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Spectroscopy serves as a window into the physics of condensed matter systems. In

the study of unconventional superconductors, spectroscopic probes such as scan-

ning tunneling spectroscopy, angle-resolved photoemission spectroscopy, and op-

tical measurements have played important roles in determination of their gap

structure, which is a crucial piece of information in uncovering the mechanism

of high temperature superconductivity, as well as a stepping stone for theoretical

studies of exotic physics of the materials. Although these unconventional super-

conductors often are highly heterogeneous, theoretical calculation of electronic

spectra for heterogeneous systems is non-trivial.

In this dissertation we present theoretical studies on electronic spectra of het-

erogeneous unconventional superconductors. We begin with a study on proxim-

ity induced topological superconductivity in topological metal-superconductor het-

erostructure. Contrary to the heterostructure suggested by Fu and Kane, where

topological superconductivity is limited to the interface between topological insu-

lator and superconductor, finite density of states at Fermi level carries supercon-

ductivity to the naked surface of topological metal, allowing surface probes access

to topological superconductivity. We then present an analysis of scanning tunnel-

ing spectroscopy measurement on LiFeAs. We find signatures of coupling between

electron and antiferromagnetic spin fluctuation, strongly suggesting the role of

the bosonic mode in the pairing mechanism of the material’s superconductivity.



We then move on to a discussion of various electronic spectra in superconducting

cuprates, namely, how glassy nematicity affects local density of states, spectral

function, and optical conductivity. We find that heterogeneity of glassy state and

the form factor of nematicity work together to produce a number of “anomalous”

features in the electronic spectra observed in underdoped cuprates. Lastly, we

discuss near-vortex electronic spectra in superconducting LiFeAs under magnetic

field. From the spatial dependence of tunneling spectra, we argue that the gap

structure of LiFeAs can be deduced.
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CHAPTER 1

INTRODUCTION

In a material whose physics of interest is controlled by its electronic degrees

of freedom, electronic spectra provides crucial information. Compared to other ob-

servables such as d.c. conductivity or specific heat, spectroscopic measurements

provides energy resolution, making available a rich set of information of the ex-

citations of the system. Especially in the study of unconventional superconduc-

tors, spectroscopic probes such as scanning tunneling spectroscopy [1, 2], angle-

resolved photoemission spectroscopy [3], as well as optical measurements [4] have

played important roles.

To turn experimentally observed spectra into understanding of the physics of

the material, a theoretical analysis of the spectra is necessary. For conventional

“metallic” superconductors, where mean-field theory with perturbative corrections

work wonderfully, theoretical analysis of spectra is rather straightforward. In

many unconventional superconductors, however, are strongly correlated materi-

als: Electron-electron interaction or electron-boson interaction is too strong to be

ignored or treated perturbatively. Calculation of electronic spectra of such sys-

tem is non-trivial, with limited success from numerical methods such as quantum

Monte Carlo or exact diagonalization.

Heterogeneity also makes calculation of spectra difficult. For translationally

invariant systems, momentum conservation greatly reduces the Hilbert space,

rendering calculations more approachable. However, when systems lose trans-

lational symmetry, where momentum is no longer conserved, the spatial depen-

dence of the Hamiltonian need to be taken into account. Such heterogeneity can

arise due to impurities, symmetry breaking order parameter with short-range cor-
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relation, vortex formation in type-II superconductors, or artificially designed het-

erostructures. Although analytical solutions are not easily attainable, numerical

methods allow calculation of spectra in such systems possible.

This dissertation is a discussion on theoretical computation of electronic spec-

tra of heterogeneous unconventional superconductors. It consists of previously

published papers, each preceded by related theoretical background. The structure

is as follows: Chapter 2 is a basic overview of the Bogoliubov-de Gennes theory,

followed by a research paper Superconducting proximity effect in topological met-

als in chapter 3. Chapter 4 discusses theoretical calculation of scanning tunneling

spectroscopy and quasiparticle interference, followed by a research paper Identi-

fying the ‘fingerprint’ of antiferromagnetic spin-fluctuations in iron-pnictide cooper

pairing in chapter 5. Chapter 6 discusses gauge field, current, and optical conduc-

tivity on a lattice model model. The following chapter 7 is a research paper Cold-

spots and glassy nematicity in underdoped cuprates. Chapter 8 discusses how

to include magnetic field to Bogoliubov-de Gennes theory, followed by a research

paper Signatures of unconventional pairing in near-vortex electronic structure of

LiFeAs in chapter 9.
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CHAPTER 2

OVERVIEW ON BARDEEN-COOPER-SCHRIEFFER (AND

BOGOLIUBOV-DE GENNES) THEORY

Superconductor is a phase of matter characterized by zero electrical resistiv-

ity and the expulsion of magnetic field. It was first discovered by H. Kamerlingh

Onnes in 1911. Only after decades an almost complete theoretical picture of super-

conductivity was developed by Bardeen, Cooper and Schrieffer in the 1950s [1]. In

Bardeen-Cooper-Schrieffer (BCS) theory, superconductivity arises as an instabil-

ity of metallic state with Fermi surface due to effective attractive interaction me-

diated by phonons. In 1986, however, a new class of “high-temperature” cuprate

superconductors was discovered by Bednorz and Müller [2], whose superconduc-

tivity does not seem to be explained by phonon-mediation. And then after two

decades, another class of iron-based superconductors were discovered by Kami-

hara et al. [3, 4]. The mechanism of superconductivity in these classes of materials

is still at large. Much of the phenomenology of the condensed state, nevertheless,

seems to be well described by the BCS theory. In studying the spectra of these

unconventional superconductors, BCS theory still remains useful.

In this chapter, we present a brief overview of BCS theory. We start from

the BCS theory for systems with translational invariance, and then move on to

Bogoliubov-de Gennes formalism which can be used to describe heterogeneous

superconductors.
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2.1 Bardeen-Cooper-Schrieffer Theory

The BCS theory of superconductivity is a Hartree-Fock theory of an interacting

Hamiltonian. The reduced Hamiltonian which contains the bare essentials for

BCS theory is

H =∑
kσ
εknkσ+

∑
kk′

Vk′kb∗
k′bk, (2.1)

where εk is the dispersion of the non-interacting electron, nkσ ≡ c∗kσckσ the num-

ber of electrons with momentum k and spin σ, with c∗kσ creating an electron with

(crystal) momentum k and spin σ. Here we use ∗ to indicate operator conjugation,

reserving † to operator conjugation together with matrix Hermitian conjugate.

Vk′k is the (effective) attractive interaction, which can be written in terms of

pairons b∗
k ≡ c∗k↑c∗−k↓. The crux of BCS theory lies in the mean-field decomposition

of the interaction in the “anomalous” channel. By making the following mean-field

approximation to the commutator

[cp↑,H ]= εpcp↑+
∑
kp

Vk′pbkc∗−p↓ ≈ εpcp↑+∆pc∗−p↓ ≡ [cp↑,HBCS] (2.2)

such that the right hand side is linear in terms of c and c∗, we arrive at the BCS

Hamiltonian

HBCS =∑
kσ
εknkσ+

∑
k
∆kc∗k↑c∗−k↓+∆∗

kc−k↓ck↑. (2.3)

The above Hamiltonian, together with the self-consistency equation

∆p =∑
k

Vpk〈c−k↓ck↑〉 (2.4)

describes the ground state of a superconductor.
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2.2 Bogoliubov-de Gennes Theory

The original BCS theory presented in momentum basis for translationally invari-

ant systems was later generalized to Bogoliubov-de Gennes formalism [5], which

is formalized in real-space basis to describe heterogeneous superconductors. In

this section, we present a general formalism which incorporates all variants of

Bogoliubov-de Gennes theory used in later chapters (spin-singlet, spin-orbit cou-

pled system, magnetic field, etc.).

Let me again begin with a generic interacting Hamiltonian

H =K +V =∑
αβ

Kαβc∗αcβ+
1
4

∑
αβµν

Vαβ;µνc∗αc∗βcνcµ, (2.5)

where the Greek subscripts represent all degrees of freedom of the fermionic

Hilbert space (e.g., site indices for spinless fermions, or multi-indices representing

spin and site for spinful fermions). Hermiticity of the Hamiltonian requires that

K =K † ⇔ Kαβc∗αcβ = K∗
αβc∗βcα ⇔ Kαβ = K∗

βα, (2.6)

V = V † ⇔ Vαβ;µνc∗αc∗βcνcµ =V∗
αβ;µνc∗µc∗νcβcα ⇔ Vαβ;µν =V∗

µν;αβ. (2.7)

The mean-field decomposition of this Hamiltonian in the BCS channel writes

VHF = 1
4

∑
αβµν

Vαβ;µν

(
F∗
αβcνcµ+Fµνc∗αc∗β

)
(2.8)

where Fαβ ≡ 〈cβcα〉 is the pair amplitude on bond (α,β). In terms of the “gap”

order parameter defined as

∆αβ ≡
1
2

∑
µν

Vαβ;µνFµν, (2.9)

the Hartree-Fock term writes

VHF = 1
2

∑
αβ

∆αβc∗αc∗β+
1
2

∑
µν

∆∗
µνcνcµ. (2.10)
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The resulting Hamiltonian is then

HBdG =∑
αβ

[
Kαβc∗αcβ+

1
2
∆αβc∗αc∗β+

1
2
∆∗
αβcβcα

]
. (2.11)

2.3 Nambu Basis and Particle-Hole Symmetry

Up to constant terms, HBdG can be rewritten as

HBdG =∑
αβ

1
2

Kαβc∗αcβ−
1
2

Kβαcαc∗β+
1
2
∆αβc∗αc∗β+

1
2
∆∗
αβcβcα (2.12)

which can be presented in the matrix form by defining a “Nambu” spinor ψ†
α =

(c∗α, cα):

HBdG = 1
2

∑
αβ

(
c∗α cα

)Kαβ ∆αβ

∆∗
βα

−K∗
αβ


cβ

c∗
β

≡ 1
2

∑
αβ

ψ†
αHαβψβ. (2.13)

Fermion anticommutation requires that ∆ be antisymmetric, i.e. ∆αβ = −∆βα.

Note that the spinor ψα counts the (complex) fermionic degrees of freedom twice;

i.e., it satisfies the Majorana condition

ψ∗
α = τ1ψα ≡ Cψα, (2.14)

where C = τ1 can be interpreted as the charge conjugation operator. 1

Due to the Majorana condition of ψ, the Hamiltonian HBdG enjoys particle-

hole symmetry. For example, the BdG Hamiltonian is written

HBdG = 1
2

(
c† cT

) K ∆

−∆∗ −K∗


 c

c∗

= 1
2
ψ†Hψ. (2.15)

1For discussions on the Majorana spinor and the Majorana condition, see e.g. Ref. [6].
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From here on, we suppress the subscripts when the symbols represent matrices

and vectors. Under charge conjugation ψ= C†ψ∗, the Hamiltonian writes

HBdG = 1
2
ψTCHC†ψ∗ =−1

2
ψ†(CHC†)Tψ= 1

2
ψ†Hψ. (2.16)

From this the “particle-hole” symmetry for the single-particle Hamiltonian writes

CHC† =−HT =−H∗. (2.17)

The second equality follows from Hermiticity of H. This particle-hole symmetry

ensures that, if Ψ is an eigenvector of H with eigenvalue e, then C†Ψ∗ is also an

eigenvector with eigenvalue −e (e is real since H is Hermitian):

H(C†Ψ∗)=−C†H∗Ψ∗ =−C†(eΨ)∗ =−e(C†Ψ∗). (2.18)

After diagonalizing the matrix H =UEU†, with a unitary matrix U and a diagonal

matrix E, particle-hole symmetry guarantees that the matrix can be organized in

the following form

E =

E+ 0

0 −E+

 , with U =

u v∗

v u∗

 (2.19)

where E+ is a diagonal matrix with non-negative entries. We can now define a

new fermion spinor ψ̃ as follows:

ψ̃≡

 f

f ∗

≡U†ψ=

u†c+vT c∗

v†c+uT c∗

 . (2.20)

which satisfies Fermion anticommutation
{
ψ̃α,ψ̃∗

β

}
= δαβ. Then HBdG can be writ-

ten in terms of a diagonal matrix

HBdG = 1
2

(
f † f T

)E+ 0

0 −E+


 f

f ∗

= f †E+ f (2.21)

Observe that the Hamiltonian is written in terms of non-negative energy modes.

An excitation created by f † is called a Bogoliubov quasiparticle.
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2.4 Expectation Value of an Observable

If all of E+ are positive (i.e. no zero eigenvalues), then the system has a unique

ground state defined as the vacuum of excitation f

f
∣∣Ω〉

HBdG
= 0, (2.22)

whereas if there are n zero eigenvalues (n needs to be even), the system has

ground state degeneracy of 2n/2.

To compute an expectation value of an observable for the ground state, it is

convenient to define the following equal time Green’s function

G ≡
〈
ψψ†

〉
=


〈

cc†
〉 〈

ccT
〉

〈
c∗c†

〉 〈
c∗cT

〉
 . (2.23)

Ground state expectation value (that is, “vacuum expectation value” with respect

to excitation f ) of any static operator quadratic in the fermion operator c and c∗

can be written in terms of this correlator. For example, the fermion density at the

coordinate α is nα = 〈
c∗αcα

〉 = G11
αα. Using U from previous section, we have, for

the ground state,

G ≡
〈
ψψ†

〉
=


〈

cc†
〉 〈

ccT
〉

〈
c∗c†

〉 〈
c∗cT

〉


= 〈U†ψ̃ψ̃†U〉 =

u v∗

v u∗




〈
f f †

〉 〈
f f T

〉
〈

f ∗ f †
〉 〈

f ∗ f T
〉


u† v†

vT uT

 . (2.24)

At temperature T = 1/β, the occupation number of Bogoliubov quasiparticle fol-

lows Fermi-Dirac distribution
〈

f f †
〉 〈

f f T
〉

〈
f ∗ f †

〉 〈
f ∗ f T

〉
=

 fD(−E+) 0

0 fD(E+)

 , (2.25)
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where fD(E)= (1+ eβE)−1 is Fermi function. Therefore

G =

ufD(−E+)u† +v∗ fD(E+)vT ufD(−E+)v† +v∗ fD(E+)uT

vfD(−E+)u† +u∗ fD(E+)vT vfD(−E+)v† +u∗ fD(E+)uT

 . (2.26)

2.5 Spin Degrees of Freedom

Electrons have spin one-half. To incorporate spin degrees of freedom into the

Hamiltonian, the subscript α can be considered a multi-index with σ =↑,↓ spin

and i all the remaining (site, orbital, etc.) degrees of freedom. Explicitly writing

out the spin indices, the Hamiltonian can be written as

K↑↑ K↑↓ ∆↑↑ ∆↑↓

K†
↑↓ K↓↓ −∆T

↑↓ ∆↓↓

−∆∗
↑↑ −∆∗

↑↓ −K∗
↑↑ −K∗

↑↓

∆†
↑↓ −∆∗

↓↓ −KT
↑↓ −K∗

↓↓


. (2.27)

The gap order parameter ∆ can be decomposed into spin-singlet and spin-triplet

channels. For spin-singlet, ∆↑↑ = ∆↓↓ = 0 and ∆↑↓ = ∆T
↑↓, while for spin-triplet, all

∆σσ′ are antisymmetric: ∆↑↑ = −∆T
↑↑, ∆↓↓ = −∆T

↓↓, and ∆↑↓ = −∆T
↑↓. These can be

organized in the following form

∆= (Ψ+d ·σ)iσ2 (2.28)

where Ψ is a symmetric matrix representing spin-singlet channel, while the “d-

vector” d is a collection of antisymmetric matrices representing pairing in spin-

triplet channel.
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2.6 Translational Invariance

In a solid state system, discrete lattice translation is often a good symmetry. Mak-

ing use of this symmetry greatly simplifies the problem. For this, let us consider

a D-dimensional lattice system whose lattice vectors are {ai}i=1...D with a peri-

odic boundary condition Niai ≡ 0 for all i . . .D. A fermion annihilation operator

for such a system can be indexed by the position of the lattice site x (on Bravais

lattice), and the rest α (which can include spin, orbital, etc.):

HBdG = 1
2

∑
xyαβ

(
c∗xα cxα

) Kxα;yβ ∆xα;yβ

−∆∗
xα;yβ −K∗

xα;yβ


cyβ

c∗yβ

 . (2.29)

Translation symmetry of the Hamiltonian requires that Kxα;yβ = Kαβ(x−y). The

condition for ∆xα;yβ is less constraining because of gauge redundancy. Here, for

simplicity, we assume ∆xα;yβ =∆αβ(x−y), which corresponds to the Cooper pairs

having zero crystal momentum. It is, nevertheless, possible to have translation

symmetry with non-zero pair momentum, if the pair momentum lies at a high

symmetry point of the Brillouin zone.

To make use of the translation symmetry, it is convenient to write the Hamil-

tonian in terms of the following crystal momentum basis.

ckσ =
1p
N

∑
x

e−ik·xcxσ c∗kσ =
1p
N

∑
x

eik·xc∗xσ (2.30)

for k =∑D
i=1

ni
Ni

Gi, with ni = 0,1, . . . , Ni −1 and N =∏
Ni. Gi is a reciprocal lattice

vector defined by

Gi ·a j = 2πδi j. (2.31)

In this basis, the Hamiltonian can be written in terms of Nambu spinor ψ†
kα =

12



(c∗kα, c−kα) as

HBdG = 1
2

∑
kαβ

(
c∗kα c−kα

) Kk,αβ ∆k,αβ

−∆∗
−k,αβ −K∗

−k,αβ


 ckβ

c∗−kβ

= 1
2

∑
kαβ

ψ
†
kHkψk (2.32)

where

Kk,αβ =
1
N

∑
r

e−ik·rKαβ(r), ∆k,αβ =
1
N

∑
r

e−ik·r∆αβ(r). (2.33)

The self-consistency equation also simplifies in terms of momentum states. To

see this, let us consider the following form of interaction

V = 1
4

∑
xr

∑
αβγδ

Vαβγδ(r)c∗x+r,αc∗x,βcx,δcx+r,γ, (2.34)

which is translationally invariant, and conserves local charge density. Typical

density-density or spin-spin interactions can be written in this form. Again, in

the momentum basis,

V = 1
4

∑
Vαβγδ(q)c∗k1−q,αc∗k2+q,βck2,δck1,γ (2.35)

Making use of the translation invariance of the Ansatz 〈cxαcyβ〉 = Fαβ(x−y), the

pair amplitude in momentum space is

〈
ckαcpβ

〉
=

〈
ckαc−kβ

〉
δk,−p. (2.36)

This implies that the interaction term relevant for pairing is

Vred =
1
4

∑
Vαβγδ(q)c∗−k−q,αc∗k+q,βck,δc−k,γ, (2.37)

and the self-consistency equation becomes

∆αβ(k)=−1
2

∑
γδ

Vαβγδ(q)
〈

ck+q,δc−k−q,γ

〉
. (2.38)
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Abstract

Much interest in the superconducting proximity effect in three-dimensional (3D)

topological insulators (TIs) has been driven by the potential to induce Majorana

bound states at the interface. Most candidate materials for 3D TI, however, are

bulk metals, with bulk states at the Fermi level coexisting with well-defined sur-

face states exhibiting spin-momentum locking. In such topological metals, the

proximity effect can differ qualitatively from that in TIs. By studying a model

topological metal-superconductor (TM-SC) heterostructure within the Bogoliubov-

de Gennes formalism, we show that the pair amplitude reaches the naked surface,

unlike in a topological insulator-superconductor (TI-SC) heterostructure where it

is confined to the interface. Furthermore, we predict vortex-bound-state spectra

to contain a Majorana zero-mode localized at the naked surface, separated from

the bulk vortex-bound-state spectra by a finite energy gap in such a TM-SC het-

erostructure. These naked-surface-bound modes are amenable to experimental

observation and manipulation, presenting advantages of TM-SC over TI-SC.
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3.1 Introduction

The potential realization of Majorana zero modes (MZMs) at the ends of a

nanowire-superconductor hybrid system [1–6] has attracted broad interest to dif-

ferent ways of stabilizing MZMs. While there are proposals to exploit exotic statis-

tics of MZMs within quasi-one-dimensional networks [7–10], a two dimensional

setting would be desirable for observing statistical properties of MZMs. A MZM

can appear as a vortex bound state of triplet superfluids [11] or superconduc-

tors [12]. Unfortunately, naturally occurring triplet superconductors are rare, and

hence the proposal by Fu and Kane [13] to use the superconducting proximity

effect on the topological insulator (TI) surface states raised enthusiasm as an al-

ternative route to realizing MZMs hosted in a two dimensional space. However,

most known three-dimensional (3D) TI candidate materials, such as Bi2Se3 and

Bi2Te3, have both the surface states and the bulk states at the Fermi energy [14].

Recent experimental successes in inducing superconductivity in Bi2Se3 thin films

through proximity effect [15, 16] makes it all the more urgent to address the su-

perconducting proximity effect in such topological metals, where surface states

and bulk states coexist.

In the proposal by Fu and Kane [13] for realizing MZMs, superconductivity is

induced to the surface states of a 3D TI by proximity to a trivial s-wave supercon-

ductor (SC). The argument for the existence of a MZM as a vortex bound state is

based on the formal equivalence between a p+ ip superconducting gap of a spin-

less fermion and a trivial s-wave gap after projection to the space of surface states.

However, with only the surface states available at the Fermi energy, the supercon-

ducting proximity effect is limited to the interface between the TI and the adjacent

superconductor. On the other hand when the bulk band crosses the Fermi energy,
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as they do in many 3D TI materials, there is a chance that the proximity effect can

reach the naked surface. The key questions then would be (1) when can proximity

effect reach the naked surface and (2) whether the naked surface can host MZMs.

These questions are the focus of this paper.

3.2 Model Hamiltonian for Heterostructure

To be concrete, we consider a Bi2Se3-SC heterostructure, where the Bi2Se3 takes

the form of a finite thickness slab, so that we can study its naked surface

(Fig. 3.1a). We first study how the proximity effect propagates differently depend-

ing on the location of the chemical potential, by solving the Bogoliubov-de Gennes

(BdG) equation in the heterostructure. We then study the vortex bound state spec-

tra with the gap structure inferred from the solution and investigate the stability

of a MZM on the naked surface depending on chemical potential.

The heterostructure of interest consists of a slab of Bi2Se3 for 0 < z < LTI and

superconductor for −LSC < z < 0. The electronic structure of Bi2Se3 is described

by an effective two-orbital Hamiltonian on a simple cubic lattice with lattice con-

stant a. Given the slab geometry with periodic boundary conditions in the x and

y directions, we choose as basis
∣∣k, z,α, s

〉
, a state with momentum k = (kx,ky)

within an xy plane at z = (nz +1/2)a for nz = 0. . . NTI −1, with orbital α and spin

s. As the normal-state Hamiltonian of the model we take a lattice version of the

four-band continuum model for 3D TI as given in Ref. [17] consisting of two parts:

intra-layer terms Ĥ0
k and the inter-layer hopping (from nz to nz +1) terms Ĥ(1)

k
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Figure 3.1: (a) Bi2Se3-SC heterostructure considered in this paper. (b) Dispersion
of Bi2Se3 on a slab of finite thickness LTI. Each point is doubly de-
generate, and the color scale indicates the minimum zmin =minΨ〈z〉Ψ
that can be obtained within the degenerate space Ψ ∈ span{Ψ1,Ψ2}.
The dotted horizontal lines indicate representative chemical poten-
tials associated with TI, TM, and M regimes as defined in the text.
We present schematics of corresponding Fermi surfaces next to each
dotted line, where red filled circles represent the bulk states and the
black circles the surface states. Each arrow points along the direction
of the spin of the surface state on one of the surfaces, which is locked
to the momentum.

written as

Ĥ(0)
k =t0 −µ−2t1 cos(kxa)−2t1 cos(kya)

+
[
m0 −2m1 cos(kxa)−2m1 cos(kya)

]
τ̂z

+λsin(kya)τ̂xσ̂x −λsin(kxa)τ̂xσ̂y

Ĥ(1)
k =− t2 −m2τ̂z − i

λ′

2
τ̂y (3.1)

where τ̂i(σ̂i) for i = x, y, z are Pauli matrices in the orbital (spin) space. The pa-
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Figure 3.2: The pair amplitudes in singlet and triplet channels as a function
of the distance from the interface boundary (z) in three regimes: (a)
TI, (b) M, and (c) TM, with chemical potentials µTI = 25 meV, µM =
75 meV, and µTM = 50 meV, respectively. The parameters used in the
calculation are LTI = 500 Å, LSC = 250 Å, a = 5 Å, ∆0 = 5 meV, µSC =
300 meV, and with k points on a 100×100 grid. (One quintuple layer
is roughly 10Å.)

rameters of the Hamiltonian in Eq. (3.1) are chosen such that the model matches

the continuum model for Bi2Se3 from Ref. [17] up to O(k2) for a = 5 Å: t1 = 1.216

eV, t2 = 0.230 eV, m0 = 7.389 eV, m1 = 1.780 eV, m2 = 0.274 eV, λ = 0.666 eV, and

λ′ = 0.452 eV. The reference chemical potential t0 = 5.089eV has been chosen such

that the degeneracy point of the surface state branch lies at E = 0 when µ= 0.

To explicitly define what we mean by a topological metal (TM) it is important

to recall the well-known band structure of the above model. As shown in Fig. 3.1b,

the spectrum of the Hamiltonian contains a (degenerate) gapless branch in ad-

dition to the bulk states separated by a finite gap. Depending on the chemical

potential, we now define three regimes: topological insulator (TI), TM, and metal

(M). The TI is a bulk insulating state with the chemical potential within the bulk

band gap (Fig. 3.1b, µ = 25meV). In the TI regime, gapless states at the Fermi

level are highly localized at the two surfaces of the slab. On the other hand, when
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the chemical potential is well within the bulk conduction band, all the states at

the Fermi level, including the ones from the branch that contains surface states

in the TI regime, are extended over the entire slab (Fig. 3.1b, µ = 75meV). Here,

we refer to this regime as metal (M). In between these two regimes, there is a

range of chemical potential where the branch that is an extension of the Dirac

cone coexists with the bulk states at the Fermi level, but nevertheless it remains

surface-localized and spin-momentum locked (Fig. 3.1b, µ = 50meV). Experimen-

tally, this regime can be identified through the spin-momentum locking of Dirac-

cone states outside the bulk band-gap, which has been observed in Bi2Se3 by spin-

angle-resolved photoemission spectroscopy (ARPES) [18]. We refer to this regime

as topological metal [19–23]. Note that while the existence of the in-gap surface

states is protected by topology, its dispersion depends on material specific details.

Therefore, the exact ranges of chemical potential of the three regimes will also

be material dependent. Nevertheless, the surface states and the bulk states have

qualitatively different contributions to the proximity effect as we will see below,

and therefore we expect the three regimes in a real material to show qualitatively

the same features as the corresponding regimes in our calculation.

For the superconductor part (z < 0) we again use a two-orbital model of the

same form as Eq. (3.1) to describe its normal state, with z = (nz +1/2)a for nz =
−NSC, . . . ,−1. The same parameters as Bi2Se3 are used, except that we flip the

sign of the “mass term” (m0 −4m1 −2m2) and make the resulting band structure

trivial, by choosing m0 = 7.949 eV. Also, since the inter-layer hopping in both parts

of the heterostructure is described by the same term Ĥ(1)
k , we use it to describe the

tunneling between the two parts.
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3.3 Distance Dependence of Pair Amplitudes

In order to compare the proximity effect in the three regimes, we impose an

orbital-independent s-wave superconducting gap of strength ∆0 on the supercon-

ductor (z < 0) and diagonalize the BdG Hamiltonian. We then study how the

resulting pair amplitude depends on the distance from the interface. Because the

pair amplitude is a matrix in both the spin and the orbital basis, it is convenient

to look at its projection onto different spin channels. As pointed out in Ref. [24],

spin-singlet A1g pairing term induces spin-singlet A1g and spin-triplet A2u com-

ponents of the pair amplitude matrix in the presence of spin-orbit coupling of the

form Eq. (3.1). The spin singlet and triplet components F̂ s(z) and F̂ t(z) are them-

selves 2×2 matrices in the orbital space, given by

F̂s/t
αβ(z)= 1

N

∑
ks1s2

[
Ŝs/t

k · iσ̂y

]
s1s2

ukzαs1
v∗kzβs2

, (3.2)

where N is the number of k points in the xy-plane and the sum is over every

positive-energy BdG eigenstate (ukzαs,vkzαs). In Eq. (3.2) Ŝs
k and Ŝt

k are the re-

spective form factors for spin-singlet and triplet defined by

Ŝs
k = σ̂0, (3.3)

Ŝt
k = sin(kya)σ̂x −sin(kxa)σ̂y√

sin2(kxa)+sin2(kya)
, (3.4)

with σ̂0 the (2×2) identity matrix. In the self-consistent approach with attractive

interaction U in the BCS channel, the superconducting gap∆ is proportional to the

pair amplitude (∆∼UF). Here, however, no such self-consistency is imposed, and

the pair amplitude inside the Bi2Se3 is completely due to the Andreev reflection

from the interface [25, 26].

We study the z-dependence of the pair amplitudes in Bi2Se3 side (z > 0) in the

three regimes: TI, M, and TM. For this purpose, we pick for each z in each spin
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channel the largest eigenvalue Fs/t+ (z) of the 2×2 matrix F̂s/t(z), which indicates

the leading instability in the given spin channel. In all three regimes, both spin-

singlet and spin-triplet pair amplitudes are expected to be non-zero because of the

spin-orbit coupling term in the Hamiltonian (3.1).

In Fig. 3.2, we plot Fs/t+ (z) as a function of z. In the TI regime (Fig. 3.2a), we

find that the pair amplitude is confined to the buried interface with exponential

decay, since it is carried entirely by the surface states with such spatial profile.

In addition, singlet and triplet components of the pair amplitude have the same

magnitude as a result of spin-momentum locking of the surface states. In the

M regime (Fig. 3.2b), on the other hand, the pair amplitudes show Friedel os-

cillations with an envelop that decays algebraically as a function of z. (See the

Supplemental Material for an analytic understanding of the z dependence of the

pair amplitudes in the M regime.1) In addition, the singlet channel dominates

over the triplet channel in the M regime.

The results in the TM regime (Fig. 3.2b) can be understood by combining the

two pictures of the TI and the M regimes. In the TM regime, the pair amplitude

consists of two components: the surface-states contribution and the bulk-states

contribution, each of which should be qualitatively the same as the pair amplitude

in the TI and the M regimes, respectively. At large distances where the bulk-states

contribution is dominant, the pair amplitude should show a power-law-like decay.

Friedel oscillation should also be present in principle, but in Fig. 3.2c, the large

wavelength of the oscillation makes it difficult to identify the oscillation. With

the power-law decay of the pair amplitude at large distances, superconductivity

can be induced on the naked surface by proximity effect in the TM. This induced

1See Supplemental Material for an analytic derivation of the pair amplitude in a one-
dimensional example model.
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pairing on the naked surface is a mixture of singlet and triplet components. The

two components, however, lead to the identical effective BdG Hamiltonian for the

surface states, as the surface states are fully spin-momentum locked.

3.4 Majorana Vortex Bound State on the Naked Surface

Next, we ask whether the naked surface of a TM with proximity-induced super-

conductivity can host MZMs. Formally related to the system of our interest is

the 3D bulk superconducting Cu-doped Bi2Se3. For this system Hosur et al. [27]

predicted a vortex parallel to the c-axis to host a surface MZM even when the

chemical potential is within the bulk conduction band, as long as it is below a

critical value of ∼ 0.24 eV from the bottom of the band. The chemical potential of

an undoped Bi2Se3 falls within this range [28], and so does our definition of TM

in our model. Hence a vortex in a TM proximity-coupled to a superconductor is

likely to host a protected MZM at the naked surface. However, the effect of z-axis-

dependent proximity-induced pairing strength on the naked surface and energetic

stability of the MZM are not known a priori.

For concreteness, we solve the BdG equation on a cylindrical slab of Bi2Se3

with thickness L and radius R, with chemical potential in the TI and TM regimes.

With the axis of the cylinder aligned along the z axis, we take the xy-coordinates to

be continuous, while keeping the z coordinate discrete. The normal state Hamilto-

nian is then described by Eq. (3.1), with sin(kia)→−ia∂i and cos(kia)→ 1+ 1
2 a2∂2

i

for i = x, y. Informed by our proximity effect calculation above, we impose an s-
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Figure 3.3: Panels (a) and (b) show the z dependence of the gap profile used
to compute vortex-bound-state spectra for TI (µ = 25 meV) and TM
(µ= 50 meV) regimes, respectively. Panels (c) and (d) show the spatial
probability density profile ρn(r, z), as defined in Eq. (3.8), of the lowest
lying vortex bound state in two regimes. ρn(r, z) has been normalized
such that the maximum value is unity. The parameters used in the
calculation are a = 5 Å, R = 3000 Å, L = 500 Å, ∆0 = 5 meV, z0 = a/2,
ξR = 100 Å, and ξL = 8 Å for TI and γ = 1/4 for TM. The inset in each
case shows the vortex bound state spectrum, i.e. the energy En of the
nth excitation.
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wave superconducting gap of the following respective profiles for TI and TM:

∆TI(r,θ, z)=∆0 tanh(r/ξR)eiθe−(z−z0)/ξz , (3.5)

∆TM(r,θ, z)=∆0 tanh(r/ξR)eiθ (
z/z0

)−γ , (3.6)

where (r,θ, z) is the cylindrical coordinate of the system. ξR and ξz are super-

conducting correlation lengths in the radial and the axial directions, respectively.

We chose z0 such that the bottom-most layer (z = z0) of the TI/TM has a gap of

magnitude ∆0, and a positive exponent γ is used for the gap profile to decay as z

increases.

Because of the rotation symmetry of the system, it is convenient to use as basis

the circular harmonics

ϕνm(r,θ)= 1p
πR

Jν(ανm r/R)
Jν+1(ανm)

eiνθ, (3.7)

where Jν is the Bessel function of the first kind of order ν and ανm is its mth

zero. Expressed in terms of {ϕνm}, the Hamiltonian can be block diagonalized into

different sectors of Lz+Sz+Q/2, where Lz and Sz are orbital angular momentum

and spin of a quasiparticle in the z direction, and Q is its charge in units of |e| (−1

for electron).

One can then diagonalize each block of the Hamiltonian, and find the low en-

ergy eigenstates. Each eigenstate (un
ασ(r,θ, z),vn

ασ(r,θ, z)) can be identified using

its spatial probability density defined as

ρn(r, z)≡ r
∑
α,σ

∫
dθ
2π

|un
ασ(r,θ, z)|2 +|vn

ασ(r,θ, z)|2. (3.8)

Figures 3.3c and 3.3d show ρn(r, z) of the lowest excitation in the TI and TM

regimes. In the TI regime, the superconducting gap decays exponentially away

from the bottom surface, becoming negligible on the top surface. As a result a
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zero-energy vortex bound state appears only on the bottom surface, and the top

surface remains metallic (Fig. 3.3c). The resulting spectrum is shown in the inset

of Fig. 3.3c. In the TM regime, on the other hand, the superconducting gap at the

top surface is sizable, and a well-defined Majorana vortex bound state exists on

both the top and the bottom surfaces. Hence the TM regime brings the best of

both worlds: a stable zero mode on the experimentally accessible top surface.2

3.5 Conclusions

In summary, we studied the proximity effect in topological metals, i.e., topological

insulators with bulk states at the Fermi level coexisting with well-defined surface

states exhibiting spin-momentum locking. Against the common belief that ideal

topological insulators should be bulk insulating, we showed that the existence of

bulk carriers can be a feature for the proximity effect as the induced gap will be

observable at the naked surface. Most importantly, we showed that a vortex line

in a TM-SC structure will host an energetically stable Majorana bound state at

the naked surface.

Although we focused on the proximity effect due to an s-wave superconduc-

tor for concreteness, our results are applicable to the proximity effect due to a

d-wave superconductor such as the high-Tc cuprates as long as the induced gap

is dominantly s-wave. In fact Wang et al. [16] observed an isotropic gap open-

ing on the Dirac branch on a thin film of Bi2Se3 on a Bi2Sr2CaCu2O8+δ substrate

below the superconducting transition temperature. While the mechanism for the

larger value of the inferred surface-state gap compared to the bulk gap in Ref. [16]

2The same calculation in the M regime with gap function given by Eq. (3.6) trivially yields no
zero mode, as expected.
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remains unknown [29] and the results of Ref. [16] have not been reproduced to

date [30], our results should apply as long as the induced isotropic gap is domi-

nantly s-wave.

The setup of Bi2Se3 proximity coupled to superconducting NbSe2 recently stud-

ied using ARPES and point-contact transport in Ref. [31] actually satisfy the

condition of TM-SC structure as defined in this paper, according to their spin-

momentum locking observations. Our results imply that the same system can

support Majorana bound states at vortex cores with spatial separation between

the top (naked) surface Majorana and the bottom (buried) surface Majorana. So

far little attention has been given to experimentally distinguishing the two sur-

faces of TI in such a heterostructure, although Ref. [31] showed how the spectral

gap at the Dirac point depends on the film thickness presumably due to varying

degrees of coupling between the two surfaces. One way to experimentally identify

the surface would be to use ARPES and look for the normal-state Fermi surface

of the substrate. The Dirac state signal probed simultaneously with the substrate

will be coming from both the top surface and the interface. When the film is thick

enough to not show the substrate Fermi surface, the Dirac state signal will be

coming from the naked top surface. In order to test our predictions we propose

in-field STM measurements looking for Majorana bound states in a TM-SC setup

like that of Ref. [31] in which spin-momentum locking is confirmed, with further

attention given to distinguishing signals from each surface.
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CHAPTER 4

SCANNING TUNNELING SPECTROSCOPY AND

QUASIPARTICLE INTERFERENCE

Scanning tunneling spectroscopy (STS) is a technique which measures real-

space electronic structure. A scanning tunneling microscope consists of an atom-

ically sharp tip which is brought very close to a sample surface. As the tip scans

across the surface, voltage is applied between tip and sample, and the resulting

current flow is measured as a function of location.

By design an STM is a surface probe, with two-dimensional spatial resolution.

Fortunately, electronic structures of many unconventional superconductors – es-

pecially cuprates but also many iron-based superconductors and also strontium

ruthenates – have highly two-dimensional character, and STS has played a crucial

role. In this chapter, we review basic theory behind the STS technique. We then

discuss the quasiparticle interference (QPI) technique, which reveals momentum

space information of the electronic structure of the sample.

4.1 Tunneling of Electron

The tunneling process of electron from tip to sample (and vice versa) can be un-

derstood using time-dependent perturbation theory. For simplicity, let us first

consider a one-dimensional tunneling between a “tip” and a “sample”. The rate of

tunneling from a state at the tip
∣∣Ψt

〉
with energy E t to a state at the surface

∣∣Ψs
〉

with energy Es is

Rst = 2π
∣∣Mst

∣∣2δ(
E t −Es

)
(4.1)
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0

tip sample

Figure 4.1: Schematic diagram describing tunneling of electron from tip to sample.

where the tunneling matrix element Mst is given by

Mst ≈
1

2m

(〈
Ψs

∣∣∣∣ ∂∂z

∣∣∣∣Ψt

〉
−

〈
Ψt

∣∣∣∣ ∂∂z

∣∣∣∣Ψs

〉)
(4.2)

Then the tunneling current from tip to sample which tunnels from tip to sample,

is given by

I = 2πe
∫

dE
∣∣Mst

∣∣2ρt(E− eV )ρs(E)
(
fD(E− eV )− fD(E)

)
, (4.3)

where fD(E) = (1+ eβE)−1 is the Fermi-Dirac distribution function. At zero tem-

perature the current becomes

I = 2πe
∫ eV

0
dE

∣∣Mst
∣∣2ρt(E− eV )ρs(E) (4.4)

The tip is typically made of a metallic material with nearly constant density of

states near the Fermi energy. Then,

I ≈ 2πeρt(0)
∫ eV

0
dE

∣∣Mst
∣∣2ρs(E) (4.5)

Taking derivative, we find

dI
dV

= 2πe2 ∣∣Mst
∣∣2ρt(0)ρs(eV )∝ ρs(eV ). (4.6)
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The “differential conductivity” dI/dV can therefore be used as a measure of den-

sity of states. The data acquired by STM has two-dimensional spatial resolution:

as the tip scans across the surface, and the measured differential conductivity

changes as a function of position. Therefore, the dI/dV (x) is often referred to as

“local” density of states (LDOS).

4.2 Quasiparticle Interference

By definition, local density of states picks up spatial variation of electronic struc-

ture. It is, nevertheless, possible to extract momentum space information about

the electronic structure, by making use of impurity scattering. Since impurity

breaks translation symmetry and mixes states with different (crystal) momenta,

creating standing wave interference pattern near an impurity known as Friedel

oscillation. In STM, Friedel oscillation in was first observed in two-dimensional

electron gas [1]: The wavelength of the oscillation allowed the measurement

of Fermi wavevector. Similar idea, often referred to as quasiparticle interfer-

ence (QPI), has been applied to study unconventional superconductors such as

cuprates, iron-pnictides, as well as topological insulators/superconductors.

The quasiparticle intereference pattern can be calculated using time-

dependent Green’s function. Let us first consider a spinless fermion system. Local

density of states at position x and energy ω can be expressed in terms of retarded

Green’s function G :

ρ(x,ω)=−1
π

ImG (x,x;ω). (4.7)

In a clean system without impurities, the Green’s function G (x,y;ω) is transla-
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tionally invariant, and thus can be written as

G (x,y;ω)=G(x−y;ω). (4.8)

This is consistent with the fact that ρ(x,ω) need to be uniform. After introducing

a single “δ function” scatterer to the system at x = 0, the leading order variation

of local density of states is

δρ(x;ω)=−1
π

Im
[
G(x;ω)VG(−x;ω)

]
. (4.9)

whose Fourier transform

ρ(q,ω)=− 1
2π

∑
k

Im
[
G(k,ω)VG(k+q,ω)+G(k,ω)VG(k−q,ω)

]
(4.10)

is often referred to as quasiparticle interference pattern.

The expression Eq. (4.10) can be generalized to a system with spin or orbital

degrees of freedom. Local density of states in a spinful/multi-orbital system can

be expressed as

ρ(x,ω)=−1
π

∑
α

ImGαα(x,x;ω) (4.11)

This gives the Fourier transform of LDOS as

ρ(q,ω)=− 1
2π

∑
k

∑
αβγ

[
Gαβ(k,ω)VβγGγα(k+q,ω)+Gαβ(k,ω)VβγGγα(k−q,ω)

]
(4.12)

where Vαβ is the scattering amplitude between orbitals α and β.

Generalization of the above discussion to superconducting state is straight for-

ward. The Green’s function in a superconductor can be written in Nambu basis

as

Ĝ (x,y,ω)=

G ee(x,y,ω) G eh(x,y,ω)

Ghe(x,y,ω) Ghh(x,y,ω)

 (4.13)
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where G ee, G eh, Ghe, and Ghh can themselves be matrices. The off-diagonal terms

G eh and Ghe are often called anomalous Green’s function. Since the local density

of states ρ(x,ω) measures the density of “electronic” states at energy ω (or equiv-

alently, hole states at energy −ω), only G ee contributes:

ρ(x,ω)=−1
π

∑
α

ImG ee
αα(x,x,ω) (4.14)

which, following the same steps as the normal-state Green’s function, becomes

ρ(q,ω)=− 1
2π

∑
k

∑
α

[
Ĝ(k,ω) · V̂ · Ĝ(k+q,ω)+ Ĝ(k,ω) · V̂ · Ĝ(k−q,ω)

]ee

αα
(4.15)

where V̂ is the scattering potential in Nambu basis. For example, a scatter with

scattering amplitude Vαβ between spin α and β,

V̂αβ =

Vαβ 0

0 −Vβα

 . (4.16)
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Abstract

Cooper pairing in the iron-based high-Tc superconductors [1–3] is often conjec-

tured to involve bosonic fluctuations. Among the candidates are antiferromag-

netic spin fluctuations [1, 4, 5] and d-orbital fluctuations amplified by phonons [6,

7]. Any such electron–boson interaction should alter the electron’s ‘self-energy’,

and then become detectable through consequent modifications in the energy de-

pendence of the electron’s momentum and lifetime [8–10]. Here we introduce a

novel theoretical/experimental approach aimed at uniquely identifying the rel-

evant fluctuations of iron-based superconductors by measuring effects of their

self-energy. We use innovative quasiparticle interference (QPI) imaging [11] tech-

niques in LiFeAs to reveal strongly momentum-space anisotropic self-energy sig-

natures that are focused along the Fe–Fe (interband scattering) direction, where

the spin fluctuations of LiFeAs are concentrated. These effects coincide in en-

ergy with perturbations to the density of states N(ω) usually associated with the

Cooper pairing interaction. We show that all the measured phenomena comprise

the predicted QPI ‘fingerprint’ of a self-energy due to antiferromagnetic spin fluc-

tuations, thereby distinguishing them as the predominant electron–boson inter-

action.
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The microscopic mechanism for Cooper pairing in iron-based high-temperature su-

perconductors has not been identified definitively [1–3]. Among the complicating

features in these superconductors is the multiband electronic structure (Fig. 5.1a).

However, it is believed widely that the proximity to spin order [1–5] and/or orbital

order [6, 7] plays a key role in the Cooper pairing. In particular, two leading pro-

posals for fluctuation-exchange-pairing mechanisms focus on two distinct bosonic

modes associated with specific broken-symmetry states: antiferromagnetic spin

fluctuations carrying momentum Q = (π,π)/a0, and d-orbital fluctuations ampli-

fied by Eg-phonon lattice vibrations of the Fe ions. No conclusive evidence that

either fluctuation couples strongly to electrons and is thus relevant to Fe-based

superconductivity has been achieved within the plethora of proposals about the

existing data [12–18].

Each type of electron–boson interaction should produce a characteristic elec-

tronic ‘self-energy’ Σ̂(k,ω) representing its effect on every non-interacting elec-

tronic state
∣∣k〉

fence with momentum ħk and energy ħω. Thus, the interacting

Green’s function Ĝ(k,ω) is given by[
Ĝ(k,ω)

]−1 =
[
Ĝ0(k,ω)

]−1 − Σ̂(k,ω) (5.1)

where Ĝ0(k,ω) represents non-interacting electrons and the detailed structure

of Σ̂(k,ω) encapsulates the Cooper pairing process. Here, a hat ( ˆ ) denotes a

matrix in particle–hole space (Nambu space) for Bogoliubov quasiparticles in the

superconducting state. The real part ReΣ̂(k,ω) then describes changes in the elec-

tron’s dispersion k(ω) and the imaginary part ImΣ̂(k,ω) describes changes in its

inverse lifetime τ−1(k,ω). The simplest diagrammatic representation of this elec-

tron–boson interaction is shown in Fig. 5.1b. One way to detect the experimen-
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Figure 5.1: Electronic self-energy due to coupling to bosonic fluctuations. (a) Electronic
structure of the first Brillouin zone of FeAs superconductors; here shown
using parameters specific to LiFeAs (the inner hole pockets are omitted for
clarity). The γ band surrounds the Γ point, the β1 and β2 bands are hy-
bridized surrounding the M point at the corner. The AFSF with Q= (π,π)/a0
(red arrow) can connect the hole-like bands surrounding the Γ point with
the electron-like bands surrounding the M point. (b) Diagram of the lowest
order self-energy contribution from electron–boson interactions. (c) Spectral
function A(k,ω) ∝ ImG(k,ω) of a superconducting hole-like band (with un-
renormalized normal-state dispersion shown as a red dashed line) with the
superconducting gap ∆ and the dispersion renormalization at energy ∆+Ω
(arrow) due to coupling to a phonon of frequency Ω. (d) Density of electronic
states spectrum N(ω) associated with (c), showing a kink at energy ∆+Ω.
(e) Schematic view of the kinematic constraint in (k,ω)-space. We find that
the self-energy features on the γ band can only appear at (k,ωγk) if there
exists a partner point (k−Q,ωm

k−Q) with ωm
k−Q = ω

γ

k −Ω ≥ ∆ to satisfy the
kinematic constraint. The blue surface at the centre and the yellow surfaces
at the corners of the Brillouin zone are defined by the hole-band and the
outer-electron-band dispersion. The red surface indicates the hole band dis-
placed by the AFSF momentum Q = (π,π)/a0 (dark red arrow) and energy Ω
(light red arrow). The points that satisfy the kinematic constraint (Eq. (5.1))
are defined by the intersection of the red and blue surfaces, and indicated
with a solid black line. These points are expected to exhibit the strongest
self-energy effects due to coupling to AFSF. The anisotropy of the black line
demonstrates directly how the AFSF self-energy effects must exist at differ-
ent ω in different k-space directions around a particular Fermi pocket (for
example, the γ band in a).
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tal signature of such a self-energy is to use angle-resolved photoemission spec-

troscopy (ARPES) to measure the spectral function A(k,ω) ∝ ImG(k,ω) of the

states with ω< 0. However, it has recently been realized that quasiparticle inter-

ference imaging, which can access momentum-resolved information of both filled

and empty states with excellent energy resolution (δω < 0.35meV at T = 1.2 K),

might prove especially advantageous for detecting self-energy effects [19]. Our

QPI data are obtained by first visualizing scattering interference patterns in

real-space (r-space) images of the tip–sample differential tunnelling conductance

dI/dV (r,ω = eV ) ≡ g(r,ω) using spectroscopic-imaging scanning tunnelling mi-

croscopy, and then Fourier transforming g(r,ω) to obtain the power spectral den-

sity g(r,ω) (Ref. [11]). The g(r,ω) can then be used to reveal the electron disper-

sion k(ω) because elastic scattering of electrons from −k(ω) to +k(ω) results in

high intensity at q(ω) = 2k(ω) in g(q,ω). Sudden changes in the energy evolution

k(ω) due to Σ(k,ω) can then be determined, in principle [19], using such data.

In a conventional single-band s-wave superconductor with isotropic energy gap

magnitude ∆, it has been well established that coupling to an optical phonon

with frequency Ω can lead to a renormalization of the electronic spectra at en-

ergy ∆+Ω (ħ= 1) due to a singularity in the momentum-independent self-energy

Σ(k,ω)=Σ(ω) at ω=∆+Ω (Ref. [20]). This classic case is illustrated in Fig. 5.1(c,d)

through a model spectral function A(k,ω)∝ ImG(k,ω) and the associated density

of states N(ω)= ∫
dkA(k,ω). In Fig. 5.1c, the ‘free’ dispersion of a hole-like band is

represented by the red dashed line, while the renormalized dispersion k(ω) due to

Σ(ω) is highlighted by the locus of maxima in A(k,ω). These effects can be under-

stood from the conservation of energy and momentum during scattering processes

(Fig. 5.1b), where the flat dispersion of an optical phonon presents constraints

only on energy, without any momentum dependence.
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In developing our new approach to ‘fingerprinting’ different electron–boson in-

teractions using QPI, we use the realization that the kinematic constraints for

a multiband electronic system coupled to resonant AFSF with a sharp momen-

tum structure should result in a strongly momentum-dependent (anisotropic) self-

energy. This is because, given a fermionic dispersion (k,ωn
k) for different bands n

and a spectrum of spin fluctuations whose intensity is strongly concentrated at

(Q,Ω), the renormalization due to the self-energy at a point (k,ωn
k) will be most

intense when that point can be connected to another point (k−Q,ωm
k−Q) on a dif-

ferent band m, such that

ωn
k =ωm

k−Q−Ω (5.2)

This is the constraint from conservation of both energy and momentum in the elec-

tron–AFSF interaction and its consequence is shown schematically in Fig. 5.1e.

Here the blue (yellow) surfaces represent the hole (electron) bands. The trans-

fer of momentum Q = (π,π)/a0 and energy Ω necessary for the resonant anti-

ferromagnetic fluctuation to couple these bands can be analysed by shifting the

electron-pocket-dispersion surface (horizontally) by Q and (vertically) by Ω in the

k–ω space, to obtain the transparent red surface. The black curve, showing the

intersection of this red surface with the central γ-band dispersion (blue), is where

the kinematic constraint of Eq. (5.1) can be satisfied and thus where the strongest

self-energy effect due to coupling to AFSF is predicted. The resulting strongly

anisotropic renormalization due to electron–AFSF coupling is in strong contrast

to what is expected as a consequence of the electron–phonon coupling case dis-

cussed in the previous paragraph.

Here we study the representative iron-based superconductor LiFeAs as a con-

crete example for which it should be possible to make a clear theoretical distinc-

tion between the self-energy effects driven by different types of bosonic fluctu-
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ations. We assume that BCS theory adequately describes the superconductor

deep in the superconducting phase. Hence, the non-interacting Green’s function

is given by [
Ĝ0(k,ω)

]−1 =ωτ̂0 −∆kτ̂1 −H0
kτ̂3 (5.3)

where τ̂0 and τ̂i are the identity and the Pauli matrices in Nambu space, respec-

tively. The superconducting gap structure ∆k and the band structure H0
k are taken

from experiments [11, 12, 17] and ab-initio calculations [21]. We then study the

lowest order self-energy due to the coupling between Bogoliubov quasiparticles

and two bosonic modes: a resonant AFSF (Ref. [22, 23]) and an optical phonon

of the type driving orbital fluctuations due to in-plane lattice vibrations of the Fe

ions with Eg symmetry (Fe-Eg phonon). It is the coupling of this Fe-Eg phonon

to electrons that is proposed to enhance the d-orbital fluctuations which mediate

Cooper pairing in the orbital fluctuation mechanism [6, 7]. We take a perturbative

approach of computing the self-energy to the lowest order [9]:

Σ̂(1)
mn(k,ω)=

∫
dqdνD(q,ν) ĝmlĜ

0
ll′(k−q,ω−ν) ĝl′n (5.4)

where the repeated indices are summed over. Given independent quantita-

tive knowledge of the gap structure, such a perturbative treatment can accu-

rately capture the salient features of renormalization due to electron–boson cou-

pling. In Eq. (5.2), the bosonic Green’s function D(q,ν) is sharply peaked around

Q = (π,π)/a0 with the characteristic energy of Ω ≈ 6meV to model the resonant

AFSF of LiFeAs (Ref. [22, 23]), whereas it is nearly momentum-independent for

the optical Eg phonon [20]. We focus on the self-energy effects on the γ band

(Fig. 5.1a, e) in the rest of this paper as its nearly uniform orbital character (dxy)

greatly simplifies the theoretical study while at the same time being readily ac-

cessible to QPI studies [11]. Given the geometry of the Fermi surfaces, the kine-

matic constraint for coupling to resonant AFSF with momentum Q and energy Ω
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(red arrows in Fig. 5.1e) connects a given (k,ωγk) on the γ band (blue surface in

Fig. 5.1e) to a point with momentum k−Q on one of the two electron-like bands

(yellow surfaces in Fig. 5.1e). Thus, the distinct anisotropic dispersions of each

band mean that resonant AFSF should result in self-energy effects with a strong

directional dependence (black curve on the γ band in Fig. 5.1e). Similarly, for the

Fe-Eg phonons with a weak momentum dependence [7], the self-energy effect for

the γ band (which consists almost entirely of dxy orbitals [24]) is predicted to be

angle-independent.

In Fig. 5.2a–d we present the predictions from Eq. (5.2) for g(q,ω) in LiFeAs,

in the presence of self-energy effects due to coupling to AFSF. Just below the maxi-

mum gap value on the γ band of 3meV (Fig. 5.2a), the high-intensity region around

q≈ 2kγ

F shows an anisotropy dictated by the gap anisotropy [11, 17, 25], with the

QPI intensity suppressed along the gap maximum (Fe–As) direction. At energies

exceeding the maximum gap values, the predicted g(q,ω) at first becomes isotropic

(Fig. 5.2b) as one might expect from the fact that the Bogoliubov energy is dom-

inated by the kinetic energy over the gap at high energies. However, at energies

ω≥ 12meV the predicted self-energy effects for the AFSF self-energy (Fig. 5.2c, d)

are seen and, in fact, strongly suppress the g(q,ω) intensity in the Fe–Fe direc-

tion relative to the Fe–As direction. The complete predicted evolution of g(q,ω),

from being dominated by the anisotropic gap structure [11] to the new effects of

the AFSF-driven Σ(k,ω) introduced here, is shown in the left panels of the Sup-

plementary Movie 1.

The experimental search for such signatures of Σ(k,ω) in QPI data con-

sists of imaging g(r,ω) at T = 1.2K with 0.35meV energy resolution on LiFeAs

samples exhibiting Tc ≈ 15K and with the superconducting energy gap maxi-
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Figure 5.2: Comparison between scattering interference theory with AFSF-driven self-
energy effects and the experiments. (a–d) Theoretically predicted QPI pat-
terns g(q,ω) for LiFeAs with Green’s function including the self-energy ef-
fect due to the coupling between electrons and resonant AFSF fluctuations.In
these simulations, we suppressed the interband scattering visible in the data
to highlight the QPI of the γ band that are the focus of this study. Note, in
(c,d) the strong anisotropy induced by the kinematic constraint (Eq. (5.1))
with clear suppression of g(q,ω) for q along the Fe–Fe direction, which is
strikingly different from the strong gap anisotropy that dictates the pattern
in (a). (e–h) Measured QPI patterns g(q,ω) (obtained from g(r,ω) of LiFeAs).
(e) QPI signature of anisotropic energy gaps. (f) Expected isotropic signature
of the complete Fermi surface of the γ band. (g,h) Transition to a strongly
anisotropic g(q,ω). Note the suppression of g(q,ω) occurring along the Fe–Fe
direction. (i–l) Real-space images of g(r,ω) from which (e–h) were obtained.
The insets show a zoom-in onto a particular impurity, revealing the real-
space standing waves from QPI.

47



mum |∆max| = 6.5(1)meV. Clean and flat Li-termination surfaces (Li–Li unit cell

a0 = 0.38nm) allowed our atomic resolution/register g(r,ω) measurements to be

carried out over the energy range |ω| < 30meV. We then derive the g(q,ω) in

Fig. 5.2e–h from the measured g(r,ω) at each energy, as shown in Fig. 5.2i–l. In

Fig. 5.2e we see the expected QPI signature of the anisotropic energy gaps on mul-

tiple bands (compare Fig. 5.2a). Figure 5.2f shows the characteristic signature of

the complete Fermi surface of the γ band of LiFeAs at ω just outside the supercon-

ducting gap edge on that band (compare Fig. 5.2b). If none of the electron–boson

self-energy phenomena intervened one would expect this closed contour (Fig. 5.2f)

to evolve continuously to smaller and smaller q-radius with increasing ω until the

top of this hole-like band is reached. Instead, Fig. 5.2g shows the beginning of a

very different evolution. Above ω∼ 12meV, the q-space features become strongly

anisotropic in a fashion highly unexpected for unrenormalized states. Indeed, the

strongly suppressed g(q,ω) intensity in the Fe–Fe direction relative to the Fe–As

direction is very similar to the predictions for Σ(k,ω) due to AFSF (Fe–Fe direction

Fig. 5.2d).

We compare these results to the predicted g(q,ω) signatures of a self-energy

Σ(k,ω) due to phonons whose strong coupling to electrons is a central premise for

the orbital fluctuation scenario. Clearly, comparison of predictions due to the two

different boson couplings presented in Fig. 5.3 through the ω and |q| dependence

of g(q,ω) for the Fe-Eg phonon (Fig. 5.3a–c) and AFSF (Fig. 5.3d–f) can provide

a distinguishing ‘fingerprint’ of AFSF-driven effects. The AFSF cause maximum

renormalization (peaks of the blue curve) in relatively narrow ‘beams’ in the Fe–Fe

directions, precisely where the resonant spin fluctuations are concentrated owing

to interband scattering (see Fig. 5.3g). By contrast the electron–Eg-phonon in-

teraction is predicted to yield isotropic self-energy signatures (red curve) in QPI
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data.

In Fig. 5.4a we show a complete representation of our measured data using

a combined q–ω presentation of g(q,ω) for 0 < ω < 30meV (Γ-X and Γ-M k-space

directions are shown in q-space); these data are most clearly demonstrated in

Supplementary Movie 1. Most striking in the g(q,ω) are the anisotropic ‘kinks’

in q(ω) indicated by red arrows. Figure 5.4b shows the simultaneously measured

normalized conductance (∼density of states N(ω)), with the characteristic features

of pairing interactions indicated by red arrows; these occur within the energy

range of the ‘kinks’ in q(ω). Figure 5.4c–e show plots of g(q,ω) data along different

directions. Figure 5.4f shows the measured dispersion of the maxima of these

g(q,ω). The inflection points of the g(q,ω) dispersion seen in Fig. 5.4a, f, which are

directly related to the band renormalization from ReΣ(k,ω), are obviously strongly

anisotropic in q-space and strongest in the Fe–Fe direction. Finally, Fig. 5.4g

shows measured values of ∆E, the departure of the dispersion of the maxima in

g(q,ω) from a model with no self-energy effect, versus the angle θ around the

γ band. This is to be compared with the theoretical prediction in Fig. 5.3g. The

good correspondences between our theoretical prediction for ReΣ(k,ω) effects from

coupling to AFSF (Fig. 5.3g) and the QPI measurements (Fig. 5.2e–h) are evident.

If the optical phonon conjectured to exist in the same energy range is strongly

coupling to electrons, a far more isotropic dependence would be expected.
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Figure 5.3: ‘Fingerprint’ distinguishing antiferromagnetic spin fluctuations from phonon
generated orbital fluctuations in LiFeAs. (a–c) Predicted QPI response calcu-
lated with self-energy driven by the Fe-Eg phonon. (a,b) Sequential images
of g(q,ω) for two different ω, one below and one near the coupling energy.
(c) Predicted g(q,ω) in three different directions in q-space, corresponding to
the Fe–As direction (left), the Fe–Fe direction (right) and an intermediate di-
rection (centre). Different grey lines correspond to different ω, with a 1meV
increase between each neighbouring pair, starting from the lowest bias ω= 0
at the bottom. The plots are offset for clarity, and the red dots indicate the
maxima. The g(q,ω) on the γ band remains virtually isotropic, despite the
momentum dependence of the electron–phonon coupling in our simulations.
(d–f) Predicted QPI response calculated with self-energy driven by resonant
AFSF. (d,e) Predicted g(q,ω) for the same energies as in a,b. (f) Predicted
g(q,ω) in three different directions in q-space, as in c. g(q,ω) on the γ band
is predicted to be highly anisotropic. (g) Predicted ReΣ(k(ω,θ),ω) at fixed en-
ergy ω= 10meV calculated with self-energy driven by resonant AFSF (blue)
and the Fe-Eg phonon (red) as a function of the angle θ (as defined in b,e)
around the γ band.
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Figure 5.4: QPI measurements of anisotropic renormalization of dispersion due to
self-energy in LiFeAs. (a) Measured g(q,ω) represented in q–ω space
for 0 < ω < 30meV, with the (0,1) and (1,1) directions highlighted.
The inset shows the measured data up to ω = 60meV. Red arrow in-
dicates the energy ω∼ 12meV at which sudden changes in dispersion
and isotropy of g(q,ω) are observed. See Supplementary Movie 1, in
which this effect is vivid. (b) The N(ω) measured simultaneously with
g(q,ω) and normalized by N(ω) at T = 16K. Vertical red arrows indi-
cate the energy ω∼ 12meV at which features associated with Cooper
pairing are observed. The inset shows the original N(ω) ∼ dI/dV (ω).
(c–e) Lineplots of measured g(q,ω) data for different energies ω along
the Fe–As direction (left), the Fe–Fe direction (right) and an interme-
diate direction (centre). The data at different ω are offset vertically
for clarity. The angle indicated is θ measured from the Fe–As direc-
tion. (f) Dispersion of the maxima in g(q,ω) extracted from line cuts
as in (c–e). The angle indicated is θ measured from the Fe–As di-
rection. These dispersions are to be compared with the predictions
in Fig. 5.3a–c or Fig. 5.3d–f. (g) Measured ∆E, the departure of the
dispersion of the maxima in g(q,ω) from a model with no self-energy
effect, as a function of the angle θ around the γ band of LiFeAs. This
is to be compared with the theoretical prediction in Fig. 5.3g.
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Although evidence that self-energy effects due to electron–boson-coupling phe-

nomena are occurring in iron-based materials abounds [18, 26–32], a direct com-

parison between a theoretical prediction with realistic band/gap structure that

distinguishes effects of coupling to AFSF from those due to coupling to Eg-phonons

generating the orbital fluctuations, has not been achieved. Here, by combining

new theoretical insight into QPI discrimination between Σ(k,ω) from resonant

AFSF and Σ(k,ω) due to alternative scenarios, together with novel QPI techniques

designed to visualize the Σ(k,ω) signatures [19], we demonstrate that scattering

interference at ω>∆max on the γ band of LiFeAs is highly consistent with expected

effects due to AFSF-driven Σ(k,ω). Crucially the apparent changes in the disper-

sion (Fig. 5.2 and 5.4) show a strong directional dependence, being focused along

the Fe–Fe direction where the spin fluctuations of LiFeAs are concentrated [23,

33]. This is in excellent qualitative agreement with our predictions based on

measured band/gap structures of LiFeAs for resonant-AFSF-driven Σ(k,ω) effects

(Fig. 5.2a–d and 5.3). Further, we demonstrate that such anisotropic Σ(k,ω) ef-

fects studied here cannot be caused by a Fe-Eg phonon (Fig. 5.3a–c). Thus, our

combined theoretical/experimental approach to ‘fingerprinting’ the electronic self-

energy Σ(k,ω) discriminates directly between different types of bosonic fluctu-

ations proposed to mediate pairing. In analogy to phonon-based superconduc-

tors, this novel approach may lead to a definite identification of the Cooper pair-

ing mechanism of iron-based superconductivity–with the present result pointing

strongly to antiferromagnetic spin fluctuations.
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CHAPTER 6

RESPONSE TO GAUGE FIELD

One of the defining properties of a superconductor is its zero resistivity, i.e.,

non-zero current flow (J 6= 0) without voltage drop (E= 0). Such perfect conductiv-

ity is well captured by the equation written down by London [1]

J=− 1
Λc

A. (6.1)

This non-gauge-invariant equation incorporates the rigidity of the condensate

wavefunction. It is not too difficult to show that the BCS paired state satisfies

Eq. (6.1) using field theoretical methods [2].

For heterogeneous systems, however, analytical solutions are often not acces-

sible, and one needs to rely on numerical techniques. On discrete lattice models,

however, current and gauge field need careful redefinition, since differential oper-

ators used in the definition of these cannot be directly applied to a lattice. In this

chapter, we discuss how to incorporate gauge field to a lattice Hamiltonian, and

also discuss current operators and optical conductivity.

6.1 Peierls Phase

In continuous space, the effect of gauge field A on a particle with charge q and

mass m can be treated through minimal coupling

K = 1
2m

(
p− qA

)2 (6.2)

On a lattice system, however, differential operators are not defined. The “minimal

coupling” on a lattice which is analogous to that of continuum is through Peierls
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phase [3], which is in the phase of hoppings

txy → txye−iϕ(x,y) (6.3)

The phase ϕ(x,y) can be related to the “physical” gauge field A of continuum as

ϕ(x,y)= q
∫ x

y
A ·dr (6.4)

6.2 Current and Superfluid Stiffness

In continuum, the “current density” of a single particle of mass m with wavefunc-

tion Ψ is

J= 1
2mi

[
Ψ∗∇Ψ−Ψ∇Ψ∗]

(6.5)

On a lattice model, however, this definition of current is not directly applicable.

We can nevertheless find the definition of current consistent with the discreteness

of the lattice system, using the Peierls phase. Let us consider the case when A is

uniform in space. Given the following non-interacting Hamiltonian

H =∑
αβ

c∗αKαβcβ, where Kαβ = tαβe−iqlαβ·A and lαβ =
∫ xα

xβ
dr. (6.6)

Then from the derivative of Hamiltonian with respect to gauge field, we find a

definition of current for a lattice model

J µ =− 1
Ω

∂H

∂Aµ
= iq
Ω

∑
αβ

c∗αKαβ`
µ

αβ
cβ (6.7)

where µ= 1, . . . ,D is an index for spatial dimension.

It is worthwhile to note that this definition of current is consistent with the

idea of charge conservation. Since the number (or equivalently, charge) operator
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on site α is nα = c∗αcα, its equation of motion

dnα
dt

= i[H ,nα] (6.8)

gives the following “continuity” equation

dnα
dt

=∑
β

Jαβ (6.9)

where

Jαβ ≡−i
[
c∗αKαβcβ− c∗βKβαcα

]
(6.10)

The expression for J µ defined from the gauge coupling is related to Jαβ as follows:

J µ = q
Ω

∑
αβ

Jαβ`
µ

αβ
(6.11)

In Nambu basis, the normal state Hamiltonian and the current write

H = 1
2

∑
αβ

(
c∗α cα

)Kαβ 0

0 −K∗
αβ


cβ

c∗
β

≡ 1
2

∑
αβ

ψ†
αHαβcβ (6.12)

J µ = iq
2Ω

∑
αβ

(
c∗α cα

)Kαβ`
µ

αβ
0

0 K∗
αβ
`
µ

αβ


cβ

c∗
β

≡ 1
2

∑
αβ

ψ†
αJµ

αβ
cβ (6.13)

In the superconducting state, pairing term (∆c∗c∗) in BCS Hamiltonian nomi-

nally breaks the charge conservation, the notion of “current” presented above also

breaks down. Noted earlier as the “gauge invariance problem,” which results in

unphysical longitudinal current in the BCS paired state, this problem was studied

by Bardeen [4], Anderson [5, 6], and Rickayzen [7]. While there are various ways

to solve this problem using field theoretical techniques [2], one way to resolve this

issue is to remember that the pairing term is a mean-field approximation to the

interacting Hamiltonian which indeed conserve charge. Therefore, while using
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the definition of current in Eq. (6.13), by self-consistently determining ∆ for every

given A, one is able to get around the gauge invariance problem.

In numerical calculation, thefore, we can simply introduce a small but nonzero

Aµ to the system, and measure the current J µ. From this we can extract the

superfluid stiffness ρs as

〈
J µ

〉=−∑
ν

[
ρs

]
µν Aν (6.14)

6.3 Optical Conductivity

In addition to superfluid density, which is a “static” response of a superconduc-

tor, optical conductivity, which is a “dynamical” response, can also be measured

through time-dependent electric field. The retarded current-current correlator,

following Appendix A, is

χR
µν(ω)=− q2

4Ω

∑
nm

〈
n
∣∣J µ

∣∣m〉〈
m

∣∣J ν
∣∣n〉 fD(Em)− fD(En)

ω+ iη+Em −En
(6.15)

and therefore the relationship between current and gauge field is

J µ(ω)=∑
ν

χR
µν(ω)Aν(ω) (6.16)

The (optical) conductivity, however, is defined as the system’s response to electric

field E=−∂A/∂t. Therefore, for A(t)=A0e−iωt,

J µ(ω)=∑
ν

χR
µν(ω)

iω
Eν(ω) (6.17)

Therefore, the optical conductivity σ can be written in spectral representation as

σR
µν(ω)= i

q2

4Ωω

∑
nm

〈
n
∣∣J µ

∣∣m〉〈
m

∣∣J ν
∣∣n〉 fD(Em)− fD(En)

ω+ iη+Em −En
. (6.18)
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Figure 6.1: The ratio between the real part of optical conductivity in the super-
conducting state (σs(ω)) and normal state (σn(ω)), calculated within
Mattis-Bardeen theory at zero temperature.

Especially, the real part of optical conductivity can be written as Fermi-golden-

rule-like form:

ReσR
µν =

πq2

4Ωω

∑
nm

〈
n
∣∣J µ

∣∣m〉〈
m

∣∣J ν
∣∣n〉[

fD(Em)− fD(En)
]
δ(ω+Em −En). (6.19)

Equation 6.18 can be used to derive the Mattis-Bardeen expression for optical

conductivity, which was first proposed to explain the anomalous skin effect of su-

perconducting metals [8]. Within Mattis-Bardeen theory, the ratio between optical

conductivities in the superconducting and normal states can is written as

Reσs

Reσn
= 2
ω

∫ ∞

∆
dE

∣∣∣E(E+ω)+∆2
∣∣∣[ f (E)− f (E+ω)

]
(
E2 −∆2

)1/2 [
(E+ω)2 −∆2

]1/2

+ 1
ω

∫ −∆

∆−ω
dE

∣∣∣E(E+ω)+∆2
∣∣∣[1−2 f (E+ω)

]
(
E2 −∆2

)1/2 [
(E+ω)2 −∆2

]1/2 (6.20)

Note that the above expression is valid for moderate disorder strength, i.e. ∆¿
1/τ, where τ is the lifetime of quasiparticles in the normal state. At zero tempera-

ture, the optical conductivity shows a gap below 2∆ (Fig. 6.1), indicating the lack

of excitonic excitations with energy less than 2∆. This is a direct consequence of

the superconducting gap ∆.
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Abstract

There is now copious direct experimental evidence of various forms of (short-

range) charge order in underdoped cuprate high temperature superconductors,

and spectroscopic signatures of a nodal-antinodal dichotomy in the structure of

the single-particle spectral functions. In this context, we analyze the Bogoliubov

quasiparticle spectrum in a superconducting nematic glass. The coincidence of the

superconducting “nodal points” and the nematic “cold-spots” on the Fermi surface

naturally accounts for many of the most salient features of the measured spectral

functions (from angle-resolved photoemission) and the local density of states (from

scanning tunneling microscopy).
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7.1 Introduction

The existence of glassy charge order in the pseudogap phase of cuprates

is now well established: Both momentum space and real space probes find

charge-density-wave (CDW) order with moderate (but never infinite) correlation

lengths [1–11]. Evidence of a tendency to nematic order has been adduced from

local probes [12–14], diffraction [15, 16], and transport [17, 18]. Much of the asso-

ciated theory literature has focused on either uniform long-range ordered states,

or dynamically fluctuating order. In contrast, glassy order implies strong static

heterogeneities, which complicate any theoretical analysis.

The basic superconducting state is thought to be reasonably well described

by a simple mean-field theory with a d-wave superconducting gap. Nevertheless,

when the superconductivity coexists with glassy charge order, spectroscopic mea-

surements reveal a number of “anomalous” features that are not simply related

to any long-range order. It is thus worth asking whether some or all of these

anomalous features are a consequence of glassy charge order. Heterogeneous or-

der parameters have been studied previously in the context of cuprates [19–26].

But most of these works have focused on the effects of quenched randomness (e.g.,

impurities) on the ordering tendencies themselves. Here instead we study how

the heterogeneity associated with glassy order affects various spectroscopic prop-

erties.

Technically, our approach is similar to that employed in earlier works on the

effects of point-like impurities [27–32]. However, because the glassy order is as-

sumed to reflect (in part) the system’s tendency toward symmetry breaking, in the

present study the effective scattering (“disorder”) potential is taken to have two

properties not present in earlier studies: (1) a moderate correlation length, and (2)
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a non-trivial form factor. Although we do consider various forms of CDW order, our

most extensive and most significant results are associated with a nematic glass,

which by symmetry has a d-wave form factor. While the lack of translation sym-

metry destroys the long range coherence of the quasiparticles, the d-wave form

factor gives rise [33–35] to cold-spots [36], near which the quasiparticles are in-

creasingly weakly coupled to the glassy order. Because these cold-spots coincide

with the nodal points in a d-wave superconductor, the lowest energy quasiparti-

cles are also the most weakly affected by the nematic glass.

In comparing our results to experiment, we consider features from three differ-

ent experiments: angle-resolved photomemission spectroscopy (ARPES), scanning

tunneling microscopy (STM), and optical measurements:

(1) The most salient feature of ARPES that we address is the “nodal-antinodal”

dichotomy. The energy distribution curves (EDCs) for momenta along a cut across

the Fermi surface [Fig. 7.1(b)] in the nodal region consist of a single dispersing

feature which at least roughly resembles that expected of a quasiparticle with a

finite lifetime. Conversely, along a similar cut perpendicular to the antinodal seg-

ment of the Fermi surface [Fig. 7.1(c)], the EDC is complex, exhibiting at least two

distinct features with apparent dispersion relations (if that notion applies at all)

that appear almost discontinuous. Nevertheless, moving along the Fermi surface

from the nodal to the antinodal point, the EDC curves evolve smoothly and mono-

tonically [Fig. 7.1(d)] with no sign of any sharp boundary, or of the non-monotonic

behavior one would expect if there were “hot-spots” on the Fermi surface corre-

sponding to the spanning vectors associated with incipient density-wave order.

(2) Much thought has gone into the analysis of the rich structural and spectro-

scopic information encoded in the variations of the local density of states (LDOS)
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measured by STM, especially on BSCCO. Here we focus exclusively on a clear “di-

chotomy” [Fig. 7.4(a)] that has been apparent since the earliest studies [37–39]:

At relatively low energies, the LDOS is remarkably homogeneous and has the V-

shaped energy dependence expected for a uniform d-wave superconductor, while

at energies comparable to the gap (or pseudo-gap), there are order one variations

of the LDOS as a function of position. Note that the “dispersing features” in the

Fourier transform of the LDOS which have been identified with quasiparticle in-

terference effects are more or less confined to the “low energy” range in which the

LDOS is relatively homogeneous.

(3) The low T optical conductivity rises roughly linearly with increasing fre-

quency ω to a peak at ω ∼ 100−200meV that (at least in the more recent data

on Hg-1201) is larger than any reasonable estimate of the superconducting gap,

and then drops slowly at larger ω [Fig. 7.6(a) and 7.6(b)]. All of these features are

somewhat anomalous, as is the T dependence of σ(ω).

As we shall show, these salient features of the ARPES and STM experiments

are naturally explained by the coincidence of the nematic cold-spots and the su-

perconducting nodes in a superconducting nematic glass. This is illustrated in

Figs. 7.2 and 7.4(b), respectively. We also find that the optical conductivity com-

puted in the simplest model of such a glass looks remarkably like the experiments

[Fig. 7.6(c)]. However, concerning the thermal evolution of σ, there are aspects

of the solution that are slightly problematic, since in making the comparison at

the higher temperatures, we are comparing experimental results at T > Tc with

theoretical results at T < Tc.

The notion that various phenomena in the cuprates may be associated with

the existence of cold-spots on the Fermi surface is not new. Notably, a number of
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Figure 7.1: Energy distribution curves (EDCs) from ARPES measurements repro-
duced from He et al. [40](Bi-2201). (b)–(d) Different paths in k-space
as shown in (a): (b) is a “nodal” cut through the Fermi surface [path 1
of (a)], (c) is an antinodal cut through the Fermi surface [path 2 of (a)],
and (d) is a path along the Fermi surface starting at the nodal point
and ending at the antinodal [path 3 of (a)]. The measured spectral
weight has been divided by the Fermi function.

earlier studies [36, 41–46] have suggested that salient features of the transport

properties of the “normal” (“bad metal” or “strange metal”) state can be inter-

preted as evidence of a strongly anisotropic scattering rate on the Fermi surface,

with cold-spots along the zone diagonal. Anisotropic scattering rates inferred from

ARPES data supports the case [47]. In contrast, in the present study, the focus is

primarily on the low temperature properties of the system where superconductiv-

ity and pseudo-gap signatures coexist. In this regime, glassy nematicity provides

a plausible microscopic origin of anisotropic scattering rates. To the extent that

there is a relation to the cold-spots of the earlier proposals, it is more likely that at

higher doping and larger temperature they are associated with quantum or ther-
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mal nematic fluctuations [48–50], rather than with frozen, glassy nematic order.

7.2 The Model

As our primary focus is on the quasiparticle properties deep in the superconduct-

ing state and far from any quantum phase transition, where neither thermal nor

quantum fluctuations are expected to be significant, we assume that it is suffi-

cient to study the solutions of an appropriate mean-field Bogoliubov-de Gennes

Hamiltonian,

HBdG =∑
xy

(
c†

x↑ cx↓

) txy ∆xy

∆∗
yx −tyx


cy↑

c†
y↓

 , (7.1)

where cxσ annihilates an electron at site x with spin σ. The “normal” part of the

Hamiltonian is assumed to be of the form

txy = t(0)
xy+V (x,y), (7.2)

where the first term represents the underlying band-structure, t(0)
xy = −µδxy −

tδ〈x,y〉− t′δ〈〈x,y〉〉, with t = 1, t′ = −0.3, and chemical potential µ = −0.8, and the

term V represents the effective potential due to the presence of (glassy) charge

order. The anomalous term ∆xy on each pair of nearest-neighbor sites 〈x,y〉 is

determined self-consistently from the gap equation

∆xy = U
2

〈
cy↑cx↓+ cx↑cy↓

〉
, (7.3)

with ∆xy = 0 otherwise. A value of U = 0.732t is chosen so that in the clean limit

[V (x,y) = 0], the transition to the d-wave superconducting state occurs at T0
c =

0.05t, and the resulting uniform d-wave BCS ground state has a gap-function in k

space: ∆k =∆0(coskx−cosky) with ∆0 = 0.055t. [Note that this unrealistic pairing
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strength was chosen such that the antinodal gap (∼ 0.1t) is larger than the energy

resolution set by vmax
F ∆k ∼ 0.06t, where vmax

F is the maximum Fermi velocity, and

∆k = 2π/N is the momentum resolution, for system size N = 256 used in most

calculations, and yet reasonably smaller than the energy difference between the

Fermi level and van Hove singularity (∆EvH = 0.4t).]

Finally, the effect of any (glassy) charge order is represented by a local order

parameter, ϕ(x), (taken to be real under the assumption that time-reversal sym-

metry is unbroken), which couples to the quasiparticles with a “form factor” f (r):

V (x,y)= 1
2

f (x−y)
[
ϕ(x)+ϕ(y)

]
. (7.4)

For typical random disorder, or for the simplest forms of charge-density-wave

(CDW) order, f (r)≈ δr,0, corresponding to a position-dependent single-site energy.

In contrast, for nematic order, f (r) must flip sign under 90◦ rotation by symmetry;

to be explicit we choose the shortest-range form factor compatible with nematic

symmetry, f (r) = δr,±x̂ −δr,± ŷ, corresponding to a position dependent modulation

of the nearest-neighbor hopping matrix elements. We assume ϕ(x) are random

variables chosen from an ensemble defined by the configuration average of the

two-point correlator, ϕ(x)ϕ(x+r) = Γ(r). The spatial range of the assumed corre-

lations, as well as any tendency to ordering with non-zero period (as in a CDW

with a finite ordering vector Q) are encoded in Γ(r). In the case of a nematic glass,

we take Γ(r) = Γnem exp(−r2/2ξ2
nem), where Γnem is a measure of the mean-square

magnitude of the nematic order, and ξnem is the nematic correlation length. For a

CDW glass, Γ(r)= (Γcdw/2)[cos(Q·r)+cos(Q′ ·r)]exp(−r2/2ξ2
cdw) where Q and Q′ are

the two symmetry related ordering vectors.

We can already see how a glassy nematic will generate cold-spots by simply
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Fourier transforming Eq. (7.4) to yield

Ṽ (k,p)= 1
2

[
f̃ (k)+ f̃ (p)

]
ϕ̃(k−p), (7.5)

where f̃ (k) and ϕ̃(q) are respective Fourier transforms of f (r) and ϕ(x). For ne-

matic order, f̃ (k) = 2(coskx − cosky). When ϕ(x) is uniform, ϕ̃(q) is a delta func-

tion peaked at q = 0, in which case Ṽ simply leads to distortion of Fermi surface

[dashed line in Fig. 7.3(a)]. When ϕ(x) is non-uniform, on the other hand, ϕ̃(q) is

no longer a delta function, and momentum states acquire lifetimes by scattering

off of ϕ̃(q). The form factor f̃ (k) gives rise to strong anisotropy of the quasiparti-

cle lifetimes: While the antinodal quasiparticles are strongly scattered, the “nodal

quasiparticles” at the cold-spots (|kx| = |ky|) are largely unaffected. The cold-spots

arise solely as a result of the symmetry of the (local) nematic order.

7.3 Method of Solution

To achieve sufficiently fine k-space resolution for present purposes, we work with

a system with periodic boundary conditions of size N ×N with N = 128 or where

needed N = 256 or 512. However, because it is computationally intensive to solve

the self-consistency equations for such a large system, we have chosen the dis-

order potential V (x,y) (and correspondingly ∆xy) to be periodically repeated in

blocks of size L×L with L = 32. This compromise allows us to study real-space

heterogeneity, while at the same time reducing the finite size effect through fine

k-space (and hence energy) resolution.

We generate a configuration of the quenched variables by choosing {ϕ(x)} from

a distribution with a Gaussian two-point correlator Γ(r). To avoid long-range cor-

relation of ϕ(x), we choose ξnem to be small relative to the size of the repeated
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blocks. Specifically, we require |Γ(r)/Γ(0)| < 1% at |r| = La/2, where a is the lat-

tice constant, which means we are limited to ξnem ≤ 5a. To be concrete, we will

present results primarily for ξnem = 2a; although this is shorter than typical cor-

relation lengths of glassy order measured in experiments (as defined in Ref. [20]

for example), we chose it for two reasons: (1) As we will find in our spectral func-

tion analyses, ξnem = 2a results show qualitatively no difference with ξnem = 4a.

(2) Obviously, results for short correlation lengths suffer less from finite size effect

than longer correlation lengths. For each configuration of {ϕ(x)}, we determine

the values of ∆xy from the solution of the self-consistency equation Eq. (7.3). For

example, a typical configuration of ϕ(x) is shown in Fig. 7.5(a) generated from an

ensemble with
√
Γnem = 0.1t and ξnem = 2a; the corresponding self-consistently

determined gap function ∆xy is shown in Fig. 7.5(b). While there are clearly sig-

nificant variations in the magnitude of the pair-fields from place to place, the

d-wave character of the sign structure is universally preserved; it is positive on

all x-directed and negative on all y-directed bonds.

Finally, once self-consistency is achieved, we calculate three spectroscopic ob-

servables: (1) the ARPES spectral function A(k,E), (2) the local density of states

n(x,E), and (3) the optical conductivity σ(ω). The spectroscopic observables we

study are self-averaging properties. Although here we present results from a sin-

gle configuration, we have confirmed that different configurations of {ϕ(x)} gen-

erated probabilistically from the same distribution result in minor quantitative

changes in the calculated spectra, with no significant qualitative difference.
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(a) (b) (c)

Figure 7.2: EDC’s computed along the same paths in k-space as shown in Fig. 1a
for a superconducting nematic glass with ∆0 = 0.055t,

√
Γnem = 0.1t,

and ξnem = 2a: (a) is a “nodal” cut through the Fermi surface [path 1
of Fig. 7.1(a)], and (b) is an antinodal cut through the Fermi surface
[path 2 of Fig. 7.1(a)]. A blue circle marks the maximum of each curve,
and a green circle marks the position of a “shoulder”. (c) is a path
along the Fermi surface starting at the nodal point and ending at the
antinodal point [path 3 of Fig. 7.1(a)].

7.4 Results for the superconducting nematic glass

Among various forms of glassy charge order that we have considered, the ne-

matic glass best reproduces the nodal-antinodal dichotomy as observed in ARPES

(Fig. 7.1). We have carried out calculations for various choices of the strength and

correlation length of the nematic order, but to be concrete we present represen-

tative data corresponding to
√
Γnem = 0.1t and ξnem = 2a. In Fig. 7.2 we show

our results for the spectral function, such as would be measured in ARPES. In

Fig. 7.2a, the EDCs (i.e. the energy dependence of A(k,E) at fixed k) for k’s along
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Figure 7.3: (a) Fermi surface of the model system in the normal state (∆xy = 0).
Solid lines are computed in the symmetric phase (ϕ(x) = 0) and the
dashed lines in a uniform nematic phase (ϕ(x) = 0.05t.) (b) A(k,E)
of the superconducting nematic glass at a fixed energy |E = −0.2t| >
2∆0 = 0.11t showing the nodal antinodal dichotomy. Color intensity
indicates the magnitude. (c) Imaginary part of normal state electronic
ω = 0 self-energy on the Fermi surface coupled to nematic order ex-
tracted from real space simulation as a function of angle around the
Fermi surface θ as defined in the inset, and (d) calculated in the Born
approximation.
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Figure 7.4: Local density of states as a function of energy measured at multiple
locations on the surface: (a) Results of STM measurements on Bi-
2212 reproduced from Ref. [51]. Different curves represent tunneling
spectra measured at different locations of the sample. (b) Computed
for a superconducting nematic glass with ∆0 = 0.055t,

√
Γnem = 0.1t,

and ξnem = 2a; the solid black curve and the shaded region indicate
the spatially averaged DOS and spatial standard deviation of LDOS,
respectively. The spatial maps of LDOS at energies marked by the two
arrows are shown in Figs. 7.5(c) and 7.5(d).

a cut through the nodal point on the Fermi surface shows a quasiparticle-like dis-

persion that is otherwise featureless, as in ARPES measurements [Fig. 7.1(b)].

On the other hand, the EDCs in the antinodal region, shown in Fig. 7.2(b), have

two branches which are almost discontinuous, a quasiparticle dispersion and a

shoulder fixed at the superconducting gap scale, reminiscent of Fig. 7.1(c). EDCs

along the Fermi surface from node to antinode [Fig. 7.2(c)] also qualitatively agree

with the ARPES measurements [Fig. 7.1(d)]; a sharp peak smoothly and mono-

tonically evolves to a broader peak, albeit this broadening is more pronounced in

the theoretical curves than in experiment.

In a long-range ordered nematic phase, the Fermi surface is increasingly de-

formed as one moves away from the nodes towards the antinodes [see Fig. 7.3(a)].

A related anisotropy characterizes the glassy nematic state, even in the presence
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(a) (b)

(c) (d)

Figure 7.5: (a) A representative configuration of ϕ(x) representing a nematic
glass with ξnem = 2a in a system of size 32× 32 unit cells. (b) The
gap parameter, ∆xy, at T = 0 determined self-consistently with ϕ(x)
shown in Fig. 7.5(a) when the root-mean-square magnitude

√
Γnem =

0.1t. The sign of ∆xy on each bond is represented by the color (red
is positive blue is negative) with the magnitude represented by the
thickness of the line as well as opacity. Manifestly, the local symmetry
of the pairing is uniformly d-wave. The associated normalized LDOS
n(x,E)/n̄(E), is shown for (c) E = 0 and (d) E =−0.2t.

77



(a)

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

(meV)

390 K
300
250
200
180
160
140
120
100
90
80
70
60
10

R
e

G
(ω
)/

G
0

Hg1201 (T
c
=67 K)

(b)

(c) (d)

Figure 7.6: Optical conductivity (a) from experiment (Ref. [52]) on Bi-2212 with
Tc = 82K, (b) from experiment (Ref. [53]) on Hg-1201 with Tc = 67K,
(c) calculated for the superconducting nematic glass with ξnem = 2a
and

√
Γnem = 0.2t), and (d) calculated for a disordered superconduc-

tor, where the disorder is assumed to have an on-site s-wave form
factor with ξch = 0 and

√
Γch = 0.2t. In both (c) and (d), ∆xy is self-

consistently determined by Eq. 7.3 with U = 0.732t.

of a superconducting gap. Constant-energy cuts of A(k,E) for a fixed E well above

the superconducting gap scale (E =−0.2t ≈−4∆0) shown in Fig. 7.3(b) vividly cap-

ture the contrast between the nodal and antinodal regions. The spectral function

is relatively sharp in the nodal region and significantly broadened in the antinodal

region.

The corresponding anisotropy is clearly reflected in the imaginary part of the

electron self-energy, i.e. the inverse lifetime of the quasiparticles, extracted from
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the calculated spectral function in the normal (non-superconducting) state of the

nematic glass, as shown in Fig. 7.3(c). Moreover, results for two different corre-

lation lengths ξnem = 2a and 4a appear almost identical in their angular depen-

dence; this confirms that our principal qualitative results are robust, despite the

short correlation lengths we have assumed for computational simplicity. Indeed,

we find that the exact self-energy extracted from our simulation is qualiatively

similar to the self-energy computed in Born approximation:

Σ(k,ω)=
∫

d2 p
(2π)2 |g(k,p)|2G(p,ω)Γ(p−k) (7.6)

where g(k,p)≡ [ f̃ (k)+ f̃ (p)]/2, as shown in Fig. 7.3d.

The energy dependence of the LDOS calculated for the glassy nematic configu-

ration Figs. 7.5(a) and 7.5(b) is shown in Fig. 7.4(b); it exhibits qualitative resem-

blance to the corresponding experimental data shown in Fig. 7.4(a). The spatial

average n̄(E) indicated as the black line in Fig. 7.4(b) has a V shape expected of

a uniform d-wave superconductor. However, the standard deviation ∆n(E) repre-

sented by the shaded region in the same figure grows with energy, and is large

at energies larger than and comparable to ∆0 = 0.055t. Another way to appre-

ciate the “low energy and high energy” dichotomy is to look at the spatial map

of the normalized LDOS n(x,E)/n̄(E) at different energies. There is a clear con-

trast between the relative homogeneity evident in the map at low energy shown

in Fig. 7.5(c) (E = 0), and the inhomogeneity of the same map at a higher en-

ergy shown in Fig. 7.5(d) (E =−0.2t ∼−4∆0). [Note that quantitative comparison

between the experimental results in Fig. 7.4(a) and theory requires some care;

for computational purposes (as discussed previously) we have taken a value of

∆0 = 0.055t that is larger than the observed value in experiment.]

We now turn to the optical conductivity, whose temperature and frequency
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dependences show trends that are shared across different material families of un-

derdoped cuprates [see Figs. 7.6(a) and (b)]. Well above Tc, the real part of the

complex conductivity σ1(ω) is a monotonically decreasing function of ω, as ex-

pected of a metallic state. As the temperature is lowered, the response at ω below

a certain frequency ωpeak is increasingly suppressed, and σ1(ω) evolves into a su-

perposition of a sharp peak at ω = 0 and a broad peak at ω ∼ ωpeak. Remarkably,

the optical conductivity calculated within our model shows similar qualitative be-

havior. In the model, the persistence of an increasingly sharp peak at a non-zero

energy is a consequence of pair formation. More importantly, the remaining sharp

Drude-like peak with width that tends to zero as T → 0 at small ω is a manifesta-

tion of the coherence of the near-nodal quasiparticles that are largely unscattered

in the glassy nematic.

The role of the nematic cold-spot in the optical response can best be seen by

comparing the case of the nematic glass in Fig. 7.6(c) with the case of point-like

scattering in Fig. 7.6(d). When the nodal quasiparticles are scattered by the ran-

dom potential, there remains a residual density of states at ω= 0 even deep in the

superconducting phase. As a result, a finite width Drude-like peak persists even

as T → 0.

The observed evolution of σ1 from a “Drude-like” form at high temperatures

to a superposition of a sharp peak at ω = 0 and a broad peak at ω ∼ ωpeak is re-

markably reproduced by the glassy nematic model. However, in the experiments,

the crossover between the two forms onsets at the pseudogap temperature scale

∼ T∗ well above superconducting Tc while the corresponding crossover onsets at

the calculated (mean-field) superconducting Tc in our model. Notably, the experi-

mental σ1(ω) marches through Tc without much notice of it. It is as if d-wave gap
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with nodes onsets at T∗, with nodal quasiparticles that are largely unscattered as

they would be in the presence of glassy nematic order. We will further discuss con-

straints on models for σ1(ω) at temperatures Tc < T < T∗ in the next section. The

qualitative similarity between the measured spectra and those calculated from

our glassy nematic model in the superconducting state at T < Tc is not subject to

this caveat; it is a robust result of the cold-spots, although the energy scale of the

broader peak in experiment is larger than 2∆0.

7.5 Other forms of glassy order

We have carried out similar (although less extensive) calculations for various

other forms of assumed glassy order. We comment here briefly on certain aspects

of these results.

7.5.1 Superconducting d-form factor CDW glass

While the d-wave form factor in the case of a nematic glass is dictated by sym-

metry, for a CDW in which the ordering vector itself breaks the C4 symmetry of

the underlying crystal, the d-wave form factor is not symmetry dictated. Any

CDW will thus necessarily have both s-wave and d-wave components; conversely,

a dominantly d-wave form factor presumably reflects some feature of the micro-

scopic physics (the “mechanism”) which produces the CDW. Not surprisingly, re-

sults obtained for a CDW glass with an assumed d-wave form factor share many

qualitative features with those obtained for a nematic glass, as these arise from

the assumed form factor directly. The major differences between the two situa-
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(b)

Figure 7.7: (a) EDCs along the Fermi surface [path 3 of Fig. 7.1(a)], calculated
in the superconducting state in the presence of glassy charge-density-
wave with a d-wave form factor and

√
Γcdw = 0.2t and ξcdw = 4a, multi-

plied by Fermi function. The wavevector Q= (2π/a)(0.196,0) is chosen
to be a shortest vector connecting the intersection of Fermi surface
and the magnetic Brillouin zone boundary, (|kx ± ky| = π). Blue cir-
cles mark the maxima of each curve, and the red curve indicates the
location of a hot-spot momentum. The angular dependence of the self-
energy in the normal state with various values of ξcdw is shown in (b).
The hot-spot momenta are indicated by red arrows (red dots in the
inset).
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tions concern the existence of “hot-spots” on the Fermi surface in the case of the

d-form-factor CDW glass. Hot spots refer to the points on the pristine Fermi sur-

face which are spanned by the CDW ordering vector – these are the points where,

in a weak coupling analysis of CDW order, the effects of the CDW are expected to

be most vivid.

The EDC of a d-form-factor CDW glass as a function of position along the

Fermi surface is shown in Fig. 7.7(a) to be compared to Figs. 7.1(d) and 7.2(c).

Although we have taken the CDW correlation length in our calculations to be

quite short, ξcdw = 4a, (comparable to the CDW wavelength) the existence of a hot-

spot is clearly seen in the non-monotonic evolution of the spectral function along

the Fermi surface. This is in sharp contrast with the lack of any such feature in

Fig. 7.1(d). The hot-spots are also visible in the electron self-energy of the normal

state along the Fermi surface, as shown in Fig. 7.7(b); the hot-spot appears more

sharply for longer ξcdw.

We have not explicitly explored the effects of glassy [26] “d-density-wave

(DDW) order” [54], because time-reversal-symmetry-breaking required for DDW

brings with it additional issues of modeling. Nevertheless, since it also has a d-

wave form factor, we expect that much of the nodal-antinodal dichotomy we have

found would also apply to this form of ordering in the superconducting phase.

7.5.2 Optical conductivity for other models of antinodal gap

The fact that the “two-peak” structure (a sharp peak at ω = 0 and a broad peak

at ω = ωpeak) that is well-captured by our superconducting glassy nematic model

below Tc persists above Tc in experiments is troublesome. Our result relies on two
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Figure 7.8: Various spectroscopic observables for a nematic glass with coexist-
ing uniform d-density-wave order (DDW) (a-c) and with phase disor-
dered (locally d-wave) superconductivity (PDdSC) (d-f). The DDW and
PDdSC are set non-self-consistently by Eqs. (7.7) and (7.9), with no
additional superconducting order. In the PDdSC, phase disordering of
the superconducting state is represented by incorporating two pinned
vortices and two anti-vortices. (a-c) Spectral function at the Fermi
level, local density of states, and optical conductivity with DDW. (d-f)
Spectral function at the Fermi level, local density of states, and optical
conductivity with PDdSC.
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essential ingredients of the model to obtain the “two-peak” structure: (1) a d-wave

superconducting gap and (2) a d-wave form factor scattering. Given the apparent

absurdity of assuming the persistence of a superconducting gap far above Tc, we

consider two additional scenarios of a nematic glass with antinodal gaps to seek

alternative explanations of the “two-peak” structure above Tc.

First we consider an ordered d-density-wave (DDW) [54–59] coexisting with

glassy nematicity. We represent the DDW as a contribution to V with

ϕ(x, y)= i∆ddw(−1)x+y (7.7)

with Eq. (7.4) extended to complex field:

V (x,y)= 1
2

f (x−y)
[
ϕ(x)+ϕ∗(y)

]
(7.8)

where f (r) is a d-wave form factor. ∆ddw is chosen to be ∆ddw =∆0
ddw

√
1− (T/T0

c )2

non-self-consistently. To compare with the superconducting state, we chose T0
c =

0.05t, and also ∆0
ddw = 0.05t. This opens a gap at the antinodes, as the Fermi level

spectral function in Fig. 7.8a shows. Nevertheless, the density of states remains

finite [as indicated by the finite length of “arc” in Fig. 7.8(a), and also Fig. 7.8(b)],

leading to the Drude-like peak at T = 0 in Fig. 7.8(c). Not surprisingly, DDW or-

der alone is insufficient to account for the nature of the experimentally observed

gapping below Tc; even above Tc, it does not give as good an account of the struc-

ture of the optical conductivity as does the (apparently absurd) assumption of a

persistent superconducting gap.

Another way to introduce an antinodal gap is in a model of a “phase-

disordered” d-wave superconductor (PDdSC) with broken time-reversal symme-

try. We introduce minimal phase disorder by incorporating vortices at positions

(0,0) and (Lx/2,L y/2) and antivortices at positions (Lx/2,0) and (0,L y/2). We thus
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non-self-consistently choose ∆xy = f (x−y)∆(x+y
2 ) to be a product of d-wave form

factor f (r)= δr,±x̂ −δr,± ŷ and Jacobi theta functions:

∆(x)=∆0

√√√√1−
(

T
T0

c

)2

σ̂W
(
z;0

)
σ̂W

(
z;
π

2
(1+ i)

)
× σ̂∗

W

(
z;
π

2

)
σ̂∗

W

(
z; i

π

2

)
(7.9)

where z ≡ x
Lx

+ i y
L y

, and σ̂W is defined as

σ̂W (z; z0)≡σW (z; z0)/|σW (z; z0)| (7.10)

σW (z; z0)≡ e−
π
2

(
(z−z0)2−2z∗0 z

)
ϑ3

(
z− z0|i

)
. (7.11)

Again we choose T0
c = 0.05t, and ∆0 = 0.05t. Figures 7.8(d)–7.8(f) show the result-

ing spectra. The spectral function shows that, while the antinodal excitations be-

come gapped, a large portion of the Fermi surface still survives as noted by Berg

and Altman [60]. This Fermi arc leads to a finite density of states in the limit

ω→ 0. In fact the density of states at low energies has a rather flat energy depen-

dence with a suppressed but finite magnitude [Fig. 7.8(e)]. Correspondingly, we

find that the optical conductivity does not show any suppression of the low energy

spectral weight [Fig. 7.8(f)]. Again, this does not greatly resemble the experimen-

tal results for T > Tc. Instead, as with the DDW, the finite density of states at

the Fermi level leads to a Drude-like peak at ω = 0. Among the possibilities that

we have considered, only the model with d-wave superconductivity on top of d-

form-factor scattering with cold-spots qualitatively reproduce the experimentally

measured σ1(ω) for temperatures T < T∗.
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7.6 Conclusion

In summary, we showed that the consonance between the cold-spots of a glassy

nematic and the gap nodes of a d–wave superconductor can account for the most

salient “anomalous” features of the spectroscopic measurements on the cuprates

we have studied. It is natural in a glassy nematic superconductor that the nodal

quasiparticles are long-lived, while away from the nodes, the quasiparticles are

strongly perturbed by the local nematic order. This provides a simple explana-

tion for the nodal-antinodal dichotomy observed by ARPES, and the strongly en-

ergy dependent heterogeneity observed by STM. Furthermore we found striking

similarity between the temperature evolution and low temperature form of op-

tical conductivities between our model and experiments. Nevertheless, the fact

the “two-peak” structure of the optical response only occurs below Tc within our

model, while it persists up to T∗ in experiments, implies that fluctuational effects

beyond those we have considered must be included in a complete theory of the

pseudogap state.

Implicit in the above is the assumption that other sources of quasiparticle scat-

tering – those associated with point-like (s form factor) disorder or with CDW or-

dering (either with s or d form factor) – are relatively weak. Specifically, as was

pointed out previously [61], substantial scattering by point-like disorder can be

ruled out directly from the experimentally observed sharp V-shape and relative

homogeneity of the lowest energy portion of the LDOS. Above, we have further

shown that significant scattering by a CDW with a substantial correlation length

– even one with a d form factor – can be ruled out on the basis of the lack of any

“hot-spot” in the observed ARPES spectrum. Since both point-like disorder po-

tentials and short-range CDW order have been directly imaged in the same sort
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of BSCCO samples we have used as the basis of these inferences, this raises the

issue of why they are so weakly coupled to the low energy quasiparticles [29].

Our results point to interesting future directions. Firstly, a smoking-gun test

of our conclusions would be to repeat the spectroscopic measurements on samples

under uniaxial strain. We would predict the “anomalous features” to diminish as

uniaxial strain detwins nematic domains. It is also plausible that the response of

glassy nematicity to in-field magnetic field may introduce field-dependence of the

anisotropic life-time.
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CHAPTER 8

SUPERCONDUCTOR UNDER MAGNETIC FIELD

In addition to zero electrical resistivity, response to external magnetic field is also

a defining property of a superconductor. First discovered by Meissner and Ochsen-

feld in 1933 [1], superconductors exhibit perfect diamagnetism, i.e., the magnetic

field is completely excluded from the bulk of superconductor. In 1935, a new phase

of superconductivity is discovered between Meissner phase and normal phase [2].

In this phase, known as Shubnikov phase or vortex phase, magnetic field pene-

trates the bulk of superconductor by creating vortices. Superconductors with a

direct transition between Meissner phase and normal phase are called type-I su-

perconductors (Fig. 8.1a), while superconductors which exhibit Shubnikov phase

are called type-II superconductors (Fig. 8.1b).

In this chapter, we discuss how to include magnetic field in the BdG Hamilto-

nian, and how vortices are introduced.

8.1 Magnetic Translation Operator

Under magnetic field, ordinary translation operator no longer commutes with the

Hamiltonian: The full (lattice) translation group is replaced by a magnetic trans-

lation group. In this section we will derive magnetic translation operators under

constant magnetic field, and discuss how they can be used to simplify the Hamil-

tonian.

Ordinary translation operator in the absence of magnetic field which is defined
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Figure 8.1: (a) Phase diagram of type-I superconductor. (b) Phase diagram of
type-II superconductor.

for a single particle state by Ta |x〉 = |x+a〉, i.e.,

〈
x
∣∣Ta

∣∣ψ〉= ∫
dd y(T†

a |x〉)†ψ(y)
∣∣y〉= ∫

dd y〈x−a|ψ(y)
∣∣y〉=ψ(x−a), (8.1)

can be written as

Ta = e−ia·p. (8.2)

It is easily shown how Ta affects the position operator x: Using the commutation

relation [xµ, pν]= iδµν and Hadamard lemma, we get

TaxµT−1
a = e−ia·pxµ = xµ+ [−ia ·p, xµ]+�

��(· · · )= xµ−aµ (8.3)

Under magnetic field B=∇×A, the kinetic energy of a particle with charge q is

K =K (p)→K (p− qA). (8.4)

Choosing Ã(x) which satisfies following commutation

[
pµ− qAµ(x), pν− qÃν

]
= 0 (8.5)
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which implies

∂µAν(x)= ∂ν Ãµ(x), (8.6)

we can define the following magnetic translation operator

T̃X ≡ e−iX·(p−qÃ) (8.7)

which commutes with the kinetic energy. Under constant magnetic field (and thus

A(x) linear in x), T̃X can be shown to be identical to the following operator up to a

constant phase using Baker-Campbell-Hausdorff formula1:

T̂X ≡ eiqX·Ãe−iX·p = (const.)T̃X (8.8)

Thus, from here on, we refer to T̂X as magnetic translation operator. For example,

T̂X |x〉 = eiqX·Ã(x+X) ∣∣x+X
〉

, (8.9)

or, in second quantized notation,

T̂Xc∗(x)T̂†
X = c∗(x+X)eiqX·Ã(x+X), T̂Xc(x)T̂†

X = c(x+X)e−iqX·Ã(x+X). (8.10)

By construction,
[
T̂X,K (p− qA)

]
= 0. There is, however, one caveat: the magnetic

translation operators do not commute with each other in general:[
T̂X1

, T̂X2

]
= eiq(X1+X2)·Ã(x)

(
eiqX2·Ã(X1) − eiqX1·Ã(X2)

)
TX1

TX2
(8.11)

It is nevertheless possible to find a set of mutually commuting T̂X, by requiring

qX2 · Ã(X1)− qX1 · Ã(X2)= 2πn, n ∈Z. (8.12)

Therefore, choosing
{
Xi

}
to be on a lattice whose unit cell contains integer number

of flux quanta,2 we get a set of commuting operators[
T̂X1

, T̂X2

]
= 0 (8.13)

which all commute with kinetic energy.

1 eX+Y = eX eY e−
1
2 [X ,Y ]e

1
6 (2[Y ,[X ,Y ]]+[X ,[X ,Y ]]) · · ·

2Here we use the term magnetic flux quantum to refer to 2π/e. Historically, however, magnetic
flux quantization has been observed first in a superconductor [3], and the term flux quantum has
been used to mean π/e.
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8.2 Two-dimensional Lattice System

Now let us apply the above construction to a two-dimensional lattice system. For

simplicity, take a 2D square lattice system with size (Lx,L y)= (MxNx, MyNy) with

constant perpendicular field Bez = Φ0
NxNy

ez, where Φ0 = 2π/q. Magnetic unit cell

can be chosen to have size (Nx, Ny). From here on, we use the following notation:

r= (x, y) for x = 0, . . . ,Lx −1, y= 0, . . . ,L y −1

R= (X ,Y )= (mxNx,myNy) for mx = 0, . . . , Mx −1, my = 0, . . . , My −1 (8.14)

Naively, with A(x) linear to x, “periodic boundary condition” requires

T̂(Lx,0)= T̂(0,L y)= 1. (8.15)

In terms of L and Ã, this implies that for any r ∈ {0, . . . , Nx −1}× {0, . . . , Ny −1},

qLx Ãx(r)= qL y Ã y(r)= 2πn, n ∈Z (8.16)

Depending on the gauge choice, this leads to different requirements on M and

N. For example, in the naive “Landau gauge” with A(r) =−Byêx and thus Ã(r) =
−Bxêy, the magnetic translation operator writes

T̂R = eiqR·Ã(r)TR = e−iqBY xTR = e−i2πmyx/Nx TR. (8.17)

Periodic boundary condition requires

2π
Φ0

MyNy
Φ0

NxNy
x = 2π

My

Nx
x = 2πn (8.18)

and thus My should be a multiple of Nx. As will be shown later in Section 8.5,

such requirements on the system size can be relaxed by threading a Dirac string

through the system.
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8.3 Kinetic Energy in Magnetic Field

Kinetic energy of a charged particle minimally coupled to constant magnetic field

can be simplified using magnetic translation operator. Consider the following

Hamiltonian on a lattice

K = ∑
r1r2

c†(r1)K(r1r2)c(r2), (8.19)

where

K(r1,r2)= t(r1,r2)e−iϕ(r1,r2), with ϕ(r1,r2)≡ q
∫ r1

r2

A(r) ·dr. (8.20)

In this chapter, we use cα(x) to represent an annihilation operator at site x. Trans-

lation of the kinetic energy by R gives

K(r1 +R,r2 +R)= K(r1,r2)e−iq(Ã1−Ã2)·R (8.21)

It is easy to show that
[
K , T̂R

]
= 0 when R is a magnetic lattice vector. It is,

therefore, possible to block-diagonalize H by decomposing it into eigenstates of

T̂R. Remember that the convention for momentum basis when B= 0 is

c†
k = 1p

N

∑
r

c†(r)eik·r = 1p
N

∑
r

Trc†(0)T−1
r eik·r

ck = 1p
N

∑
r

e−ik·rc(r)= 1p
N

∑
r

e−ik·rTrc(0)T−1
r (8.22)

Similarly, for B = Bêz, we can define crystal momentum basis using magnetic

translation operator:

c†
k(r̃)≡ 1p

M

∑
R

T̂Rc†(r̃)T̂−1
R eik·R = 1p

M

∑
R

c†(r̃+R)e−iqA(r̃)·Reik·R (8.23)

where r̃ is a lattice vector within a magnetic unit cell, R a magnetic lattice vector,

k a magnetic crystal momentum, and M = MxMy. The inverse transform is

c†(r̃+R)= 1p
M

∑
k∈MUC

eiqA(r̃)·Re−ik·Rc†
k(r̃) (8.24)
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The kinetic energy can then be written as

K = ∑
{r̃i},k

c†
k(r̃1)Kk(r̃1, r̃2)ck(r̃2), (8.25)

where

Kk(r̃1, r̃2)=∑
R

e−i(k−qÃ(r̃1)·RK(r̃1 +R, r̃2) (8.26)

8.4 Bogoliubov Quasiparticles in Magnetic Field

Let us now bring superconductivity into the discussion. Consider the following

BdG Hamiltonian

H = 1
2

∑
r1r2

(
c†(r1) cT(r1)

) K(r1,r2) ∆(r1,r2)

−∆∗(r1,r2) −K∗(r1,r2)


 c(r2)

c∗(r2)

 (8.27)

In the previous section, we have shown that the kinetic energy K can be block di-

agonalized in crystal momentum basis. Here we discuss whether the same applies

to the pairing term ∆. Using magnetic translation operators, the Fourier trans-

form of the creation/annihilation operator can be written in terms of the Nambu

spinor as follows:

ψ†(r̃+R)= 1p
M

∑
k
ψ

†
k(r̃)e−ik·R+iqÃ·Rτ3 . (8.28)

The Hamiltonian can then be written as

H = ∑
R1R2

∑
r̃1r̃2

ψ†(r̃1 +R1)H(r̃1 +R1, r̃2 +R2)ψ(r̃2 +R2)

= ∑
{r̃i ,ki}

ψ
†
k1

(r̃1)Hk1k2
(r̃1, r̃2)ψk2

(r̃2), (8.29)

where

Hk1k2
(r̃1, r̃2)≡ 1

M

∑
{Ri}

e−ik1·R1+iqÃ1·R1τ3 H(r̃1 +R1, r̃2 +R2)eik2·R2−iqÃ2·R2τ3 . (8.30)
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In order for the Hamiltonian to be written in block-diagonal form in terms ofψk(r̃),

we need

Hk1k2
(r̃1, r̃2)= Hk1

(r̃1, r̃2)δk1k2
. (8.31)

When H ∝ τ0,τ3, (i.e. the normal components) the condition needed to satisfy

Eq. (8.31) is

H(r1 +R,r2 +R)= e−iτ3q[Ã(r1)−Ã(r2)]·RH(r1,r2) (8.32)

which is already satisfied by the kinetic term in the diagonal block, as we have

shown in the previous section. When H ∝ τ1,τ2 (i.e. the pairing components), on

the other hand, translational invariance requires that

H(r1 +R,r2 +R)= e−iτ3q[Ã(r1)+Ã(r2)]·RH(r1,r2) (8.33)

In general, there is no guarantee that the pairing term can be block diagonalized

in the magnetic crystal momentum basis. However, when the vortices form a lat-

tice, which is often the case in order to minimize the free energy, with two vortices

within a single magnetic unit cell [4], the pairing term indeed commutes with the

magnetic translation operator, and can be written in block diagonal form. Let us

confirm here that when the eigenstates of the Hamiltonian are also eigenstates of

the magnetic translation operator, the self-consistency does not destroy the mag-

netic translational symmetry. In the full self-consistency loop, ∆ is determined by

the following self-consistency equation

∆αβ(r1,r2)= 1
2

∑
r3r4µν

Vαβ;µν(r1,r2;r3,r4)
〈

cν(r4)cµ(r3)
〉

(8.34)

In terms of c†
k(r̃) and ck(r̃),〈

cν(r̃4 +R4)cµ(r̃3 +R3)
〉
= 1

M

∑
k

〈
c−kν(r̃4)ckµ(r̃3)

〉
eik(−R3+R4)+iq(Ã3̃·R3+Ã4̃·R4).

(8.35)
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The pairing term can be written as

∆αβ(r1,r2)= 1
2

∑
R3R4r̃3r̃4

Vαβ;µν(r1 − r̃4 −R4,r2 − r̃4 −R4; r̃3 − r̃4 +R3 −R4,0)

× 1
M

∑
k

〈
c−kν(r̃4)ckµ(r̃3)

〉
eik(R3−R4)+iq(Ã3̃·R3+Ã4̃·R4), (8.36)

where Ã ĩ is a shorthand for Ã(r̃i). Under translation by a magntic lattice vector

R,

∆αβ(r1 +R,r2 +R)

= 1
2

∑
R3R4r̃3r̃4

Vαβ;µν(r1 − r̃4 −R4,r2 − r̃4 −R4; r̃3 − r̃4 +R3 −R4,0)

× 1
M

∑
k

〈
c−kν(r̃4)ckµ(r̃3)

〉
eik·(R3−R4)+iq(Ã3̃·R3+Ã4̃·R4)eiq(Ã3̃+Ã4̃)·R. (8.37)

The structure of the interaction term V ensures that (Ã3 + Ã4) ·R = (Ã1 + Ã2) ·
R. Therefore, the self-consistency equation preserves the magnetic translational

symmetry of the pairing term:

∆αβ(r1 +R,r2 +R)=∆αβ(r1,r2)e−iq(Ã1̃+Ã1̃)·R (8.38)

To sum, the Hamiltonian can be block diagonalized as

Hk(r̃1, r̃2)≡∑
R

e−i(k1−qτ3Ã1̃)·RH(r̃1 +R, r̃2). (8.39)

As we will see in Chapter 9, self-consistent solution of Eq. (8.35) with the

Hamiltonian Eq. (8.27) automatically introduces two vortices per magnetic unit

cell.

8.5 Franz-Tešanović Gauge

In previous sections, we have shown that, as a result of out-of-plane magnetic field,

the system loses ordinary translation symmetry, but is replaced by a magnetic
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translation symmetry. Because of non-zero magnetic flux through each magnetic

unit cell, however, the magnetic translation operator differs from the ordinary

translation operator, and this leads to small difficulties, one example being the

matching of the periodic boundary condition mentioned at the end of Section 8.2.

To resolve this issue, Franz and Tešanović [5] have presented a singular gauge

transformation which makes magnetic translation equivalent to ordinary trans-

lation. Their starting point is the observation that each superconducting vortex

entraps one-half magnetic flux quantum, and that a single magnetic unit cell con-

tains two superconducting vortices. Since an string of infinitesimal radius con-

taining an integer multiple of magnetic flux quantum (a Dirac string) through

the system is physically not observable, one can thread those strings through the

system so as to cancel out the total flux from the physical magnetic field. As the

simplest approach, one might try putting half flux quantum for each vortex. This,

however, leads to a multivaluedness of the wave function around the vortex [6, 7].

Franz and Tešanović solved this issue in the following way: Since there are two

vortices in each MUC, and there are two species of fermionic excitations (spin up

and down), you can insert an integer flux string through one of the vortex, which

only the spin up electrons can experience, and another string through the other

vortex, which only spin down electrons can experience. By doing this, one can

get avoid multivaluedness, and also make magnetic translation operator same as

ordinary translation operators.

Working with a lattice model, however, circumvents the singularity problem:

As long as the Dirac string stays away from sites and bonds, no singularity enters

the Hamiltonian. Therefore, it is possible to place the string anywhere in the

system, without any assumptions on the location of the vortices, as in Ref. [5].
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For concreteness, let us consider a 2D square lattice of size Nx ×Ny, with con-

stant out-of-plane magnetic field Φ0/(NxNy) through the system. Assume periodic

boundary condition, and that the hoppings are only between the nearest neigh-

bors. For every plaquette, the phase winding around it (i.e. Wilson loop variable)

should equal 2π/(NxNy) modulo 2π. Defining

ax,y ≡ (NxNy/2π)× (Peierls phase from site (x, y) to site (x+1, y) ),

bx,y ≡ (NxNy/2π)× (Peierls phase from site (x, y) to site (x, y+1) ), (8.40)

the condition for the magnetic flux can be written as

fx,y ≡ ax,y +bx+1,y −ax,y+1 −bx,y = 1 (mod NxNy). (8.41)

We then make the total magnetic flux through the whole system zero, by inserting

a flux quantum at (Nx − ε1, Ny − ε2), where εi → 0+. The ratio between ε1 and

ε2 does not matter when we only have nearest neighbor hoppings. If, however,

there are second and third neighbor (and higher) hoppings, we need to make sure

that the flux quantum stays out of the ways of these hopping bonds, and therefore

ε1/ε2 = 1,1/2,2, · · · should be avoided. Then Eq. (8.41) writes

fx,y = ax,y +bx+1,y −ax,y+1 −bx,y =


1−NxNy, for x = Nx −1, y= Ny −1

1 otherwise.
(8.41’)

Any set of {ax,y,bx,y} which satisfies the above equation is a valid gauge configu-

ration.

A simple example configuration which satisfies Eq. (8.41) can be constructed

through following steps. First, set ax,y and bx,y following the Landau gauge A =
−Byêx for most part of the system:

ax,y =−y for x = 0, . . . , Nx −1 and y= 0, . . . , Ny −1 (8.42)

bx,y = 0 for x = 0, . . . , Nx −1 and y= 0, . . . , Ny −2. (8.43)
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Figure 8.2: An example configuration of “Landau-Franz-Tešanović” gauge on a 2D
system with unit magnetic flux quantum through the system. Periodic
boundary condition is imposed. The black dots represent sites, and
arrows hoppings. The numbers in angled bracket are the a’s and b’s
of the hopping, defined as in the text. (They represent phase of the
hopping along the direction of the arrow, divided by 2π/NxNy.) The
loop inside the placket indicates the sum of a and b in that direction.
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Figure 8.3: The continuum analogue of gauge configuration of Fig. 8.2. The yellow
arrow and the blue line marks the Dirac string entering the torus and
the branch cut.

(This is marked by red arrows in Fig. 8.2.) This step assigns 2π/NxNy flux through

every plaquette except the top row. Now requiring that the plaquettes at the top

row also contain 2π/NxNy flux each, we can set

bx,Ny−1 = Nyx for x = 0, . . . Ny −1 (8.44)

(This is marked by blue arrows in Fig. 8.2.) The plaquette at the top right corner

then automatically satisfies

fNx−1,Ny−1 = 1−NxNy, (8.45)

which is exactly what we need.

Note that this is analogous to the continuum gauge configuration with sin-

gularity at the the corner of a magnetic unit cell, with branch cuts horizontally

connecting the two adjacent singularities.
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Abstract

A major question in Fe-based superconductors remains the structure of the pair-

ing, in particular whether it is of unconventional nature. The electronic structure

near a vortex can serve as a platform for phase-sensitive measurements to an-

swer this question. By solving the Bogoliubov-de Gennes equations for LiFeAs,

we calculate the energy-dependent local electronic structure near a vortex for dif-

ferent nodeless gap-structure possibilities. At low energies, the local density of

states (LDOS) around a vortex is determined by the normal-state electronic struc-

ture. At energies closer to the gap value, however, the LDOS can distinguish an

anisotropic s-wave gap from a conventional isotropic s-wave gap. We show within

our self-consistent calculation that in addition, the local gap profile differs be-

tween a conventional and an unconventional pairing. We explain this through

admixing of a secondary order parameter within Ginzburg-Landau theory. In-

field scanning tunneling spectroscopy near a vortex can therefore be used as a

real-space probe of the gap structure.
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9.1 Introduction

The gap structure in the Fe-based superconductors and its possible unconven-

tional nature is still a key issue in the field four years after their discovery. In

most compounds, the pairing is believed to be of the so-called s± type, for which the

order parameter changes sign between the electron-like and the hole-like Fermi

surfaces [1, 2]. Some experimental results are consistent with this prediction [3–

7]. However, a major difficulty in distinguishing such an unconventional pairing

state from a trivial s-wave gap is that both states are nodeless and transform

trivially under all the symmetry operations of the material’s point group. As the

experimental probes that are usually used to distinguish various gap structures,

such as phase-sensitive probes, are not Fermi pocket specific, an unambiguous

evidence of the unconventional s± pairing remains evasive.

One route to accessing phase information using a phase-insensitive probe

would be through vortex bound states, as a vortex introduces a spatial texture

to the superconducting order parameter. Advancements in in-field scanning tun-

neling spectroscopy (STS) have enabled the study of vortex bound states. Indeed,

a recent STS experiment on LiFeAs under a magnetic field has shown an intrigu-

ing energy dependence in the spatial distribution of the local density of states

(LDOS) near a vortex [8]. The remaining question is whether the observed LDOS

distribution near vortex can be instrumental in selecting one of the proposed gap

structures: s±-wave [1], s++-wave [9, 10], and (spin-triplet) p-wave [11, 12]. At

zero bias, the LDOS shows a four-fold star shape with high-intensity ‘rays’ along

the Fe-As direction. Similar features in NbSe2 [13] were interpreted as a sign of

gap minima along this direction. However, a quasi-classical analysis by Wang et

al. [14] pointed out that the normal-state band structure of LiFeAs – namely a
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highly anisotropic hole pocket around the Γ point – could be producing these rays

irrespective of gap structure. By contrast, little attention has been given to the

high energy LDOS distribution observed in Ref. [8]: hot spots appearing at the

intersection of split rays.

Motivated by these observations, we present a study of the near-vortex elec-

tronic structure and signatures of unconventional pairing therein within the

Bogoliubov-de Gennes (BdG) framework. By (non-self-consistently) imposing a

gap structure and solving the BdG Hamiltonian, we first show that the isotropic

s-wave and s±-wave pairing result in different spatial distributions of the LDOS at

energies approaching the gap value. In particular, we find s±-wave pairing to yield

the observed hot spots. Then we solve the BdG equations self-consistently, and

based on our results propose detecting the spatial distribution of the gap around

a vortex for a more direct evidence of unconventional s±-wave pairing. A vortex

not only suppresses the order-parameter amplitude at its core and introduces a

singular point in space around which the phase of the order parameter winds, but

it also induces a secondary order parameter in its vicinity [15–19]. Due to the in-

duced secondary order parameter near the vortex, the gap recovery should show a

strong angular dependence. Detection of such anisotropy will be an unambiguous

evidence of unconventional pairing.

The remainder of this paper is organized as follows: In sections 2 and 3, we

introduce the microscopic model and describe the Bogoliubov-de Gennes calcula-

tions, respectively. In section 4, we present the results of the BdG calculations

and discuss them within Ginzburg-Landau theory. In section 5, we summarize

our findings and remark on future directions. Throughout the paper we focus

on the large hole pocket and study the single band problem. However, we also
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(a) (b)

MΓ

s-wave s -wave± d  -wavexy

MΓ

Figure 9.1: (a) Comparison of two tight-binding models for LiFeAs used in this
paper in the 1-Fe Brillouin zone. The dashed lines indicate the Fermi
surfaces of the five-band model from Ref. [20]. For the most part of
this work, we focus on the γ band that is around the Γ point, whose
Fermi surface is shown as a solid line. (b) Sketch of the three gap
functions with s-, s±-, and dxy-wave momentum structure around the
γ-band Fermi surface.

present results from non-self-consistent BdG calculations on a five-band model in

section 4, which show good agreement with observations from single-band model

calculations in the energy range of our interest.

9.2 Model

We describe LiFeAs in the superconducting state with the (mean-field) BdG

Hamiltonian

H BdG =∑
i j
Ψ†

i

−ti j ∆i j

∆∗
i j t∗i j

Ψ j. (9.1)

Here, Ψi ≡ (ci↑, c†
i↓)

T is a Nambu spinor, and cis (c†
is) annihilates (creates) an elec-

tron at lattice site i with spin s within a single-band model for the large hole

pocket around the Γ point: the so-called γ band. However, Eq. (9.1) can easily be
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generalized for a multi-band model. In this paper, we focus on the single-band

model for the most part since the superconducting gap is the smallest on the γ

band [21, 22] and hence we expect low energy physics to be dominated by this

band. Moreover, this band mainly stems from the (in-plane) dxy orbitals, and thus

shows little kz dependence [23]. It is therefore a natural choice for LiFeAs. Note

that previous BdG calculations on different Fe-pnictides focused on two-band mod-

els for the dxz / dyz orbitals [24–29]. Our choice of the hopping matrix ti j is guided

by the experimental observations on the γ pocket [21, 22, 30] to be t = −0.25eV

for nearest-neighbor hopping, t′ = 0.082eV for next-nearest-neighbor hopping, and

tii = µ= 0.57eV for the chemical potential. Figure 9.1a shows the resulting Fermi

surface in solid red line. Though we stay within this single-band model for the

self-consistent BdG studies, we have also used a five-band model for the non-self-

consistent calculation with tight-binding parameters from Ref. [20] to test the va-

lidity of focussing on the γ band for the energy range of our interest (see section

4.2). Figure 9.1a shows the Fermi surface of the five-band model in dashed lines.

The ∆i j are the (bond) gap functions. For a self-consistent solution of H BdG,

we require the gap functions to satisfy

∆i j =
1
2

Vi j

〈
ci↓c j↑+ c j↓ci↑

〉
, (9.2)

where Vi j < 0 is the attractive interaction between sites i and j in the singlet

channel, and 〈·〉 denotes the thermal expectation value. Restricting the interac-

tion Vi j to a specific form constrains the momentum structure of the gap func-

tion, since ∆i j 6= 0 only if Vi j 6= 0. In the uniform case, an on-site attraction

Vi j = Uδi j leads to a spin-singlet s-wave gap ∆(k) = ∆0
s , while a next-nearest-

neighbor (NNN) attraction Vi j =V ′δ〈〈i, j〉〉 allows for the singlet gap functions of s±

form, ∆(k)= 4∆0
s± coskx cosky, and dxy form, ∆(k)= 4∆0

dxy
sinkx sinky. Figure 9.1b

shows sketches of these gap functions. We restrict our calculations in the following
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to these ‘pure’ gap structures. Even though the true gap function is a (symmetry-

allowed) mixture of such gap functions, the dominant channel (on-site or NNN

interactions) will determine whether an s±- or an s++-wave gap is realized in the

presence of the electron pockets.

For the non-self-consistent BdG study, the vortex will be imposed through the

gap-function configuration of

∆i j =∆0 tanh(|ri j|/ξ)eiθi j , (9.3)

where the vector ri j points to the midpoint of sites i and j, and θi j is its az-

imuthal angle measured from the Fe-Fe direction. This corresponds to a single

vortex located at the origin suppressing locally the order-parameter amplitude. In

addition, the order-parameter phase winds around the vortex core.

For the self-consistent BdG study, we induce the vortices by applying a mag-

netic field Hẑ. Assuming minimal coupling between an electron and the field, the

hopping between sites i and j acquires a Peierls phase

ti j −→ ti j e
iϕ(ri ,r j), ϕ(ri,r j)≡− π

Φ0

∫ ri

r j

A(r) ·dr, (9.4)

where Φ0 = h/2e is the magnetic fluxoid and ri is the vector pointing to the site

i. We assume a uniform magnetic field H and write the vector potential in the

Landau gauge A(r) = −H yx̂. From the self-consistent solution ∆i j, we can define

local gap order parameters of different symmetries. For an on-site interaction, the

local s-wave order parameter is defined as ∆s(r)=∆r,r. Note that from here on, we

use r without any site index to denote both a lattice site and the vector pointing to

it in units of the lattice constant a0. With NNN interaction, we define local order

parameters of s± form

∆s±(r)= 1
4

[∆̃r+(1,1),r+ ∆̃r+(1,−1),r+ ∆̃r+(−1,−1),r+ ∆̃r+(−1,1),r] (9.5)
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and dxy form

∆dxy
(r)= 1

4
[∆̃r+(1,1),r− ∆̃r+(1,−1),r+ ∆̃r+(−1,−1),r− ∆̃r+(−1,1),r], (9.6)

where ∆̃rr′ ≡ ∆rr′ exp[−iϕ(r,r′)] ensures that order parameters of different sym-

metries do not mix under magnetic translations. Note that for the uniform case,

∆s(r)=∆0
s , ∆s±(r)=∆0

s± , and ∆dxy
(r)=∆0

dxy
as defined above.

9.3 Method

In this section, we elaborate on our two approaches to solve the BdG equations and

obtain the LDOS near a vortex. For both, diagonalizing the Hamiltonian H BdG in

Eq. (9.1) for a system of size (Nx, Ny) is computationally the most expensive part.

9.3.1 Non-Self-Consistent Approach

For the non-self-consistent calculation, we impose a gap function in the form given

by Eq. (9.3) and find the low lying eigenvalues and eigenstates of H BdG using the

Lanczos algorithm1. The LDOS can be calculated from the eigenenergies En and

eigenstates [un(r),vn(r)] as

N(r,E)=∑
n
|un(r)|2δ(E−En)+|vn(r)|2δ(E+En). (9.7)

Since we are not interested in the absolute value of the LDOS but rather in the

spatial profile at a given energy, we normalize the LDOS such that for a given

energy E, the maximum value of N(r,E) is unity.

1We suppress low energy states from forming at the boundary by imposing an on-site potential
of 10 eV to the sites at the boundary.
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9.3.2 Self-Consistent Approach

For the self-consistent calculation, we assume initial gap functions and use the

eigenvalues and eigenvectors of Eq. (9.1) to calculate the gap functions given by

Eq. (9.2). We proceed iteratively until self-consistency is achieved. In diagonaliz-

ing H BdG, we can no longer make use of the crystal momentum basis to simplify

the problem since the Peierls phase factor prevents the kinetic part of the Hamilto-

nian from commuting with the ordinary lattice translation operator TR. However,

the kinetic part commutes with the magnetic translation operator

T̂R ≡ e
−i π

Φ0
A(R)·r

TR (9.8)

for a magnetic lattice vector R whose unit cell contains two magnetic fluxoids.

The pairing term in general does not commute with T̂R. Nevertheless, when

vortices form a lattice, T̂R commutes with the pairing term when R is a vector

of a vortex sublattice containing every other vortex. Since we focus on the elec-

tronic structure near a single vortex, we expect the shape of the vortex lattice to

have little influence on our results. Therefore, we make an arbitrary choice for

its primitive vectors to be Lx x̂ and L y ŷ, such that R forms a rectangular lattice

R = (mxLx,myL y), where mα = 0 · · ·Mα−1 and Mα ≡ Nα/Lα
2. Note that periodic

boundary conditions in the Landau gauge A(r)=−H yx̂ require the total magnetic

flux through the system to be an integer multiple of 2Φ0Nx. In addition, one mag-

netic unit cell contains a magnetic flux of 2Φ0, i.e. H = 2Φ0/LxL y. We satisfy these

two requirements by choosing Mx = L y, My = Lx.

2This choice yields an oblique vortex lattice, since there are two vortices in each (rectangular)
magnetic unit cell, trying to form a triangular vortex lattice as a self-consistent solution.
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Working with the magnetic Bloch states

Ψk(r)=∑
R

e−ik·R T̂RΨ(r)T̂−1
R (9.9)

allows us to block diagonalize the Hamiltonian

H BdG = 1
MxMy

∑
k

∑
r,r′
Ψ†

k(r)Hk(r,r′)Ψk(r′). (9.10)

The indices k and r from here on are defined in the magnetic Brillouin zone and

magnetic unit cell, respectively, that is

k=
(
2π

mx

LxMx
,2π

my

L yMy

)
, mα = 0 · · ·Mα−1, (9.11a)

r=
(
`x,`y

)
, `α = 0 · · ·Lα−1. (9.11b)

By diagonalizing the matrices Hk of dimension 2LxL y ×2LxL y in Eq. (9.10), we

can compute the eigenstates and eigenenergies of H BdG . These are then used to

calculate ∆i j with Eq. (9.2) closing the self-consistency cycle. Finally, we use the

self-consistent solution ∆i j to calculate the local order parameters of s-, s±- and

dxy-wave symmetry and also the LDOS of the electronic degrees of freedom, as

defined in Eq. (9.7).

9.4 Results

9.4.1 Non-Self-Consistent Approach on Single Band Model

Figure 9.2 shows the near-vortex LDOS calculated by diagonalizing H BdG of

Eq. (9.1) with fixed gap functions as given by Eq. (9.3) on a system of dimension

(Nx, Ny) = (301,301). We choose realistic values of the parameters for the coher-

ence length ξ= 16.4a0 [31, 32], as well as gap values ∆0
s = 3meV for on-site pairing

and ∆0
s± = 1.5meV for NNN pairing [21, 22, 30].
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(a) (b) (c)

(e) (f) (g)

(d) (h)

Figure 9.2: Local density of states near a vortex for the non-self-consistent calcu-
lation with the gap function given by Eq. (9.3). The value N(r,E) has
been normalized such that the maximum value in each map is unity.
(a) shows the LDOS at the lowest bound state energy with on-site pair-
ing with ∆0 = 3meV, and (e) is at higher energy. (b) and (f) are with
NNN pairing with ∆0 = 1.5meV. The left insets in (a),(b),(e) and (f) in-
dicate the local structure of the pairing, and the right insets are LDOS
after gaussian filtering (σ= 3a0) reducing spatial resolution for better
comparison with experiment [8]. (c) and (g) are the near-vortex LDOS
maps observed in Ref. [8]. (d) is the LDOS as a function of energy at
the vortex core for the on-site pairing, Gaussian-filtered in both en-
ergy (σ= 0.15meV) and position (σ= a0). (h) shows the experimental
tunneling spectra from Ref. [8] for comparison.
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We can interpret the vortex bound states in this non-self-consistent BdG cal-

culation as bound states in a potential well given by Eq. (9.3), where only states

around the normal-state Fermi surface constitute the bound states. There are

then two sources of anisotropy: anisotropic, quasi-one-dimensional low-energy

properties of the normal state, and an anisotropic gap, both defined in the mo-

mentum space. The geometric distribution of LDOS will be dominated by one or

the other source of anisotropy at different energies.

At low energies, the normal state properties dominate the distribution of

LDOS (Fig. 9.2a and b). Hence irrespective of pairing structure, the bound state

is located at the center of the potential well. Since the Bloch states making up

this bound state have two main velocities due to the quasi-one-dimensional parts

of the Fermi surface, the bound state mainly extends in these two directions out

of the well, resulting in the rays in Fig. 9.2a and b. The gap is suppressed near

the vortex center, and its anisotropy is of little importance. Hence the flat (quasi-

one-dimensional) parts of the electronic structure in Fig. 9.1a (solid line) dominate

over the small anisotropy of the s± gap (see Fig. 9.1b). For a better comparison

with experiment, we present results of reduced spatial resolution by gaussian fil-

tering (σ= 3a0) in the insets. The low resolution result is consistent with results

of the quasi-classical analysis by Wang et al. [14] and in good agreement with

experiment shown in Fig. 9.2c.

At higher energies on the other hand, the bound state is located away from

the vortex core. The quasi-one-dimensionality of the Fermi surface allows for lo-

calization in one direction and extension in the other. This leads to a square-like

inner ring in the LDOS for both pairings (Fig. 9.2e and f). The difference, how-

ever, results from the anisotropy of the gap function. While the isotropic s-wave
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gap is analogous to a potential that is independent of momentum, the anisotropic

gap is one for which different states around the Fermi surface experience differ-

ent potentials depending on their momenta. With the gap function of s± form, the

quasi-one-dimensional portion of the Fermi surface experiences a stronger trap

potential, leading to a suppression of its contribution to the bound-state wave

function. As a result, the bound state exhibits pronounced isolated segments, ‘hot

spots,’ within the inner ring that point in the Fe-Fe direction, as shown in Fig. 9.2f.

We again gaussian filter the images and show them in the insets. Note the ’hot

spot’ are robust and even more pronounced in the low resolution insets in Fig. 9.2f

in good agreement with the experimental data Fig. 9.2g.

We now turn to the LDOS at the core of the vortex and its particle-hole asym-

metry. This turns out to be largely insensitive to anisotropy of pairing. The

LDOS at the core of the vortex for the on-site pairing shown in Fig 9.2d exhibits

particle-hole asymmetry with the highest peak at negative energy. Such asym-

metry appears in the so-called ‘quantum-limit’ vortex bound state [33], whose

highest LDOS peak is at energy ∆2/2EF above(below) the Fermi energy for an

electron(hole)-like band, where EF is the energy difference between the Fermi en-

ergy and the bottom(top) of the band. The energy of the LDOS peak being 0.05meV

below the Fermi energy is expected given EF = 98meV and ∆ = 3meV within our

input bandstructure. Though similar particle-hole asymmetry has been observed

in Ref. [8] (see Fig. 9.2h) the energy at which the peak was observed suggests that

other hole pockets with larger gap values may be responsible.
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(a) (b) (c)

Figure 9.3: LDOS near a vortex from the non-self-consistent calculation with the
five-band model from Ref. [20] and NNN pairing of ∆0

s± = 15meV, (a)
at the lowest bound state energy, (b) at an energy where the electron-
band contribution dominates, and (c) at an energy where the γ-band
contribution dominates.

9.4.2 Non-Self-Consistent Approach on Five Band Model

Now, we check whether the single-band model is sufficient to describe vortex

bound states within the energy range of interest. A simple insight can be gained

by treating each band independently and estimating the energy of its lowest bound

state to be ∆2/2EF following Caroli et al. [33] for the gap size ∆ and the Fermi

energy EF specific to each band. Using measured Fermi energies and gap param-

eters [10, 21, 22, 30], we estimate the energies of the lowest bound states of the γ

pocket and the electron pockets to be of the same order. However, the lowest bound

state energies of the two smaller hole pockets are an order of magnitude larger.

This rough estimate implies that the LDOS within the energy below 1meV should

be dominated by bound states coming from the γ band and those coming from the

two electron bands. If indeed each bound state comes from a single band, we ex-

pect to find bound states with LDOS distribution resembling what we predicted

in section 4.1.
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For concreteness, we carry out a non-self-consistent BdG calculation using the

band structure given by Ref. [20] with five bands. Unfortunately, the γ-pocket

Fermi surface of this band structure (dashed line in Fig. 9.1a) is far more isotropic

compared to what has been measured in Ref. [30] and guided the band structure

we use in the rest of this paper. Hence we do not expect as pronounced ‘ray’ fea-

tures at low energies compared to what is shown in Fig. 9.2 from our (single-band)

calculations and experiment. Another issue we face with a five-band calculation

is the limitation on the accessible system size. For a system of size (101,101),

we impose NNN pairing that is trivial in the orbital space having magnitude

∆s± = 15meV in order to fit the vortex bound states within the system and mini-

mize the boundary effect. As in the single-band calculation, we create a vortex at

the center of the form given in Eq. (9.3), however with ξ= 10a0. Figure 9.3 shows

the resulting LDOS at different bound state energies. At the lowest energy there

is no clear sign of ‘rays’ though a small amount of anisotropy is still present, as ex-

pected from the smaller γ-band anisotropy (see Fig. 9.3a). Figures 9.3b and c show

typical LDOS images of vortex bound states at higher energies. Figure 9.3b looks

very different from the LDOS distribution obtained in section 4.1 and we hence

assign the corresponding bound state to the electron pockets. However, the LDOS

shown in Fig. 9.3c shows the same ‘hot spots’ as obtained within our single-band

calculation and shown in Fig. 9.2f. Focussing on the γ band should thus suffice to

capture the features observed in Ref. [8].

9.4.3 Self-Consistent Approach

Figure 9.4 shows the results from the (single-band) self-consistent calculation.

We compare two pairing interactions – on-site attraction U = −0.35eV, and
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(a) (b)

(c) (d)

Figure 9.4: Local density of states near a vortex within our self-consistent calcula-
tion. Again, N(r,E) is normalized within each image. (a) is the LDOS
at the lowest bound state energy with on-site attraction U =−0.35eV,
and (c) is at higher energy. (b) and (d) are with NNN attraction
V ′ = −0.3eV. The inset in each figure represents the local attractive
interaction in the singlet pairing channel.

NNN attraction V ′ = −0.3eV – for a system with magnetic unit cell of dimen-

sions (Lx,L y) = (19,38). This corresponds to a full lattice size of (Nx, Ny) =
(38×19,19×38). In zero field, the two cases lead to a uniform superconducting gap

of ∆0
s = 27meV and ∆0

s± = 10meV, respectively. We have chosen U and V ′ such that

the coherence length ξ∝∆−1 is small compared to the inter-vortex spacing. This

allows us to focus on a nearly isolated vortex within the computationally feasible

size of the magnetic unit cell. Although the resulting gap values are an order of

magnitude larger than what is known experimentally, this should not affect the

validity of the results in a qualitative manner. Both at low energy and at higher

125



(a) (b) (c)

Figure 9.5: Spatial distribution of different symmetry components of order param-
eters. (a) ∆s(r) for on-site attraction U = −0.35eV. (b) ∆s±(r) and (c)
∆dxy

(r) for NNN pairing V ′ = −0.3eV. The values have been normal-
ized by the value of the dominant order parameter in the absence of
magnetic field for each case: ∆0

s for (a), and ∆0
s± for (b), (c). The equal-

amplitude contours in red go from 0.825 for the innermost to 0.925
for the outermost contours (after normalization) with equal intervals
between the contours in between. The insets again indicate the struc-
ture of the local order parameter. Note that the color-scale for ∆dxy

(r)
is much smaller than for ∆s(r).

energy close to the gap value, we observe features that qualitatively agree with

the results obtained in the previous section.

The self-consistent calculation also allows us to study the local order param-

eters of a given structure near a vortex. Unlike for the on-site attraction, where

∆s(r) is the only allowed gap function, order parameters of different symmetries

can mix near a vortex for NNN attraction. A near-vortex map of ∆s(r) for on-site

pairing shown in Fig. 9.5a indeed shows almost isotropic healing of the order pa-

rameter away from the vortex core. However, for the NNN attraction which leads

to uniform s±-wave pairing in zero-field, the secondary order parameter ∆dxy
(r) is

induced near the vortex. Coupling between this secondary order parameter and

the primary ∆s±(r) leads to a strong angular variation of both components as can

be seen in Fig. 9.5b and c.
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To gain further insight into the admixing of a secondary order parameter near

a vortex for the anisotropic pairing, we analyze the Ginzburg-Landau free-energy

density. The free-energy density for s-wave and d-wave order parameters reads

f =αs|s|2 +αd|d|2 +β1|s|4 +β2|d|4 +β3|s|2|d|2

+β4(s∗2d2 +c.c.)+γs|~Ds|2 +γd|~Dd|2

+γv(DxsD yd∗+D ysDxd∗+c.c.), (9.12)

where s and d are shorthands for s(r) and d(r), the order-parameter fields for the

s± and dxy gaps, respectively, and D i = ∂i − ieA i is the covariant derivative. The

fields s(r) and d(r) can be thought of as ∆s/s±(r) and ∆dxy
(r) after coarse graining.

This type of admixing near a vortex has previously been studied in the context

of cuprates, leading to the prediction of a fourfold-anisotropic order parameter

around a vortex [15–18]3. As the large halo around vortices in cuprates [34] hin-

dered the observation of this admixing, LiFeAs presents an opportunity for this

observation.

The spatial variation of the secondary component dxy in Fig. 9.5c is largely

due to the derivative coupling, the term proportional to γv in Eq. (9.12). This

intermixing term is expected to be large when the s-wave order parameter is of

s± type, since the same NNN pairing interaction is reponsible for both s-wave and

d-wave order parameter. For |s|À |d| and |~Ds|À |~Dd| the spatial structure of the

dxy component is determined largely by the structure of the s-wave component.

Minimizing Eq. (9.12) with respect to d(r) and keeping only terms up to linear

order in d(r), we find

−γd
~D2d+αdd+β3|s|2d+β4s2d∗ = γv(DxD y +D yDx)s. (9.13)

3The microscopic model we consider is related to the single-band model of cuprates through
rotation by 45◦, the roles played by s-wave and d-wave order parameters are reversed and our
d-wave order parameter is of dxy form rather than dx2−y2 .
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Hence, the curvature in the leading s-wave component will induce the secondary

(dxy) component. Now, consider a single isolated vortex. As s(r) is recovered at

the length scale of the coherence length ξ away from the core of the vortex, we

expect a large d(r) due to coupling to the large curvature of s(r) at this distance.

Since ξ = ħvF /π∆ ∼ 3.0a0 for the uniform gap value with V ′ = −0.3eV, this is in

agreement with the positions of the maxima of d(r) in Fig. 9.5c as a function of |r|
setting the vortex core at the origin. We can also explain the angular variation and

the form of the anisotropy of d(r) in this framework. If we assume s(r) = f (r)eiθ

with a slowly changing f (r) and the azimuthal angle θ measured from the Fe-Fe

direction, we find from Eq. (9.13)

d(r)∼ ∂x∂ys(r)∼ e−iθ(1+3e4iθ), (9.14)

ignoring the phase due to the magnetic field. The structure of the derivative hence

gives rise to a four-fold anisotropy, which explains the fact that |d(r)| is maximum

in the Fe-Fe direction, while it is suppressed along the 45◦ direction. Coupling to

d(r) gives then in turn cause for the four-fold anisotropy in s(r).

9.5 Conclusion

We have contrasted the effects of anisotropic s±-wave (NNN) pairing and isotropic

s-wave (on-site) pairing on the near-vortex local density of states in LiFeAs

by solving Bogoliubov-de Gennes equations both non-self-consistently and self-

consistently. We have found qualitative changes in the geometric distribution

of the density of states as a function of energy. At low energies, the anisotropy

of the vortex bound state, and hence the LDOS, is determined by the normal

state low energy electronic structure, independent of the gap structure. Different
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pairing structures, however, lead to qualitatively different LDOS distributions at

higher energies: While the isotropic s-wave shows a square-like feature of roughly

equal intensity, four ‘hot spots’ develop in the case of an (anisotropic) s±-wave

gap. Indeed, our results for the latter case qualitatively agree with recent experi-

ments [8].

From the self-consistent treatment we have further found a difference in the

recovery of the order parameter away from the vortex core: a pronounced angu-

lar dependence of the s±-wave gap compared to isotropic behavior for the s-wave

gap. Employing a Ginzburg-Landau analysis, we have explained this difference

through admixing of a secondary order parameter supported by the NNN interac-

tion. Note that such intermixing is negligible for an s-wave pairing with a domi-

nant on-site pairing interaction, as no other pairing instabilities are nearby. For

the NNN interaction, however, s±- and dxy-wave instabilities have comparable

transition temperatures. Detection of the anisotropy or even the secondary order

parameter would be a strong proof of the unconventional nature of the pairing.

In this work, we focused on the γ band with interest in low energy properties,

as this is the band with the smallest gap [21, 22]. Hence, for features at energies

less than the gap scale, we expect our calculation to capture salient features of

in-field STS experiments. The comparison between the calculated LDOS for the

single- and the five-band models and the results in Ref. [8] supports this conjec-

ture.

In closing we note that our calculation captures Friedel-like oscillations, fre-

quently referred to as quasi-particle interference (QPI), due to vortices. QPI in the

presence of vortices was successfully used to access phase information with STS in

cuprates [35]. Recent in-field QPI experiments on FeSe have been interpreted to
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be consistent with an s± scenario when a vortex is treated as a magnetic scatterer

for BdG quasiparticles [4]. However, a vortex is at once a point of gap suppression,

a point with magnetic flux, and a point around which the order-parameter phase

winds. While we treated vortices faithfully in the self-consistent calculation, we

could not investigate effects of inter-pocket sign change as we only considered one

pocket. An extension of the present work with the full band structure would be

necessary to work out what to expect for different order-parameter possibilities,

especially how the phase difference between different pockets affects in-field QPI.
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APPENDIX A

DYNAMICAL SUSCEPTIBILITY AT NON-ZERO TEMPERATURE

Every spectroscopy is a measurement of response to time-dependent pertur-

bation. Here, two important time scales exist: First is the period, or inverse fre-

quency T ∼ 1/ω of the probing signal, which is a measure of how fast the pertur-

bation varies. Second is the thermal equilibration time τ, over which the system

relaxes to thermal equilibrium. Two limits exist that are easy to approach: First

is when ωτ¿ 1. In this limit, the system reaches thermal equilibrium faster than

the time scale over which the measurement is done. It is therefore safe to assume

that what is measured at time t is its “static” expectation value in a system with

the perturbation at time t. If we let Â and Φ(t) represent the observable and the

external perturbation, this relation can be written as

〈Â〉(t)u 1

Tr
(
e−βĤ[Φ(t)]

)Tr
(
e−βĤ[Φ(t)] Â

)
(A.1)

In the opposite limit ωτÀ 1, on the other hand, the effect of thermalization dur-

ing measurement can be ignored. The time-dependent response of the system at

non-zero temperature therefore reduces to an ensemble average of the response of

the eigenstates of non-perturbed Hamiltonian. Especially in the limit where the

perturbation is infinitesimal, the response can be calculated as dynamical sus-

ceptibility within linear response theory. In this chapter, we derive dynamical

susceptibility in a system with non-zero temperature.

A.1 Linear Response Theory at Non-zero Temperature

Let us consider a time-dependent Hmiltonian Ĥ(t) = Ĥ0 + Ĥ1(t), where Ĥ0 is the

non-perturbed Hamiltonian, and Ĥ1(t) is perturbation which is slowly turned on
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(Ĥ1(−∞) = 0). Then at time t =−∞, the density matrix ρ̂ = ρ̂0 ≡ e−βĤ0 /Z. Writing

the time-dependent density matrix as the sum of the non-perturbed piece and a

perturbed piece

ρ̂(t)= ρ̂0 + ρ̂1(t). (A.2)

The equation of motion of ρ

i
dρ̂
dt

= [Ĥ, ρ̂] (A.3)

can be rewritten as

i
dρ̂1

dt
= [Ĥ0, ρ̂1]+ [Ĥ1, ρ̂0]+O(Ĥ2

1) (A.4)

Integration of the above equation leads to

ρ̂1(t)= ρ̂1(−∞)− ie−iĤ0t

{∫ t

−∞
dt′ eiĤ0t′[Ĥ1(t′), ρ̂0]e−iĤ0t′

}
eiĤ0t. (A.5)

Expectation value of an observable Â at time t is therefore

A(t)= 〈Â〉(t)= 〈Â〉0 − iTr

e−iĤ0t

[∫ t

−∞
dt′eiĤ0t′[Ĥ1(t′), ρ̂0]e−iĤ0t′

]
eiĤ0t Â

 (A.6)

where 〈〉0 is the thermal average in the unperturbed system:

〈Â〉0 ≡
Tr

[
Âe−βĤ0

]
Tr

[
e−βĤ0

] . (A.7)

Defining Ô(I)(t)≡ eiĤ0tÔe−iĤ0t, Eq. (A.6) can be written compactly as

A(t)= 〈Â〉0 − i
∫ t

−∞
dt′

〈[
Â(I)(t), Ĥ(I)

1 (t′)
]〉

0
(A.8)

Now let us consider perturbation of the following form

Ĥ1(t)=−B̂ ·Φ(t). (A.9)
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Here, B̂ and Φ(t) can be multi-component objects. In the linear response regime,

however, each component can be treated independently. Assuming 〈Â〉0 = 0 for

simplicty, we can write

A(t)=
∫ ∞

−∞
dt′ χR

AB(t, t′)Φ(t′) (A.10)

where χR
AB is the retarded susceptibility

χR
AB(t, t′)≡ iΘ(t− t′)

〈[
Â(I)(t), B̂(I)(t′)

]〉
0

(A.11)

A.2 Spectral Representation

Often the measurement is presented in frequency.

For notational convenience we suppress superscript (I) and subscript 0 as well

as the hats (ˆ) for operators. The retarded susceptibility at frequency ω is defined

as

χR
AB(ω)= i

∫ ∞

∞
dtΘ(t)〈[A(t),B(0)]〉 (A.12)

Expanding this out,

χR
AB(ω)=

∫ ∞

0
dt Tr

(
ρ0eiH0t Ae−iH0tB−ρ0BeiH0t Ae−iH0t

)
(A.13)

Trace of the first term is

∑
m

〈
m

∣∣∣ρ0eiH0t Ae−iH0tB
∣∣∣m〉

= 1
Z

∑
m,n

e−βEm eiEm te−iEn t〈m|A|n〉〈n|B|m〉 (A.14)

where |m〉 and Em are an eigenstate of H0 and its energy. After similar expan-

sion of the second term, we arrive at the following expression for the dynamical

susceptibility

χR
AB(ω)= 1

Z

∑
m,n

(
e−βEm − e−βEn

)
〈m|A|n〉〈n|B|m〉

(
i
∫ ∞

0
dt ei(ω+Em−En)t

)
(A.15)
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For the convergence of the last integral, we add a small decaying factor

i
∫ ∞

0
dt ei(ω+Em−En+iη)t =− 1

ω+ iη+Em −En
. (A.16)

Finally we arrive at the spectral representation of dynamical susceptibility

χR
AB(ω)= 1

Z

∑
m,n

(
e−βEn − e−βEm

) 〈m|A|n〉〈n|B|m〉
ω+ iη+Em −En

(A.17)

At non-zero temperature, it is convenient to consider imaginary time evolution

instead of real time evolution. Known as Matsubara formalism, working with

imaginary time not only handles singularities in a more natural way (without

explicitly introducing η as in the previous section), but also provides a way to

extract dynamical susceptibilities from numerical simulations of thermal systems.

Defining the “imaginary time-evolved operator”

A(τ)≡ eH0τAe−H0τ (A.18)

and imaginary time-ordered susceptibility

χAB(τ)= 〈TτA(τ)B(0)〉 (A.19)

where Tτ is imaginary time-ordering operator. Susceptiblity at Matsubara fre-

quency iωn is

χAB(iωn)=
∫ β

0
dτ eiωnτχAB(τ)

= 1
Z

∑
m,n

(
e−βEn − e−βEm

) 〈m|A|n〉〈n|B|m〉
iωn +Em −En

(A.20)

From this, we see that the Matsubara susceptibility is related to retared suscepti-

bility by analytic continuation:

χR
AB(ω)= χAB(iωn)

∣∣∣
iωn→ω

(A.21)
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