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Abstract

We show the properties of a class of oriented matroids that
properly generalizes the class of oriented matroids that can be
represented by matrices of the form (1,-A), where A is a real
nxn symmetric matrix and I is the nxn identity matrix. Several
results from linear algebra about positive definiteness, symmetry,
and eigenvalues are shown to have natural generalizations in the
context of oriented matroids. The relationships among the oriented
matroid generalizations of the linear algebraic concepts are seen to
be analogous to the relationships among the original linear algebraic

concepts.



I. Introduction

Llet E be a finite set. A signed set in E is a pair X = (X+,X')

with X' < E, X" < E, and X" o X~ = 0. The opposite of X is the

signed set -X = (X',X+), and the set underlying X is X = "o,

|><

A signed set X contains a signed set Y, Y < X, if al cX,Y X,
and X contains an unsigned set Z if Z < X.
An oriented matroid M is a pair (E,C), where E is a finite set

and ¢ is a collection of signed sets in E, called circuits, satisfying

(p.9) ¢ C
C1 CeC=>-CeC

C1’C2 e C and ﬁiga:> C-l = Cz or C-] = -CZ.

C],C2 e Cand e ¢ (CT n Cé) u (C{ n C;) imply that there exists
C

2 ; + + + - ~ -
Cye Cwith € e (€7 u C) \ L}, Cye (€ u CH)n fel.

We write C = C(M).

The collection C = {C: Ce C} of underlying sets of circuits is
the family of circuits of an (unoriented) matroid M on E, called
the underlying matroid of M. We will assume that the reader is
familiar with the basic definitions and properties of matroids
(see [12]). The independent and dependent sets, bases, loops and
coloops, and rank of M are those of the underlying matroid M.

A signed set X in E has a conformal decomposition into circuits

of an oriented matroid if xt = CT U «.. U C; and X~ = CE U oo U C% for
circuits C],...,Cm in C(M). We call signed sets having conformal
decomposition into circuits of M cycles of M. We write K(M) for the

set of cycles of M.



The main motivation for oriented matroid theory comes from the
case when the cycles of an oriented matroid are signed supports of
vectors in a subspace of R". Let V be a subspace ofiRn, and let

E = {el,...,en}' For every x ¢ V, define a signed set KX =

({ei:xi > 0}, {ei: X; < 0}), called the signed support of x. Then

the set'{KX: x ¢ V} is the set of cycles of an oriented matroid. If

V is the null space of an mxn matrix A, we call this oriented matroid
the oriented matroid represented by A, written M(A). Thus M(A)
captures sign properties of vectors in the null space of A, but ignores
their numerical values.

Oriented matroids give an abstract combinatorial setting for
studying the properties of matrices that represent them. On the other
hand, since there are oriented matroids that cannot be represented by
any matrix, the results obtained properly generalize those of linear
algebra. Previously, notions of arrangements of hyperplanes and
topological extensions, face lattices and polarity of polyhedra,
convexity, and signs of determinants of matrices have been studied in
the context of oriented matroids [1], [3], [6], [7], [8]. Linear
and quadratic programming have been shown to have natural generaliza-
tions in the context of oriented matroids, which capture many of the
important features of these problems [2], [4], [5], [11]. In the
study of quadratic programming for oriented matroids, one would like
to have generalizations of the properties of quadratic forms
associated with symmetric matrices. This is the subject of the

present paper.



We would like to have oriented matroid generalizations of the
notions of symmetry, positive (semi)definiteness, and eigenvalues.
These generalizations should ideally satisfy many properties that
the original linear algebraic notions satisfy. In particular:

1. Oriented matroids represented by matrices of the form (1,-A),
where A is square and symmetric positive (semi)definite are
symmetric and positive (semi)definite. Note that y = Ax iff (y,x)
is in the null space of (I,-A). Therefore, to study the sign proper-
ties of y and x, we consider the oriented matroid M(I,-A).

2. Certain minors of symmetric (positive (semi)definite)
oriented matroids, corresponding to principal submatrices in the
representable case, are symmetric (positive (semi)definite)
oriented matroids.

3. The inverse of a symmetric (positive definite) oriented
matroid is symmetric (positive definite) iff it exists.

4. A symmetric positive semidefinite oriented matroid is positive
definite iff it is nonsingular.

5. A symmetric positive definite oriented matroid has a positive
eigencycle, and a symmetric positive semidefinite oriented matroid
has a positive eigencycle iff it is not representable by the matrix
(1,0).

6. A symmetric oriented matroid is positive semidefinite iff

it has no negative eigencycles.

These properties will all be shown to hold for natural definitions of

the concepts for oriented matroids.



11. Preliminaries

Let M be an oriented matroid on a set E. If M is represented
by a matrix A, then M*, the oriented matroid that has as its cycles
the signed supports of vectors in the row space of A, is called the
dual of M. The null space of A and the row space of A are orthogonal

complements, so M and M* must satisfy the following orthogonality

property:
(L) For any cycles K of M and L of M*

Kol o o) roiff (KFaL7) v (K alh)#0.
In general, for every oriented matroid M on E, there is a unique
oriented matroid M* on E such that the cycles of M* are all the signed
sets on E that satisfy (1) with respect to all the cycles of M. M*
is the dual of M (see [3]).

Let M be an oriented matroid on E with K = K(M) its set of
cycles. Let F and G be disjoint subsets of E. Let K(F) =
((KNF) u (K nF)s (K\F) u (K" F)): K e K} Then K(F) is the
family of cycles of an oriented matroid; we say that oriented matroid

is obtained by reversing signs on F. For a signed set X on E, and any

subset H of E, let the signed set X\H be (X+\H, X"\H). Let K\F/G denote
the collection of signed sets {K\G: K ¢ K, Kn F = 0}. Then K\F/G

is the set of cycles of an oriented matroid M\F/G on E\N(F u G)

[3, p. 114]. For the sake of brevity, M\F (M/G) is written for

M\F/@ (M\@/G). We say M\F/G is obtained from M by deleting F and

contracting G. If M is represented by a matrix A, then M\F/G is

represented by the matrix A', obtained from A by deleting the



columns corresponding to F, then pivoting on successive nonzero columns
corresponding to G, followed by deleting the pivot row and column,
and finally deleting zero columns corresponding to G.
If B is a base of M and e ¢ E\B, then there is exactly one
circuit C of M with e « C* and C c B u {e}. It is called the

fundamental circuit C(B,e) associated with B and e. For every base

B of M, define the B-tableau to be the set of fundamental circuits
of M associated with e; and B for e, ¢ B.

If K],K2 are two cycles of an oriented matroid M, then
+

_ +o - - - . .
K Ky = (K] u (KZ\Kl)’ Ky v (KZ\KI)) e K(M). This operator o,

1
Bland's composition operator, corresponds in the representable case

]-Pexz for some suitably small

e > 0, where K] and K2 are the signed supports of x1 and x2,

to taking the signed support of x

respectively.
Henceforth, we make the following blanket assumption:
M is an oriented matroid on a set E =S u T, where
S = {S]""’Sn}’ T= {t],.,.,tn}, SnT=290, and S is a
base of M. Such an oriented matroid is called square.
The particular ordering of S and T is significant. We define the
switch of a signed set X on E to be the signed set swX =

({s;: ty e X Ju {t;: sy e X°1),

+
i€ X1, {Si’ t.

+
i€ X'} u {ti' S.

i
obtained by reversing signs on T and then interchanging occurrences
of S+ and ti in X for all i = 1,...,n. The switch of an oriented

matroid, swM, is the matroid that has as its cycles the switches of

the cycles of M. The (S,T)-transpose of M, denoted MET’ is the



switch of M*. This is motivated by observing that if M is

represented by the matrix (1,-A), where S corresponds to the columns

of I and T to the columns of -A, then M* is represented by (At,I) and
t t

MST by (I,"'A ).

Definition. A square oriented matroid M is symmetric (with respect

. _ .t
to Sand T) iff M = MST‘

It is possible to replace this indirect definition with another

one that does not explicitly involve the dual oriented matroid.

Theorem II.1. A square oriented matroid M is symmetric (with respect

to S and T) iff the following property holds:
(L)': For any two cycles K] and K, of K(M), (I) holds iff (II) holds.

2
(I) (11)

There exists an i such that one There exists a j such that one
of the cases below holds of the cases below holds

S; e KT s b€ Ké 55 < KT sty e KZ

s; <K s by e K s e Ky sty e K

to K] .5 K tng‘]",sjeKé

t; cKyis sy e Ky ty < Ky > S5 < KZ

Proof. The condition (L)' is equivalent to the requirement that
M and swM satisfy (1). If M and swM satisfy (1), then the cycles of
swM are cycles of M*, and independent sets of M* are independent

in swM. In particular, bases of M* are bases of swM, since both



oriented matroids are of rank n. M and swM have the same number

of bases, as do M and M*. Therefore, the bases of M* are exactly
the bases of swM, and M* and swM have the same underlying matroid.
From [ 37, we then get that swM = M*, implying that M = swM* = MET.

Clearly, if M = MET, then swM = M*, and thus M and swM satisfy (1). O

The following theorem is an easy application of (L)'. We call a

subset F of E=S u T, where S = {51""’Sn}’ T= {t],...,tn},

SnT=p, complementary iff |F n {s;,t;}] <1 fori=1,....n.

Theorem 1I.2. Let B be a complementary base of M, a symmetric

oriented matroid. Then the following hold:

+ . +
a) If Si’sj ¢ B, then sj ¢ C(B,ti) iff S; < C(B,tj) , and

S. ¢ C(B,ti) iff Si € C(B,tj) .

J
+ . - .
b) If Si’tj ¢ B, then S; ¢ C(B,sj) iff tj ¢ C(Bgtj) , and
- +
S € C(B,Sj) iff tj € C(B,ti) .
+ . +
c) If ti’tj ¢ B, then ti ¢ C(B,sj) iff tj € C(B,si) , and
t. e« C(B,s.)” iff t. ¢ C(B,s )

1 J J

Corollary 1I1.2.1. The S-tableau of a symmetric oriented matroid is

symmetric:

+ . + - -
sy € C(S,ti) iff s, e C(S,tj) and S5 € C(S,ti) iff s; e C(S,tj) .

This is a special case of Theorem II.2, with B = S. When M

is represented by (I,-A), with A symmetric, the circuits of the S-



tableau are the signed sets corresponding to the rows of the matrix

t

(A“,1). This corollary, then, generalizes the property that aij and

aji agree in sign, for all i,J.

If T is a base of a square oriented matroid M, then we will
call M nonsingular. The observation that the matrices (I,-A) and
(~A”],I) have the same null spaces, for nonsingular A, prompts the
following definition. Let M be a nonsingular oriented matroid.
The (S,T) inverse of M, Mé}, is the oriented matroid obtained from

M by interchanging the labels S. and ti’ for all 1.

Proposition II1.3. Let M be a square nonsingular oriented matroid.

Then Mg% is symmetric iff M is.

Proof. It is easily seen that Ng} satisfies () iff M does, and

since T is a base of M, we have that S is a base of M;}. 0
Principal submatrices of symmetric oriented matrices are also
symmetric. It is therefore natural to expect that the corresponding

minors of symmetric oriented matroids would stay symmetric.

Theorem II1.4. Let M be a symmetric oriented matroid. For any 1,

1<ic<n, M\ti/si is a symmetric oriented matroid with respect to

S\Si and T\ti’ and if S; e Q(S,ti), then so is M\Si/ti‘

Proof. First, note that S is not a loop and ti is not a coloop, so

rank (M\t,/s.) = rank(M) - 1. The existence of a circuit of M\ts /s,



contained in S\sj would imply the existence of a circuit of M in S,
which is impossible. Therefore, S\Si is a base of M\ti/si' Let

Kj’ j = 1,2 be any two cycles of M\ti/si‘ There exist two cycles Kj
of M such that Kj\si = Kooty / Kj. If, say, alternative I of (i)'

J

holds for K1,K2 of M\ti/sj, then it must also hold for K! and K..

1 2
Thus alternative II holds for Ki and Ké and consequently for K]’KZ’
since ti é K{,Ké. Thus M\ti/si is symmetric with respect to S\Si

and T\tia If S; € gﬁS,ti), then s cannot be a coloop and ti

cannot be a loop of M, so rank(M\si/ti) will be rank(M) - 1. The
only circuit of M contained in S u tj is C(S, ti)’ which contains S;-

Thus S\Si is a base of M\Si/ti‘ The same argument as above proves that

M\Si/ti is symmetric with respect to S\si and T\ti‘ 0

A1l oriented matroids that can be represented by matrices of the
form (I,-A), where A is symmetric, are symmetric. The class of
symmetric oriented matroids is much larger than this, though. As an
example, we give a symmetric orientation of the nonrepresentable Vamos

Matroid. Consider the oriented matroid represented by the matrix

o O O
o
ek

The circuits of this oriented matroid are those given below and their

negatives.




|
|
|
|
|
|
|
|

1256 13567 12367

rd
[a%]
(6]
~l
PO §
N
DS
(o))
-~
w
>
(&2}
o
(O8]
(8]
(o2}
~J
(o]

!
|
|

1678 13568 12368 12358 12468 34568 23678
2345 3478 13457 13578 12457 23467 24567
2578 1386 13458 12378 12458 23468 24568

Here a circuit ({1,6}, {2,5}) is written 1256. A symmetric
orientation of the Vamos matroid is then obtained by replacing

the circuit 2578 with the circuits 12578, 23578, 25678, and 24578.
The result is an orientation that is symmetric with respect to

S =(1,2,3,4), T = (5,6,7,8). By relabeling the elements
(1,2,3,4,5,6,7,8) as (1,3,6,4,5,2,7,8), one can see that the under-
lying matroid is the same as that given in [3, p. 111]. For a

more detailed explanation, see [9].
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I11. Positive Definiteness and Eigenvalues

I11.1 Positive definiteness

A11 of the oriented matroids in this section will be symmetric
unless otherwise noted. The definition of positive definiteness in
oriented matroids given below, however, applies to any square oriented
matroid. An oriented matroid M, represented by (I,-A) where A is
symmetric, will be positive (semi)definite iff A is. The
correspondence is not as direct when A is not symmetric. For example,

the same symmetric oriented matroid is represented by both

T 0 -5 -1 1 0 -2 -1
(0 1 -4 -]) (O 1 -1 -2

definite and (Z }) is not.

and ), even though (? ;) is positive
If a vector space V is the null space of an nx2n matrix (I,-A),
then V is the space of solutions (y,x) to the equation (I,-A)(y,x) =0,

which is y = Ax.  The matrix A is positive definite iff xt

y > 0 for
all nonzero (y,x) ¢ V, and positive semidefinite iff xty > 0 for all

(y,x) e V.

Definitions. A cycle K of a symmetric oriented matroid M is called

sign reversing if {s.,t.} ¢ k' and {s.,t.} ¢ K~ for every i. K is
i*ri’ & i?it &

called strictly sign reversing if, in addition, S; € K+, ti e K or

Sy € K™, ti € K+ for some i. M is called positive definite if it has

no sign reversing cycles. M is called positive semidefinite if it

has no strictly sign reversing cycles.
Note that if M is represented by (I1,-A), then a sign reversing

cycle implies the existence of a vector (y,x) in the null space of (1,-A)
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such that yixiﬁ‘o for all i. A strictly sign reversing cycle implies that,
1n addition, yixi< 0 for some i. Thus, if A is positive (semi)definite, then
M is positive (semi) definite. The converse holds when A is symmetric.

If a symmetric A is not positive (semi)definite, then it has an

eigenvector x corresponding to a nonpositive (negative) eigenvalue.

The signed support of the vector (Ax,x) will then be a (strictly)

sign reversing cycle of M.

Lemma III.1.1. If M is a symmetric positive semidefinite oriented

matroid, then s, f C(s,t.) implies that S ¢ C(S,t;) for all j, so that

ti is a loop.

Proof. Suppose S € C(S,ti)+ and s £ Q(S,ti) for some i,j. Then

S5 € C(S,tj)+ by the symmetry of the S-tableau. Hence K = C(S,ti) o
- +

-C(S,tj) has {Si’tj} < K, {Sj’ti} < K, and {s,,t, } £ K for all other

k. Then K is strictly sign reversing, contradicting the assumption

that M is positive semidefinite. A strictly sign reversing cycle

can be constructed in an analogous way if 55 € C(S,ti)’ for some j. [

Corollary I11.1.2. Let Mbe a symmetric, positive semidefinite, non-

singular oriented matroid. Then s, < Q(S,ti) and t. < Q(T,si) for all i.

Proof. If S5 ¢ Q(S,ti) for some i, then t& is a loop, contradicting the
assumption that T is a base. If M is nonsingular, it is immediate

that Mg} is a symmetric positive semidefinite oriented matroid. Thus,

if t, ¢ QﬁT,si) in M, then S ; Q(S,ti) in Mg}, which is impossible. [
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Lemma III.1.3. If M is a positive (semi)definite symmetric oriented

matroid, then M\ti/si is a positive (semi)definite symmetric
oriented matroid for all i, and if S; € QﬁS,ti), then M\Si/ti is

a positive (semi)definite symmetric oriented matroid.

Proof. By Theorem II.2.1, Mt./s. is a symmetric oriented matroid

for any i, and if S; € Q(S,ti), then M\Si/ti is a symmetric oriented
matroid. Suppose that M\t/si has a (strictly) sign reversing cycle
K; then this cycle, together with a possibile additional element

s;» 1s a (strictly) sign reversing cycle of M. The same argument

applies to (strictly) sign reversing cycles of M\Si/ti' 0

Theorem II1.1.4. A positive semidefinite oriented matroid is positive

definite iff it is nonsingular.

Proof. One implication is trivial. If M has a circuit C contained
in T, then {Si’ti} ¢ C for all i, so C is a sign reversing cycle.
The opposite implication is proved by induction on |S|. Suppose
that Theorem III.1.4 is true for symmetric oriented matroids with
|S| < n-1. Suppose also that M is a nonsingular symmetric positive
semidefinite oriented matroid with |S| = n. If M is not positive
definite, then there exists a nonempty cycle K of M such that
{Si’ti} ¢ K for all i. T is a base of M, so there is an i such that

ti ¢/ K. The oriented matroid M\ti/si is symmetric and positive
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semidefinite, by Lemma III.1.3. T is a base of M, and by Corollary
I11.1.2, we have ti € QﬁT,si). Therefore, there can be no circuit
of M\ti/si in T\ti’ o) T\ti is a base of M\ti/si' By the induction
hypothesis, M\t./s; is positive definite. However, K £ 1s:1,

since S is a base of M, so K\{Si’ti} is a nonempty cycle of

M\ti/si' Moreover, K\{Si’ti} is sign reversing. Thus we have a
contradiction. To establish the basis for the induction, note

that there are three symmetric oriented matroids with |S| = 1. The
oriented matroid represented by (1,0) is positive semidefinite,
singular, and not positive definite. M(1,-1) is both positive definite
and positive semidefinite, and it is nonsingular. M(1,1) is neither

positive definite nor positive semidefinite.

From this result we can also conclude that if M is a symmetric
nonsingular oriented matroid, then M is positive definite iff Mg}
is positive definite.

The theorem and lemmas from this section correspond to well known
theorems about symmetric matrices. If A is a positive semidefinite

symmetric matrix andkaii = 0 for some i, then a.. = = 0 for all

ij = %
5 (Lemma I1II.1.1). If A is positive definite, then so is A™', and
the diagonal elements of both A and A°1 are positive (Lemma III1.1.2).
Deleting row i and column i from a symmetric positive (semi)
definite matrix A yields a symmetric positive (semi)definite matrix,

and pivoting on a nonzero diagonal element of A followed by deleting

the pivot row and column yields another symmetric positive (semi)
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definite matrix (Lemma III.1.3). Finally, a symmetric positive
(semi)definite matrix is positive definite iff it is nonsingular

(Theorem I11.1.4).

I1I1.2 Eigencycles

Let A be a real nxn matrix. A real number X is an eigenvalue

i

of A iff there is a nonzero X « R" such that Ax = Ax, or equivalently,

]

iff there is a nonzero x such that (I,-A)(Ax,x) = 0. This fact
motivates the following definitions. Let M be an oriented matroid
onE=SuT,S-= {S]""’Sn}’ T= {t1""’tn}’ S a base of M.

A nonempty cycle K of M is called a positive eigencycle of M iff we

have Si € K+<:> ti € K+ and S € K <=> ti e K for all i. K is

called a negative eigencycle iff we have S; € K ti ¢ K and

5; € K <= t; € K*. K is a zero eigencycle iff K < T. A positive

(negative, zero) eigencycle K will be called a minimal eigencycle

if there is no positive (negative, zero) eigencycle K' contained in
K and different from it. In the representable case, where M =
M(I,-A), if (y,x) is in the null space of (I,-A), x must have the same
signed support as y for x to be a positive eigenvector. This is,
of course, not a sufficient condition. Consider, for example, the
matrix

19 10 4

A={ 10 10 -14
4 -14 7

The eigenvectors of this matrix are (1,-2,-2), (-2,1,-2), and (-2,-2,1),

corresponding to the eigenvalues -9, +18, and +27 respectively. The
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vector (52,16,1,2,1,1) is in the null space of (I,-A). Thus
({51,32,53,t1,t2,t3},ﬂ) is a positive eigencycle of M(I,-A). There
are, however, no eigenvectors of A that are positive on all
coordinates. These qualifications must be kept in mind when one uses

the term eigencycle.

Theorem II1.2.1. If M is a symmetric positive definite oriented

matroid, then it has a positive eigencycle.

Proof. Consider the fundamental circuit C(S,ti). M is positive
definite, so for each i, s, € C(S,ti)+ (otherwise C(S,ti) would be
sign reversing). The following algorithm produces a positive
eigencycle K.
(0) K +»C(S,t]), i<
(1) If i = n, stop
If sipq ¢ K™, then K« Ko - C(S,t.+1)

i

else K <K © C(S,t1+])
i <« i+]

go to (1)

In step (1), K does not contain ti+1’ though it may contain Si+1
e s +

The composition in step (1) ensures that {si+],t1+]} < K or

{Si+1’ti+1} < K'. The algorithm will stop with a positive

eigencycle K such that K = E. N
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The proof must be modified for the positive semidefinite case,

for it may happen that S ¢ Q(S,ti) for some 1.

Theorem 111.2.2. If M is a symmetric positive semidefinite oriented

matroid, and there is an element of T that is not a loop of M, then

M has a positive eigencycle.

Proof. Let t. be an element of T that is not a loop of M. Then
S € C(S,ti)+ by Lemma III.1.1. The following algorithm will produce
a positive eigencycle.
(0) K<« C(S,ti)
(1) If there is a j such that S; € K but tj ¢ K then do:
If s, e k', Tet K<« K o C(S,t;)
If s« K, Tet K« Ko -C(S,t;)
go to (1)
Else stop.
At each step of the algorithm, a tj is admitted into K so that it has

the same sign as Sj’ which is already in K. O

Note that if every element of T is a loop, then every cycle of
M is in T, so there can be no positive eigencycle. In that case M

is represented by (I,0).

From the definition, a symmetric oriented matroid with a negative
eigencycle is not positive semidefinite. In fact, the converse is

also true.
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Theorem I111.2.3. A symmetric oriented matroid M is positive semi-

definite iff it has no negative eigencycle.

Proof. Let M be symmetric and not positive semidefinite. It
suffices to show that M contains a negative eigencycle. By definition,
M contains a strictly sign reversing cycle K. If {{si,ti} u K| =1
for some i, then the member of {Si’ti} that is in K is called a
violator in K. The following algorithm creates a negative eigen-
cycle from a strictly sign reversing cycle K with all of its violators in S.
(0) Let K be any strictly sign reversing cycle with all of its
violators in S.
(1) If there exists an i such that S; € K but ti ¢ K, then
if s; e K, Tet K« Ko -C(S,t;)
if s, e KT, let K« Ko C(S,t,)
goto (1)
If there is no such i, stop; K is a negative eigencycle.
After every step, a strictly sign reversing K is maintained
with all of its violators in S. We need such a K before we can
apply the above algorithm. First, note that if s. e C(S,ti)' for
any i, then C(S,ti) suffices. Next, suppose that s. ¢ Q(S,ti),
sj € Q(S,ti) for some i,j. By the symmetry of the S-tableau,
s; < C(S,t). If 55 C(S,t;)", then s, « C(S,tj)+ and C(S,t,) °
—C(S,tj) will be a strictly sign reversing cycle with all of its
violators in S, and if 55 ¢ C(S,ti)', 55 € C(S,tj)" then C(S,t;) o
C(S,tj) will be one.
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Suppose that Theorem I11.2.4 is true for symmetric oriented
matroids with |S| = n-1. Let K be a strictly sign reversing cycle
of M. If, for some i, we have t; ¢ K, then we have a strictly sign
reversing cycle K\{Si’ti} in the symmetric oriented matroid M\ti/si'
By the induction hypothesis, there must be a negative eigencycle of
M\ti/si and therefore a strictly sign reversing cycle of M for which
the only possible violator is Si» which is in S. Apply the algorithm
to this cycle.

Now suppose that t. ¢ K for all 1. If s; ¢ K for all i, then
K is a negative eigencycle. Suppose S ¢ K for some i. As shown
earlier, if s, « C(S,ti)' or if s, ¢ Q(S,ti) when t. is not a loop,
we get a strictly sign reversing cycle with all of the violators in
S. If ti is a Toop, then K\ti is a strictly sign reversing cycle
of Mwith t. ¢ K; this was treated earlier. The last case is when
S; € C(S,ti)+ In that case, M\Si/ti is a symmetric oriented matroid
containing a strictly sign reversing cycle K\ti‘ By the induction
hypothesis, there then exists a negative eigencycle in M\Si/ti’
implying the existence of a strictly sign reversing cycle K in M with

t; being its only possible violator. If t; / K, then K is a

negative eigencycle. If t. e K, then either K o C(S?ti) or

K o -C(S,ti) is a strictly sign reversing cycle with all of its
violators in S. Thus, one can always find such a strictly sign
reversing cycle. For the ground case of the induction, note that
when |S| = |T| = 1, any strictly sign-reversing cycle is necessarily
a negative eigencycle.

From this result and Theorem II.1.4, we obtain
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Corollary III.2.4. A symmetric oriented matroid is positive definite

iff it has no nonpositive eigencycle.

The results in this section are again direct analogs to theorems
of linear algebra. A symmetric positive definite matrix has a real
positive eigenvalue (Theorem I11.2.1). A symmetric positive semi-
definite matrix has a real positive eigenvalue iff it is not the zero
matrix. A symmetric matrix is positive (semi)definite iff it has no
nonpositive (negative) eigenvalues (Theorem II1.2.3 and Corollary
111.2.4).

As noted earlier, there are lTimitations to what one can say
about eigenvectors from only looking at the sign patterns of vectors
in a subspace of R". There is no way yet known of finding out which
eigencycles of M(I,-A) correspond to real eigenvectors of A by Tooking
only at the oriented matroid. However, the results given in this
section demonstrate the possibility of extending some significant
basic properties of quadratic forms to the combinatorial setting of

oriented matroids.
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