry U(∞)q. However, by

the invariance of the quantum trace, we know that the factorized state for |R〉

is invariant. Thus the factorization map (6.136) into the extended Hilbert space

respects the quantum group symmetry as promised.

Notice that even though we have imposed the hole-closing conditions (6.135),

(6.131), this does not uniquely determine the factorization map. In particular these

conditions would have been satisfied with a factorization with respect to an un-

deformed surface symmetry group20 ,which does not involve the Drinfeld element.

As we show in section 6.5.5, the necessity for the q-deformed edge mode symmetry

and the insertion of the Drinfeld element can only be seen when we enforce the

E-brane axiom with a choice of a geometric state such as the closed unit (6.68).

20In this case, the more natural undeformed surface symmetry group would be Sn in each sector
with n strings, since the A model partition function depends on dimensions of the symmetry group
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6.5.4 The open A-model TQFT and sewing relations

As discussed in the beginning of section 6.4, our choice of factorization maps

(6.129), (6.132) satisfies a set of sewing relations in addition to the E-brane axiom.

Here we work out some of these relations explicitly in the open sector. As in 2D

extended TQFT, we find that the A-model open TQFT forms a Frobenius algebra

under the product µO. We will taking the generating set for this algebra to be

, , , , . (6.137)

We have already defined the product and coproduct, which satisfy the Frobenius

condition:

= = , (6.138)

and are associative and co-associative. Next we can determine the open unit 1O

and counit ε from the product and coproduct using the defining relations

= = . (6.139)

We find that

1O = =
∑

R,i,j

(−i)l(R)dq(R)qκR/4(D−1)Rij |Rji〉 ,

ε = : |Rij〉 → δij. (6.140)

The open pairing, adjoint operation and the quantum trace Our open

string Frobenius algebra also possesses a nondegenerate bilinear form (the Frobe-

nius form) ξ, which defines an adjoint operation on the open string Hilbert space.

This is called the open pairing and can be obtained by gluing the counit ε to the
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product µO

ξ = = : |Rij〉 |R′kl〉 → (i)l(R)δRR′
DR
jkδil

dq(R)qκR/4
. (6.141)

Notice that our definition of ξ coincides precisely with the large N limit of the

bilinear form (6.112) and should therefore be related to the large N limit of the

q-deformed Haar measure. Its inverse, called the copairing, can be obtained by

gluing the unit to the product,

ξ−1 = = : 1→
∑

R,i,j,k

(−i)l(R)dq(R)qκR/4 (D−1)Rij |Rik〉 |Rkj〉 .

(6.142)

and satisfies the zigzag identity

= = : |Rij〉 → |Rij〉 . (6.143)

The pairing and copairing define an adjoint operation by turning the input Hilbert

space to output Hilbert space and vice versa. For example they relate the unit and

product to the counit and coproduct:

= , = . (6.144)

They also define a canonical trace operation on open cobordisms by connecting

the input Hilbert spaces to output Hilbert space:

, . (6.145)

Notice that we have drawn the partial trace to avoid braiding, so the trace on the

left/right side has to closed on the left/right side. If we violate this rule, we would
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have to account for the nontrivial braiding that occurs when the strips cross. Most

importantly, this categorical definition of the trace coincides with the quantum

trace A(U(∞)q) as defined in (6.127), (6.128).

Using the pairing and copairing we can calculate the annulus:

=
∑

R

trR(D) trR(D−1),

=
∑

R

trR⊗R̄(D) = trq(1), (6.146)

where we used the multiplicative property of the trace and unitarity of the rep-

resentations. The final expression above is just the quantum trace of the identity

operator on the total open string Hilbert space.

The final generator of our open Frobenius algebra is the braiding operator

B = τ ◦ Rstring = : A⊗A → A⊗A, (6.147)

where τ is the operation that exchanges two copies of the open string Hilbert space.

The operation Rstring refers to the R matrix which describes the braiding of the

open strings. This is nontrivial, in contrast with the usual 2D open-closed TQFT

[278], since the left/right string endpoints themselves have nontrivial braiding.

However, since we will not require the braiding operation in our calculation of

entanglement entropy, we will leave this for future work.

6.5.5 The open closed sewing axioms and factorization of

the Hartle-Hawking state

We have seen that the factorization map ∆ extends consistently to a Frobenius

algebra describing the open sector of the A-model TQFT. We now consider the
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open-closed sewing axioms [278] which enforce the compatibility of the open string

algebra with the closed string algebra defined by (6.68)-(6.72). We will pay partic-

ularly close attention to the consistency of the Chern class labelings, which places

additional constraints on the factorization. This is because one could obtain fac-

torization maps that satisfy (6.131) and (6.135), and extend to a consistent open

Frobenius algebra, but is nevertheless incompatible with the A-model TQFT re-

stricted to Calabi-Yau manifolds21. As an application of this machinery, we give a

simple factorization of the Hartle-Hawking state.

The relation between the closed and open sector is given by the zipper and co-

zipper, which are algebra/coalgebra homomorphisms between the respective Frobe-

nius algebras. Keeping track of the Chern class on the closed cobordisms, the

homomorphism property is equivalent to the sewing relations

(0,-1)

= ,

(0,1)

= , (6.148)

(0,-1)

= ,

(1,0)

= , (6.149)

which is satisfied by our open-closed cobordisms. The left diagrams above express

the fact that the unit/counit is preserved by the zipper/cozipper.

21For example, since the (0, 0) sector of the A model TQFT is a closed algebra which is isomor-
phic to the Frobenius algebra of an ordinary 2D TQFT, we could simply use the factorization
maps with respect to an undeformed Sn surface symmetry. The E-brane condition would then
be defined with the (0, 0) cap, giving a factorization that is compatible with the (0, 0) sector of
the A-model TQFT, but incompatible with the Calabi-Yau condition.
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Compatibility of E-brane and Calabi-Yau condition The E-brane axiom

for the A model restricted to Calabi-Yau manifolds is

(0,-1)
=

e

. (6.150)

The Chern class labelling on the left, as defined by the Calabi-Yau condition, places

a strong and non local constraint on the edge modes and factorization map. We

have seen in section 6.3 that the A-model amplitude on the “Calabi-Yau cap” on

the LHS of (6.150) gives the entanglement boundary state

|D〉 =
∑

R

(−i)l(R)dq(R)qκR/4 |R〉 . (6.151)

with a prescribed holonomy matrix D. The nonlocality of the Calabi-Yau condition

is expressed by the fact that D is not the identity, so it cannot be equivalent to

a local boundary condition at the entangling surface. This nonlocality requires

that the extension of the A-model closed TQFT be compatible with a q-deformed

surface symmetry group U(∞)q. In particular, the quantum trace defined in (6.127)

automatically incorporates the entanglement boundary condition by insertion of

the Drinfeld element.

When viewed from the open string channel, the boundary state (6.151) inserts

a large N number of E-branes at the entangling surface, giving a geometric real-

ization of the string edge modes. The |D〉 is therefore the E-brane boundary state

which realizes Susskind and Uglum’s proposal in the A-model target space.
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Factorization of the HH state We now apply our factorization map to the

Hartle-Hawking state and its dual at t = 0:

|HH〉 →

(0,-1)

= = =
∑

R,i,j,k

(−i)l(R)dq(R)qκR/4(D−1)Rij |Rik〉 |Rkj〉 ,

〈HH∗| →

(-1,0)

= = : |Rij〉 |R′kl〉 → (i)l(R)δRR′
DR
jkδil

dq(R)qκR/4
.

(6.152)

Using this factorization map the A-model partition function on the resolved

conifold can be given a canonical open string interpretation:

Z = 〈HH∗|HH〉 → = trq(e
−tHopen),

=
∑

R

(dq(R))2e−tl(R) =
(0,-1)

(-1,0)
. (6.153)

where we have defined the open string modular Hamiltonian

Hopen |Rij〉 = l(R) |Rij〉 . (6.154)

Even though we have drawn the same diagram as in the t = 0 case, we have

included an open string propagator e−tHopen which introduces an explicit t de-

pendence. Equation (6.153) gives an explicit realization of the Susskind-Uglum

proposal to interpret the closed string amplitude as a trace over an open strings

which end on the entangling surface.
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Compatibility of open and closed string pairings The closed pairing (6.74)

defines the adjoint operation in our closed string TQFT which maps the Hartle-

Hawking state to its dual. Having defined an extension to the open TQFT with

an adjoint operation given by the open pairing (6.141), we should check that

these two adjoint operations are compatible. This is a consequence of the E-

brane axiom together with the right diagrams in (6.148) (6.149), which states that

zipper/cozipper respects the multiplication/comultiplication. Explicitly, we can

glue the counit to both sides of the right diagram in (6.148) :

(0,1)

= . (6.155)

On the left diagram, we apply the E-brane axiom in the form:

=
(-1,0)

, (6.156)

which then implies

(-1,1)
= . (6.157)

This expresses the compatibility of the open and closed pairing, with analogous

relations holding for the copairing. Note that in both (6.156) and (6.157), the

E-brane axiom is satisfied only for a specific Chern class labelling compatible with

the Calabi-Yau constraint defining our closed string algebra.

Finally note that the zipper and cozipper are adjoint operations, which is im-
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plied by the third sewing axiom in (6.62):

=

(-1,1)

. (6.158)

By gluing the copairing to the right input of this relation and applying the zigzag

identity, we find that the cozipper is the adjoint of the zipper

= . (6.159)

6.5.6 The reduced density matrix for the Hartle-Hawking

state and a canonical calculation of entanglement en-

tropy

The reduced density matrix for the Hartle-Hawking state is easily derived from

the factorization map (6.152). First note that unnormalized density matrix22 ρ̃ for

the Hartle Hawking state factorizes as

ρ̃ = |HH〉 〈HH∗| =
(-1,0)

(0,-1)

→ . (6.160)

The corresponding reduced density matrix is given by the (quantum) partial

22ρ̃ is defined by tr(ρ̃O) = 〈HH∗|O|HH〉 for any operator O with the trace defined by the
closed pairing/copairing. This has the same structure as density matrices in non-Hermitian
systems[81].
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trace, which is defined by (6.145), over the subregion ΣB :

ρ̃A = trBρ̃ = = =
∑

R

e−tl(R)1R =
∑

R,i,j

e−tl(R)|Rij〉 〈Rij| .

(6.161)

where we have applied the zigzag identity and absorbed the area dependence into

the propagator represented by the strip. Note that we have applied a quantum

partial trace defined by the pairing and copairing. This operation cancels the

insertions of D and D−1 in the density matrix which would have led to non local

boundary conditions for the modular Hamiltonian. We will comment more on this

in the next section.

As in the case of undeformed gauge theory, the form of the reduced density

matrix (6.161) is dictated by symmetry. The action of U(∞)q must commute with

ρ̃A, since our factorization map (6.136) respects the quantum group symmetry.

Schur’s lemma then requires the reduced density matrix to act as the identity in

each irreducible representation R, leading to the block-diagonal form of (6.161).

Note that while the degeneracy associated with each irreducible representation R

is generic (it holds for any gauge-invariant state in the theory), the modular Hamil-

tonian (6.154) actually has a much larger degeneracy, since all representations with

the same number of boxes has the same modular energy.

Tracing over ΣA gives the expected normalization

Z = trA(ρ̃A) =
∑

R

(dq(R))2e−tl(R). (6.162)

It is useful to express the normalized reduced density density matrix ρA = ρ̃A/Z
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as a direct sum over normalized23 operators 1R
(dqR)2 in each superselection sector

labelled by R:

ρA = ⊕Rp(R)
1R

(dqR)2
,

p(R) =
(dq(R))2e−tl(R)

Z
. (6.163)

The q-deformed entanglement entropy can be directly evaluated from

S = − trq(ρA log ρA) = − tr(DρA log ρA). (6.164)

This type of q-deformed entropy has been studied previously in the context of

quantum group invariant spin chains [81, 295]. Here we have seen that the use

of the quantum trace arises naturally from the requirement of quantum group

symmetry as dictated by the cobordisms of the open-closed TQFT.

Since the spectrum of the ρA can be read off from (6.163), we can compute the

entanglement entropy without appealing to the replica trick:

S = −
∑

R

trq

(
p(R)1R
(dqR)2

log
p(R)1R
(dqR)2

)
= −

∑

R

trq(1R)
p(R)

(dqR)2
log

p(R)

(dqR)2
,

=
∑

R

(−p(R) log p(R) + 2p(R) log dqR) . (6.165)

This gives the sought after canonical calculation of entanglement entropy which

agrees with the replica trick answer in section 6.3.3

6.5.7 Revisiting the replica trick on the resolved conifold

As discussed previously, the resolved conifold is a nontrivial vector bundle O(−1)⊕

O(−1) → S2. In section 6.3.3 we gave a prescription for the replication of this

23Normalized according to the quantum trace.
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geometry in which the volume of the base manifold is replicated without affecting

the bundle structure. Here we explain this prescription, first in terms of the our

categorical formulation of the reduced density matrix, and then by appealing to a

direct geometric construction of the replica manifold.

Replica trick in terms of cobordisms Using the reduced density matrix

(6.161) for |HH〉, we can apply the replica trick in the form

S = ∂n trq(ρ
n
A)|n=1 = ∂n tr(DρnA)|n=1. (6.166)

Note that we did not replicate D because it is merely part of the definition of the

quantum trace. In terms of cobordisms, the nth power of ρA is simply a long strip,

and trq(ρ
n
A) is a large annulus with one insertion of D and D−1 as in the n = 1

case.

ρnA = ⊕R
dq(R)2e−ntHopen

Zn
1

1R
dq(R)2

,

trqρ
n
A =

∑
R dq(R)2e−ntHopen

Zn
1

, (6.167)

and the only effect of the replication is to rescale the area factor t by a factor of n.

This replicated partition function agrees with the prescription given in (6.43) and is

proportional to the resolved conifold partition function, indicating that Calabi-Yau

condition is preserved.

The main reason that the Calabi-Yau condition is preserved is the use of the

quantum partial trace in (6.161). To see this, consider an alternative replication

in which we use a naive trace, corresponding to simply gluing the Hartle-Hawking

state and its dual along region ΣB without the application of state-channel map
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as in (6.161).

ρCA = : |Rij〉 → DR
lj(D

−1)Rike
−tl(R) |Rkl〉 . (6.168)

As shown in figure 6.9, ρCA differs from ρA because of the nontrivial braiding of

the open string, so that when we “straighten” the cobordism for ρCA we get a

nontrivial double twist diagram instead of a strip. ρCA also does not commute with

the quantum group symmetry that permutes the edge modes. When we replicate

ρCA, the Wilson lines D and D−1 do not cancel. As a result we find that

tr(ρCnA ) =
∑

R

trR(Dn) trR(D−n), (6.169)

which does not satisfy the Calabi-Yau condition and gives an entropy inconsistent

with the replica prescription of section 6.3.3. The problem is that the entanglement

boundary condition is violated each time we replicate this density matrix. A simple

Figure 6.9: The reduced density matrix ρCA defined using a noncanonical trace
operation fails to satisfy the E-brane axiom when it is replicated. It also does not
commute with the edge mode symmetry group

way to compensate for this is to insert a factor of D−1 each time we replicate ρCA.

The replica entropy (6.166) can then by expressed as

S = ∂n tr(DρnA)|n=1 = ∂n log tr(D1−n(ρCA)n)|n=1, (6.170)
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where we have introduced the log to account for normalizaton. These are the direct

analogue of the replica entropy in [208], with D playing the role of the “defect”

operator.

Geometric replication of the resolved conifold geometry Rather than

appealing to the categorical formulation of the density matrix, we can also try to

replicate the resolved conifold geometry directly by appealing to the usual multi-

sheeted construction of the replica manifold. This will show more explicitly the

geometrical role played by the defect operator as a topological twisting.

In [8, 63], it was shown that one can compute topological A-model partition

function on L1 ⊕ L2 → Σg, for a 2 dimensional surface Σg with genus g. It was

then further shown that one can glue L1 ⊕ L2 → Σ1 and L′1 ⊕ L′2 → Σ2, given a

gluing map i : ∂Σ1 → ∂Σ2, to compute the topological A-model partition function

on (L1 + L′1)⊕ (L2 + L′2)→ Σ1 ∪ Σ2.

We define the Hartle-Hawking state to be the topological A-model partition

function on O1 ⊕O2(−1)→ D2
1

|HH〉 = A1 B1 , (6.171)

where the black dot in (6.171) represents a pole of a local section in O2(−1). For

later use, we split ∂D2
1 = A1∪B1. In the similar way, we define a dual of the Hartle-

Hawking state to be topological A-model partition function on O1(−1)⊕O2 → D2
2

〈HH∗| = B2 A2 , (6.172)

where the blue dot in (6.172) represents a pole of a local section in O1(−1).
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To construct |HH〉〈HH∗|, we prepare O1⊕O(−1)→ D2
1 and O1(−1)⊕O2 →

D2
2.

|HH〉〈HH∗| = A1 B1 ⊗ B2 A2 . (6.173)

Now we can obtain a reduced density matrix ρred = trB1∼B2(|HH〉〈HH∗|) by

identifying B1 ∈ ∂D2
1 and B2 ∈ ∂D2

2. We expect that ρred is equivalent to ρA, but

we have not explicitly verified this claim.

ρred = A1 A2 . (6.174)

One can check, under the identification A1 ∼ A2, trA1∼A2(ρred) computes topolog-

ical A-model partition function of O1(−1)⊕O2(−1)→ S2.

Let us consider a replicated geometry of (6.174). First we prepare two copies

of (6.174)

ρred ⊗ ρred = A1 A2 ⊗ A3 A4 . (6.175)

In order to compute ρ2
red, we then identify A2 ∼ A3

ρ2
red = A1 A4 . (6.176)

Note that as a result of the replication, volume of the base manifold is doubled.

This näıve replica trick (6.176) has a problem. To illustrate the problem, let

us compute trA1∼A4(ρ2
red). Because there are two poles for each section of line

bundles L1 and L2, one can deduce that L1 = O(−2) and L2 = O(−2) whereas

topology of the base manifold is still of S2. Then the manifest problem occurs as
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O1(−2)⊕O2(−2)→ S2 is not a Calabi-Yau manifold. To ensure that the replicated

geometry is Calabi-Yau, we apply a topological twisting by O1(1)⊕O2(1), which

we will represent by Otwist ≡ D−1

Otwistρ
2
red = A1 A4 . (6.177)

As a result, trA1∼A4(Otwistρ
2
red) computes the topological A-model partition func-

tion of O1(−1)⊕O2(−1)→ S2, where the volume of the base manifold is doubled,

Z2 = trA1∼A4(Otwistρ
2
red) =

∑

R

(dqR(gs))
2e−2l(R)t. (6.178)

One can easily generalize (6.178) to

Zn = tr(On−1
twistρ

n
red) =

∑

R

(dqR(gs))
2e−nl(R)t. (6.179)

As a result, we obtain the entanglement entropy

S =
∂

∂n

Zn
Zn

1

∣∣∣∣
n=1

= −
∑

R

p(R)(log(p(R))− 2 log(dqR)), (6.180)

where

p(R) =
(dqR)2e−l(R)t

∑
R(dqR)2e−l(R)t

. (6.181)

Finally, we want to express the entanglement entropy in terms of the BPS index.

First, we rewrite the n-sheeted partition function in terms of the BPS index.

Zn = exp

(∑

k

n0
S2

1

k

(
2 sin

kgs
2

)−2

e−nkt
)
, (6.182)

where n0
S2 = 1 is the only non-vanishing GV invariant of the resolved conifold. As

a result, the entanglement entropy is expressed as

S =
∑

k

n0
S2

(
1

k
+ t

)(
2 sin

kgs
2

)−2

e−kt. (6.183)
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It is very interesting to observe that (6.183) is proportional to the number of BPS

states, including the multi-particle states. In fact, the linear dependence of the EE

on the BPS index is not a special feature of the resolved conifold. For a general

non-compact Calabi-Yau of the form

L1 ⊕ L2 → S, (6.184)

the linear dependence continues to hold

S =
∑

β,g,k

ngβ

(
1

k
+ tβ

)(
2 sin

kgs
2

)2g−2

Qkβ, (6.185)

if one replicates the geometry while fixing the topology of the replicated Calabi-

Yau.

6.6 Discussion

In this work we have given a factorization of the A-model closed string Hilbert

space and a canonical calculation of the entanglement entropy for the Hartle-

Hawking state on the resolved conifold. The factorization maps (6.135), (6.131)

and associated string edge modes are determined by solving the sewing relations of

the A-model extended TQFT. These sewing relations, particularly the E-brane ax-

iom, were chosen to be compatible with the Calabi-Yau condition. This constraint

imposes a nontrivial holonomy D (6.34) along the entangling surface, which is cap-

tured by the entanglement boundary state |D〉. This boundary condition is local in

the sense that it can be introduced without affecting the state, but is nonlocal with

respect to the “modular time” going around the entangling surface. We then inter-

pret this as an E-brane boundary state by showing that in the open string channel

it corresponds to the insertion of a large N number of E-branes at the entangling
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surface. We view this as a realization of Susskind and Uglum’s proposal [315] in

the target space of the A-model string theory. Finally we found that the compat-

ibility of the E-brane axiom with the Calabi-Yau condition requires edge modes

to transform in a q-deformed edge mode symmetry group. This q-deformation

changes the statistics of the open strings: they are no longer bosonic strings but

obey anyonic statistics. Invariance under the quantum group symmetry requires

the introduction of the Drinfeld element into the factorization map, and leads to

the appearance of quantum dimensions in the entanglement entropy. In a follow-

up paper, we will relate this calculation to the dual Chern-Simons description of

the A-model, where quantum dimensions also appear.

The use of extended TQFT techniques was crucial in making our closed string

factorization maps self-consistent. However our proposed extension of the A-model

TQFT is not yet complete, since we did not consider sewing relations which involve

the braiding operator (6.147). We also worked entirely in the target space theory,

whereas D-branes are usually formulated in the first-quantized, worldsheet point

of view and we do not know how to formulate the E-brane boundary condition

on the worldsheet. A direct check along this direction would be to quantize open

strings stretched between intersecting D-branes on L and L′ as shown in figure 10

and check whether this description agrees with the E-brane calculation we present

in this paper. We leave these problems to future work.

Analogy to JT gravity The Drinfeld element D can be viewed as an operator

on the open string Hilbert space. It is incorporated into the definition of the

quantum trace (6.82), which agrees with the categorical trace defined by elements

of the open string Frobenius Algebra. However, as shown in section 6.5.6, we can

also interpret D as a “defect” operator whose insertion at the entangling surface

197



Figure 6.10: D-branes on L′ intersect with D-branes on L.

enforces a topological constraint, which is equivalent to filling in the hole with a

Calabi-Yau cap.

An analogous defect operator was found in the factorization of JT gravity

[208]24. In that work, the topological constraint analogous to the Calabi Yau

condition in the A-model is the gravitational constraint imposed on the BF gauge

theory description of JT gravity. This constraint is needed because while the

variables of JT gravity can be mapped to the BF gauge theory, there are gauge

theory configurations such as those with trivial Chern class which are not allowed in

the JT gravity path integral. In particular, the analogue of the E-brane condition

for JT gravity requires that the hole can be filled in such a way to reproduce

the Einstein-Hilbert term on a disk, which is a topological invariant that can

only be captured with nontrivial holonomy of the BF gauge field around the hole.

The defect operator in JT gravity implements this nontrivial holonomy around the

entangling surface, just like the Drinfeld element in the A-model. These similarities

suggest that the defect operator in JT gravity might also be viewed as a limit of

24[231] considered a statistical mechanical model for JT gravity which also gave rise to the
analogue of this defect operator when attempting to write the partition function on the disk as
a trace over a Hilbert space.
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the Drinfeld element of a quantum group surface symmetry.

There are other indications that quantum groups play an important role in JT

gravity as well. In [51], it was proposed that the edge mode symmetry of JT gravity

is given by the semi-group SL+(2,R) as a q → 1 limit of SL+
q (2,R), based on the

fact that JT gravity can be obtained from the extremal limit of the dimensional

reduction of 3D gravity, whose dynamics is connected to the representation theory

of the quantum group SL+
q (2,R)[339, 320, 272, 132, 51, 276]. In [272], it was

also observed that the Bekenstein-Hawking entropy for 3d BTZ black holes can

be reproduced in the large charge limit by the topological entanglement entropy

related to the quantum dimensions in Liouville theory. It will be very interesting to

see if there is a canonical way to directly justify the origin of the above observation.

One way to see quantum group symmetry appearing in JT gravity is via the

Sachdev-Ye-Kitaev model, for which JT gravity can be viewed as an infrared ef-

fective theory. Specifically, Ref. [44] studied correlation functions in a “double-

scaling” limit of SYK and found evidence of quantum group symmetry such as

q-deformed 6j symbols. This suggests that the bulk dual of the double-scaled

SYK model could be identified as a TQFT with quantum group symmetry like the

one described here for the A-model string. Such a TQFT would be a q-deformation

of JT gravity which might elucidate the appearance of q → 1 limits of quantum

group structures in JT gravity.

In this work, we have calculated entanglement entropy of topological A-model

on a fixed geometry: the resolved conifold. We have made use of a TQFT formal-

ism in which the topology of spacetime is fixed rather than summed over. This

is analogous to the entanglement entropy on the hyperbolic disk in JT gravity

[247, 208, 51]. However, JT gravity can be UV completed by a random matrix
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model by summing over all different topologies, which is interpreted as being dual

to an ensemble average of theories [304]. Recently, it has also been shown in the

context of models related to JT gravity that topology-changing processes play an

important role in understanding the black hole information paradox when we cal-

culate the entropy using the replica trick [290, 13]. There is an analogue UV com-

pletion of topological string theory by including topology-changing processes via

nonperturbative effects in the context of q-deformed 2d Yang-Mills theory [327, 9].

In [106, 7], it was further shown that the inclusion of baby universes doesn’t lead

to naive loss of quantum coherence, in accordance with earlier arguments from

[77, 153, 154]. On the other hand, the ensemble average interpretation and the

lack of factorization in JT gravity is clearly in tension with the standard AdS/CFT

correspondence. In [207, 260], another perspective is given, interpreting the ensem-

ble average as coming from gravitational constraints and different superselection

sectors of the baby universe Hilbert space. Based on this observation, it was further

conjectured in [275] based on [274] that the constraint is so strong in d > 3 that

the baby universe Hilbert space is always one-dimensional in a consistent theory

of quantum gravity, thus resolving the contradiction. As we have a UV completion

for a theory of quantum gravity involving topology changes [327, 9, 106, 7], we find

it appealing that we might be able to test all these ideas in this context, and may

directly identify an “information paradox” in string theory where calculations of

entropy without the inclusion of topology-changing procedures leads to violation

of unitarity.

Comment on the BPS formula for the EE At strong string coupling, fun-

damental degrees of freedom are no longer string states rather D-brane particle

states. Furthermore, the degeneracy of the BPS states is typically expected to

200



be exponential in the number of the BPS states [324]. This exponential scaling

of the degeneracy equates well with (6.185) as is proportional to the BPS index

ngβ. Hence, (6.185) implies that the entanglement entropy counts how many BPS

states (including the multi particle states) there are across the entangling surface.

Interestingly enough, in [313] the Bekenstein-Hawking entropy computed via the

BPS microstate counting is also polynomial in the BPS index due to the expo-

nential scaling of the degeneracy. It will be therefore interesting to explictly show

that the degeneracy of the Calabi-Yau manifold is exponential in the number of

the M2-brane BPS states in M-theory on CY3 × S1.

201



CHAPTER 7

ENTANGLEMENT ENTROPY AND EDGE MODES IN

TOPOLOGICAL STRING THEORY II: THE DUAL GAUGE

THEORY STORY

Abstract1

This is the second in a two-part paper devoted to studying entanglement en-

tropy and edge modes in the A model topological string theory. This theory

enjoys a gauge-string (Gopakumar-Vafa) duality which is a topological analogue

of AdS/CFT. In part 1, we defined a notion of generalized entropy for the topo-

logical closed string theory on the resolved conifold. We provided a canonical

interpretation of the generalized entropy in terms of the q-deformed entanglement

entropy of the Hartle-Hawking state. We found string edge modes transforming

under a quantum group symmetry and interpreted them as entanglement branes.

In this work, we provide the dual Chern-Simons gauge theory description. Using

Gopakumar-Vafa duality, we map the closed string theory Hartle-Hawking state

to a Chern-Simons theory state containing a superposition of Wilson loops. These

Wilson loops are dual to closed string worldsheets that determine the partition

function of the resolved conifold. We show that the undeformed entanglement en-

tropy due to cutting these Wilson loops reproduces the bulk generalized entropy

and therefore captures the entanglement underlying the bulk spacetime. Finally,

we show that under the Gopakumar-Vafa duality, the bulk entanglement branes

are mapped to a configuration of topological D-branes, and the non-local entangle-

ment boundary condition in the bulk is mapped to a local boundary condition in

1This chapter is published as Y. Jiang, M. Kim, G. Wong, “Entanglement entropy and edge
modes in topological string theory II: The dual gauge theory story,” [arxiv:2012.13397 [hep-th]].
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the gauge theory dual. This suggests that the geometric transition underlying the

gauge-string duality may also be responsible for the emergence of entanglement

branes.

7.1 Introduction

In the context of the AdS/CFT correspondence [252, 174, 348], the

HRRT/generalized entropy [303, 203, 139, 137] formula provides the basis for our

understanding of how spacetime emerges from quantum entanglement. It states

that entanglement entropy of a boundary subregion in the strongly coupled regime

is given by the generalized entropy of the semi-classical bulk theory:

SCFT = Sgen =
〈A〉
4G

+ Sbulk + · · · (7.1)

The generalized entropy Sgen is defined via the Euclidean gravity path integral

Z(β) on geometries for which the asymptotic boundary has a circle2 of length β

[243] (see Fig. 7.1). One then defines the generalized entropy as

Sgen = (1− β∂β)β=2π logZ(β) (7.2)

Z(β) ∼ e−IclassicalZfluctuations, (7.3)

where Z(β) is evaluated on a saddle point and −Iclassical is the on-shell action. In

order to interpret Sgen in terms of a statistical mechanical entropy we must treat

2This circle is non-contractible at asymptotic infinity but can shrink smoothly in the bulk.
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Z(β) as a thermal partition function:

Z(β) = tre−βH . (7.4)

However, we do not have a general understanding of the bulk quantum gravity

Hilbert space on which this trace would be defined. As first discussed in [150]

and emphasized recently in [180], the leading area term in (7.1) only arises from

saddles in which the circle shrinks smoothly in the interior, which gives the cigar

geometry in the left of Fig. 7.1. This represents an apparent obstruction to the

trace interpretation (7.4) from the viewpoint of effective field theory and obscures

the bulk quantum mechanical origin of area term. This is an important puzzle

to address because the area term, which is the analogue of Bekenstein Hawking

entropy, is expected to capture the entropy of the spacetime itself [331].

Figure 7.1: The left figure shows the cigar geometry which is the saddle point that
contributes the the area term in the generalized entropy. On the right we have
removed a cap at the tip of the cigar and inserted a shrinkable boundary condition
e.

We can view equation (7.4) as a constraint on the quantum gravity microstates,

determined by the path integral that governs the low energy effective theory.

The idea is illustrated on the right of Fig. 7.1. To interpret Z(β) on a cigar

geometry as a trace we excise a small cap from the tip of the cigar and impose

a “shrinkable” boundary condition. This boundary condition is defined so that

the path integral on the excised geometry is the same as Z(β). It corresponds

to inserting a boundary state given by the path integral on the small cap. If the

shrinkable boundary condition were local, we can immediately interpret Z(β) as

a thermal partition function by quantizing with respect to time variable around
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the circle. Fig. 7.2 suggests that the corresponding thermal density matrix can be

viewed as the reduced density matrix ρV on a subregion V of a spatial slice3. If

we could identify

Z(β = 2πn) = trV ρ
n
V , (7.5)

then the generalized entropy (7.2) would give the replica trick entanglement en-

tropy of the subregion V . Since string theory provides the UV completion of the

Figure 7.2: In this figure we have flattened out the cigar geometry into a disk.
On the right figure, we can view the lower half of the annulus as a path integral
preparation of a factorized state with a shrinkable boundary condition at the en-
tangling surface. Quantizing Z(β) with respect to the time variable around the
origin shows that it can be viewed as the trace of a reduced density matrix on V .

bulk gravity theory in AdS/CFT, this suggest that the generalized entropy can

be viewed as entanglement entropy of closed strings making up the spacetime.

A worldsheet version of this proposal was first discussed by Susskind and Uglum

[315]. As shown in Fig. 7.3, from the worldsheet point of view, the quantiza-

tion with respect to the modular time and the shrinkable boundary condition is

equivalent to a form of open-closed string duality.

In [123], an explicit realization of these ideas was first obtained in two di-

mensional Yang Mills and its string theory dual, using the framework of extended

topological quantum field theory (TQFT)4. Extended TQFT is a categorical re-

3In gravitational path integral, there will be an extra complication due to the fact that we
cannot fix the location of the “ stretched horizon” where we removed the small cap. However we
expect this construction remains valid provided that we sum over the location of the shrinkable
boundary.

4TQFT’s have finite dimensional Hilbert spaces, where as area dependent QFT’s such as 2D
Yang Mills have infinite dimensional Hilbert spaces. Nevertheless, they obey very similar sewing
rules so we will use extended TQFT to refer to both types of theories in this paper.
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formulation of the path integral as a cobordism theory constrained by sewing

relations. In [123], the shrinkable boundary condition was interpreted as an addi-

tional sewing relation called the “entanglement brane axiom.” In that theory, the

shrinkable boundary condition is local and provides a constraint on the consistent

factorization of the Hilbert space which requires the presence of edge modes lo-

calized to the entangling surface. It was shown that the analogue of generalized

entropy can indeed be interpreted as entanglement entropy of a subregion, and

has a dominant edge mode contribution which plays the role of the area term.

In the string theory dual, these edge modes correspond to a large N number of

entanglement branes5.

Unfortunately, in gravitational theories, the shrinkable boundary condition is

non-local due to a topological feature of the gravity path integral on the small cap.

As explain in [208], this is because the Gauss Bonnet theorem implies that repro-

ducing the Einstein Hilbert action inside the cap requires a non trivial holonomy

around the shrinkable boundary. This seems to create an additional obstacle to

interpreting generalized entropy as a statistical entropy.

In [118], we addressed these questions in the A model topological string theory

using the extended TQFT framework developed in [123]. We defined an analogue

of generalized entropy for closed strings on the resolved conifold geometry (see

left of Fig. 7.4) and showed that it has a canonical Hilbert space interpretation

despite the presence of a non-local shrinkable boundary condition. The analogue

of the topological constraint in gravity is given by the Calabi-Yau condition6,

5Interestingly, the entanglement brane axiom requires the number of branes in that theory to
be related to the closed string coupling as [122, 123]: N = 1

gs
. This is a direct example of how

the entanglement brane axiom relates parameters of the low energy theory, i.e. the closed string
coupling gs, to high energy microstates given by the entanglement branes.

6The A model string theory is well defined on any Kahler manifolds, so the Calabi Yau
condition is a strong restriction. The shrinkable boundary condition we obtained is specific to
this sub-category of the target spaces for the topological string theory.

206



φ

Figure 7.3: Susskind and Uglum considered the generalized entropy of perturbative
closed strings in flat space, viewed as a limit of the cigar geometry. Using off shell
arguments, they computed generalized entropy by inserting a conical singularity
in the background, corresponding to the tip of the cigar geometry. In perturbative
string theory, the area term comes from the sphere diagram which intersects the
conical singularity. Viewed in the open string channel, this is a one-loop open
string diagram. This interpretation amounts to an open-closed string duality which
identifies Bekensten Hawking entropy as thermal entropy of open strings that end
on the conical singularity. Figure borrowed from Ref. [122].

which we imposed on the replica manifold so that the topology of the resolved

conifold geometry is preserved as β is varied in (7.2). The resulting boundary

state corresponds to a “Calabi-Yau” cap [63, 8], and leads to string edge modes

that obey anyonic statistics and transform under the quantum group U(∞)q. As in

[122, 123], these edge modes correspond a large N number of entanglement branes

which implements the entanglement cut on the closed strings. Using a q-deformed

version of the extended TQFT sewing relations, we determined the factorization

of the closed string Hilbert space and showed that the generalized entropy has a

quantum mechanical description as a q-deformed entanglement entropy:

S = − trqρ log ρ = − tr(Dρ log ρ). (7.6)

Here D is an operator called the Drinfeld element of U(∞)q, whose insertion makes

the quantum trace trq invariant under the quantum group symmetry. It can also

be interpreted as a defect operator which creates the nontrivial bundle structure

of the Calabi-Yau cap. The analogue of the area term in the generalized entropy is

once again given by the edge mode contribution to the q-deformed entropy. Note
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that in [208]. the same formula (7.6) was obtained for the gravitational generalized

entropy in JT gravity, with D given by a defect operator which implements the

topological constraint associated to the “Einsten Hilbert” cap.

In this work we apply Gopakumar-Vafa (GV) duality [161] to the A model

topological string and give a dual calculation of the q-deformed entanglement en-

tropy (7.6) from Chern-Simons gauge theory7 The GV duality is a topological

analogue of AdS/CFT. It is an open-closed string duality that relates bulk closed

strings on the resolved conifold geometry to open strings on the deformed conifold

geometry. This is illustrated in Fig. 7.4. Like AdS/CFT, the GV duality involves

a geometric transition in which a large N number of branes dissolve into fluxes.

On the deformed conifold, the branes wrap the Lagrangian submanifold S3 at the

tip and are replaced by flux passing through an S2 on the resolved conifold across

the geometric transition.

The role of the boundary CFT is played by the large-N limit of U(N) Chern-

Simons (CS) theory. It is the worldvolume theory of the branes wrapping S3 on

the deformed conifold. Remarkably, this is also the exact string field theory for

open strings on the deformed conifold [343]. The gauge coupling gcs = 2π
k+N

and ‘t

Hooft paramater igcsN of the CS theory are related to the closed string coupling

gs and the Kahler modulus t of the resolved conifold by

gs = gcs =
2π

k +N

t = igsN (7.7)

Using the string field theory description, we can obtain the exact shrinkable bound-

7Reference [202] also studied entanglement entropy in topological string theory using the dual
Chern Simons gauge theory. The idea of using the factorization map in Chern Simons theory to
probe the entanglement structure in topological string theory via Gopakumar Vafa duality was
originally suggested in [352].
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Open A model string Closed A model string

A Model  TQFT U(N) Chern Simons theory  
onTarget space theory 

Target space geometry

Deformed Conifold Resolved  Conifold

Geometric transition 

N branes

Figure 7.4: Gopakumar-Vafa duality relates closed A-model string on the resolved
conifold to the open A-model string on the deformed conifold

ary condition, edge modes, and entanglement entropy on both sides of the duality.

As in AdS/CFT [251, 300], there is a local mapping between Wilson loops in

the dual Chern-Simons gauge theory and worldsheets in the bulk closed string

theory [285, 156]. This is illustrated in Fig. 7.20, 7.21. The entanglement cut

of the closed string worldsheets is therefore mapped to the entanglement cut of

the Wilson loops. We will reproduce the q-deformed entanglement entropy of

the bulk closed string theory via a canonical calculation of the “defect entropy”

[209, 210, 244] associated to Wilson loops. The defect entropy is obtained from

the undeformed entanglement entropy by subtracting the entanglement entropy of

the vacuum, thus capturing the entanglement due to the Wilson loops alone. An

analogous relation between the defect entropy of Wilson loops in the boundary

gauge theory and bulk entropy of probe string worldsheets also holds in AdS/CFT

[244]. However, our gauge theory calculation computes the entanglement entropy

209



of a large superposition of Wilson loops. These are dual to the worldsheets that

determine the resolved conifold partition function, so our calculation captures the

entropy that makes up the spacetime itself.

One important issue we will address using the GV duality is the nature of the

entanglement branes, which were defined previously using the categorical language

of extended TQFT. While this provides a precise mathematical definition of a

brane, its relation to the usual worldsheet definition as boundary conditions for

the string sigma model is rather obscure. Here we will show that the GV duality

maps the entanglement branes to a configuration of D branes, which corresponds

to Lagrangian boundary conditions for the topological string. In the string field

theory description, the dual brane configuration correspond to the CFT edge modes

of the U(N) Chern-Simons theory. The shrinkable boundary condition is local in

the Chern-Simons theory, and the quantum group edge mode symmetry is replaced

by the large N Kac-Moody symmetry of the WZW model edge modes. This is

a manifestation of the fact that quantum groups arise as a hidden symmetry in

conformal field theories [341, 173, 310].

As shown in Fig. 7.3, the shrinkable boundary condition on the worldsheet

implies a type of open-closed string duality. This was manifest in the canonical

calculation of generalized entropy in [118], in which a trace over the open string

Hilbert space (i.e. RHS of (7.4)) reproduces closed string amplitudes that de-

termine the generalized entropy. However the worldsheet mechanism behind this

open-closed duality was not explained. In this work we will find strong evidence

that the open-closed duality responsible for the shrinkable boundary condition and

the entanglement brane edge modes is related to the GV duality itself. Remark-

ably the worldsheet mechanism behind GV duality is well understood and can be
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interpreted as a phase transition on the worldsheet corresponding to the conden-

sation of vortices that represent the D branes [286]. Our work seems to suggest

that a similar worldsheet mechanism might be responsible for the emergence of

entanglement branes.

Our paper is organized as follows. In section 2, we give an extended review of

relevant results in our previous work on the generalized entropy of the A model

closed string theory. In particular we will review our construction of the closed

string Hartle-Hawking state on the resolved conifold using the topological vertex

formalism [3]. We explain the construction of the string edge modes and the Drin-

feld element, paying particular attention to the large N limit and regularization

which is needed to define the shrinkable boundary condition. In section 3, we

will give the dual Chern-Simons gauge theory calculation of the bulk generalized

entropy, starting with a dual replica trick calculation. The dual Hartle-Hawking

state is given by a state on a torus containing a superposition of Wilson loops. We

explain the large N limit which maps the entanglement edge modes of this state

to the entanglement branes in string theory. In section 4, we will explain the du-

ality between Wilson loops in Chern-Simons theory and worldsheets in topological

string theory. Moreover we will re-visit our discussion of Chern-Simons edge modes

of the Hartle-Hawking state from the point of view of worldsheets on the deformed

conifold. We show that these edge mode correspond to a configuration of D branes

that include dynamical branes on wrapping 3-spheres in the deformed geometry.

We will explain the precise sense in which GV duality relates these branes to the

entanglement branes on the resolved conifold.
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7.2 Review of part 1

7.2.1 Generalized entropy for A model closed strings

A model closed strings on the resolved conifold The topological A model

closed string theory is defined on target spaces which are six real dimensional

Kahler manifolds [340]. The perturbative string amplitudes can in principle be

computed to all orders in the genus expansion and depend only on the Kahler

modulus of the target space [343, 6, 4, 235, 108, 2, 80, 201]. The simplicity of

this string theory is due to the localization of the worldsheet path integral to

holomorphic instantons which wrap minimal-volume two cycles on the target space.

In our previous work we considered the A model closed string theory on the

resolved conifold geometry. As depicted in the right of Fig. 7.4, this geometry

is obtained from a resolution of a cone over a S2 × S3 base. The only minimal

volume two-cycle is the S2 at the tip whose (complexified) area determines the

Kahler modulus, and the closed string instantons are arbitrary coverings of this

sphere with winding number n > 0. The exact resolved conifold partition function

is given by8

Zres = exp

( ∞∑

n=1

1

n(2 sin(ngs
2

))2
e−nt

)

=
∑

R

(dq(R))2e−tl(R). (7.8)

The first formula comes directly from the exponentiation of the free energy, corre-

sponding to a sum over all connected string diagrams. e−nt is the exponential of

the worldsheet action for instantons wrapping the S2 n times, and the worldsheet

8The free energy can also get contributions from constant maps, which are finite polynomials
in t. For non-compact Calabi-Yau manifolds, they are ambiguous and not well-defined, and we
naturally set them to zero [4].
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genus has already been summed over [235, 4, 343, 161, 108, 2, 326, 263]. The sec-

ond formula can be obtained from the gluing of topological vertices [3], which are

basic building blocks for A model amplitudes that satisfy gluing rules reminiscent

of a cubic field theory in spacetime.

For the purposes of studying entanglement and edge modes, it will prove con-

venient to work with the second formula. Here R labels Young tableaux with an

arbitrary number of boxes denoted by l(R). The quantity dq(R) is the quantum di-

mensions of the symmetric group representation R. In term of the Young diagram,

dq(R) is given by

dq(R) =
∏

�∈R

i

qh(�)/2 − q−h(�)/2
=
∏

�∈R

1

2 sin(h(�)gs
2

)
, (7.9)

with h(�) being the hook length.

Generalized entropy in topological string theory We would like to define

an analogue of generalized entropy for the A model by replicating the partiton

function Zres. The analogue of the cigar geometry is given by the minimal volume

two-sphere where the string worldsheets wrap. We will define the replica manifold

by making an opening angle of β = 2πn around two antipodal points as shown in

Fig. 7.6.

In defining the replica manifold, it is important to note that global geometry

of the resolved conifold is not a that of a direct product with a S2 factor. Instead

it is a nontrivial rank 2 bundle over the sphere:

O(−1)⊕O(−1)→ S2 (7.10)

Here O(−1) denotes the complex line bundle over the sphere with chern class −1.

Moreover, the resolved conifold is a Calabi Yau manifold. For rank 2 bundles of
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the form

O(k1)⊕O(k2)→ S (7.11)

over a Riemann surface S, the Calabi Yau condition translates into the relation

k1 + k2 = −χ(S) (7.12)

between the Chern classes and the Euler characteristics of S.

Since the bundle structure over the minimal S2 is nontrivial, we need to specify

what happens to the fiber directions when we replicate around the two antipodal

points. As discussed in [118], a naive cyclic gluing of the resolved conifold replicas

would lead to a vector bundle of the form

O(−n)⊕O(−n)→ S2 (7.13)

While there is nothing apriori incorrect about this replica manifold, it does not

provide a good candidate for the definition of generalized entropy [243]. This is

because it violates the Calabi-Yau (CY) condition and changes the topology of the

resolved conifold. This implies that when analytically continuing to non-integer n,

the replica partition function no longer has a geometric interpretation in terms of

a target space where string worldsheets can propagate, since we can not define a

bundle with non-integer Chern classes9.

However, if we impose the CY condition (7.12) as a topological constraint on

the replica manifold, we obtain a replica partition function which does have a

geometric interpretation at all values of n, even when it is non integer. This is

because the Euler characteristic of the base sphere is invariant under replication,

9Another reason for imposing the CY condition comes from mirror symmetry [195, 349]. In
contrast to the A-model, the B-model is only well defined on Calabi-Yau manifolds. In order
for the replica trick to commute with mirror symmetry, the replica manifold must preserve the
Calabi Yau condition. More comments related to the B-model are in the discussion section
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so the CY condition forces the bundle structure to stay fixed as well. This implies

that the only effect of the replication is to rescale the area t of the sphere10. Since

the A model is only sensitive to the Kahler modulus given by this area, the replica

partition function is simply given by rescaling t:

Z(n)res =
∑

R

(dq(R))2e−ntl(R). (7.14)

From this we can obtain the generalized entropy on the resolved conifold geometry

by applying eq. (7.2)

Sgen = (1− n∂n)n=1 logZres(n)

=
∑

R

p(R)(− ln p(R) + 2 ln dq(R)), p(R) =
(dq(R))2e−tl(R)

Zres

. (7.15)

This formula has exactly the same structure as the entanglement entropy of two

dimensional non abelian gauge theory, with R playing the role of a representation

label, dq(R) the associated dimension, and p(R) a probablity factor. As in 2DYM,

the
∑

R 2p(R) log dq(R) term plays the role of the area term. The factor of 2 counts

the number of putative entangling surfaces given by branch points of the replica

manifold.

7.2.2 The closed string Hilbert space, A model TQFT, and

the Hartle-Hawking state

As noted in the introduction, the A model string theory has an exactly solvable

string field theory, so we can apply the usual formulation of entanglement entropy

10Note that the area t is complex and includes the B field flux, so we are replicating the flux
as well. Also, when we increase the number of entangling points or consider other Riemann
surfaces S, the Euler characteristic of the base manifold will no longer be invariant under repli-
cation. Nevertheless we can consistently impose the condition (7.12) even though the geometric
interpretation at non integer n is obscured or may not exist.
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in terms of a second quantized theory of strings. For target space geometries which

take the form of vector bundles like (7.11), the string field theory is given by a

topological quantum field theory, which we will simply refer to as the A model

TQFT [63, 8]. We will use the TQFT formalism to define the closed string Hilbert

space.

The A model TQFT is a map11 that assigns multi-string amplitudes to basic

building blocks of spacetime that are represented as 2-cobordisms with line bundles.

These are target spaces of the form (7.11) in which the Riemann surface S is

viewed as Euclidean evolution from initial and final boundaries. We represent

such a cobordism by a decorated two-dimensional diagram (evolution from top to

bottom)

(k1, k2) ,

(k1, k2)

, . . . (7.16)

In order to cut up the closed string amplitudes into these basic building blocks, we

have to insert brane/anti branes at the in/out boundaries where the worldsheets

can end. The gluing of these cobordisms should then be viewed as the annihilation

of these branes and anti branes.

The D branes of the A model wrap three dimensional Lagrangian submani-

folds. Each diagram in eq.(7.16) represent open string amplitudes consisting of

worldsheets that end on these Lagrangians, which intersect S along its boundary

circles. The coupling of the worldsheet to the branes is given by multi-trace factors

∏

i=1

tr(U i)ki , kj > 0,

U ∈ U(N) (7.17)

11The precise statement is that it is a functor from the category of 2-cobordisms with line
bundles to the category of vector spaces
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where U = P exp
∮
A is the holonomy on the brane, and kj labels the number of

strings the wind j times12.

In the large N limit, we identify the multi-trace factors (7.17) with the winding

basis of wavefunctions

〈U |~k〉 =
∏

i=1

tr(U i)ki (7.18)

that span a closed string Hilbert space Hclosed assigned to each boundary of S,

with U playing the role of a configuration space variable. The Hilbert space is

thus identified with class functions on U(∞). Note that when the holonomy U

is pulled back to the worldsheet, the wavefunctions (7.17) are functionals of the

string loops that make up the worldsheet boundary.

We will also make use of the representation basis, related to (7.17) by the

Frobenius relation

〈U |R〉 = trR(U) =
∑

~k⊂Sn

χR(~k)

z~k
〈U |~k〉 , (7.19)

where R is a representation of U(∞) associated with Young diagram of n boxes,

and χR(~k) is the symmetric group character for ~k, viewed as a conjugacy class in

Sn. In the large N limit we can include states with an arbitrary number of boxes

n.

Formally the A model TQFT assigns a tensor product of Hclosed to the disjoint

union of in or out circles, and linear maps to cobordisms that join these circles.

The gluing of the cobordisms corresponds to the composition of linear maps, and

is implemented by the haar integral on the closed string Hilbert space:

∫
dU trR(U) trR′(U

−1) = δRR′ (7.20)

12kj > 0 reflects the fact that the A model is a chiral theory so the strings wind in a single
direction, and around the boundary circles of S.
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Hartle-Hawking state Since our replica trick preserves the Calabi-Yau con-

dition, we can also consistently restrict to this subset of vector bundles satisfying

(7.12). The resulting TQFT forms a Frobenius Algebra [8, 63, 118], and is gener-

ated by four basic cobordisms.

(0,-1) ,
(-1,0)

,

(0,1)

,

(1,0)

(7.21)

The resolved conifold is given by the overlap

Z =
(0,-1)

(-1,0)
=
∑

R

(dq(R))2e−tl(R). (7.22)

We define the Hartle-Hawking state to be the string amplitude on “half” of the

resolved conifold geometry:

|HH(t)〉 = (0,-1) =
∑

R

(−i)l(R)dq(R)qκR/4e−tl(R) |R〉

κR = C2(R)−Nl(R) (7.23)

where C2(R) is the eigenvalue of the quadratic Casimir operator in the represen-

tation R. The other half of the resolve conifold geometry is given by the linear

functional13

〈HH∗(t)| = (-1,0)
=
∑

R

il(R)dq(R)q−κR/4e−tl(R) 〈R| (7.24)

which is the string amplitude in the presence of anti branes on the Lagrangian that

intersect S.

Fig. 7.5 shows the worldsheet instantons for the wavefunction 〈U |HH〉 which

end on branes that extend into the fiber directions as a hyperbola. The topology

13Note that the bra and ket states denote dual basis elements which are not related by a Her-
mitan inner product. Instead they are related by an adjoint operation on the string amplitudes
which maps branes to anti-branes [325, 3].
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of the corresponding Lagrangian submanifold is that of a non-compact solid torus

C×S1, and the winding basis (7.18) describe string loops winding around the non

contractible S1. The worldvolume theory on the branes is U(∞) Chern-Simons

theory.

Figure 7.5: The left figure shows worldsheet instantons ending on D-branes which
cut the minimal volume S2 of the resolved conifold along the equator. The branes
extend into the non compact fiber directions and wrap a Lagrangian submanifold
with the topology C× S1

7.2.3 Shrinkable boundary condition and the Calabi Yau

Cap

Having defined the closed string Hilbert space we can give a closed string channel

description of the entanglement boundary state and shrinkable boundary condition.

Consider the partition function on the resolved conifold, viewed as a closed string

amplitude between the entanglement boundary states:

Zres(t) = 〈D∗|e−Hclosed|D〉

Hclosed = tl(R) (7.25)
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Here Hclosed is the string field Hamiltonian. As shown in Fig. 7.6, this corresponds

to a decomposition of the base manifold into a cylinder and two small caps near

the antipodal branch points associated with the entangling surfaces. To satisfy

the CY condition, the cylinder must have Chern class (0, 0), so the non trivial

topology is carried by the two “Calabi Yau” caps [63, 8]. These caps represent A

model amplitudes with branes/anti branes and define a boundary states we call

|D〉 and 〈D∗|. They are simply given by the states |HH〉 and 〈HH∗| with zero

area t = 0, and the corresponding wave functions are

〈U |D〉 =
∑

R

(−i)l(R)dq(R)qκR/4 trR(U)

〈D∗|U〉 =
∑

R

il(R)dq(R)q−κR/4 trR(U−1) (7.26)

As discuss in the introduction, these boundary states determine the shrinkable

boundary condition (see right of Fig. 7.6). The amplitudes of these wave func-

tions capture the degeneracy factors in the partition function, which indicates the

presence of q-deformed string edge modes.

To understand this point it is useful to consider the analogous entanglement

boundary state |Ω〉, obtained from the large N limit of U(N) 2DYM on a two

dimensional cap [122]. This is a state in Hclosed with wavefunction

〈U |Ω〉 =
∑

R

dimR trR(U)

= δ(U, 1) (7.27)

In the second expression, we observed that the wavefunction for |Ω〉 is a group

theory Fourier transform of a delta function which forces U = 1. The triviality

of this holonomy implies a local shirnkable boundary condition, corresponding to

setting the gauge field component around the entangling surface to zero.
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Figure 7.6: The closed string channel description of entanglement branes on the
resolved conifold geometry. The total space is a six dimensional Calabi Yau man-
ifold fibered over a sphere. We have shown only the base manifold and indicated
the bundle structure with the Chern class labelling.

In the large N limit it was shown in [122] that the dimension factor dimR arises

in the open string channel from edge modes transforming in the R representation

of U(N), which were identified with the Chan-Paton factors labelling entanglement

branes.

We can apply a similar analysis to the boundary state |D〉, keeping in mind

that U is now interpreted as a worldvolume holonomy on a three dimensional brane

embedded inside a six dimensional Calabi-Yau manifold. The wave function (7.26)

again gives a delta function on the group, but it now sets U to a nontrivial group

element

〈U |D〉 =
∑

R

(−i)l(R)dq(R)qκR/4 trR(U)

= δ(U,D) (7.28)

where D is a diagonal U(N) matrix of phases

Dij = δijq
−i+ 1

2 ∈ U(N)

q = eigs (7.29)

The non-triviality of holonomy D implies that there is no way to enforce it as

a local boundary condition on the worldvolume gauge field. Thus the shrinkable

boundary condition for the A model is non-local, just as in Einstein-Hilbert gravity.
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If we analytically continue the string coupling gs to give it an imaginary part,

we can identify the overlap 〈R|D〉 as a suitably regularized trace:

〈R|D〉 = lim
N→∞

trR(D) = (−i)l(R)dq(R)qκR/4 (7.30)

Note that in addition to the degeneracy factor dq(R), this overlap contains phases

with nontrivial information about the fiber bundles structure in the transverse

directions.

A similar formula holds for the coupling to the boundary state 〈D∗|14

〈D∗|R〉 = lim
N→∞

trR(D−1) = (i)l(R)dq(R)q−κR/4 (7.31)

We can thus write

Zres =
∑

R

〈D∗|R〉 e−tl(R) 〈R|D〉

=
∑

R

trR(D) trR(D∗)e−tl(R) =
∑

R

dq(R)2e−tl(R) (7.32)

We see that the degeneracy factor dq(R)2 arises from the coupling of the closed

string states |R〉 to the entanglement boundary state |D〉 [4]. Notice that the

phases in (7.30) have cancelled out to give a real, positive degeneracy factor.

Equation (7.32) suggests that we can obtain a thermal interpretation of Zres if

we associate a degenerate edge mode Hilbert space VR×VR̄ with the superselection

label R, so that

Zres =
∑

R

trR(D) trR̄(D)e−tl(R) =
∑

R

trR×R̄(De−Hopen) (7.33)

where Hopen is an open string Hamiltonian with the same eigenvalues as Hclosed,

and D should be viewed as a choice of measure on the degenerate open string

14The fact that this happens to be the complex conjugate of 〈R|D〉 is an accidental feature of
the state when t is real. We emphasize once again that we are not applying a Hermitian adjoint
to obtain 〈D∗| from |D〉, but are instead using the branes to anti brane mapping defined in [4]
[325].
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microstates15. Notice that this measure is quite nontrivial16, since tracing over

U(N) indices of Dij gives symmetric group dimensions.

lim
N→∞

trR⊗R̄(D) = dq(R)2 (7.34)

As we explain below, D is the Drinfeld element of a quantum group and should

be absorbed into the trace to define the quantum trace. This is a modification of

the trace which makes it invariant under the adjoint action of the quantum group

symmetry on the open string microstates.

7.2.4 Factorization and the q-deformed entanglement en-

tropy

In this section we identify the open string microstates whose thermal partition

function is given by Zres and provide the statistical interpretation for its generalized

entropy. More precisely we determine a factorization map

e

e
: Hclosed → Hopen ⊗Hopen (7.35)

from the the closed string Hilbert space into an extended Hilbert space of open

strings. We apply the factorization map to the Hartle-Hawking state and obtain

its reduced density matrix

ρ = e−Hopen (7.36)

15We thank Laurent Freidel for suggesting this interpretation.
16It is also a complex measure, as indicated in equation (7.30)

223



by doing a quantum partial trace over half of the closed string. The corresponding

q-deformed entanglement entropy

S = − tr(Dρ log ρ) (7.37)

agrees with the generalized entropy (7.15) and provides the statistical interpreta-

tion we were after.

Factorization as an extension of the TQFT In terms of elementary cobor-

disms, equation (7.35) is the composition of two elementary factorization maps

e
,

e
(7.38)

which describe the extension of the closed TQFT into an open-closed TQFT that

includes cobordisms with corners. These corners are the boundaries of the initial

and final slice and carry labels which specify objects in the category of D branes.

The extended TQFT assigns an open string Hilbert space to such labelled intervals

and linear maps to cobordisms that connect them. These cobordisms satisfy sewing

relations which provide local constraints on the factorization maps.

In our setup, corners correspond to entanglement branes that represent string

edge modes satisfying the shrinkability condition. Denoting these branes by the

label e, the shrinkablitiy condition is formulated as the sewing relation

(0,-1)
=

e

, (7.39)

called the entanglement brane axiom [123].

When combined with the sewing relations of the open-closed TQFT, it can be

shown that the entanglement brane axiom implies all holes labelled by e can be
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closed.

e
= , e = ,

(0,-1)

(-1,0)

= e

e

, · · ·

(7.40)

The first two relation implies that the factorization maps do not change the state.

The third is the cobordism description of eq.(7.33) which identifies the resolved

conifold partition function as a thermal partition function.

In fact, this partition function is precisely the categorical trace of the un-

normalized reduced density matrix for the Hartle-Hawking state (7.23), obtained

by tracing out half of the closed string. To see how this works in the cobordism

language, we first factorize |HH〉 using (7.46):

|HH〉 →

(0,-1)

= =

〈HH∗| →

(-1,0)

= = (7.41)

ρ̃ = |HH〉 〈HH∗| =
(-1,0)

(0,-1)

→ . (7.42)

The corresponding reduced density matrix is given by the categorical partial
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trace

ρ̃A = trBρ̃ = = = e−Hopen . (7.43)

This partial trace operation is defined by the half annulli which turns input into

output intervals and glues them together. Such a trace operation can be defined

abstractly from the cobordism theory; we will see that for the A model, it coincides

with the quantum partial trace. In a purely topological theory where the Hamil-

tonian is strictly zero, the resulting strip in (7.124) is a trivial evolution operator

which is equal to the identity operator. However, the A model has a non-trivial

Hamiltonian due to its dependence on the Kahler modulus of the target space, so

the strip is an open string propagator which that depends on the complexified area

and modular energies.

Applying the categorical partial trace on the remaining subregion A gives the

quantum trace of the reduced denstiy matrix.

trq,A(ρ̃A) =

(0,-1)

(-1,0)

= e

e

, (7.44)

where we have applied the entanglement brane axiom in the last line.

The Open string Hilbert space and the factorization map In [118], we

defined the open string Hilbert space Hopen in terms of a noncommutative algebra

of functions on the quantum group U(∞)q. This Hilbert space is spanned by a basis
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of open string wavefunctions given by representation matrix elements of U(∞)q:

Hopen = lim
N→∞

span{Rij(U) = 〈U |Rij〉 , U ∈ U(N)q, i, j = 1, · · · dimR}

= ⊗RVR ⊗ VR̄ (7.45)

The matrix indices of Rij correspond to edge mode degrees of freedom which

transform under the quantum group as a representation space VR⊗VR̄. Given this

definition of Hopen, the embedding (7.35) of the closed string Hilbert space into

the extended Hilbert space of open strings is given by

e

e
: |R〉 →

∑

ijk

(D−1)Rij |Rjk〉 |Rki〉 (7.46)

We showed previously that this satisfies the entanglement brane axiom. Here DR

is the quantum group representation of the Drinfeld element D, which we will

explain below.

We can understand the mapping (7.46) intuitively as follows. Fig. 7.7 shows the

closed string loops in the Lagrangian submanifold L where the closed string states

are defined as a function of the worldvolume holonomy U . To cut the closed string

loops into open strings, we introduce a large N number of entanglement branes

which intersect L as shown along two open disks. This introduces new sectors of

open strings inside complementary subregions of L that end on the entanglement

branes. We denote these open strings configurations by

XA
ij , X

Ā
ij , i, j = 1, . . . N � 1 (7.47)
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where i, j labels the branes and define corresponding Wilson lines

UA
ij = P

(
exp

∮
XA∗
ij A

)

U Ā
ij = P

(
exp

∮
XĀ∗
ij A

)
(7.48)

The factorization of the closed string states would naively follow by splitting the

configuration space holonmoy U into the subregion Wilson lines

U = UAU Ā (7.49)

This would give the factorization map

trR(U)→ trR(UAU Ā) =
∑

ij

R(UA)ijR(U Ā)ji

|R〉 →
∑

ij

|Rij〉 |Rji〉 (7.50)

where Rij(U
A) is a representation matrix element, viewed as a wavefunction in a

subregion Hilbert space. This factorization map preserves a diagonal part of the

U(N)×U(N) edge mode symmetry which acts on the subregion wavefunctions by

conjugation

UA → gUAg−1

U Ā → gU Āg−1 (7.51)

Unfortunately, this fails to satisfy the entanglement brane axiom for the A model.

This is because the factorization map gives a reduced density matrix in the R

sector of the form

ρR =
∑

i,j

|Rij〉 〈Rij| (7.52)

which has a (dimR)2 degeneracy due to the U(N) edge mode symmetry. We

can view this as a choice of measure on the edge mode Hilbert space which is
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Figure 7.7: On the left, we show a closed string loop X(σ) inside the non- compact
Lagrangian manifold L = C × S1 where we put probe D branes. On the right L
is split into subregions by the entanglement branes on L′ . The factorization map
embeds the closed string X(σ) into open string configuration XA

ij (σ), XB
ij (σ) which

are glued together along the entanglement branes

compatible with the degeneracy factors of 2DYM (7.27), but incompatible with

the q-deformed symmetric group dimensions (7.30) of the A model.

The symmetry viewpoint naturally suggests a modification of (7.50), which

does give the correct factorization. The presence of the q-deformed dimension

factors implies that the edge mode symmetry is also q-deformed. Thus we should

treat the holonomies U, UA, U Ā as elements of the quantum group U(N)q. The

trace function which is invariant under the adjoint action of the quantum group is

given by the quantum trace:

trq,R(U) = trR(uU)

u = δijq
−i+(N+1)/2 (7.53)

where u is the Drinfeld element of U(N)q. This is an object defined purely from

quantum group data and reproduces the quantum dimension of a U(N)q rep:

trq,R(1) = trR(u) = dimq(R) (7.54)

This defines a q-deformed measure on the edge mode Hilbert space. To get the

precise edge mode measure for the A model partition function we need to define a

large N limit of u which captures symmetry group quantum dimensions and the
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phases in (7.30).

The most important formula of this paper The key to finding this limit is

to observe that the shrinkable holonomy D is a renormalized version of the U(N)q

Drinfeld element. According to equation (7.28), it gives the correct edge mode

measure for the A model provided we use a suitable regularization of the trace as

N →∞. Explicitly we have

D = q−N/2u

lim
N→∞

trR(D) = (−i)l(R)dq(R)qκR/4 (7.55)

Moreover, the proportionality of D and u implies that the quantum trace defined

with D or D−1 is also invariant under the conjugation action of the quantum group

U(∞)q.

Equation (7.55) can also be interpreted as a particular large N limit (7.82) of

the U(N) quantum dimension dimq R, which was previously applied to derive the

topological vertex from Chern-Simons link invariants [6, 4]. In section 3, we discuss

this limit from the point of view of the Chern-Simons dual, and in section 4 we give

a string theory interpretation in terms of the geometric transition. The upshot is

that equation (7.55) is a form of open-closed string duality that intimately related

to GV duality itself.

The above discussion suggests the correct factorization map can be obtained

by promoting the closed string wavefunctions to quantum characters[89, 118]

trR(U)→ trR(DU) (7.56)
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and then applying the splitting U = UAU Ā

trR(DU)→ trR(DUAU Ā) =
∑

ijk

DR
ijRjk(U

A)Rki(U
Ā), (7.57)

The open string wavefunctions Rjk(U
A) now transform under a the U(∞)q version

of the edge mode symmetry (7.51). It was shown in [118] that this factorization

map satisfies the entanglement brane axiom and sewing relations of a properly

q-deformed extended TQFT. By applying this factorization map to the Hartle-

Hawking state, we can compute the reduced density matrix on the open string

Hilbert space and compute its entanglement entropy. In the corbodism computa-

tion, the partial trace operations on each subregion as defined by the half annulus

diagrams are automatically quantum traces which preserve the edge mode sym-

metry. As a result the entanglement entropy is q-deformed [82, 295]:

S = − trq(ρ log ρ) = − tr(Dρ log ρ) (7.58)

An explicit computation shows that the q-deformed entropy matches precisely

with the generalized entropy (7.15), with the leading “area term” arising from the

entropy of edge modes.

7.2.5 Quantum group symmetry, defect operator and non-

local boundary conditions

Since the quantum group U(N)q is the symmetry of anyons, its presence implies

that the string edge modes are anyons with nontrivial braiding. This can be

understood via the large N duality with Chern-Simons gauge theory, since the

string worldsheets are mapped to Wilson lines representing worldlines of anyons.

We will present this mapping in section 4.
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Here we give an heuristic explanation in the bulk closed string theory for why

quantum group symmetry emerges from the non local shrinkable boundary condi-

tion. We noted earlier that the boundary state |D〉 defined by the Calabi Yau cap

produces the shrinkable boundary condition which sets the worldvolume holonomy

to U = D along the stretched entangling surface.

We could define a new holonomy basis

|U〉 → |U〉′ =
∑

R

trR(DU) |R〉 (7.59)

so that

|D〉 = |U = 1〉′ (7.60)

In terms of this new holonomy variable for the configuration space, it would seem

that the boundary condition is local as in the 2DYM example. However the new

wavefunction trR(DU) is no longer invariant under

U → gUg−1, g ∈ U(N) (7.61)

because D is not in the center of U(N) so it doesn’t commute with a general group

element g. However, the new wavefunction trR(DU) is invariant under the adjoint

action of quantum group elements g ∈ U(N)q. Thus by insisting on quantizing in

the open string channel with a local boundary condition, we see the emergence of

a q-deformed edge mode symmetry !

Defect operator and the Calabi Yau cap As noted earlier, the Drinfeld

element D also has an interpretation as a defect operator which is associated with

the nontrivial topology of the Calabi Yau cap. Naively, the operator associated

with the boundary state |D〉 for this cap is just the identity. However as in the

232



discussion above, if we compare the Calabi Yau cap with (0,−1) Chern classes to

a trivial cap with (0, 0) Chern classes, we find that the difference can by accounted

for by the insertion of a defect operator (see figure 7.8) . This operator creates poles

in the local sections of the bundles which leads to a nontrivial Chern class, and was

shown to be equivalent to insertions of the Drinfeld element of the quantum group

in the trace over the open string Hilbert space[118]. We thus have the equivalences

Defect operator↔ Non-local shrinkable boundary condition↔ Quantum group symmetry

(7.62)

Factorization of the HH state We now apply our factorization map to the Hartle-

Hawking state and its dual at t = 0:

|HHi !

(0,-1)

= = =
X

R,i,j,k

(�i)l(R)dq(R)qR/4(D�1)R
ij |Riki |Rkji ,

hHH⇤| !

(-1,0)

= = : |Riji |R0kli ! (i)l(R)�RR0
DR

jk�il

dq(R)qR/4
.

(5.65)

Using this factorization map the A-model partition function on the resolved conifold can

be given a canonical open string interpretation:

Z = hHH⇤|HHi ! = trq(e
�tHopen),

=
X

R

(dq(R))2e�tl(R) =

(0,-1)

(-1,0)

. (5.66)

where we have defined the open string modular Hamiltonian

Hopen |Riji = l(R) |Riji . (5.67)

Even though we have drawn the same diagram as in the t = 0 case, we have included an

open string propagator e�tHopen which introduces an explicit t dependence. Equation (5.66)

gives an explicit realization of the Susskind-Uglum proposal to interpret the closed string

amplitude as a trace over an open strings which end on the entangling surface.

Compatibility of open and closed string pairings The closed pairing (4.20) defines

the adjoint operation in our closed string TQFT which maps the Hartle-Hawking state to

its dual. Having defined an extension to the open TQFT with an adjoint operation given by

the open pairing (5.54), we should check that these two adjoint operations are compatible.

This is a consequence of the E-brane axiom together with the right diagrams in (5.61) (5.62),

which states that zipper/cozipper respects the multiplication/comultiplication. Explicitly, we
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Figure 7.8: On the left,the blue disk corresponds to a (0, 0) cap with trivial bundle
structure. To obtain the Calabi Yau cap, a defect operator is inserted to implement
the nontrivial topology. In the first equality, we have integrated over the cap to
obtain a non local shrinkable boundary condition U = D. An equivalent A model
amplitude on the disk can be obtained by moving the defect operator outside the
hole and putting a local boundary condition on its boundary.

7.3 Chern-Simons dual of the Hartle-Hawking state and

the entanglement entropy

In the previous section, we defined a factorization of the closed string Hilbert space

Hclosed in terms of an extension of the A-model closed TQFT. We formulated the

closed TQFT in terms of the representation category of quantum groups, and

derived an extension compatible with the quantum group symmetry as well as the
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E-brane axiom. This naturally led to a q-deformed notion of entanglement entropy

consistent with the presence of edge modes transforming under the quantum group

U(∞)q. In this section, we provide additional evidence supporting this definition of

closed string entanglement entropy by appealing to the dual Chern-Simons theory.

As shown in Fig. (7.4), the dual Chern-Simons description can be obtained

by first applying a geometric transition which maps closed strings on the resolved

conifold to open strings on the deformed conifold T ∗S3, with a large N number

of branes wrapping S3 [161]. The string field theory for these open strings is

then given by U(N) Chern-Simons theory on S3. The equivalence between Chern-

Simons theory on S3 and open topological string theory on T ∗S3 holds even at finite

N and can be understood as follows [343]. The A model open string theory contains

only zero mode degrees of freedom and localizes to holomorphic instantons that

must wrap a minimal volume two dimensional manifold with boundaries ending on

S3. In the deformed conifold geometry, the only such minimal volume manifolds

are points on S3. These point-like worldsheets are degenerate instantons and act

like particles charged under U(N). We thus expect that this theory should be a

topological field theory on the S3, which can be shown to be Chern-Simons gauge

theory. From the point of view of the original closed string theory on the resolved

conifold, the Chern-Simons gauge theory can be thought of as living on the S3 at

infinity. [318, 285, 156] This is reminiscent of AdS/CFT.

The relation between Chern-Simons theory and the gravitational dual closed

string theory extends to more general geometries with multiple S2 resolutions

and to backgrounds with branes wrapped on Lagrangian manifolds [285, 156].

The duality provides a local mapping between branes on the resolved conifold

and Wilson loops in Chern-Simons theory. It is essential for obtaining the gauge
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theory dual of the Hartle-Hawking state and relates the entanglement cuts on the

two sides.

We will give a full derivation of this duality in section 4. In this section, our im-

mediate goal is to present the Chern-Simons dual of Hartle-Hawking state (7.23)

and compute its standard and undeformed entanglement entropy using the ex-

tended Hilbert space factorization into left and right moving WZW model edge

modes [336, 352, 85]. We will find a precise matching between the vacuum sub-

tracted defect entropy [209, 210, 244] in Chern-Simons theory and the q-deformed

entanglement entropy we calculated above in the dual string theory. We also

present a Chern-Simons dual to the replica trick calculation of generalized entropy

[112, 141] and explain the construction of the generating functional for Wilson

loops which plays an essential role in the duality map on the branes.

7.3.1 Review of Chern-Simons theory

We begin by summarizing some important well-known results from Chern-Simons

theory. More details can be found for example in [341, 136, 258]. Consider Chern-

Simons theory with gauge group G on a manifold M with a boundary Σ = ∂M .

The action is given by

SCS,M(A) =
ik

4π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (7.63)

where the integer k is the level determining the central extension of the lie algebra.
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The Chern-Simons Hilbert space on a Torus The path integral on M de-

fines a state in the Hilbert space H(Σ) on Σ. This is given by the wave functional

ΨM(AΣ) = 〈AΣ|Ψ〉 =

∫

A|Σ=AΣ

DAeiS, (7.64)

where AΣ is the boundary value of the gauge field.

In [341], it was shown that H(Σ) is isomorphic to the space of conformal blocks

of a WZW model on Σ with gauge group G. In particular, H(S2) is one dimensional

and H(T 2) is spanned by irreducible representations of the affine Kac-Moody alge-

bra. We will focus on the torus since the Chern-Simons dual of the Hartle-Hawking

state |HH〉 belongs to H(T 2).

The basis elements |R〉CS for H(T 2) are obtained by performing the Chern-

Simons path integral on a solid torus D2×S1 with an insertion of the Wilson loop

operator

WR = trRP exp

∮

C

A, (7.65)

where R labels the representation and C is the non-contractible cycle of the solid

torus. This is shown in figure 7.9. The trivial representation corresponds to the

vacuum state |0〉 ∈ H(T 2) with no Wilson loops inserted.

We can superpose the states |R〉CS . Since no local operator can connect states

with different representation labels, each representation labels a superselection

sector corresponding to an anyon of type R.

Chern-Simons partition functions from Heegaard splitting Now we can

consider partition functions of Chern-Simons theory on a manifold M without

a boundary by gluing the aforementioned building blocks. Consider a Heegaard
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R

Figure 7.9: The state |RCS〉 is defined by the path integral on a solid torus with a
Wilson loop operator inserted.

splitting of M into two manifolds with boundaries M1 and M2 that are glued

together by a nontrivial diffeomorphism f : ∂M1 → ∂M2. Then there is a linear

map Uf such that

Z(M) = 〈ΨM2|Uf |ΨM1〉, (7.66)

where ΨM1 and ΨM2 are states assigned to M1 and M2 via (7.64), and Uf forms a

representation of the diffeomorphisms that define the gluing.

In particular, under the Heegard splitting, S3 is decomposed into two solid tori

T3
i = D2

i ×S1
i for i = 1, 2. which are glued together with an S transformation that

exchanges the A and B cycles. Thus we have

Z(S3) = 〈0|S|0〉 (7.67)

The value of the matrix element (7.67) is fixed by a normalization for the vacuum

state |0〉, which we choose to be

〈0|0〉 = Z(S2 × S1) = 1. (7.68)

Notice that this normalization is equivalent to a choice of path integral measure.

This defines the S matrix element

Z(S3) = S00 (7.69)
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The same Heegard splitting can be applied to compute expectation values of

Wilson loops S3. By gluing the state |R〉CS ∈ H(T 2) to the the vacuum state

|0〉 ∈ H(T 2) with an S transformation, we find

〈 trR(U)〉S3 = 〈0|S|R〉CS = S0R

= S00 dimq(R) (7.70)

In the second equality we introduced the quantum dimension dimq(R) of U(N).

It is the normalized expectation value of the unknot in S3 and give the effective

dimension of the topological Hilbert space for the anyon labelled by R.

7.3.2 Generating functional for Wilson loops and the Ω

state

Here we define the generating functional for Wilson loop operators in Chern-Simons

theory [285], which plays an essential role in the duality between Wilson loops and

worldsheets in topological string theory.

This can be obtained from the Ooguri-Vafa operator [285]

exp

( ∞∑

n=1

1

n
trUn trV n

)
=
∑

R

trR(U) trR(V ) (7.71)

where U = exp(
∮
γ
A), and γ is an unknot in S3. This can be derived from inte-

grating out a massless bi-fundamental field which couples to both the source and

dynamical gauge fields [285]. Treating V as a source, we insert this operator into

the path integral to obtain the generating functional

Z(V ) =

∫
DAeiSCS(A)+

∑
n

1
n

trUn trV n =
∑

R

〈 trR(U)〉S3 trR(V ) (7.72)
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for Wilson loops in an arbitrary representation R.

It will be useful to view the generating functional (7.72) as a wavefunction for

a state |Ω〉 on the torus Hilbert space, defined by

|Ω〉 =
∑

R

S0R |R〉CS

= S00

∑

R

dimq(R) |R〉CS (7.73)

If we introduce the coherent state basis |V 〉 ∈ H(T 2) with wavefunctionals

〈V |R〉 = trRV, (7.74)

then the wave function of |Ω〉 in this basis can be identified with the generating

functional Z(V )

Z(V ) =
∑

R

S00 dimq(R) trR(V ) = 〈V |Ω〉 (7.75)

7.3.3 Hartle-Hawking state in Chern-Simons theory

Consider Chern-Simons theory at level k with gauge group U(N), which corre-

sponds to the q parameter

q = exp(
2πi

k +N
). (7.76)

For any t ∈ C, define the following state on the torus

|Ω(t)〉 = S00

∑

R

dimq(R)e−
t
2
l(R) |R〉CS , (7.77)

which consists of a superposition of Wilson loops, and reduces to the state |Ω〉 at

t = 0. We claim that the Hartle-Hawking state |HH(t)〉 for string theory on the
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resolved conifold is dual to a suitable large N limit of |Ω(t)〉. In the coherent state

basis, the wavefunction for this state is

〈V |Ω(t)〉 = 〈e−t/2V |Ω〉 = S00

∑

R

dimq(R)e−
t
2
l(R) trR(V ) (7.78)

As in the case of t = 0 we can identify this expression as a generating wavefunc-

tional obtained by a path integral on S3:

〈V |Ω(t)〉 = Z(V, t) :=

∫
DAeiSCS(A)+

∑
n
e−nt/2

n
trUn trV n

=
∑

R

〈 trR(U)〉S3 e
−l(R)t/2 trR(V ) (7.79)

where we have applied a generalization of (7.71) by replacing V → e−t/2V . Z(V, t)

can again be obtained from integrating out a massive bi-fundamental field coupling

the source and dynamical gauge fields [285, 5, 4].

To obtain the appropriate large N limit of eq (7.77), we need to specify the

large N limit of the states |RCS〉. To do this, first define the states |kCS〉 whose

wavefunctions are obtained by inserting Wilson loops in the winding basis (7.18)

〈AT 2|~kCS〉 =

∫

A|T2=AT2

DAeiS
∞∏

n=1

tr(Un)kn

U = exp(

∮

S1

A) (7.80)

|kCS〉 is well defined in the large N limit, and |RCS〉 is defined by it’s relation to

|kCS〉 via the Frobenius relation (7.19) In this limit R is a representation label for

U(∞) corresponding to a Young tableaux.

The large N limit of the amplitudes 〈R|Ω(t)〉 is more subtle. Following [3, 258]

, we first take the large N limit while fixing the ’t Hooft coupling t′

N →∞

t′ =
2πiN

k +N
= constant, (7.81)
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which is the same as holding the ratio k
N

constant. We then analytically continue t′

to a real number and then take t′ →∞. In this limit we can expand the quantum

dimensions as

dimq(R) = (−i)l(R)dq(R)qNl(R)/2qκ(R)/4 +O(q−l(R)N/2), (7.82)

where dq(R) is defines as in (7.9) with

gs =
2π

k +N
(7.83)

Notice that we needed to analytically continue t′ so that qNl(R)/2 = e
t′
2
l(R) has

a divergent norm t′ → ∞; the first term of (7.82) can then be considered large

relative to the rest. Remarkably, we can absorb this divergence into the Boltzman

factor e−
t
2
l(R) because they both have the same exponent dependence on l(R).

More precisely, we will apply a shift to the “coupling” t in the Bolztman factor

e−
t
2
l(R) → e−

t+t′
2
l(R) (7.84)

and identify the leading dependence of dimq(R) on N as

qNl(R)/2 = et
′l(R)/2 (7.85)

The state

|HHCS(t)〉 := lim
t′→∞

lim
N→∞

|Ω(t+ t′)〉 = lim
t′→∞

lim
N→∞

S00

∑

R

dimq(R)e−
t+t′

2
l(R) |R〉CS

(7.86)

is then well defined since the divergent term (7.85) has been cancelled. Note

that S00(t′) diverges as t′ →∞, but this just gives the usual infinite normalization

which arises from the path integral measure. Using (7.82), we find that the putative

Chern-Simons dual of the Hartle-Hawking state |HH(t)〉 is:

|HHCS(t)〉 = S00

∑

R

(−i)l(R)dq(R)qκ(R)/4e−
t
2
l(R) |RCS〉 (7.87)
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In the dual closed string theory on the resolved conifold, the shift t → t + t′ in

(7.84) is performed to correctly parametrize the Kähler cone in the presence of the

B-flux on the S2 on which the worldsheet ends [105]. Notice that the this shift by

t′ is equivalent the introducing the relative factor between the Drinfeld elements

D and u:

D = q−N/2u (7.88)

In the large N limit, this choice of D effectively absorbs the divergence in the

quantum dimension as defined by u and assigns a finite dimension to the edge

mode Hilbert space in the R sector.

To see that we have obtained the correct dual to the Hartle-Hawking state, we

must show that the identification

|RCS〉 → |R〉 (7.89)

preserves locality in some sense. Otherwise equation (7.89) is just a linear map

between basis elements which is rather trivial, since all vector spaces of the same

dimensionality are isomorphic. The preservation of locality is captured most pre-

cisely by showing that local Hilbert space factorization of CS theory is mapped to

the factorization in the string theory. The sharpest expression of the local nature

of this mapping between |HH(t)〉 and |HHCS(t)〉 is obtained by identifying the

Wilson loops in CS theory to the boundaries of worldsheets in the string theory: we

will explain this duality in the next section [251, 300, 285, 156]. We will also show

the preservation of locality by checking that the entanglement entropy computed

with either factorization agrees.
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7.3.4 Matching with the dual partition function and emer-

gence of the bulk geometry

Consider the density matrix for |HHCS〉. In the following it is important to observe

that a TQFT is not endowed with a canonical choice of a Hermitian inner product.

Indeed, the sesquilinear property of such an inner product is incompatible with the

holomorphic nature of the A model. Therefore in the dual Chern-Simons theory, we

will define the density matrix and the partial trace without reference to a Hermitian

inner product. While this departs from the conventions of [336, 352, 112, 141],

this is consistent with the usual representation of the reduced density matrix as

a Euclidean path integral with a cut along the subregion. It also agrees with

conventions in defining entanglement entropy in non Hermitian systems where a

positive definite Hermitian inner product is not readily available.

We define the density matrix for the Hartle-Hawking state by

ρ = |HHCS〉 〈HH∗CS|

〈HH∗CS| :=
∑

R

(i)l(R)dq(R)q−κR/4e−l(R)(t)/2 〈RCS| (7.90)

where we deonte by 〈RCS| the basis dependent dual of |RCS〉, obtained by doing

the path integral on a torus of opposite orientation with the insertion of the Wilson

loop in the conjugate representation R̄. By definition the dual basis satisfies

〈RCS|R′CS〉 = δRR′ , (7.91)

but note that this makes no reference a Hermitian inner product17. Instead equa-

tion (7.91) arises from evaluating the Wilson loops expectation values in the S2×S1

17The usual Hermitian inner product agrees with (7.91) on a basis. However its sesquilinear
property is not consistent with the holomorphic nature of the A model and its Chern-Simons
dual.
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geometry obtained from gluing the two tori with opposite orientation. In particular

〈HH∗CS| is not related to |HHCS〉 by an anti-linear map.

In the string theory, 〈HH∗CS| corresponds to the the linear functional that is

related to the geometric state |HHCS〉 by flipping orientation and mapping branes

to anti-branes [325, 3]. In the Chern-Simons theory, we will take 〈HH∗CS| as part

of the choice of a density matrix ρ which determines the expectation value of

operators via

〈O〉 = tr(ρO) (7.92)

The trace of the density matrix agrees with the A model partition function on the

resolved conifold:

Z = tr(ρ) =
∑

R

(dq(R))2e−tl(R) = Ztop (7.93)

Just like the A model, this is a holomorphic quantity and is not a real norm.

It is important to note that from the point of view of the Chern-Simons theory,

the parameters t carry no geometric interpretation; it merely specifies a particular

superposition of Wilson loops. Remarkably, in the dual closed string theory, a

geometry has emerged in which t becomes the Kahler modulus of the target space.

Note that this Kahler modulus is not the one that arise from applying a geometric

transition to branes wrapping S3 in Chern-Simons theory. Instead it arises from a

particular superposition of Wilson loops.
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7.3.5 Entropy from geometrical replica trick in Chern-

Simons theory

Here we perform the replica trick calculation of entanglement entropy for the pu-

tative Chern-Simons dual (7.87) to the Hartle-Hawking state and show that they

match on the two sides of the duality. More precisely, we show that the q-deformed

entanglement entropy in the closed string theory coincides with the undeformed

defect entropy in Chern-Simons theory in the large N-limit. The defect entropy

is the difference between the entanglement entropy and the state independent

ground state entanglement entropy, and it measures the entanglement entropy due

to cutting the Wilson loops [209, 210, 244]. We will sidestep the question of how

to factorize of the Chern-Simons Hilbert space by applying the geometric replica

trick via surgery methods as in [112].

As pointed out earlier, our calculation of the entanglement entropy of a generic

state

|ψ〉 =
∑

R

ψ(R) |R〉 (7.94)

differs from [112] in the choice of inner product: since reference [112] uses a Her-

mitian inner product which defines an anti-linear adjoint operation, their density

will involve complex conjugation of the amplitudes ψ(R), whereas ours do not.

R

A Ā

Figure 7.10: Separated solid torus with a Wilson loop operator inserted.
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However apart from determining the coefficients in the density matrix ρ, the

choice of inner product has no bearing on the construction of the replica manifold

which computes the replica partition functions

Z(n) = trAρ
n
A, (7.95)

since neither the partial trace nor matrix multiplication implicit in the replica trick

uses the inner product. This point was recently emphazised in [131]. As a result,

we can borrow the results of [112] directly. First note that in when computing

Z(n) there are no “cross term” corresponding to replica manifolds with insertions

of Wilson loop R and R′ which are not conjugate to each other.

The reduced density matrix defined by the replica manifold will therefore de-

compose into superselection sectors labelled by R. This means we can apply the

result of [112] for each state |RCS〉 separately and sum up the results. For each R,

we partition the torus in Fig. 7.10 defining |RCS〉 as well as the dual torus corre-

sponding to 〈RCS|. We glue together the Ā to obtain a reduced density matrix,

and then construct the replica manifold by the usual cyclic gluing. The reference

[112] showed that the partition function for the nth replica is

Z(n) = trρA(R)n = Z(S;Ri)
1−nZ(S;Ri)

1−n. (7.96)

The normalization factor is

Z(1) = trρA(R) = 〈Ri|Ri〉 =
Z(S3;Ri)

2Z(S3;Ri)
2

Z(S3;Ri)2Z(S3;Ri)2
= 1. (7.97)

Using the large N identity

lim
N→∞

Z(S3;R)Z(S3;R) = S2
00dq(R)2. (7.98)

we obtain the replica trick entropy

SR = − ∂

∂n

Zn
Zn

1

|n=1 = 2 logS00dq(R). (7.99)
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Now we apply the replica trick the putative dual to the Hartle-Hawking state

(7.87)

|HHCS(t)〉 = S00

∑

R

(−i)l(R)dq(R)qκ(R)/4e−
t
2
l(R)|RCS〉. (7.100)

As noted earlier, the reduced density matrix

ρA = trA|HHCS(t)〉〈HHCS(t)∗|, (7.101)

breaks into superselection sectors labelled by R, so the replica partition function

is just

Zn = trA(ρnA) =
∑

R

(S00dq(R))2−2n(S00dq(R)e−
t
2
l(R))2n

=
∑

R

S2
00dq(R)2e−ntl(R). (7.102)

It is very interesting to note that the only effect of the replication is the replication

of the complexified area t. This means that from the string theory point of view,

the topology of the target space is not changed, and the Calabi-Yau condition

is preserved. This was precisely the topological constraint we imposed in our

definition of generalized entropy on the resolved conifold [118]. We can thus view

our Chern-Simons replica manifold as the in gauge theory dual to the replica

manfiold we constructed for the resolved conifold in [118].

Given (7.102), we find that

Zn
Zn

1

=
trAρ

n
A

( trAρA)n
= S2−2n

00

∑

R

dq(R)2e−ntl(R), (7.103)

where we defined Z ≡∑R dq(R)2e−tl(R).. The total entanglement entropy is

Stot = − ∂

∂n

Zn
Zn

1

|n=1 =
∑

R

p(R)(− ln p(R) + 2 ln dq(R)) + 2 ln(S00) (7.104)

where p(R) = dq(R)2e−tl(R)

Z
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As noted earlier, we will only be interested in the entropy due to cutting the

Wilson loops, since these are dual to the closed string worldsheets. This is captured

by the defect entropy which subtracts the state independent contribution

S0 = 2 ln(S00) (7.105)

which is the analogue of the background extremal entropy in [208, 247, 209, 210,

244]. The defect entropy is therefore

S = Stot − S0 =
∑

R

p(R)(− ln p(R) + 2 ln dqR). (7.106)

which matches with the generalized entropy computed in the closed string theory.

7.3.6 Factorization and edge modes in the dual Chern-

Simons theory

In this section we give the Chern-Simons dual of the factorization map (7.46) and

edge modes for the closed string theory on the resolved conifold. These can be

obtained from a suitable large N limit of the factorization map developed in [336,

352], where an explicit description of the extended Hilbert space for Chern-Simons

theory was given in terms of CFT edge modes. We will apply this factorization map

to the state |Ω(t)〉 and give a canonical calculation of entanglement entropy which

agrees with the results of the previous section. We find that the quantum group

edge mode symmetry of the closed string theory is described in the dual gauge

theory by the large N limit of Kac-Moody symmetry of the CFT edge modes.

Entanglement cut and the factorization map at finite N The entangle-

ment cut which we apply to the state |Ω(t)〉 is shown in Fig. 7.11. The surface
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of the torus is partitioned into two disconnected subregions A and Ā,separated by

a cylindical region of size ε. This is a UV regulator which we will send to zero

at the end of the calculation. To define the subregion Hilbert space HA,HĀ, we

choose a “shrinkable” entanglement boundary condition which breaks the topo-

logical invariance18 and introduces CFT edge modes along ∂A and ∂Ā [336, 352].

This shrinkable boundary condition is local and corresponds to setting the com-

ponent of the gauge field in the angular direction around the entangling surface

to zero. For U(N)k Chern-Simons theory, the edge modes correspond to chiral

U(N)k WZW models at the boundaries of A with opposite chiralities.

A Ā

L R

LR

Figure 7.11: Geometric entanglement entropy in Chern-Simons theory is equivalent
to left-right entanglement entropy in the WZW model. L and R in the diagram
represents left and right moving chiralities for the WZW models.

The subregion Hilbert space can be expressed as

HA = HL
WZW ⊗HR

WZW

HĀ = HR
WZW ⊗HL

WZW (7.107)

Due to the Gauss Law constraint, the Chern-Simons Hilbert space H(T 2) on

the torus does not naively factorize into a tensor product of subregion Hilbert

spaces. Instead, the factorization should be viewed as a mapping

H(T 2)→ HA ⊗HĀ (7.108)

18More specifically, the boundary condition introduces a choice of complex structure which
defines the chiral edge modes [141].
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that embedds the physical Hilbert space into the extended Hilbert space19; due to

the holographic nature of Chern-Simons theory, the extended Hilbert space consists

entirely of edge modes. The factorization map on each basis element is given by

|RCS〉 → |R〉〉1|R〉〉2

|R〉〉1 =
e
−8πε
l

(L̄0− c
24

)

√
nR

∞∑

N=0

dR(N)∑

j=1

|R,N, j〉L |R,N, j〉R, (7.110)

where 1, 2 labells the two entangling surfaces, and |R〉〉 is a normalized Ishibashi

state that satisfy the Gauss law constraint across the entangling surface. The

integers N, j label descendents, and dR(N) is a degeneracy for each level N . As

explained in [352], the factorization map is implemented by the Euclidean path

integral with a “brick wall” regularization. If we flip a ket into a bra in (7.110)

using a CPT conjugation20, the normalized Ishiabashi state becomes the modular

operator which implements the “half modular flow” from HA to HĀ. Finally the

normalization factor

n(R) = χR(e
−8πε
l ) = trRe

−8πε
l

(L̄0− c
24

) (7.111)

is the charactor of the integrable representation R of the Kacs Moody algebra for

U(N) at level k, and l is the length of entangling surface. Observe that the brick

wall regulator ε is needed to render the normalization finite, as ε→ 0 corresponds

to an infinite temperature limit.

For fixed |RCS〉, the reduced density matrix is obtained by factorizing the

density matrix (7.90) and tracing over Ā. This corresponds to tracing out a chiral

19Equivalently, we can view the physical Hilbert space as a fusion product

H(T 2) = HA ⊗G HĀ (7.109)

in which we impose quotient relation determined by a quantum gluing condition.
20This is refered to as the state-channel duality
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half of the left-right entangled Ishibashi states |R〉〉, which gives the reduced density

matrix

ρR = ρR1 ⊗ ρR̄2 , (7.112)

with

ρR1 =
1

n̄R

∑

N1,j1

e
−8πε
l

(L̄0− c
24

) |R,N1, j1〉L 〈R,N1, j1|L ,

ρR̄2 =
1

nR

∑

N2,j2

e
−8πε
l

(L0− c
24

) |R,N2, j2〉R 〈R,N2, j2|R (7.113)

Note that edge modes at the two boundaries of a subregion have opposite chiralities,

and combine to form a diagonal CFT. The entanglement Hamiltonian21 is identified

with the non-chiral WZW Hamiltonian:

HA =
−8πε

l
(L0 + L̄0 −

c

12
) (7.114)

ρA =
e−HA

ZA
(7.115)

where ZA = n̄RnR is the partition function of the CFT edge modes.

The entanglement entropy can be obtained directly without appealing to the

replica trick:

S = − trρA log ρA = trA(ρAHA) + logZA (7.116)

As ε → 0, the “modular energy term” vanishes and the entropy is identified with

the free energy. For a fixed R sector we have

SR = logZA = logχR(e
−8πε
l )χR̄(e

−8πε
l ) (7.117)

21Our entanglement Hamiltonian is slightly different the usual definition of the modular Hamil-
tonian since it doesn’t contained the constant term due to ZA in the denominator
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In the ε→ 0 limit, the reduced density becomes maximally mixed, so the entropy is

the logarithm of the number of states in a suitable sense. In fact this interpretation

becomes sharper when we consider only the entropy due to cutting the Wilson loop.

This is obtained by subtracting the vacuum entropy for R = 0, which gives the

defect entropy Sdefect(R). This gives a counting of the degeneracy according to

eSdefect(R)+Sdefect(R̄) =

(
lim
ε→0

trRe
−2πεHCFT

trR=0e−2πεHCFT

)(
lim
ε→0

trR̄e
−2πεH̄CFT

trR̄=0e−2πεH̄CFT

)
= dimq(R) dimq(R̄)

(7.118)

The ratio of CFT partition functions define the “regularized dimension” of a rep-

resentations R/R̄ of the chiral algebra, which is one way to define the quantum

dimensions. In practice the ε → 0 limit is computed by first applying a modular

transformation to χR

χR(e−
8πε
l ) =

∑

R′

SRR′χR(e−
πl

2πε )→ SR0e
πcl
48ε = S00 dimq(R)e

πcl
48ε (7.119)

At finite N we have dimq(R̄) = dimq(R), so from the point of view of the defect

entropy, we have an effective degeneracy of dimq(R)2 for each superselection sector

labelled by R.

In the section 2, we observed that the quantum dimensions dimq(R) can be

viewed as a choice of measure determined by the Drinfeld element of U(N)q and

the corresponding quantum trace (7.44). Here we see an alternative definition of

this measure via the ratio of CFT partition functions. We will see below that in

the large N limit, these correspond to the two alternative descriptions of the edge

modes in the string theory and the Chern-Simons dual.

By linearity, we can apply the factorization map (7.113) to the state |Ω(t)〉

|Ω(t)〉 = S00

∑

R

dimq(R)e−l(R)t/2|R〉CS (7.120)
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which gives

|Ω(t)〉 = S00

∑

R

dimq(R)e−l(R)t/2 |R〉〉1 |R〉〉2, (7.121)

The (normalized) reduced density matrix now consists of a sum over superse-

lection sectors labelled by R

ρA =
∑

R

P (R)ρR1 ⊗ ρR̄2

P (R) =
dimq(R)2e−tl(R)

Z
(7.122)

This takes the form of a “thermo-mixed double” state [332] in which the two edge

modes CFT’s are classically correlated due to the Wilson loop threading the torus.

This reduced density matrix takes a form which is directly analogous to that of

a nonabelian gauge theory. We can make this manifest by writing the normalized

density matrices ρRi explicitly as a maximally mixed state in the R sector.

ρR1 =
e
−8πε
l

(L0− c
24

)

χR(e
−8πε
l

)
→ 1R

dimq RS00e
πcl
48ε

(7.123)

and similarly for ρR̄2 . Then we have

ρA =
∑

R

P (R)
1R⊗R̄

| dimq R|2|S00e
πcl
48ε |2

(7.124)

so we can identify P (R) as a probability factor for being in the R⊗R̄ sector, where

the density matrix is just proportional to the identity. The analogy become exact

when we subtract off the vacuum entropy which gets rid of the contribution from

S00e
πcl
48ε . Written in this form, we see that the entanglement Hamiltonian should

be identified (up to a state independent constant) with the operator

HA = tl(R) (7.125)

The CFT edge modes Hamiltonian (7.115) merely plays an intermediary role in

regularizing the trace, in order to determine a finite degeneracy factor for fixed R.
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We now repeat the edge mode calculation of defect entropy in the large N limit,

and show that it matches with string edge mode calculation involving entangle-

ment branes. In particular we want to identify the entanglement spectrum and

degeneracy on both sides. In the string theory, the edge mode Hilbert space breaks

up into superselection sectors R⊗ R̄ labelled by a young tableaux. In the large N

limit, each sector has an infinite number of states with modular eigenvalue tl(R).

The degeneracy in each sector is obtained by applying a regularized trace

trR⊗R̄(D) = trR(D) trR̄(D) = (dq(R))2 (7.126)

where D is related to the Drinfield element u of U(N)q by

Dij = q−N/2uij = δijq
−i+ 1

2 (7.127)

The regularization involves a continuation

q → qeεstring (7.128)

which makes the trace converge. We interpret the trace as a sum over entanglement

branes.

In the Chern-Simons dual, we find a similar structure from the large N limit of

the WZW model edge mode CFT [230]. The primary states of the U(N)k WZW

model are labelled by a finite number of integrable representations. However in the

large N limit, the truncation is lifted and we can associate each a chiral/antichiral

primary to each Young Tableaux. The conformal dimensions for these chiral pri-

maries are given by

∆(R) =
C2(R)

2(k +N)
, (7.129)

where C2(R) is the quadratic Casimir. The large N limit at fixed t′ gives

∆R(t′) =
1

4πi
l(R)t′ +O(

1

N
). (7.130)
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This determines the large N spectrum which defines the WZW model propagator,

and the associated normalized Ishibashi state (7.110). Notice that we had to

introduce UV regulator ε to define this propagator, which regularizes the trace

over the CFT edge modes. This is the CFT analogue of the string theory regulator

εstring.

Given these definitions we can factorize each state |RCS〉 as in (7.110) for the

finite N case. Applying this factorization to |HHCS(t)〉 and 〈HHCS(t)∗| and doing

the partial trace gives the reduced density matrix

ρA =
∑

R

p(R)ρR1 ⊗ ρR̄2 , p(R) =
dq(R)2e−tl(R)

Z

ρR1 =
e
−8πε
l

(L0− c
24

)

χR(e
−8πε
l

)
, ρR2 =

e
−8πε
l

(L̄0− c
24

)

χR̄(e
−8πε
l

)
(7.131)

where Z is the resolved conifold partition function. As in the finite N case the

density matrix in the fixed R sector is maximally mixed when we take ε→ 0, and

the entanglement entropy in each sector just computes the log of the degeneracy.

The entanglement Hamiltonian is then given by

HA = tl(R) (7.132)

which is the same as in the string theory

We can obtain this degeneracy factor for fixed R by first keeping N and t′ finite

and taking the ε→ 0. In this limit, we can formally write

ρA =
∑

R

p(R)
e
−8πε
l

(L0+L̄0− c
12

)

|χR(e
−8πε
l

)|2
∼
∑

R

p(R)
1R⊗R̄

| dimq R|2|S00e
πcl
48ε |2

(7.133)

If we now take the large N limit of the quantum dimensions using (7.82), then

ρA ∼
∑

R

p(R)
1R⊗R̄

dq(R)2|S00e
πcl
48ε |2

(7.134)
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which shows that after the vacuum subtraction there is an effective degeneracy

dq(R)2 just as in the string theory. Note that in obtaining this degeneracy, it was

crucial to take into account the opposite chiralities of the two edges, which have

complex conjugate characters. Explicitly, using this order of limits the entangle-

ment entropy of |HHCS〉 is given by

S = lim
t′→∞

lim
N→∞

∑

R

(−p(R) ln p(R)) + p(R) ln | dimq R|2 +
πcl

12ε
+ 2 lnS00

=
∑

R

(−p(R) ln p(R)) + p(R) ln (dq(R))2 +
πcl

12ε
+ 2 lnS00 (7.135)

If we subtract the “extremal entropy”, which is the ground state entanglement

entropy in the absence of Wilson loops:

Sext =
πcl

12ε
+ 2 lnS00 (7.136)

we obtain the defect entropy

Sdefect = S − Sext =
∑

R

(−p(R) ln p(R)) + p(R) ln (dq(R))2 (7.137)

which again agrees with the q-deformed entropy of the closed string theory.

In Chern-Simons theory, the area term in (7.136) originates from UV diver-

gences in field theories, which can also be obtained from careful treatment of the

replica trick calculation [141]. The area term is important when applying CS the-

ory as a low energy effective field theory, since it is required for the positivity of

the entanglement entropy. However, our definition of generalized entropy in string

theory does not include this term, since we are only capturing the entanglement

purely due to cutting the worldsheets, which is dual to cutting the Wilson loops.

As a result we obtain a manifestly positive entropy without including the area

term.
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7.4 Large N expansion of Wilson loops and dual string

worldsheets

In the previous section we applied a large N limit to the state (7.87) in Chern-

Simons theory, and showed that its factorization leads to an entanglement entropy

consistent with the q-deformed entropy of the Hartle-Hawking state in the closed

string theory. This bolsters our claim that the q-deformed entropy should be

viewed as the topological string analogue of generalized entropy in AdS/CFT.

Here we will explain the matching of the states and the dual entropy calculations

from the point of view of the large N duality between Wilson loops and string

worldsheets [285, 156].

Toric diagrams and geometric transitions. Toric diagrams provide a useful

representation for topological string amplitudes which gives a precise description

of the geometric transition between the resolved and deformed conifold. They

capture the duality in the presence of branes in a simple graphical language. We

give a very brief description here and defer a more detailed explanation to the

Appendix.

Toric manifolds such as the resolved and deformed conifold can be characterized

as a T 2 × R fibration over R3. The toric diagrams specify the degeneracy locus of

this fibration where a cycle of T 2 shrinks. It turns out this locus lives in a R2

subspace of the base, and we can specify this locus by edges on a graph. The

orientation of the edges determines which cycle degenerates on T 2.

For example C3 is given by a trivalent graph with a single vertex as shown as

the third diagram in Fig. 7.16. The topological vertex is given by adding branes on
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this graph, labelled by arrows. In particular,the Hartle-Hawking state correspond

to adding one stack of branes along an edge, as shown in the right of figure 7.16.

Gluing two topological vertices with branes and anti branes inserted gives the

resolved conifold geometry as shown in the right of Fig. (7.138). Note that the

inner edge describes a sphere with Kahler modulus t′, which can by described

by a cycle which expands from a point and then shrinks. The deformed conifold

geometry T ∗S3 is given by the left diagram in figure (7.138). The dotted line

describes the base S3; this can be understood via the Heegaard splitting in which

S3 is described as two solid torus glued together with an S transformation. The

dotted line captures this geometry as a foliation of 2- tori T 2 which begins with a

pinched A cycle and ends with a pinched B cycle.

In terms of toric diagrams, the geometric transition is captured precisely by the

equality in (7.138), in which the dotted line representing the three-sphere wrapped

by a large N number of branes is replaced by a two sphere with flux t′ = igsN

(0,1)

z=0

(1,0)z=-a

S3

=

(0,1)

(1,0)t′
(-1,0)

(0,-1)

. (7.138)

258



7.4.1 Mapping Wilson loops to worldsheets on the de-

formed conifold

Worldsheet description at finite N We first consider the worldsheet descrip-

tion of |Ω(t)〉 from the point of view of the open string theory on the deformed

conifold geometry. This is valid even at finite N , since Chern-Simons theory is the

exact string field theory for strings on the deformed conifold. We start with the

case t = 0. Note that while |Ω(0)〉 is defined on the torus, its wavefunction in the

coherent state basis is given by the generating functional (7.72) for Wilson loops

on S3.

To obtain a worldsheet description of the Wilson loops, we use the Frobenious

relation to change to the winding basis.

W~k(U) :=
∏

n

(trUn)kn (7.139)

In this basis, |Ω〉 is given by

|Ω〉 = S00

∑

~k

dimq(~k)

z~k
|~k〉

dimq(~k) =
1

S00

〈W~k〉S3 , (7.140)

where

〈~k|~k′〉 = δ~k,~k′z~k

z~k = Πjkj!j
kj (7.141)

The combinatorial factor z~k reflects the different ways to glue together the Wilson

loops in the bra and ket state.
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Figure 7.12: The generating functional for Wilson loops can be viewed as the open
string amplitude on the deformed conifold with dynamical branes wrapping S3 and
probe branes wrapping L. They intersect along a knot C on S3,colored in blue.

The generating functional (7.72) is given by

Z(V ) =

∫
DAeiSCS(A)+

∑
n

1
n

trUn trV n

=
∑

~k

1

z~k
〈W~k(U)〉

S3 〈V |~k〉 , (7.142)

where we applied the identity

exp

( ∞∑

n=1

1

n
trUn trV n

)
= 1 +

∑

~k

1

z~k
W~k(U)W~k(V ), (7.143)

used U to denote the holonomy of the dynamical gauge field A, and V to denote

the holonomy of the source. We used the notation 〈V |k〉 instead of W~k(V ) in

(7.142) to distinguish the source Wilson loop, which should be viewed as a state

in H(T 2).

As we have noted earlier, Z(V ) = 〈V |Ω〉 is the coherent state wavefunction

for |Ω〉. When expressed in the winding basis, each term in (7.142) labelled by ~k

has a string theory interpretation on the deformed conifold in terms of open string

worldsheets ending on a configuration of intersecting D branes. As shown in Fig.
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7.12, this configuration consists of non-compact, probe branes on a Lagrangian

submanifold L which intersects a large N number of dynamical branes on S3

along the knot C [285]. It was shown in [285] that Z(V ) is the spacetime effective

field theory obtained by integrating out the strings ending on the intersection of

these branes. More precisely, each term in (7.142) labeled by ~k corresponds to

open string worldsheets that end on the intersection of the D branes, with one set

of boundaries on dynamical branes coupled to the holonomy U , and the other set

of boundaries on probe branes with holonomy V . The winding pattern ~k of the

Wilson loop variables is identified with the winding of the open string endpoint

around the knot C. The toric diagram for Z(V, t) is given in Fig. 7.13.

(0,1)

z=-a

(1,0)z=0

Figure 7.13: Toric diagram for the deformed conifold with probe D-branes on L
intersecting the S3. For the simplicitiy, we have not specified the frame of the D-
brane and the probe brane is depicted as a red dot.

The worldsheets stretched between the two sets of branes with winding numbers

~k should be viewed as worldsheet instantons, i.e. a classical backgrounds in the

string path integral [156]. When quantizing strings around these backgrounds

there is a sector of open string worldsheets living on S3 which ends on the winding

boundary of the worldsheet instanton. These can be identified with the ribbon

diagrams of the Chern-Simons path integral which produces the expectation value

〈W~k(U)〉
S3 = S00 dimq(~k). These ribbon diagrams can be seen seen explicitly by
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expanding dimq(k) in small string coupling

gs =
2π

k +N
. (7.144)

This gives

dimq(~k) =
∏

j

(
sin((jNgs/2))

sin(jgs/2)

)kj
= Πj(

qjN/2 − q−jN/2
qj/2 − q−j/2 )kj

→
∏

j

(
N +

j2g2
s

24
(N −N3) +O(g4

s)

)kj
(7.145)

At zero string coupling, there are no interactions between the instanton worldsheets

and the ribbon diagrams, so we just get a factor of N per boundary due to the

Chan Paton factors running in a loop. However turning on the string coupling

introduces corrections where the fatgraphs interact with the winding boundary

of the instanton. For example, the first subleading term proportional to N − N3

comes from the well known “theta” diagrams. Remarkably the all order corrections

sum up into a qj deformed number:

[N ]qj =
qjN/2 − q−jN/2
qj/2 − q−j/2 (7.146)

This shows explicitly how the open string interactions obey a hidden quantum

group symmetry which dictates the final form of the target space amplitude. We

have performed a series expansion in gs to make this open string interactions

explicit, but it is important to observe that the series has to be summed to obtain

the quantum group symmetry.

The factor 〈V |~k〉 in (7.142) arises from the opposite boundaries of the world-

sheet instantons that end on the probe branes on L. Since these branes are non-

compact, the worldvolume gauge field is non-dynmaical and 〈V |~k〉 comes from the

coupling of the worldsheet boundary to the background gauge field. These are

identified with the coherent state wavefunctionals of the Chern-Simons theory.
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The worldsheet description given above generalizes to the state |Ω(t)〉. Making

t non zero corresponds to displacing the probe branes away from S3, so that the

stretched worldsheet instantons now have (complexified) area t. In terms of the

winding basis, the wavefunctional for |Ω(t)〉 is

〈V |Ω(t)〉 = Z(V, t)

= S00

∑

~k

dimq(~k)e−tl(
~k)/2

∏

n

tr(V n)kn , (7.147)

where the Boltzman factors e−tl(k)/2 originates from the exponential of the world-

sheet action for the stretched worldsheets. Fig. 7.14 shows the toric diagram for

〈V |Ω(t)〉.

(0,1)

z=0

(1,0)z=-a

Figure 7.14: Toric diagram for the deformed conifold with M D-branes on M.
Note that we have not specified the frame of the probe D-brane on M.

The large N , t′ limit and shift of the the worldsheet area Just as in the

representation basis, the large N and t′ limit of dimq(k) has a divergent factor

dimq(~k)→ qNl(
~k)/2(−i)

∑
j kjdq(~k) +O(q−Nl(

~k)/2) (7.148)

which should be absorbed into a shift of the coupling t

e−tl(
~k)/2 → e−(t+t′)l(~k)/2 (7.149)
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In terms of the string theory, the shift is interpreted as a modification of the

worldsheet area of the stretched instantons to account for a nontrivial B field flux.

Applying this limit, we can write

lim
t′→∞

lim
N→∞

〈V |Ω(t+ t′)〉 = S00

∑

~k

qNl(
~k)/2(−i)

∑
j kjdq(~k)e−(t+t′)l(~k)/2 〈V |kCS〉

= S00

∑

~k

(−i)
∑
j kjdq(~k)e−tl(

~k)/2 〈V |kCS〉 (7.150)

The worldsheet description of each Wilson loop insertion in this wavefunction is

given in Fig. 7.15.

dynamical branes

Probe branes on

Wilson loop defining the Chern 
Simons  states   

Figure 7.15: Displacing the probe branes away from S3 gives rise to open string
instantons of finite area, stretched between the branes.

7.4.2 Applying the geometric transition to the resolved

conifold geometry

Having described the large N limit of the Chern-Simons state |Ω(t)〉 in terms of

string theory on the deformed conifold, we now apply the geometric transition to

show that it is mapped to the Hartle-Hawking state |HH(t)〉. We have to consider

the geometric transition of the brane configuration in Fig. 7.15. This is illustrated
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in Fig. 7.17; In the large N limit,

lim
N→∞

|Ω(t+ t′)〉 (7.151)

the geometric transition replace the branes wrapping a three-sphere into B field

flux t′ = igsN threading a two sphere of size t′. The area of the two-sphere is then

“sent to infinity” by taking the limit t′ → ∞. A precise geometric description of

this limit is described in terms of toric diagrams in Fig. 7.16.

equivalent to each other

(0,1)

z=0

(1,0)z=-a

S3

=

(0,1)

(1,0)t0
(-1,0)

(0,-1)

. (5.12)

Now consider the deformed conifold with a stack of probe D-branes on Lagrangian sub-

manifold denoted by a red dashed line. The arrow denotes the orientation of a Lagrangian

submanifold.
(0,1)

z=0

(1,0)z=-a
(5.13)

Applying the geometric transition, we obtain resolved conifold with the same stack of probe

D-branes on the Lagrangian submanifold depicted as

(0,1)

(1,0)

(-1,0)

(0,-1)

(5.14)

– 28 –

equivalent to each other

(0,1)

z=0

(1,0)z=-a

S3

=
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Now consider the deformed conifold with a stack of probe D-branes on Lagrangian sub-

manifold denoted by a red dashed line. The arrow denotes the orientation of a Lagrangian

submanifold.
(0,1)

z=0

(1,0)z=-a
(5.13)

Applying the geometric transition, we obtain resolved conifold with the same stack of probe

D-branes on the Lagrangian submanifold depicted as

(0,1)

(1,0)

(-1,0)

(0,-1)

(5.14)
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2d TQFT in part 1 manifest. (cite)is this better? Manki

Let us take the large N limit, (5.18) and (5.22) give,

Z(V ) = Zres(t
0, gs)

X

R

(�i)l(R)dqR(gs)e
igs(R)/4e�|R|t/2 trR V (5.23)

which is the amplitude hV |HHi with an extra prefactor Zres(t
0, gs). Note that Zres(t

0, gs)

acts as a regulator. This is also the reason why we need to do the vacuum subtraction in the

Chern-Simons theory calculation above, we will comment more on this point below in section

?.3. When we decouple the factorized t0 regulator, we reproduce hV |HHi

Z(V ) =
X

R

(�i)l(R)dqR(gs)e
igs(R)/4e�|R|r/2 trR V (5.24)

whose toric diagram corresponds to

(0,1)

(1,0)

(-1,-1)

(5.25)

Further note that (5.24) is the simplest version the topological vertex [? ], in which there is

only a single stack of D-branes on the external legs.

In a similar way, we prepare a separate copy of the deformed conifold with a stack of

probe anti-D-branes (notice the change of orientation here)

(0,1)

(1,0)

– 30 –

Figure 7.16: The toric diagrams show the result of the geometric transition applied
to the deformed reosolved with probe branes displaced from S3. Under the transi-
tion the S3 is replaced by a sphere of size t′. On the right, we show the t′ limit in
which that sphere t′ is sent to infinity. This results in “half” the resolved conifold
geometry with probe branes inserted, which defines the Hartle-Hawking state. It
is important to note that we have specified the framing for the probe D-brane for
the HH state, which is determined by the direction of the arrow [4].

As shown in Fig. 7.17, under the geometric transition, the worldsheet bound-

aries ending on the S3 closes up. On the other hand, the displaced probe branes L

on the deformed conifold are mapped to probe branes L′ on the resolved conifold,

which cut through the equator of the base S2. These are precisely the probe branes

which defines the Hartle-Hawking state on the resolved conifold. We can therefore

identify the Chern-Simons wavefunction

〈V |HHCS(t)〉 = lim
t′→∞

lim
N→∞

|Ω(t+ t′)〉 = S00

∑

~k

(−i)
∑
j kjdq(~k)etl(

~k)/2
∏

n

tr(V n)kn

(7.152)
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with the string amplitude that defines the Hartle-Hawking state (neglecting an

overall normalization).

Similarly, the overlap 〈HHCS(t)∗|HHCS(t)〉 can be identified with the resolved

conifold partition function by applying the geometric transition as shown in Fig.

7.18, and then taking the t′ →∞ limit. As stated earlier, notice that the geometric

transition is being applied to the spheres with Kahler Modulus t′, rather than the

inner sphere with Kahlar modulus t.

Geometric transition 
and

dynamical branes

Probe branes on 

Wilson loop defining the Chern 
Simons  states  

Figure 7.17: The geometric transition, combined with the t′ →∞ limit maps the
state on the deformed conifold (left figure) to the Hartle-Hawking state on the
resolved conifold.

7.4.3 Dual description of the entanglement brane

In section 2, we observed that the entanglement brane boundary state |D〉 in the

closed string theory can be identified with the Hartle-Hawking state |HH(t = 0)〉

when the Kahler modulus is set to zero. Geometrically, this boundary state de-

scribes a “Calabi Yau cap”, which corresponds to a non-local boundary condition

that leads to a q-deformation of the edge mode symmetry. Since we have identified

the dual description of |HH(t = 0)〉 on the deformed conifold, we can also identify
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the dual of the entanglement brane boundary state; this is given by configuration

of dynamical D branes wrapping the S3 and probe branes on a deformed conifold

geometry.

E-brane boundary state and the shrinkable boundary condition on the

deformed conifold geometry We want to give a dual thermal description of

the E brane boundary state |D〉 in terms of a shrinkable boundary condition on the

deformed conifold geometry. This is obtained essentially by running the duality

transformation described in the previous section backwards. We begin with a

closed string channel interpretation of two stacks of E branes on the resolved

conifold geometry:

Zresolved(t) = 〈D∗|e−Hclosed|D〉

= 〈HH∗(t = 0)|e−Hclosed|HH(t = 0)〉

Hclosed = l(R)t (7.153)

This is an amplitude between two E brane boundary states on the resolved conifold.

To obtain a dual thermal interpretation, we have to first introduce two S2’s with

Kahler parameter t′ = igsN as shown in the left diagram of Fig. 7.18. For large

t′ this effectively introduces a constant factor of S00(t′)2 into Zresolved(t). We then

apply a geometric transition to obtain a deformed geometry where the fluxes are

replaced by a large N number of branes wrapping two S3’s. In terms of the overlap

(7.153), this corresponds to mapping:

S00 |HH(t = 0)〉 = |HHCS(t = 0)〉 → lim
N→∞

|Ω(t′)〉

〈HH∗(t = 0)|S00 = 〈HH∗CS(t = 0)| → lim
N→∞

〈Ω(t′)∗| (7.154)

while keeping the same string theory Hamiltonian.
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which is

Z =

Z
dV Zres(t

0, gs)
2
X

R1,R2

(�i)l(R1)il(R2)dq(R1)dq(R2)e
�(l(R1)+l(R2))t/2e�igsR1

/4eigsR2
/4 trR1 V trR2 V

(5.30)

=S00(N, gs)
2
X

R

(dqR(gs))
2e�l(R)t. (5.31)

5.3 Normalization of the partition function and the regulator

rewrote some parts to try to make the section more clear, Manki see if you feel it’s better

now?

Note that the contribution S00(N, gs)
2 = Zres(t

0, gs)
2 comes from the regulator P1’s

marked by the black points. We can interpret this extra overall factor to be setting the

normalization of the partition functions. Interestingly, this choice matches the normalization

chosen for the q-deformed Yang Mills theory(cite Vafa). deleted ambiguous wordings

To obtain the A model partition function on the resolved conifold, we decouple the

regulator S00(t
0, gs)

2 by taking large volume limit t0 ! 1

t

equivalently Z =
P

R(dqR(gs))
2e�l(R)r. This result also shows that the Hartle-Hawking state

(5.10)

| i = lim
t0!1

X

R

dimq(R)e�l(R)t/2|RiCS =
X

R

dqR(gs)q
(R)/4e�l(R)r/2|RiCS (5.32)

indeed computes partition function of topological A model on half of the resolved conifold

with Chern class (0,�1) such that

Z = hHH⇤|HHi. (5.33)

– 32 –

Notice that we don’t replicate the regulator P1s when we do the replica trick on the

resolved conifold side, this is clear from the physical interpretation that the regulator we

introduced only changes the normalization of the partition function and the entanglement

entropy calculated including this factor should only contribute an extra constant background

extremal entropy. Applying the replica trick to (5.36), we see that the closed string entan-

glement entropy will get an extra

2 ln ZP1(t0, gs) = 2 ln ZCS(N, gs) = �2 ln D (5.37)

which is exactly the constant piece corresponding to the background t = 0 contribution in

Chern-Simons theory.

From the Chern-Simons theory point of view, it’s clear that what we want to calculate is

the entanglement entropy due to the inclusion of Wilson loops. However, without the inclusion

of the S3 background, the EE computation is not well posed. Hence, we first compute the

EE as a whole and subtracted the background contribution. From the string theory point

of view, this is also manifest because without more than one stack of D-branes one does not

have non-trivial non-degenerate instantons. The additional S3s coming from P1s provide the

‘background’, and it was observed in (cite Jensen and LM) that this defect entropy correctly

captures the entropy between the anyons, which is dual to what we want to calculate in the

resolved conifold side.

In Chern-Simons theory, there is an extra area law divergent term coming from the UV

divergences in field theories, which can be obtained from careful treatment of the replica trick

calculation (cite). Here, we don’t try to reproduce this. Because the divergent term also

contribute to the background extremal entropy which we want to subtract in the end. We

expect that in principle we can obtain this divergernt term also from an IR regulator as the

area law divergence should not only be present for the Hartle-Hawking state, but also be

present for the vacuum state, which from the UV/IR correspondence shall come from an IR

regulator (cite).

S3 S3

Figure 12: Toric diagram for the partition function(wavefunction)

An interesting fact we want to point out here is the connection for our current setup

– 34 –

Figure 7.18: The dual thermal interpretation of the resolved conifold partition
function is obtained by first introducing two S2 with Kahler paremeter t′ (left
figure) and then applying a geometric transition to the deformed geometry on the
right with branes on two S3. The worldsheets stretched between these branes
describe open string loop diagrams .

In the previous section, we developed a string worldsheet description of |Ω(t′)〉

in terms of configurations of D branes wrapping S3 and probe branes on a La-

grangian L. The linear functional 〈Ω(t′)∗| corresponds a similar D brane config-

uration where we change probe branes on L to anti branes. The overlap then

corresponds to annhilation of the probe branes, giving the the string theory parti-

tion function on a deformed geometry with dynamical branes on two S3’s:

Zdeformed(t, t′) = lim
N→∞

〈Ω(t′)∗|e−Hclosed |Ω(t′)〉

= lim
N→∞

∑

~k

1

z~k
〈Ω(t′)∗|e−tl(~k)/2|~k〉〈~k|e−tl(~k)/2|Ω(t′)〉

= lim
N→∞

(S00(t′))2
∑

~k

1

z~k
dimq(~k)dimq(~k)e−tl(

~k) (7.155)

Here we have identified the coupling of the closed strings to the entanglement

boundary state to be 〈~k|Ω(t′)〉 = S00 dimq(~k). As shown in Fig. 7.19 each term

labelled by ~k describes nondegenerate worldsheet instantons stretched between

dynamical branes on the two S3. In the open string channel, these are viewed

as loop diagrams describing a thermal ensemble of open strings. Thus, in the

large N limit, the D-branes on S3’s give the shrinkable boundary condition in

the dual geometry. Note that the shrinkable boundary condition in the deformed
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Figure 7.19: Annihilation of the probe branes gives rise to the partition function
Zdeformed(t, t′), which describes world worldsheet instantons stretched between D
branes on the two S3’s. The quantum dimensions which lead to the q-deformation
of the edge modes arise from the ribbon diagrams (red) interacting with the bound-
ary of the instanton worldsheets. We have shown one term in the ribbon diagram
expansion corresponding to the “theta” diagram.

geometry is local in the sense that D-branes define local boundary conditions on

the worldsheet BCFT.

Let’s consider in more detail what these worldsheets look like at finiteN in order

to understand the worldsheet description of the shrinkable boundary condition. We

thus consider the overlap

∑

~k

1

z~k
〈Ω∗(t′)|e−tl(~k)/2|~k〉〈~k|e−tl(~k)/2|Ω(t′)〉 = (S00)2

∑

~k

1

z~k
dimq(~k)dimq(~k)e−tl(

~k),

(7.156)

where the quantum dimensions should be viewed as a function of the open string

parameters:

dimq(~k) = dimq(~k)(N, gs) (7.157)

As we saw in eq (7.145), by expanding dimq(k) in small gs, we obtain the ribbon di-

agrams of the worldvolume Chern-Simons theory on the D branes which arise from

the quantization of the open strings in the background of the instantons. Thus,

the thermal open string partition function describes a modification of the usual

one-loop diagrams in which the boundary of the winding worldsheet instantons

interact with ribbon diagrams living on the D branes (see Figure 7.19 ). These
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interactions on the branes are crucial to the shrinkability of the D brane boundary

condition, since it is the full summation over these ribbon diagrams which leads

to a q-deformation of the usual N2 degeneracy factor for one-loop open strings

N2 → ([N ]qj)
2. (7.158)

Here j is the winding number of the worldsheet instanton around the thermal

circle. This q-deformation is needed to reproduce wavefunctions of the E brane

boundary state, and is therefore essential to the shrinkability condition.

As we noted earlier, applying the large N geometric transition and sending

t′ → ∞ closes up the holes on the open string worldsheets due to the D branes,

recovering the closed string worldsheets on the resolved conifold. The sigma model

description of this transition is well known. The novelty of this set up is that these

D branes are related to the entanglement branes which are inserted to define an

entanglement cut in the string theory.

Replica trick and the thermal partition function for open strings An

open string Hilbert space description of Zdeformed(t, t′) can be given explicitly in

term of the unnormalized reduced density matrix of the large N Chern-Simons

theory (7.133):

Zdeformed(t, t′) = trAρ̃A

ρ̃A = lim
ε→0

∑

R

(S00(t′))2dq(R))2e−tl(R) e
−8πε
l

(L0+L̄0− c
12

)

|χR(e
−8πε
l

)|2

∼
∑

R

e−tl(R)1R⊗R̄ (7.159)

In the last expression, have denoted by 1R⊗R̄ a maximally mixed state in the sector

R⊗ R̄ , which has a degeneracy factor of

χRχR̄ → (dq(R))2S2
00(t′)e

cl
ε (7.160)
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as ε → 0. Notice also that ρ̃A can be identified with the reduced density of

open strings on the deformed conifold, obtained from cutting the stretched open

string instantons defining |Ω〉. This is because we have previously identified the

worldsheet instanton description of the wavefunction 〈V |Ω〉 = Z(V ), so we can lift

the entanglement cut of Wilson loops in |Ω〉 directly to the entanglement cut of

the worldsheet instantons.

The S2
00 factor In the Chern-Simons theory description Zdeformed , the S00(t′)2

factor arises from the measure in the path integral, and t′ is viewed as the ’t

Hooft parameter. This constant sets the normalization of the partition functions

22. In the string theory description, this constant has a geometric origin. It comes

from the two S3’s in the deformed conifold geometry, and two S2 in the resolved

geometry after the transition.

It should be noted that multiplying the partition function or the reduced den-

sity matrix by a constant has no physical consequences and does not change the

entanglement entropy. We see this explicitly in the replica trick, which computes

the ratio

Z(n)

Z(1)n
=

trAρ̃
n
A

( trAρ̃A)n
(7.161)

so any rescaling of the un-normalized reduced density matrix ρ̃A would cancel.

However, a change in the measure for the path integral does change the entangle-

ment entropy, because the measure is not replicated in Z(n). This is why we obtain

an extra logS00(t′)2 in the entanglement entropy computed in Chern Simons.

In the string theory we can understand the distinction between an overall con-

stant and a choice of measure geometrically. When we replicate the deformed

22Interestingly, this choice matches the normalization chosen for the q-deformed Yang Mills
theory [9]
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geometry in figure 7.6, we do not duplicate the S3’s. Instead the replica mani-

fold is obtained simply by rescaling the Kahler modulus t by a factor of n, which

rescales area of the stretched worldsheet instantons by the same factor. This is

the string theory analogue of treating S00(t′)2 as a measure rather than an overall

constant, and leads to the logS00(t′)2 term in the entanglement entropy. Notice

that not duplicating the S3’s also manifestly preserves the Calabi Yau condition,

consistent with the constraint imposed on the dual replica manifold for the resolved

conifold geometry.

Now, we explain why we added an additional layer to the story by including

and subtracting the contributions from S3. In the original closed string calculation,

we computed the generalized entropy due to cutting non-degenerate worldsheet

instantons with finite area. For the Hartle Hawking state corresponding to ”half”

of the resolved conifold, these instantons wrap half of the minimal volume S2 and

end on probe branes intersecting the equator. However there is no way to cut

the deformed conifold T ∗S3 in half and also obtain non-degenerate instantons. To

obtain a dual description on a deformed geometry with non-degenerate instantons,

we had to first introduce the S3 to allow strings that stretch between them and

then subtract the contribution from ribbon diagrams that do not connect to the

instantons. These give precisely the S00(t′)2 we subtracted.

7.5 Discussion

In this work we provided a dual gauge theory description of generalized entropy for

closed topological strings on the resolved conifold. This was obtained by applying

a geometric transition to the brane configurations for Hartle Hawking state, as
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shown 7.21. The duality map on the branes has a direct analogue in AdS/CFT,

where the anyons are replaced by heavy quarks( see figure 7.20 ) .

We showed that the non-local shrinkable boundary condition in the bulk geom-

etry and the associated quantum group edge mode symmetry are mapped to a local

boundary condition in the gauge theory and CFT edge modes that transform un-

der a large N Kacs-Moody symmetry. In the same spirit, the q-deformed entropy

that arises from cutting the bulk string worldsheets is mapped to the un-deformed

defect entropy of Wilson loops in the boundary gauge theory.

We can summarize these results by saying that Gopakumar-Vafa duality pro-

vides a geometric interpretation of the measure on the entanglement brane edge

modes as defined by the Drinfeld element via equation (7.55). This is captured

most concisely by the toric diagrams in figure 7.18, in which the quantum trace

Zres = tr(De−H) = e

e

(7.162)

over entanglement branes on the resolved conifold is reproduced by introducing

fluxes on the resolved geometry and turning them into branes on a deformed ge-

ometry. The open strings instantons stretched between these branes determines a

thermal partition function which agrees with the partition sum in (7.162). This

provides a relation between the categorical description of entanglement brane edge

modes defined in [118] and the worldsheet description of topological D branes of

the A model string theory.

Our ultimate motivation for studying entanglement in topological string the-

ory was to understand entanglement in bulk quantum gravity in AdS/CFT. It is

thus natural to ask what features of entanglement in topological string theory is

expected to generalize to the physical string. The general picture of string entan-
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glement which we have developed in this two-part paper (as well as in [122, 123])

suggest that winding modes play a crucial role in determining the entanglement

entropy of closed strings. Indeed it is the sum over the winding patterns of the

string around the stretched entangling surface that allows it to be closed up.

We have also provided further evidence that open-closed string duality plays

an important role in characterising the entanglement structure of closed strings,

as originally proposed by Susskind and Uglum. As in [122, 123], we show that this

involves the introduction of entanglement branes which provide the entanglement

cut for the closed strings. It should be emphasized that while these branes seem

to be rigid in the perturbative worldsheet description, we expect them to fluctu-

ate dynamically in the low energy effective gravitational theory just like ordinary

D branes. Indeed, it has been shown from the analysis of the symplectic struc-

ture of classical gravity that gravitational edge modes contains degrees of freedom

associated with the fluctuations of a co-dimension two brane [116]. It would be

interesting to see if this can be related to the entanglement branes, similar to the

way that string theory D branes are related to black branes in supergravity.

Entanglement in Topoogical M-theory Just like in superstring theory where

different consistent formulations are expected to be unified by M-theory [345, 196],

it was proposed that topological string theories can be reduced from topological

M-theory [107]. It would be interesting to see if our formalism can be generalized to

calculate entanglement entropy in topological M-theory. Interestingly, the simplest

state we can consider on a six-dimensional time slice would be the A model parti-

tion function deformed conifold geometry in figure 7.22, viewed as a wavefunction
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for topological M-theory in one higher dimension23. Figures 7.22 and 7.23 suggest

a parallel between the conifold geometry and the thermal field double state asso-

ciated with the AdS-Schwarzschild geometry24. In AdS/CFT, the entanglement

between the two boundary CFT’s in the TFD state is captured holographically by

a spatial wormhole which connects the two boundaries through the eternal black

hole geometry [253]. This is an example of the ”ER=EPR” [250] slogan, which

relates quantum entanglement and geometric connections. For strings propagating

on the conifold geometry in figure 7.22 , it would seem that ”ER=EPR” manifests

itself through worldsheets connecting entangled subsystems corresponding to the

two S3’s.

Duality web and the B model Finally, we want to point out that almost all

corners of the duality web for the topological string are well understood. This is

summarized in Fig. 7.24 and warrants further study. One particularly interesting

corner is the proposed UV completion of the A model via q-deformed 2D Yang

Mills at large N. This theory has non perturbative corrections (of order e−N )

which describes baby universes corresponding to topology changing processes in

string theory [327, 9, 106, 7, 260, 275]. It would also be interesting to consider how

entanglement entropy behaves under mirror symmetry, which maps the A model

to the B model. Although the B model has the same closed string Hilbert space as

the A model, they have different local properties. The chiral boson theory which

describes the B model has a “pair of pants” amplitude which differs from the one

which defines the A model TQFT. We thus expect that the associated cobordism

theory would define a different notion of factorization.

23Historically, the wavefunction behavior of the topological string partition function [45, 342,
288] was observed first and led to the conjecture of the existance of topological M-theory.

24We thank Tom Hartman for the discussion on this observation.
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Another motivation for studying the B model comes from an interesting con-

nection with JT gravity. It was shown in the seminal paper that open topological B

models are equivalent to matrix models on Calabi-Yau manifolds that can be writ-

ten as a fibration over the spectral curve of the matrix model [109]. For example,

the JT matrix model [304], whose spectral curve is

F (x, y) = y2 − sin(
√
x)2 (7.163)

can be realized as topological B-model on Calabi-Yau[304, 275]

y2 − sin(
√
x)2 + u2 + v2 = 0. (7.164)

It would be interesting to compare how local properties of the topological string

and JT gravity emerges from the matrix model and see if the B model offers further

insight into JT gravity. In particular, the B model admits a Nekrasov deformation

[281, 206, 282] that is related to q-deformations. Perhaps this can be related to

q-deformations of JT gravity. 25.

25We thank Cumrun Vafa for pointing this possible connection to us.
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Figure 7.20: Duality between Wilson loop and worldsheet in AdS/CFT. On the
left figure, we showed the open string frame, where displacing a probe brane away
from a stack of D branes leads to stretched worldsheets ending on Wilson loops.
On the right we applied a geometric transition to obtain the closed string AdS×S5

geometry where the worldsheet has only one boundary ending on the probe brane.
This is a direct analogue of the duality between Wilson loops and worldsheets in
topological string theory
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Figure 7.21: Duality between Wilson loop and worldsheet in topological string.
There is an S3 at asymptotic infinity that has been omitted from the picture.
[156]

S3 S3

Figure 7.22: Toric diagram for the conifold geometry
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Figure 7.23: Thermo-field double state and the Penrose diagram for the dual AdS-
Schwarzschild geometry. The horizontal line in the middle represents the t = 0
time slice.

Figure 7.24: Web of dualities for topological string theory. W/T: worldsheet/target
space duality. O/C: open/closed duality (large N duality); M : mirror symmetry.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Conventions for Differential Forms

The orientations of D7-branes, and the self-duality properties of two-form fluxes

on them, are crucial in D7-brane monodromy models. We therefore devote this

Appendix to laying out our conventions for differential forms, orientation, and the

Hodge star operator.

Consider an orientable Riemannian manifold X of real dimension 2d. Given an

orientation on X, and equipped with the natural inner product 〈 , 〉 such that

〈 , 〉 : ΛpTX∗ × ΛpTX∗ → C, (ω, ν) 7→ 〈ω, ν〉, (A.1)

we define the Hodge star map for differential p-forms ω and ν as a map

?2d : ΛpTX∗ → Λ2d−pTX∗, (A.2)

such that

ω ∧ ?2dν = 〈ω, ν〉Vol2d, (A.3)

where Vol2d is the volume form of X with the given orientation. There is a natural

generalization of the Hodge star (A.2) in the case that X is a complex manifold of

complex dimension d. Taking ω, ν to be elements of ΛpTX∗ ∧ ΛqTX
∗
, the Hodge

star map is a linear map

?d : ΛpTX∗ ∧ ΛqTX
∗ → Λd−qTX∗ ∧ Λd−pTX

∗
, (A.4)

such that

ω ∧ ?dν = 〈ω, ν〉Vold. (A.5)
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The definitions (A.2), (A.4) agree on real differential forms and there is no ambi-

guity regarding the definition of the Levi-Civita symbol.

Under a change of the orientation, the volume form changes sign, and hence so

do the eigenvalues of the Hodge star. Taking d = 3, a fixed three-form flux that is

ISD for one orientation of X is IASD for the opposite orientation. Likewise, taking

X to be a divisor of a threefold (d = 2), a fixed two-form flux that is SD in one

orientation is ASD for the opposite orientation. Thus, to give a correct description

of D-branes in a flux compactification on a threefold X, we must specify a set

of internally consistent conventions for the orientation of X, the orientation of

divisors D ⊂ X, and the definitions of ?6 and ?4. We will now work out the

relations among these definitions.

We begin with a canonical choice of orientation, and show which other choices

are logically possible. For X a Kähler manifold, we write the Kähler form J in

local coordinates as

J = igab̄dz
a ∧ dz̄b̄. (A.6)

It is natural to define the volume form, and thus the orientation of the manifold,

as

Vold =
1

d!
Jd, (A.7)

where in local coordinates with diagonalized metric the volume form is written as

Vold = id det(gab̄)dz
1 ∧ dz̄1 · · · dzd ∧ dz̄d. (A.8)

We then call the orientation constructed above the canonical orientation. For

example, the canonical orientation of the volume form on a manifold X with d = 3

is

− idz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3. (A.9)
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Correspondingly, if D ⊂ X is a submanifold of complex dimension two, and is dual

to a curve of positive volume, then the orientation on D is

− dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2. (A.10)

From the definition of the Hodge star map, an SD real two-form S and an ASD

real two-form A satisfy the following relations:

S ∧ S = S ∧ ?S = 〈S,S〉Vol, (A.11)

S ∧ A = 0, (A.12)

A ∧A = −A ∧ ?A = −〈A,A〉Vol. (A.13)

The Kähler form in a manifold with d = 2 is SD in the canonical orientation, as

〈J, J〉 = 2.

Taking the definition of the Hodge star to be (A.4), one finds that a flux of

Hodge type (2, 1)primitive + (0, 3) is ISD — a relation that is ubiquitous in the

literature on flux compactifications — and similarly a flux of Hodge type (2, 0) +

(0, 2) on D ⊂ X is SD. These results confirm that our conventions (A.6),(A.7), and

(A.4) for orientation and for the Hodge star in Kähler manifolds are compatible

with the literature.

For completeness let us nevertheless explore other possible choices of consistent

conventions: see Table A.1. We will impose a few requirements, which imply con-

ditions on the numbers a, b ∈ {±1} appearing in Table A.1. The first requirement

is that the integral of the volume form over a positively-oriented manifold must

be positive. We will also require that forms of Hodge type (2, 1)primitive + (0, 3)

are ISD rather than IASD, which implies ab = 1. A final requirement is that the

bulk Chern-Simons coupling ∝ 1
i

∫
G ∧ Ḡ for forms of type (2, 1)primitive + (0, 3)

should correspond to positive D3-brane charge whose sign is b. Given these physics
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+ -
Choice of Hodge star (a) ω ∧ ?ν̄ = 〈ω, ν̄〉Vol ?ω ∧ ν̄ = 〈ω, ν̄〉Vol
Choice of Kähler form (b) igziz̄jdz

i ∧ dz̄j −igziz̄jdzi ∧ dz̄j

Table A.1: Possible conventions. The first column denotes the quantity whose
definition can be chosen. The variables a and b in parentheses equal +1 if the
choice corresponds to the second column and −1 if the choice corresponds to the
third column. We have taken a = b = 1 throughout this work.

inputs, the following describe self-consistent conventions. First, spacetime-filling

Dp-brane actions are of the form

− µp
∫

Im τVolp+1 + bµp

∫
Cp+1. (A.14)

The Bianchi identity for the RR 4-form field is

dF̃5 = H ∧ F − bρD3, (A.15)

where ρD3 is the D3-brane charge density. If G is ISD, then

H ∧ F = −G ∧ Ḡ
2i Im τ

= −b |G|
2Vol

2 Im τ
. (A.16)

In an ISD background, the following quantity vanishes:

Φ−1·b = h−1 − bα, (A.17)

where h is the warp factor and C4 = αdx0∧dx1∧dx2∧dx3. In this paper, we have

taken a = b = 1.

For any choice of a and b, the orientation on an effective divisor D is 1
2
J ∧ J ,

and a form of type (2, 0) + (0, 2) on D is self-dual on D, and so induces D3-brane

charge, rather than anti-D3-brane charge, on a D7-brane wrapping D.
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A.2 Green’s Function on a Toroidal Orientifold

In this section, we provide the Green’s function on a simple toroidal orientifold.

The Green’s function on T 2 is very well known — see e.g. [291]. Here we will

provide modular invariant Green’s functions on orbifolds and orientifolds of T 2

and T 6.

Finding a Green’s function on a compact manifold of real dimension greater

than two by the method of images can be challenging, as the sum diverges in

general. In order to deal with this divergence, we regulate the Green’s function on

a torus. Given this regularized Green’s function, we extend it to a Green’s function

on an orbifold and an orientifold.

We begin with a T 6 obtained by identification of the opposite faces of the six-

cube of side length L. We then define a toroidal Green’s function to be a function

that satisfies

∇2G(6)(x;x′) = δ(6)(x− x′)−
1∫

T 6 Vol6
. (A.18)

The Green’s function for the torus is then written as

G(6)(x; 0) = −
∑

n∈Z6

(1− δn,0)
e2πi~n·~x/L

4π2n2L4
. (A.19)

As we anticipated above, this sum diverges. We follow a prescription given in [306]

to regularize the Green’s function:

G(6)(x; 0) =L−4

∫ ∞

0

∑

n∈Z6

(1− δn,0)e2πi~n·~x/L−4π2n2sds (A.20)

=L−4

∫ ∞

0

(
1−

6∏

j=1

∑

n∈Z6

e2πinjxj/L−4π2n2
js

)
ds (A.21)

=L−4

∫ ∞

0

(
1−

6∏

j=1

ϑ3

( xj
L

∣∣∣ 4πis
))

ds. (A.22)
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We used the identity

ϑ3 (ν|τ) =
∑

n

e2πi(νn+τn2/2) (A.23)

for the last equality.

In order to obtain lower-dimensional toroidal Green’s functions, we dimension-

ally reduce the six-dimensional Green’s function (A.20). It is then clear that the

Green’s function satisfies the identity

∫
ddxG(6)(x;x′) = G(6−d)(x;x′). (A.24)

We choose G(0)(x;x′) = 0. We expect that G(2)(z; z′) would correspond to the well

known toroidal Green’s function

G(2)(z; z′) =
1

2π
log

∣∣∣∣ϑ1

(
z − z′
L

∣∣∣∣ τ
)∣∣∣∣−

( Im (z − z′))2

2L2 Im τ
+ C(τ), (A.25)

where τ is the complex structure modulus, and C(τ) is a function of τ [245] that

must obey

C(τ + 1) = C(τ), (A.26)

C(−1/τ) = C(τ)− 1

4π
log |τ | , (A.27)

in order for the Green’s function to be invariant under modular transformations.

These modular transformation properties suggest that C(τ) is given by

C(τ) = − 1

2π
log |η(τ)|+ C0, (A.28)

where η(τ) is the Dedekind eta function and C0 is undetermined constant. We

determined C0 = 0 numerically by demanding that the integral of the Green’s

function (A.25) over the torus vanishes.

Given the toroidal Green’s function (A.20), it is natural to extend it to the

Green’s function defined on a toroidal orbifold or a toroidal orientifold. Let us
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work with an example for simplicity. For a finite group ZN , let there be a group

action θ on a complex coordinate z. Then we denote a Green’s function defined on

the toroidal orbifold/orientifold T 6/ZN as

GT 6/ZN (z; z′) =
N∑

i

G(6)(z; θiz′). (A.29)

Similarly, a Green’s function on T 2/ZN is determined as

GT 2/ZN (z; z′) =
N∑

i

G(2)(z; θiz′). (A.30)

Here z and z′ are understood to be in the fundamental domain. We frequently

omit the subscript T 2/ZN .

Finally, we will make use of the identity

∫
ddx′∇G(d)(x;x′) · ∇G(d)(x

′;x0) =−
∫
ddx′G(d)(x;x′)∇2G(d)(x

′;x0) (A.31)

=−G(d)(x;x0). (A.32)
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Dimensional Reduction

In this appendix we first obtain, in §B.1.1 and §B.1.2, the couplings of D7-

brane gauginos that are required for our analysis. Then, in §B.1.3 and §B.1.5 we

give details of the superpotential and Kähler potential, respectively, in the four-

dimensional theory. Our conventions are as in [292], augmented by (2π)2α′ = 1.

B.1.1 D7-brane gaugino action

We first compactify type I superstring theory on T 2 and T-dualize to find the

action on type IIB D7-branes. As the ten-dimensional N = 1 supergravity ac-

tion with a vector multiplet, including the four-gaugino action, is well known, we

can determine with precision the D7-brane gaugino action including four-gaugino

terms.

One minor complication is that some fields, such as the NS-NS two-form B,

are projected out in type I superstring theory. We will therefore first arrive at a

D7-brane action containing all terms that do not involve such fields, but this will

not yet be the full D7-brane action. To obtain the proper gaugino-flux coupling,

one can then SL(2,Z) covariantize the gaugino-flux coupling, following [238, 135].

The type I supergravity action in ten-dimensional Einstein frame is [110, 42,
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221]

S =
1

2κ2
10

∫ √
−G

[
R10 −

1

2
∂Aφ∂

Aφ− eφ

12

(
FABC −

1

4
e−φ/2 tr χ̄ΓABCχ

)2

− eφ/2

16
√

2π2
trFABF

AB − tr χ̄ΓADAχ

]
, (B.1)

where χ is a 32-component Majorana-Weyl spinor. Traces here are taken in the

vector representation of SO(32). In order to simplify T-duality, we first rescale to

string frame, using G 7→ e−φ/2G. Compactifying on a T 2 with volume 1/2t, we

find

S =
1/2t

2κ2
10

∫ √
−G8

[
e−2φR8 + . . .

]
. (B.2)

Next, we T-dualize; since we are in type I string theory, this replaces the T 2 by a

T 2/Z2 with volume t, and re-defines e−2φ 7→ 2t2e−2φ, yielding the eight-dimensional

action

S =
t

2κ2
10

∫ √
−G8

[
e−2φR8 + . . .

]
. (B.3)

Finally, we rescale back to ten-dimensional Einstein frame, using G 7→ eφ/2G.

This procedure yields the new Yang-Mills term

1

2κ2
10

· 1

8π2

∫ √
−G8

[
−1

4
trFabF

ab

]
. (B.4)

Here a, b ∈ {0, . . . , 7}, and we will later use i, j ∈ {8, 9}. The action (B.4) is

consistent with the Einstein-frame D7-brane Dirac-Born-Infeld action

− µ7

2

∫
tr

{
eφ
√
− det(G+ e−φ/2F/2π)

}
. (B.5)

The factor of 1/2 is due to the fact that the gauge group is SO(2n); Higgsing to

U(n) by moving away from an O7-plane eliminates this factor (cf. [292]).

It is now convenient to take the T 2 in the type I frame to have the coordinate

range [0, 1]2, and to use the same coordinates for the double cover of the type IIB
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T 2/Z2. For simplicity, we also take the type I torus to be a square torus with string

frame metric gij = 1
2t
δij. This means that the string frame metric transforms via

G2 7→ G2/(2t)
2.

We can now study the fermionic action of the D7-brane in Einstein frame.

Since we are interested in studying D7-branes on a holomorphic divisor, we will

eventually take tr χ̄ΓABCχ to be a linear combination of the (pullback of the)

holomorphic three-form and its complex conjugate, and we can therefore retain

only functions of tr χ̄Γabiχ. Other contractions do not contribute to the terms of

interest.

With that restriction, after T-dualizing we find the string-frame D7-brane gaug-

ino action

Sferm = µ7

∫ √
−G8

[
−e−φ tr χ̄ΓaDaχ+

1

8
Fabi tr χ̄Γabiχ− 1

64t

(
tr χ̄Γabiχ

)2
]
,

(B.6)

and the corresponding Einstein-frame D7-brane gaugino action

Sferm = µ7

∫ √
−G8

[
− tr χ̄ΓaDaχ+

1

8
eφ/2Fabi tr χ̄Γabiχ− 1

64tE

(
tr χ̄Γabiχ

)2
]
,

(B.7)

where we have introduced the Einstein frame volume tE := te−φ/2.

We remark in passing that the gaugino quartic term has a prefactor 1/t that

depends not just on fields localized to the D7-brane, but also on the volume t

of the space transverse to the D7-branes. One could wonder how such a cou-

pling arises in a local action (we thank the referee for comments on this point).

To understand this, we consider the T-dual configuration of a stack of D3-branes

transverse to T 6/Z2. The four-dimensional supergravity resulting upon compacti-

fication contains a quartic gaugino term whose coefficient is proportional to M−2
pl ,

or in ten-dimensional terms is proportional to 1/VolT 6/Z2
. Upon T-dualizing four
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times, 1/VolT 6/Z2
is replaced by 1/t. Thus, the D7-brane gaugino quartic term

is a Planck-suppressed interaction that is T-dual to a local coupling required by

four-dimensional N = 1 supergravity coupled to vector multiplets.

Leaving implicit henceforth that ABC is a permutation of abi, the D7-brane

gaugino action can be written in the more symmetric form

Sferm = −µ7

∫ √
−G8

[
tr χ̄ΓADAχ−

eφ/2

24
FABC tr χ̄ΓABCχ +

1

192tE

(
tr χ̄ΓABCχ

)2
]
.

(B.8)

In (B.8) we have obtained the part of the action that survived the type I projec-

tions. The full D7-brane action is then given by SL(2,Z)-covariantizing. As doing

so would involve studying the transformation properties of the D7-brane fields un-

der SL(2,Z), which would take us too far from our main aims, and the full set of

two-gaugino terms in the κ-symmetric D7-brane action was found in [238, 135], we

simply SL(2,Z)-covariantize the action by including the missing terms found by

[238, 135], leading to

Sferm = µ7

∫ √
−G8

[
− tr χ̄ΓADAχ−

eφ/2

24
tr χ̄ΓABC

(
iF̃ABCσ1 − ie−φHABCσ3

)
χ

− 1

192tE

(
tr χ̄ΓABCσ1χ

)2
]
, (B.9)

where the σ matrix notation will be explained below.

B.1.2 Reduction of the D7-brane action on a divisor

Equipped with the gaugino action (B.9), we now consider wrapping D7-branes on

a divisor D in an orientifold M of a Calabi-Yau threefold. We assume that there

is a single Kähler modulus T , with the Kähler form written as

J = tω , (B.10)
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and the volume

Ve6u =
1

3!
t3 , (B.11)

where we have normalized ω ∈ H2
+(M,Z) such that

∫
M
ω∧ω∧ω = 1, and we have

normalized e−4A such that
∫
M
e−4Aω ∧ ω ∧ ω = 1. We take the volume of D to be

∫

D

√
ge−4A+4u = Re(T ) = t2/2 , (B.12)

while the volume of the curve dual to D is t, and corresponds to tE in (B.9).

The divisor D is assumed to be rigid, and so the D7-branes will not explore the

transverse space, and therefore the geometry of the latter is unimportant. However,

for later use we record that the volume of the transverse space is

V⊥e2u =
1

3
t . (B.13)

We note that wrapping on D topologically twists the D-brane worldvolume

theory, so that scalars become sections of the normal bundle N of D and fermions

become spinors on the total space of this normal bundle [46]. For notational con-

venience, we implement the topological twist via a background U(1) R-symmetry

gauge field, rather than by re-defining the local Lorentz group. Since, locally,

the Calabi-Yau manifold looks like the total space of the normal bundle, there is

no topological obstruction to relating these fermions to the covariantly constant

spinor on the Calabi-Yau.

Internal spinors

As our ansatz for the geometry of the internal space M , we take M to have an

SU(2) structure. This can be encoded in terms of two globally-defined orthonormal

spinors, η+ and χ+, and an invariant one-form vady
a, that are related by

χ+ =
1

2
vaγaη

∗
+ , (B.14)
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where |v|2 = 2. Using χ+ and η+ one can construct invariant forms with the

components

va = ηT+γ
aχ+ , J

mn
2 = iη†+γ

mnη+ − iχ†+γmnχ+ , Ωmn
2 = −iχ†+γmnη+ , (B.15)

Jmn = iη†+γ
mnη+ , Ωmnp = −iηT+γmnpη+ . (B.16)

The invariant forms satisfy

J2 ∧ Ω2 = Ω2 ∧ Ω2 = 0 , vaΩ
ab
2 = vaJ

ab
2 = 0 , J2 ∧ J2 =

1

2
Ω ∧ Ω2 , (B.17)

J = J2 +
i

2
v ∧ v , Ω = Ω2 ∧ v . (B.18)

We now construct the linear combinations

η1 := ieA/2+iϑ/2
(

cos
ϕ

2
η+ + sin

ϕ

2
χ+

)
, (B.19)

η2 := eA/2−iϑ/2
(

cos
ϕ

2
η+ − sin

ϕ

2
χ+

)
, (B.20)

which are normalized as

η†1η1 = η†2η2 = eA. (B.21)

The parameters ϕ and ϑ represent the angles between η1 and η2: from (B.19) and

(B.20) one has

η†2η1 = ieiϑ+A cosϕ . (B.22)

The spinors η1 and η2 can be repackaged into a pair of bispinors:

Φ1 := −8ie−Aη1 ⊗ η†2 , (B.23)

Φ2 := −8ie−Aη1 ⊗ ηT2 . (B.24)

Using the Clifford map, Φ1 and Φ2 are polyforms: specifically, they can be written

in terms of invariant forms as

Φ1 = eiϑe
1
2
v∧v
[
cosϕ

(
1− 1

2
J2 ∧ J2

)
− iJ2 + sinϕ Im Ω2

]
, (B.25)
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Φ2 = v ∧
[
iRe Ω2 − cosϕ Im Ω2 + sinϕ

(
1− 1

2
J2 ∧ J2

)]
. (B.26)

The ansatz we have just described corresponds to a generic SU(2) structure. If

M is a Calabi-Yau orientifold then in fact eiϑ = 1 and ϕ = 0. However, once gaug-

ino condensation is incorporated and M becomes a generalized complex geometry,

ϕ will vary non-trivially along M ; the SU(2) structure is then said to be dynamic.

We now expand to first order in the small quantity 〈λλ〉, using the fact that

ϕ = O(〈λλ〉). We find

Φ1 = e−iJ
(

1 + ϕ Im Ω2

)
+O

(
〈λλ〉2

)
, (B.27)

Φ2 = iΩ + ϕ v ∧
(

1− 1

2
J2 ∧ J2

)
+O

(
〈λλ〉2

)
, (B.28)

while the two-form component of t is

t = +e−φ/2−2Aϕ Im Ω2 +O
(
〈λλ〉2

)
. (B.29)

On neglecting the terms of order 〈λλ〉2, Φ1 and Φ2 reduce to the β-deformed pure

spinors found in [135].

Ten-dimensional spinor ansatz

Equipped with the six-dimensional spinors η1 and η2, we can now give our ansatz

for the ten-dimensional spinors. The SL(2,Z)-covariant κ-symmetric D7-brane

action is usefully written in a redundant notation, involving two copies of the ten-

dimensional fermion [249, 189], which we now adopt. We consider a doublet χ =

(χ1, χ2) of 32-component ten-dimensional Majorana-Weyl spinors, and decompose

these spinors under Spin(10) → Spin(4) × Spin(6). The ten-dimensional gamma

matrices decompose as

Γµ = e−A+3uγµ ⊗ 1 , Γi = eA−uγ5 ⊗ γi . (B.30)
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For gamma matrices and spinor manipulations, we use the conventions of [330],

γ0 =




0 i

i 0


 , γi =




0 −iσi
iσi 0


 , γ5 =




1 0

0 −1


 , C =




ε 0

0 −ε


 , ε =




0 1

−1 0


 .

(B.31)

Under this decomposition, a ten-dimensional Weyl spinor decomposes as 16+ 7→

(2+ ⊗ 4+) ⊕ (2− ⊗ 4−), where subscripts denote chirality. We can thus write the

ten-dimensional Majorana-Weyl spinors as

χ1 =
1

4π
e−2A+9u/2 λD ⊗ η1 + c.c. (B.32)

and

χ2 = − 1

4π
e−2A+9u/2 λD ⊗ η2 + c.c. (B.33)

where c.c. refers to charge conjugation, and λD is the embedding of a four-

dimensional Weyl spinor λ into a Dirac spinor via

λD =




0

λ̄α̇


 . (B.34)

Decomposition of D7-brane action

We can now expand the D7-brane action (B.9) in terms of the spinors in (B.32)

and (B.33). We will henceforth leave traces implicit, writing

trχχ =
1

2
χaχa =

1

2
χχ, (B.35)

with the normalization

trT aT b =
1

2
δab (B.36)

for Lie algebra generators. We likewise leave implicit pullbacks to the divisor D.
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The gaugino kinetic term can be decomposed as

Skin = −µ7

∫

X×D

√
−G tr χ̄ΓADAχ =

∫

X×D

√
−G

(
Lkin,X + Lkin,D

)
, (B.37)

with

∫

X×D

√
−GLkin,X =− 2π

∫

X×D

√
−G tr χ̄ΓµDµχ (B.38)

=− i

4π

∫

X×D

√−ge−4A+4uλ̄σ̄µDµλ (B.39)

=− i

4π

∫

X

√−gRe(T )λ̄σ̄µDµλ , (B.40)

and

Lkin,D =− 2π tr χ̄ΓaDaχ (B.41)

=
1

16π
λ̄cDλD

(
ηT1 Da(e

−3Aγaη1) + ηT2 Da(e
−3Aγaη2)

)
+ c.c. (B.42)

=− 1

16π
λ̄λ̄
(
ηT1 Da(e

−3Aγaη1) + ηT2 Da(e
−3Aγaη2)

)
+ c.c. (B.43)

=− 1

128π
λ̄λ̄
(

(e−AηT1 γ123η2)η†2γ
123Da(e

−3Aγaη1) + (η1 ↔ η2)
)

+ c.c.

(B.44)

=
i

32π
e−2u+φ/2λ̄λ̄ id2t · Ω + c.c. (B.45)

where we have defined d2t = ∂atdz
a + ∂ātdz̄

ā. Here a ∈ {1, 2}, where z1 and z2 are

complex coordinates along the D7-brane divisor D, and we stress that t in (B.45)

must be understood as the pullback onto D of the form t defined in M .

In (B.45) we have omitted terms that are higher order in 〈λλ〉, in particu-

lar the terms of order 〈λλ〉2 in (B.27), (B.28), and (B.29). We make the same

approximation in the computations below.
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For the gaugino-flux couplings, we find

LFλλ = i
eφ/2−2u−A

384π

(
λ̄D ⊗ η†1 + λ̄cD ⊗ ηT1

)
F̃ABCγ

ABCγ5 (λD ⊗ η2 + λcD ⊗ η∗2) + (η1 ↔ η2)

(B.46)

=− ie
φ/2−2u−A

384π
(λ̄cDλDη

T
1 γ

ABCη2 + c.c.)F̃ABC + (η1 ↔ η2) (B.47)

=
ieφ/2−2u

32π
λ̄λ̄ F̃ · Ω + c.c. (B.48)

LHλλ =i
e−φ/2−2u−A

384π

(
λ̄D ⊗ η†1 + λ̄cD ⊗ ηT1

)
HABCγ

ABCγ5 (λD ⊗ η1 + λcD ⊗ η∗1) + (η1 ↔ η2),

(B.49)

=− ie
−φ/2−2u−A

384π

(
λ̄cDλDη

T
1 γ

ABCη1 + c.c.
)
HABC + (η1 ↔ η2) (B.50)

=
e−φ/2−2u

32π
λ̄λ̄H · Ω + c.c. (B.51)

We should point out that in (B.48) and (B.51) only the three-form fluxes ap-

pear, in contrast to the democratic formulation of generalized complex geometry in

which three-forms and seven-forms enter on equal footing. One might then worry

that the deformation of the background due to gaugino condensation could intro-

duce corrections to the action of the Hodge star on internal forms, and in turn to

the effective action. (We thank the referee for raising this issue.) However, from

(B.28) one finds that the three-form component of Φ2 is not corrected at order

O(〈λλ〉). Thus, the Hodge star acting on internal three-forms is not corrected at

order O(〈λλ〉), and the resulting corrections to the effective action are smaller than

order O(〈λλ〉2), and can therefore be neglected in our analysis.

Combining (B.48) and (B.51), we obtain the coupling

SGλλ =
i

32π

∫

X×D

√−ge−2u+φ/2λ̄λ̄ G · Ω + c.c. (B.52)
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Thus, combining (B.52) and (B.45), the total gaugino-flux coupling is

SGλλ =
i

32π

∫

X×D

√−ge−2u+φ/2λ̄λ̄G[2] · Ω + c.c. (B.53)

The result (B.53) precisely agrees with that of [135] once one accounts for the

difference in normalization of the gaugino kinetic term there and here.

Similarly, we find the four-gaugino couplings

Lλλλλ =− e10u−6A

3 · 215π3 t

[
(λ̄D ⊗ η†1 + c.c.)γabc(λD ⊗ η2 + c.c.) + (η1 ↔ η2)

]2

(B.54)

=− e10u−6A

3 · 215π3 t

[
λ̄cDλDη

T
1 γ

abcη2 + c.c.+ (η1 ↔ η2)
]2

(B.55)

=− e10u−4A

3 · 215π3 t

[
2iλ̄λ̄Ωabc − 2iλλΩ

abc
]2

(B.56)

=− νe8u−4A

6144π3
Ω · Ωλλλ̄λ̄ , (B.57)

where ν was defined below (3.51).

We have thus obtained the Lagrangian density for D7-brane gauginos, up to

and including |λλ|2 terms:

Lgaugino = − i

4π
e−4A+4uλ̄σ̄µ∂µλ+

i

32π
e−2u+φ/2 G[2] · Ω λ̄λ̄+ c.c.− ν

6144π3
e8u−4AΩ · Ω |λλ|2

(B.58)

B.1.3 Killing spinor equations and the superpotential

The overall goal of this work has been to determine whether the ten-dimensional

field configuration that results when gaugino condensation is taken as a source

in the ten-dimensional equations of motion ultimately leads to a four-dimensional

scalar potential that exactly matches that computed in the four-dimensional super-

gravity theory of [216]. In order to perform this comparison, we must translate the
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data of the ten-dimensional fields into four-dimensional expressions. Specifically,

we need to express the gaugino-flux coupling (3.47) in terms of the superpotential

W , by relating the generalized flux G to W . In this section we carefully explain

the correspondence between ten-dimensional and four-dimensional data.

Outline

As a guide through the computations ahead, we first outline our logic. First,

building on [240, 37], we write down the ten-dimensional Killing spinor equations

whose solutions are supersymmetric configurations. The classical Killing spinor

equations are well-known, and the difficulty lies in modifying them to account

for the effect of gaugino condensation. To determine the correct modification, we

demand the following consistency conditions:

1. The three-form fluxes G0,3, G3,0, and G1,2 obtained from the Killing spinor

equations must be compatible with the solution of the Bianchi identities.

2. The IASD three-form flux G3,0 obtained from the Killing spinor equations

must vanish in the vacuum configuration: nonvanishing G3,0 would give mass

to the gaugino on a probe D3-brane, and so is incompatible with supersym-

metry.1

We write down a very general modification of the classical Killing spinor equations,

involving three a priori independent terms proportional to 〈λλ〉, with initially

undetermined coefficients, and show that the above conditions uniquely determine

the values of all three coefficients. As we explain in detail below, the resulting

Killing spinor equations (B.93)-(B.95) are not exactly those of [240], which contain

1We thank Jakob Moritz for suggesting this condition.
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only a single term proportional to 〈λλ〉. We believe that the consistency conditions

above are compulsory, independent of any attempt to argue for or against a ten-

dimensional description of the de Sitter vacua of [216], and so we claim that our

modified Killing spinor equations (B.93)-(B.95) are the correct ones in this setting.

We then turn to the superpotential WGCG (B.96) that has been argued to gov-

ern a general type IIB string compactification on a generalized complex geometry

[163, 38, 277, 240, 249]. Computing the expectation value 〈WGCG〉 on the solution

of the Killing spinor equations, we find that 〈WGCG〉 equals the full superpoten-

tial W when the Killing spinor equations are the corrected ones that we justified

above, but that 〈WGCG〉 6= W when the Killing spinor equations are those given in

[240, 37]. Correspondingly, we demonstrate that using the corrected Killing spinor

equations (B.93)-(B.95) we exactly recover the scalar potential of [216] from ten

dimensions.

Gaugino condensation and the Killing spinor equations

We begin with a rather general form of the Killing spinor equations,

dH

(
e(φ/4−A)p̂e3A−φ/4Φ2

)
= 2iµe(φ/4−A)p̂e2A−φ/2 Im Φ1 + 2α〈S〉δ(2), (B.59)

dH

(
e(φ/4−A)p̂e2A−φ/2 Im Φ1

)
= 0, (B.60)

dH

(
e(φ/4−A)p̂e4A Re Φ1

)
= 3e(φ/4−A)p̂e3A−φ/4 Re (µΦ2) + e(2A−φ/2)(3−p̂)e4A+φF̃

+
eφ/2

2
Re (〈S〉Ω)

(
βδ(0) +

ξ

V⊥

)
. (B.61)

We define dH := d − H∧ and F̃ = (−1)p̂(p̂−1)/2 ?6 F. We have written (B.59)-

(B.61) in Einstein frame, and with the notational simplification 〈S〉 ≡ 〈λλ〉/32π2.

The parameter µ = −ieφ/2κ2
4W is determined by the full superpotential W ,2 and

2Throughout this work, W always denotes the full superpotential, as opposed to a single term
in the superpotential, such as the flux superpotential term Wflux.
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so is related to the cosmological constant Λ at the supersymmetric minimum by

eκ
2
4K/2e−φ/2|µ| =

√
−Λ/3.

In the Killing spinor equations given in [240, 37], the constants β and ξ are

zero, and α = 1. We will demonstrate below that consistency actually requires

α = 1, β = 2, and ξ = 0.3

Fluxes and the Bianchi identities

We now compute various fields from the Killing spinor equations. To obtain the

three-form flux, we compute
〈

(B.61), e(φ/4−A)p̂e3A−φ/4Φ2

〉
. We first examine the

left-hand side of (B.61) and use (B.59) to obtain

〈
dH(e(φ/4−A)p̂e4A Re Φ1), e(φ/4−A)p̂e3A−φ/4Φ2

〉
= µeφ〈Φ2,Φ2〉+i

αeφ

4
〈S〉〈Φ2,Φ2〉δ(0) ,

(B.62)

where 〈, 〉 denotes the Mukai pairing, and we have used the relations

〈Re Φ1, Im Φ1〉 = i〈Φ1,Φ1〉/2 = −i〈Φ2,Φ2〉/2 and 〈Re Φ1, δ
(2)〉 = i

8
〈Φ2,Φ2〉δ(0).

We have taken the normalization

〈Φ1,Φ1〉 = 〈Φ2,Φ2〉 = 8iJ3/3! +O(λλ) , (B.63)

cf. (B.27) and §B.1.5. Using the right-hand side of (B.61), we find

〈
dH(e(φ/4−A)p̂e4A Re Φ1), e(φ/4−A)p̂e3A−φ/4Φ2

〉
=

3

2
µeφ〈Φ2,Φ2〉+ e4A+3φ/2〈F̃ ,Φ2〉

+
1

4
eφ〈S〉〈Ω,Φ2〉

(
βδ(0) +

ξ

V⊥

)
.

(B.64)

3We could also have added a nonsingular term 2γ〈S〉/V⊥ to the right-hand side of (B.59),
but from the analysis below it will be easily seen that in fact γ must vanish. To reduce the
complexity of the expressions that follow, we set γ = 0 at the outset.
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We therefore compute:

F̃ |(0,3) =
i

2
µe−4A−φ/2Ω +

1

4
e−4A−φ/2〈S〉Ω

(
(α− β)δ(0) − ξ

V⊥

)
, (B.65)

G|(0,3) =i
(
F̃ + e−4A−φdH(eφ/2+2A Re Φ

(2)
1 )
)∣∣∣

(0,3)
(B.66)

=
1

2
e−4A−φ/2µΩ +

i

4
e−4A−φ/2〈S〉Ω

(
(2α− β)δ(0) − ξ

V⊥

)
, (B.67)

G|(0,3) = −3

2
µe−4A−φ/2Ω− i

4
〈S〉e−4A−φ/2Ω

(
βδ(0) +

ξ

V⊥

)
, (B.68)

idt := ie−4A−φd(eφ/2+2A Re Φ
(2)
1 ) , (B.69)

idt(0,3) = +
iα

2
e−4A−φ/2〈S〉Ω

(
δ(0) − 1

V⊥

)
, (B.70)

G(1,2) = −idt(1,2) = −2iαe−4A−φ/2〈S〉∂2
zG(2)(z; zD7)v ∧ Ω2 , (B.71)

G(0,3) =
1

2
e−4A−φ/2µΩ− i

4
e−4A−φ/2〈S〉

(
βδ(0) +

ξ − 2α

V⊥

)
, (B.72)

G(3,0) = −3

2
e−4A−φ/2µ̄Ω− i

4
e−4A−φ/2〈S̄〉Ω

(
(2α− β)δ(0) − ξ + 2α

V⊥

)
. (B.73)

Next we find the solutions of the Bianchi identities. To simplify the problem,

we will assume that dτ = 0. The Bianchi identities are

dG+ = dG− , (B.74)

and

dΛ = dX , (B.75)

with

Λ = e4A ?6 G3 − iαG3 , (B.76)

and, as we shall show,

X =
e−φ/2

32π2
λλΩδ(0) . (B.77)
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Let us first establish (B.77). Starting from the action

SGλλ =
1

32π

∫

X×D

√−geφ/2λ̄λ̄G ∧ Ω + c.c. , (B.78)

we compute

∂LGλλ
∂dC2

=
eφ/2

32π
d4x ∧

(
λ̄λ̄Ω + λλΩ

)
δ(0) , (B.79)

and

∂LGλλ
∂dB2

=
eφ/2

32π
d4x ∧

(
−τ λ̄λ̄Ω− τ̄λλΩ

)
δ(0) , (B.80)

so that

τd

(
∂LGλλ
∂dC2

)
+ d

(
∂LGλλ
∂dB2

)
=
ie−φ/2

16π
d4x ∧ d

(
λλΩδ(0)

)
, (B.81)

confirming (B.77).

At lowest order in O(λλ), Λ = 2e4AG−, and so

G− = −e
−4A−φ/2

32π2
λλ∂a∂bG(2)(z; zD7)gbb̄Ωb̄c̄d̄ , (B.82)

and

G+ =
e−4A

2
X =

e−4A−φ/2

64π2
λλΩδ(0) , (B.83)

so that the singular terms in the flux are

G(1,2) = iG−|(1,2) = −ie
−4A−φ/2

32π2
λλ∂a∂bG(2)(z; zD7)gbb̄Ωb̄c̄d̄ , (B.84)

and

G(0,3) = −iG+|(0,3) = −ie
−4A−φ/2

64π2
λλΩδ(0) , (B.85)

whereas

G(3,0) = nonsingular . (B.86)
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Consistency conditions

As explained above, we must enforce that the Killing spinor equations are com-

patible with the Bianchi identities:

1. The three-form flux G1,2 obtained from the Killing spinor equations must

be compatible with the solution of the Bianchi identities. Comparing (B.71)

and (B.84), this implies that α = 1.

2. The three-form flux G0,3 obtained from the Killing spinor equations must

be compatible with the solution of the Bianchi identities. Comparing (B.72)

and (B.85), this implies that β = 2.

3. The three-form flux G3,0 obtained from the Killing spinor equations must

be compatible with the solution of the Bianchi identities. Comparing (B.73)

and (B.86), this implies that β = 2α.

We conclude that α = 1 and β = 2. The normalization α = 1 agrees with [240, 37].

However, β = 0 in [240, 37], so we find that consistency with the Bianchi identities

requires that we include a new term in the Killing spinor equations.

The coefficient ξ has not yet been fixed, but we have another consistency con-

dition to impose:

4. The IASD three-form flux G3,0 obtained from the Killing spinor equations

must vanish in a supersymmetric vacuum. Using α = 1 and β = 2 in (B.73)

gives

e4A+φ/2G(3,0) = −3

2
µ̄Ω +

i (ξ + 2α)

4V⊥
〈S̄〉Ω . (B.87)
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Using the relations µ = −ieφ/2W/(4πV), 〈S〉 = 1
2π
eκ

2
4K/2∂TWnp, and V =

V⊥ReT , we find

− 4πiV⊥e4A+φ/2G(3,0) =
{(

2α+ξ
2

)
∂TW +KTW

}
Ω . (B.88)

The D3-brane gaugino mass is4

mλλ ∝
∫
e4AG ∧ Ω δ(0)(z − zD3) . (B.89)

Comparing (B.88) and (B.89), we see that the D3-brane gaugino mass can

vanish in a supersymmetric vacuum, where FT = 0, only if 2α + ξ = 2. We

found above that α = 1, so we conclude that ξ = 0.

In sum, we obtain

α = 1, β = 2, and ξ = 0 . (B.90)

There are two other conditions that we have not used, but that serve as further

consistency checks of the above system of equations:

5. We will show below in (B.100) that 〈WGCG〉 = W− 1
π

ReT∂TWnp(2α−β−ξ).

Hence, if we were to require 〈WGCG〉 = W , as explained in §B.1.3, then we

would obtain the condition 2α− β − ξ = 0, which is fulfilled by (B.90).

6. The integrability condition obtained from (B.59) is5

− 6iµV⊥ + 2α〈S〉 = 0 , (B.91)

4We have omitted a term proportional to dt in the D3-brane gaugino mass, because t only
varies along the coordinates of the internal manifold, and so dt has no components parallel to
the D3-brane worldvolume.

5In the interest of complete generality, one could have added a smeared correction 2γ〈S〉/V⊥
to the right-hand side of (B.59). However, the integrability condition then requires α + γ = 1,
whereas the consistency condition from G(1,2) requires α = 1, and so γ = 0. We have therefore
not included such a term in (B.59).
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where we used t = 3V⊥. We use the relation µ = −ieφ/2W/(4πV) to rewrite

the integrability condition as

α∂TWnp + κ2
4KTW = 0. (B.92)

Hence, we obtain α = 1, which accords with the above.

In summary, we find that the Killing spinor equations that consistently incor-

porate the effects of gaugino condensation are:

dH

(
e(φ/4−A)p̂e3A−φ/4Φ2

)
= 2iµe(φ/4−A)p̂e2A−φ/2 Im Φ1 + 2〈S〉δ(2) , (B.93)

dH

(
e(φ/4−A)p̂e2A−φ/2 Im Φ1

)
= 0 , (B.94)

dH

(
e(φ/4−A)p̂e4A Re Φ1

)
= 3e(φ/4−A)p̂e3A−φ/4 Re (µΦ2) + e(2A−φ/2)(3−p̂)e4A+φF̃

+ eφ/2 Re (〈S〉Ω) δ(0) . (B.95)

These equations, which differ from those of [240, 37]6 by the presence of the final

term7 in (B.95), constitute one of the main results of this Appendix.

The superpotential

In a general type IIB string compactification on a generalized complex geometry,

the superpotential is [163, 38, 277, 240, 249]

WGCG = π

∫ 〈
Φ2, F̃ + e−4A−φdH

(
e4A+(φ/4−A)p̂ Re Φ1

)〉
, (B.96)

6The findings in §6 of [240] were arrived at using (B.61) rather than (B.95), but in many
(though not all) respects appear consistent with ours, even though we have used (B.95). The
reason for the near-match is that in [240] a nonperturbative superpotential term was added to
the generalized complex geometry superpotential. According to our analysis, (B.95) should be
used, and then no addition is needed, nor indeed would one be consistent.

7This term can also be derived from the results of [135] (for related approaches, see [43, 190]).
The fluxes we find from (B.95), but not those following from the unmodified (B.61), agree with
the fluxes obtained in [135], after accounting for a difference in normalization.
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We will now explain how to evaluate (B.96) in our solution.

In the dynamic SU(2) structure background sourced by gaugino condensation,

the one-form and five-form components of e4A+φF̃ + dH(e−φ+(φ/4−A)p̂ Re Φ1) and

Φ2, and the (0, 3) component of e4A+φF̃ + dH(e−φ+(φ/4−A)p̂ Re Φ1), are O(〈λλ〉).

However, the three-form component of Φ2 is Ω + O(〈λλ〉2). Hence, collecting the

terms in (B.96) up to order O(〈λλ〉), we obtain the generalized Gukov-Vafa-Witten

flux superpotential,

WGCG = π

∫
G ∧ Ω . (B.97)

with

G := G3 + idt . (B.98)

For the computations of §3.3 — in particular, to arrive at (3.50) — we need

to compute G0,3. Let us temporarily work with expressions that follow from the

general Killing spinor equations (B.59)-(B.61) rather than from the particular form

(B.93)-(B.95) that results from imposing (B.90). One can then write (B.66) as

G0,3 = − e−4AΩ

π
∫
M
e−4AΩ ∧ Ω

W + i
e−4A−φ/2

4
〈S〉Ω

(
(2α− β)δ(0) − ξ

V⊥

)
. (B.99)

Thus, the vev of the generalized complex geometry superpotential WGCG on the

solution of the ten-dimensional Killing spinor equations is given by

〈WGCG〉 = W − 1

π
ReT∂TWnp(2α− β − ξ) , (B.100)

so that 〈WGCG〉 = W if and only if 2α−β−ξ = 0. On imposing (B.90) we conclude

that

〈WGCG〉 = W . (B.101)
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Using (B.98), we can now combine (B.99) and (B.70) to compute G(0,3):

G(0,3) = − e−4AΩ

π
∫
M
e−4AΩ ∧ Ω

W

︸ ︷︷ ︸
=:GW

− i

64π2
e−4A−φ/2〈λλ〉Ω

(
δ(0) − 1

V⊥

)

︸ ︷︷ ︸
=:Gλλ

. (B.102)

Our result accords with [279], where it was shown that in the presence of

gaugino condensation (and upon converting to our normalizations), one has

G(0,3) = − i

64π2
e−4A−φ/2〈λλ〉Ωδ(0) +G0 , (B.103)

for some G0 with dG0 = 0. Thus we find agreement between [279] and the singular

term in (B.102), and moreover we learn that G0 is given by the nonsingular terms

in (B.102).

B.1.4 Dimensional reduction and translation to four-

dimensional terms

We will now use the results of §B.1.3 to compute the four-dimensional potential

terms that result from dimensional reduction of the gaugino-flux coupling (B.53)

and the four-gaugino term (B.57), upon assigning the gaugino bilinear vev (3.34).

In our specific setup, t is sourced only by gaugino condensation on D, and is

given by (B.29). Writing Re Ω2 = 1
2

(
Ω12dz

1 ∧ dz2 + Ω1̄2̄dz̄
1̄ ∧ dz̄2̄

)
, we have

d2t = −1

2
∂a(e

φ/2−2AϕΩ1̄2̄)dz̄1̄∧dz̄2̄∧dza−1

2
∂ā(e

φ/2−2AϕΩ12)dz1∧dz2∧dz̄ā. (B.104)

It follows from the index structure of (B.104) that d2t · Ω = 0. Thus we arrive at

∫

X×D

√−g d2t · Ω = 0 . (B.105)
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Assigning the gaugino bilinear vev (3.34) and using (B.105) and (B.102), the cou-

pling (B.53) dimensionally reduces to

SGλλ =−
∫

X×M

√−geφ/2−6u ie−4A+4uΩ · Ω
π
∫
M
e−4AΩ ∧ Ω

〈λ̄λ̄〉
32π

Wδ(0) + c.c.+ Ssing
λλ , (B.106)

=

∫

X

√−g4e
φ/2−6u+κ2

4K/2
Re(T )

2πV ∂TWW + c.c.+ Ssing
λλ , (B.107)

=− κ2
4

∫

X

√−g4e
κ2

4KKTT∂TWKTW + c.c.+ Ssing
λλ , (B.108)

where the singular term

Ssing
λλ =

i

32π

∫ √−geφ/2−2uGλλ · Ωλ̄λ̄δ(0) + c.c. , (B.109)

with Gλλ given in (B.102), is analyzed in Appendix B.3. We used the identity

κ2
4K

TTKT = −Re(T )/(2πV), which follows from (3.38) and (B.11).

Similarly, assigning the gaugino bilinear vev (3.34), the integral of the four-

gaugino term (B.57) dimensionally reduces to

Sλλλλ =−
∫

X

∫

M

√−geκ2
4K+4u e

−4A+4uΩ · Ω
24πV⊥

∂TWnp∂T̄W npδ
(0) (B.110)

=−
∫

X

√−g4e
κ2

4K
Re(T )2

3πV ∂TW∂T̄W (B.111)

=−
∫

X

√−g4e
κ2

4KKT T̄∂TW∂T̄W. (B.112)

We used the identity KTT = Re(T )2/(3πV).

The modified Killing spinor equations (B.93)-(B.95) were crucial in the above:

if instead of (B.101) one had 〈WGCG〉 !?
= Wflux then in (B.108) the factor KTW

would instead read KTWflux, and the scalar potential obtained from ten dimensions

would disagree with that obtained in four-dimensional supergravity. However, we

reiterate that the form (B.93)-(B.95) of the Killing spinor equations was not derived

by requiring that they should lead to (B.101); instead, the logically independent
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consistency conditions of §B.1.3 were imposed to derive (B.93)-(B.95), and (B.101)

was then a consequence.8

B.1.5 Normalization of the Kähler potential

We temporarily normalize the flux superpotential as

Wflux = a

∫

M

G ∧ Ω, (B.113)

and the Kähler potential as

κ2
4K = −3 log

(
T + T

)
− log

(
i

∫

M

e−4AΩ ∧ Ω

)
− log

(
−i(τ − τ)

)
− log b. (B.114)

Given a complex structure, we normalize

i

∫

M

e−4AΩ ∧ Ω = c. (B.115)

We now fix a, b, and c by dimensional reduction of the ten-dimensional supergravity

action.

The first constraint is given by matching the F-term potential for the complex

structure moduli and axiodilaton. Matching the gravitino mass does not provide

an additional constraint. The potential

Vτ =
1

2κ2
10

∫

M

√
g6e

4A−12u+φ|G3,0|2 (B.116)

=
1

2κ2
10

∫

M

e4A−12u+φ

( ∫
M
G ∧ Ω∫

M
e−4AΩ ∧ Ω

e−4AΩ

)
∧ ?6

(
−

∫
M
G ∧ Ω∫

M
e−4AΩ ∧ Ω

e−4AΩ

)

(B.117)

=
1

2κ2
10

e−12u+φ

∫
M
G ∧ Ω

∫
M
G ∧ Ω

i
∫
M
e−4AΩ ∧ Ω

(B.118)

8Although (B.101) is essential to our derivation of the correct finite four-dimensional potential
(3.61) from a ten-dimensional configuration, the cancellation of divergences exhibited in Appendix
B.3 does not rely on (B.101).
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must match

Vτ = eκ
2
4KKττDτWDτW = κ2

4e
κ2

4Ka2

∫

M

G ∧ Ω

∫

M

G ∧ Ω , (B.119)

which requires

a2

b
= 27π2V3. (B.120)

Another constraint is given by matching the F-term potential for D3-brane

moduli. Matching the F-term potential for the Kähler modulus does not provide

an additional constraint. From (B.200) with the undetermined coefficient c we

have

Φ− = c
eκ

2
4K

8µ3V
Kab̄DaWDb̄W. (B.121)

Hence we fix

i

∫

M

e−4AΩ ∧ Ω = 8V . (B.122)

There remains the freedom to choose a and b, corresponding to Kähler in-

variance. All such choices are physically equivalent; for the sake of simplicity we

normalize the superpotential as

π

∫

M

G ∧ Ω, (B.123)

and the Kähler potential as

κ2
4K = −3 log

(
T + T

)
− log

(
i

∫

M

e−4AΩ ∧ Ω

)
− log

(
−i(τ − τ)

)
+ log

(
27V3

)
.

(B.124)

B.2 Spectroscopy of Interactions

In this appendix we show that the interactions of anti-D3-branes with a gaugino

condensate that are mediated by Kaluza-Klein excitations of a Klebanov-Strassler
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throat can be safely neglected, in the sense defined in §3.4.

B.2.1 Kaluza-Klein modes on T 1,1

We will use the conventions of [27] for denoting fields on the conifold and operators

in the Klebanov-Witten theory. We use labels L ≡ (j1, j2, R) and M ≡ (m1,m2)

for the quantum numbers under the SU(2) × SU(2) × U(1)R isometries of T 1,1,

and write a solution to the Laplace equation on the conifold, ∇2f = 0, as

f(r,Ψ) =
∑

L,M

fLM

( r

rUV

)∆s(L)

YLM(Ψ) , (B.125)

with the eigenvalues9

∆s(L) = −2 +
√

6
[
j1(j1 + 1) + j2(j2 + 1)−R2/8

]
+ 4 . (B.126)

The singlet j1 = j2 = R = 0 has ∆s = 0, and the next-lowest eigenvalue, for

j1 = j2 = 1/2, R = 1, is ∆s = 3/2.

Perturbations sourced by D3-branes and anti-D3-branes

We now consider in turn the perturbations sourced by D3-branes or anti-D3-branes

in the infrared or ultraviolet regions of a Klebanov-Strassler throat. Recall that

the Dirac-Born-Infeld + Chern-Simons action of a probe D3-brane is SD3 = µ3Φ−,

and a D3-brane is a localized source for the scalar Φ+, whereas the Dirac-Born-

Infeld + Chern-Simons action of a probe anti-D3-brane is SD3 = µ3Φ+, and an

anti-D3-brane is a localized source for the scalar Φ−. As explained in [26], see also

9The eigenvalues ∆s(L) were denoted by ∆(L) in [26], by ∆f (L) in [27], and by ∆(Is)− 4 in
[145].
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[145], it is useful to define the fields ϕ+ := r4Φ−1
+ and ϕ− := r−4Φ−, which have

canonical kinetic terms and so have solutions of the usual form

ϕ± = α r−∆± + β r∆±−4 . (B.127)

with α, β independent of r.

• Anti-D3-brane in the infrared:

The leading perturbation of Φ− is a normalizable profile,

δ
(
r−4Φ−

)
∼ r−8−∆s(L) . (B.128)

The leading (singlet) mode scales as r−8, and corresponds in the dual field

theory to an expectation value for the dimension-eight operator [218, 26, 134]

O8 =

∫
d2θd2θ̄Tr

[
W 2

+W
2

+

]
. (B.129)

Higher multipoles in the linear solution result from operators such as (but

not limited to, cf. [26, 27])

O8+3k/2 =

∫
d2θd2θ̄Tr

[
W 2

+W
2

+

(
AB)k] , (B.130)

for k ∈ Z+. The first non-singlet mode is O19/2, and scales as r−19/2. See

[26, 27, 145] for extensive analysis of this system.

• D3-brane in the infrared:

The leading perturbation of Φ+ is a normalizable profile,

δ
(
r4Φ−1

+

)
∼ r−∆s(L) . (B.131)

The singlet is a constant, while higher multipoles correspond to expectation

values for operators such as (but not limited to, cf. [26])

O3k/2 = Tr
[
(AB)k

]∣∣
b
, (B.132)
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for k ∈ Z+, with |b denoting the bottom (θ = θ̄ = 0) component of a

supermultiplet, as in [27]. The leading non-singlet mode scales as r−3/2 [28,

26, 27, 145], and is dual to an expectation value for

O3/2 = Tr
[
AB
]∣∣
b
. (B.133)

Higher multipoles can be found in [26, 27, 145].

• D3-brane in the ultraviolet:

The leading perturbation of Φ+ is a non-normalizable profile [26]

δ
(
r4Φ−1

+

)
∼ r∆s(L)+4 . (B.134)

The singlet mode scales as r4, and is dual to a source for the operator O8 in

(B.129) whose expectation value arose in the anti-D3-brane solution (B.128).

Higher multipoles are dual to sources for operators such asO8+3k/2 in (B.130).

The leading non-singlet mode scales as r11/2, and is dual toO19/2 [26, 27, 145].

B.2.2 Effect of anti-D3-branes on gaugino condensate

We would like to examine the long-distance solution sourced by p anti-D3-branes

smeared10 around the tip of a Klebanov-Strassler throat. To start out, we will lin-

earize in the strength of the anti-D3-brane backreaction, and then discuss nonlinear

effects.

10At different stages of the evolution of a collection of anti-D3-branes interacting with flux,
as described in [219], the anti-D3-branes may be localized at a point on the S3 at the tip,
or puffed up into a nontrivial configuration, and in such a case the supergravity equations of
motion become difficult partial differential equations. Fortunately (cf. [134]), in any of these
cases the leading long-distance solution linearized around AdS5 × T 1,1 can be obtained from the
SU(2)×SU(2) invariant part of the linearized solution, i.e. from the linearized solution obtained
from considering anti-D3-branes smeared around the S3. This latter problem requires solving
only ordinary differential equations.
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Coulomb interaction with a D3-brane

The SU(2)×SU(2) invariant part of the linearized long-distance solution sourced

by p anti-D3-branes at the tip of a noncompact Klebanov-Strassler throat has been

studied in [103, 36, 33, 34, 134, 35]. The leading perturbation of Φ− corresponds

to the normalizable profile (B.128), up to logarithmic corrections.

A strong consistency check of this solution comes from considering a D3-brane

in the ultraviolet region of the throat. The potential for motion of such a D3-brane

can be computed either by treating the D3-brane as a probe in the solution (B.128)

sourced by the anti-D3-branes, or by treating the anti-D3-branes as probes in the

solution sourced by the backreaction of a D3-brane in a Klebanov-Strassler throat.

The former approach amounts to evaluating the action of a probe D3-brane in the

solution of [36, 33, 34, 134, 35].

The latter approach, which was used to compute the D3-brane Coulomb po-

tential in [214], is even simpler, because the D3-brane and the Klebanov-Strassler

background preserve the same supersymmetry, and so the perturbation due to the

D3-brane enjoys harmonic superposition. One finds [26] that the leading pertur-

bation of Φ+ sourced by D3-brane in the ultraviolet is the non-normalizable profile

(B.134).

The Coulomb potential between an anti-D3-brane in the infrared and a D3-

brane in the ultraviolet can be computed either from (B.128) [26, 33] or from

(B.134) [214], with exact agreement.

We can understand this match in the language of the dual field theory (see

§3.3 of [26]). A D3-brane in the ultraviolet creates a potential by sourcing a

314



non-normalizable11 profile δΦ+, corresponding to a source (in the field theory La-

grangian) for operators such as O8. An anti-D3-brane in the infrared creates a

potential by sourcing a normalizable profile δΦ−, corresponding to an expectation

value for operators such as O8. Either way, the mediation occurs by a high-

dimension operator, and leads to a very feeble interaction at long distances.

The above arguments give several conceptually different — but precisely com-

patible — perspectives on a single fact, which is that the Coulomb interaction of a

D3-brane with an anti-D3-brane in a warped region is suppressed by eight powers

of the warp factor, and so is extremely weak [214].

D3-brane perturbation to gauge coupling

Thus far, as a first step, we have used a D3-brane in the ultraviolet as a probe of

the solution generated by anti-D3-branes in the infrared. Our actual interest is in

the effect of anti-D3-branes in the infrared on D7-branes in the ultraviolet.

Now, as a further warm-up, we recall the effect of D3-branes (not yet anti-D3-

branes) in the infrared on gaugino condensation on D7-branes in the ultraviolet.12

The effect of the perturbation (B.131) on a gaugino condensate was computed in

[28]. Upon summing over all the chiral and non-chiral operators of the Klebanov-

Witten theory [234], and applying highly nontrivial identities to collapse the sum,

the result for δT took the form of a logarithm of the embedding function of the D7-

branes, expressed in local coordinates [28]. The perturbation (B.131) is thus the

effect responsible for the dependence of the gaugino condensate on the D3-brane

11In the sense of footnote 8 of [26].
12Corrections to gaugino condensation on D7-branes due to interactions with distant branes

have been extensively studied in the context of D3-brane inflation, both from the open string
worldsheet [40, 39] and in supergravity [28]: see [30] for a review.
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position [40, 28], which is of central importance in D3-brane inflation [214].

This result was exactly reproduced by an entirely different computation in

[27], as reviewed in Appendix B.3 below: the G− flux sourced by the gaugino-flux

couplings on the D7-branes leads to a solution for Φ−, and a D3-brane probing

this solution experiences the potential implied by the perturbation δT computed

in [28].

For completeness, we now explain an asymmetry between the effects of D3-

branes and of anti-D3-branes. As will be explained in §B.2.2 below, one finds from

(B.128) that an anti-D3-brane in the infrared has only extremely small effects on

D3-branes or D7-branes in the ultraviolet (except through couplings via the zero-

mode eu). In contrast, a D3-brane in the infrared does have a detectable effect

at long distances. Adding a D3-brane increases the total D3-brane charge of the

throat by one unit, N → N + 1, and this change is reflected in the solution by

a non-normalizable correction relative to the throat with N units of flux and no

D3-brane.

Simply adding an anti-D3-brane would likewise change the net tadpole and the

flux, and so have a detectable effect at long distances. However, this is not the

relevant comparison for our purposes. The anti-D3-brane configuration of [219]

is a metastable state in a throat with less flux and some wandering D3-branes,

but the same total tadpole. The anti-D3-branes thus source small normalizable

corrections to the solution that is dual to the supersymmetric ground state.
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Anti-D3-brane perturbation to gauge coupling

To compute the effect on the gaugino condensate of the perturbation (B.128) due

to anti-D3-branes in the infrared, we follow the same logic used in [28] and reviewed

in §B.2.2. We evaluate the D7-brane gauge coupling function (3.33),

T = e4u

∫

D

√
g6e
−4A + i

∫

D

C4 , (B.135)

in the perturbed solution, and use (3.36). Examining (B.135), we see that it suffices

to know the breathing mode eu, as well as the leading perturbations to Φ± and to

the metric gab at the location of the D7-brane. Because eu is a six-dimensional zero-

mode, we will treat it separately: at this stage we seek to check that any influences

of the anti-D3-branes on the condensate, except via the breathing mode, can be

neglected.

Because Φ− = 0 in the Klebanov-Strassler background, we write (see Appendix

D of [267])

δReT ≈ e4u

∫

D

√
g(0)

(
−2
(
Φ

(0)
+

)−2(
δΦ+ + δΦ−

)
+
(
Φ

(0)
+

)−1
gab(0)δgab

)
, (B.136)

where for a field φ, the background profile in the Klebanov-Strassler solution is

denoted φ(0).

Our consideration above of a D3-brane probe in the ultraviolet showed that

δΦ− is mediated by O8 (with subleading corrections from operators of even higher

dimension) and is negligible at the D7-brane location. Perturbations δΦ+ (or more

usefully, δϕ+) are mediated by operators such asO3/2, and can be sizable if strongly

sourced, e.g. by the presence of a D3-brane. However, in [145] it was shown that

the leading profile δϕ+ that arises in the full nonlinear solution due to an anti-

D3-brane scales as δϕ+ ∼ r−8, just like the profile δϕ− in (B.128) that is directly
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sourced by the anti-D3-brane: see §5 of [145]. Likewise, in Appendix D of [267]

it was shown that the leading non-singlet metric perturbation scales as r−19/2 (see

[145, 267] for definitions of the associated tensor harmonics on T 1,1).

In summary, in the linearized background (B.128) sourced by anti-D3-branes

in the infrared, the leading corrections to ReT are mediated by operators of di-

mension ∆ ≥ 8, resulting in extremely small corrections to the D7-brane gaugino

condensate when the hierarchy of scales in the Klebanov-Strassler throat is large.

Thus, the only influence of the anti-D3-branes on the gaugino condensate that is

non-negligible for our purposes occurs via the breathing mode eu, and was already

included in the four-dimensional analysis of [216]. We have therefore established

(3.72).

B.2.3 Effect of gaugino condensate on anti-D3-branes

For the avoidance of doubt, we now reverse the roles of source and probe relative

to §B.2.2, and examine the influence of gaugino condensation in the ultraviolet

on anti-D3-branes in the infrared. As in §B.2.2, we treat the breathing mode

separately.

Leading effect of flux

The anti-D3-brane probe action is SD3 = µ3Φ+, so we seek the leading perturba-

tions of Φ+ in the infrared. Gaugino condensation on D7-branes directly sources

flux perturbations δG− and δG+ via the gaugino-flux coupling (3.45), as shown in

[27] and reviewed in §3.3. Expanding in Kaluza-Klein modes on T 1,1, the lowest
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mode of δG+ is dual to the operator

O5/2 =

∫
d2θTr

[
AB
]
, (B.137)

of dimension ∆ = 5/2 [27]. The coefficient c5/2 of this mode in the ultraviolet

is at most of order 〈λλ〉, because it is incompatible with the no-scale symmetry

of the Klebanov-Strassler background, and so is present only once it is sourced

by the gaugino condensate [27, 145]. We stress, however, that c5/2 might well

be parametrically smaller than 〈λλ〉: the operator O5/2 is easily forbidden by

(approximate) symmetries, corresponding in the bulk to symmetries of the D7-

brane configuration.13 Our estimates of the anti-D3-brane potential will therefore

be upper bounds.

The equation of motion for the scalar Φ+ is

∇2Φ+ =
e8A

Im τ
|G+|2 + . . . (B.138)

where the omitted terms (cf. §3.2) can be neglected for the present purpose. In

the Klebanov-Strassler background, the three-form flux has a nonvanishing profile

G
(0)
+ [233]. With one insertion of the background flux and one insertion of the

perturbation δG+, we have

∇2Φ+ =
e8A

Im τ

(
G

(0)
+ · δG+ + c.c.

)
, (B.139)

from which one finds

δΦ+ ∼ e
5
2
Atip × 〈λλ〉 , (B.140)

with eAtip the warp factor at the tip. Since

〈λλ〉 ∼ O(e2Atip) , (B.141)

13See e.g. [220] for related work.

319



we conclude that

δVD3 . µ3e
9
2
Atip , (B.142)

which is smaller, by a power e
1
2
Atip , than the anti-D3-brane potential (3.64) in the

Klebanov-Strassler background. Thus, the influence of the gaugino condensate on

the anti-D3-brane, via the linearized perturbation δG+, is a parametrically small

correction.

Spurion analysis

Thus far we have considered only the linearized perturbation δG+ dual to O5/2,

leading to the small correction (B.142) to the anti-D3-brane potential. If the

D7-brane configuration enjoys no additional symmetries that enforce c5/2 � 〈λλ〉,

then (B.142) is indeed the parametrically dominant correction to the anti-D3-brane

potential from gaugino condensation [144]. However, establishing this requires

extending the treatment of §B.2.3 to incorporate more general perturbations, such

as perturbations of the metric, and also requires working at nonlinear order in

these perturbations. A complete analysis of this system is carried out in [144];

here we review the strategy and summarize the main findings.

To find the general form of the infrared solution created by a partially-known

ultraviolet source, one can perform a spurion analysis, in which the parametric

size of the ultraviolet coefficient c∆ of a given mode δφ∆ dual to a source for an

operator O∆ is determined by the symmetries preserved by O∆.

Specifically, perturbations allowed in a no-scale compactification of the

Klebanov-Strassler throat, as in [151], have c∆ ∼ O(1). Perturbations that are

allowed only after (a single) insertion of the gaugino condensate expectation value
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〈λλ〉 have c∆ ∼ O(〈λλ〉), while perturbations that are allowed only after inserting

|〈λλ〉|2 have c∆ ∼ O(〈λλ〉2).

To determine the spurion assignment for a given operator, we examine couplings

of the field theory dual to the throat to the D7-brane field theory. Consider, for

example, ∫
d2θTr

[
AB
]

Tr
[
WαW

α
]

D7
, (B.143)

where14

〈
Tr
[
WαW

α
]

D7

〉∣∣∣
b

=
1

2
〈λλ〉 . (B.144)

From (B.143) we find the coupling

δW =
1

2
〈λλ〉

∫
d2θTr

[
AB
]
, (B.145)

which can be interpreted as a perturbation to the superpotential of the Klebanov-

Witten theory, with the exponentially small spurion coefficient 〈λλ〉.

Evidently, to carry out such a spurion analysis one needs to know which pertur-

bations of the supergravity fields are allowed in the background, versus requiring

either one or two factors of 〈λλ〉 as spurion coefficients. This information can be

read off from an assignment of the operators of the dual field theory to super-

multiplets, as in [73, 72]. A systematic treatment along these lines appears in

[27, 145, 144].

Examining (B.138), one sees that the leading linearized perturbations to the

anti-D3-brane potential are modes of the flux G+, the axiodilaton τ , and the metric

g. At this stage we need to know, from Kaluza-Klein spectroscopy and from spurion

analysis, the dimensions ∆min of the lowest-dimension non-singlet modes of G+, τ ,

14The D7-brane gauge field strength superfield Wα|D7 should not be confused with W+ ap-
pearing in (B.129), which is the gauge field strength superfield of the D3-brane fields of the
Klebanov-Witten theory.
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and g, as well as their spurion coefficients c∆. For the flux, one finds [144]

∆min(G+) = 5/2 with c5/2 ∼ 〈λλ〉 , (B.146)

corresponding to O5/2 in (B.137), as explained above. Another mode of flux gives

a slightly smaller contribution:

∆(G+) = 3 with c3 ∼ 〈λλ〉 , (B.147)

corresponding to the operator O3,+ = Tr
[
W 2

+

]∣∣
b
. For the dilaton, one finds [144]

∆min(τ) = 11/2 with c11/2 ∼ O(1) , (B.148)

corresponding to

O11/2 =

∫
d2θTr

[
W 2

+ (AB)
]
, (B.149)

which is allowed in the background of [151]. (There is also a ∆ = 4 mode of τ , but

we can absorb this into the background value of the dilaton.) For the metric, one

finds the leading contribution [144, 279]

∆min(g) = 3 with c3 ∼ 〈λλ〉 , (B.150)

corresponding to

O3,− = Tr
[
W 2
−
]∣∣
b
. (B.151)

The first subleading correction from a metric mode has

∆(g) =
√

28 ≈ 5.29 with c√28 ∼ O(1) , (B.152)

corresponding to

O√28 =

∫
d2θ d2θ̄Tr

[
f(A,B, Ā, B̄)

]
, (B.153)

where f is a harmonic, but not holomorphic, function of the chiral superfields A

and B. The perturbation dual to O√28 is allowed in the background of [151].
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Using (B.141), we find from the linearized perturbations (B.146), (B.147),

(B.148), (B.150), (B.152), that the anti-D3-brane potential receives corrections

of the parametric form

δVD3 . µ3e
4Atip

(
e

1
2
Atip + eAtip + e(

√
28−4)Atip + e

3
2
Atip + . . .

)
. (B.154)

For completeness, we remark that upon applying the methods of [145] to study

the nonlinear solution, one finds [144] that a specific nonlinear perturbation, cor-

responding to two insertions of (B.146), gives a correction to the potential of the

form

δVD3 . µ3e
4Atip × eAtip , (B.155)

which can be more important than some of the modes in (B.154), but less important

than the linearized flux perturbation (B.146).

Let us summarize. To compute the influence of a gaugino condensate in the

ultraviolet on anti-D3-branes in the infrared, one can allow perturbations of all of

the supergravity fields, grading these modes via a spurion analysis, and examine

the resulting solution for Φ+ in the infrared. We have collected here, in (B.154),

the leading contributions of the fields that appear in (B.138), at linear order in

perturbations. Results for all fields, to all orders, appear in [145, 144], and the only

nonlinear correction competitive with any of the terms in (B.154) is the quadratic

flux perturbation (B.155).

The final result is that the largest correction to the anti-D3-brane potential

mediated by excitations of the throat solution is suppressed by at least a factor

e
1
2
Atip � 1 compared to the anti-D3-brane potential in the background solution,

and so can be neglected. This finding is compatible with that of §B.2.2, and

constitutes strong evidence for (3.72).
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B.3 Cancellation of Divergences, and the D3-brane Poten-

tial

In this appendix we give details of the computation of the four-dimensional curva-

tureR4. First, in §B.3.1 we show that the singular terms contributing to the master

equation (3.22) cancel each other, and the finite remainder is the scalar potential

(3.61) for the Kähler modulus T , in exact agreement with the four-dimensional

analysis: see (B.157).

Then, in §B.3.2 we repeat this calculation for a compactification containing a

D3-brane. In this case the result expected from the four-dimensional theory is the

F-term potential (B.196) for the D3-brane moduli and the Kähler modulus. We

recover this result as well from ten dimensions in (B.200).

In summary, the ten-dimensional computations of this appendix yield finite

answers for the four-dimensional curvature, in compactifications with or without

D3-branes. These results precisely agree with the corresponding expressions ob-

tained in the associated four-dimensional effective theories.

B.3.1 Cancellation of divergences

We begin by adapting the master equation (3.22). The term in (3.22) involving

∂aΦ−∂aΦ− is smaller than O
(
〈λλ〉2

)
, and can be neglected for present purposes.

We likewise omit the kinetic terms for the moduli u and τ . Following (3.60), the

trace of the stress-energy tensor TD7
µν of the D7-brane can be written TD7

µν g
µν =
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T λλµν g
µν + T λλλλµν gµν ≡ T λλ + T λλλλ. We thus have

M2
plR4[g] = −

∫

M

√
g6e
−4AT λλ −

∫

M

√
g6e
−4AT λλλλ

+ 16π

∫

M

√
g6e
−12u+4AρD3 − 8πe−8u

∫

M

√
g6R6[g] ,

(B.156)

where we have applied our convention that (2π)2α′ = 1.

Three of the four contributions on the right-hand side of (B.156) include singu-

lar terms. In the presence of the localized ISD flux (B.103) sourced by the gaugino

condensate, the soft mass term (3.47) has a singular stress-energy that enters T λλµν .

In the presence of the IASD flux (3.62) sourced by the gaugino condensate, the

IASD flux kinetic term, proportional to |G−|2, is likewise singular, and contributes

to ρD3 via (B.158). Finally, the internal curvature R6 is singular in the presence

of singular sources.15 Our goal is now to show that these three singularities cancel,

and the finite remainder is the F-term potential (3.61): that is,

1

4

∫

M

√
g6

(
−e−4AT λλ − e−4AT λλλλ + 16πe4AρD3 − 8πR6[g]

)
= V , (B.157)

up to corrections smaller than O
(
〈λλ〉2

)
.

Let us first set our notation. We will expand in powers of 〈λλ〉, with superscripts

(i) denoting quantities of order O(〈λλ〉i). We take G(0,3) to be of order O(〈λλ〉).

Capital indices M,N run from 1 to 6, while indices a, b run from 1 to 3, and we

adopt the convention gMNvMvN = 2gab̄vav̄b̄. To simplify our expressions, we denote

g
(1)
MN as hMN , g(0)MNg

(1)
MN as h, det(g(0)) as ḡ, G

(0)
+abc̄ as χabc̄, and G

(1)

−ab̄c̄ by ηab̄c̄. We

have R(0)
6 = 0, and we fix the gauge ∂MhMN = 0. The D3-brane and anti-D3-brane

charge densities are

ρD3 =
1

2 Im τ
|G+|2 + ρloc

D3 , ρD3 =
1

2 Im τ
|G−|2 + ρloc

D3
, (B.158)

15We thank the referee for useful remarks about these contributions.
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where ρloc
D3 and ρloc

D3
are the charge densities due to localized D3-branes and anti-D3-

branes, respectively. For now (in contrast to §B.3.2) we are assuming that there

are no localized D3-branes or anti-D3-branes, and so we have ρD3 = 1
4 Im τ

χabc̄χ̄
abc̄

and ρD3 = 1
4 Im τ

ηab̄c̄η̄
ab̄c̄. In a local coordinate patch, we fix the gauge Ωabc = εabc

and χ c
ab = ξ

√
ρD3εab, for c ∈ {1, 2, 3}, and with ξ a constant. The equations of

motion for this system are well-known, and can be found in, for example, §3.1 of

[229].

Discarding total derivatives and retaining terms up to O(〈λλ〉2), we have
∫

M

√
g6R6[g] = −1

4

∫

M

√
ḡ
(
∂Mh∂

Mh− ∂MhNP∂MhNP
)
. (B.159)

The equation of motion for hMN is

∇2hMN +∇M∇Nh =
e4A

2 Im τ

(
χ PQ

(M η̄N)PQ + c.c.
)
, (B.160)

where [27]

ηab̄c̄ = −ie
−4A−φ/2λλ

32π2
∂a∂

d̄G(2)(z; zD7)Ωb̄c̄d̄ . (B.161)

Because χabc̄ is a (2,1) form and ηab̄c̄ is a (1,2) form, (B.160) implies that ∇2h = 0.

We will thus take h = 0, so that (B.160) takes the form

∇2hab =
e4A

Im τ
χ c̄d

(a η̄b)c̄d , ∇2hāb̄ =
e4A

Im τ
χ̄ cd̄

(ā ηb̄)cd̄ . (B.162)

Solving in terms of the six-dimensional and two-dimensional Green’s functions G(6)

and G(2), we find

hab = ζ

∫

M

d6x′G(6)(x;x′)χacd̄∂
c∂eG(2)(x

′;xD7)Ω d̄
be + (a↔ b) , (B.163)

and hāb̄ = hab, where

ζ = −i e
φ/2

26π2
〈λλ〉 . (B.164)

We thus find that to O(〈λλ〉)2,

2

∫

M

√
g6R6[g] =

∫

M

√
ḡ
(
−hab∇2hab

)
. (B.165)
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We now use an identity that is applicable in the local coordinate chart,

∂z∂z̄G(2)(z; 0) =
1

2
gzz̄

(
δ(2)(z)− k

V⊥

)
, (B.166)

where z is the complex coordinate for the space transverse to the D7-brane stack.

We can then simplify −hab∇2hab as follows:

−hab∇2hab =− ζhab(x)
(
χacd̄∂

c∂eG(2)(z; zD7)Ω d̄
be + (a↔ b)

)
(B.167)

=
|ζ|2
2

(
χ̄acd̄

′
∂e′G(2)(z; zD7)Ω

be′

d̄′ + (a↔ b)
)(

χacd̄∂
eG(2)(z; zD7)Ω d̄

be + (a↔ b)
)

(B.168)

=25|ζ|2e−φρD3∂eG(2)∂
eG(2) . (B.169)

To arrive at the sign in (B.168) we used ∂x′G(6)(x;x′) = −∂xG(6)(x;x′).

We next compute
∫
M

√
g6e

4AρD3:

∫

M

√
ḡe4AρD3 =

∫

M

√
ḡ
e4A

Im τ

1

4
ηab̄c̄η̄

ab̄c̄ (B.170)

=|ζ|2
∫

M

√
ḡe−4Ae−φ∂a∂

d̄G(2)εb̄c̄d̄∂
a∂dG(2)εbcdg

bb̄gcc̄ (B.171)

=24|ζ|2
∫

M

√
ḡe−4Ae−φ∂a∂dG(2)∂

a∂dG(2) (B.172)

=− 23|ζ|2
∫

M

√
ḡρD3e

−φ∂aG(2)∂
aG(2), (B.173)

where we used 2∂a∂
ae−4A = −ρD3, which holds to lowest order.

The final singular contribution comes from the D7-brane action. From (3.54)

and (B.108) we have

− 1

4

∫

M

√
g6e
−4AT λλ = κ2

4

∫

X

√−g4e
κ2

4KKTT∂TWKTW + c.c.− Ssing
λλ , (B.174)

with

− Ssing
λλ = −2πζ̄

∫

M

Gλλ · Ωδ(0) + c.c. , (B.175)

where Gλλ is given in (B.102).
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To manipulate Ssing
λλ , we derive an identity involving the two-dimensional

Green’s function. Taking the internal space transverse to the D7-branes to be

compact, with volume V⊥, Green’s equation takes the form

2gab̄∂a∂b̄G(2)(z; 0) = δ(2)(z)− 1

V⊥
. (B.176)

It follows that
∫

M

e−4A

(
δ(0) − 1

V⊥

)2

=

(∫

M

e−4Aδ(0)2

)
− 2e4u Re (T )

V⊥
+
V
V2
⊥

(B.177)

=

(∫

M

e−4Aδ(0)2

)
− e4u Re (T )

V⊥
(B.178)

=

∫

M

e−4A

(
δ(0) − 1

V⊥

)
δ(0), (B.179)

which implies that
∫

M

e−4A∂a∂
aG(2)(z; zD7)δ(0) =

∫

M

2e−4A∂a∂
aG(2)(z; zD7)∂b∂

bG(2)(z; zD7).

(B.180)

Using (B.102) in (B.109) and using (B.180), we find

−Ssing
λλ =−

∫

M

27π|ζ|2e−4Ae−φ∂a∂
aG(2)(z; zD7)∂b∂

bG(2)(z; zD7) (B.181)

=

∫

M

26π|ζ|2e−φρD3∂aG(2)(z; zD7)∂aG(2)(z; zD7). (B.182)

Combining (B.169), (B.173), and (B.182), we find that

1

4

∫

M

√
g6

(
−e−4AT λλ + 16πe4AρD3 − 8πR6[g]

)
= Vλλ , (B.183)

where the finite term Vλλ was given in (3.56). Including also the finite term result-

ing from T λλλλµν , see (3.58), we arrive at (B.157), completing the proof.

B.3.2 D3-brane potential from flux

We now turn to the case in which a spacetime-filling D3-brane is present. The

potential for motion of a D3-brane in a nonperturbatively-stabilized flux com-
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pactification, such as [216], is well understood from the perspective of the four-

dimensional effective supergravity theory [214, 28, 241, 29], with the Kähler po-

tential obtained in [102] (see also [261, 83, 262]) and with the nonperturbative

superpotential computed in [40, 28]. Showing that this potential is reproduced by

the Dirac-Born-Infeld + Chern-Simons action of a probe D3-brane in a candidate

ten-dimensional solution sourced by gaugino condensation serves as a quantitative

check of the ten-dimensional configuration [240, 27, 135]. An exact match was

demonstrated in [27] in the limit that four-dimensional gravity decouples.

In this appendix we compute the potential of such a D3-brane probe. Through

a consistent treatment of the Green’s functions on the compact space, we extend

the match found in [27] to include terms proportional to κ2
4.

Within this appendix we take the Kähler potential (3.38) to include D3-brane

moduli,

κ2
4K = −3 log

(
T +T −γk

)
− log

(
−i(τ − τ)

)
− log

(
i

∫

M

e−4AΩ ∧ Ω

)
+log

(
27V3

)
,

(B.184)

with (cf. [102, 29, 83])16

γ =
2

3
µ3κ

2
4 Re(T )e−4u =

1

3V⊥
. (B.185)

Here k is the Kähler potential of M , obeying kab̄ = gab̄, where a and b̄ are holomor-

phic and anti-holomorphic indices for D3-brane moduli. We use the convention

ds2 = 2gab̄dz
adz̄b̄ for the line element.

The G− flux sourced by gaugino condensation [27] is given by (3.62), where

G(2) is the Green’s function on the internal space transverse to the D7-branes. If

16As explained in [29], the relation (B.185) should be understood to hold exactly at a reference
location in field space. Deviations from (B.185) at other locations lead to corrections of order
γk

T+T
in (B.198) and (B.199) below, which we will neglect.
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this space is taken to be noncompact, we have

G(2)(z; 0) =
1

2π
log |z| , (B.186)

in terms of a local coordinate z.

The flux (3.62) is a source for the scalar Φ−, leading to a potential for D3-brane

motion. The equation of motion for Φ− is

∇2Φ− =
e8A

Im τ
|G−|2 + . . . (B.187)

where the omitted terms are not important for the present computation. Solving

(B.187) and taking the D7-brane location to be given by an equation h(z) = 0 in

local coordinates, one finds17

Φ− =

∫

M

d6y G(6)(z; z′)
e8A

Im τ
|G−|2 (B.188)

=
eκ

2
4Ke16u

4π2N2
c

gab̄
∂ah∂b̄h̄

hh̄
|Wnp|2 , (B.189)

so that

µ3Φ− = e12ueκ
2
4KKab̄∂aW∂b̄W . (B.190)

Thus, the flux (3.62) sourced by gaugino condensation gives rise to a profile for

Φ− that matches the rigid part of the F-term potential.

At this point, the Kähler connection terms in the F-term potential are not

evident in the ten-dimensional computation. The result of this appendix, which we

will now establish, is that the Kähler connection terms arise once one consistently

incorporates finite volume effects in the Green’s function.

If the space transverse to the D7-branes is compact, with volume V⊥, then the

17Throughout this appendix, we write only the contribution to Φ− sourced by G− flux via
(B.187). Further contributions are present in general [27].
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Green’s function reads

G(2)(z; 0) =
1

2π
log |z| − k

6V⊥
. (B.191)

Using (B.191) to solve (B.187), one finds

Φ− =

∫

M

G(6)(z; z′)∂a∂bG(2)(z
′; zD7)∂ā∂b̄G(2)(z

′; zD7)gaāgbb̄e16u

∣∣∣∣
λλ

32π2

∣∣∣∣
2

Ω · Ω

(B.192)

=
1

2

∫

M

δ(6)(z; z′)∂aG(2)(z
′; zD7)∂b̄G(2)(z

′; zD7)gab̄e16u

∣∣∣∣
λλ

32π2

∣∣∣∣
2

Ω · Ω (B.193)

=24|ζ|2e−φ∂aG(2)(z; zD7)∂aG(2)(z; zD7) (B.194)

=
1

4N2
c π

2

(
∂ah(z)

h(z)
− 2πka

3V⊥

)(
∂b̄h̄(z̄)

h̄(z̄)
− 2πkb̄

3V⊥

)
gab̄eκ

2
4Ke16u|Wnp|2 . (B.195)

The F-term potential that we wish to compare to (B.195) is given by

VF = eκ
2
4K
(
K∆ΓD∆WDΓW − 3κ2

4WW
)
, (B.196)

where K∆Γ is the inverse Kähler metric derived from the DeWolfe-Giddings Kähler

potential [102, 65],

K∆Γ =
κ2

4(T + T − γk)

3γ




γ(T + T − γk) + γ2kak
ab̄kb̄ γkak

ab̄

γkab̄kb̄ kab̄


 , (B.197)

and the index ∆ runs over T and the D3-brane moduli ya. Using (B.185), we can

rewrite (B.195) as

Φ− =
eκ

2
4Ke16u

4π2
gab̄ (DaW + γkaDTW )

(
Db̄W + γkb̄DTW

)
+ . . . (B.198)

=eκ
2
4Ke12uκ

2
4Re(T )

3πγ

(
DTW DaW

)



γ2kak
ab̄kb̄ γkak

ab̄

γkab̄kb̄ kab̄







DTW

Db̄W


+ . . . ,

(B.199)

where the omitted terms are of higher order in γk

T+T
.
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Combining (3.61) and (B.199), we conclude that in a compact space, the flux

(3.62) sourced by gaugino condensation leads to a Φ− profile that agrees with the

F-term potential (B.196):

µ3e
−12uΦ−(z) + Vλλ + Vλλλλ = eκ

2
4K
(
K∆ΓD∆WDΓW − 3κ2

4WW
)

+ . . . , (B.200)

where again the omitted terms are subleading in γk

T+T
.

Finally, we will show that (B.200) also follows from (3.22) upon adapting the

calculation of §B.3.1 to account for the presence of localized D3-branes. From

(B.160) we see that the metric at order O(〈λλ〉) is only sourced by the fluxes χ

and η, and so (B.169) is altered to

2

∫

M

√
g6R6[g] =

∫

M

25|ζ|2e−φ
(
ρD3 − ρloc

D3

)
∂eG(2)∂

eG(2) . (B.201)

On the other hand, the warp factor e−4A is sourced by the full D3-brane charge

density ρD3, i.e. by both localized and distributed sources, and obeys 2∂a∂
ae−4A =

−ρD3. As a result, equations (B.173) and (B.182) continue to hold.

Combining (B.201), (B.173), and (B.182) we find

1

4

∫

M

√
g6

(
−e−4AT λλ+16πe4AρD3−8πR6[g]

)
= Vλλ+2π

∫

M

√
g6ρ

loc
D3Φ− . (B.202)

When −1
4

∫
M

√
g6e
−4AT λλλλ is added to (B.202), we recover the full F-term poten-

tial (B.200).
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 The D3-brane tadpole in the orbifold

In this appendix we will compute the Euler characteristic χ(FĨ) of the fixed locus

FĨ of the orientifold involution Ĩ, as promised in eq. (5.72), in two different ways.

First, in §C.1.1 we will show directly that h1,1
− (X̃, Ĩ) = h2,1

+ (X̃, Ĩ) = 0 for the

involution Ĩ : X̃ → X̃, by using the description of X̃ as a smooth Calabi-Yau

hypersurface in a toric fourfold Ỹ . We then use the Lefschetz fixed point theorem

to compute the Euler characteristic. Then, in §C.1.2 we go to the orbifold limit

X̃ → X/G and compute the Euler characteristic directly. The two computations

agree.

C.1.1 Computation in the resolved orbifold

In this section, we verify that h1,1
− (X̃, Ĩ) = 0 and h2,1

− (X̃, Ĩ) = 3 under the orien-

tifold involution Ĩ in the resolved orbifold.

First, let us briefly review how the anticanonical monomials and the automor-

phism group of the ambient fourfold Ỹ are determined from polytope data. Let

∆◦ ∈M be the Newton polyhedron for the anticanonical class of Y and let ∆ ∈ N

be the dual polytope of ∆◦. A point ρ ∈ ∆∩N corresponds to an edge of the toric

fan of Y and thus corresponds to a homogeneous coordinate xρ. Similarly, each

point v ∈ ∆◦ ∩M determines a monomial xv,

xv =
∏

ρ∈∆∩N
x〈v,ρ〉+1
ρ . (C.1)
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As was shown in [25], a point m ∈ ∆◦ ∩M strictly interior to a facet corresponds

to a non-trivial so-called root automorphism. Because m is in a facet, there is a

point ρm ∈ ∆ ∩ N such that 〈m, ρm〉 = −1 and 〈m, ρ〉 > −1, ∀ρ 6= ρm. Then the

action of the automorphism of the group element m is

xρm 7→ xρm + λm
∏

ρ′ 6=ρm
x
〈m,ρ′〉
ρ′ , λm ∈ C . (C.2)

LetA be the automorphism group of Ỹ . Then, its connected component containing

the identity is generated by the root automorphisms, as well as the action of the

algebraic torus (C∗)4 × Ỹ → Ỹ . Thus, the dimension of the automorphism group

A is given by

dimA = 4 +
∑

codimΘ◦=1

`∗(Θ◦) , (C.3)

where for a face Θ◦ ⊂ ∆◦, `∗(Θ◦) denotes the number of points in the interior of

Θ◦.

Given the anticanonical monomials and the automorphisms of Y , we can com-

pute the number of Kähler moduli h1,1(X̃) and the number of complex structure

moduli h2,1(X̃) of the Calabi-Yau hypersurface X̃. If a Kähler modulus is in-

herited from the ambient variety, then we call that Kähler modulus toric. We

define h1,1
toric(X̃) to be the number of toric Kähler moduli. Similarly, we define toric

complex structure deformations to be deformations of the coefficients of the anti-

canonical monomials modulo the deformations that can be undone by elements of

A, and modulo the overall scale. Likewise, we define h2,1
toric(X̃) as the number of

toric complex structure moduli. We have

h2,1
toric(X̃) = #(monomials)− dimA− 1 =

∑

codimΘ◦≥2

`∗(Θ◦)− 4 . (C.4)

To determine h1,1
toric(X̃), we recall that each point on ∆ gives rise to a homogeneous
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coordinate.1 Hence, näıvely there are
∑

codimΘ≥1 `
∗(Θ) toric divisors. However,

points interior to facets correspond to ambient divisors that do not intersect the

Calabi-Yau. Furthermore, there are in total four linear relations among the toric

divisors. As a result, we obtain

h1,1
toric(X̃) =

∑

codimΘ≥2

`∗(Θ)− 4 . (C.5)

The Calabi-Yau X̃ considered in §5.4 has h2,1(X̃) = 3 and h1,1(X̃) = 99, and

from the corresponding pair of dual polytopes ∆,∆◦ one finds h2,1
toric(X̃) = 3 and

h1,1
toric(X̃) = 97. Thus all complex structure moduli of X̃ are toric, but two genera-

tors of the Picard group are non-toric. In order to determine the orientifold action

on H4(X̃,Z) we must therefore consider the non-toric divisors in more detail. Con-

sider a point ρ ∈ Θ, with codimΘ = 2. Then {xρ = 0} ∩ X̃ is a reducible variety

in X̃ and there are 1 + `∗(Θ◦) irreducible components [25, 61]. Hence, there are in

total
∑

codimΘ=2 `
∗(Θ)`∗(Θ◦) non-toric divisors. As a result, we obtain

h1,1(X̃) = h1,1
toric(X̃) +

∑

codimΘ=2

`∗(Θ)`∗(Θ◦) . (C.6)

For a point ρ, we call the divisor {xρ = 0} strictly favorable if either ρ is not

interior to any two-face or it is interior to a two-face Θ but `∗(Θ◦) = 0.

Given isomorphisms i◦ : M → Z4 and i : N → Z4, we can assign coordinates

to points in ∆◦ ∩M and ∆ ∩N. Including the origin, the points in ∆◦ ∩ Z4 are

∆◦ ∩ Z4 =




0 −1 1 −1 −1 −1 −1 −1 −1

0 3 −1 0 0 0 0 0 1

0 −2 0 0 0 1 2 1 0

0 −1 0 1 0 1 0 0 0



, (C.7)

1We defined ∆◦ as the dual (i.e., N -lattice) polytope for X, but are now studying the mirror
X̃, for which ∆ is the dual polytope.

335



where each column corresponds to a point. The last point (−1, 1, 0, 0) is strictly

interior to a facet.

We also record points of importance in the dual polytope ∆ ∩ Z4:

(∆ ∩ Z4) ⊃




1 1 −5 −11 1 1 −5 −4 −3

2 0 −4 −10 2 2 −4 −4 −3

0 0 0 −6 3 0 −3 −2 −1

0 0 −6 −6 0 6 0 −3 −3




(C.8)

The first six points in (C.8) are the vertices of ∆ ∩ Z4. There is only one two-face

Θ̌ ∈ ∆ such that `∗(Θ̌◦) 6= 0, and for this face `∗(Θ̌◦) = 1. The last two points

in (C.8) are strictly interior to Θ̌, and hence each of those two points yields the

union of two distinct divisors in X̃. For notational simplicity we will suppress the

dependence of the monomials on all the homogeneous coordinates except those

that are explicitly presented in (C.8). We will denote by xi the coordinate given

by the ith column.

The most general polynomial f is

f(~x) =ψ0x1x2x3x4x5x6x7x8x9 − ψ1x
6
1 − ψ2x

2
2x8x9 − ψ3x

6
4x

6
6x

6
7x

2
8x9 − ψ4x

6
3x

12
4 x

6
7x

5
8x

4
9

− ψ5x
3
5x

6
6x

3
7 − ψ6x

6
3x

6
5x8x

2
9 − ψ7x

6
3x

6
4x

3
5x

3
7x

3
8x

3
9 − ψ8x

2
1x

2
3x

2
4x

2
5x

2
6x

2
7x8x9 .

(C.9)

The action of the root automorphism is

x2 7→ x2 + λx1x3x4x5x6x7 . (C.10)

Hence, we confirm that h2,1(X̃) = 9− 5− 1 = 3.

Now consider an orientifold action Ĩ : x2 7→ −x2. The most general Ĩ-invariant
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polynomial fĨ contains 8 monomials,

fĨ(~x) =− ψ1x
6
1 − ψ2x

2
2x8x9 − ψ3x

6
4x

6
6x

6
7x

2
8x9 − ψ4x

6
3x

12
4 x

6
7x

5
8x

4
9

− ψ5x
3
5x

6
6x

3
7 − ψ6x

6
3x

6
5x8x

2
9 − ψ7x

6
3x

6
4x

3
5x

3
7x

3
8x

3
9 − ψ8x

2
1x

2
3x

2
4x

2
5x

2
6x

2
7x8x9 .

(C.11)

Because the nontrivial root automorphism of eq. (C.10) does not commute with

Ĩ we have dimAĨ = 4, where AĨ is the subgroup of A that commutes with the

orientifold involution. As a result, there are in total three independent complex

structure moduli, i.e. h2,1
− (X̃, Ĩ) = 8− 4− 1 = 3.

Next, we consider the structure of the non-toric divisors. To simplify the com-

putation, we will blow down all of the blowup divisors whose blowup coordinates

are implicit in eq. (C.8). First, we consider the locus x8 = f = 0. We have

f |x8=0 = −ψ1x
6
1 − ψ5x

3
5x

6
6x

3
7 . (C.12)

We verified that x1 = x8 = 0 does not intersect X by confirming that the intersec-

tion numbers of {x1 = 0}, {x8 = 0}, and {xρ = 0} are trivial for any ρ, i.e. x1x8

is in the SR ideal. Hence, for f |x8=0 to have a solution, x5x6x7 must not vanish.

Using the toric rescaling, we set ψ1 = −1 and ψ5 = 1. Then näıvely we obtain six

disconnected solutions

x2
1 = ωi3x5x

2
6x7 , (C.13)

for i = 0, 1, 2, where ω3 is a third root of unity. However, there is a Z3 subgroup

of the Greene-Plesser group G, (5.62), with the charge

~λZ3 = (0, 0, 0, 0, 1, 1, 1) . (C.14)

This subgroup acts non-trivially on x5x
2
6x7,

Z3 : x5x
2
6x7 7→ ω3x5x

2
6x7 . (C.15)
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One can verify that G/Z3 acts trivially on (x5x
2
6x7)1/2. As a result, there are two

solutions to x8 = f = 0:

x1 = ±(x5x
2
6x7)1/2 . (C.16)

Likewise, the surface x9 = f = 0 splits into the two solutions of eq. (C.16).

Using this we proceed to compute h1,1
− (X̃, Ĩ). Clearly, Ĩ acts trivially on the

strictly favorable divisors {xρ = 0}. Hence, we only need to check how Ĩ acts on

the solutions of x8 = f = 0 and x9 = f = 0. As (C.16) does not explicitly depend

on x2, the orientifold involution acts trivially on the solutions of (C.16). Thus, the

orientifold action on H4(X̃,Z) is trivial, and so h1,1
− (X̃, Ĩ) = 0.

Finally, we can compute the Euler characteristic χ(FĨ) of the fixed locus FĨ of

Ĩ using the Lefschetz fixed point theorem,

−Q =
χ(FĨ)

4
=
χ(X̃)

4
+ 1 +

(
h2,1
− (X̃, Ĩ)− h1,1

− (X̃, Ĩ)
)

= 52 . (C.17)

This corresponds to the D3-brane tadpole.

C.1.2 Computation in the orbifold limit

The orientifold fixed locus in the orbifold X/G contains the G-orbifold of the

orientifold-fixed locus in X, but also further loci whose lifts in X are the sets

of points mapped by the orientifold to distinct points in the same G-orbit. It is

straightforward to show that the full fixed locus FĨ in X/G is

FĨ ≡ F/G = (D1 ∪D2 ∪D3 ∪D4 ∪D6)/G . (C.18)

We can compute the Euler characteristic of an orbifold as in [166, 68]. We partition

F as F = ∪IFfHI where the FfHI are the sets of points in F that are fixed pointwise
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by subgroups HI ⊂ G. Then, we have

χ(F/G) =
∑

I

χ(FfHI )|HI |
|FI |

, (C.19)

where FI are the subgroups of G/HI that act freely (i.e. without fixed points) on

FfHI . As our group G acts via multiplication by phases on the toric coordinates,

the FfHI are the loci where a subset of the toric coordinates are set to zero, with

subloci removed where further toric coordinates vanish. Such loci are mapped to

themselves by all of G, so we have FI = G/HI . First, let us define toric divisors

Di, curves Cij and sets of points Pijk as

Di = {xi = 0} , Cij = {xi = xj = 0} , Pijk = {xi = xj = xk = 0} , (C.20)

with pairwise distinct indices. The FfHI can be chosen to be the above with lower-

dimensional loci removed, i.e.

D̂i = Di\
(
∪j 6=iCij

⋃
∪j 6=k 6=iPijk

)
, Ĉij = Cij\∪k 6=i 6=jPijk , P̂ijk = Pijk . (C.21)

Along the dense subset D̂1∪ D̂2∪ D̂3∪ D̂4∪ D̂6 in X, the full group G acts without

fixed points. The Euler characteristics of the Di are χi = (45, 207, 11, 13, 24).

The curves Ĉij are invariant under certain subgroups recorded on the left in

Table C.1. The points Pijk are invariant under the subgroups listed on the right in

Table C.1. The Euler characteristics of the non-compact curves Ĉij are obtained

from those of Cij by subtracting the Euler characteristics of the points Pijk ⊂

Cij, which we also record in Table C.1. The Euler characteristics χ̂i of the non-

compact divisors D̂i, i = 1, 2, 3, 5, 6 are likewise given by subtracting the Euler

characteristics of the curves Ĉij ⊂ Di and points Pijk ⊂ Di. The result is

χ̂i = (108, 324, 36, 36, 72) . (C.22)
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(i, j) |H| χ χ̂
(1, 2) 2 −36 −54
(1, 3) 6 0 −6
(1, 4) 6 0 −6
(1, 5) 3 −2 −12
(1, 6) 6 −2 −12
(1, 7) 3 4 0
(2, 3) 2 −6 −18
(2, 4) 2 −6 −18
(2, 5) 1 −18 −36
(2, 6) 2 −18 −36
(2, 7) 1 12 0
(3, 4) 6 0 −6
(3, 5) 3 −2 −12
(4, 5) 3 4 0
(4, 7) 3 −2 −12
(5, 6) 3 −2 −12
(6, 7) 3 −2 −12

(i, j, k) |H| χ
(1, 2, 3) 12 3
(1, 2, 4) 12 3
(1, 2, 5) 6 6
(1, 2, 6) 12 6
(1, 2, 7) 6 0
(1, 3, 4) 36 1
(1, 3, 5) 18 2
(1, 4, 5) 18 0
(1, 4, 7) 18 2
(1, 5, 6) 18 2
(1, 5, 7) 6 0
(1, 6, 7) 18 2
(2, 3, 4) 12 3
(2, 3, 5) 6 6
(2, 4, 5) 6 0
(2, 4, 7) 6 6
(2, 5, 6) 6 6
(2, 5, 7) 6 0
(2, 6, 7) 6 6
(3, 4, 5) 18 2
(4, 5, 7) 18 2
(5, 6, 7) 18 2

Table C.1: Left: The curves Cij invariant under subgroups Hij ⊂ G, their Euler

characteristics χ, and the Euler characteristics χ̂ of the curves Ĉij obtained by
removing toric points. Right: Analogous table for toric points.
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Thus, finally, we obtain

χ(FĨ) =
1

36

∑

I

χ(FfHI )|HI |2 = 208 , (C.23)

where the index I collectively runs over the D̂i, Ĉij and P̂ijk.

Thus, we confirm that

−Q =
χ(FĨ)

4
= 52 , (C.24)

in agreement with eq. (C.17).

341



APPENDIX D

APPENDIX FOR CHAPTER 6

D.1 Topological twist and topological sigma model on the

worldsheet

Let us briefly review N = 2 supersymmetric non-linear sigma model defined on

a Riemann surface Σ with a Kahler manifold X as a target space. This theory

consists of the following data: holomorphic map/coordinate function Φ : Σ →

TX, superpartners of Φ. Because of the complex structure of X, the complexified

tangent bundle TX decomposes into holomorphic and anti-holomorphic tangent

bundle

TX = T 1,0X ⊕ T 0,1X. (D.1)

Respective to the decomposition of the complexified tangent bundle, we denote the

holomorphic components of Φ by φi ∈ T 1,0X and similarly for the anti-holomorphic

components. With this holomorphic decomposition, we can think of φi as a holo-

morphic tangent vector, of the target space, valued scalar field on the worldsheet.

A superpartner of such field then should live in holomorphic tangent vector valued

spin bundle, which reads

√
KΣ ⊗ (OΣ ⊕ Ω0,1

Σ )⊗ Φ∗(TX1,0), (D.2)

where
√
KΣ is an algebraic square root of canonical bundle of Σ, OΣ is structure

sheaf of Σ, and Ω0,1
Σ ≡ KΣ is anti-holomorphic cotangent bundle of Σ. As anti-

holomorphic canonical bundle is dual of canonical bundle, the corresponding spinor

bundle can be written as

(K
1/2
Σ ⊕KΣ

1/2
)⊗ Φ∗(TX1,0). (D.3)
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We will then denote the fermions living in K
1/2
Σ ⊗Φ∗(TX1,0) and K

1/2

Σ ⊗Φ∗(TX1,0)

by ψi+ and ψi−, respectively. We will use the similar convention for ψī+ and ψī−.

Given the field contents, the worldsheet action is

S = 2t

∫

Σ

(
1

2
gIJ∂zφ

I∂z̄φ
J + igīiψ

ī
−Dzψ

i
− + igīiψ

ī
+Dz̄ψ

i
+ +Rīijj̄ψ

i
+ψ

ī
+ψ

j
−ψ

j̄
−

)
,

(D.4)

where g is the hermitian metric of the target space.

Topological string model is then obtained by a topological twist to the bundle

[349], in which fermionic fields live in, that preserves the form of kinetic terms

of fermionic fields. The topological twist of A model can be understood as mov-

ing the non-trivial bundle
√
KΣ from K

1/2
Σ ⊗ Φ∗(TX1,0) to K

1/2
Σ ⊗ Φ∗(TX0,1) and

similarly for K
1/2

Σ . As a result of this topological twist, ψi+ and ψi− becomes (anti)-

holomorphic tangent vector valued scalar field on the worldsheet. Then we can

focus on transformation that transforms φi into ψi+ and φī into ψī−, as those trans-

formations can be represented by a globally well defined functions and others not

in general.

Given the topological twist, let us rename the fermionic fields as χi = ψi+ and

χī = ψī−. Supersymmetry transformation is concisely repackaged as

{Q,Φ} =χ,

{Q,χ} =0,

{Q,ψI−} =i∂z̄Φ
I − χJΓIJKψ

K
− ,

{Q,ψĪ+} =i∂z̄Φ
Ī − χJ̄ΓĪJ̄K̄ψ

K̄
+ , (D.5)

where Q2 = 0 on-shell thus supersymmetry becomes BRST symmetry. The action
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is

S = 2t

∫

Σ

(
1

2
gIJ∂zφ

I∂z̄φ
J + igīiψ

i
−Dzχ

ī
− + igīiψ

ī
+Dz̄χ

i −Rīijj̄ψ
i
−ψ

ī
+χ

jχj̄

)
.

(D.6)

A very important observation is that this action is a sum of a Q-exact term and a

topological term

S = it

∫

Σ

d2z{Q, V }+ t

∫

Σ

Φ∗(J), (D.7)

where V = gij̄(ψ
ī
+∂zφ

j +∂zφ
īψj−) and Φ∗(J) is pullback of the Kähler form defined

on X. One can add pullback of two-form tensor B to the action to complexfy the

Kähler form.

We have not specified yet if Σ has boundaries or not. If Σ does not attain a

boundary, then the worldsheet theory is a closed string theory. Similarly, if Σ has

boundaries, then the worldsheet theory is an open string theory.

Topological strings wrap volume minimizer, which is energetically stable,

among homologous 2 cycles in X. This means that for closed string theory, world-

sheet instanton is classfied by homology class

Φ∗([Σ]) ∈ H2(X,Z). (D.8)

This classification can be generalized to open string theory directly. Open string

worlsheet can be regarded as a Riemann surface with h holes due to the conformal

invariance. As there are h boundaries of the Riemann surface, one should impose

boundary conditions. Let us denote h boundaries of Σ by Ci, where i = 1, . . . , h.

In [343], Witten showed that the physical boundary condition is given by

Φ(Ci) ⊂ L (D.9)

for some L which is a Lagrangian submanifold of X. Note that a submanifold L

is Lagrangian if J |L = 0. This condition implies that supersymmetric D-branes in
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topological A model wrap Lagrangian three-cycles in X.1 Therefore, open string

worldsheet instanton is naturally classified by relative homology class

Φ∗(Σ) ∈ H2(X,L). (D.10)

One important class of observable in closed A model is a three points function

which has various interpretations in physical string theory. Let us consider a non-

trivial 2 form [Di] ∈ H2(X). Then one can consider an operator

ODi = (Di)i1,i2χ
i1χi2 . (D.11)

If we assume that X is a Calabi-Yau threefolds, when computed on string worlsheet

P1, the three points function of O(Di) is [68]

〈OD1OD2OD3〉 = KD1D2D3 +
∑

β

N0,β(D1, D2, D3)
∏

i

∫

β

[Di]Q
β, (D.12)

where KD1D2D3 is an intersection number and N0,β(D1, D2, D3) is a genus 0

Gromov-Witten invariant for an integral curve β ∈ H2(X), and Q = e−
∫
β J . Note

that this three points function can be obtained from the third derivative of the

genus 0 prepotential, which is free energy of genus 0 worldsheet theory,

∂t1∂t2∂t3F0(t) = 〈OD1OD2OD3〉, (D.13)

where ti =
∫
Di
J. Genus 0 prepotential receives classical and instanton contribu-

tions

F0 = F cl
0 + F inst

0 , (D.14)

where (to add prepotential at LCS). Coupling to gravity [343], genus g free energy

can be computed as well which reads

Fg(t) =
∑

β

Ng,βQ
β, (D.15)

1In this work, we do not focus on torsion one or five cycles.
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where Ng,β is a genus g Gromov-Witten invariant. Combining all genera prepo-

tential, we get a generating functional the all genera free energy

F (gs, t) =
∑

g

Fg(t)g
2g−2
s . (D.16)

D.2 Topological String on Conifolds and Geometric Tran-

sition

In this appendix, we briefly the geometric transition of interest. Let us consider A-

model open topological string theory on the deformed conifold T ∗S3. We wrap N D-

branes on S3, whose low energy effective theory is U(N) Chern-Simons theory [343].

Wilson lines can be introduced, if M D-branes wrap on a lagrangian submanifold2 L

of T ∗S3 which intersects S3 at S1. This corresponds to U(N) Chern-Simons theory

on S3 with M knots on S1. Under the geometric transition at large N, we obtain

A-model topological string theory on the resolved conifold O(−1)⊕O(−1)→ P1,

in which the N D-branes are desolved into B-flux and M D-branes are still wrapped

on the same special lagrangian L [285].

Let us first study the deformed conifold. Cotangent bundle of S3 can be em-

bedded into C4 by an equation

y2
1 + y2

2 + y2
3 + y2

4 = a2, (D.17)

yi’s∈ C. We assume that a is a real number. The bundle structure is more vivid

when we write yi = xi + ipi, then the embedding equation is written as

∑

i

x2
i = a2 +

∑

i

p2
i ,

∑

i

xipi = 0. (D.18)

2In topological string theory. Unlike physical string theory, Lagrangian is good enough to
ensure supersymmetry. Note that in the conifold, Lagrangian submanifolds we consider are in
fact special Lagrangian.
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It is then clear when pi = 0, for all i, then the equations are reduced to

∑

i

x2
i = a2. (D.19)

Thus a describes radius of S3. When a is sent to 0, the deformed conifold in the

limit described by

y2
1 + y2

2 + y2
3 + y2

4 = 0. (D.20)

As Jacobian of the defining equation vanishes at the origin y1 = y2 = y3 = y4 = 0,

the conifold at the origin is singular.

D.2.1 Blow up of the resolved conifold

To fix the singularity at the origin, we blow up the origin such that y1 = y2 = y3 =

y4 = 0 is replaced with a smooth manifold. If we reparametrize the coordinates as

zij =
∑

n

σnijyn, (D.21)

then (D.20) is written as

det zij = 0. (D.22)

In this presentation, the singularity occurs when the matrix coordinates zij are

trivial. It is important to note that we can view (E.22) as a condition for the

following equation to have a non-trivial solution




z11 z12

z21 z22







λ1

λ2


 = 0, (D.23)

for some complex variable λ1 and λ2 which cannot be simultaneously zero, because

λ1 = λ2 = 0 results in no constraints on zij matrix. Furthermore, (D.23) provides

a resolution of the singularity because when zij is non trivial λ1 and λ2 are fixed
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up to rescaling and zij = 0 is replaced with coordinates (λ1, λ2). This implies that

equation (D.23) is an embedding of the resolved conifold into C4×P1 in which zij

is a coordinate of C4 and [λ1, λ2] is a homogeneous coordinate of P1. Note that,

when det(zij) = 0 the non-homogeneous coordinate z of P1 is related to the rest

of the coordinates by

z :=
λ1

λ2

=
−y1 + iy2

y3 + y4

=
y3 − y4

y1 + iy2

. (D.24)

D.2.2 Lagrangian Submanifolds

Lagrangian submanifolds can be easily found by finding symmetric locus of an

anti-holomorphic involution. We consider an anti-holomorphic involution

y1,2 = y1,2, y3,4 = −y3,4. (D.25)

In the deformed conifold, the invariant locus of (D.25), a lagrangian submanifold

L, is

p1,2 = 0, x3,4 = 0. (D.26)

At the symmetric locus of (D.25), the embedding equation becomes

x2
1 + x2

2 = a2 + p2
3 + p2

4. (D.27)

Hence L intersects S3 at

x2
1 + x2

2 = a2, (D.28)

which is a S1.

Similarly, in the resolved conifold, the lagrangian submanifold is defined by



ip3 + ip4 x1 − ix2

x1 + ix2 ip4 − ip3







λ1

λ2


 = 0. (D.29)
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D.3 Quantum groups and their representations

D.3.1 Hopf algebra structure

The quantum group A(U(N)q) is a quasi-triangular Hopf algebra. To explain what

this is, we start with the simpler structure of a bi-algebra A, which is an algebra

endowed with 4 operations

product ∇ : A⊗A → A

unit η : C→ A

coproduct ∆ : A → A⊗A

counit ε : A → C (D.30)

These operations satisfy various sewing relations [236]; in particular the product

and coproduct are associative and co-associative respectively. A basic example

is the set of A(G) of C valued-functions on a group G, where ∇ is pointwise

multiplication, η = 1, and the coproduct and counit are defined to act on f ∈ A(G)

as

∆(f)(U, V ) = f(UV ), U, V ∈ G

ε(f) = f(1G) (D.31)

Here UV denotes the group multiplication of U and V , and 1G is the identity

element of G. The formulas (D.31) show that the coproduct and counit are dual

to the product and unit on the group G. For G = U(N), this describes the

algebraic structure of the Hilbert space for 2DYM and its string theory dual.

In the coordinate algebra A(U(N)q), ∇ is q-deformed into a non-commutative

product, while UV remains the same as the ordinary matrix multiplication and 1G

349



is still the identity matrix. In particular, the actions of the coproduct and counit

on single string wavefunctions fij(U) = Uij are given by

∆(Uij) =
∑

k

Uik ⊗ Ukj

ε(Uij) = δij (D.32)

Meanwhile the counit defines the trivial, or “vacuum” representation.

This bi-algebra structure is upgraded into a Hopf algebra by the introduction

of a mapping called the antipode

antipode S : A → A (D.33)

which acts as an inverse on the quantum group:

∑

k

S(U)ikUkj =
∑

k

UikS(U)kj = δij (D.34)

The final element that makes a Hopf Algebra into a quantum group is the R

matrix, which makes it a quasi-triangular Hopf algebra. This can be viewed as an

element

R ∈ A⊗A

R =
∑

i

ai ⊗ bi (D.35)

We can also interpret this as a linear operator on V ⊗ V . It satisfies the Yang-

Baxter equation.
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D.3.2 R matrix and antipode for SLq(2)

To illustrate this definition, consider the quantum group SLq(2). Its coordinate

algebra is generated by 4 elements (a,b,c,d) of a matrix

U =



a b

c d


 (D.36)

and the R matrix is

R =




q1/2 0 0 0

0 q−1/2 0 0

0 q1/2 − q−3/2 1 0

0 0 0 q1/2




(D.37)

Then the multiplication rule (6.94) is equivalent to

ab = qba, ac = qca, bd = qdb, cd = qdc

cb = bc, ad− da = (q − q−1)bc

ad− qbc = 1 (D.38)

The antipode is given by

S(a) = d, , S(c) = −qc, S(b) = −q−1b, S(d) = a (D.39)

D.3.3 ∗ structure and unitary representations

* on the coordinate algebra we define an involution of the SL(2)q algebra

which plays the role of complex conjugation by

a∗ = d, b∗ = −qc, c∗ = −q−1b, d∗ = a (D.40)
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From the antipode (D.39) we find the relation

U t∗ = S(U) (D.41)

where t stands for transpose. SU(2)q refers to SL(2)q equipped with the above

star structure.

D.4 Spacetime non-commutativity from B fields

Here we show how s non commutative worldvolume gauge field in arises from the

string sigma model due to the coupling to a nontrivial B field flux in the base S2.

For the physical string, it is known [305] that the presence of the B field alters the

boundary conditions for the open string, and leads to an anti-symmetric part to

the worldsheet propagator. This in turn leads to nontrivial commutation relations

of the open string endpoint,resulting in a non-commutative worldvolume gauge

theory on the D branes.

For the A model, we can see how this phenomenon arises from the bosonic part

of the sigma model action in the presence of the B field:

S =

∫

W

1

2
gIJδ

ab∂aX
I∂bX

J + iBIJε
ab∂aX

I∂bX
jd2σ (D.42)

where W denotes the 2 dimensional worldsheet. For a constant B field BIJ = BεIJ ,

the second term is a total derivative that can be written as a boundary term:

S =

∫

W

1

2
gIJδ

ab∂aX
I∂bX

J + i

∫

∂W

BεIJX
Iεab∂sX

jds (D.43)

where s is the ”time” coordinate along the boundary. We can treat the boundary

term as the integral of the canonical one-form
∫
pdq for a quantum mechanical

particle corresponding to the open string endpoint. This implies that the BεIJX
I
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is the canonical momentum conjugate to XJ , and therefore the equal time com-

mutation relations in gij → 0 limit are

[XI , XJ ] = i
εIJ

B
(D.44)

for the open string endpoints.
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APPENDIX E

APPENDIX FOR CHAPTER 7

E.1 Topological twist and topological sigma model on the

worldsheet

Before we move on to the topological sigma model, let us briefly review N = 2

supersymmetric non-linear sigma model defined on a Riemann surface Σ with a

Kahler manifold X as a target space. This theory consists of the following data:

holomorphic map/coordinate function Φ : Σ → TX, superpartners of Φ. Because

of the complex structure of X, the complexified tangent bundle TX decomposes

into holomorhpic and anti-holomorphic tangent bundle

TX = T 1,0X ⊕ T 0,1X. (E.1)

Respective to the decomposition of the complexified tangent bundle, we denote the

holomorphic components of Φ by φi ∈ T 1,0X and similarly for the anti-holomorphic

components. With this holomorphic decomposition, we can think of φi as a holo-

morphic tangent vector, of the target space, valued scalar field on the worldsheet.

A superpartner of such field then should live in holomorphic tangent vector valued

spin bundle, which reads

√
KΣ ⊗ (OΣ ⊕ Ω0,1

Σ )⊗ Φ∗(TX1,0), (E.2)

where
√
KΣ is an algebraic square root of canonical bundle of Σ, OΣ is structure

sheaf of Σ, and Ω0,1
Σ ≡ KΣ is anti-holomorphic cotangent bundle of Σ. As anti-

holomorphic canonical bundle is dual of canonical bundle, the corresponding spinor

bundle can be written as

(K
1/2
Σ ⊕KΣ

1/2
)⊗ Φ∗(TX1,0). (E.3)
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We will then denote the fermions living in K
1/2
Σ ⊗Φ∗(TX1,0) and K

1/2

Σ ⊗Φ∗(TX1,0)

by ψi+ and ψi−, respectively. We will use the similar convention for ψī+ and ψī−.

Given the field contents, the worldsheet action is

S = 2t

∫

Σ

(
1

2
gIJ∂zφ

I∂z̄φ
J + igīiψ

ī
−Dzψ

i
− + igīiψ

ī
+Dz̄ψ

i
+ +Rīijj̄ψ

i
+ψ

ī
+ψ

j
−ψ

j̄
−

)
,

(E.4)

where g is the hermitian metric of the target space.

Topological string model is then obtained by a topological twist to the bundle

[349], in which fermionic fields live in, that preserves the form of kinetic terms

of fermionic fields. The topological twist of A model can be understood as mov-

ing the non-trivial bundle
√
KΣ from K

1/2
Σ ⊗ Φ∗(TX1,0) to K

1/2
Σ ⊗ Φ∗(TX0,1) and

similarly for K
1/2

Σ . As a result of this topological twist, ψi+ and ψi− becomes (anti)-

holomorphic tangent vector valued scalar field on the worldsheet. Then we can

focus on transformation that transforms φi into ψi+ and φī into ψī−, as those trans-

formations can be represented by a globally well defined functions and others not

in general1.

Given the topological twist, let us rename the fermionic fields as χi = ψi+ and

χī = ψī−. Supersymmetry transformation is concisely repackaged as

{Q,Φ} =χ,

{Q,χ} =0,

{Q,ψI−} =i∂z̄Φ
I − χJΓIJKψ

K
− ,

{Q,ψĪ+} =i∂z̄Φ
Ī − χJ̄ΓĪJ̄K̄ψ

K̄
+ , (E.5)

where Q2 = 0 on-shell thus supersymmetry becomes BRST symmetry. The action

1For high genus curves, there are still more non-trivial supersymmetry transformations. But,
I have no idea what will happen if I take those non-trivial transformations into account. Perhaps,
BRST operator will just go away
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is

S = 2t

∫

Σ

(
1

2
gIJ∂zφ

I∂z̄φ
J + igīiψ

i
−Dzχ

ī
− + igīiψ

ī
+Dz̄χ

i −Rīijj̄ψ
i
−ψ

ī
+χ

jχj̄

)
.

(E.6)

A very important observation is that this action is a sum of a Q-exact term and a

topological term

S = it

∫

Σ

d2z{Q, V }+ t

∫

Σ

Φ∗(J), (E.7)

where V = gij̄(ψ
ī
+∂zφ

j +∂zφ
īψj−) and Φ∗(J) is pullback of the Kähler form defined

on X. One can add pullback of two-form tensor B to the action to complexfy the

Kähler form.

We have not specified yet if Σ has boundaries or not. If Σ does not attain a

boundary, then the worldsheet theory is a closed string theory. Similarly, if Σ has

boundaries, then the worldsheet theory is an open string theory.

Topological strings wrap “volume minimizer,” which is energetically stable,

among homologous 2 cycles in X. Which means that for closed string theory,

worldsheet instanton is classfied by homology class

Φ∗([Σ]) ∈ H2(X,Z). (E.8)

This classification can be generalized to open string theory directly. Open string

worlsheet can be regarded as a Riemann surface with h holes due to the conformal

invariance. As there are h boundaries of the Riemann surface, one should impose

boundary conditions. Let us denote h boundaries of Σ by Ci, where i = 1, . . . , h.

In [343], Witten showed that the physical boundary condition is given by

Φ(Ci) ⊂ L (E.9)

for some L which is a Lagrangian submanifold of X. Note that a submanifold L

is Lagrangian if J |L = 0. This condition implies that supersymmetric D-branes in
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topological A model wrap Lagrangian three-cycles in X2. Therefore, open string

worldsheet instanton is naturally classified by relative homology class

Φ∗(Σ) ∈ H2(X,L). (E.10)

One important class of observable in closed A model is a three points function

which has various interpretations in physical string theory. Let us consider a non-

trivial 2 form [Di] ∈ H2(X). Then one can consider an operator

ODi = (Di)i1,i2χ
i1χi2 . (E.11)

If we assume that X is a Calabi-Yau threefolds, when computed on string worlsheet

P1, the three points function of O(Di) is [68]

〈OD1OD2OD3〉 = KD1D2D3 +
∑

β

N0,β(D1, D2, D3)
∏

i

∫

β

[Di]Q
β, (E.12)

where KD1D2D3 is an intersection number and N0,β(D1, D2, D3) is a genus 0

Gromov-Witten invariant for an integral curve β ∈ H2(X), and Q = e−
∫
β J . Note

that this three points function can be obtained from the third derivative of the

genus 0 prepotential, which is free energy of genus 0 worldsheet theory,

∂t1∂t2∂t3F0(t) = 〈OD1OD2OD3〉, (E.13)

where ti =
∫
Di
J. Genus 0 prepotential receives classical and instanton contribu-

tions

F0 = F cl
0 + F inst

0 , (E.14)

where (to add prepotential at LCS). Coupling to gravity [343], genus g free energy

can be computed as well which reads

Fg(t) =
∑

β

Ng,βQ
β, (E.15)

2In this work, we do not focus on torsion one or five cycles.
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where Ng,β is a genus g Gromov-Witten invariant. Combining all genera prepo-

tential, we get a generating functional the all genera free energy

F (gs, t) =
∑

g

Fg(t)g
2g−2
s , (E.16)

which will prove to be useful.

E.2 Topological String on Conifolds and Geometric Tran-

sition

Let us review briefly the geometric transition from open string to closed string

theory of interest. Let us consider A-model open topological string theory on the

deformed conifold T ∗S3. We wrap N D-branes on S3, whose low energy effective

theory is SU(N) Chern-Simons theory [343]. Wilson lines can be introduced, if

M D-branes wrap on a lagrangian submanifold3 L of T ∗S3 which intersects S3 at

S1. This corresponds to U(N) Chern-Simons theory on S3 with M knots on S1.

Under the geometric transition at large N, we obtain A-model topological string

theory on the resolved conifold O(−1) ⊕ O(−1) → P1, in which the N D-branes

are desolved into B-flux and M D-branes are still wrapped on the same special

lagrangian L and intersect S2 at S1 [285].

Using the topological vertex formalism, one can obtain partition function on

O(−1)⊕O(−1)→ D2, where ∂D2 = S1 which implies that the partition function

can be understood as a wave function of topological string theory on S1 with

the fiber. Now, we need to subdivide S1 into two line segments to compute the

3In topological string theory, Lagrangian is good enough to ensure supersymmetry whereas
in physical string theory special Lagrangian is required. Note that in the conifold, Lagrangian
submanifolds we consider are special Lagrangian actually.
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entanglement entropy4. In order to subdivide S1, one needs D-brane/anti-D-brane

pair intersecting S1 at two points. The D-brane/anti-D-brane pair cannot wrap any

submanifold of the resolved conifold rather the D-brane/anti-D-brane pair should

wrap a special lagrangian submanifold. Previously, we have said that there is a

special lagrangian submanifold, on which a flavour D-brane can wrap to generate

Wilson loop in the dual Chern-Simons theory. Hence, it is natural to conjecture

that D-brane/anti-D-brane pair needed to cut S1 to two line segments is dual to

flavour D-brane/anti-D-brane pair in the dual open string theory.

The conjecture implies that the local degrees of freedom counted in closed string

theory should result from open strings extended between the intersecting D-branes.

Furthermore, cutting through S1, which is wrapped by the flavour D-brane/anti-D-

brane pair, corresponds to cutting through the Wilson line/anti-Wilson-line pair,

so we obtain nice interpretation in open string theory as well.

Let us first study the deformed conifold. Cotangent bundle of S3 can be em-

bedded into C4 by an equation

y2
1 + y2

2 + y2
3 + y2

4 = a2, (E.17)

yi’s∈ C. We assume that a is a real number. The bundle structure is more vivid

when we write yi = xi + ipi, then the embedding equation is written as

∑

i

x2
i = a2 +

∑

i

p2
i ,

∑

i

xipi = 0. (E.18)

It is then clear when pi = 0, for all i, then the equations are reduced to

∑

i

x2
i = a2. (E.19)

4For replica trick, this subdivision is not needed. But still, understanding on the Wilson line
dual to the cutting is absolutely necessary.
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Thus a describes radius of S3. When a is sent to 0, the deformed conifold in the

limit described by

y2
1 + y2

2 + y2
3 + y2

4 = 0. (E.20)

As Jacobian of the defining equation vanishes at the origin y1 = y2 = y3 = y4 = 0,

the conifold at the origin is singular.

To fix the singularity at the origin, one can blow up/resolve the origin such that

y1 = y2 = y3 = y4 = 0 is replaced with a smooth manifold. If we reparametrize

the coordinates by

zij =
∑

n

σnijyn, (E.21)

then (E.20) is written as

det zij = 0. (E.22)

In this presentation, the singularity occurs when the matrix coordinate zij is trivial.

It is important to note that we can view (E.22) as a condition for the following

equation to have a non-trivial solution



z11 z12

z21 z22







λ1

λ2


 = 0, (E.23)

for some complex variable λ1 and λ2 which cannot be simultaneously zero, because

λ1 = λ2 = 0 results in no constraints on zij matrix. Furthermore, (E.23) provides

a resolution of the singularity because when zij is non trivial λ1 and λ2 are fixed

up to rescaling and zij = 0 is replaced with coordinates (λ1, λ2). This implies that

equation (E.23) is an embedding of the resolved conifold into C4 × P1 in which zij

is a coordinate of C4 and [λ1, λ2] is a homogeneous coordinate of P1. Note that,

when zij is generic, the non-homogeneous coordinate z of P1 is related to the rest

of the coordinates by

z :=
λ1

λ2

=
y1 + iy2

y3 − iy4

=
y3 + iy4

iy2 − y1

. (E.24)
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Lagrangian submanifolds can easily be found by finding symmetric locus of an

anti-holomorphic involution. We consider an anti-holomorphic involution

y1,2 = y1,2, y3,4 = −y3,4. (E.25)

There are more anti-holomorphic involutions, but it will be clear that one can

choose (E.25) without loss of generality to find a special lagrangian intersecting

S3 at S1. In the deformed conifolde, for example, the invariant locus of (E.25), a

lagrangian submanifold L, is

p1,2 = 0, x3,4 = 0. (E.26)

At the symmetric locus of (E.25), the embedding equation becomes

x2
1 + x2

2 = a2 + p2
3 + p2

4. (E.27)

Hence L intersects S3 at

x2
1 + x2

2 = a2, (E.28)

which is a S1.

The Wilson loop or knot on S3 is S1 which is described by

x2
1 + x2

2 = a2, x3 = x4 = p1 = p2 = p3 = p4 = 0. (E.29)

We now want to show that (E.29) is homologous to S1 on S2. We will use homotopy

equivalence, with an understanding that two homotopically equivalent cycles are

homologous. First let us consider a parametrization Ca(t) for t ∈ [0, 1],

(x1(t), x2(t)) = a(cos(2πt), sin(2πt)). (E.30)

Let us then consider a homotopy γa(t, l) for t, l ∈ [0, 1],

(x1(t), x2(t), p3(t), p4(t)) = (
√
a2 + l2 cos(2πt),

√
a2 + l2 sin(2πt), l cos(−4πt), l sin(−4πt)).

(E.31)
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From this homotopy equivalence, we have checked that the curve (E.29) is homol-

ogous to a curve γa(t, 1)

(x1(t), x2(t), p3(t), p4(t)) = (
√
a2 + 1 cos(2πt),

√
a2 + 1 sin(2πt), cos(−4πt), sin(−4πt)).

(E.32)

Let us take the singular limit a → 0, and blow up the singular point. Under this

geometric transition, γa(t, 1) becomes γ0(t, 1)

(x1(t), x2(t), p3(t), p4(t)) = (cos(2πt), sin(2πt), cos(−4πt), sin(−4πt)). (E.33)

What is left for us to check is if L intersects S2 of the blow up, and if L and S2

intersect whether or not the intersection is γ0(t, 1). Let us first check if L intersects

S2. In the resolved conifold, L is given by

x2
1 + x2

2 = p2
3 + p2

4, p1,2 = x3,4 = 0. (E.34)

As (y1 + iy2)/(y3− iy4) = (y3 + iy4)/(iy2− y1) at L it is manifest that L intersects

S2. To study if γa(t, 1) intersects S2, let us parametrize z = (y1 + iy2)/(y3 − iy4)

z = −i(cos(−2πt) + i sin(−2πt)). (E.35)

Hence, we have shown that γ0(t, 1) is an equator of S2 thus proved the claim5.

E.3 C3 as a toric variety

C3 can be regarded as a Calabi-Yau manifold in a sense that the first chern class

of C3 is trivial. We want to find a T 2 × R fiber hiding in C3. Let zi be complex

5It still remains ambiguous what other choices of homotopy equivalences mean.
For example, if I choose a homotopy equivalence (x1(t), x2(t), p3(t), p4(t)) =
(cos(2πt), sin(2πt), cos(−2πt), sin(−2πt)) then I could send S1 on S3 in the deformed conifold
to a point on S2 in the resolved conifold. This shows that there could be many distinct choices,
which partially results from the fact that S1 in S2 is trivial in homology, or more precisely
H1(S2,Z) = 0.
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coordinates of C3, for i = 1, 2, 3. We first introduce three Hamiltonians, which

encode the fibration structure,

rα(z) = |z1|2 − |z3|2, (E.36)

rβ(z) = |z2|2 − |z3|2, (E.37)

rγ(z) = Im(z1z2z3). (E.38)

Given the symplectic form ω

ω = dzi ∧ dz̄i, (E.39)

the Hamiltonians, which can be understood as base coordinates, uniquely deter-

mine the fiber coordinates through Possion bracket

∂vzi = {rv, zi}ω. (E.40)

More explicitly, let α be a coordinate of an α-cycle, which is generated by rα, and

β be a coordinate of a β-cycle of T 2, both of which parametrize phases of the

complex coordinates of C3 by following group action

rα ⊗ rβ : (z1, z2, z3) 7→ (eiαz1, e
iβz2, e

−i(α+β)z3). (E.41)

In a similar way, translation along the remaining fiber direction R induces

(z1, z2, z3) 7→ (z1 + γz̄2z̄3, z2 + γz̄1z̄3, z3 + γz̄1z̄2). (E.42)

As we have identified the fiber T 2 × R, let us now study at which places in the

base manifold the fiber degenerates, meaning that some cycles in T 2 shirinks to a

point. An easy way to see if some cycle shrinks to a point is to check if the flow

generated by a Hamiltonian is trivial. For example, rα generates trivial flow if

z1 = z3 = 0. In a similar way, rβ generates trivial flow if z2 = z3 = 0. Now consider

a cycle generated by rα − rβ. The flow generated by rα − rβ is

(z1, z2, z3) 7→ (eiθz1, e
−iθz2, z3). (E.43)
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Which shows that the cycle generated by rα − rβ degenerates at z1 = z2 = 0.

More generally, one can consider a cycle generated by prα+qrβ, which degenerates

z1 = z2 = z3 = 0.

Now let us analyze the degeneration loci in the base manifold R3. α cycle

degenerates at z1 = z3 = 0, which then implies that the degeneration locus in the

base manifold for α cycle is rα = rγ = 0. One can show that β cycle degenerates at

rβ = rγ = 0 in the base manifold. For a generic cycle generated by prα + qrβ, the

degeneration locus in the base manifold is simply prα + qrβ = rγ = 0. Thus it is

manifest that the degeneration loci in the base manifold can be compactly encoded

in the two dimensional space, at rγ = 0, which is parametrized by (rα, rβ). We

denote a cycle generated by (prα + qrβ) as (−q, p) cycle. With the understanding

on the degeneration loci of T 2 cycles, we represent C3 by

(1,0)

(0,1)

(-1,-1)

Note that equivalent graph can be obtained by applying a SL(2, Z) transformation

on all the vectors. For example, upon acting




1 0

−1 1


 , (E.44)

we obtain equivalent toric diagrams
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(0,1)

(1,-1)

(-1,0)

(0,-1)

(1,1)

(-1,0)

E.4 Replica trick in Chern-Simons theory

We first introduce an identity that provides the basis for the surgery method. For

a manifold M which is the connected sum of two manifolds M1 and M2 glued

along a boundary S2, Chern-Simons theory partition function obeys an identity

[112, 341].

Z(M) =
Z(M1)Z(M2)

Z(S3)
. (E.45)

(E.45) can be generalized to a manifold M which is glued along n S2’s

Z(M) =
Z(M1)Z(M2)

Z(S3)n
. (E.46)

A straightforward generalization of the surgery formula (E.45) for M1 and M2 with

unknots of representations R1 ∈M1 and R2 ∈M2 is [112]

Z(M ;R1, R2) =
Z(M1;R1)Z(M2;R2)

Z(S3, RS3)
, (E.47)

where RS3 is the representation of the Wilson line going through the gluing bound-

ary S2. An important identity we will use at various steps in the large N-limit is

lim
N→∞

Z(S3;R)Z(S3;R) = S00(t′)2dq(R)2. (E.48)
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R

Figure E.1: Solid torus with a Wilson loop operator inserted.

R

A Ā

Figure E.2: Separated solid torus with a Wilson loop operator inserted.

Let us consider a single state without superposition |R〉CS ∈ H(T 2), see Fig.

E.1. We separate the solid torus into two regions A and Ā, see Fig. E.2. An overlap

〈Ri|Rj〉 is equivalent to a path integral on S2×S1 with insertions of Wilson loops

with representations Rj and Ri along S1.

To gain intuition on the replicated geometry, let us deform Fig. E.2 and com-

pute 〈Ri|Rj〉 performing the surgery [341]. One can understand A or A as two

three-dimensional half solid-balls, HB3
l and HB3

r , that are connected by a three-

dimensional solid cylinder D2 × I. It is useful to note that the boundary of HB3

consists of two two-dimensional disks glued along S1, ∂(HB3) = D2
u ∪D2

d. To pre-

pare a reduced density matrix, we prepare two copies of Fig. E.2 and glue A1 and

A2 as follows. First, we glue HB3
1,l
∈ A1 and HB3

2,l
∈ A2 along D2

1,d
∈ HB3

1,l
and

D2
2,d
∈ HB3

2,l
. As a result of this gluing, we again obtain a three dimensional half

solid-ball whose boundary is S2 = D2
1,u ∪D2

2,u. Similarly, we can glue HB3
1,r
∈ A1

and HB3
2,r

following the same procedure to obtain one more three dimensional half
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3HB
3HB

3HB I,l
3HB2,r

3HB2,r

3HBI,l

2(D I)x I
2(D I)x 2

R
R

Figure E.3: Geometric representation of the reduced density matrix

solid ball. Finally, we glue two solid cylinders along S1 × I to produce S2 × I. As

a result, we obtain the reduced density matrix ρA, c.f. Fig. E.3. By repeating the

surgery for the region A, trA(ρA) can be obtained similarly, c.f. Fig. E.4.

The geometric representation of 〈Ri|Ri〉 constitutes of two large S3’s, two thin

S3’s hosting the Wilson loops [112]. Note that one can pinch the end points of

S2 × I to deform the tube into S3 glued to the large S3’s.

Because each one of the small large S3’s is glued along two S2, from (E.46) we

obtain

trρA(R) = 〈Ri|Ri〉 =
Z(S3;Ri)

2Z(S3;Ri)
2

Z(S3;Ri)2Z(S3;Ri)2
= 1. (E.49)

An n-sheeted copy of E.4 can be similarly obtained by the surgery operation.

Each replication adds two Wilson loops, Ri and Ri, each of which is going through

two thin S3’s successively. As a result, the n-sheeted copy contains 2 + 2n S3’s

and the large S3’s are connected to the thin S3’s via gluing along 4n S2’s. Hence,
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2S Ix

R
R—

Figure E.4: Geometric representation of Z1.

we obtain

trρA(R)n = Z(S;Ri)
1−nZ(S;Ri)

1−n. (E.50)

E.5 Wilson loops in AdS/CFT

In this section, we want to further explain that the open/closed duality between

the Hartle-Hawking states in each duality frame exhibited in the previous sections

is not special to topological string theory. In fact, it has striking similarity to the

AdS/CFT correspondence [251, 300]. We first review the holographic dictionary

between Wilson loops in four-dimensional N = 4 SU(N) super Yang-Mills theory

(SYM4) and worldsheets in AdS5. Then we argue that the duality between the

Wilson loops and the worldsheets is the AdS/CFT analogue of the duality between

the HH states in closed/open topological string theories.

Let’s begin with the Wilson lines in N = 4 SU(N) SYM4, in particular in the
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fundamental representation. The Wilson lines in the fundamental representation

are interpreted as world lines of heavy quarks in SYM4 as follows. The Wilon lines

can be introduced to SYM4, in string theory, by first placing N + 1 D3-branes to

get a SU(N + 1) SYM and then displacing one of the D3-branes. The separated

D3-brane at distance d probes the background generated by the N D3-branes. The

open string connecting N D3-brane stack and the probe brane breaks the gauge

symmetry from SU(N + 1) to SU(N) × U(1). The boundary of the worldsheet

in the N D-branes stack can be naturally understood as a Wilson loop in the

fundamental representation. On a similar note, the end point of the open string

in the N D-brane stack can be understood as a heavy quark in the SU(N) SYM4.

Thus, the worldline of the heavy quark in the SYM4 corresponds to a Wilson loop

in the fundamental representation.

We can ask for the closed string dual by invoking the geometric transition to

replace the N D-branes with the non-trivial background AdS5 × S5. The string

worldsheet connecting the stack N D-branes and the probe D-brane, after the geo-

metric transition, remains to be a string worldsheet ending on the probe D-brane.

Once we identify the boundary of AdS5 with where the SYM4 is, these two different

point of views provide us the Wilson loop/worldsheet duality in AdS/CFT. Later,

the duality was generalized by [157] beyond the fundamental representation to all

representations.

It was suggested in [161] and later shown by [285, 156, 318] that the duality

between the worldsheet and the Wilson loops continues to hold in topological string

theory under geometric transitions. The similarity and differences of the dualities

in these two cases can be seen directly by comparing Fig. 7.20 and Fig. 7.21, and

summarized in the table below.
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Type IIB Superstring Topological string

Open string geometry R1,9 Deformed conifold

Dynamical brane topology R1,3 S3

Target space field theory SYM4(worldvolume EFT) Chern-Simons theory(exact)

Closed string geometry AdS5 × S5(decoupling limit) Resolved conifold

Probe brane topology R1,3 C× S1

External heavy particles Heavy quarks Anyons

Where probe brane ends R1,3 at infinity of AdS5 S3 at infinity of resolved conifold

So the correspondence between the entanglement entropy from the Wilson

loop/worldsheet duality is in the same spirit as [244]. However, we are not looking

at the extra entanglement entropy from a single probe Wilson loop, we are instead

calculating the entanglement entropy from a superposition of Wilson loops that

build up a geometrical dual spacetime!
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Mathématiques de l’IHÉS, 68:175–186, 1988.

[23] Vijay Balasubramanian, Per Berglund, Joseph P. Conlon, and Fernando
Quevedo. Systematics of moduli stabilisation in Calabi-Yau flux compactifi-
cations. JHEP, 03:007, 2005.

[24] Vijay Balasubramanian and Onkar Parrikar. Remarks on entanglement en-
tropy in string theory. Phys. Rev. D, 97:066025, Mar 2018.

[25] Victor V. Batyrev. Dual polyhedra and mirror symmetry for Calabi-Yau
hypersurfaces in toric varieties. J. Alg. Geom., 3:493–545, 1994.

[26] Daniel Baumann, Anatoly Dymarsky, Shamit Kachru, Igor R. Klebanov,
and Liam McAllister. Holographic Systematics of D-brane Inflation. JHEP,
03:093, 2009.

[27] Daniel Baumann, Anatoly Dymarsky, Shamit Kachru, Igor R. Klebanov,
and Liam McAllister. D3-brane Potentials from Fluxes in AdS/CFT. JHEP,
06:072, 2010.

[28] Daniel Baumann, Anatoly Dymarsky, Igor R. Klebanov, Juan Martin Mal-
dacena, Liam P. McAllister, and Arvind Murugan. On D3-brane Potentials
in Compactifications with Fluxes and Wrapped D-branes. JHEP, 11:031,
2006.

[29] Daniel Baumann, Anatoly Dymarsky, Igor R. Klebanov, and Liam McAl-
lister. Towards an Explicit Model of D-brane Inflation. JCAP, 0801:024,
2008.

[30] Daniel Baumann and Liam McAllister. Inflation and String Theory. Cam-
bridge University Press, 2014.

[31] Florent Baume and Eran Palti. Backreacted Axion Field Ranges in String
Theory. JHEP, 08:043, 2016.

[32] Iosif Bena, Emilian Dudas, Mariana Graña, and Severin Lüst. Uplifting
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[206] Amer Iqbal, Can Kozçaz, and Cumrun Vafa. The refined topological vertex.
Journal of High Energy Physics, 2009(10):069, October 2009.

[207] Daniel Louis Jafferis. Bulk reconstruction and the Hartle-Hawking wave-
function. arXiv e-prints, page arXiv:1703.01519, March 2017.

[208] Daniel Louis Jafferis and David K. Kolchmeyer. Entanglement Entropy in
Jackiw-Teitelboim Gravity. 2019.

[209] Kristan Jensen and Andreas Karch. The holographic dual of an EPR pair
has a wormhole. arXiv e-prints, page arXiv:1307.1132, July 2013.

[210] Kristan Jensen and Andy O’Bannon. Holography, entanglement entropy,

387



and conformal field theories with boundaries or defects. Phys. Rev. D,
88(10):106006, November 2013.

[211] Hans Jockers and Jan Louis. D-terms and F-terms from D7-brane fluxes.
Nucl. Phys., B718:203–246, 2005.

[212] Hans Jockers and Jan Louis. The Effective action of D7-branes in N = 1
Calabi-Yau orientifolds. Nucl. Phys., B705:167–211, 2005.

[213] Daniel N. Kabat. Black hole entropy and entropy of entanglement. Nucl.
Phys. B, 453:281–299, 1995.

[214] Shamit Kachru, Renata Kallosh, Andrei D. Linde, Juan Martin Maldacena,
Liam P. McAllister, and Sandip P. Trivedi. Towards inflation in string theory.
JCAP, 0310:013, 2003.

[215] Shamit Kachru, Renata Kallosh, Andrei D. Linde, and Sandip P. Trivedi.
De Sitter vacua in string theory. Phys. Rev., D68:046005, 2003.

[216] Shamit Kachru, Renata Kallosh, Andrei D. Linde, and Sandip P. Trivedi.
De Sitter vacua in string theory. Phys. Rev., D68:046005, 2003.

[217] Shamit Kachru, Manki Kim, Liam McAllister, and Max Zimet. de Sitter
Vacua from Ten Dimensions. 8 2019.

[218] Shamit Kachru, Liam McAllister, and Raman Sundrum. Sequestering in
String Theory. JHEP, 10:013, 2007.

[219] Shamit Kachru, John Pearson, and Herman L. Verlinde. Brane / flux an-
nihilation and the string dual of a nonsupersymmetric field theory. JHEP,
06:021, 2002.

[220] Shamit Kachru, Dusan Simic, and Sandip P. Trivedi. Stable Non-
Supersymmetric Throats in String Theory. JHEP, 05:067, 2010.

[221] Renata Kallosh. Gaugino Condensation and Geometry of the Perfect Square.
Phys. Rev., D99(6):066003, 2019.

[222] Renata Kallosh, Amir-Kian Kashani-Poor, and Alessandro Tomasiello.
Counting fermionic zero modes on M5 with fluxes. JHEP, 06:069, 2005.

388



[223] Renata Kallosh, Lev Kofman, Andrei D. Linde, and Antoine Van Proeyen.
Superconformal symmetry, supergravity and cosmology. Class. Quant. Grav.,
17:4269–4338, 2000. [Erratum: Class. Quant. Grav.21,5017(2004)].

[224] Renata Kallosh and Dmitri Sorokin. Dirac action on M5 and M2 branes with
bulk fluxes. JHEP, 05:005, 2005.

[225] Nemanja Kaloper and Lorenzo Sorbo. A Natural Framework for Chaotic
Inflation. Phys. Rev. Lett., 102:121301, 2009.

[226] Vadim Kaplunovsky and Jan Louis. Field dependent gauge couplings in lo-
cally supersymmetric effective quantum field theories. Nucl. Phys., B422:57–
124, 1994.

[227] Sheldon Katz and Chiu-Chu Melissa Liu. Enumerative geometry of stable
maps with Lagrangian boundary conditions and multiple covers of the disc.
arXiv Mathematics e-prints, page math/0103074, March 2001.

[228] Jihn E. Kim, Hans Peter Nilles, and Marco Peloso. Completing natural
inflation. JCAP, 0501:005, 2005.

[229] Manki Kim and Liam McAllister. Monodromy Charge in D7-brane Inflation.
2018.

[230] Elias Kiritsis and Vasilis Niarchos. Large-N limits of 2d CFTs, quivers and
AdS3 duals. Journal of High Energy Physics, 2011:113, April 2011.

[231] Alexei Kitaev and S. Josephine Suh. Statistical mechanics of a two-
dimensional black hole. Journal of High Energy Physics, 2019(5), May 2019.

[232] Igor R. Klebanov and Arvind Murugan. Gauge/Gravity Duality and Warped
Resolved Conifold. JHEP, 03:042, 2007.

[233] Igor R. Klebanov and Matthew J. Strassler. Supergravity and a confining
gauge theory: Duality cascades and chi SB resolution of naked singularities.
JHEP, 08:052, 2000.

[234] Igor R. Klebanov and Edward Witten. Superconformal field theory on three-
branes at a Calabi-Yau singularity. Nucl. Phys., B536:199–218, 1998.

[235] Albrecht Klemm and Eric Zaslow. Local mirror symmetry at higher genus.
AMS/IP Stud. Adv. Math., 23:183–207, 2001.

389



[236] A. Klimyk and K. Schmudgen. Quantum groups and their representations.
1997.

[237] Joachim Kock. Frobenius algebras and 2-d topological quantum field theories,
volume 59. Cambridge University Press, 2004.

[238] Paul Koerber. Stable D-branes, calibrations and generalized Calabi-Yau
geometry. JHEP, 08:099, 2005.

[239] Paul Koerber. Lectures on Generalized Complex Geometry for Physicists.
Fortsch. Phys., 59:169–242, 2011.

[240] Paul Koerber and Luca Martucci. From ten to four and back again: How to
generalize the geometry. JHEP, 08:059, 2007.

[241] Axel Krause and Enrico Pajer. Chasing brane inflation in string-theory.
JCAP, 0807:023, 2008.

[242] C.I. Lazaroiu. On the structure of open - closed topological field theory in
two-dimensions. Nucl. Phys. B, 603:497–530, 2001.

[243] Aitor Lewkowycz and Juan Maldacena. Generalized gravitational entropy.
Journal of High Energy Physics, 2013:90, August 2013.

[244] Aitor Lewkowycz and Juan Maldacena. Exact results for the entanglement
entropy and the energy radiated by a quark. JHEP, 05:025, 2014.

[245] Chang-Shou Lin and Chin-Lung Wang. Elliptic functions, green functions
and the mean field equations on tori. Annals of Mathematics, pages 911–954,
2010.

[246] Jennifer Lin. Ryu-Takayanagi Area as an Entanglement Edge Term. arXiv
e-prints, page arXiv:1704.07763, April 2017.

[247] Jennifer Lin. Entanglement entropy in Jackiw-Teitelboim Gravity. arXiv
e-prints, page arXiv:1807.06575, July 2018.

[248] Jan Louis, Markus Rummel, Roberto Valandro, and Alexander Westphal.
Building an explicit de Sitter. JHEP, 10:163, 2012.

[249] Dieter Lust, Fernando Marchesano, Luca Martucci, and Dimitrios Tsimpis.
Generalized non-supersymmetric flux vacua. JHEP, 11:021, 2008.

390



[250] J. Maldacena and L. Susskind. Cool horizons for entangled black holes.
Fortschritte der Physik, 61(9):781–811, September 2013.

[251] Juan Maldacena. Wilson Loops in Large N Field Theories. prl, 80(22):4859–
4862, Jun 1998.

[252] Juan Maldacena. The Large-N Limit of Superconformal Field Theories and
Supergravity. International Journal of Theoretical Physics, 38:1113–1133,
January 1999.

[253] Juan Maldacena. Eternal black holes in anti-de Sitter. Journal of High
Energy Physics, 2003(4):021, April 2003.

[254] Juan Martin Maldacena and Carlos Nunez. Supergravity description of field
theories on curved manifolds and a no go theorem. Int. J. Mod. Phys. A,
16:822–855, 2001.

[255] Fernando Marchesano and Luca Martucci. Non-perturbative effects on seven-
brane Yukawa couplings. Phys. Rev. Lett., 104:231601, 2010.

[256] Fernando Marchesano, Gary Shiu, and Angel M. Uranga. F-term Axion
Monodromy Inflation. JHEP, 09:184, 2014.

[257] M. Marino. Chern-Simons theory, matrix models, and topological strings,
volume 131. 2005.

[258] Marcos Marino. Chern-Simons theory and topological strings. Rev. Mod.
Phys., 77:675–720, 2005.

[259] Marcos Marino, Ruben Minasian, Gregory W. Moore, and Andrew Stro-
minger. Nonlinear instantons from supersymmetric p-branes. JHEP, 01:005,
2000.

[260] Donald Marolf and Henry Maxfield. Transcending the ensemble: baby uni-
verses, spacetime wormholes, and the order and disorder of black hole infor-
mation. Journal of High Energy Physics, 2020(8):44, August 2020.

[261] Luca Martucci. Warping the Kähler potential of F-theory/IIB flux compact-
ifications. JHEP, 03:067, 2015.

[262] Luca Martucci. Warped Kähler potentials and fluxes. JHEP, 01:056, 2017.

391



[263] D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipand e. Gromov-
Witten/Donaldson-Thomas correspondence for toric 3-folds. arXiv e-prints,
page arXiv:0809.3976, September 2008.

[264] Liam McAllister. de Sitter Vacua from Ten Dimensions. talk presented at
String Phenomenology 2019, June 2019.

[265] Liam McAllister. An Inflaton mass problem in string inflation from threshold
corrections to volume stabilization. JCAP, 0602:010, 2006.

[266] Liam McAllister, Pedro Schwaller, Geraldine Servant, John Stout, and
Alexander Westphal. Runaway Relaxion Monodromy. JHEP, 02:124, 2018.

[267] Liam McAllister, Pedro Schwaller, Geraldine Servant, John Stout, and
Alexander Westphal. Runaway Relaxion Monodromy. JHEP, 02:124, 2018.

[268] Liam McAllister and Eva Silverstein. String Cosmology: A Review. Gen.
Rel. Grav., 40:565–605, 2008.

[269] Liam McAllister, Eva Silverstein, and Alexander Westphal. Gravity Waves
and Linear Inflation from Axion Monodromy. Phys. Rev., D82:046003, 2010.

[270] Liam McAllister, Eva Silverstein, and Alexander Westphal. Gravity Waves
and Linear Inflation from Axion Monodromy. Phys. Rev., D82:046003, 2010.

[271] Liam McAllister, Eva Silverstein, Alexander Westphal, and Timm Wrase.
The Powers of Monodromy. JHEP, 09:123, 2014.

[272] Lauren McGough and Herman Verlinde. Bekenstein-Hawking entropy as
topological entanglement entropy. Journal of High Energy Physics, 2013:208,
November 2013.

[273] Paul McGuirk, Gary Shiu, and Yoske Sumitomo. Non-supersymmetric
infrared perturbations to the warped deformed conifold. Nucl. Phys.,
B842:383–413, 2011.

[274] Jacob McNamara and Cumrun Vafa. Cobordism Classes and the Swampland.
9 2019.

[275] Jacob McNamara and Cumrun Vafa. Baby Universes, Holography, and the
Swampland. arXiv e-prints, page arXiv:2004.06738, April 2020.

392



[276] Thomas G. Mertens and Gustavo J. Turiaci. Liouville quantum gravity –
holography, JT and matrices. arXiv e-prints, page arXiv:2006.07072, June
2020.

[277] Andrei Micu, Eran Palti, and Gianmassimo Tasinato. Towards Minkowski
Vacua in Type II String Compactifications. JHEP, 03:104, 2007.

[278] Gregory W. Moore and Graeme Segal. D-branes and K-theory in 2D topo-
logical field theory. 8 2006.

[279] Jakob Moritz, Ander Retolaza, and Alexander Westphal. Toward de Sitter
space from ten dimensions. Phys. Rev., D97(4):046010, 2018.

[280] Andrew Neitzke and Cumrun Vafa. Topological strings and their physical
applications. 10 2004.

[281] Nikita A. Nekrasov. Seiberg-Witten Prepotential From Instanton Counting.
arXiv e-prints, pages hep–th/0206161, June 2002.

[282] Nikita A. Nekrasov and Samson L. Shatashvili. Quantization of Integrable
Systems and Four Dimensional Gauge Theories. In XVITH INTERNA-
TIONAL CONGRESS ON MATHEMATICAL PHYSICS. Held 3-8 August
2009 in Prague, pages 265–289, March 2010.

[283] Georges Obied, Hirosi Ooguri, Lev Spodyneiko, and Cumrun Vafa. De Sitter
Space and the Swampland. 6 2018.

[284] Mathematical Society of Japan. Encyclopedic Dictionary of Mathematics:
A-E. Number v. 1 in Encyclopedic Dictionary of Mathematics. MIT Press,
1987.

[285] Hirosi Ooguri and Cumrun Vafa. Knot invariants and topological strings.
Nucl. Phys., B577:419–438, 2000.

[286] Hirosi Ooguri and Cumrun Vafa. World sheet derivation of a large N duality.
Nucl. Phys., B641:3–34, 2002.

[287] Hirosi Ooguri and Cumrun Vafa. On the Geometry of the String Landscape
and the Swampland. Nucl. Phys., B766:21–33, 2007.

[288] Hirosi Ooguri, Cumrun Vafa, and Erik P. Verlinde. Hartle-Hawking wave-
function for flux compactifications. Lett. Math. Phys., 74:311–342, 2005.

393



[289] Eran Palti. The Swampland: Introduction and Review. Fortsch. Phys.,
67(6):1900037, 2019.

[290] Geoff Penington, Stephen H. Shenker, Douglas Stanford, and Zhenbin
Yang. Replica wormholes and the black hole interior. arXiv e-prints, page
arXiv:1911.11977, November 2019.

[291] J. Polchinski. String Theory. Vol. 1: An Introduction to the Bosonic String.
Cambridge Monographs on Mathematical Physics. Cambridge University
Press, 2007.

[292] Joseph Polchinski. String theory. Vol. 2: Superstring theory and beyond.
Cambridge University Press, 2007.

[293] Joseph Polchinski and Matthew J. Strassler. The String dual of a confining
four-dimensional gauge theory. 2000.

[294] Joseph Polchinski and Edward Witten. Evidence for heterotic - type I string
duality. Nucl. Phys. B, 460:525–540, 1996.

[295] Thomas Quella. Symmetry protected topological phases beyond groups: The
q-deformed aklt model. 05 2020.

[296] Fernando Quevedo. Local String Models and Moduli Stabilisation. Mod.
Phys. Lett., A30(07):1530004, 2015.

[297] Lisa Randall. The Boundaries of KKLT. Fortsch. Phys., 68(3-4):1900105,
2020.

[298] Lisa Randall and Raman Sundrum. A Large mass hierarchy from a small
extra dimension. Phys. Rev. Lett., 83:3370–3373, 1999.

[299] Ander Retolaza and Angel Uranga. De Sitter Uplift with Dynamical Susy
Breaking. JHEP, 04:137, 2016.

[300] S. J. Rey and J. T. Yee. Macroscopic strings as heavy quarks: Large- N
gauge theory and anti-de Sitter supergravity. European Physical Journal C,
22(2):379–394, Nov 2001.

[301] Fabian Ruehle and Clemens Wieck. One-loop Pfaffians and large-field infla-
tion in string theory. Phys. Lett., B769:289–298, 2017.

394
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